Efficiénte exploratie van de ontwerpruimte
van ingebedde microprocessors

Efficient Design Space Exploration of Embedded Microprocessors

Maximilien Breughe

Promotoren: prof. dr. ir. L. Eeckhout, dr. ir. S. Eyerman
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. R. Van de Walle
Faculteit Ingenieurswetenschappen en Architectuur UNIVERSITEIT
Academiejaar 2014 - 2015 GENT

}

ISBN 978-90-8578-747-1
NUR 980, 950
Wettelijk depot: D/2014/10.500/93

Made in Texas.

Dankwoord

Dat ik na vijf jaar ijverig experimenteel onderzoek in mijn doctoraal exa-
men aan de universiteit Gent geslaagd ben, stemt mij fier en gelukkig. Maar
evenzeer realiseer ik mij dat dit succes de resultante is van een reeks ont-
moetingen met wetenschappers van topniveau. En die mensen wil ik hier
oprecht bedanken voor wat zij voor mij betekend hebben.

Vooreerst mijn twee promotoren: prof. Lieven Eeckhout en dr. Stijn Ey-
erman. Aan Lieven heb ik te danken dat ik een doctorale graad bekomen
heb. Hij heeft mijn carriere vorm gegeven. Hij is mij onder de studenten
lichting 2009 komen opzoeken met de vraag om in zijn dienst experimen-
teel werk te verrichten op het gebied van computerarchitectuur. Hij heeft
mij gevormd in zijn lab en mij geholpen bij het uitwerken van mijn projec-
ten. Hij heeft mij geleerd hoe publicaties op te stellen en me aangezet tus-
sendoor op internationale topconferenties en in internationale tijdschriften
vier artikelen te publiceren. Hij was het die mij in de juiste richting duwde
en mij in het buitenland stage liet lopen. Ik ben trots een leerling geweest
te zijn van deze professor met internationale faam.

Aan Stijn, mijn tweede promotor, eveneens mijn dank. Die heeft mij
zeer intens begeleid bij mijn experimenten. Met zijn ongeévenaarde exper-
tise en scherp inzicht heeft mij telkens weer de juiste richting doen inslaan.
Ook hij was enthousiast over de mogelijkheden die mij in Amerika ter be-
schikking werden gesteld. Samen met Lieven heeft hij ervoor gezorgd dat
mijn onderzoek in Gent en Austin vloeiend verliepen en voor deze harmo-
nieuze samenwerking wil ik ze allebei nog eens extra bedanken.

De tweede groep wetenschappers die mij geleid hebben zijn mijn Ame-
rikaanse medewerkers. I hereby would like to thank Nasr Ullah, Wichaya Top
Changwatchai, Brian Grayson and Tim Snyder for making this internship happen.
These four persons were key in introducing me into Samsung Austin R&D Center
and I don’t have enough words to express my thanks. The internship has been in-
valuable for my PhD. A special word of thanks goes to David Eklov, for sharing his
experience as a PhD student and for his willingness to listen to my research topic.
Another special word of thanks goes to Shen, for her patience, support, wise advice
and motivating words, especially during the months I wrote the dissertation. I
would also like to thank Kshitij and Zheng Li for their wise practical advice.

Tot nu toe heb ik de wetenschappers bedankt die mij in de opbouw van
mijn werk geholpen hebben. Tk wil echter evenzeer mijn dank richten tot
diegenen die de zware opdracht aanvaard hebben in de examencommissie
te zetelen. Deze bestond, naast Lieven en Stijn, uit zes leden, zijnde vier
binnenlandse leden, nl. prof. Koen De Bosschere, prof. Filip De Turck, dr.
Philippe Manet en prof. Luc Taerwe, en twee buitenlandse professoren, nl.
Prof. Roy Jenevein en Prof. Erik Hagersten. Ik bedank ze allen één voor één
voor het extra werk dat zij op zich genomen hebben met mijn scriptie door
te lezen, wat suggesties naar bijschaving naar voren te brengen en uiteinde-
lijk een oordeel te vellen. En voor de twee buitenlandse professoren komt
daar nog de zware trip naar Gent bij. Many thanks go to Prof. Erik Hagersten
and Prof. Roy Jenevein for their effort to evaluate this thesis, their suggestions and
their willingness to travel to Ghent, despite their busy schedules.

Verder wil ik enkele zaken uit de persoonlijke sfeer niet onvermeld la-
ten. Vooreerst, de sfeer van het thuisfront zal ik nooit vergeten. Kristof
en Klaas, mijn beide “bureaugenoten” tijdens mijn doctoraatsjaren, hebben
mij, naast wetenschappelijk advies, veel morele steun geboden en voor de
nodige afleiding gezorgd. Ook de overige bureaugenoten, nl. Cecilia, Sam,
Sander en Shoaib hebben meegeholpen aan het creéren van een aangename
stimulerende werksfeer. Daarnaast wil ik niet vergeten, omwille van hun
professionele ondersteuning, Marnix, Michiel, Ronny en Pieterjan evenals
het personeel van het Vlaams Supercomputer Center (VSC). Vervolgens —
zo hoort het — een woordje van dank aan mijn familie. Daarbij denk ik in
het bijzonder aan: mama, papa en bonpa die mij de kans gegeven hebben
om te geraken waar ik nu sta; en mijn zus Laétitia die er altijd de vrolijke
noot wist in te houden. Wie ik echter tot slot nog in herinnering wil bren-
gen is mijn studiegenoot en vriend Geert, die op het moment van schrijven
voor een bekende Belgische firma ergens in Australié aan het baggeren is.

Maximilien Breughe
Gent, 25 november 2014

Examencommuissie

Prof. Luc Taerwe, voorzitter
Prodecaan Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Koen De Bosschere, secretaris
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Lieven Eeckhout, promotor
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Dr. Stijn Eyerman, promotor
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Filip De Turck
Vakgroep Informatietechnologie
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Erik Hagersten
Uppsala University
Sweden

Prof. Roy Jenevein
The University of Texas at Austin
USA

Dr. Philippe Manet
Embedded Computing Specialists
Brussel

Leescommissie

Prof. Filip De Turck
Vakgroep Informatietechnologie
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Lieven Eeckhout
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Erik Hagersten
Uppsala University
Sweden

Prof. Roy Jenevein
The University of Texas at Austin
USA

Dr. Philippe Manet
Embedded Computing Specialists
Brussel

Vi

Samenvatting

Ondanks hun sterke vertegenwoordiging in het alledaagse leven is het ont-
werpen van microprocessors bijzonder complex. Het vereist het werk van
honderden mensen gedurende enkele jaren. Dit komt door de strenge ei-
sen die worden opgelegd aan het ontwerp: processors moeten snel zijn om
de steeds complexere software te kunnen uitvoeren, maar ook vermogen-
efficiént om een lange batterijduur te garanderen. Om deze criteria te kun-
nen bereiken kunnen we gebruik maken van de revolutionaire vooruit-
gang op gebied van technologie. Dit laat ons toe om miljarden transis-
tors te plaatsen op een kleine oppervlakte. Deze transistors bouwen de
verschillende componenten van de microprocessor op. De vele compo-
nenten waaruit de microprocessor bestaat hebben verschillende parame-
ters die moeten worden gekozen om ontwerpcriteria zoals uitvoeringstijd
en vermogen-efficiéntie te bereiken. Het vinden van de juiste parameters
voor iedere component om deze ontwerpcriteria te bereiken is het onder-
werp van ontwerpruimte-exploratie (Eng.: design space exploration).

Traditionele cyclus-getrouwe simulators zijn niet geschikt om grote ont-
werpruimtes volledig te exploreren door de lage simulatiesnelheid. Trage
simulaties leiden namelijk tot twee grote problemen. Ten eerste worden
computerarchitecten verplicht om slechts enkele gebieden in de grote ont-
werpruimte te simuleren. Hierdoor bestaat de kans dat interessante alter-
natieve ontwerpen nooit gesimuleerd worden. Ten tweede limiteert de lage
simulatiesnelheid de werklasten die gebruikt worden tijdens de explora-
tie van de ontwerpruimte. Dit kan ertoe leiden dat het gekozen ontwerp
suboptimaal zal presteren voor werklasten die niet tijdens het ontwikke-
lingsprocess gebruikt werden.

Om computerarchitecten te helpen bij de selectie van de gebieden die
ze wensen te simuleren, introduceren we een snel analytisch prestatiemo-
del dat voorafgaand aan de cyclus-getrouwe simulaties gebruikt kan wor-
den. De constructie van het model is gebaseerd op de interne werking van
de microprocessors. We valideren de nauwkeurigheid zowel ten opzichte
van cyclus-getrouwe simulatie als ten opzichte van echte hardware. Door
het model te vergelijken ten opzichte van meer dan 6,000 cyclus-getrouwe
simulaties (een combinatie van programma-applicaties en microarchitec-
turale configuraties), tonen we aan dat het model het aantal cycli per in-

viii SAMENVATTING

structie (CPI) kan voorspellen met een gemiddelde absolute voorspellings-
fout van slechts 2.8% en een standaardafwijking van 0.024. Wanneer we
het model inzetten om de prestatie te voorspellen van 19 applicaties voor
ingebedde systemen op de ARM Cortex-A8 op een hardware-platform, to-
nen we aan dat het een gemiddelde absolute nauwkeurigheidsfout in CPI
heeft van slechts 10%, met een standaardafwijking van 0.10. Het eigenlijke
model bestaat uit een som van verschillende termen die de uitvoeringstijd
op een verschillende manier beinvloeden, zoals bijvoorbeeld foutief voor-
spelde sprongen, cache missers, athankelijkheden tussen instructies, maar
ook het onbeschikbaar zijn van functionele eenheden. De invoer voor het
model bestaat uit de configuratie van de hardware waarvoor een presta-
tieschatting gewenst is, een aantal programmakarakteristieken die onaf-
hankelijk zijn van de microarchitectuur, en programmakarakteristieken die
gedeeltelijk athankelijk zijn van de microarchitectuur. Het voordeel om de
totale prestatie onder te verdelen in aparte termen is dat op die manier
de interactie van een programma met de microarchitectuur gevisualiseerd
kan worden. We gebruiken het model voor het oplossen van een aantal
ontwerpproblemen. We tonen aan dat we het model kunnen inzetten om
het aantal functionele eenheden te minimaliseren voor een gegeven pres-
tatiedoel. Verder zetten we het model in om de microarchitectuur te opti-
maliseren voor zowel prestatie als energie. Naast deze ontwerpproblemen
geven we ook een aantal interessante inzichten mee door de interactie tus-
sen programma’s en de microarchitectuur te visualiseren aan de hand van
het model. We tonen aan dat programma’s met een gelijke instructie-mix
sterk verschillend kunnen reageren op het schalen van microarchitecturale
componenten. Wanneer we de interactie tussen een programma en de mi-
croarchitectuur visualiseren voor uitvoerbare bestanden gegenereerd met
verschillende compiler-instellingen, kunnen we aantonen hoe deze instel-
lingen de prestatie beinvloeden.

Het kiezen van de juiste werklasten die tijdens het ontwerp van micro-
processors gebruikt worden is van groot belang om robuste beslissingen te
maken en te vermijden dat het ontwerp slecht presteert op nieuwe werklas-
ten. Tot op vandaag hebben voorafgaande studies vooral gefocust op het
vinden van representatieve programma’s en representatieve regio’s binnen
deze programma’s. Er zijn echter twee impliciete parameters die gekop-
peld gaan met de gekozen werklast die slechts weinig bestudeerd zijn: de
programma-invoer en de compileroptimalisatievlaggen die gebruikt wer-
den om een uitvoerbaar bestand te genereren. Met een grootschalig onder-
zoek tonen we aan dat slecht gekozen programma-invoerbestanden kun-
nen leiden tot een ontwerp met een energie-efficiéntie dat 57% lager ligt
dan het ontwerp met de hoogste energie-efficiéntie. Een slecht gekozen
uitvoerbaar bestand kan resulteren in een energie-efficiéntie dat 16% lager
ligt dan het ontwerp met de hoogste energie-efficiéntie.

Gezien de potentieel sterk negatieve impact van slecht gekozen pro-

gramma-invoerbestanden introduceren we drie verschillende karakterisa-
tietechnieken om de kans op een nadelige energie-efficiéntie in te perken.
Deze technieken hebben als grote voordeel dat, eens de invoerbestanden
gekarakteriseerd zijn, de simulatietijd niet stijgt ten opzichte van willekeu-
rig geselecteerde invoerbestanden: onze experimenten tonen aan dat ten
hoogste drie representatieve invoerbestanden voldoende zijn om een ont-
werp te vinden dat nagenoeg de hoogste energie-efficiéntie heeft. De eerste
techniek maakt gebruik van kleine regio’s in de ontwerpruimte om de in-
voerbestanden te filteren, wat tot een energie-efficiéntie leidt die slechts 7%
onder het maximum ligt wanneer drie invoerbestanden gebruikt worden.
Deze techniek vereist een aantal simulaties, evenredig aan de grootte van
de regio’s en het beschikbaar aantal invoerbestanden, voorafgaand aan de
eigenlijke ontwerpruimte-exploratie om de invoerbestanden te karakterise-
ren. De tweede techniek karakteriseert de invoerbestanden onafhankelijk
van de onderliggende microarchitectuur, op basis van basic-block-vectoren
(BBV’s). Deze techniek heeft de kortste karakterisatietijd en leidt tot een
energie-efficiéntie die slechts 4% onder het maximum ligt wanneer twee
invoerbestanden gebruikt worden. De derde en laatste techniek maakt het
mogelijk om met drie invoerbestanden het ontwerp te vinden met de hoog-
ste energie-efficiéntie. Hiervoor maakt de techniek gebruik van simulatie-
statistieken zoals het gemiddeld aantal cycli per instructie (CPI). De karak-
terisatietijd komt overeen met een enkele simulatie voor ieder invoerbe-
stand.

Als besluit geloven we dat deze twee bijdragen, het analytisch presta-
tiemodel en de karakterisatietechnieken voor programma-invoer, een be-
langrijk deel moeten vormen van de ontwerpcyclus voor microprocessors.
Het prestatiemodel laat ons toe om prestatieschattingen te maken in enkele
seconden, in plaats van uren cyclus-getrouwe simulatietijd. Deze snelle
prestatieschattingen zijn van groot belang om interessante regio’s te ont-
dekken in de grote ontwerpruimte. Met de karakterisatietechnieken voor
programma-invoer kunnen we representatieve programma-invoerbestan-
den selecteren tijdens het ontwerp van de microprocessor. Dit zorgt ervoor
dat het uiteindelijke ontwerp voldoende robuust is voor het uiteenlopende
dynamisch gedrag van computerprogramma’s.

SAMENVATTING

Summary

Despite their ubiquitous presence in everyday life, designing a micropro-
cessor is a complicated process, involving the work of hundreds of people
for several years. Not only should new microprocessors keep up with the
performance demands of new software applications, they also need to be
power efficient. To achieve these design goals we can rely on spectacular
advances in technology that provide the ability of placing billions of tran-
sistors on a very small area. These transistors are hierarchically organized
into a number of components that all require the appropriate scaling and
tuning to meet the design goals. The large number of these components to-
gether with the many parameters they bring along build up a large design
space for the computer architect to explore.

Traditional cycle-level simulators are not suitable to explore these large
design spaces because of their low simulation speed. The low simulation
speed introduces two important problems. First, slow simulation forces
computer architects to carefully select small regions in the design space
they wish to simulate, potentially leaving out interesting design alterna-
tives. Second, the low simulation speed further limits the amount and
sizes of workloads that are used during design space exploration, possi-
bly resulting in designs that are suboptimal for workloads that were not
simulated during the development.

To guide architects in selecting interesting regions in the typically large
design spaces, we propose a fast analytical performance model that can
be used in the early stages of the design. We construct the model based
of the internal mechanics of the microarchitecture, and compare it against
both detailed cycle-level simulation and hardware. For over 6,000 cycle-
level simulations (a combination of workloads and microarchitectural con-
figurations), we show that the model’s predicted number of cycles per in-
structions (CPI) has an absolute error of 2.8% on average, with a standard
deviation of 0.024. For a set of 19 embedded benchmarks, executed on a
hardware platform with the ARM Cortex-A8 processor, we report an abso-
lute average prediction error in CPI of 10% on average, with a standard
deviation of 0.10. The final model consists of the sum of a number of
penalty terms that reflect the impact of miss events (i.e., branch mispre-
dictions, cache misses, etc.), inter-instruction dependences and functional

Xii SUMMARY

unit contention. The inputs to provide to the model are a number of ma-
chine parameters for which a performance estimate is desired, a number of
program characteristics independent on the microarchitecture, and a num-
ber of mixed program-machine characteristics. The advantage of having
separate terms that reflect a penalty is that they can be used to visualize the
interaction of an application with the microarchitecture. We use the model
for a number of design space exploration studies: we are able to find the
minimum number of functional units to achieve a predefined performance
target using the model, as well as to find the microarchitecture with an
energy-delay-product within 1% of the microarchitecure with the lowest
energy-delay-product as found by detailed cycle-level simulation. We fur-
ther reveal a number of interesting insights by using the model to visualize
the application-microarchitecture interaction. We show that applications
with a similar instruction mix can react very differently on microarchitec-
tural enhancements. By visualizing the application-microarchitecture inter-
action on a number of different optimized binaries for the same application,
we show how compiler optimization flags can impact the performance of
an application.

Selecting representative workloads to use throughout design space ex-
ploration is of extreme importance in order to assure that design decisions
are robust across previously unseen workloads. Before, workload selec-
tion has mainly focused on finding representative applications and find-
ing representative samples within these applications. There are however
two implicit parameters tied to the workload that have been given only lit-
tle attention until now: the application’s input data sets and the compiler
optimization flags used to generate the application binary. We show that
poorly chosen application inputs could guide design space exploration to
a design with an energy-delay-product (EDP) 57% higher than the design
with the lowest EDP. A poorly chosen application binary could result in an
EDP increase of 16% over the design with the lowest EDP.

Given the potentially high impact of poorly chosen application inputs
we introduce three input selection techniques to reduce the EDP deficiency,
without drastically increasing the simulation time: in our experimental
setup, we find one to three inputs to be sufficient to find a nearly optimal
design. Filtering the inputs by performing design space exploration on a
very small region of the original design space reduces the worst case sce-
nario to an EDP deficiency of 7% by using three inputs. This technique re-
quires a number of simulations, proportional to the number of inputs avail-
able and the size of the selected region, prior to design space exploration
to profile the inputs. With basic block vector (BBV) selection we charac-
terize inputs in a microarchitecture-independent way. This technique has
the lowest input characterization overhead and is able to reduce the worst
case scenario to an EDP deficiency of 4% with as few as two inputs. The
third technique is able to completely eliminate the EDP deficiency in our

xiii

setup by using three inputs during design space exploration. It therefore
characterizes inputs by using simulation statistics, such as CPI (cycles per
instruction), from a single cycle-level simulation per input.

We believe that the two main contributions of this dissertation, namely
the analytical performance model and benchmark input selection techniques,
are key additions into the microarchitectural design cycle. With the pro-
posed mechanistic model, we are able to estimate microprocessor perfor-
mance in seconds, compared to hours of cycle-level simulation, which helps
guiding us into interesting regions of the typically large design space. The
proposed input selection techniques allow us to use representative bench-
mark inputs during design space exploration, leading to design decisions
that are optimal across inputs.

Xiv SUMMARY

Contents

Nederlandse samenvatting vii
English Summary xi
1 Introduction 1
1.1 Motivationandfocus, 2
1.2 The Contributions of thisThesis 4

1.2.1 Contribution 1: Fast microarchitectual evaluation and
bottleneck visualization 4

1.2.2 Contribution 2: Selection methodology for represen-
tative benchmark inputs 5
1.3 ThesisOutline 7
2 Background 9
2.1 Superscalar Processors 9
2.1.1 Superscalar in-order processors 10
2.1.2 Superscalar out-of-order processors 13
2.2 Analytical Performance Modeling 15
22.1 Mechanistic Modeling 16
222 Empirical Modeling 18
2.2.3 Hybrid mechanistic-empirical modeling 18
2.3 Workload selection techniques 18
2.3.1 BenchmarkSelection 19
232 SampleSelection 20
233 InputSelection 20
234 Summary 21

3 Mechanistic Analytical Performance Modeling of Superscalar In-

order Processors 23
31 Modelingcontext 24
3.1.1 Generaloverview 24
3.1.2 Microarchitecture description 25
32 Overallformula 26
33 Missevents. 27

XVi CONTENTS
3.3.1 Penalty due to cache and TLBmisses 27
3.3.2 Penalty due to branch mispredictions 28
3.4 Inter-instruction dependences and functional unit contention 29
3.4.1 Inter-Instruction Dependences 31
3.4.2 Functional Unit Contention 36
3.5 Experimentalsetup 44
3.6 Model Validation 50
3.6.1 Validation Against Detailed Simulation 50
3.6.2 Validation Against Hardware 54
3.7 Guiding design space exploration 55
3.7.1 Minimizing Number of Functional Units for a Given
Performance Target 55
3.7.2 Minimizing the Energy Delay Product 56
3.8 Gaininginsights o 0000 60
3.8.1 Revealing Performance Bottlenecks 60
3.8.2 Compiler Optimizations 62
3.8.3 In-order versus out-of-order performance 65
39 Summary 66
4 Selecting Representative Benchmark Inputs for Design Space Ex-
ploration 69
4.1 DPotential pitfall of current practice 70
42 ExperimentalSetup0 .. 72
421 DesignSpace 72
422 Workloads 73
423 Modeling Infrastructure 75
424 Optimization Criterion 76
4.3 Quantifying the impact of implicit parameters on micropro-
cessor design space exploration 77
43.1 Sensitivity to Benchmark Inputs 78
43.2 Sensitivity to Compiler Optimization Flags 80
4.3.3 The impact of the microarchitecture on compiler op-
timizationflags 81
44 Representative Benchmark Input Selection 84
441 Random Selection 85
442 Microarchitecture-Independent Selection 87
443 Filtered Selection 92
444 CPI-Sampled Selection 96
445 Overview and Discussion 98
45 Summary 101
5 Conclusion 103
51 Summary 104

5.1.1 Analytical performance modeling 104

CONTENTS Xvii

51.2 Selecting representative benchmark inputs 105

52 Futurework o oo 106
5.2.1 Mechanistic performance modeling of superscalar in-

order processors 106
5.2.2 Quantification of compiler optimization flags on de-

sign space exploration 107

52.3 Selecting representative benchmark inputs 107

A Instruction Profiler 109

B Representative Benchmark inputs 115

Xviii CONTENTS

List of Tables

3.1
3.2

3.3

34
3.5
3.6
3.7
3.8
3.9

3.10

4.1
4.2
43
44

4.5

B.1

B.2

H-matrix for the instruction stream in Figure 3.6. 40
Penalties for the patterns of the H-matrix in Table 3.1 in the

case of two non-pipelined multiply units. 41
Penalties for the patterns of the H-matrix in Table 3.1 in the

case of two pipelined multiply units. 43
Overview of MiBench benchmarks 45
Overview of SPEC CPU 2006 benchmarks 46
DesignSpace v oL 48
DesignSpace 8 49
Cortex-A8 microarchitectural parameters 50
Benchmark-optimal configurations achieving at least 98% of
maximum performance with a minimum number of units. . 57
Configuration used to compare in-order with out-of-order
CPIstacks. 64
Design space for detailed simulation. 71
Design space considered in thisstudy. 72
Overview of benchmarks 74
Resulting microarchitectural optimizations for jpeg-d, depend-

ing on the used input during design space exploration. . .. 87

Summary of input selection methods. (IV is the number of
inputs in the database, M the number of microarchitectures,
s the simulation time overhead and the p instrumentation
overhead.) 99

Representative inputs for MiBench, characterized with the
techniques of Chapter4. 116
Representative inputs for MiBench, characterized with the
techniques of Chapter4. 117

XX

LIST OF TABLES

List of Figures

1.1

1.2

21
2.2
2.3

3.1
3.2

3.3

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

Schematic view of the main steps involved in microprocessor

design. L 2
The contributions of this thesis (mechanistic model and in-

put selection) and how they affect processor design. 3
Block diagram of a superscalar in-order pipeline. 10
Block diagram of a superscalar out-of-order pipeline. 13

Interval analysis analyzes processor performance on an in-
terval basis determined by disruptive miss events: (a) out-

of-order processors and (b) in-order processors. 17
Overview of the mechanistic modeling framework. 24
Schematic view of the assumed superscalar in-order proces-

sor. Here, W=4and D=2. 25
Construction of the pattern distribution matrix for part of the

dct_chroma routine of the h264 benchmark. 30
Four possible instruction flows for an instruction dependent

on an ALU instruction at distanced =2. 32
Four possible instruction flows of the pattern “XAAA” . .. 38
An example instruction stream with multiply instructions. . 39

Instruction flow of the example instruction stream in Figure
3.6 through a superscalar processor with two multiply units. 40

Simulation framework when evaluation is driven by cycle-

level simulation. 47
Simulation framework when evaluation is driven by the mech-
anisticmodel. Lo L Lo L o 47

Model validation while varying the number of floating-point
multiply units (FM), for the floating-point benchmarks of
MiBench and SPEC CPU2006. 51
Evaluation of the model compared to detailed simulation for
pipelined (P) and non-pipelined (NP) functional units, on
the integer benchmarks of SPEC CPU 2006. 52

xXii

LIST OF FIGURES

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

4.1

Evaluation of the model compared to detailed simulation for
pipelined (P) and non-pipelined (NP) functional units, on

the floating-point benchmarks of SPEC CPU 2006. 52
Cumulative probability distribution of error for design spaces
aand S onall evaluated points. 53

Model accuracy for estimating relative performance as a func-
tion of superscalar width. 53

Evaluation of the model compared to the Cortex-A8 microar-
chitecture. 54

Baseline performance, performance of the configuration with
4 units of each type (Maximum units) and the performance
of the configuration picked by the model with a minimum
number of functional units within 98% of the optimum (Op-
timized). 56

Using the model versus detailed simulation when optimiz-
ing for EDD, for four benchmarks and 256 configurations. . . 58

Framework to filter the designs used in the second experi-
ment of Section 3.7.2, to limit the number of designs to eval-
uate with detailed cycle-level simulation. 59

EDP (normalized by the EDP of Baseline j3) for the lowest
EDP configuration discovered by simulation and by the model. 59

The instruction mix of benchmarks gsm_c and susan_s are
similar: Many integer ALU instructions and over 10% inte-
ger multiply instructions. 0L 60

Adding an additional multiply unit increases performance
significantly for one benchmark, but not for the other, while
the instruction mixes of Figure 3.20 are similar. 61

CPI stacks reveal that inter-instruction dependences between
multiply instructions are the underlying bottleneck that is
preventing performance improvement for susan_s. The ‘other’
component are all other terms in the model that only have a
small component. 62
Normalized cycle stacks for five benchmarks across different
compiler optimizations. 0L 63
Normalized cycle stacks for susan_s with and without loop
unrolling, and on two different architectures (one and two
multiply units). o oo 63
Comparing in-order versus out-of-order performance using

CPI stacks obtained through mechanistic modeling. 65

Normalized EDP for sha for five different processor config-
urations and five differentinputs. 71

LIST OF FIGURES xxiii

4.2

4.3

44

4.5

4.6

4.7

4.8

49
4.10

4.11
4.12
4.13
4.14
4.15

4.16

Relationships between parameters that are quantified in Sec-
tion 4.3. The strong impact from benchmark inputs on mi-
croarchitectural design decisions is the main focus of this
chapter, and is quantified in Section 4.3.1. In addition, the
other relationships are quantified in the remainder of Section

P 78
Quantifying the impact of selected benchmark inputs for iden-
tifying the optimum processor configuration. 78
Quantifying the impact of compiler optimization flags on the
identification of the optimum processor configuration. . .. 80

Framework to calculate the speedups of the baseline-optimal
(BLopt) binary and the microarchitecture-optimal (parchp (7))
binary for microarchitecture. 82
Speedups over -03 for lame when the binary is optimized

for the target architecture (red curve) and when it is opti-
mized by a baseline architecture (blue data points). The ex-
periment is repeated for different microarchitectures on the
X-axis, but the baseline is kept the same. 83
Speedups over ~03 for sha when the binary is optimized for

the target architecture (red curve) and when it is optimized

by a baseline architecture (blue data points). The experiment

is repeated for different microarchitectures on the X-axis, but

the baseline is kept thesame. 83
Harmonic average of speedups over 1728 microarchitectures,
when the baseline to generate the application binary is (1)

the microarchitecture resulting in the best speedup (i.e., the
binary is generated by the microarchitecture we measure speedup
on and hence is the best case.), (2) the microarchitecture re-
sulting in an average speedup (average case) and (3) the mi-

croarchitecture resulting in the worst speedup (worst case) . 84
Input selection workflow. 85
Random input selection: worst case normalized EDP as a

function of number of randomly selected inputs. 86
Input 807 forjpegdo 88
Input 261 forjpegd L 88
Call graph of the valgrind analysis for input 807 89
Call graph of the valgrind analysis for input261 89
Microarchitecture-independent input selection using Basic

Block Vectors (BBVs). L. 90

Boxplot distribution of average Manhattan distances between
each input and all other inputs. The high distances indicate

that there is many different dynamic behavior over different
inputs: e.g., a Manhattan distance of 0.5 indicates that 25%

of the executed code resides in different basic blocks. 91

Xxiv LIST OF FIGURES

4.17 Normalized EDP for microarchitecture-independent input se-

lection using BBVs versus random selection. 92
4.18 One-level filtered input selection uses design space explo-

ration in a limited microarchitectural subspace to filter out

non-representativeinputs. 0000 93
4.19 Normalized EDP through one-level filtered input selection. . 94
4.20 Two-level filtered input selection uses two levels of design

space exploration in limited subspaces to filter out non-representative

inputs. 95
4.21 Normalized EDP through two-level filtered input selection. ~ 96
422 CPI-sampled selection. 96
4.23 Normalized EDP through CPI-sampled selection. 98
4.24 CPI across data sets for a number of benchmarks. 98

4.25 Overview of the best performing two techniques: BBV selec-
tionand CPl-sampling 100

List of Abbreviations

ALU
ASIC
BBV
CISsC
CPI

DV
EDP
EPI
FDTD
GCC
ILP

IPC

ISA

L1 I-cache
L1 D-cache
L2 cache
LSU
MLP
MSHR
RAW
RTL
SHA
TLB

TPI
WAR
WAW

Arithmetic Logic Unit
Application-Specific Integrated Circuit
Basic Block Vector

Complex Instruction Set Computer
Cycles Per Instruction

Design Verification
Energy-Delay Product

Energy Per Instruction

Finite Difference Time Domain
GNU Compiler Collection
Instruction-Level parallelism
Instructions Per Cycle
Instruction Set Architecture
Level one Instrution cache
Level one Data cache

Level two cache

Load/Store Unit
Memory-Level Parallelism
Miss Status Handling Register
Read After Write

Register Transfer Level

Secure Hasing Algorithm
Translation Lookaside Buffer
Time Per Instruction

Write After Read

Write After Write

XXVi LIST OF ABBREVIATIONS

Chapter 1

Introduction

I think there is a world market for maybe five computers.
Thomas J. Watson, IBM

Microprocessors take an important role in our everyday life: several
billions of microprocessors are distributed in the world in many different
devices [1], ranging from smartphones and smart watches to desktop com-
puters, game consoles and server systems in data centers. Despite their
ubiquitous presence, building a microprocessor is a very complicated pro-
cess. Not only does the microprocessor need to keep up with the increas-
ing complexity of software applications, it also needs to be power efficient,
both to allow for a long battery lifetime in handheld devices and to keep the
energy bill low and cooling costs reasonable in big data centers. To achieve
these goals we can rely on spectacular advances in technology that provide
the ability of placing billions of transistors on a very small area. The task
of organizing these transistors, however, is a very complicated one and in-
volves the work of hundreds of people for several years [12].

Figure 1.1 shows a high-level view of the main steps during the de-
velopment of a microprocessor. During every step of the development,
performance, power/energy consumption, area, reliability, etc., are the op-
timization criteria. It is the task of the computer architect to build an RTL
design that meets these criteria. Once the RTL design is ready (and func-
tionally verified by the Design Verification teams (DV)), it will go through
the physical design steps to create a layout file of the circuit (GDSII-file),
which is sent to the fab for wafer manufacturing.

To understand the impact of design decisions, the RTL design can be
simulated in software, which gives a very accurate estimate of its perfor-
mance if it were to be built in silicon. However, there are two main dis-
advantages. First, only very small workloads can be simulated because of
the low simulation speed: typically, simulating an application on RTL is
7 to 8 orders of magnitude slower than executing an application on real

2 Introduction

Workload

Analysis

Cycle-level .
. Ph |
architectural RTL design ys.lca
. . design
simulation
Performance/
DV
Power
Analysis

Figure 1.1: Schematic view of the main steps involved in microprocessor design.

hardware. To make design decisions, however, it is important to be able
to estimate the performance of workloads that are sufficiently large. Sec-
ond, RTL code tends to be inflexible when trying to explore the behavior
of new design features. To overcome these disadvantages, cycle-level mi-
croarchitectural simulators are built and used by performance and power
analysis teams to help RTL designers make design decisions. Cycle-level
architectural simulators aim at making performance estimates that are close
to those of RTL simulators, but they operate at a higher level of abstraction.
Because of this they are 3 to 4 orders of magnitude faster than RTL simula-
tors, and hence more design configurations can be explored and more and
larger workloads can be simulated. Unfortunately, these architectural sim-
ulators are still up to 4 orders of magnitude slower than execution on real
hardware, which forms a hard limit on the number of simulations that can
be done. This potentially leads to designs that are suboptimal for work-
loads that were not simulated during the development and/or limits the
number of designs that computer architects can simulate.

1.1 Motivation and focus

Traditional cycle-level simulators are clearly not suitable to explore large
design spaces. Because resources are limited, designers are tied to a limited
simulation budget and hence are forced to carefully select small regions in
the design space they wish to simulate. A second problem is that the low
simulation speed further limits the amount and sizes of workloads to be
simulated. However, in order to ensure that design decisions are robust, it
is important to select the appropriate workloads during design space ex-
ploration. Figure 1.2 shows our contributions to the microprocessor devel-
opment cycle to help solving both these problems.

1.1 Motivation and focus 3

Benchmark
selection
Sample
selection

Cycle-level
architectural RTL design
simulation

Physical
design

Performance/
Power
Analysis

DV

Figure 1.2: The contributions of this thesis (mechanistic model and input selection)
and how they affect processor design.

We develop an analytical performance model, built from the internal
mechanics of a microprocessor, for exploring design spaces in the early
design stage, by trading off accuracy for speed. Not only does the model
speed up simulation time drastically as it involves evaluating a number
of mathematical formulas, it also provides insight into the application-
microarchitecture interaction. The main intent of the model is to get quick
insight and to prune down the large number of designs to a smaller set that
can be simulated with detailed cycle-level simulation.

The challenge in workload selection is to select as few workloads as pos-
sible while capturing as much program-behavior as possible. Limiting the
number of workloads is important to reduce simulation time, while hav-
ing a broad coverage reduces the chance that our design has an undesired
performance on unseen workloads once the microprocessor is shipped.
We contribute to the workload selection process by adding techniques for
benchmark input selection to the computer architect’s toolbox.

When moving towards application-specific processors, the contribu-
tions of this thesis gain even more importance. An application-specific pro-
cessor is a processor that is tailored for the application or application do-
main of interest. This specialized processor is optimized to achieve the best
possible performance within a given energy envelope, or, vice versa, the
processor is optimized to consume the least possible energy while achiev-
ing a given performance target ! . Application-specific processors are more
cost-effective than hardware specialization, such as application-specific in-
tegrated circuits (ASICs), and in addition benefit from the programmability
of a general-purpose processor. In order to find the sweet spot in the typi-

!Synopsys’ DesignWare ARC processors and Cadence Tensilica Xtensa dataplane pro-
cessors are solutions along this line.

4 Introduction

cally huge design spaces, optimized along multiple design criteria, the de-
sign methodology is obviously key. The analytical performance model that
we introduce in this thesis can help computer architects guide design space
exploration by creating fast performance predictions for large regions in the
design space. Further, since these specialized processors are customized for
a specific application it is important to capture sufficient dynamic behavior
of the application. Therefore, the input selection techniques that we pro-
pose allow computer architects to find inputs that are representative for
the application.

As stated earlier, a primary design goal for embedded microprocessors
is energy-efficiency. While superscalar out-of-order processors deliver high
performance, they come at the price of complex logic which makes them
power-hungry. Because the performance of a single core is proportional
to the square root of its area 2 [5], known as Pollack’s rule, and power
consumption is roughly proportional to the area, processors that occupy
a smaller area are more power-efficient. This is even further motivated
by the end of the Dennard scaling [13] where the power density increases
when transistor sizes further decrease. We therefore consider superscalar
in-order processors throughout the course of this thesis, as they are less
complex to design, occupy less area and consume less energy, compared to
superscalar out-of-order processors. In-order processors are widely used
in today’s embedded systems such as in the iPhone 4 and iPad (under the
Apple A4 processor), but also in the recently released Galaxy S5 Mini (us-
ing the ARM Cortex-A8) and the high-end Samsung Galaxy S5 smartphone
(as part of the big. LITTLE core [27]).

1.2 The Contributions of this Thesis

1.2.1 Contribution 1: Fast microarchitectual evaluation and bot-
tleneck visualization

The intent of cycle-level microarchitectural simulators is to allow computer
architects to make high level decisions of a complicated hardware design.
Computer architects build these microarchitectural simulators to be as ac-
curate as possible compared to RTL-simulators or real hardware. Because
cycle-level microarchitectural simulators have a higher level of abstraction
than RTL-simulators they are 3 to 4 orders of magnitude faster. Therefore
computer architects can use them to explore many different potential mi-
croarchitectural designs. Unfortunately, applications executed on a simu-
lator are still up to 4 orders of magnitude slower compared to executing

’The performance of a single core is proportional to the square root of its complexity.
Hence, when considering the same feature size, the performance of a single core is propor-
tional to the square root of its area.

1.2 The Contributions of this Thesis 5

these applications on real hardware. Hence, an exhaustive search of all
potential microarchitectural designs is impossible, forcing computer archi-
tects to carefully select the designs they want to simulate.

To guide architects selecting interesting regions in the typically huge
design spaces we extend current practice of design space exploration by
constructing a model with a higher level of abstraction. We build a perfor-
mance model for superscalar in-order processors that eliminates the slow-
down from which cycle-level simulation suffers by using analytical formu-
las.

As a bonus, the model not only reduces simulation time significantly, it
also shows how an application interacts with the microarchitecture. This
allows computer architects to visualize where an application’s cycles are
spent. In addition, when applying this visualization technique on multiple
binaries of the same application, we are able to visualize how compiler flags
impact the interaction between an application and the microarchitecture.

Our results show that the model has an absolute error of only 2.8%
on average when compared against cycle-level simulation and 10% when
compared against hardware. The evaluation time of the model is less than
a second, while the evaluation time of cycle-level simulators typically takes
several hours.

A discussion of the model has been peer reviewed by and presented
at the 2012 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), where it was nominated for best paper
award:

Maximilien Breughe, Stijn Eyerman, and Lieven Eeckhout, “A mech-
anistic performance model for superscalar in-order processors”, IS-
PASS "12: Proceedings of the 2012 IEEE International Symposium on Per-
formance Analysis of Systems and Software.

An extended version of the model is in press for ACM Transactions on
Architecture and Code Optimization (TACO):

Maximilien Breughe, Stijn Eyerman, and Lieven Eeckhout, “Mecha-
nistic analytical modeling of superscalar in-order processor perfor-
mance”, TACO “14: ACM Transactions on Architecture and Code Opti-
mization.

1.2.2 Contribution 2: Selection methodology for representative
benchmark inputs

When performing design space exploration there are two parameters that
are implicit to the workloads that are being used: the input to the applica-
tion and the set of compiler flags that is used to optimize the application’s

6 Introduction

binary. Common practice is to use one or a couple of inputs and applica-
tion binaries, and assume that they capture enough dynamic behavior to
be representative for the entire application. These assumptions have never
proven to be true and the need to study them is increasing when moving
toward application-specific processors.

Therefore, we first conduct an experiment that uses a large database
of inputs for a number of applications and show that some inputs could
lead to poor results, when used to drive design space exploration. On av-
erage, the energy-delay product (EDP) ® can be 57% or 33% higher than the
lowest achievable EDP, when using one, respectively three badly chosen
inputs. Second, we set up a similar experiment by using application bina-
ries, compiled with different sets of compiler flags, to drive design space
exploration. We show that the choice of compiler flags with which the ap-
plication binary was generated, has a less significant impact: in the worst
case the EDP is 16% higher on average than the lowest achievable EDP.

A discussion on the sensitivity study of benchmark inputs has been
peer reviewed by and presented at the 2011 IEEE Symposium on Appli-
cation Specific Processors (SASP):

Maximilien Breughe, Zheng Li, Yang Chen, Stijn Eyerman, Olivier
Temam, Chengyong Wu and Lieven Eeckhout. “How sensitive is pro-
cessor customization to the workload’s input datasets?”, SASP "11:
Proceedings of the 2011 IEEE 9th Symposium on Application Specific Pro-
cessors.

Based on these insights we conclude that it is important to perform de-
sign space exploration with representative inputs. It is unclear, however, a
priori which input is representative for the application. Hence, without a
proper selection method we would either run the risk of building a design
with diminishing performance by using non-representative inputs, or we
would need to perform the exploration with a high number of inputs and
increase simulation time drastically. Both options are infeasible in practice.
Therefore we build different input selection techniques to reduce the EDP
deficiency. With the techniques we propose we are able to reduce the av-
erage EDP deficiency to less than 3.7%, without a significant increase in
simulation time.

A discussion of these input selection techniques and their trade-offs
has been published in ACM Transactions on Architecture and Code Op-
timization (TACO) and has been presented at the 2014 International Con-
ference on High-Performance and Embedded Architectures and Compilers
(HiPEAC):

*We use EDP as a metric for energy-efficiency.

1.3 Thesis Outline 7

Maximilien Breughe and Lieven Eeckhout. “Selecting representa-
tive benchmark inputs for exploring microprocessor design spaces”,
TACO “13: ACM Transactions on Architecture and Code Optimization,
Vol.10, No.37, Dec. 2013.

1.3 Thesis Outline

This dissertation is organized as follows. Chapter 2 describes the microar-
chitecture of modern superscalar in-order and out-of-order processors and
describes the current state-of-the-art of analytical performance modeling
and workload selection. Chapter 3 describes our analytical performance
model for superscalar in-order processors and illustrates its usefulness
with a number of case studies. In Chapter 4 we quantify the impact of
implicit workload parameters on design space exploration and introduce
our novel techniques to select representative benchmark inputs. Finally we
present our conclusions in Chapter 5 and provide suggestions for future
work.

Introduction

Chapter 2

Background

An expert is a person who has made all the mistakes
that can be made in a very narrow field.
Niels Bohr

In this chapter we describe important background topics to situate the
contributions of this work. We start by describing a high-level view of the
architecture of superscalar in-order and out-of-order processors. Next we
give an overview of prior work in analytical performance modeling of su-
perscalar processors. The last section of this chapter describes the current
state-of-the-art in workload selection.

2.1 Superscalar Processors

Microprocessors have been around for several decades, dating back from
the 1970s [6]. Their purpose is to execute instructions, as defined by the
programmer. Between the start and end of the execution of an instruction
on a microprocessor there is a long and complex chain of logic gates. The
longer the chain of logic gates, the longer the clock cycle of a single instruc-
tion and hence, the longer it takes to execute a software application.

Processing an instruction can be broken up into sequential pipeline
stages in an instruction pipeline. The chains of logic gates in each of the se-
quential stages are therefore much smaller and hence the complexity of the
work that needs to be done in each clock cycle is drastically reduced and
spread over multiple stages. This means the length of the clock cycle can
be reduced and instructions can theoretically flow into the pipeline cycle
after cycle. Modern pipelines (such as Intel Core i7) use this principle to
increase their clock frequency with deeply pipelined processors. The cost
of placing buffers (among other logic) between the pipeline stages and the
increasing performance penalty of branch mispredictions limit the amount

10 Background

Fetch [— Decode
Execute/
Address Generation
L1 I-cache Branch
Predictor —1 ALY, [
Writeback | | "Y1 [T
Physical 1,1 | Mmult/Div |
register file Unit
L2 cache —{ FPALU [—
Load/Store Mult/Div
data Unit FP
I L1 D-cache |L__| LSU —!
To main memory

Figure 2.1: Block diagram of a superscalar in-order pipeline.

of pipelining.

A second step in increasing the rate at which instructions are executed
is increasing the number of instructions that can be processed by a pipeline
stage concurrently. Many applications have a certain amount of instruction-
level parallelism (ILP): instructions that are independent of each other’s
results can be executed in parallel. Superscalar processors are built to ex-
ploit the instruction-level parallelism of applications. There are basically
two kinds of superscalar processors: in-order processors and out-of-order
processors. We will discuss both of them in the next subsections.

2.1.1 Superscalar in-order processors

Figure 2.1 shows the block diagram of a superscalar in-order pipeline. In-
structions and data are accessed from the memory subsystem, and pro-
cessed by the other units of the pipeline. The memory subsystem is de-
signed to provide instructions and data to the processor as soon as possible
by organizing the data in a hierarchical system. The execution of an in-
struction can be broken up into five stages: instruction fetch, instruction
decode, execute, memory access and writeback. We consider a width W
for each of the pipeline stages, meaning that a maximum of W instructions
can flow into each pipeline stage every cycle. !

INote that, to ease this discussion, we limit ourselves to a processor of depth 5 and a
uniform width for each of the stages. The depth can be chosen arbitrarily and each pipeline

2.1 Superscalar Processors 11

We will now describe the flow of instructions through the pipeline,
stage by stage.

Instruction Fetch During instruction fetch, the processor fetches new in-
structions from the level-one instruction cache (L1 I-cache) of the memory
subsystem. The fetch unit does this in a sequential way until a control flow
instruction (i.e., a branch instruction) redirects the flow of instructions. The
result of branch instructions, however, is only known during the execute
stage, which means that the processor might fetch too many instructions
on the sequential path. Because this has an important impact on perfor-
mance, modern processors have branch predictors, predicting the outcome
of a branch instruction early in the pipeline.

Instruction Decode After the instruction is fetched from the memory sub-
system it will get decoded by the decode unit/stage which identifies the
work that must be done. The decode unit/stage sets up the correct sig-
nals in order to process the instruction further: it determines which type
of functional unit needs to be accessed based on the instruction type (addi-
tion, multiplication, load data, etc.) and which registers need to be accessed
from the register file. In addition, depending on the instruction-set archi-
tecture (ISA) the processor implements, the decode unit/stage might need
to determine the length of the instruction 2 , complicating the logic of the
decode unit/stage even further.

For in-order processors, the decode unit/stage also handles the sig-
nalling for inter-instruction dependences. When one of the instructions that
is decoded, depends on the outcome of an instruction that has not com-
puted its result yet, the decode unit/stage blocks this instruction and all
subsequent instructions from going to the next pipeline stage. An instruc-
tion in the decode unit/stage can be dependent on instructions in the exe-
cute, memory and writeback stages but also on older instructions in the de-
code unit/stage itself. To avoid waiting on producers to reach the writeback
stage, forwarding logic is built between the pipeline stages. However, the
pipeline will still be blocked until the result is computed in the execute stage.
As we will see in Chapter 3, stalls due to inter-instruction dependences can
be a limit on performance for a large number of applications. This, in addi-
tion to the associated hardware cost, limits the maximum width to benefit
from instruction-level parallelism.

stage can potentially be designed with different widths.
2CISC processors (Complex Instruction Set Computer) have instructions of variable
length.

12 Background

Execute During execute, an instruction is processed by the appropriate
functional unit. In Figure 2.1 we distinguish six functional units: two in-
teger Arithmetic Logic Units (ALUs), an integer multiply/divide unit, a
floating-point ALU, a floating-point multiply divide unit and a load/store
unit (LSU). 3

Integer ALU instructions, such as integer additions usually take a sin-
gle clock cycle to execute. This means that each clock cycle a new ALU in-
struction can get processed by the same ALU. More complex instructions,
such as floating-point operations can take multiple clock cycles before the
result is calculated. We further refer to these instructions as long-latency
instructions. Long-latency instructions not only take multiple cycles to
compute their result, they also block the functional unit from processing
new instructions for several cycles. To overcome this, functional units for
long-latency instructions can have a pipelined design. This means that the
computation of e.g., an integer multiply instruction, is further subdivided
in smaller steps, allowing several multiply instructions to be in-flight in the
same multiply unit. However, this complicates the design more and is not
possible for all long-latency instructions.

The number of functional units is another important design parameter.
When, for example, the processor pipeline has a width of W = 4, and only
two ALUs are built in the processor, the processor will stall when more
than two ALU instructions are coming out of the decode stage. This is
called functional unit contention: the processor stalls because of an insuf-
ficient number of functional units. Depending on the target application
domain, the number of each type of functional units must be carefully se-
lected. Chapter 3 shows the optimal number of functional units of each
type for a large number of applications of the SPEC CPU 2006 and MiBench
benchmark suites.

Memory Load and store instructions use the LSU to access the memory
subsystem in this stage. A load instructions first looks up whether the re-
quired data can be found in the fast level-one data cache (L1 D-cache). If
the data cannot be loaded from the L1 D-cache, a request is sent out to the
level-two cache (L2 cache). If the L2 cache does not have the data either,
the request is sent further down the memory subsystem (e.g., L3 cache or
directly to main memory).

Writeback During the writeback stage, computation results are written to
the registers in the physical register file.

*Note that although the LSU unit is depicted under execute, it is accessed during the
memory stage.

2.1 Superscalar Processors 13

dispatch
Fetch — Decode [—* Rename P
Execute/
Address Generation
L1 I-cache Branch
Predictor —1 ALU, [*
Writeback] A% T
Physica! 1 | MulyDiv |, |5 Reorder
register file Unit @ Buffer
1 Reservation (ROB)
L2 cache 1 FPALU] Station
Load/Store Mult/Div
I |
data Unit FP 8
I 3
] L1D-cache [L_| gy h— 3
To main memory -

Figure 2.2: Block diagram of a superscalar out-of-order pipeline.

Examples of commercial superscalar in-order microarchitectures are
ARM’s Cortex-A7, ARM’s Cortex-A8, Intel’s Bonnell #, etc.

2.1.2 Superscalar out-of-order processors

Out-of-order processors remove the limit of executing instructions in pro-
gram order. Instead of blocking the processor whenever an instruction
waits for a dependence to resolve or a functional unit to become avail-
able, it looks whether it can execute subsequent instructions. Hence, out-
of-order processors are capable of exploiting ILP even further. However,
this requires additional logic: additional pipeline stages, a rename unit, a
re-order buffer (ROB) and (a) reservation station(s). In addition, out-of-
order processors improve memory-level parallelism (MLP) by adding miss
status handling registers (MSHRSs).

While this additional logic improves the ability to exploit the ILP and
MLP of an application, the extra out-of-order logic comes at a price. Not
only is the design more complex, requiring additional effort throughout
the design cycle, out-of-order processors are also power-hungry. This fur-
ther motivates the popularity of superscalar in-order processors, which are
more power-efficient, in embedded systems.

To provide some insight into the differences between out-of-order and
in-order processor architectures, we will now describe the flow of an in-

*The Bonnell microarchitecture is present in the popular Atom Z6 series.

14 Background

struction from fetch to writeback on an out-of-order processor.

Instruction Fetch Similar as for in-order processors, instruction fetch
loads instructions out of the memory by accessing the L1 instruction cache.
It does this sequentially unless the branch predictor or execution unit redi-
rects the fetch unit to fetch from a different address. The branch predictor is
typically more complicated for out-of-order processors because more spec-
ulative instructions could be in-flight in the processor. Further, the cost of
a mispredicted branch is relatively higher for out-of-order processors than
for in-order processors, even when the front-end has the same number of
pipeline stages. This is caused by the branch resolution time [23]: the time
it takes to calculate the outcome of the branch.

Instruction Decode As with in-order processors the decode unit/stage
identifies the type of work that needs to be done and sets up the signals
to process the instruction further. Unlike in-order processors, the detection
of inter-instruction dependencies does not happen in this stage but instead
happens in the rename unit and the reservation station.

Instruction Rename The rename unit is a hardware structure that helps
to allow out-of-order execution of instructions. It determines dependen-
cies between instructions and maps the typically small architectural regis-
ter file to a larger physical register file. This allows instructions that write
the same output register (i.e., write-after-write (WAW) dependencies) to
be scheduled out-of-order without harming program behavior. It also re-
moves write-after-read (WAR) dependencies. Lastly it performs the neces-
sary bookkeeping when an instruction leaves the ROB.

Dispatch The renamed instruction now gets dispatched in the ROB and
in the reservation station. Depending on the microarchitecture, there could
be multiple reservation stations (e.g., one assigned to each functional unit)
and dispatch will need to ensure that the instructions are sent to the correct
reservation station. Dispatch is, with the exception of the commit stage,
the last stage where instructions flow in program order. The ROB keeps
track of this order so that, even if instructions get executed out-of-order
beyond dispatch, the microarchitectural state gets updated in-order, i.e.,
the instructions leave the microarchitecture in program order.

Issue In the issue stage, instructions get selected from the reservation sta-
tion(s) and are sent to the various functional units. This is done by an in-
struction scheduler. For an instruction to get selected by the scheduler, a

2.2 Analytical Performance Modeling 15

necessary criteria is to have its source registers ready (i.e., all register de-
pendences are resolved) and a functional unit to be available. In addition,
more selection criteria, such as the age of the instruction, can be imple-
mented in the scheduler.

Execute Similar to in-order processors, this stage starts calculation of the
result of an instruction, using the appropriate functional unit. For instruc-
tions requiring access to the memory subsystem, an address generator unit
(AGU) is often added to calculate memory addresses and detect mem-
ory dependencies. As an example, store-to-load forwarding logic could
be added to forward results from a store instruction to a dependent load
instruction.

Memory Memory instructions that have generated an address can access
the memory in this stage. Because of the out-of-order nature of execut-
ing instructions, additional logic must be available to ensure the correct
ordering of memory accesses to the same address. For example, when an
instruction reads data from a memory address that is supposed to be writ-
ten by an earlier instruction (i.e., a read-after-write dependency or RAW
dependency) the microprocessor must make sure that the write happens
before data gets read.

Writeback As mentioned before, instructions update the microarchitec-
ture in program order, despite the fact that they might be executed out-of-
order.

Commit Instructions leave the ROB in program order.

Examples of out-of-order microarchitectures are AMD’s Jaguar, ARM’s
Cortex-A57, Qualcomm’s Krait, Intel’s Nehalem, etc.

2.2 Analytical Performance Modeling

Before designing the complex RTL code of a superscalar microprocessor,
appropriate design decisions need to be made. This is a challenging pro-
cess and is typically approached by running many cycle-level simulations.
As mentioned in Chapter 1, cycle-level simulators execute applications at
a speed of up 4 orders of magnitude slower than execution on real hard-
ware. This slows down design space exploration as computer architects
need to wait on simulation results. To accommodate for the slow speed, a
better approach exists in having a good first-order analytical model which

16 Background

trades off accuracy for speed. There are basically three approaches to ana-
lytical performance modeling: mechanistic modeling, empirical modeling
and hybrid mechanistic/empirical modeling. In the next subsection we
will briefly describe the different types of analytical modeling and give an
overview of some of the existing related work.

2.21 Mechanistic Modeling

Mechanistic modeling is derived from the actual mechanisms in the pro-
cessor. A mechanistic model has the advantage of directly displaying
the performance effects of individual mechanisms, expressed in terms of
program characteristics such as inter-instruction dependence profiles and
fine-grained instruction mix; machine parameters such as processor width,
number of functional units and pipeline depth; and program-machine in-
teraction characteristics such as cache miss rates and branch misprediction
rates.

Prior work focused on mechanistic modeling of out-of-order proces-
sor performance for the most part. Michaud et al. [48] build a mechanis-
tic model of the instruction window and issue mechanism. Karkhanis and
Smith [41] extend this simple mechanistic model to build a complete perfor-
mance model that assumes sustained steady-state issue performance punc-
tuated by miss events. Chen and Aamodt [8] improve upon this model
through more accurate modeling of pending data cache hits, overlaps be-
tween computation and memory accesses, and the impact of a limited num-
ber of MSHRs. Taha and Wills [59] propose a mechanistic model that breaks
up the execution into so-called macro blocks, separated by miss events. Ey-
erman et al. [24] propose the interval model for superscalar out-of-order
processors.

Whereas all of this prior work focused on out-of-order processors, in
Chapter 3 we propose a mechanistic model for superscalar in-order proces-
sors. The fundamental assumptions made for modeling out-of-order pro-
cessors do not hold true when modeling in-order processors. In [24, 41], a
mechanistic model for out-of-order processors is built using interval analy-
sis. Interval analysis is based on the observation that in the absence of miss
events such as cache misses and branch mispredictions, a well-balanced su-
perscalar out-of-order processor can smoothly stream instructions through
its pipelines, buffers and functional units. Under ideal conditions the pro-
cessor sustains a level of performance (instructions per cycle) roughly equal
to the width of the processor. However, the smooth streaming of instruc-
tions is intermittently disrupted by miss events. The effects of these miss
events divide execution time into intervals, and these intervals serve as the
entity for analysis and modeling, see Figure 2.3(a) where performance is
plotted as Instructions Per Cycle (IPC) over time.

2.2 Analytical Performance Modeling 17

(a) Interval modeling of superscalar out-of-order processor performance

IPC

I-cache miss branch misprediction D-cache miss

7

Y

interval
(b) Interval modeling of superscalar in-order processor performance

less-than-ideal steady-state behavior
due to dependencies and/or non-unit

. . . stall on long-latency instruction
execution latency instructions

A stall on dependency
IPC

D-cache miss

v

P i

Figure 2.3: Interval analysis analyzes processor performance on an interval basis
determined by disruptive miss events: (a) out-of-order processors and (b) in-order
processors.

I-cache miss branch misprediction

Y

The fundamental assumption made for modeling superscalar out-of-
order processors, namely that the processor can smoothly stream instruc-
tions through its pipelines at roughly the designed width, does not hold
true for in-order processors. Moreover, superscalar out-of-order processors
can be modeled by taking a coarser level of miss events into account, such
as long-latency cache misses (typically last-level cache misses only due to
data references), instruction cache misses, TLB misses, and branch mispre-
dictions. In-order processors on the other hand, incur a wider range of
miss events and other performance hazards. Beyond the ones mentioned

18 Background

above, in-order processor performance also suffers from pipeline stalls due
to inter-instruction dependences, functional unit contention, non-unit in-
struction latencies and cache misses in first-level cache(s). (An out-of-order
processor is designed such that these latencies and inter-instruction de-
pendences are mostly hidden.) As a result, inter-instruction dependences,
functional unit contention and non-unit instruction execution latencies
may introduce additional intervals and in addition may lead to a pipeline
throughput that is less than the designed width in the absence of miss
events, see Figure 2.3(b). These fundamental differences make it impossible
to exactly mimic the behavior of an in-order processor by constraining out-
of-order resources (e.g., the ROB size). The mechanistic model proposed in
Chapter 3 models the additional phenomena using program statistics, such
as a fine-grained instruction mix and inter-instruction dependence profiles,
that are independent of the underlying machine.

2.2.2 Empirical Modeling

In contrast to mechanistic modeling, empirical modeling requires little or
no prior knowledge about the system being modeled: the basic idea is to
learn or infer a performance model using machine learning and/or statis-
tical methods from a large number of detailed cycle-accurate simulations.
Empirical modeling seems to be the most widely used analytical modeling
technique today, and was employed for modeling out-of-order processors
only, to the best of our knowledge. Some prior proposals consider linear
regression models for analysis purposes [39]; non-linear regression for per-
formance prediction [38]; spline-based regression for power and perfor-
mance prediction [45]; neural networks [16, 36]; or model trees [50].

2.2.3 Hybrid mechanistic-empirical modeling

Hybrid mechanistic-empirical modeling targets the middle ground be-
tween mechanistic and empirical modeling: starting from a generic perfor-
mance formula derived from understanding the underlying mechanisms,
unknown parameters are derived by fitting the performance model against
detailed simulations. For example, Hartstein and Puzack [31] propose a hy-
brid mechanistic-empirical model for studying optimum pipeline depth;
the model is tied to modeling pipeline depth only and is not generally
applicable. Eyerman et al. [25] proposed a more complete mechanistic-
empirical model which enables constructing CPI stacks on real out-of-order
processors.

2.3 Workload selection techniques 19

2.3 Workload selection techniques

It is well-known that having representative benchmarks is key to design
space explorations, as using non-representative benchmarks may lead, or
are likely to lead, to suboptimal design points. As a result, substantial prior
work has been done towards identifying representative benchmarks. In ad-
dition, to reduce simulation time, many researchers have worked on tech-
niques toward finding representative samples within benchmark applica-
tions. To the best of our knowledge, however, no comprehensive study was
previously published regarding the impact of benchmark inputs on design
space exploration.

We now discuss some of the prior work in benchmark and sample selec-
tion, followed by a description of prior work in generating and evaluating
benchmark inputs.

2.3.1 Benchmark Selection

Common practice when composing a benchmark suite is to identify key
applications in a given application domain of interest, from which bench-
marks and inputs are then selected. An important requirement for bench-
mark suites to be shared across parties (academia and/or industry) is that
the benchmarks are open source, although Non-Disclosure Agreements
(NDAs) may enable processor manufacturers to use proprietary customer
workloads to evaluate future designs. Example open-source benchmark
suites are SPEC CPU [32] for general-purpose computing, DaCapo [4]
for Java workloads, PARSEC [2] for multi-core, Rodinia [7] for heteroge-
neous CPU/GPU systems, MiBench [28] for embedded workloads, Cloud-
Suite [26] for cloud workloads, etc. The benchmark selection typically
involves making sure the benchmark suite, as a whole, covers the most
important application behaviors in the target domain, while being portable
enough to use across different platforms.

A number of papers have been published to evaluate the represen-
tativeness of a benchmark suite and/or to select a representative subset
from a larger pool of benchmarks. Eeckhout et al. [19] propose data anal-
ysis (Principal Components Analysis) and machine learning (cluster anal-
ysis) techniques to identify a diverse and representative benchmark sub-
set. Follow-on work used microarchitecture-independent benchmark char-
acterization as input to this methodology [40], or a number of real hard-
ware measurements [52]. Yi et al. [68] use a Plackett-Burman design of
experiment in which they measure performance on a number of different
processor architectures to understand how benchmarks interact differently
with microarchitecture parameters. They then pick diverse benchmarks
using cluster analysis to cover the workload space as much as possible.

20 Background

SubsetTrio [37] translates the benchmark selection problem into a geomet-
rical problem and uses the notion of a convex hull to identify most diverse
benchmarks — the benchmarks at the outer range of the benchmark space
— in contrast to cluster analysis which groups benchmarks into clusters of
similar benchmarks, and then picks a representative benchmark per clus-
ter. Yi et al. [69] quantify the pitfall of using non-representative, old bench-
marks to design future processors. They discuss a case study in which they
identify the optimum processor for SPEC CPU95, and then evaluate this
processor using CPU2000. They report an EDP deficiency of 18.5%. This,
once more, underlies the importance of using representative benchmarks
during design space exploration.

While composing representative benchmark suites is challenging for
single-core experiments, it is a daunting task for multi-core and multi-
threaded processors. Such processors can run multiple independent thread
contexts, which leads to an explosion in the number of possible multi-
program workloads [63, 64, 66] and combinations of benchmark starting
points [62, 54].

2.3.2 Sample Selection

An additional concern to finding representative benchmarks, is to find
regions within a benchmark’s execution that are representative for the
entire benchmark execution. SimPoint [57] collects Basic Block Vectors
(BBVs) on a per-region basis and uses cluster analysis to find represen-
tative regions within a benchmark execution. Eeckhout et al. [21] use
microarchitecture-independent characterization to identify representative
regions across benchmarks. Van Biesbrouck et al. [61] introduce the Co-
Phase Matrix to find the most representative regions in multi-program
workloads.

2.3.3 Input Selection

As mentioned before, the amount of work done in characterizing the im-
pact of input data sets on design space exploration is limited. KleinOsowski
and Lilja [42] proposed reduced input sets for SPEC CPU2000 to reduce
simulation time. Later work by Eeckhout et al. [20] found these reduced
inputs to be representative for some benchmarks, but not for others.

Chen et al. [10] propose KDataSets, a set of 1,000 data sets for a broad
set of the MiBench benchmarks. They use KDataSets to understand data set
sensitivity for iterative optimization which aims at finding the best set of
compiler optimizations for a given application. They find that some input
data sets have a deviation of 10 to 25% from the average speedup across
data sets. Further, they reveal how different input data sets react differ-

2.3 Workload selection techniques 21

ently on the same set of compiler optimization flags and come up with a
strategy to find a single set of compiler flags to generate a program binary
that achieves nearly-optimal speedups for all input data sets.

We use KDataSets in Chapter 4 to study how sensitive processor cus-
tomization is with respect to application inputs. As we show in Chapter 4,
design space exploration using a badly chosen application input can result
in poor design decisions. We therefore introduce three novel techniques
to help computer architects select representative application inputs when
performing microarchitectural desgin space exploration.

2.3.4 Summary

In this chapter we discussed a number of background topics and related
work. We briefly discussed some of the important microarchitectural struc-
tures in modern superscalar in-order and out-of order processors. The
main difference between out-of-order and in-order processors is that out-
of-order processors can execute instructions in an order which is different
than the sequence specified by the program. This is made possible by
providing the out-of-order processor with additional logic. While this ad-
ditional logic improves performance by exploiting instruction-level and
memory-level parallelism, it comes at the cost of a more complex and
power-hungry design.

We further discussed some related work on mechanistic modeling of su-
perscalar out-of-order processors and revealed some of the difficulties with
modeling in-order processors. Because out-of-order processors are built to
hide latencies of inter-instruction dependences, long-latency instructions
and functional unit contention, their performance is only weakly affected
by these events. In-order processors on the other hand, suffer from the fre-
quent stalls caused by these events, and hence additional modeling is re-
quired. In Chapter 3 we introduce our mechanistic model, which uses fine-
grained information such as inter-instruction dependence distances and in-
struction mixes on very small instruction groups to model the additional
penalty caused by these events. Next to related work on mechanistic mod-
eling we also discussed the two other main approaches in analytical per-
formance modeling, namely empirical and hybrid mechanistic-empirical
modeling.

We end this chapter with a discussion on related work on workload
selection techniques. Much of the prior work focuses on minimizing the
number of benchmarks, while still covering the workload space as much as
possible. In order to limit the long execution time on slow cycle-level sim-
ulators, prior work has focused on finding representative regions within
benchmarks. We further discussed the limited amount of work done in
characterizing the impact of input data sets on design space exploration.

22 Background

Until now, the assumption was to use one or a couple of benchmark inputs
to drive design space exploration. In Chapter 4 we quantify the potential
pitfall of selecting incorrect benchmark inputs and introduce input selec-
tion techniques to find representative benchmark inputs.

Chapter 3

Mechanistic Analytical
Performance Modeling of
Superscalar In-order
Processors

Everything should be made as simple as possible,
but not simpler.
Albert Einstein

In this chapter we present a fast off-line analytical performance evalu-
ation model for superscalar processors. The intent of the model is to help
computer architects get an estimate of an application’s performance on a
wide range of microarchitectural designs. Off-line evaluation is in the or-
der of milliseconds, making it a very appealing complementary exploration
tool to slow cycle-level architectural simulations, which can take hours to
days.

The construction of the model is based on the internal mechanics of the
micro-processor. Constructing a model for superscalar in-order processors
is not trivial. The performance of a processor is subject to many events that
occur throughout execution: several types of miss events such as cache
misses and branch mispredictions can stall the processor for multiple cy-
cles. Furthermore, in-order processors execute instructions in program or-
der. This gives rise to additional events that stall the processor, namely
inter-instruction dependences (i.e., an instruction consuming the outcome
of a previous instruction) and functional unit contention (i.e., multiple in-
structions requiring the same functional unit). These additional events can
be hidden on out-of-order processors, which relaxes the modeling and al-
lows to evaluate the processor with interval modeling [24]. For in-order

Mechanistic Analytical Performance Modeling of Superscalar
24 In-order Processors

Fine-grained
Instruction Mix
and
Dependence
Profiling

Machine Parameters

|

Mechanistic Perforrngnce
Model Prediction

Program
Binary

Program
Statistics

—{ Cache Profiling

Branch Profiling

Figure 3.1: Overview of the mechanistic modeling framework.

processors, inter-instruction dependences and functional unit contention
have a large impact on performance and require fine-grained profile infor-
mation and modeling in order to calculate an accurate performance esti-
mate.

This chapter is organized as follows. Sections 3.1 to 3.4 discuss the con-
struction of the model. In Section 3.5 we detail the experimental setup
in which we validate and use the model. The model is validated against
both detailed simulation and hardware in Section 3.6. We illustrate the us-
age of the model through use cases related to design space exploration in
Section 3.7. Further we show how we can get insights in the application-
microarchitecture interaction in Section 3.8. Finally we conclude this chap-
ter in Section 3.9.

3.1 Modeling context

Before describing the proposed model in great detail, we first set the con-
text within which we build the model. We present a general overview of the
modeling framework, as well as a description of the assumed superscalar
in-order processor architecture.

3.1.1 General overview

The framework of the mechanistic model is illustrated in Figure 3.1: it re-
quires a profiling run to capture a number of statistics that are specific to
the program only and that are independent of the machine. These statistics
relate to the program’s instruction mix and inter-instruction dependences,
and need to be collected only once for each program binary.

The profiling run also needs to collect a number of mixed program-

3.1 Modeling context 25

I N E3 71

D front-end stages back-end stages

Figure 3.2: Schematic view of the assumed superscalar in-order processor. Here,
W=4 and D=2.

machine statistics, i.e., statistics that are a function of both the program
binary as well as the machine configuration. Example statistics are cache
and TLB miss rates, and branch misprediction rates. Although, in theory,
collecting these statistics requires separate runs for each cache, TLB and
branch predictor configuration of interest, in practice though, most of these
statistics can be collected in a single run. In particular, single-pass cache
simulation [58] allows for computing cache miss rates for a range of cache
sizes and configurations in a single run. We also collect branch mispredic-
tion rates for multiple branch predictors in a single run. Once these statis-
tics are collected, we can predict cache miss rates and branch misprediction
rates for any combination of cache hierarchy with any branch predictor and
any processor core configuration.

These statistics, along with a number of machine parameters, serve as
input to the analytical model, which then estimates superscalar in-order
processor performance. The machine parameters include pipeline depth,
pipeline width, number of functional units and their types, functional unit
latency (multiply, divide, etc.), cache access latencies, and memory access
latencies; further, the cache/TLB and branch predictor size and configura-
tion of interest needs to be selected.

Because the analytical model basically involves computing a limited
number of formulas, a performance prediction is obtained almost instan-
taneously. In other words, once the initial profiling is done, the analytical
model allows for predicting performance for a very large design space in
the order of seconds or minutes at most.

3.1.2 Microarchitecture description

As shown in Figure 3.2, we assume a superscalar in-order processor with
five pipeline stages: fetch (IF), decode (ID), execute (EX), memory (MEM)
and write-back (WB). Fetch and decode are referred to as the front-end
stages of the pipeline, whereas execute, memory and write-back are back-
end stages. Note we consider a five stage pipeline without loss of gen-

Mechanistic Analytical Performance Modeling of Superscalar
26 In-order Processors

erality; we can still model deeper pipelines by considering longer front-
end pipelines, and non-unit latency instruction execution units, as will be-
come clear later. Each stage has W slots (numbered from 0 to W — 1) to
hold a total of W instructions, with W being the width of the processor.
We assume forwarding logic such that dependent instructions can execute
back-to-back in subsequent cycles. Further, we assume stall-on-use, i.e., the
processor stalls on an instruction that consumes a value that has not been
produced yet. These instructions block in the ID-stage. Load instructions
perform address calculation in the EX-stage and perform the cache access
in the MEM-stage. Finally, we assume in-order commit to enable precise
interrupts. This implies that instructions that take more than one cycle to
execute (e.g., a multiply instruction or a cache miss) block all subsequent
instructions from going to the WB-stage. Since each stage can only hold
W instructions, this further implies that when a long-latency instruction
blocks instructions from passing from the MEM-stage to the WB-stage, the
EX-stage will eventually be filled with instructions and hence no instruc-
tions can leave the ID-stage.

3.2 Overall formula

The overall formula for estimating the total number of execution cycles T
of an application on a superscalar in-order processor is as follows:

N
T = W +Pmisses +Pdeps+PFU- (31)

In this equation, N equals the number of dynamically executed instruc-
tions; W stands for the width of the processor; P,,;sses is the total penalty
due to miss events; Py, is the total penalty due to inter-instruction depen-
dences; and Pry stands for the penalty due to functional unit limitations
(i.e., structural hazards).

The intuition behind the mechanistic model is that the minimum exe-
cution time for an application equals the number of dynamically executed
instructions divided by processor width, i.e., it takes at least N/W cycles to
execute [V instructions on a W-wide processor in the absence of miss events
and stalls. Miss events, inter-instruction dependences and functional unit
contention prevent the processor from executing instructions at a rate of
W instructions per cycle, which is accounted for by the model by adding
penalty cycles.

The next sections discuss each of the terms of the formula. We start

with miss event penalties and then discuss instruction dependences and
functional unit contention.

3.3 Miss events 27

3.3 Miss events
We determine the penalty due to miss events using the following formula:

Priisses = Z misses; X penalty;. (3.2)

ie{missEvents}

This formula computes the sum over the miss events, weighted with their
respective penalties. We make a distinction between cache (and TLB)
misses and branch mispredictions when it comes to computing the penal-
ties.

3.3.1 Penalty due to cache and TLB misses

When an instruction cache miss occurs, the instructions in the front-end
pipeline can still enter the execution stage, but when the instruction cache
miss is resolved, it takes some time for the new instructions to re-fill the
front-end pipeline. Itis easy to understand that the front-end pipeline drain
time and re-fill time offset each other, i.e., the penalty for an instruction
cache miss is independent of the front-end pipeline depth. In case of a data
cache miss, the memory stage blocks, and no instructions can leave or enter
the execution stage until the data cache miss is resolved.

From the above discussion, it follows that the penalty for a cache miss
equals its miss latency !. However, when a cache miss occurs, it might be
the case that some instructions can complete execution in parallel with the
miss penalty. In case of an instruction cache miss on a 4-wide processor, it
may happen that one, two or three instructions were already fetched before
the instruction cache miss occurred. Similarly, for a data cache miss, de-
pending at which slot the load instruction enters the MEM-stage in Figure
3.2, it may happen that one (the load instruction enters the MEM-stage at
the second slot), two (the load instruction enters at the third slot) or three
older instructions (the load instruction enters at the last slot) proceed to
the WB-stage. These instructions can complete underneath the cache miss,
and are therefore hidden. Assuming that cache misses are uniformly dis-
tributed across a W-wide instruction group, the average number of instruc-
tions hidden underneath a cache miss equals 2. This means that the
miss penalty can be reduced by Vg—vj/l cycles (which is less than one cycle).
The total penalty for a cache or TLB miss thus equals

W -1

S (3.3)

penaltycocheriss = MissLatency —

For caches the miss latency is the access time to the next level of cache or main memory.
For TLBs the miss latency is the time it takes for the page table walk to refill the TLB entry.

Mechanistic Analytical Performance Modeling of Superscalar
28 In-order Processors

Memory-level parallelism Memory-level parallelism (MLP) is defined
as the number of simultaneously outstanding misses if at least one is out-
standing [11]. This implies that we only have to account for the first, non-
overlapped memory access latency as independent memory accesses later
in the instruction stream are hidden underneath the first access. Out-of-
order processors make use of this property by implementing a reorder
buffer and Miss Status Handling Registers (MSHRs) to exploit memory-
level parallelism over a large window of instructions. For in-order pro-
cessors, on the other hand, this window is limited to both the width of
the processor, and the distance to the first instruction in the dynamic in-
struction stream that depends on the load miss (stall-on-use). The shorter
window size for in-order processors in which MLP can be exploited results
in a lower amount of MLP than for out-of-order processors. However, for
a number of benchmarks we observe MLP values significantly greater than
one. When taking MLP into account the penalty associated with the cache
miss term in Formula 3.2 gets scaled as in Formula 3.4 below:

cacheMisses;
Pcache]V[isses = WZ X penaltycacheMiss~ (34)

As described by Van Craeynest et al. [65], we can calculate the MLP
as the number of memory accesses between a load instruction and its first
consumet, since this consumer blocks the ID-stage (stall-on-use). However,
since the processor can only hold W instructions per pipeline stage, the
load instruction will block any instruction at a distance larger than (/W —1)
instructions from proceeding to the next stage. This implies that we never
need to account for memory accesses outside of a window larger than W
instructions, even if the first consumer of the load is further than (W — 1)
instructions apart. We have implemented a simple profiler that determines
the average dependence distance between a load and its first consumer
with the inter-instruction dependence profile. We combine this with the
fine-grained instruction mix profile to count the number of independent
load instructions within this distance.

3.3.2 Penalty due to branch mispredictions

Branch mispredictions are slightly different than cache misses. Upon a
branch misprediction, all the instructions fetched after the mispredicted
branch need to be flushed. In particular, when a branch misprediction is
detected in the execution stage, all the instructions in the front-end pipeline
as well as the instructions fetched after the branch in the execute stage need
to be flushed. Hence, the penalty of a branch misprediction equals:

W -1
2W

penaltypranchmiss = D + (35)

3.4 Inter-instruction dependences and functional unit contention 29

with D the depth of the front-end pipeline. The first term is the number of
cycles lost due to flushing the front-end pipeline: there are as many cycles
lost as there are front-end pipeline stages, namely D. The second term
is the penalty of flushing instructions in the execute stage. This number
ranges between 0 and W — 1 and depends on the number of instructions
in the execute stage that are younger than the branch. We approximate this
as the average number of instructions in the execute stage, younger than
the branch instruction, under a uniform distribution of instructions in the
pipeline stage.

Correctly predicted branches may also introduce a performance penalty.
In our setup, a branch is predicted one cycle after it was fetched, and if it
is predicted taken, the instruction(s) in the fetch stage and the instructions
in the decode stage that are younger than the branch (which were fetched
assuming a non-taken branch) need to be flushed, incurring a pipeline
bubble. This incurs 1 + Vgiﬁ/l penalty cycles per branch that is predicted
taken, even if it is correctly predicted. We will refer to this penalty as the
taken-branch hit penalty.

3.4 Inter-instruction dependences and functional unit
contention

To determine the penalty caused by inter-instruction dependences and
functional unit contention, we need to keep track of (1) the distance be-
tween dependent instructions (the smaller the distance, the more likely
the processor will stall to resolve the dependence); and (2) the order in
which different instructions execute (subsequent instructions of the same
type will put more pressure on the specific functional unit). In many cases
instructions will suffer from both dependences on previous instructions
and from contention of functional units. We therefore summarize this in-
formation collectively in the pattern history distribution matrix (H-matrix),
which we will use to calculate the penalty caused by inter-instruction de-
pendences and functional unit contention. Before explaining the formula,
we will first illustrate how the H-matrix is constructed. Each instruction
in the dynamic instruction stream can be represented by recording the his-
tory of the types of the W — 1 previous instructions, which we call a pattern,
together with the distance to the closest instruction it depends on. We can
use this pattern ¢ and dependence distance j as row and column indexes,
respectively, to increment a counter in the H-matrix for each instruction.
As a result, the elements of the H-matrix represent counters that indicate
the occurrences of patterns i with a dependence distance of j 2. This can

ZNote that the H-matrix can be reused for any microarchitectural configuration with a
superscalar width < W. This implies that collecting the H-matrix is a one-time cost only.

Mechanistic Analytical Performance Modeling of Superscalar

30 In-order Processors
Dependence
addq t8,t2,t2 (a) Sliding distances
addq t8,t9,t4 (A) window Patterns 1 2 3 >4 pd
subq t3,t0,t3 (A) /
VUL, . (V) \A‘AAA 300 1)
wlt sdaddq t2,t5,t2 (A) : AAAM 0O 0 0 1
: sd4addq t4,15,t4 (A) I AAMA 0O 0 0 1
|Ed_d| aél,t_l,t_l_ & (A) L AMAA | O 0 0O 1
sra t1,s1,t1 TA) MAAA 1 0 1 O — H
addl t1,0x2,t1 (A) AAAX 2 0 0 O
sra t1,0x2,t1 (A) AAXL | O 0 O 1
stl t1,13112(t2) (X) AXLM 1 0 0 O
00 (M) I CRER:
mu
L3, LMAA
addl a4,0,t0 (A) o _/
sra t0,s1,t0 (A) \ J
add| t0,0x2,t0 (A) I
sra t0,0x2,t0 (A) Pattern history
stl t0,13112(t4) (X) distribution matrix (H)

Figure 3.3: Construction of the pattern distribution matrix for part of the
dct_chroma routine of the h264 benchmark.

best be illustrated with an example. Figure 3.3 shows a small portion of
the dynamic instruction flow of the dct_chroma routine of h264 on the left,
together with its associated H-matrix on the right.

For the ease of visualization, each assembly instruction is represented
by a symbol which indicates the type of instruction: A stands for an ALU-
instruction, M for a multiply/divide, L for a load, and X for all other in-
structions that are not needed for the penalty calculation (store instructions,
branches, etc.)3 . To construct the H-matrix we make use of a sliding win-
dow that slides through the whole instruction stream, instruction by in-
struction. The size of the window equals the maximum processor width
W of interest, which we set to 4 here and in all subsequent examples (un-
less stated otherwise). For each last instruction in the window we record
the distance to the closest instruction it depends on together with the his-
tory of preceding instructions in the order executed from old (left) to most
recent (right). Consider the position of the sliding window in Figure 3.3.
The last instruction in the window is an ALU-instruction and the history
pattern of instructions is denoted by “MAAA”. The last instruction has a
dependence on the multiply instruction at distance 3 (as indicated by the
red arrow). Therefore we increment the H-matrix counter at the row with

3X stands for don’t care instructions, as these instructions don’t contribute to the penalty
calculation for dependences and functional unit contention. Note that in the remainder of
the paper we will mark other instructions irrelevant for the calculation with X.

3.4 Inter-instruction dependences and functional unit contention 31

pattern “"MAAA” and the column that represents dependence distance 3.
We can now shift the window one instruction down to increment a counter
for pattern “AAAA” at distance 1. We continue this process for all instruc-
tions.

By associating a penalty term to each row and column in the H-matrix
we can determine a cost matrix C. The C-matrix represents the cost (in
number of cycles) a specific history /dependence-pattern incurs on the per-
formance of the processor. By multiplying the matrices C' and H term-
wise and by accumulating them (i.e., taking the Frobenius product), we
can calculate the total penalty term for functional unit contention and inter-
instruction dependences, as shown in Formula 3.6

Pdeps =+ PFU = Z Ci,d X Hi,d =C:H (36)
i€patterns,d=1..2xW

To determine the individual terms in the C-matrix (i.e., the cost associ-
ated with a specific history-pattern and dependence distance), we first need
to determine the penalty for the specified history-pattern in case there were
no dependences and vice versa the penalty for the specified dependence
distance, assuming a sufficient number of functional units. In case an in-
struction waits both for a dependence to resolve and for a functional unit to
become available, the largest of those two penalties will be accounted for,
as shown in Formula 3.7.

Ci,d = Imax (Cdep(ia d)7 Cfu(i)) (3.7)

Cdep(i, d) represents the penalty of pattern ¢ when the last instruction in
the pattern has a dependence at distance d. cy,(i) is the penalty caused
by functional unit contention for pattern i, i.e., when multiple instructions
from the same instruction type reside in pattern i, we need to account
penalty waiting for an appropriate unit to start processing the last instruc-
tion of pattern i. The terms c4ep (%, d) and cy, (i) are subject of the next sub-
sections.

Although Formula 3.6 shows how the sum of dependence penalties
and functional unit contention penalties can be calculated together, we will
show in Section 3.8.1 how we can determine these penalties separately.

3.4.1 Inter-Instruction Dependences
Dependences on unit-latency instructions

In this section we derive the penalty of an instruction that depends on the
outcome of a close-by (within W instructions) unit-latency instruction. In
our setup, integer ALU instructions are the only unit-latency instructions,

Mechanistic Analytical Performance Modeling of Superscalar

32 In-order Processors
(a) Dependent instruction starts (b) Dependent instruction starts
in slot 3 of the ID stage in slot 2 of the ID stage

ID EX

X X A X A X A A
A X X A X X X X
X X X X A X X 0
A X X 0 X X X 0

tp=0 ty=1 t,=0 ty=1
(c) Dependent instruction starts (d) Dependent instruction starts

in slot 1 of the ID stage in slot 0 of the ID stage

X X X X A X X A
X X A X \ X X X
Q\\ X X | X X | °A X | X
X [A X | X X | X X | X

tp=0 ty=1 ty=0 ty=1

Figure 3.4: Four possible instruction flows for an instruction dependent on an
ALU instruction at distance d = 2.

so for the remainder of this section, we will refer to them as ALU instruc-
tions. Dependences on an ALU instruction resolve the cycle after the ALU
instruction gets executed.

To illustrate the penalty calculation, consider the example pattern
“XAXA” where the first (oldest) ALU instruction produces a data value
that is consumed by the next ALU instruction, i.e., the dependence dis-
tance d equals 2. There are 4 possible positions at which the instructions
can enter the ID-stage, see the ID-stage at to in the four subfigures of Figure
3.4. (The oldest instruction in an instruction group is shown at the top of
each pipeline stage, and ‘0" denotes a bubble or an empty slot due to a
stall.) In case (a), the dependent instruction enters the ID-stage at slot 3.
When the ALU instruction starts execution at ¢;, the dependent instruction
gets blocked because the result of the ALU instruction is not available yet.
Since the dependent instruction is the last instruction in the ID-stage at to,
one slot will be unused in the EX-stage at ¢; (marked with 0), hence we lose
1 of a cycle. In case (b), the dependent instruction enters the ID-stage in
slot 2 at ty. Asin case (a), it again gets blocked from going to the EX-stage
at t;. Next to blocking itself it also blocks the younger instruction that
was at slot 3 in the ID-stage of #). This means that we now lose 2 of a
cycle. In cases (c) and (d), the producing ALU instruction already started
execution at ¢y. This means that the dependence is resolved by the time the

dependent instruction starts execution and hence no cycles are lost.

3.4 Inter-instruction dependences and functional unit contention 33

Assuming the four situations have equal probability to occur (uniform
distribution of the instructions in the pipeline), we derive the penalty for
an instruction dependent on an ALU instruction at distance 2 as follows:

caep(XAXA,2) = (Problpos = 0] 4+ Prob[pos = 1]) x 0

2
+Prob[pos = 2] x il Prob[pos = 3]
1 1 1 3

1 2 1
= —X0+-x0+-X—-+—-X—-=—

4
4777477 474747416

(3.8)

In general, we can calculate the penalty for an instruction dependent on
an ALU instruction at distance d (with d < W) using the following formula:

wW-—-1 W—j

Cdep(i,d < W) jEZO Prob [pos = jlpat = i] x { 0 else
w1 .
1 W —
= 1w : (39)
i=d
W—-d)y(W—-d+1
_)Q(WQ) (3.10)

In this equation, ¢ represents the pattern, W the processor width, d the
dependence distance to the closest ALU instruction, and j the slot of the
newest instruction in the decode stage. Prob[pos = j|pat = i] represents
the probability that the newest instruction in pattern ¢ is at slot j in the
decode stage. Note that i can be any pattern, with the constraint that the
(d+1)’th symbol is an “A’-symbol (i.e., the producer is an ALU instruction).
The inequality j > d indicates that we only need to account penalty when
the producing ALU instruction is in the ID-stage at the same cycle. In For-
mula 3.9, we make use of the assumption that instructions are uniformly
distributed in the pipeline stage.

Special case: non-uniform distribution of instructions in the pipeline
We find the assumption of instructions to be uniformly distributed in the
pipeline stage to be accurate for the set of benchmarks used in our setup.
However, one could design a corner case application that is dominated by
instructions with dependence distances of 1 that causes all instructions to
be serialized. Hence, most of the instructions of this application will enter
the first slot of the ID-stage. To model these corner cases we could esti-
mate the probabilities with a heuristic based on the overall average de-
pendence distance: if the average dependence distance is close to 1 more
weight needs to be given to Prob [pos = 0]. However, we found this case to
be very rare in our setup, and modeling it increases the complexity of the
model without noticeably improving its accuracy.

Mechanistic Analytical Performance Modeling of Superscalar
34 In-order Processors

Dependences on load instructions

Unlike ALU instructions, load instructions do not see their result in the EX-
stage but in the MEM-stage. This has two consequences for calculating the
penalty caused by instructions dependent on a load instruction. First, this
means that if a load instruction and its consumer reside in the ID-stage in
the same cycle, an additional penalty cycle will need to be accounted for on
top of the one calculated with Formula 3.10. Second, even when the load
instruction and its dependent instruction reside in consecutive stages (load
in the EX-stage, dependent instruction in the ID-stage), a penalty needs to
be accounted for.

When the distance between the load and the dependent instruction is
0 < d < W, the load instruction can either be in the same stage or in a
consecutive stage as the dependent instruction. When W < d < 2W, the
load instruction and the dependent instruction can never reside in the same
stage, and hence we will only need to account penalty when they reside in
consecutive stages.

The reasoning for calculating the penalty when W < d < 2W is fairly
similar as for dependences on ALU instructions where d < W. We can find

the penalty for dependences on load instructions for a dependence distance
W < d < 2W, by substituting d by d — W in Formula 3.9:

wW-1

. W —j
Cep(t,d > W) = 5 (3.11)
j=d—W w
L @W—d)@W —d+1)
- i (3.12)

For 0 < d < W the penalty depends on whether the load instruction
and its consumer resided in the ID-stage during the same cycle or in sub-
sequent stages. In the case they resided in different stages, the penalty
depends on the position of the consumer in the ID-stage. Assuming again
a uniform distribution of instructions in the pipeline stage the penalty can
be calculated as follows:

Wl
Cdep(i,d < W, subsequent stage) = Z W J (3.13)
§=0

If the load instruction and its consumer resided in the same stage we need
to account for an additional penalty cycle:

w-1

Cdep(t,d < W, same stage) = Z

W—j
o 1 (3.14)

Jj=

To know whether the load and its consumer resided in the ID-stage
during the same cycle, we would need to know either in which slot the load

3.4 Inter-instruction dependences and functional unit contention 35

instruction or its consumer arrived in the ID-stage. We can estimate this
based on the probability of how instructions are distributed in the pipeline
stage. Assuming again a uniform distribution, we can combine Formulas
3.13 and 3.14 into Formula 3.16 as follows:

Ww—-1 W —j W—-1 1
Caep(i,d <W) = > +> = x1 (3.15)
=0 W j=d W
3W +1—2d
= 22T = 1
Siv (3.16)

Dependences on long-latency instructions

Other long-latency instructions, such as integer multiply instructions wait
in the MEM stage until their result is calculated. Therefore, instructions
dependent on long-latency instructions are penalized the same way as in-
structions dependent on load instructions, by Formulas 3.16 and 3.12 for
0 <d< Wand W < d < 2W, respectively. Note that the latency of
the long-latency instruction itself will be accounted for as a functional unit
penalty (see next section), so for the dependent instruction, we only have
to account for the empty issue slots between the long-latency instruction
and the dependent instruction.

Special case: long-latency dependences between instructions of the same
type. As we will show in Sections 3.4.2 and 3.4.2, long-latency instruc-
tions can sometimes be executed in parallel, depending on the number of
functional units available. As a result, no additional penalty is accounted
to the instruction executing in parallel with another instruction. However,
if there is a dependence between these instructions, the latency will not be
hidden. We account for this by adding (part of) the latency of the specific
instruction to the dependence penalty. Again we need to distinguish be-
tween0 < d < Wand d > W. For d > W, we can calculate the penalty as
follows:

Cdep(i,d > W) = (latency — 2)
2xW—-d+1)x (2x W —d)

5T (3.17)

The intuition behind Formula 3.17 is that the long-latency instruction ar-
rived in the ID-stage at least one cycle and at most two cycles earlier than
the dependent instruction. Hence, at least (latency—1 x W) and at most
(latency—2 x W) instructions cannot start execution because of the depen-
dence, resulting in a penalty between (latency—1) and (latency-2) cycles.

Mechanistic Analytical Performance Modeling of Superscalar
36 In-order Processors

The exact number depends on the position the long-latency instruction en-
tered the ID-stage and the distance to the dependent instruction a number.

When 0 < d < W we again need to distinguish between whether both
long latency instructions arrived in the ID-stage during the same cycle, or
one cycle apart. When the consuming long latency arrives one cycle later
we calculate the penalty as follows:

T

W—j

T (318)

Caep(i,d < W, subsequent cycle) = (latency — 2) +
J

Il
o

When both of the instructions arrive during the same cycle, the penalty
is calculated as follows:

Wl
Cdep(1,d < W, same cycle) = (latency — 1) + J

w2
=0

(3.19)

Similar as with Formula 3.16, we can combine Formulas 3.18 and 3.19
into Formula 3.20 as follows, when assuming a uniform distribution of in-
structions in a pipeline stage:

3IxW+1-2xd
2x W

Cdep(i,d < W) = (latency —2) + (3.20)

3.4.2 Functional Unit Contention
ALU contention

We first derive the penalty for integer ALU instructions due to functional
unit contention. We model ALU contention penalties in a way that is anal-
ogous to dependence penalties on ALU instructions. For this we need to
define an analogy to the dependence distance:

dy(i) : distance to the instruction that causes functional unit contention

when the processor has U units, for pattern i.

For example, for a superscalar processor of width W = 4 with 2 ALUs, the
contention distance for pattern “XAAA”, di/(XAAA), equals to 2, because
the last instruction in the group cannot execute immediately due to the fact
that there are only 2 ALUs, and there are two ALU instructions preceding
the last ALU instruction.

Replacing the dependence distance d with dy; (i) in Formula 3.9, allows

3.4 Inter-instruction dependences and functional unit contention 37

us to determine the ALU contention penalty:

W—1 W—j . . .
cru(i) =fr(i) = Z Prob [pos = jlpat = i] x { V(‘)’ ege du(i) < j
=0
wW-1
= Z Prob[pos = j|pat = i] x WW; J (3.21)
j=du (4

2W?2

In this equation ¢ represents the pattern, W the processor width, dy; (i)
the distance to the closest instruction that causes contention when U units
are present, as defined before, and Prob [pos = j|pat = i] the probability
that the newest instruction in this pattern is in slot j in the decode stage.
The inequality j > dy(i) indicates that we only need to account penalty
when the contending ALU instruction is in the ID-stage at the same cycle.
Note we also defined the function fr(¢), since we will use it in the next
sections.

To illustrate the formula, consider again pattern “XAAA” and assume
it was part of the instruction stream “XXXXAAA” (In other words: the pat-
tern was preceded by non-ALU instruction (marked as “X")). The last ALU
instruction in this pattern can enter the ID-stage in four different positions,
see the ID-stage at ¢y in the four subfigures of Figure 3.5. In case (a) A3
enters the ID-stage at slot 3. When the two older ALU instructions start
execution at ¢1, A3 gets blocked because all ALU’s are occupied. Since this
was the last instruction in the ID-stage at t(one slot will be unused in the
EX-stage at t; (marked with 0), hence we loose % of a cycle. In case (b) A3
enters the ID-stage in slot 2 at ¢y. It gets blocked from going to the EX-stage
att; because all ALU’s are occupied, executing A; and As. Next to blocking
itself it also blocks the younger instruction that was at slot 3 in the ID-stage
of ty. This means that we now loose % of a cycle. In cases (c) and (d) enough
ALU’s are free to process the ALU instructions and hence no cycles are lost.
This is because the instruction at dy7 (i) = 2, i.e., instruction A;, resides in a
later stage and no contention occurs.

Assuming the four situations have an equal probability to occur (uni-
form distribution of the instructions in the pipeline), we derive the penalty
for this instruction stream as follows:

cru(XAAA) = (Problpos = 0] + Prob[pos = 1]) x 0
2 1
+Prob[pos = 2] x 1 + Prob[pos = 3] x 1
— 1XO+1X0+1X2+}X1
4 4 474 474
3

Ev

Mechanistic Analytical Performance Modeling of Superscalar

38 In-order Processors
(a) Last ALU instruction starts in (b) Last ALU instruction starts in
slot 3 of the ID stage slot 2 of the ID stage
X X A; X A, X A, A,
A, X X A, A, X X A,

A, X X A, A, X X
A, X X 0 X X X
t,=0 =1 t,=0 t,=1
(c) Last ALU instruction starts in (d) Last ALU instruction starts in
(c) slot 1 of the ID stage (d) slot 0 of the ID stage
A, X X A, A, X X A,
A, X X A, X X X X
X X X X X A, X X
X A, X X X A, X X
t,=0 =1 t,=0 t,=1

Figure 3.5: Four possible instruction flows of the pattern “XAAA”

which is exactly the same as we would become with Equation 3.22.

Special case: number of ALU instructions > number of ALUs+2 Note
that the approximation in Formula 3.22 again made use of the assumption
that instructions are uniformly distributed in the pipeline stage. This as-
sumption holds true in all cases where the number of ALU instructions in
the pattern is smaller than the number of ALUs+2. However, in case we
have fewer units (e.g.,, U = 1) than ALU instructions in the pattern (e.g.,
pattern “AAXA”), some positions will make the instruction shift to another
position, because of contention between older ALU instructions in the pat-
tern. For example, for the pattern “A; A X A3” and one ALU, only 4; will
be executed first, stalling As for one cycle. Hence, A3 will have to stall for
two cycles. To model this effect we make a slight exception to the assump-
tion of a uniform distribution of instructions in the pipeline stage. Instead
we redistribute the probability mass function for the slots an instruction
shifts between. For the example pattern, slot 3 would get assigned a proba-
bility of 0 instead of 3, because if A; originally entered the ID-stage in slot
3 it gets shifted to slot 2. We therefore increase the probability of slot 2 by

%, resulting in an effective probability of % for slot 2.

3.4 Inter-instruction dependences and functional unit contention 39

M XXM ,MgX XXM M gM XXX XXM, XXXXXX

Figure 3.6: An example instruction stream with multiply instructions.

Non-pipelined functional units with long latencies

We now derive formulas for long-latency instructions for a fixed number
of functional units. We first explain how to model non-pipelined units, and
then discuss pipelined units in the next section. Although the formulas
are general enough to be applied to all types of functional units, we focus
on integer multiply instructions? to derive them. The only parameter that
needs to be adjusted for other types of functional units is the latency.

Accounting penalty for a limited number of integer multiply instruc-
tions can be split up in two parts: (1) the fraction of cycles that is lost be-
cause of multiple M-instructions in the same stage in the same cycle; and (2)
the additional cycles we need to wait for the previous multiply instruction
to finish (because they are not pipelined). The first part can be calculated as
before using Formula 3.21. The second (and largest) part requires knowl-
edge of how many multiply instructions can be issued in parallel.

We start with an example instruction stream that can be found in Figure
3.6. To ease the discussion we introduce subscripts to number the multiply
instructions. Figure 3.7(a) shows four snapshots of the execution of this
instruction stream, displaying the state of the EX-stage and MEM-stage,
according to detailed simulation for a processor with two multiply units,
where the execution latency of a multiply instruction is 5 cycles. The snap-
shots are chosen so that they reflect the start of each group of multiply
instructions that can issue in parallel. For example, the first two multi-
ply instructions (i.e., M; and M>) start execution in the EX-stage in cycle
0. In cycle 1 (i.e., tp) they flow to the MEM-stage and stay there for 4 cy-
cles, leaving the MEM-stage for the WB-stage at cycle 5. This makes the
multiply units available to start execution at cycle 5 for instruction Ms. At
cycle 6, instruction M, can start execution in parallel with instruction Ms3.
The absolute start cycles are of less importance here. More important is to
note that we distinguish 4 groups of multiply instructions, meaning that
we penalize the performance by 4 times the multiply latency for the 7 ‘M-
instructions.

The challenge now is to calculate the penalty while having limited in-

*In practice, modern integer multiply units are typically pipelined; older processors such
as the Alpha 21064 and MIPS R4000 have non-pipelined interger multiply units. We merely
use the integer multiply instruction as an example throughout the paper to explain the
construction of the formulas.

Mechanistic Analytical Performance Modeling of Superscalar
40 In-order Processors

(a) Instruction flow for non-pipelined functional units

0 | M M, | M, X | M, X | X
0 X 0 X X | Mg X | X
0 X 0 X X | X X | M,
0 | M, 0 X 0 X X X

t0=1 t1=6 t2=12 t3=16

(b) Instruction flow for pipelined functional units

EX MEM

EX MEM

EX MEM

My, | M, Mg | M, X | X
X | x X | M X | x
X | X X | o X | M,
X | M, X X | X
to = 1 t1 = 6 t2 = 11

Figure 3.7: Instruction flow of the example instruction stream in Figure 3.6
through a superscalar processor with two multiply units.

Pattern | Frequency
XXXM 3
MXXM
XXMM
XMMM
XXMX
XMXX
XMMX
MMMX
MMXX
MXXX
XXXX

G PN = RINN =N -

Table 3.1: H-matrix for the instruction stream in Figure 3.6.

formation compared to detailed simulation, i.e., using only the pattern dis-
tribution matrix in Table 3.1. With Formula 3.21, we can calculate fr(7),
the fraction of cycles lost because there are more multiply instructions than
multiply units available at the same time in the same stage. To determine
the parallelism of multiply instructions that can get executed at the same
time we can again use the pattern distribution matrix. We consider patterns
that end with an M-symbol and account an appropriate penalty, based on

3.4 Inter-instruction dependences and functional unit contention 41

Pattern | Penalty
XXXM | latency — 1
MXXM 0
XXMM 0
XMMM | latency — 1

Table 3.2: Penalties for the patterns of the H-matrix in Table 3.1 in the case of two
non-pipelined multiply units.

the total number of M-symbols in the pattern.

For the example where we have two multiply units, we need to account
the full multiplier latency of 5 cycles when the rightmost multiply instruc-
tion is the only multiply instruction in the pattern, because it will block
the MEM-stage during its execution. When the rightmost instruction in the
pattern is the second multiply instruction, it can be issued in parallel with
the previous one, hence no penalty needs to be accounted for. If the right-
most multiply instruction is the third multiply instruction, both multiply
units are busy executing the first two, thus we need to account another 5
cycles. A fourth multiply instruction can again be executed in parallel, ac-
counting for zero penalty. We summarize the penalties for the pattern dis-
tribution matrix of Table 3.1 in Table 3.2. We can now determine the total
penalty for the example by using the fr(i) function to account for bubble
instructions as before, and by multiplying the penalties of the second col-
umn of Table 3.2 with their associated distribution from Table 3.1:

Pry = fr(i) +4 x (latency — 1) +3 x 0

In general we can derive the following Formula to calculate the total
cost for executing a long-latency instruction:

)) latency — 1 if insns(i) mod U) =1
crali) = i) 4 { ey T G mod €)

(3.23)

In this formula U is the number of units of this type of long-latency
instruction, and #insns(i) represents the number of instructions of this type
in pattern 7. The intuition behind this formula is that the first multiply
instruction will appear as a “XXXM” pattern, for which we account the full
penalty. The second multiply instruction will see the first instruction as an
older instruction in its pattern (e.g., XMXM), so we do not need to account
a penalty if there are two or more multiply units.

Special case: dense concentrations of long latency instructions. For-
mula 3.23 can lead to underestimations in situations where we have a

Mechanistic Analytical Performance Modeling of Superscalar
42 In-order Processors

dense concentration of multiply instructions. As an example, consider the
instruction stream “XXXMMMMMMMMMMMM” and 4 multiply units.
This instruction stream would be accounted for only 1 full penalty of
(latency—1) instead of 3, because only the pattern “XXXM” introduces a
penalty. This can be solved by modifying the previous formula to:

. , 1 if (#insts(i) mod U) =1
Cfu (’L) = fr(z)+(1atency—1) X Pr[dense|pattern=i]

min(U,#insts(z)) else

(3.24)
Here, Pr[dense|pattern = i] is the probability that pattern i appears in a
dense concentration of multiply instructions. More specifically we need to
account penalty for those patterns of which none of the instructions were
ever accounted a full penalty of latency—1. We can do this by calculat-
ing probabilities from the H-matrix. As an example consider the pattern
“MiMsM3M,” and four available functional units. If M; was preceded by
three other multiply instructions, no penalty was ever accounted to M;. If
on the other hand M; was preceded by three X-instructions a full penalty
was accounted to M; and hence, the 3 younger multiply instructions can
execute in parallel. In order to be able to determine which of those sit-
uations happened, we need to estimate by which instructions the current
pattern was preceded. The probability that “A; My M3zM,” was preceded
by 3 X-instructions can be calculated with the following Formula:

PrIXXXM|M{MyMsMy) = Pr[XXXM| XXM M)
x Pr[X X My My| X My My M)
x Pr[X My My Ms| My My M My]
(3.25)

In Formula 3.25 we have decomposed the probability that estimates the
3 previous instructions into probabilities that estimate the probability of
1 previous instruction. Estimating the probability of a single previous in-
struction can be derived from the H-matrix. Consider the following exam-

ple:

Pr[X M; My Ms]
Pr| X My MsMs| My Mo MsM,)| =
r[X My My M3| My Mo Mz My] Pr[X My MsMs3) + Pr[M M Mo Ms)]

In the case of four multiply units Pr[dense|pattern = MMMM]| =
(1—Pr[XXXM|MM M M]) as 3 X-instructions in front of the first multiply
is the only pattern for which a full penalty could have been accounted. Dif-
ferent patterns and different number of functional units need to calculate

3.4 Inter-instruction dependences and functional unit contention 43

Pattern | Penalty
XXXM | latency — 1

MXXM 0
XXMM 0
XMMM 0

Table 3.3: Penalties for the patterns of the H-matrix in Table 3.1 in the case of two
pipelined multiply units.

the probability of different preceding patterns. Calculating these probabil-
ities can be done in a fully automated way and we find it to improve the
accuracy of the our model in several cases.

Pipelined functional units with long latencies

We now move to modeling the impact of long-latency instructions that ex-
ecute on pipelined functional units. Pipelined functional units have the
advantage that they are capable of executing a new instruction every cycle,
hence they yield a potential performance improvement over non-pipelined
execution, but they also require a more complex design. Because of in-
order execution there is however a limit on the potential performance im-
provement: when a long-latency instruction is being executed it will block
all younger instructions from passing the MEM-stage (because of in-order
commit). This will make the EX-stage fill up with instructions, blocking
younger instructions from starting execution. So, only instructions that can
make it into the EX-stage can potentially execute in parallel.

In Figure 3.7(b) we illustrate what happens with the example in Fig-
ure 3.6 if the multiply units are pipelined. We distinguish three groups of
multiply instructions that can be executed in parallel (assuming no depen-
dences between them).

As before, we can use the distribution matrix in Table 3.1. To calcu-
late the penalties we again account for two parts: the part in which we
lose a fraction of a cycle because there are more multiply instructions at
the same time in the EX-stage than multiply units available; and the part
where we need to account for the latency of the multiplication itself. For
pipelined units, we only need to account for this latency if the current mul-
tiply instruction is the only multiply in the pattern. Table 3.3 summarizes
the penalties for pipelined units. Using these penalties and the distribution
matrix we can account for the total penalty caused by long-latency instruc-
tions in this example instruction stream:

Pry = fr(i) + 3 x (latency — 1)

Mechanistic Analytical Performance Modeling of Superscalar
44 In-order Processors

In general, the penalty for long-latency instructions on pipelined func-
tional units can be calculated with Formula 3.26. We only account a penalty
if there is exactly one multiply instruction in the pattern, because all other
instruction can be executed in parallel. As is the case with non-pipelined
functional units, we also account for a penalty in case there is a high density
of multiply instructions.

‘ , latency — 1 if #insts(i) =1
epuld) = U) + { lifri?é@)l x Pldense|pattern = i] else

(3.26)

3.5 Experimental setup

We use 19 benchmarks from the MiBench benchmark suite [28], which is
a popular suite of embedded benchmarks from different application do-
mains, including automotive/industrial, consumer, office, network, secu-
rity, and telecom, see also Table 3.4. Next to these MiBench benchmarks, we
also use 15 benchmarks from SPEC CPU 2006, which can be found in Table
3.5. Although the benchmarks of SPEC CPU 2006 are more server-oriented
benchmarks rather than embedded benchmarks, they serve as a good val-
idation of the model as they tend to stretch the microarchitecture in differ-
ent regions than MiBench. Furtheremore, superscalar in-order processors
could form an interesting alternative to out-of-order processors in servers,
because of their energy-efficiency. We selected inputs from the KDataSets
input database [10], so that each MiBench benchmark executes approxi-
mately 1 billion instructions. For SPEC CPU 2006, we used representative
simulation regions of 1 billion instructions each using SimPoint [30]. The
selection of SPEC CPU 2006 benchmarks is based on the SimPoints that
were available in the lab and compatible with the simulation framework.

Figures 3.8 and 3.9 illustrate our framework for evaluation using de-
tailed cycle-level simulation and evaluation using the proposed analyti-
cal model, respectively. We use an extended version of the superscalar
in-order model of the gem5 simulator [3] as a detailed cycle-level simula-
tor to validate our mechanistic model and derive our profiler from gem5’s
functional simulator. Detailed simulation runs at 92 KIPS on an Intel Xeon
Harpertown (L5420) processor. Our profiler is more than ten times faster,
running at 1.4 MIPS, and moreover, profiles need be calculated only once
for a whole range of processor configurations. With these profiles we can
quickly generate performance estimates by evaluating the analytic formu-
las in the previous sections. This is done in a couple of seconds for the
complete design space. This means that, for the experiments performed
in this chapter, estimating performance through the model was done in

3.5 Experimental setup 45
Benchmark Category Description
adpcm_c Telecommunication Pulse code modulation
with ADPCM (encode)
adpcm_d Telecommunication Pulse code modulation
with ADPCM (decode)
dijkstra Network Shortest path calculation
between nodes in a graph
gsm Telecommunication Voice encoding with
GSM
jpeg-c Consumer Lossy image compression
with JPEG standard
jpeg-d Consumer Decompression of JPEG
compressed images
lame Consumer MP3 encoding
patricia Network Compression of network
data structures
gsort Automobile/Industrial | Data sorting
(e.g., 3D coordinates)
rsynth Office Text to speech synthesis
sha Security Secure hashing
stringsearch | Office Searching of words in
phrases (case insensitive)
susan_c Automobile/Industrial | Corner recognition
in images
susan_e Automobile/Industrial | Edge recognition
in images
susan_s Automobile/Industrial | Image smoothening
tiff2bw Consumer Conversion of a TIFF image
to black and white
tiff2rgba Consumer Conversion of a TIFF image
into RGB formatted TIFF
tiffdither Consumer Dithering a black and
white TIFF image
tiffmedian | Consumer Reducing the color palette
of an image

Table 3.4: Overview of MiBench benchmarks

less than 8 hours, while estimating through detailed simulations took 752
computing-days (spread out over a cluster of computers).

We use McPAT [46] for our power estimates. The inputs for McPAT are
various processor configuration parameters, such as pipeline depth, width,
cache configuration, memory latency, chip technology, etc.; along with pro-

Mechanistic Analytical Performance Modeling of Superscalar

46 In-order Processors
Benchmark | Category Description
bwaves Fluid Dynamics Computes 3D transonic transient
laminar viscous flow
bzip2 Compression Julian Seward’s bzip2 version
1.0.3
cactusADM | Physics/General Solves the Einstein evolution
Relativity equations
gemsfdtd Computational Solves the Maxwell equations
Electromagnetics in 3D using the FDTD method
gobmk Artificial Plays the game of Go
Intelligence
gcc C Compiler Based on gcc 3.2, generates code
for Opteron
hmmer Search Gene Protein sequence analysis
Sequence using Hidden Markov Models
h264 Video Compression | A reference implementation
of H264/AVC
Ibm Fluid Dynamics Simulates incompressible fluids
in 3D
libquantum | Physics/Quantum | Simulates a quantum computer,
Computing running Shor’s factorization
algorithm
mcf Combinatorial Vehicle scheduling using a
Optimization network simplex algorithm
omnetpp Discrete Event Models a large Ethernet
Simulation campus network
perlbench | Programming Derived from Perl V5.8.7
Language
povray Image Ray-tracing | Image rendering
sjeng Artificial A highly-ranked chess program
Intelligence
xalancbmk | XML Processing Transforms XML documents to
other document types
zeusmp Physics/CFD Simulation of astrophysical
phenomena

Table 3.5: Overview of SPEC CPU 2006 benchmarks

gram parameters, such as number of instructions, instruction mix, etc.; and
finally, program-machine parameters, such as cache misses, branch mis-
predictions, etc. Note that, when detailed cycle-level simulation is used as
input to McPAT, detailed statistics can be gathered directly from the sim-
ulation output, see Figure 3.8. When using the mechanistic model, fewer

3.5 Experimental setup 47

Machine Parameters

|

Gem> Performance
Workload —| Cycle-level o
; . Prediction
Simulation

Detailed
Program
Statistics

Power

McPAT Prediction

Figure 3.8: Simulation framework when evaluation is driven by cycle-level simu-
lation.

Machine Parameters——————

l

Workload —| Profiler Program Mechanistic P;rfo(:me_mce
Statistics Model rediction
Power
McPAT Prediction

Second-order
Parameter
Estimation

Figure 3.9: Simulation framework when evaluation is driven by the mechanistic
model.

information is available and hence some second-order parameters need to
be estimated, as illustrated in Figure 3.9. We find these parameters to have
a much less significant impact on performance than the information avail-
able in the profile, and are able to make accurate power predictions, as can
be observed in the experiments of Section 3.7.2.

Throughout the next section we will be alternating through two design
spaces a and 3 as shown in Tables 3.6 and 3.7 respectively. We use De-
sign Space « to vary a number of key core- and uncore- parameters, while
Design Space 3 will be used to focus on the functional units only. Using

Mechanistic Analytical Performance Modeling of Superscalar

48 In-order Processors
Parameter Baseline o Range o
I-cache 32KB 32KB
4 way set-assoc 4 way set-assoc
64 byte blocks 64 byte blocks
D-cache 32 KB 32KB
4 way set-assoc 4 way set-assoc
64 byte blocks 64 byte blocks
L2-cache 512KB 128KB - 256KB -
512KB - 1MB
8 way set-assoc 8 vs 16 way set-assoc
10ns latency 10ns latency
pipeline depth 9 stages 5-7-9 stages
1GHz 600MHz - 800MHz — 1GHz
processor width (W) 4 slots 1-2-3-4slots
branch predictor 1KB global history 1KB global history —
3.5KB hybrid 10b local and
12b global history
Unified ALU 4 units W units
1 cycle latency 1 cycle latency
Unified Multiply/ 1 unit 1 unit
Divide Unit non-pipelined non-pipelined
5 cycles multiply latency | 5 cycles multiply latency
20 cycles divide latency 20 cycles divide latency

Table 3.6: Design Space «

two design spaces allows us to both explore the broad applicability of the
model and have a fine-grained evaluation on the most complex part of it.
The total number of evaluated data points (design spaces o and 3 over the
considered workloads) equals 6,028.

The default processor configuration in Design Space « is a a superscalar
in-order processor with private 32KB L1 caches and a unified L2 cache, as
can be seen in Table 3.6. Further, we also vary a number of important mi-
croarchitecture parameters in this design space, such as pipeline depth and
frequency setting (3 configurations), pipeline width (4 configurations), L2
cache size and associativity (8 configurations), as well as branch predictor
configuration (2 configurations). This leads to a design space consisting
of 192 design points within which we will be evaluating the model’s ac-
curacy. Although this is not a very large space compared to real design
spaces, it was close to the limit we could explore given our infrastructure
because we compare model accuracy against detailed simulation results
which are very time-consuming and costly to obtain — which is the moti-
vation for this research in the first place. Note that the number of ALU’s
here are scaled along with the superscalar width W. The number of Multi-
ply/Divide units equals one. This reduces the complexity of the formula’s
for functional unit contention and hence allows us to focus on the rest of
the microarchitecture.

3.5 Experimental setup 49

Parameter Baseline 3 Range 3
I-cache 128KB 128KB
4 way set-assoc 4 way set-assoc
64 byte blocks 64 byte blocks
D-cache 128KB 128KB
4 way set-assoc 4 way set-assoc
64 byte blocks 64 byte blocks
L2-cache 4MB 4MB
8 way set-assoc 8 way set-assoc
10ns latency 10ns latency
pipeline depth 5 stages 5 stages
1GHz 1GHz
processor width 4 slots 4 slots
branch predictor 1KB global history 1KB global history
Integer ALU (IA) 2 units 1 to 4 units
1 cycle latency 1 cycle latency
Integer Multiply/ 1 unit 1 to 4 units
Divide Unit (IM) non-pipelined non-pipelined/pipelined
5 cycles multiply latency | 5 cycles multiply latency
20 cycles divide latency | 20 cycles divide latency
Floating-Point ALU (FA) 1 unit 1 to 4 units
non-pipelined non-pipelined /pipelined
3 cycles latency 3 cycles latency
Floating-Point Multiply / 1 unit 1 to 4 units
Divide Units (FM) non-pipelined non-pipelined/pipelined
15 cycles latency 15 cycles latency

Table 3.7: Design Space

The parameters that we vary in Design Space /5 are shown in Table 3.7,
along with the default settings, which forms a design space of 2048 config-
urations. The primary focus of this design space is on the processor core in
which we vary the number and the configuration of the functional units, as
this is the most complicated part to model for superscalar in-order proces-
sors. This also explains the choice of using larger caches: in order to care-
fully evaluate the functional unit contention model, having the memory
subsystem as a bottleneck must be avoided. To validate the functional unit
contention model, we use a subset of 70 randomly selected configurations
that span a broad range of the design space of the total 2048 configurations.

For the hardware validation we use a BeagleBone Black board with the
Texas Instruments AM3358 Sitara ARM Cortex-A8 processor ° , running
Debian GNU/Linux 7. The corresponding microarchitectural parameters
can be found in Table 3.8 and are based on the technical references from
ARM [33] and Texas Instruments [35]. Because the Cortex-A8 is an ARM-
processor we extended our profiler to capture profiles for the ARM ISA, in
addition to the ALPHA ISA, which was used for the validation against de-

SWe chose the Cortex-A8 because of its popularity in embededded devices such as some
of the Samsung Galaxy smartphones and tablets and in the Apple iPad.

Mechanistic Analytical Performance Modeling of Superscalar
50 In-order Processors

Parameter Cortex-A8

I-cache 32KB

4 way set-assoc

64 byte blocks

D-cache 32KB

4 way set-assoc

64 byte blocks

L2-cache 256KB

8 way set-assoc

pipeline depth 13 stages

1GHz

processor width 2 slots

Integer ALU (IA) 2 units

1 cycle latency

Integer Multiply 1 unit

Unit (IM) pipelined

3 cycles multiply latency

Floating-Point Unit (FU) 1 unit
non-pipelined

10 cycles arithmetic latency

10 cycles logic latency
17 cycles multiply latency
65 cycles divide latency
26 cycles MAC latency
60 cycles sqrt latency

Table 3.8: Cortex-A8 microarchitectural parameters

tailed simulation. We used Linux’ built-in time command to measure user
time and we disable dynamic frequency scaling by setting the processor to
a fixed clock frequency of 1GHz during our experiments.

3.6 Model Validation

We now analyze the accuracy of the model by comparing the performance
predictions of the model with those of detailed simulation through a series
of experiments. In addition, we compare the performance predictions of
the model to real hardware performance on the ARM Cortex-AS.

3.6.1 Validation Against Detailed Simulation

We validate the model in three steps. First, we evaluate how well the model
tracks the relative difference when varying the number of functional units:
starting from Baseline 3, we increase the number of available functional
units. We also study the effect of pipelining functional units. Second, we
evaluate the model against a broad range of different configurations within
design spaces a and 3 to get an overall estimate of the accuracy. Third,

3.6 Model Validation 51

= Simulation = Model

8
7
6
5
o
&4
3
2
‘ I | | | | I | | Hin
0
1 24 1 2 2 | 4
FM FM FM FM FM FM FM FM FM FM FM FM|FM|FM FM|FM | FM FM|FM | FM FM|FM FM
lame rsynth bwaves cactusADM | gemsfdtd Ibm povray zeusmp

Figure 3.10: Model validation while varying the number of floating-point multiply
units (FM), for the floating-point benchmarks of MiBench and SPEC CPU2006.

we evaluate how well the model tracks whether a benchmark scales with
superscalar width.

Varying the functional units We start by studying the effect of adding
floating-point multiply units to the baseline configuration of Design Space
. As can be seen in Figure 3.10, adding a second multiply unit decreases
CPI significantly. Four multiply units reduces CPI only for a few bench-
marks. These trends are tracked accurately by our model. On average, the
model has an error of only 2.1% for the configurations in this experiment
and a maximum error of 5.5%.

We now look at the impact of pipelining all the units (i.e., integer mul-
tiply/divide unit, floating point ALU and floating point multiply/divide
unit) of the baseline configuration on the SPEC CPU 2006 benchmark suite,
as shown in Figures 3.11 and 3.12. Again our model predicts the perfor-
mance difference accurately, with an average absolute error of 2% and a
maximum error of 7.6%.

Design space exploration We now evaluate accuracy by comparing the
model with detailed simulation for a large range of different configura-
tions. We compare the CPI values of detailed simulation versus the model
for both Design Space o and 3. For Design Space o we evaluate the 19
Mibench benchmarks of Table 3.4 and a full design space exploration on all
192 points. For Design Space /3 we consider the 34 benchmarks from Tables
3.4 and 3.5 and 70 microarchitectural configurations. Figure 3.13 shows cu-
mulative plots comparing the simulated points with the model. The golden
curve shows the cumulative plot over all simulated points. From this Fig-
ure we can see that about 90% of all evaluated points have an error of less
than 6.2% in CPI. Overall, for the 6,028 data points we have considered, the

Mechanistic Analytical Performance Modeling of Superscalar

52 In-order Processors
m Simulation = Model

7

6

5

E4

O3

2

1

o /ll I T N = wm HE NN
NP‘P NP‘P NP‘P NP‘P NP‘P NP‘P NP’P NP’P NP‘P
gce gobmk h264ref hmmer | libquantum mcf omnetpp sjeng xalancbmk

Figure 3.11: Evaluation of the model compared to detailed simulation for
pipelined (P) and non-pipelined (NP) functional units, on the integer benchmarks
of SPEC CPU 2006.

B Simulation = Model

CPI
o =2 N WA OO N
R

bwaves ‘ cactusADM ‘ gemsfdtd ‘ Ibm povray zeusmp

Figure 3.12: Evaluation of the model compared to detailed simulation for
pipelined (P) and non-pipelined (NP) functional units, on the floating-point
benchmarks of SPEC CPU 2006.

model has an error of 2.8% on average with a standard deviation of 0.024,
and a maximum error of of 13.1%.

We also report cumulative plots for Design Spaces o and 3 individu-
ally. For Design Space a we observe that 90% of all evaluated points have
an error of less than 5.5% in CPI. For Design Space 3 we observe that 90%
of all evaluated points have an error of less than 7%. For Design Space «
the model has an average error of 2.5% with a standard deviation of 0.020,
while for Design Space (the average error is 3.2% with a standard de-
viation of 0.028. Note that the slightly larger error for Design Space 3 is
caused by the more complex design points in its design space, such as the
large superscalar width and the non-unit latencies for floating point ALU
instructions.

3.6 Model Validation 53

1.0 T T T T T T T s [ees ™7 T T 13Tl
. . : : : : / : . o 0! : ‘ : = :
0.9 : : : : : : : : :

Cumulative probability
o o © o IS4 o
w D w [e)] ~ 0]

o
N

« Design Space «
« Design Space 8 N
f : : : : : : : :] Overall evaluation
00 i Il Il Il Il Il Il Il Il Il T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Absolute value of relative error (%)

©
-

Figure 3.13: Cumulative probability distribution of error for design spaces a and
B on all evaluated points.

1.4
1.2 muother
0 ; B2 miss
5 0'6 mm dependencies
0.4 M bpred_miss
0.2 M taken_branch
0 M base
—<CPI Detailed
sha tiffdither dijkstra

Figure 3.14: Model accuracy for estimating relative performance as a function of
superscalar width.

Varying superscalar width. Figure 3.14 shows CPI stacks © as obtained
through the model, as a function of superscalar width. The overall CPI ob-
tained through detailed simulation is also shown as a reference. The three
benchmarks were picked based on how they scale with processor width.
The sha benchmark benefits the most from superscalar processing, whereas
dijkstra benefits the least; tiffdither is somewhere in the middle. This graph
in fact demonstrates the amount of insight that mechanistic modeling of-

%Section 3.8.1 explains how these CPI stacks can be obtained. We show the stacks here
to understand how some benchmarks scale with superscalar width and others don’t.

Mechanistic Analytical Performance Modeling of Superscalar
54 In-order Processors

m Cortex-A8 mmodel

N » S g

o > > [} [} >
&7 &7 & 7 o
S &K © §

Figure 3.15: Evaluation of the model compared to the Cortex-A8 microarchitec-
ture.

fers beyond detailed simulation, because it breaks up overall performance
into its contributing factors. Clearly, although there is a benefit from go-
ing from scalar processing to 2-wide processing for dijkstra, going beyond
2-wide processing does not improve performance much. The reason why
is immediately clear from the CPI stacks: although the base component
(N/W) decreases, its decrease is compensated by more inter-instruction
dependences, which impede the benchmark from benefiting from super-
scalar processing. This is not the case for sha which seems to suffer less
from dependences; apparently, this benchmark exhibits more ILP (Instruc-
tion Level Parallelism).

3.6.2 Validation Against Hardware

Figure 3.15 shows CPI-values for our set of 19 MiBench benchmarks when
executed on the Cortex-A8 processor, along with the prediction of our
model. We find that the average absolute prediction error is 10% with a
standard deviation of 0.10. For 12 benchmarks we find an error of less
than 8%. The maximum error is 32% for adpcm_d. Overall the model is
fairly accurate, taken into account that we did not make important changes
to the model compared to the ALPHA /gem5 model. The only changes
are adjustments to the profiler to be compatible with the ARM ISA, and
modeling Cortex A8's variable latencies for floating point instructions.

More specifically, to improve the accuracy of the floating point bench-
marks we required a more fine-grained breakdown of the floating point
instruction mix (i.e., multiply, division, multiply-accumulate and square
root). We then use this fine-grained instruction mix together with instruc-
tion latencies found in the Cortex-A8 technical reference [33], to generate a
weighted average of the overall floating point latency and feed it into our

3.7 Guiding design space exploration 55

model.

Several adjustments to the model could be made to improve accuracy
even more. Gem5 models an fetch buffer with the size of an entire cache
line, as observed by Gutierrez et al. [29], which underestimates the num-
ber of instruction cache accesses in gemb5. Because our original modeling
efforts are targeted at a microprocessor similar to gem5’s in-order core, we
make the same assumptions on the fetch buffer. gsm_c for example is an ap-
plication within the top 3 benchmarks with most instruction cache misses,
indicating that its instruction footprint is non-cache-resident, and hence
modeling a smaller fetch buffer would correctly predict a higher execu-
tion time. Furthermore we are unaware of the branch prediction latency of
the Cortex-A8, while we model taken branches with 1 cycle of penalty. In
addition, Gutierrez et al. [29] show that gem5’s branch prediction accuracy
decreases for low MPKI values. Both these branch predictor inaccuracies
could explain our performance underestimation of adpcm_d. Further, the
Cortex-A8 does not allow executing two instructions in the same slot if they
have output dependences (WAW dependences), while our model abstracts
this away. This likely impacts the overall performance overestimation. Fi-
nally, we assume a fixed memory latency while DRAM latency tends to be
dependent on the physical memory addresses requests are made for. As
correctly stated by Desikan et al. [14], this depends on the virtual to phys-
ical page mappings of the native system and is very difficult to replicate.
We find that benchmarks that spend a lot of time in system calls, such as
tiff2rgba and tiffmedian, indeed show performance overestimations.

3.7 Guiding design space exploration

3.7.1 Minimizing Number of Functional Units for a Given Per-
formance Target

In this case study, we use the model to minimize the number of units
needed for a specific performance target. We use gem5 to find the perfor-
mance (expressed as IPC) of Baseline 3 (containing 5 functional units) and
the maximum achievable performance when having four functional units
of each type (i.e., a total of 16 units). The harmonic mean of speedups over
the baseline IPC equals 1.087. The maximum speedup is observed for lame
(1.52) and zeusmp (1.49).

We now use the model to find optimal configurations per benchmark
(i.e., configurations with a minimum number of functional units), where
we set the performance target at 98% of the maximum IPC. Detailed sim-
ulation of these optimized configurations confirms that these configura-
tions indeed have an IPC of at least 98% of the maximum achievable IPC as

Mechanistic Analytical Performance Modeling of Superscalar

56 In-order Processors
22
2
1.8
1.6
1.4 -
8 1.2 + I
= ® Baseline B
Optimized
0.8 " .
= Maximum units
0.6 [— [
o | :I h :I i
0.2
: alls 1 [
¥ L N e O o & & ¢ & & D @ O 2 & &
&7 Q;\Q’ ?9 & é\b &7 & & % > & ¢ P) Q7 S &
© & & N S o I & NS
R R S SNV R RS N @
% Qro‘} & & 2 +,§b G

Figure 3.16: Baseline performance, performance of the configuration with 4 units
of each type (Maximum units) and the performance of the configuration picked by
the model with a minimum number of functional units within 98% of the optimum
(Optimized).

predicted by the model, by using a minimum amount of functional units.
The harmonic mean of the speedups of the optimized configurations over
Baseline 3 equals 1.08 (maximum speedup of 1.51 for lame and 1.47 for
zeusmp). Table 3.9 shows the benchmark-optimal configurations found
using the model, for all the benchmarks in our setup. The table illustrates
that, for 32 benchmarks we only need 7 or less functional units to achieve
at least 98% of the IPC with 16 functional units. These configurations are
not trivial and time-consuming to find using detailed cycle-accurate simu-
lation, which motivates the use of our fast model to guide design choices.
For a selection of benchmarks we show IPC numbers, resulting from de-
tailed simulation, in Figure 3.16. The “Optimized” bars, represent the IPC
results for the configurations in Table 3.9. The bars “Baseline” and “Max-
imum units” represent our baseline of 5 units, and the configuration with
all 16 units, respectively. The selection is a mix of benchmarks that both
show large speedups and very low speedups when increasing the number
of functional units.

3.7.2 Minimizing the Energy Delay Product

Processor designers take various metrics into account during the develop-
ment process. Energy consumption clearly is a key metric when design-
ing embedded processors. We now explore design space /3 (see Table 3.7)
while considering both performance and energy consumption. We there-
fore consider the energy-delay product (EDP) which is defined as the prod-
uct of energy consumption and execution time. When optimizing for EDP,
designers are mostly interested in the design point with the lowest EDP.
Therefore it is appealing to be able to use the model to guide the search for
the point of minimal EDP.

3.7 Guiding design space exploration 57

Units | IA | IM | FA | FM | benchmarks

4 1 1 1 1 | mcf

5 2 1 1 1 | libquantum, perlbench, bzip2, dijkstra,
xalancbmk, gcc, sjeng, omnetpp

6 1] 1 2 2 | cactusADM

6 2 |1 1 2 | gsort

6 2 |1 2 1 | gobmk

6 2| 2 1 1 | patricia

6 3 1 1 1 | tiffdither, susan_c, jpeg_c, tiffmedian,
hmmer, adpcm_d, h264ref, stringsearch1
adpcm_c, tiff2rgba, susan_s

7 1 1 2 3 | gemsfdtd

7 2 1 2 2 | rsynth, bwaves

7 3|2 1 1 | susan_e, jpeg_d, tiff2bw

7 4 |1 1 1 | sha

8 2 1 2 3 | povray

8 4 | 2 1 1 | gsmc

9 1 1 4 3 | lbm

9 2 1 2 4 | zeusmp

11 2 1 4 4 | lame

Table 3.9: Benchmark-optimal configurations achieving at least 98% of maximum
performance with a minimum number of units.

To limit the number of detailed simulations, we have conducted two
experiments. We first consider the full design space exploration of non-
pipelined functional units of Table 3.7 for four benchmarks in Figure 3.17.
Next we explore a smaller subspace for all the other benchmarks in Figure
3.19.

In Figure 3.17 we compare EDP obtained through detailed simulation
against the mechanistic model; we use McPAT, as mentioned before, for the
power modeling. For these four benchmarks we performed 256 detailed
simulations (i.e., all possible combinations with non-pipelined units in Ta-
ble 3.7). The detailed simulations serve as input for McPAT, as illustrated
earlier in Figure 3.8. Next we use the model to generate input for McPAT
for the exact same configurations. Apart from providing an estimate of the
CPI, we also modeled second-order statistics (such as idle time, unit occu-
pancies, etc.) needed by McPAT, as illustrated in Figure 3.9. On the X-axis
we sorted the configurations from lowest to highest EDP according to de-
tailed simulation. The Y-axis shows EDP as found by detailed simulation
versus EDP found by the model. As can be seen in Figure 3.17 the model
follows detailed simulation very closely.

For the other benchmarks in our setup, we now use detailed simula-

Mechanistic Analytical Performance Modeling of Superscalar

58 In-order Processors
(a) lame (b) patricia
: !
e o Sim
0.5 ,
Y
8 0.3
° 256 configurations ° 256 configurations
(c) tiff2bw (d) zeusmp
: e o Sim
£

256 configurations 254 configurations

Figure 3.17: Using the model versus detailed simulation when optimizing for EDP,
for four benchmarks and 256 configurations.

tion with McPAT on a smaller subspace of the complete design space. As
illustrated in Figure 3.18, we first use the model to select a number of mi-
croarchitectural configurations for each benchmark that have low predicted
EDP values. More specifically, we select configurations so that all design
points within 13% (i.e., the maximum error we noticed in the evaluation
in Section 3.6) of the configuration with the predicted minimum EDP are
covered. We enforce a minimum of 20 configurations per benchmark. The
maximum number of configurations using this selection procedure is 36.

Figure 3.19 shows EDP values as reported by detailed simulation, nor-
malized against the EDP of Baseline 5. We plot the “Model Optimum”,
i.e., the simulated EDP value for the optimal design point as predicted by
the model, and the “Simulated Optimum”, i.e., the EDP value of the op-
timum design point found by detailed simulation. When we compare the
optimum predicted by the model with the optimum predicted by detailed
simulation, we observe only few differences: for most benchmarks the op-
tima have the same EDP, and on average we have an EDP difference of 1%.
The maximum EDP difference is 6% for adpcm_c. Compared to the base-
line architecture, the model helps us to reduce 6% in EDP on average, and

3.7 Guiding design space exploration 59

Complete Design
Space
(2048 designs)

——/

Use model to rank designs p;, such that DSE through

i EDP(p,) < EDP(p,) < ... Y Model and

| <EDP(p-1) SEDP (p) < ... P [Mmepar

! Y Model

| < EDP(Pa47) A I Optimum I
Retain designs p, to py, Rank and

i where N is the maximum of 20 and : select designs

i the lowest number for which P
: (EDP(py) — EDP(p,))/EDP(py) < MaXey,, i/ —

Low-EDP Designs
(20-36 designs)

Simulation
Optimum

DSE through
gemb and
MCcPAT

Figure 3.18: Framework to filter the designs used in the second experiment of
Section 3.7.2, to limit the number of designs to evaluate with detailed cycle-level
simulation.

—4—Model Optimum ===Simulation Optimum

141

©

S 1

2

« 0.9

Qa

208 V

B %] v

Q07 +—F——F———— R T T T ———————

= T ®OY O 8L O T O T XG 5 Q> X o~ 0T O 5 O ® C 5 O

< \:\LDEEBI.QG:*-‘EQEEOQN:EE_:||§\‘D\~cm_§®\

£ ® £ A 2 o c o> 2 2 €55 0 S coQ c E 9§ &g £ e

£ £ 2 T = s O w2 = o > 29 g 2 I & g > T A=

S U::g-‘:—ﬁc'mmgeog S cowg:mggmmEQ_Q @ £35S 8§

£ g ° & 2E85°% 3 E£E2 FREZzT=2z<7T ETES

z 8 S g s sV86% % £ 8
2 g c © =

a = £ 8

w k7

Figure 3.19: EDP (normalized by the EDP of Baseline §) for the lowest EDP con-
figuration discovered by simulation and by the model.

up to 28%. Using detailed simulation, the average EDP reduction is 7% and
up to 28%. Note that for a large number of the benchmarks, the baseline
configuration has a normalized EDP close to 1, indicating that the baseline
happens to be optimal. This does not mean that their EDP is constant as for
these benchmarks we observe variations in EDP (up to a factor of 2.5). This
can also be seen by looking at the wide EDP ranges for the benchmarks
patricia and tiff2bw in Figure 3.17.

Mechanistic Analytical Performance Modeling of Superscalar
60 In-order Processors

100% ft

80%] -

E u Other
60% -
s m Branches
g 40% Loads
- o
E H Int Multiply
mInt ALU

20% -

0% -
gsm susan_s

Figure 3.20: The instruction mix of benchmarks gsm_c and susan_s are similar:
Many integer ALU instructions and over 10% integer multiply instructions.

3.8 Gaining insights
3.8.1 Revealing Performance Bottlenecks

This case study illustrates the additional benefit of the mechanistic perfor-
mance model over empirical models: the ability to break down the total
number of executed cycles into smaller terms that provide a better level of
detail into how the application interacts with the microarchitecture.

While well-trained empirical models provide a significant speedup in
simulation time compared to cycle-level simulators and are able to show
the performance impacts of different processor designs, it is challenging
at times to reveal the underlying reason why a design improves perfor-
mance for one application but not another. We illustrate this with an ex-
ample: Figure 3.20 shows two benchmarks with a very similar instruction
mix, namely gsm_c and susan_s. Considering the baseline configuration
of design space 3, we would expect that adding integer ALUs or integer
multiply units would improve performance, based on the instruction mix.
Although there appear fewer multiply instructions in the instruction mix
than ALU instructions, multiply instructions are more expensive since they
have a longer execution latency. We therefore simulate the baseline config-
uration and a configuration in which we have two multiply units instead
of one and plot the CPI (Cycles Per Instruction) for both configurations.
Figure 3.21 shows that gsm_c indeed experiences a significant performance
improvement (the CPI is significantly lower). However, despite a similar
instruction mix, susan_s’ behavior is completely different: we barely ob-
serve a performance improvement when adding the second multiply unit.
In this section we show how the mechanistic model provides a level of
insight that enables quick and deep understanding of such performance
phenomena.

Formula 3.1 derives the number of execution cycles of an application on

3.8 Gaining insights 61

1.4

1.2

1

— 0.8 - o
o u 1 Multiplier
Cos - o
: u 2 Multipliers
0.4 -
0.2

0 4

gsm_c susan_s

Figure 3.21: Adding an additional multiply unit increases performance signifi-
cantly for one benchmark, but not for the other, while the instruction mixes of
Figure 3.20 are similar.

a target microprocessor as a sum of terms. This property is very useful in
determining performance bottlenecks. By identifying the largest contrib-
utors to the execution cycles, one can find the most promising directions
to improve performance. For example, suppose the penalty due to data
cache misses (part of the P,;sscs term) is the largest contributor to the exe-
cution cycles, performance could be improved by installing a larger cache,
or by improving data locality. If, on the other hand the penalty due to
functional units (Pry) is relatively large, we can improve performance by
adding functional units.

We now build CPI stacks for the benchmarks and configurations of Fig-
ure 3.21. Thereto, we divide the terms in Formula 3.1 by the total number
of instructions IV, and we split up the terms P,,isses and Ppy into smaller
terms to get a better level of detail. The ‘base” component is the first term,
ie., %, which becomes % when divided by V. P,isses can easily be split up
by multiplying the number of miss events of each type with their respective
penalty as explained in Section 3.3.

Since Ppy and FPyeps are modeled in a unified matrix C, we have to split
up the matrix C into Cry and Cgeps to determine penalties for functional
units and inter-instruction dependences separately. We do this similarly to
how the matrix was constructed in Formula 3.7:

) Caep(i,d) ifcgep(i,d) > cry(i
Cdeps(z7d):{0dp<) elscép() fu(i)

chu,d):{ crulisd) e lind) < eguli)

The term Pry can be further broken down into Piuiary, Pinthuitiply,
Pipary and Prparuitipy by accounting for the Cpy (4, d) terms only, in which
i denotes a pattern associated with that functional unit (i.e., the last instruc-
tion in pattern i executes on functional unit type FU).

Mechanistic Analytical Performance Modeling of Superscalar

62 In-order Processors
1.4
1.2
1 other
int_mul
T 0.8 1 mint_alu
© 0.6 = = dependences
I bpred_miss
0.4 1 = m taken_branch
Nl N NN
0 il
1 Multiplier ‘2 Multipliers| 1 Multiplier 2 Multipliers
gsm_c susan_s

Figure 3.22: CPI stacks reveal that inter-instruction dependences between mul-
tiply instructions are the underlying bottleneck that is preventing performance
improvement for susan_s. The ‘other” component are all other terms in the model
that only have a small component.

The CPI stacks for the benchmarks and configurations of Figure 3.21
are shown in Figure 3.22. Although the model has a small error on the
performance prediction, it reveals why there is hardly any performance
improvement for susan_s. With a single multiply unit, we observe that the
penalties due to integer multiplies (Pin¢aruitipy) is relatively high. When
we add a second multiply unit, we see that this term is significantly re-
duced for gsm_c, which can be explained by the many patterns with more
than one multiply instruction. For susan.s, we see that the Pj,;asuiipiy
term is also reduced, however the term Py, is increased by the same
amount P, nrueiply was reduced. The decrease in Py, aruiripiy can again be
explained by patterns consisting of multiple multiply instructions that can
execute in parallel. However, the increase in P,,; means that these multi-
ply instructions depend on each other, which inhibits parallel execution.

3.8.2 Compiler Optimizations

We now use the model to study how compiler optimizations affect su-
perscalar in-order performance, see Figure 3.23. We consider -03, -03
without instruction scheduling (-03 -fno-schedule-insns), and -03
with loop unrolling turned on (-03 -funroll-loops) for the five bench-
marks for which we observed the largest impact due to compiler optimiza-
tions. Figure 3.23 shows normalized cycle stacks, i.e.,, a cycle stack is
computed by multiplying a CPI stack with the number of dynamically ex-
ecuted instructions; the cycle stacks are then normalized to the execution
time with the —~03 optimization level. For most of the benchmarks, instruc-

3.8 Gaining insights 63

1.2
g
§.0.8 R mother
3 12_miss
206 N
L =int_mul
§ 0.4 -+ mint_alu
§ 02 | mdependences
’ = bpred_miss

o
I

mtaken_branch
®base

tiffdither

stringsearch susan_s

Figure 3.23: Normalized cycle stacks for five benchmarks across different compiler
optimizations.

—_

o
o

o
o

Normalized Cycles
o
iy

o
S}

= bpred_miss
mtaken_branch

= other

12_miss
1 =int_mul
1 t ®mint_alu
EI l mdependences

o

Ebase

1 Multiplier | 2 Multipliers | 1 Multiplier | 2 Multipliers

03

unroll

Figure 3.24: Normalized cycle stacks for susan_s with and without loop unrolling,
and on two different architectures (one and two multiply units).

tion scheduling increases the distance between dependent instructions,
resulting in a lower penalty due to dependences. For some benchmarks,
e.g.,, gsm.c, the base component increases slightly through instruction
scheduling, meaning that the number of executed instructions increases.
The reason for this is the addition of spill code. However, the cost of
spill code is compensated for by the substantial decrease in the impact of
inter-instruction dependences.

Most of the benchmarks (and all the ones in Figure 3.23) benefit from
loop unrolling. Three components get an important reduction through loop
unrolling. First, the number of dynamic instructions decreases because
fewer branches and loop iteration counter increments are needed after loop
unrolling. Second, because there are fewer branches, the penalty due to
taken branches also decreases. The third and biggest contribution comes
from the smaller penalty due to inter-instruction dependences; clearly, loop
unrolling enables the instruction scheduler to better schedule instructions
so that fewer inter-instruction dependences have an impact on in-order per-
formance.

Mechanistic Analytical Performance Modeling of Superscalar

64 In-order Processors
Configuration Parameter Value
I-cache 32KB
4 way set-assoc
64 byte blocks
D-cache 32 KB
4 way set-assoc
64 byte blocks
L2-cache 512KB
8 way set-assoc
10ns latency
pipeline depth 5 stages
1GHz
processor width 4 slots
branch predictor 1KB global history
Integer ALU (IA) 2 units
1 cycle latency
Integer Multiply/ 1 unit
Divide Unit (IM) 5 cycles multiply latency
20 cycles divide latency
Floating-Point ALU (FA) 1 unit
3 cycles latency
Floating-Point Multiply/ 1 unit
Divide Units (FM) 15 cycles latency

Table 3.10: Configuration used to compare in-order with out-of-order CPI stacks.

In particular, for susan_s, loop unrolling substantially reduces the im-
pact of dependences. As shown in Section 3.8.1, dependences prevent a
performance improvement when the number of multipliers is increased
from one to two for susan_s. In Figure 3.24, we show normalized cycle
stacks for susan_s without loop unrolling (-03) and with loop unrolling
enabled (—unroll) on the baseline architecture of Design Space § (1 Mul-
tiplier) and on the baseline architecture with an additional multiply unit (2
Multipliers). As mentioned earlier, for —~03 the penalty for multiply instruc-
tions transforms into a penalty for inter-instruction dependences when a
second multiply unit is added. When we enable loop unrolling, however,
many of these additional inter-instruction dependences can be removed
because the instruction scheduler is now able to place independent multi-
ply instructions (that were originally spread across loop iterations) closer
together and dependent ones further apart. As a result, we see a consider-
able performance gain when the number of multiply units is doubled for
the loop-unrolled version of susan_s.

3.8 Gaining insights 65

1.2
1
0.8

other

12_miss

dl1_miss
il1_miss

=int_mul
mint_alu

o m dependences
() .
° = bpred_miss
E_) mtaken_branch
d

Embase

gsm_c Ipeg_c Jpeg_

patricia susan_c

other

12_miss

di1_miss
il1_miss

®mint_mul

mint_alu
mdependences
= bpred_miss
mtaken_branch
Hbase

tiffmedian

Figure 3.25: Comparing in-order versus out-of-order performance using CPI
stacks obtained through mechanistic modeling.

3.8.3 In-order versus out-of-order performance

In this application, we compare in-order versus out-of-order performance
using CPI stacks, see Figure 3.25 7; We only show CPI stacks for a selected
number of benchmarks to improve readability. The in-order CPI stacks are
obtained using the model described in this chapter; the out-of-order CPI
stacks are obtained using the model described in prior work [24]. In this
comparison, we consider four-wide in-order and out-of-order processors
with parameters configured as in Table 3.10. A number of fundamental
and insightful observations can be made from this graph.

e Dependencies are largely hidden by out-of-order execution, in con-
trast to in-order processing. This is apparent for all the benchmarks.

"The CPI stacks were obtained by reimplementing the model in the SimpleScalar toolset.
The use of SimpleScalar, along with the use of another cross compiler, is the reason for
the slightly different results for the in-order model compared with the results in the other
sections. SimpleScalar expects COFF binaries, unlike gem5 which reads the ELF format.

66

Mechanistic Analytical Performance Modeling of Superscalar
In-order Processors

Non-unit instruction execution latencies due to multiply/divide op-
erations have significant impact on performance on in-order proces-
sors for some benchmarks, such as gsm_c and susan_s. Non-unit la-
tencies are mostly hidden by out-of-order execution.

Most of the benchmarks suffer from a small but noticeable penalty
due to insufficient ALU’s on in-order processors. While the width
of the processor is four, the processor sometimes gets stalled because
only two ALU’s are available. Out-of-order processors on the other
hand are capable of scheduling other instructions until the ALU’s are
available.

The cost per mispredicted branch is larger on out-of-order processors
than on in-order processors, see for example patricia. The reason is
that on an in-order processor, the cost equals the depth of the front-
end pipeline, whereas on an out-of-order processor the branch reso-
lution time (the time between the branch getting dispatched and exe-
cuted after all instructions it depends on are finished) also contributes
to the overall penalty in addition to the front-end pipeline.

The L2 cache component is smaller on the out-of-order processor
compared to the in-order processor, see for example tiff2rgba. The
reason is that an out-of-order processor can better exploit memory-
level parallelism and issue independent loads and stores to memory
simultaneously. An in-order processor on the other hand would stall
on the first use of a load miss, preventing subsequent (independent)
load misses to go to memory.

Since I-cache miss penalty is a function of the miss latency only, the
penalty is identical on in-order and out-of-order processors.

This case study clearly illustrates the insight that can be obtained from

mechanistic analytical modeling, which is much harder to obtain through
detailed cycle-accurate simulation.

3.9 Summary

In this chapter we propose a performance model for superscalar in-order
processors that uses analytical formulas derived from understanding the
internal mechanics of the microarchitecture. The formulas are based on
how a superscalar processor interacts with its functional units and how
inter-instruction dependences through registers block the processor from
sustaining a high throughput of executed instructions. By combining a
detailed instruction mix and dependence distance profiles of a program’s

3.9 Summary 67

execution with a number of program-machine characteristics (e.g., cache
miss rates, MLP and branch misprediction rates), we demonstrate that our
model has an error of only 2.8% on average compared to detailed simu-
lation with gem5. Further, we are able to use our model to estimate the
performance of the ARM Cortex-A8 with an average absolute error of 10%.
The evaluation speed of the model is close to instantaneous, as it only in-
volves solving a number of analytical formulas. Furthermore, the micro-
architectural independent profiling step, needed to provide the model in-
put, is a one-time cost and is at least 10 times faster than a single detailed
simulation run.

We use the model both as an exploration tool and as a tool to get insight
into an application’s execution behavior and to visualize microarchitectural
bottlenecks. We demonstrate how the model can find an optimal set of
functional units to achieve a given performance target. When we combine
the model with McPAT to calculate the energy-delay-product (EDP) of a
given application on a given microarchitecture, we can find a design within
1% on average of the optimal EDP compared to detailed simulation. For
most benchmarks, we find the same optimum with the model as with simu-
lation. Next, we demonstrate the model’s usefulness to identify microarchi-
tectural bottlenecks. Instead of analyzing results of many detailed simula-
tions, the model can visualize how an application interacts with a microar-
chitecture and hence provides insights on how performance can or cannot
be improved. By applying this visualization technique on differently op-
timized binaries of the same application, the model provides insight into
how compiler optimizations impact the program-microarchitecture inter-
actions. Finally we compared in-order versus out-of-order performance by
generating CPI-stacks with the respective mechanistic models.

68

Mechanistic Analytical Performance Modeling of Superscalar
In-order Processors

Chapter 4

Selecting Representative
Benchmark Inputs for Design
Space Exploration

The fact that we live at the bottom of a deep gravity well, on the surface of a gas
covered planet going around a nuclear fireball 90 million miles away

and think this to be normal is obviously some indication of how skewed our
perspective tends to be.

Douglas Adams

There are basically two ways for reducing the number of cycle-level
simulations during design space exploration: the number of microarchitec-
tural configurations can be reduced or the number and/or size of work-
loads can be reduced. The mechanistic model described in the previous
chapter can help designers reduce the number of configurations. For re-
ducing the workloads, prior research in workload analysis has focused on
benchmark selection and finding small, but representative samples within
a benchmark application, as described in Chapter 2. Very little attention,
however, has been given to selecting representative inputs for these bench-
mark applications. Instead, common practice is to assume that different
inputs lead to similar run-time behavior and hence no prior selection is
done.

While the behavior may be relatively insensitive to the inputs for some
applications, other applications may be very sensitive. For example, a
streaming application, such as a filter operation, may be largely input-
insensitive as the application executes the same code and accesses memory
in a highly predictable way no matter what input it is given. On the other
hand, a video application that decodes an action movie with lots of com-
plex scenery versus a recording of a news reader with little variation across

Selecting Representative Benchmark Inputs for Design Space
70 Exploration

subsequent frames, is likely to lead to different code regions being exe-
cuted, as well as different memory access patterns being observed, which
in its turn leads to different run-time behavior.

In this chapter, we use a large-scale experiment to quantify how skewed
our design decisions can potentially be by relying on inputs that are unrep-
resentative for the application. We report average EDP increases of 57%
and 33% when using one and three badly selected inputs, respectively.
While this indicates that careful input selection is important for design-
ing general-purpose processors, it is even more important for application-
specific processors that target specific application domains.

Drastically increasing the number of simulations to cover as much
application behavior as possible is infeasible, given the low simulation
speeds. Therefore, this chapter proposes and evaluates three different
methods that identify representative inputs, at very low one-time costs and
as few as three inputs.

This chapter is organized as follows. Section 4.1 illustrates the potential
loss of not using representative inputs with a case study. Section 4.2 de-
tails the experimental setup and derives the performance metric that will
be used throughout the rest of the chapter. Section 4.3 provides a detailed
study on the impact of implicit workload parameters on design space ex-
ploration. Section 4.4 introduces our three novel techniques to select rep-
resentative inputs and compares the trade-offs between the techniques in
Subsection 4.4.5. Finally, Section 4.5 summarizes the chapter.

We also made the identification of representative inputs open to the
community, by creating a Bitbucket project ! , see also Appendix B.

4.1 Potential pitfall of current practice

We first set up a limited experiment to further motivate the problem and
gain some initial insight, before diving into a systematic evaluation of the
importance of benchmark inputs during design space exploration. We con-
sider one benchmark from the MiBench benchmark suite [28], namely sha,
a secure hash algorithm, with five inputs and five processor configurations.
The five inputs were randomly selected from the 1,000 input sets provided
through KDataSets [10], and the five processor configurations are shown
in Table 4.1; we consider superscalar in-order processors and vary issue
width, data and instruction cache size, branch predictor configuration and
pipeline depth. We simulate these processor configurations using the gem5
simulator [3].

! At the time of writing, this project is located at https://bitbucket.org/
maximilien_breughe/representative-benchmark-inputs/wiki/Home

https://bitbucket.org/maximilien_breughe/representative-benchmark-inputs/wiki/Home
https://bitbucket.org/maximilien_breughe/representative-benchmark-inputs/wiki/Home

4.1 Potential pitfall of current practice 7

conf0 | confi | conf2 | conf3 | conf4
Issue width 2 4 4 2 4
Data cache size 16 KB | 64 KB | 8 KB 64 KB | 64 KB
Instruction cache size | 16 KB | 8 KB 32KB | 16 KB | 32 KB
Branch predictor 1 KB 1 KB 35KB | 1KB 3.5 KB
global | global | hybrid | global | hybrid
Pipeline depth 9 9 9 7 9

Table 4.1: Design space for detailed simulation.

3
25
=)
8
= H conf0
S ® conf1
[e)
Z conf2
o
& _ Econf3
w conf4

inputA inputB inputC inputD inputE Average

Figure 4.1: Normalized EDP for sha for five different processor configurations and
five different inputs.

Figure 4.1 reports normalized energy-delay product (EDP) for each of
the five inputs across these five processor configurations, along with the
average EDP across all inputs. The EDP values are normalized against the
processor that is optimal for the given input. Hence, an EDP value of one
denotes the optimal processor configuration for a given input (e.g., config-
uration 0 for input C), and the closer the normalized EDP values to one,
the better. It is immediately clear from the results shown in Figure 4.1 that
configuration 0 is the most optimal processor configuration (i.e., the one
with the lowest EDP) across all five inputs: for most inputs its EDP is close
to 1 and it has the lowest EDP on average, see the ‘average’ bars in the
graph. The same result would be obtained in case inputs A, B or C would
have been chosen to guide the design space exploration. However, using
inputs D or E during design space exploration would have led us to believe
that configuration 4 is most optimal. The risk now is that if configuration 4
would be deployed in the field, an end user using another input, for exam-
ple input C, would experience a 73% worse EDP compared to configuration
0. The pitfall here is that it is unclear at design time whether we are in the
case of inputs D or E, or one of the other inputs. In other words, using a

Selecting Representative Benchmark Inputs for Design Space

72 Exploration
Parameter Range Baseline
Issue width 1-2-3-4 2
Data cache size 8 KB - 16 KB - | 16 KB
64 KB
Data cache associativity 2-4 4
Instruction cache size 8 KB - 16 KB - | 16 KB
32 KB
Instruction cache associativity | 2 - 4 4
Cache block size 32 - 64 byte 32 byte
Branch predictor 1 KB global - | 3.5 KB hybrid
3.5 KB hybrid
Pipeline Depth 5-7-9 9

Table 4.2: Design space considered in this study.

non-representative input to drive the design space exploration may lead to
a design point with poor performance for other inputs, and this is hard to
know a priori (if at all possible) without doing a full exploration.

This case study motivates the need for a methodology for identify-
ing representative inputs for design space exploration. The remainder
of this chapter will further investigate and quantify the pitfall of non-
representative inputs in a systematic way, and will present methods for
identifying representative inputs so as to minimize the chance of ending
up with a design point during design space exploration that could lead to
suboptimal and even poor performance for unseen inputs when deployed
in the field.

4.2 Experimental Setup

We now give a detailed overview of the design space and the workloads
considered throughout this chapter. We also describe our modeling infras-
tructure to efficiently explore the huge design space, as well as the opti-
mization criterion we are targeting.

4.2.1 Design Space

The design space considered in our exploration is shown in Table 4.2. We
assume a superscalar in-order processor core and we vary instruction and
data cache size, associativity and line size, pipeline depth, issue width, and
the branch predictor configuration. We consider 2 to 4 options along each
of these axes. The cross-product of all these design options leads to a de-
sign space consisting of 1,728 microarchitectures. This is a fairly small de-

4.2 Experimental Setup 73

sign space compared to real-life design spaces, yet it enables us to illustrate
our contribution while being manageable in terms of time complexity. The
baseline architecture in the rightmost column will be used for the experi-
ment in Section 4.3.3.

4.2.2 Workloads

Table 4.3 provides an overview of the benchmarks used in this chapter.
All but one of the benchmarks are taken from MiBench [28]. We use the
MiBench benchmark suite for two reasons. First, MiBench is targeted to-
wards embedded processors and devices, which aligns well with the goal
of tuning processor architectures for a specific workload domain. Second,
there exists a large set of inputs for each of these benchmarks, which we
use to explore input sensitivity. The inputs were taken from the KDataSets
database [10], which provides 1,000 inputs per benchmark. These inputs
have a working set size that is too large to fit in the processor core’s caches,
i.e., the data working set is typically larger than the 64 KB data cache con-
sidered during the exploration. Using 1,000 inputs per benchmark leads to
significant simulation time requirements for the experiments in this work,
nevertheless a sufficiently large number of inputs is needed to quantify
the impact of input selection on design space exploration. Chen et al. [10]
found these inputs to be diverse based on a detailed characterization using
both micro-architecture dependent and independent metrics.

In addition to these MiBench benchmarks, we also include the h264
benchmark from SPEC CPU2006 [32] as it is highly relevant for our applica-
tion domain of interest, while exhibiting interesting dynamic, time-varying
behavior not observed in the MiBench benchmarks. Because CPU2006's
h264 is not part of the KDataSets inputs database, we had to create our
own set of 1,000 video inputs. We took fifty raw video files from the public
domain [67], and generated 4 to 11 different sequences for each of these
videos, by selecting different begin and end points, leading to 250 different
video sequences in total. For each video sequence, we generated 4 random
encoding schemes, by varying 48 different parameters. Parameters include
varying the number of B frames, quantization parameters for I, P and B
slices, enabling/disabling pyramid encoding, etc. The end result is 1,000
video inputs for the h264 benchmark.

We compiled all of our benchmarks using the gcc-4.3 cross-compiler
for the Alpha ISA. Our default optimization flag is ~03. We also evaluate
the impact of compiler optimization flags on processor architecture design
space exploration in one later section in this chapter. We therefore con-
sider 250 randomly chosen combinations of compiler optimization flags.
Random selection of compiler optimization flags was previously shown to
give a fairly good coverage of the impact of compiler flags on overall per-

Selecting Representative Benchmark Inputs for Design Space

74 Exploration

Benchmark Category Description

adpcm_c Telecommunication Pulse code modulation
with ADPCM (encode)

adpcm_d Telecommunication Pulse code modulation
with ADPCM (decode)

dijkstra Network Shortest path calculation
between nodes in a graph

gsm Telecommunication Voice encoding with
GSM

jpeg-c Consumer Lossy image compression
with JPEG standard

jpeg-d Consumer Decompression of JPEG
compressed images

lame Consumer MP3 encoding

patricia Network Compression of network
data structures

gsort Automobile/Industrial | Data sorting
(e.g., 3D coordinates)

rsynth Office Text to speech synthesis

sha Security Secure hashing

stringsearch | Office Searching of words in
phrases (case insensitive)

susan_c Automobile/Industrial | Corner recognition
in images

susan_e Automobile/Industrial | Edge recognition
in images

susan_s Automobile/Industrial | Image smoothening

tiff2bw Consumer Conversion of a TIFF image
to black and white

tiff2rgba Consumer Conversion of a TIFF image
into RGB formatted TIFF

tiffdither Consumer Dithering a black and
white TIFF image

tiffmedian | Consumer Reducing the color palette
of an image

h264 Video Compression A reference implementation
of H264/AVC

formance, and 250 combinations was found to be sufficient to achieve near

Table 4.3: Overview of benchmarks

optimal performance [10].

4.2 Experimental Setup 75

4.2.3 Modeling Infrastructure

Evaluating 20,000 workloads (i.e., 20 benchmarks with 1,000 inputs per
benchmark) on 1,728 design points, results in a total of more than 34 million
measurements. Therefore, using detailed cycle-level simulation (e.g., using
gemb as done in the motivation section), which typically requires several
hours of simulation time per measurement, is totally infeasible as it would
require several millions of compute days to perform the measurements 2.

Instead, we resort to the model that we constructed in Chapter 3 which
evaluates a single measurement in the order of seconds, once the 20,000
workloads have been profiled. This allows us to collect the huge num-
ber of measurements in a reasonable amount of time (i.e., around 3 or-
ders of magnitude faster than using detailed cycle-level simulation). The
model targets superscalar in-order processors and models the performance
impact of issue width, pipeline depth, non-unit instruction execution la-
tencies, inter-instruction dependencies, cache/TLB misses and branch mis-
predictions. It predicts performance within 2.8% on average compared to
detailed cycle-accurate simulation. The model takes as input a number of
program statistics to characterize an application’s instruction mix, inter-
instruction dependencies, and cache and branch behavior. This collection
is a one-time cost per benchmark and input. Although we need to charac-
terize each benchmark/input pair, the characterization is much faster than
detailed simulation. The other model inputs relate to the processor archi-
tecture being considered, such as pipeline depth, width, instruction laten-
cies, etc.

We use McPAT to estimate power consumption [46]. The inputs to
MCcPAT are various processor configuration parameters, such as pipeline
depth, width, cache conguration, memory latency, chip technology (32nm),
etc., along with program parameters, such as the number of dynami-
cally executed instructions, the instruction mix, etc., and finally, program-
machine parameters, such as number of cache misses, branch mispredic-
tions, etc.

Put together, performing all experiments reported in this chapter (i.e.,
program profiling, evaluating the performance model and computing
power estimates) required 12,000 compute days on a single machine, in-
stead of several millions of compute days using cycle-level simulation. To
collect the measurements in a reasonable amount of time, we further par-
allelized the experiments on a cluster of 300 machines, resulting in 40 days
of simulation time.

2We estimate that performing the measurements with cycle-level simulation would take
3.96 million compute days, or 10,849 years of computing time on a single machine.

Selecting Representative Benchmark Inputs for Design Space
76 Exploration

4.2.4 Optimization Criterion

Although the problem we want to tackle is fairly easy to state, attacking
it in a systematic way is rather complex. There are multiple dimensions
involved in our study: we consider multiple benchmarks, and multiple in-
puts per benchmark, each leading to a different dynamic instruction count;
we consider multiple microarchitectures; and we consider two optimiza-
tion criteria, namely performance and power/energy.

In order to accurately and confidently evaluate how well a limited set
of (presumably) representative inputs, selected by our methods, captures
the behavior of the complete input database, we need to have an appropri-
ate metric. We quantify a microarchitecture’s energy-efficiency using the
energy-delay product (EDP), which is computed as the total energy con-
sumed multiplied by the total execution time to perform a given unit of
work (i.e., the complete execution of the benchmark with its input). Be-
cause we have multiple inputs per benchmark, we need an appropriate
way of computing the average EDP across these inputs to obtain the EDP
for a particular benchmark and microarchitecture. We also need a way of
comparing the EDP of the presumably optimal processor determined using
a limited set of inputs against the EDP of the optimal processor configura-
tions determined using all inputs. This is done as follows:

1. Calculate the execution time 7'(i, j) for each input ¢ and microarchi-
tecture j. This is done using the mechanistic analytical performance
model previously described.

2. Calculate the consumed energy E(i, j) for each input i and microar-
chitecture j. This is done using McPAT.

3. Compute the execution time T'PI(i,j) and energy consumption
EPI(i,j) per instruction. This is done by dividing execution time
and energy consumption with the number of dynamically executed
instructions (i), following Equations 4.1 and 4.2:

TPI(i,j) = TI(EZ‘;), (4.1)
EPI.j _ BE(i,J)
i,7) = 10) (4.2)

4. Identify the microarchitecture with the minimum EDP value across
all inputs. EDP,,;, is computed following Equation 4.3, with NV the
number of inputs in the input database (/V = 1, 000 in our setup):

N N
EDPyyin = mjin (Z TPI(i,j) x ;EPM, j)) . (4.3)

4.3 Quantifying the impact of implicit parameters on microprocessor
design space exploration 77

Note this formula complies with the recommendations by [55] re-
garding how to compute average EDP across benchmarks.

5. We can now compute the normalized EDP (EI\)TD) of processor con-
figuration j relative to the minimum EDP:

—— SV TPI(i,j) x 3 EPI(i, j)
= = C . 4.4

The metric EDP thus quantifies the energy-efficiency of a processor
configuration relative to the optimal configuration with the lowest average
EDP across all inputs and design points considered in our setup. Hence our

goal is to minimize £ D P using as few inputs as possible during the explo-
ration. For the remainder of this chapter, we will refer to the design with

minimum EDP as the optimal design. We will refer to EDP as ‘normal-
ized EDP’. Although we use this normalized EDP as our metric throughout
the chapter, the proposed input selection methods are not constructed in a
way that they are bound to using EDP as an evaluation metric.

4.3 Quantifying the impact of implicit parameters on
microprocessor design space exploration

The main focus of this chapter is on selecting representative benchmark in-
puts for design space exploration, as illustrated in Figure 4.2. Therefore,
we first quantify the potential impact of benchmark inputs on design space
exploration in Section 4.3.1, before presenting and evaluating the input se-
lection techniques in detail. The results show why it is important to break
common practice and select inputs in a structured way.

A second implicit parameter during design space exploration is the set
of compiler optimization flags used during compilation of the application.
We quantify in Section 4.3.2 that compiler flags have a significantly lower
impact on design decisions than benchmark inputs.

Although microarchitectural design space exploration is the primary
focus of this thesis, the data that we captured for the experiments of Sec-
tion 4.3.2 allows us to discuss the reciprocal problem, namely the impact of
microarchitectural design choices on selecting compiler optimization flags.
We discuss this reciprocal problem in Section 4.3.3, and show that the un-
derlying microarchitecture has a significant impact on the selection of com-
piler optimization flags.

Note that these three quantification studies, together with the work of
Chen et al. [10], provide insights on all four relationships depicted in Figure

Selecting Representative Benchmark Inputs for Design Space
78 Exploration

Application
Input

Compiler Micro-
Optimization architecture

Figure 4.2: Relationships between parameters that are quantified in Section 4.3.
The strong impact from benchmark inputs on microarchitectural design decisions
is the main focus of this chapter, and is quantified in Section 4.3.1. In addition, the
other relationships are quantified in the remainder of Section 4.3.

= Best Case ®Average Case ®Worst Case 2.76
2.03 2.18) 77
2
1.8
N 1.6
a 14
S12
8 14
208 -
506 -
04 -
02 -
0 4
N N @& X N
Q%@ & 9@9*{\‘\0 Q?.\‘(\Q' (b&e §® g/b{@'bq? q‘,0$ (\9 é,(‘(b (\9 & 6\’00 &7 g\& 00?
FEFL ELE P TEF T LLLEEY &
’bb ‘bb %\) Q D N Q (30 %\)Qgg & N v
O
&

Figure 4.3: Quantifying the impact of selected benchmark inputs for identifying
the optimum processor configuration.

4.2. We conclude that the selected benchmark inputs have a significant im-
pact on microarchitectural design choices, while the impact of compiler op-
timization flags on design choices is much weaker. Furthermore, the choice
of compiler optimization flags is strongly dependent on both microarchi-
tectural design choices and benchmark inputs. Because of the important
impact of benchmark inputs on microarchitectural design choices, we fo-
cus on input selection techniques for design space exploration in Section
4.4.

4.3 Quantifying the impact of implicit parameters on microprocessor
design space exploration 79

4.3.1 Sensitivity to Benchmark Inputs

We first quantify the sensitivity of benchmark inputs on design space ex-
ploration. Figure 4.3 reports normalized EDP values (as defined in Equa-
tion 4.4) across all benchmarks in our study while considering three scenar-
ios. The first scenario (‘best case’) is an ideal scenario in which we would
always pick a single benchmark input that, when used to determine the
(presumably) most optimal processor configuration, would yield a con-
figuration with a normalized EDP that is as close as possible to one (the
normalized EDP of the globally optimal configuration across all inputs).
The second scenario (‘average case’) is the average scenario in which we
were to pick a random benchmark input for design space exploration, and
reports the average EDP across these randomly selected inputs. This sce-
nario represents what is to be expected to happen on average. The third
scenario (‘worst case’) is the scenario in which we would be unfortunate to
pick a benchmark input that would result in a (presumably) optimal pro-
cessor configuration with the worst possible EDP compared to the global
optimum.

There are several interesting observations to be made here. The normal-
ized EDP values obtained through the best case scenario are equal to one
for all benchmarks. This indicates that there exists at least one benchmark
input that, when selected and used to drive the design space exploration,
yields an optimal processor configuration that is indeed optimal across all
inputs. The question now is whether it is possible to find, and if so, how to
find such an input. As mentioned above, this is an ideal case, and it is hard
(if not impossible) to know a priori whether a given input is going to lead
to the optimal design point during design space exploration.

Picking a random input leads to a design point that is fairly competi-
tive to the global optimum on average. For all but one of the benchmarks,
we observe that a random input leads to a design point with an EDP that
is close to the global optimum. For one benchmark however, namely dijk-
stra, a random input leads to a processor configuration with an EDP that is
176% worse on average compared to the global optimum. In other words,
for some applications, selecting a single random input may lead to severe
average deficiencies during design space exploration.

Picking the worst possible input leads to an EDP deficiency of 57% on
average across all benchmarks, and ranges up to 477%. We observe sub-
stantial deficiencies for around two-thirds of the benchmarks; one-third of
the benchmarks seems unaffected. Note these EDP deficiency numbers are
average numbers across all inputs. Whereas the average EDP deficiency for
a particular benchmark across all inputs can be as high as 477%, for some
inputs the deficiency can be even higher, up to 82x the EDP compared to
the optimum design point. This illustrates the high sensitivity of design

Selecting Representative Benchmark Inputs for Design Space
Exploration

(o]
o

Best Case mAverage Case mWorst Case

_k_k
o o N

EDP
5 5

Normalized ED
© o 9o
A OO 00 —

o
o
,

Figure 4.4: Quantifying the impact of compiler optimization flags on the identifi-
cation of the optimum processor configuration.

space exploration with respect to benchmark inputs. While the worst case
scenario is not the common case, or what is to be expected on average, it
might happen, and the pitfall is that it is unclear a priori whether we have
picked an input that represents the worst, average or best case. In other
words, there is no way for a designer to verify this unless one were to ex-
plore the entire design space with all possible inputs, which is infeasible in
practice. For this reason we focus on the worst case scenario. We want to
avoid picking benchmark inputs that lead to suboptimal designs, and these
results clearly illustrate the need for a systematic method for selecting rep-
resentative benchmark inputs.

4.3.2 Sensitivity to Compiler Optimization Flags

We now evaluate how sensitive design space exploration is with respect to
another characteristic that may affect workload behavior, namely the com-
piler and its optimizations. Further, we want to understand the relative
importance of input versus compiler sensitivity towards workload repre-
sentativeness.

We therefore consider 250 randomly selected combinations of compiler
optimizations flags. As mentioned before, random selection of 250 com-
binations of compiler optimization flags is found to be a robust way of
measuring the performance impact of compiler optimizations [10]. Ac-
cording to the results shown in Figure 4.4, for none of the benchmarks
we observe a severe EDP deficiency in the average (and best) case sce-
nario. We observe some EDP deficiency for some of the benchmarks in

4.3 Quantifying the impact of implicit parameters on microprocessor
design space exploration 81

the worst case scenario: 16% on average and up to 35%. In other words,
the compiler optimizations used to compile the benchmarks may lead to
some EDP deficiency if one is unlucky to select a compiler optimization
that is non-representative compared to the other optimizations for driving
microarchitectural design space exploration. Comparing Figure 4.4 against
Figure 4.3, we conclude that microarchitectural design space exploration is
much more sensitive to benchmark inputs than to compiler optimizations.

4.3.3 The impact of the microarchitecture on compiler optimiza-
tion flags

The results in Section 4.3.2 show that microarchitectural design choices are
only weakly influenced by the selected set of compiler optimization flags.
However, this does not imply that this relationship is symmetric: the re-
sults in the previous section do not conclude that the selection of compiler
optimization flags is only weakly influenced by microarchitectural design
choices. In fact, by re-using the same data that we gathered in Section 4.3.2,
we are able to show that in contrast to the low sensitivity of microarchitec-
tural design choices on compiler optimization flags, the impact of microar-
chitectural design choices on the selection of compiler optimization flags is
significant. The main intent of this section is to point out this contrast. For
strategies on optimizing binaries for a specific microarchitecture we refer
to prior research in the end of this section.

To gain initial insight into the potential performance loss when using a
set of compiler flags, optimized for a specific microarchitecture, on a differ-
ent microarchitecture we set up a small-scale experiment, as illustated in
Figure 4.5. In this experiment we first use the baseline architecture of Table
4.2 to simulate ® 250 program binaries for the same application but com-
piled using different sets of compiler flags and select the program binary
with lowest execution time. We refer to this binary as the baseline-optimal
binay. Second, we simulate the baseline-optimal binary on all 1728 micro-
architectures of the design space in Table 4.2 and evaluate the correspond-
ing execution times. Third, we simulate all 250 program binaries on all 1728
microarchitectures and select an optimal binary on each microarchitecture.
We refer to a program binary, optimized for a specific microarchitecture, as
the microarchitecture-optimal binary.

Figures 4.6 and 4.7 reports speedups over —03 for the baseline-optimal
and microarchitecture-optimal binaries, for the benchmarks lame and sha,
respectively. The X-axis sorts the microarchitectures by microarchitecture-
optimal speedup. We observe that many microarchitectures benefit from
the baseline-optimal binaries (the speedup is larger than one). However,

*Simulations performed in this section are done through the model of Chapter 3.

Selecting Representative Benchmark Inputs for Design Space

82 Exploration
—[Application]—
Y Y
Exhaustive . Exhaustive
BL — hi——
Optimization Harch Optimization

' v

. archg (i
[BL,, binary] [“binaol?\t/()]

! l

Execution on parch i Execution on parch i
v v
T(BL,y, parch(iy) T(parchy(i) parch(i))
Calculate speedup Calculate speedup
over —03 over-03
v v
S_BL (i) S_parch,y, (i)

Figure 4.5: Framework to calculate the speedups of the baseline-optimal (BLpt) bi-
nary and the microarchitecture-optimal (uarchgp (7)) binary for microarchitecture
1.

as can be seen in the figures, the microarchitecture-optimal binaries have
a significant improvement over the baseline-optimal binaries for a number
of microarchitectures.

To remove the potential dependence on the baseline architecture we
now setup a large-scale experiment where any microarchitecture can be
used as a baseline. To ease the quantification we again distinguish three
cases and plot their results in Figure 4.8. The best case here is the case where
we use microarchitecture-optimal binaries on each microarchitecture. This
is the ideal situation and hence it is not possible to achieve a higher speedup
by using any of the other 249 binaries. We report this in Figure 4.8 as har-
monic mean speedups over all microarchitectures. The worst case refers to
selecting a baseline microarchitecture A that results in a baseline-optimal
binary with the worst results on the actual microarchitecture B. We repeat
this for each microarchitecure B and report the harmonic averages in Figure
4.8. The average case is the average speedup we get by using any microar-
chitecture A as a baseline to generate a binary for microarchitecture B. We

4.3 Quantifying the impact of implicit parameters on microprocessor
design space exploration 83

=M icroarchitecture-optimal ° Baseline-optimal

1.8

Speedup (compared to -O3)

0.8 Rghoer *

Microarchitectural configuration

Figure 4.6: Speedups over -03 for lame when the binary is optimized for the
target architecture (red curve) and when it is optimized by a baseline architecture
(blue data points). The experiment is repeated for different microarchitectures on
the X-axis, but the baseline is kept the same.

==Microarchitecture-optimal ° Baseline-optimal

1.3

1.2

1.1

1

0.9

0.8

Speedup (compared to -O3)

0.7

Microarchitectural configuration

Figure 4.7: Speedups over -03 for sha when the binary is optimized for the target
architecture (red curve) and when it is optimized by a baseline architecture (blue
data points). The experiment is repeated for different microarchitectures on the
X-axis, but the baseline is kept the same.

again repeat this for each microarchitecture B and report the harmonic av-
erages in Figure 4.8. We observe that microarchitecture-optimal binaries
(i.e., the best case) achieve a speedup of 1.27 on average, while baseline-
optimal binaries that result in the worst speedups achieve a speedup of

Selecting Representative Benchmark Inputs for Design Space
84 Exploration

mBest Case mAverage Case ®Worst Case

o
o
|

Speedup (compared to -O3)
o
o

Figure 4.8: Harmonic average of speedups over 1728 microarchitectures, when the
baseline to generate the application binary is (1) the microarchitecture resulting in
the best speedup (i.e., the binary is generated by the microarchitecture we mea-
sure speedup on and hence is the best case.), (2) the microarchitecture resulting in
an average speedup (average case) and (3) the microarchitecture resulting in the
worst speedup (worst case)

0.97 on average. Hence, on average, we can improve speedup by 30% by
generating a microarchitecture-optimal binary, compared to using a binary
generated by the baseline resulting in the worst speedup.

These results show that the selection of compiler optimization flags is
highly dependent on the underlying microarchitecture. Finding the opti-
mal set of flags has been subject of many research as an exhaustive search
of all possible combinations of compiler flags is infeasible. Hoste and Eeck-
hout [34] use a genetic algorithm to optimize binaries along multiple ob-
jectives (e.g., code size and execution time). Other machine learning tech-
niques, such as [15], [51], [53], [60] and [44] aim at predicting the perfor-
mance of different sets of compiler flags, so that an optimal set can be se-
lected without evaluating execution time. Dubach et al. [17] build a ma-
chine learning technique that predicts a microarchitecture-specific optimal
set of compiler flags. The model takes a set of performance counters and a
microarchitectural description as input.

We conclude that in contrast to the weak impact of the selected set
of compiler optimization flags on microarchitectural design space explo-
ration, the reciprocal relationship, namely the impact of microarchitectural
design choices on the selection of compiler optimization flags is strong.

4.4 Representative Benchmark Input Selection 85

Input Database

Selection

= S
Optimized |:> Reduced
Workload input set

o

- Design
Design Space
Space Exploration

Exploration @
Presumably
Optimal optimal
processor processor

Figure 4.9: Input selection workflow.

4.4 Representative Benchmark Input Selection

We now present and evaluate various methods for selecting representative
benchmark inputs. We do this using a common workflow as shown in Fig-
ure 4.9. We start off with the input database shown at the top left (i.e., 1,000
inputs per benchmark), from which we select a number of presumably rep-
resentative inputs, called the reduced input set, shown at the top right. We
evaluate all possible processor configurations for the selected inputs, and
determine the most optimal configuration, which is our presumably optimal
processor. To evaluate the effectiveness of the input selection method, we
compare the presumably optimal processor with the (globally) optimal pro-
cessor obtained by taking into account all inputs during the design space
exploration (left hand side of Figure 4.9). We do this by computing normal-
ized EDP for the presumably optimal processor, using Equation 4.4. The
closer the normalized EDP to one, the closer the presumably optimal pro-
cessor is to the optimal processor.

In Subsections 4.4.1 through 4.4.4, we consider four benchmark input
selection methods (random selection and three systematic input selection
techniques). We end this section with a discussion in subsection 4.4.5 on
trading off input selection speed versus efficiency for the various selection
techniques.

The inputs that we identified to be representative are presented in Ap-
pendix B for the two best techniques.

Selecting Representative Benchmark Inputs for Design Space

86 Exploration
2.03 577
o 2.18

1.8

1.6
L 14
w
s 12
(0]
% 1 - u 1 random input
E 0.8 - m 2 random inputs
206

3 random inputs
m 5 random inputs

N

@
o@/@@\\ S
s
L

6\ » N &
FE % §E TS S i
é‘\o

Figure 4.10: Random input selection: worst case normalized EDP as a function of
number of randomly selected inputs.

44.1 Random Selection

To provide a solid ground of comparison, we first implemented random
selection, i.e., we select a number of inputs at random out of the pool of
available benchmark inputs. More specifically, we evaluate the effect of the
number of randomly selected inputs on the presumably optimal design.
The expectation is that as we consider more randomly chosen inputs, the
more representative this set of inputs becomes and hence the closer the
presumably optimal processor will be to the globally optimal processor.
This is indeed the case: as we increase the number of selected inputs from
1 to 5, the average worst case EDP decreases from 57% (one input), to 33%
(two inputs), and 28% (five inputs), over the globally optimal processor, see
Figure 4.10. These results were obtained by taking 1,000 randomly chosen
sets of n inputs, with n varying from 1 to 5, and selecting the worst possible
set. (Note that selecting one input at random corresponds to the results
previously shown in Figure 4.3 under the ‘worst case’ scenario.)

As we increase the number of randomly selected inputs from one to
two, we observe a fairly steep decrease in the average worst case EDP from
57% to 33%, after which adding more inputs delivers diminishing returns.
Some benchmarks greatly benefit from selecting a couple of randomly cho-
sen inputs, see for example tiff, patricia and jpeg-c. Unfortunately, there
are also quite a few benchmarks for which selecting multiple inputs at ran-
dom does not solve the problem, see for example lame, jpeg_d, dijkstra and
h264. Picking five randomly selected inputs may still lead to a suboptimal
design point with an average 28% worst case EDP deficiency compared to
the globally optimal processor configuration. Clearly, random input selec-
tion is not effective at composing a representative input set, if few inputs

4.4 Representative Benchmark Input Selection

87

Parameter Optimized for in- | Optimized for in-
put 807 put 261

Issue width 2 2

Data cache size 64 KB 16 KB

Data cache associativity 4 2

Instruction cache size 16 KB 32 KB

Instruction cache associativity | 4 2

Cache block size 32 byte 64 byte

Branch predictor 3.5 KB hybrid 3.5 KB hybrid

Pipeline Depth 9 9

Table 4.4: Resulting microarchitectural optimizations for jpeg-d, depending on the
used input during design space exploration.

are to be selected. Picking many more inputs is likely to solve this issue,
however, it comes at the cost of requiring substantially longer simulation
times during design space exploration. Instead, we devise other input se-
lection methods that are more effective at selecting a few representative
inputs than random selection.

4.4.2 Microarchitecture-Independent Selection

Our second input selection mechanism, microarchitecture-independent selec-
tion, selects a pair of representative inputs after characterizing the inputs
in the input database through microarchitecture-independent characteri-
zation. Characterizing inputs incurs some overhead compared to random
selection (which incurs no overhead at all), however, the cost is a one-time
cost only, i.e., each input needs to be characterized only once. Fortunately,
this characterization step is much faster than detailed cycle-accurate simu-
lation. The advantage of using a microarchitecture-independent character-
ization is that it characterizes the inputs in such a way that the characteri-
zation can be leveraged across microarchitectures and processor configura-
tions.

Before going into the details of microarchitecture-independent charac-
terization we first analyze the program-behavior of jpeg-d through val-
grind [49] for two different inputs as an example.

Valgrind [49] is a tool that profiles an application to build a call graph
that stores information such as dynamic instruction counts. When visualiz-
ing the call graph only the subroutines with the highest fraction of instruc-
tions are shown to ease the analysis.

Figure 4.11 and 4.12 show input 807 and input 261, respectively. Using

input 807 to optimize the microarchitecture for jpeg_d in terms of EDP re-
sults in a microarchitecture that has a normalized EDP of 1 when evaluated

Selecting Representative Benchmark Inputs for Design Space
88 Exploration

Figure 4.12: Input 261 for jpeg_d

for all other inputs according to Formula 4.4. This means that input 807 re-
sults in a microarchitecture that is optimal over all inputs. If we use input
261 to optimize the microarchitecture however, and evaluate the resulting
data set-optimal microarchitecture for all other inputs we find a normal-
ized EDP of 1.27. This means that input 261 results in a microarchitecture
that has an EDP 27% higher than the optimal microarchitecture. The two
different microarchitectures can be seen in Table 4.4.

From Figures 4.11 and 4.12 it is not apparent why one of the images
would result in better overall design decisions than the other. However,

4.4 Representative Benchmark Input Selection 89

! 160 x ! 1960 x

F_14800x E1960 x 1960 x

188 606 x

128800 x

Figure 4.13: Call graph of the valgrind analysis for input 807

when we look at the valgrind call graphs in Figure 4.13 and 4.14 for input
807 and 261, respectively, we observe very different program-behavior.

From Figure 4.14 we can see that about 40% of all instructions are
spent in jpeg_start_decompress. Despite what the name suggests, this
is not initialization code. In fact 34 million instructions are spent in
jpeg_start_decompress. The reason is that jpeg_start decompress com-
prises a number of decoding steps that are specific for images encoded
with the multi-pass coding scheme. In contrast, input 807 is encoded with
the single-pass encoding scheme and hence skips most of the subroutines
inside jpeg_start_-decompress so that a total of less than 20 thousand in-
structions are spent inside the routine. Comparing Figures 4.13 and 4.14
further, we observe that process_data_context_.main has different decom-
press variants for single-pass and multi-pass encoded images.

Clearly, it requires a lot of domain-specific expertise or deep analysis
to understand the difference in program-behavior for different inputs. In
order to make it transparant to the microarchitect how different inputs be-
have, we need to be able to automate the detection of inputs that have a
different behavior.

To characterize the behavior we rely on the concept of a basic block vec-
tor (BBV), as previously introduced by [56]. A basic block is an atomic piece

Selecting Representative Benchmark Inputs for Design Space
90 Exploration

130720

118432 «x

Figure 4.14: Call graph of the valgrind analysis for input 261

of code with a single entry and exit point. A basic block vector is a vector
that keeps track of how often each basic block is being executed dynami-
cally. The dimensionality of a BBV equals the number of basic blocks in a
program and each index in the BBV counts how many times the respective
basic block is executed for a given input. In other words, a BBV represents
which blocks of code are being executed, and how frequently. We normal-
ize a BBV so that the absolute value of the vector equals one. We compute
a BBV for each input, and use it to characterize the dynamic behavior of
the program and the given input in a microarchitecture-independent way.
Previous work has demonstrated the good correlation between BBVs and
dynamic execution behavior [43]. We build on this prior work, and use
BBVs to understand (dis)similarities among inputs.

The microarchitecture-independent input selection method we propose
is comprised of three steps to create a reduced input set of two inputs, see
also Figure 4.15. We first characterize each input through a BBV, i.e., we
execute the benchmark and its input and count how often each basic block
is being executed — this can be done through functional simulation (using
an architectural simulator such as gem5, as we did), or through a dynamic
binary instrumentation tool such as Pin [47]. We subsequently normalize
the BBVs. Next we calculate the Manhattan distance between the BBVs of
each possible pair of inputs. The Manhattan distance between the BBVs of

4.4 Representative Benchmark Input Selection 91

1

BBV i i

Capture !

Input Database . Basic Block BBV | / Manhattan E
H counts Distance !

1 1

1 ﬂ .

[i

| —

1 1

1 1

i :

— o Find i, j with !
. distance !

! 1

! 1

Figure 4.15: Microarchitecture-independent input selection using Basic Block Vec-
tors (BBVs).

Average Manhattan Dists

0.5

:
K '
—_ —— —_—
0.0 1 —
T T T T T T T T T T T T T T T T

o, O, © o, © — he] - © c © = » [} O,
| | et | S = | T 2 £ & 8 H 8 | | |
£ e 3 o kel s o 5 5 a g S s £ c c c
2 @ = 5 @ ? S o = @] I
2] S = 2 5 @ 2 23 @ S £ 5 & 3 1
k1 k1 ° = a 2 = £ £ = E 2 2 2
®© @ =) £ = @ @ @

£

@

Figure 4.16: Boxplot distribution of average Manhattan distances between each
input and all other inputs. The high distances indicate that there is many different
dynamic behavior over different inputs: e.g., a Manhattan distance of 0.5 indicates
that 25% of the executed code resides in different basic blocks.

inputs ¢ and j is calculated as follows:

N
MD(BBV;, BBV;) = 3" |BBV;(k) — BBV;(k),
k=1

(4.5)

with N the dimensionality of the BBV, or the total number of static basic
blocks in the program. Figure 4.16 illustrates the distribution of average
Manhattan distances between all inputs. In the third and last step, we de-

Selecting Representative Benchmark Inputs for Design Space

92 Exploration
¥ 1 random input ™2 random inputs 3 random inputs ™ BBV selection 2.18
2.03 5.77
2
1.8
1.6 I
14
&
w 1.2
el
2 o1
£
5 0.8 1
z
0.6
0.4 -
0.2
0 -+
&\6@60(@6@&00 PR oV N TN S\ S IR 4
& §F & LT SE F S S E P ST S S
Q R S @ < 2 > RS
O OFE TE e T FFE 8

Figure 4.17: Normalized EDP for microarchitecture-independent input selection
using BBVs versus random selection.

termine the pair of inputs (4, j) with the biggest Manhattan distance (MD):

(i,7) = argmax(M D(BBV;, BBVj)). (4.6)
irj
Intuitively, this pair denotes inputs with the most divergent code execu-
tion behavior, which is likely to lead to diverse run-time behavior and is
therefore likely to be more representative than randomly selected inputs.

Figure 4.17 compares the microarchitecture-independent selection us-
ing BBVs, as just described, against random selection. On average, this
method results in a presumably optimal design point that is no more than
3.7% off compared to the globally optimal design point, which is a sub-
stantial improvement over random selection (e.g., 33% off on average for
two randomly selected inputs). The maximum EDP deficiency for the BBV
selection method is observed for stringsearch (33.6%); the reason why we
are seeing relatively high deficiencies using the BBV method (see jpeg-d
and stringsearch) might be that a BBV only tracks the code being executed
and not how it interacts with the microarchitecture (e.g., different memory
access behavior may be observed even though the same code is being ex-
ecuted). For all applications we are better off (or equally good) using BBV
selection compared to randomly selecting two inputs. In fact, we even do
better (or equally good) compared to three randomly selected inputs. This
makes the microarchitecture-independent selection method using BBVs a
reliable method for selecting representative inputs for design space explo-
ration.

4.4 Representative Benchmark Input Selection 93

Input Database

|::> DSE in Filtered Input

subspace Database (FIDB)

Reduced ¢
input set ’

Random
selection

Figure 4.18: One-level filtered input selection uses design space exploration in a
limited microarchitectural subspace to filter out non-representative inputs.

4.4.3 Filtered Selection

The third input selection method combines design space exploration and
input filtering before randomly selecting a number of inputs. The basic
idea is that if we can filter out non-representative inputs, we can greatly re-
duce the worst case scenario when randomly picking inputs. We have de-
veloped two filtered selection methods, which we describe next: one-level
and two-level filtered selection. Both techniques use all inputs to perform a
design space exploration in a limited subspace. Inputs that lead to far from
optimal design points in the limited subspace are filtered out as it is likely
that they are unrepresentative of the larger design space. The resulting fil-
tered input database (FIDB) is then used to randomly select inputs.

One-level filtered selection

The one-level filtered selection method performs design space exploration
with all the inputs on a small subspace of the larger microarchitectural de-
sign space, as shown in Figure 4.18. The design space exploration in this
subspace involves estimating performance and power/energy for all de-
sign points in the subspace and for all inputs in the input database. We
consider a subspace of 10 design points; these design points include a base-
line configuration (confO from Table 4.1) along with 9 other design points
derived from this baseline by randomly changing a number of the microar-
chitecture parameters shown in Table 4.2, one at a time. Once the exhaus-
tive evaluation is done in this subspace, we filter out the inputs that result
in poor average normalized EDD, relative to the optimum design point in
the subspace. This results in a filtered input database (FIDB). The goal is
that the FIDB no longer contains inputs that may lead to poor design points
in the larger design space. From the FIDB, we then select a number of in-

Selecting Representative Benchmark Inputs for Design Space

94 Exploration
® 1 random input m 2 random inputs = 3 random inputs
m 1 filtered input (L1) m2 filtered inputs (L1) = 3 filtered inputs (L1) 2.18
5 2.03 / 5.77

Normalized E

Figure 4.19: Normalized EDP through one-level filtered input selection.

puts at random.

Figure 4.19 reports worst case normalized EDP for the one-level filtered
selection method when randomly picking 1, 2 and 3 inputs from the FIDB.
One-level filtered input selection leads to average worst case EDP deficien-
cies of 22.6%, 8.6% and 8.1%, respectively, which is a substantial improve-
ment over random selection. This confirms that performing a preliminary
design space exploration in a small subspace of the larger design space
filters out a number of non-representative inputs. For most benchmarks
between 0 and 200 inputs are filtered out, i.e., the FIDB contains between
800 and 1000 inputs. However, for two benchmarks (dijkstra and jpeg-c),
the FIDB contains slightly more than half of the original input database.
The cost of one-level filtered selection is a one-time cost involving detailed
simulation of all design points in the subspace for all inputs. In our setup
with 1,000 inputs and 10 design points in the subspace, this results in 10,000
evaluations per benchmark.

Two-level filtered selection

To further improve the effectiveness of the filtered input selection method,
we now consider two levels of filtering, see also Figure 4.20. As with
the one-level filtered selection method, we first rely on a design space ex-
ploration in a limited subspace. However, instead of selecting a single
subspace, we select k subspaces. We randomly divide the original input
database in (k — 1) sets of inputs and we perform an exhaustive evalua-
tion in (k — 1) subspaces. This leads to (k — 1) level-one (L1) filtered input

4.4 Representative Benchmark Input Selection 95

Random
selection

—
Reduced ¢
input set

Figure 4.20: Two-level filtered input selection uses two levels of design space ex-
ploration in limited subspaces to filter out non-representative inputs.

: R !
i i
| DSEin —| LIFDB , |
i subspacel ! \ DSE in E
i — subspace k H
, 1
: ——] :

Input Database |\ T DSE in —| LIFIDB, l i
! subspace 2 «_ J !
: e :
| L2 FIDB !
i S |
i —— |
! DSE in s !
i subspace (k-1) LI FIDB(k-l) :

~—
| :
: 1
: 1
1
: 1
: 1

databases (FIDBs). Next, we randomly select a number of inputs from each
of the FIBDs, which we use to exhaustively evaluate the k-th subspace.
This leads to a second level of filtering, yielding the level-two (L2) FIDB.
We then select a number of inputs at random from the L2 FIDB.

In our implementation we aimed at having the same number of simu-
lations as for one-level filtered input selection, namely 10,000 evaluations
per benchmark. We therefore set & to 10 and simulate 100 inputs per sub-
space. Each subspace is randomly selected and consists of 10 design points.
For most benchmarks the L1 FIDBs contain at least 56 inputs of the original
100 inputs. One benchmark, sha, has an L1 FIDB of 17 inputs only. Some
benchmarks have a couple of L1 FIDBs with around 60 inputs only while
the other FIDBs contain around 100 inputs. This implies that the selected
subspace influences the selection of inputs and having multiple subspace
could potentially lead to better results than using a single subspace. To
construct the L2 FIDB we select 100 random inputs across all the L1 FIDBs.
The size of the L2 FIDB ranges between 56 and its maximum possible value
of 100.

Figure 4.21 reports that picking one random input from the L2 FIDB
leads to an average worst case EDP deficiency of 12.9% over the globally
optimal design point, which is a substantial improvement over random se-
lection and one-level filtered selection. This implies that two-level filtered
selection effectively does a better job filtering out non-representative in-
puts. Randomly picking two and three inputs from the L2 FIBD leads to an
average worst case EDP deficiency of 8.7% and 6.7%, respectively.

It is worth noting that the input filtering approach, while effective on

average, is not perfect. We observe a clear benefit from filtering for all
benchmarks, except for patricia. In particular, for patricia, when consider-

Selecting Representative Benchmark Inputs for Design Space
926 Exploration

¥ 1 random input ¥ 2 random inputs ¥ 3 random inputs
= 1 filtered input (L2) =2 filtered inputs (L2) ¥ 3 filtered inputs (L2) 2.185
2.03

Normalized EDP

Figure 4.21: Normalized EDP through two-level filtered input selection.

ing two inputs, random selection outperforms two-level filtering; similarly,
for three random inputs, random selection outperforms one-level filtering;
likewise, for two inputs, one-level outperforms two-level filtering. This
counterintuitive result suggests that we may be discarding representative
inputs, which may be due to the small subspaces used to filter out inputs,
i.e., the subspaces may not be representative for the larger space. A sys-
tematic way of determining subspaces may solve this issue, however, we
leave this for future work as the random subspace selection process seems
to work well for most benchmarks in our study.

444 CPI-Sampled Selection

The filtered input selection method, while effective, has two major short-
comings. First, the cost for building the FIDB is quite high, i.e., it requires
detailed evaluation of all inputs on a number of design points. Second,
there is a random component to the selection of inputs from the FIDB. We
now propose an input selection method, called CPI-sampled selection, that
overcomes these issues. It involves a single evaluation of a particular de-
sign point only, and selects representative inputs in a systematic way, not
through random selection.

The CPI-sampled selection method was inspired by filtered selection,
but instead of evaluating subspaces, we consider a single baseline design
point only, on which we evaluate all inputs. As we have a single design
point only, we have no means of filtering out non-representative inputs
based on their performance with respect to ranking design points in the

4.4 Representative Benchmark Input Selection 97

Input database I T > s?riz?almltri]c?n
! | | | |
¢ input i, input, o4 iNpUt,a !

Representative | |

input set 5 [min IPC med IPC max IPC i

Figure 4.22: CPI-sampled selection.

subspaces. We therefore resort to relative performance of the input com-
pared to the other inputs in the input database, i.e., we pick inputs based
on the achieved CPI (cycles per instruction) on the baseline architecture.
When selecting one input, we pick the input that has the median CPI across
all inputs; when selecting two representative inputs we pick the input with
median CPI and another input that has a value as close as possible to the
median CPI*; when selecting three inputs, we pick the inputs with the min-
imum, median and maximum CPI value. See Figure 4.22 for a schematic
overview of the CPI-sampled selection method.

The CPI-sampled method is effective at identifying representative in-
puts, as shown in Figure 4.23 for one input (with median CPI), two inputs
(with median CPI and nearly-median CPI) and three inputs (minimum,
median and maximum CPI). One input leads to an average worst case EDP
deficiency of 2% compared to the globally optimal design point (with one
outlier of 22% for h264). Two inputs brings the worst case EDP deficiency
further down to 1% on average (and at most 7% for sha). Three inputs
leads to no EDP deficiency, i.e., the three representative inputs lead to the
same optimum design point as using all inputs. The intuition is that the
three most extreme inputs, the ones with the minimum, median and max-
imum performance on a baseline design point, are representative of the
entire input database — the other inputs can be considered ‘interpolations’
with respect to the extreme inputs — which leads to effective design space
exploration.

Figure 4.24 shows CPI values for the baseline configuration of a number

“We found selecting two inputs close to the median CPI to outperform selecting the
inputs with the minimum and maximum CPIL

Selecting Representative Benchmark Inputs for Design Space

98 Exploration
m 1 random inputs m 2 random inputs = 3 random inputs
m 1 CPl-sampled input =2 CPl-sampled inputs = 3 CPl-sampled inputs 2.18
P 2.03 / 5.77

o

alized ED

£ 0.8 -
S06

orl

Figure 4.23: Normalized EDP through CPI-sampled selection.

4
3.5

3
25

& 2 /
1.? J
S
0.5

0

——sha —stringsearch1 -——tiff2rgba —tiffmedian

Figure 4.24: CPI across data sets for a number of benchmarks.

of benchmarks across all of their respective inputs, and provides intuition
why for some of the benchmarks it is better to pick inputs with median and
near-median CPI rather than inputs with minimum and maximum CPI.
Benchmarks such as tiffmedian and tiff2rgba (and some others which are
not displayed due to space reasons) that have an S-shaped curve for their
CPI values, tend to have good results when selecting inputs with minimum
and maximum CPI. Benchmarks sha and stringsearch (and others not dis-
played due to space reasons) on the other hand are L-shaped and selecting
inputs with minimum and maximum CPI tend to perform poorly on these
benchmarks. The reason is that there are very few inputs with a relatively
high CPI. Selecting these inputs puts too much weight on these inputs that
occur infrequently and are non-representative for the rest of the inputs.
Adding the inputs with median CPI addresses this issue.

4.4 Representative Benchmark Input Selection 99

=1 CPl-sampled input ~ ®2 CPIl-sampled inputs 3 CPI-sampled inputs ~ ® BBV selection

2
1.8
1.6
1.4
1.2
1 -4
0.8
0.6
04
0.2

Normalized EDP

Figure 4.25: Overview of the best performing two techniques: BBV selection and
CPI-sampling

44.5 Overview and Discussion

Table 4.5 summarizes and compares the proposed input selection methods,
while Figure 4.25 provides an overview of the two best performing tech-
niques. Note that in Table 4.5 we also included the complexity as a function
number of inputs in the database NV, the number of microarchitectural con-
figurations M, the simulation time overhead for a single simulation s, and
the instrumentation overhead p for a single instrumentation run. Typically
p is much smaller than s.

While random selection incurs no cost for selecting inputs, it may lead
to severe EDP deficiencies. Even selecting three inputs at random may re-
sult in an average worst case EDP deficiency of 33% compared to using all
inputs. The filtering method is more effective at selecting representative in-
puts, with an average worst case EDP deficiency of 6.7% for the two-level
approach and three randomly selected inputs. However, filtering comes
at the cost of requiring 10 x IV detailed evaluations (detailed simulations),
with N the number of inputs in the input database. The microarchitecture-
independent selection method using BBVs incurs a one-time cost of collect-
ing BBVs for all inputs. Fortunately, collecting BBVs is essentially a profil-
ing step which is much faster than detailed simulation. The BBV selection
method is more effective than filtering. It achieves an average worst case
EDP deficiency of 3.7% while using only two inputs during design space
exploration; we observed an EDP deficiency of 33.6% for one benchmark
though. CPI-sampled selection is the most effective approach: selecting the
inputs with the minimum, median and maximum CPI for a baseline config-
uration leads to identifying the globally optimal design point for all bench-
marks. This comes at the cost of requiring NV detailed evaluations, which

Selecting Representative Benchmark Inputs for Design Space

Exploration

100

%0 %0 (W X N X 5)O N SUON | UORO9[as aAfSneyxy
(W % $)O suorjenyeAd
%C = %8 - %CC %0 = %1 - %C +(N x5)0 | €-2-1 pajreldp N | uondsas pajdures-11D
(W x$)0 sindur y7 jo
%¥e %% +(N xd)O Z UOT}RJUSWNISU] uoTnOd[Rs Add
(W % 9)O suorjenyeAd
%TS = %TS - %CS | Yl = %6 - WEL +(N X5)0 | €-T-1 | Pa[redp N X 01 BULIR) [[9AS[-OM,
(W X $)O suonen[eAd
%<8 - %ES - %E01 %8 = %6 - %EC +(N X$)O | €-C-1 | Pa[redp N X 0T 3uLId)[y [9A9[-3UQ
YoLLY = YLLY = YLLY | Y%CE =~ %CE ~ %lS (Wxs)0 | €-T-1 SUON UO[O9[es Wopuey
asvd 3540Mm XU asvo 3si0m Sy hpxajdwo) | syndug 1500 aui13-auQ poYy1au 10139995

Table 4.5: Summary of input selection methods. (XN is the number of inputs in
the database, M the number of microarchitectures, s the simulation time overhead

and the p instrumentation overhead.)

4.5 Summary 101

is more time-consuming than BBV profiling. Note that we also added the
characteristics of exhaustive search. Exhaustive search comes down to ex-
ploring the whole design space with all possible inputs. This leads to a
perfect design at the highest exploration cost, which is infeasible.

These results lead to two important conclusions or insights. First, it
is important to select benchmark inputs in a systematic way. Randomly
selected inputs, even from a subset of inputs as with the filtering approach,
may lead to non-representative behavior, which eventually leads to non-
optimal design points during design space exploration. Selecting inputs
based on their behavior, either through microarchitecture-independent
characterization (e.g., BBV selection) or through detailed measurements
on a particular system (e.g., CPI-sampled selection), improves the repre-
sentativeness of the workload, ultimately leading to a better final design.
Second, the two most accurate input selection methods involve a trade-off.
CPI-sampled selection is (slightly) more effective compared to BBV selec-
tion at identifying the optimum design point, however, this comes at the
cost of incurring more overhead as it requires detailed measurements for
all inputs on a given baseline design point.

Although the presented techniques have only been evaluated for su-
perscalar in-order processors, we believe that they also apply (and might
be even more important) for more complex microarchitectures (e.g., out-
of-order processors). Performance might be more sensitive to inherent
workload behavior and input selection as the architecture is more com-
plex, hence a broader set of inputs might be needed compared to in-order
processors. If needed, some of the proposed techniques might need minor
adjustments to select a slightly broader range of representative inputs. For
example, the CPI-sampled selection method can be extended by adding
inputs between the minimum and median, and between the median and
maximum, to have a more fine grained selection of inputs. When look-
ing at multi-core processors, special attention should be given regarding
how to best select inputs to form representative multi-program and multi-
threaded workloads. Prior work has selected multi-program workloads
randomly [64], or based on microarchitecture-independent characteriza-
tion of benchmarks [63]. Extending and/or combining these techniques
with techniques for selecting representative inputs is left for future work.

4.5 Summary

This chapter provides a comprehensive study of the impact of two im-
plicit workload parameters on microarchitecture design space exploration:
benchmark inputs and compiler optimization flags. Whereas we observe
only a limited impact from the used compiler optimization flags, bench-

Selecting Representative Benchmark Inputs for Design Space
102 Exploration

mark inputs can impact design space exploration significantly. To address
this issue, we introduce three novel benchmark input selection techniques.

Our setup to study input sensitivity for design space exploration in-
volves 1,000 inputs for 20 embedded benchmarks and a design space con-
sisting of around 1,700 design points. We use EDP as our optimization
criterion, and we focus on the average EDP deficiency across all inputs,
when the worst possible input(s) are used during design space exploration.
This is a case that should be avoided at all cost since it is unknown a pri-
ori whether the selected inputs are representative or not. We find that
random selection may lead to an average worst case EDP deficiency of
57% and 33% when 1 and 3 inputs are randomly selected, respectively.
To tackle this problem, we propose filtered input selection, BBV selection
and CPI-sampled selection. Filtered selection, when two levels are de-
ployed and 3 random inputs are selected, reduces the worst-case EDP de-
ficiency to 6.7% on average. BBV selection and CPI-sampled selection are
more effective than filtered selection, and in addition incur a lower over-
all cost by characterizing the behavior of the inputs. BBV selection, which
characterizes inputs microarchitecture-independent using code execution
frequencies, achieves an average worst case EDP deficiency of 3.7% with
two inputs selected. CPI-sampled selection, which characterizes inputs
microarchitecture-dependent using simulation statistics, finds the globally
optimal design point in our design space with three inputs. Hence, CPI-
sampled selection results in (slightly) more representative benchmark in-
puts than BBV selection, at the cost of higher overhead (cycle-level simula-
tion versus profiling).

Overall, we hope this work increases awareness to benchmark inputs
and its importance to design space exploration. Given how data driven
architecture research and development is nowadays, it is of paramount im-
portance to pay close attention to selecting representative benchmark in-
puts. We believe this is going to be increasingly important as we resort to
application-specific and domain-specific specialization of processor hard-
ware to sustain the performance and energy-efficiency growth curve in the
absence of Dennard scaling.

Chapter 5

Conclusion

The important thing is not to stop questioning.
Albert Einstein

In this thesis we covered two key contributions that help computer ar-
chitects speed up the design space exploration and build microprocessors
that are robust across workloads for important design goals such as perfor-
mance and energy efficiency.

First, we have built a fast offline analytical model to focus design space
exploration into areas for detailed simulation and to gain insight into
application-microarchitecture interactions. We showed that the model is
accurate within 2.8% on average when compared to detailed cycle-level
simulation and within 10% when compared against hardware. In addi-
tion, because the analytical model builds on the internal mechanics of the
microarchitecture, it can break down the total execution time into smaller
terms that provide a better level of detail into how the application interacts
with the microarchitecture.

Second, we developed several techniques to select a small number of
benchmark inputs that are representative for the application’s dynamic be-
havior. We showed that a benchmark application’s input data sets can have
a significant impact on design decisions in terms of energy-delay-product
(EDP): without a systematic selection technique the EDP can be 57% higher
on average than the design with lowest EDP. With the techniques intro-
duced in this thesis we are able to find a design with an EDP that is less
than 3.7% higher than the design with lowest EDP, without a significant
increase in simulation time.

104 Conclusion

51 Summary

5.1.1 Analytical performance modeling

Designing a microprocessor is a challenging task as microprocessors con-
sist of many different components which all need to be adjusted to meet
the design goals for a large range of workloads. This makes the processor
extremely parameterizable and hence, computer architects use cycle-level
microarchitectural simulators to get performance estimates for a given set
of configurations. Unfortunately, simulating applications on microarchitec-
tural simulators is up to 4 orders of magnitude slower than executing them
on real hardware, which limits the number of microarchitectural designs
that can be evaluated in a given amount of time.

Therefore, we presented an analytical performance model in Chapter
3, which evaluates the performance of several microarchitectural configu-
rations in a couple of seconds at a small accuracy loss. This allows us to
use the model to explore a large design space and identify a smaller set of
interesting designs that is reasonable to be further evaluated with detailed
simulation.

More specifically, we built a mechanistic performance model for super-
scalar in-order processors. Previous work on mechanistic modeling was
limited to out-of-order processors. The challenge in modeling in-order pro-
cessors is the fact that their throughput of instructions is frequently inter-
rupted by inter-instruction dependencies and functional unit contention.
Out-of-order processors suffer less from resolving inter-instruction depen-
dencies and waiting on functional units to become available as they are
built to hide these latencies. The model consists of an analytical formula
which is built on the internal mechanics of the microprocessor. The input
to the model is a profile consisting of cache miss rates, branch mispredic-
tion rates and a matrix containing fine-grained information on dependence
distances and functional unit access patterns; and the machine parameters
of interest, such as superscalar width, processor depth, etc. Capturing the
profile needs to be done only once for each application to get performance
estimates of a wide range of microprocessors and is more than one order
of magnitude faster than a single cycle-level simulation. Our results show
an absolute error of 2.8% on average and a maximum error of 13% when
compared to cycle-level simulation. When compared against hardware, by
using a BeagleBone Black board with an ARM Cortex-A8, we show that
the model has an absolute error of 10% on average, without making funda-
mental modeling changes.

We illustrate the model’s usefulness by using it as a design space

exploration tool but also as a tool to get insight into the application-
microarchitecture interaction. Using it as a design space exploration tool

5.1 Summary 105

we are able to find a minimal set of functional units for a given performance
target. Further, the model allows us to find a microprocessor configura-
tion with an EDP within 1% of the configuration with lowest EDP, found
with cycle-level simulation. The model is also used to create cycle stacks,
which provides a breakdown of the total number of executed cycles into
smaller terms that provide a better level of detail into how the application
interacts with the microarchitecture. This breakdown allows us to identify
main sources of performance penalty for several benchmarks and under-
stand how compiler optimizations affect the application-microarchitecture
interaction.

5.1.2 Selecting representative benchmark inputs

It is a well known fact that the selected set of workloads is key in perform-
ing microarchitectural design space exploration. Therefore, much prior
work has focused on selecting representative benchmark applications [19,
40, 52, 68, 37, 69]. Benchmark applications are however subject to two im-
plicit parameters: the input to the application and the set of compiler flags
that is used to optimize the application’s binary. Common practice is to use
one or a couple of inputs and application binaries, and assume that they
capture enough dynamic behavior to be representative for the entire ap-
plication. These assumptions are never proven to be true, and the need to
study them is increasing when moving toward application-specific proces-
Sors.

Chapter 4 studies the impact of both these factors, using input databases
of 1,000 input data sets, and 250 randomly selected compiler optimization
flags. We have shown that using unrepresentative benchmark inputs can
lead to an EDP deficiency of 57%, while poorly selected compiler flags can
result in an EDP deficiency of 16%. The high potential impact of bench-
mark inputs on design space exploration suggests the need for systematic
benchmark input selection techniques. Therefore we have developed three
different systematic input selection techniques to help computer archi-
tects build microprocessors that meet the design goals for a wide range of
inputs.

The first technique, BBV selection, selects two inputs with the most di-
vergent behavior by comparing the basic block vectors (BBVs) for different
inputs. Because calculating the BBVs can be done quickly through func-
tional simulation or through binary instrumentation, it introduces a very
low one-time cost. Further, because BBVs are inherent to the application’s
binary, this is a microarchitecture-independent selection technique. Our ex-
perimental results show that we can reduce the potential EDP deficiency to
4%, by using the two inputs selected with BBV selection.

The second technique, filtered selection, performs design space explo-

106 Conclusion

ration on a limited set of designs in the larger design space. It uses these
results to filter out non-representative inputs, inputs that would have re-
sulted in undesirable design decisions in the limited design space. From
the remaining inputs a number of inputs is then randomly selected to be
used through further design space exploration. The required one-time cost
is NV x S simulations, with N being the number of available/generated in-
puts, and S the number of designs in the limited design space. We find that
for one level of filtering we can reduce the EDP deficiency to 9% for two
inputs and to 8% for three inputs. For two levels of filtering we can reduce
the EDP deficiency to 9% and 7% for two and three inputs, respectively.

The third technique, CPI-sampled selection, uses performance metrics
from simulation on a baseline architecture (here CPI values), to select in-
puts. Inputs are ranked based on their CPI-values and the desired number
of inputs is selected based on their ranking. The technique requires IV sim-
ulations on a baseline configuration, with N the number of inputs avail-
able. Because the technique requires simulation on a baseline architecture,
this is a micro-architectural dependent technique. When using two inputs,
we find that CPI-sampled selection reduces the EDP deficiency to 1%. For
three inputs, CPI-sampled selection finds the minimal EDP for nearly all
benchmarks in our setup.

5.2 Future work

5.2.1 Mechanistic performance modeling of superscalar in-order
processors

The proposed mechanistic model focuses on single-core processors only. It
would be interesting to extend this work towards multi-core processors
with superscalar in-order cores. The challenge with extending towards
multi-core processors is accounting for extra cache misses and longer mem-
ory access times because of resource sharing. To be able to use the model in
a multi-core environment, parameters corresponding to cache misses and
memory access times need to be estimated before evaluating Formula 3.2.
Existing work such as [9] and [64] propose techniques to calculate these
estimates and are orthogonal to our work

Another interesting extension would be towards multi-threaded pro-
cessors. Multi-threaded processors are built to hide stall latencies by exe-
cuting multiple applications on the same processor. This means that next
to resource contention, we need to model the overlapping of stalls from the
different application threads. Chen and Aamodt [9] model multi-threaded
processors for single-issue in-order cores. They implement a Markov Chain
that transitions between states, where each state indicates how many

5.2 Future work 107

threads are stalled. By calculating the possibility that all threads are stalled
at the same time, we can estimate the overall throughput. The inputs to
the model are IPC results of the individual applications and stall-events.
Eyerman and Eeckhout [22] use similar inputs (i.e., single-thread statistics)
to calculate overall throughput for multi-threaded out-of-order processors.

The challenge when considering superscalar (i.e., multi-issue) multi-
threaded in-order processors, is that instructions from different applica-
tions could appear simultaneously in the same pipeline stage and hence
our detailed instruction-mix profile (i.e., the H-matrix) is dependent on the
runtime context. A possible approach to solve this is, instead of computing
a single profile for each application, to compute multiple profiles at inter-
vals of a fixed number of instructions, for each application individually.
We can then build a single combined profile for the combined instruction
stream. Generating this combined profile is dependent on the level of
multithreading (coarse- or fine-grained).

5.2.2 Quantification of compiler optimization flags on design
space exploration

The quantification of the impact of compiler optimization flags on design
space exploration was done using 250 different sets of compiler optimiza-
tion flags on GNU gcc for Alpha ISAs. Hence, these sets of compiler flags
did not include specialized instructions that benefit from hardware accel-
eration such as security extensions. Therefore it would be interesting to
do the study on different ISAs, such as ARM, which provide hardware
acceleration for operations such as the SHA hashing algorithm. We ex-
pect a much higher impact on design space exploration as the applications
could offload large parts of their computation to the hardware accelera-
tor for optimizations that include the specialized instructions, but not for
the optimizations without these instructions. This could make two differ-
ent binaries, implementing the same application, behave completely differ-
ently and could hence potentially result in very different design decisions.
A possible solution is to consider binaries with specialized instructions as
different workloads than binaries without these instructions.

5.2.3 Selecting representative benchmark inputs

The techniques presented in Chapter 4 are evaluated for superscalar in-
order cores. It would be interesting to evaluate the techniques on very
complex out-of-order cores. It is likely that the techniques need to be ex-
tended for cores with more complexity. Possible extensions could be to use
more than three sample points in CPI-sampled selection technique or to ex-
tend the BBV selection technique to be able to select more than two inputs,

108 Conclusion

e.g., using clustering of BBVs to find a number of cluster-centers to use as
representative inputs.

Second, the techniques are only tested for single-core microprocessors.
We expect that multicore processors would need a different approach as
they need to be robust for all combinations of different benchmarks and dif-
ferent input sets. E.g., executing two instances of application A on a dual-
core processor should be robust for both inputs with a very large mem-
ory footprint as well as for inputs with an asymmetric memory footprint.
A possible approach is to extend selection techniques for applications on
multicore processors, such as [66], by using the technique to select the in-
put datasets as well as the applications. To limit the number of inputs to
feed into these selection techniques, the techniques presented in this thesis
could be used.

Appendix A

Instruction Profiler

In Chapter 3, we discussed a mechanistic performance model that takes
an application profile as input and generates performance numbers as out-
put. The application profile consists of a number of program characteristics
that are used by the model’s analytical formulas to calculate the individual
penalty cycles in each term of Formula 3.1. This appendix discusses our
implementation of the profiling tool.

The profiling tool is a hook into gemb5’s [3] functional simulator. We
inspect each instruction in the trace and handle them by the main instru-
mentation blocks, depending on the type of instruction. The main instru-
mentation blocks are cache simulators, branch predictors and the H-matrix
! generator.

The last level cache(s) ? are simulated with a single-pass cache simula-
tor, based on the algorithms in [58]. This allows us to capture miss rates
from cache configurations with a fixed block size, but a different number
of sets and different associativity in a single run. To be able to vary cache
block sizes we simulate two instances of the single-pass cache simulator
(one for 32 byte blocks and one for 64 byte blocks). Lower levels of caches
and TLB’s, with fixed configurations, are simulated using Dinero [18]. Note
that these configurations need to remain fixed since the results (hit or miss)
are fed to the next level in the cache hierarchy.

We use gem5’s branch predictor units for each branch we encounter in
the instruction stream and record the total number of hits and misses for
both taken and not taken branches. We instantiate multiple branch predic-
tors in order to be able to get prediction results for different configurations
in the same run.

We now explain the generation of the H-matrix using the pseudo-code
of Algorithm 1 and the functions it uses in Algorithms 2, 3, 4, 5 and 6.

!See Section 3.4 of Chapter 3 for a formal definition and an example H-matrix.
*In our experiments we simulated up to two levels of caches.

110 Instruction Profiler

Algorithm 1 basically declares the global variables and initializes some im-

global maxWidth ;
global currPattern ;
global producers ;
global HMatrix ;
maxWidth =4 ;
currPattern = “XXXX” ;
producers.invalidateAll ();
HMatrix.init (0);
foreach Instruction inst do

‘ insertInstruction (inst);
end

Algorithm 1: The main routine of the H-matrix generator.

portant structures before it starts the main profiling. maxWidth is the maxi-
mum superscalar width we want to predict performance for. We consider a
maxWidth of 4 here to ease the discussion. currPattern contains the current
history of instructions up to 4 instructions, as defined by maxWidth. We ini-
tialize the pattern with X-instructions (don’t care instructions). producers
contains a mapping of architectural registers to a structure containing infor-
mation on the last instruction that produces results for the corresponding
register. The information stored in the structure is the sequence number of
the instruction (seqNum) and the type of the instruction that produced the
result (instType). For initialization we invalidate all the architectural regis-
ters. Finally, HMatrix is the matrix of counters that gets updated throughout
the instrumentation. We initialize all the counters to 0.

Function insertInstruction (inst):

begin
updatePattern (inst);
distance = getClosestDependence (inst);
HMatrix| currPattern, distance | +=1;
insertProducer (inst);

end
Algorithm 2: The function insertInstruction.

Algorithm 2 describes the functionality of insertInstruction. We first up-
date currPattern by calling updatePattern as we will explain later in Algo-
rithm 3. Next, we determine the distance to the closest instruction pro-
ducing a result that the current instruction inst needs as input. This is ex-
plained in Algorithm 4. We then use this distance together with currPattern
to update the corresponding counter in HMatrix. Finally, we update the
register-mapping of producers with the current instruction, as explained in

111

Function updatePattern (inst):
switch inst.instType do
case intALU
‘ itype ="A’;
end
case intMDU
‘ itype ='M’;
end
case fpALU
‘ itype ='F’;
end
case fpMDU
‘ itype ='G’;
end
case Load
‘ itype ="L’;
end
otherwise
‘ itype ='X’;
end
endsw
currPattern.pop_front () ;
currPattern.push_back (itype) ;
Algorithm 3: The function updatePattern.

Algorithm 6.

To update the pattern we look at the instruction type of the current in-
struction, as shown in Algorithm 3. We distinguish five different types of
instruction classes: integer ALU instructions (A), integer multiply or di-
vide ? instructions (M), floating point ALU instructions (F), floating point
multiply or divide instructions (G) and load instructions (L). Other instruc-
tions, such as stores and branches, which rarely impact the functional unit
contention penalty, are not considered here and fall under the don’t care
category (X). Once the instruction type is identified, we pop the first in-
struction of currPattern and add the newly identified instruction type to
the back.

Algorithm 4 details how to calculate the distance to the closest instruc-
tion that produces results required by inst. We loop over all source registers
of inst and verify whether producers contains (a) valid instruction(s) pro-

3To distinguish between multiplies and divides we also record an instruction mix. This
is necessary to distinguish between the difference in latency of multiply versus divide in-
structions.

112 Instruction Profiler

Function getClosestDependence (inst):
found = False ;
for i in inst.numSourceRegs () do
if | producers[inst.sourceReq (i) .isValid () then
‘ continue ;
curDistance = inst.seqNum - producers[inst.sourceReg (i)
].seqNum ;
curProdType = producers| inst.sourceReg (i) .instType ;
if curDistance < maxWidth or ((curDistance < 2*maxWidth) and
(isLoad (curProdType) or isLongLatency (curProdType))
then
if ! found then
found = True ;
distance = curDistance ;
producerType = curProdType ;
Ise if found and curDistance < distance then
distance = curDistance ;
producerType = curProdType ;

(¢)

end
if found then

‘ updateDependenceBarrier (producerType) ;
else

‘ distance = 2*maxWidth ;

return distance
Algorithm 4: The function getClosestDependence.

ducing a result for these registers. If the distance to a producer is smaller
than maxWidth we set the found-flag. We also set the found-flag if the
producer is a load instruction or a long latency instruction (i.e., M-, F- or G-
instruction) for distances smaller than 2xmaxWidth. If the found-flag was
set we also update the dependence barrier, which is shown in Algorithm 5.
If the instruction has multiple source registers, we return the shortest dis-
tance. If no producer was found at a distance smaller than 2xmaxWidth,
we return 2xmaxWidth as distance. Instructions with a dependence dis-
tance of 2xmaxWidth are ignored by the Formulas in Chapter 3 as they do
not suffer from penalties.

During the time that a dependence gets resolved there are a number of
other instructions that produce results. Hence, future instructions, that are
dependent on these results will not need to wait. This means that there are
dependences that get resolved underneath other dependences and hence
this penalty is hidden. We account for this using Algorithm 5. Based on the
instruction type of the current producer which introduces a dependence
(deplnstType) and the instruction type of the other producers, we deter-

113

Function updateDependenceBarrier (deplnstType) :
for prod in producers do
if /| isLongLatency (prod.instType) and! isLoad
(prod.instType) then

| prod.invalidate ()
elseif isLongLatency (deplnstType) and isLoad
(prod.instType) then

| prod.invalidate ()

end
Algorithm 5: The function updateDependenceBarrier.

Function insertProducer (inst):
if isLongLatency (inst.instType) then
for prod in producers do
if /| isLongLatency (prod.instType) then

‘ prod.invalidate ();
end
for i in inst.numDestRegs () do
producers| inst.destReg (i) . update (inst.seqNum,
inst.instType) ;
end

Algorithm 6: The function insertProducer.

mine whether or not to invalidate another producer. E.g., integer ALU in-
structions get invalidated as they are able to produce their result in the
same cycle the dependence gets resolved.

The last part of pseudo-code updates the architectural register mapping
in producers with the new instruction, as shown in Algorithm 6. It does
this for all the destination registers of the new instruction. Before doing so,
however, we invalidate other producers, based on the type of instruction
that is getting inserted. Similar as with Algorithm 5 this is to account for
dependence penalties that get resolved underneath a long latency instruc-
tions

114 Instruction Profiler

Appendix B

Representative Benchmark
inputs

In Chapter 4, we presented various selection techniques to find represen-
tative benchmark inputs to drive microarchitectural design space explo-
ration. While the techniques are straightforward to implement and incur a
low one-time cost only, we present the resulting input data sets in this ap-
pendix. In addition, a Bitbucket project ! has been made that presents the
same information on the accompanying wiki, together with links to down-
load the input data sets.

Table B.1 gives a mapping of benchmarks to the directories where their
inputs reside after downloading the KDatasets database 2. In addition,
the file extensions are provided in Table B.1. Table B.2 reports the input-
numbers that were found by the BBV Selection and CPI Sampled Selection
techniques.

Using Table B.1 and Table B.2, we can select the inputs that were found
to be representative in our experimental setup. As an example, suppose
we wish to use the two inputs found by BBV Selection for dijkstra, we can
read from Table B.2 that the inputs with numbers 857 and 40 are represen-
tative. From Table B.1, we read that the inputs for dijkstra are located in the
“newtwork_dijkstra” directory and have extension “.dat”. Therefore the two
representative benchmark inputs for dijkstra, according to BBV Selection
are network_dijkstra/857.dat and network_dijkstra/40.dat.

Note that the benchmark sha uses a mix of inputs from different cate-
gories. Table B.2 distinguishes between these by putting the directory name
in parentheses. Further, stringsearch1 requires two input files (the string to

! At the time of writing, this project is located at https://bitbucket.org/
maximilien breughe/representative-benchmark-inputs/wiki/Home

2 At the time of writing, the KDatasets website can be found at http://kdatasets.
appspot .com/

https://bitbucket.org/maximilien_breughe/representative-benchmark-inputs/wiki/Home
https://bitbucket.org/maximilien_breughe/representative-benchmark-inputs/wiki/Home
http://kdatasets.appspot.com/
http://kdatasets.appspot.com/

116

Representative Benchmark inputs

Benchmark Directory Extension
adpcm_c wav wav
adpem_d adpcm .adpcm
dijkstra | network_dijkstra .dat
gsm au .au
jpeg-c ppm ppm
jpeg-d irg JjPg
lame wav wav
patricia | network_patricia udp
gsortl | automotive_gsortl .dat
rsynth txt Axt
sha iPg jpg
mp3 .mp3
ps ps
tif tif
txt Axt
stringsearch1 txt txtand .s.txt
susan_c pgm pgm
susan_e pgm pgm
susan_s pgm pgm
tiff2bw tif tif
tiff2rgba tif tif
tiffdither tif tif
tiffmedian tif tif

Table B.1: Representative inputs for MiBench, characterized with the techniques

of Chapter 4.

be searched and the source text to search in). The same input number is

used for both these files.

117

Benchmark BBV CPI Sampled Selection
Selection

2inputs | linput | 2inputs 3 inputs
adpecm_c | 307,15 318 318, 383 307, 318, 94
adpem._d | 631,923 376 376, 25 249,376, 18
dijkstra | 857,40 541 541, 508 3,541, 856
gsm | 13,552 174 174, 381 880,174, 9
jpeg-—c 11,5 738 738, 845 13, 738, 870
jpeg-d 13,22 499 499, 399 71,499, 22

lame | 102,930 633 633, 489 930, 633, 641

patricia | 21,1000 180 180, 562 1000, 180, 21

qsortl | 987,364 400 400, 336 969, 400, 987

rsynth | 559,916 968 968, 537 916, 968, 587
sha | 56 (jpg), |86 (mp3) | 86 (mp3), | 56 (jpg), 86 (mp3),

116 (txt) 492 (txt) 116 (txt)
stringsearch1 925, 8 416 416,981 361,416, 8
susanc | 34,900 607 607, 528 3,607,5
susan_e | 919,34 608 608, 341 34, 608, 919
susan_s 5,17 295 295, 329 112, 295, 650
tiff2bw | 11,982 249 249, 854 17,249, 993
tiff2rgba | 11, 982 278 278,271 13,278, 11
tiffdither | 50,13 794 794, 548 55,794, 536
tiffmedian 5,17 211 211, 516 28,211,970

Table B.2: Representative inputs for MiBench, characterized with the techniques
of Chapter 4.

118 Representative Benchmark inputs

Bibliography

[1] M. Barr. Real men program in c. Embedded Systems Design (UBM
TechInsights), pages 9-12, August 2009.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In Proceedings
of the International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 72-81, October 2008.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 Simulator.
Computer Architecture News, 39:1-7, May 2011.

[4] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. L. Hosking, M. Jump, H. B. Lee,]J. Eliot B. Moss,
A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The dacapo benchmarks: Java benchmarking devel-
opment and analysis. In Proceedings of the Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA), pages 169190, October 2006.

[5] S. Borkar. Thousand core chips: A technology perspective. In Pro-
ceedings of the 44th Annual Design Automation Conference (DAC), pages
746-749, June 2007.

[6] P. E. Ceruzzi. A History of Modern Computing. MIT Press, 1998.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous comput-
ing. In Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), pages 44-54, October 2009.

[8] X.E.Chen and T. M. Aamodt. Hybrid analytical modeling of pending
cache hits, data prefetching, and MSHRs. In Proceedings of the Interna-
tional Symposium on Microarchitecture (MICRO), pages 59-70, Decem-
ber 2008.

120 BIBLIOGRAPHY

[9] X.E.Chenand T. M. Aamodt. A first-order fine-grained multithreaded
throughput model. In Proceedings of the 20th International Symposium on
High-Performance Computer Architecture (HPCA), pages 329-340, 2009.

[10] Y. Chen, Y. Huang, L. Eeckhout, G. Fursin, L. Peng, O. Temam, and
C. Wu. Evaluating iterative optimization across 1000 datasets. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 448-459, June 2010.

[11] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimizations for
exploiting memory-level parallelism. In Proceedings of the 31st Annual
International Symposium on Computer Architecture (ISCA), pages 76-87,
June 2004.

[12] R. P. Colwell. The Pentium Chronicles: The People, Passion, and Poli-
tics Behind Intel’s Landmark Chips (Software Engineering ”Best Practices”).
Wiley-IEEE Computer Society Press, 2005.

[13] R. H. Dennard, E. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and
A. R. LeBlanc. Design of ion-implanted MOSFET’s with very small
physical dimensions. IEEE Journal of Solid-State Circuits, 9:256-268, Oc-
tober 1974.

[14] R. Desikan, D. Burger, and S. W. Keckler. Measuring experimental
error in microprocessor simulation. In Proceedings of the 28th Annual
International Symposium on Computer Architecture (ISCA), pages 266—
277, July 2001.

[15] C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. E. P. O'Boyle, and
O. Temam. Fast compiler optimisation evaluation using code-feature
based performance prediction. In Proceedings of the 4th ACM Interna-
tional Conference on Computing Frontiers, CF '07, pages 131-142, 2007.

[16] C. Dubach, T. M. Jones, and M. F. P. O'Boyle. Microarchitecture design
space exploration using an architecture-centric approach. In Proceed-

ings of the IEEE/ACM Annual International Symposium on Microarchitec-
ture (MICRO), pages 262-271, December 2007.

[17] C. Dubach, T. M. Jones, E. V. Bonilla, G. Fursin, and M. E. P. O’Boyle.
Portable compiler optimisation across embedded programs and mi-
croarchitectures using machine learning. In Proceedings of the 42Nd An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO
42, pages 78-88, 2009.

[18] J. Edler and M. D. Hill. Dinero IV trace-driven uniprocessor cache sim-
ulator. Available through http://www.cs.wisc.edu/~markhill/DinerolV,
1998.

BIBLIOGRAPHY 121

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Workload de-
sign: Selecting representative program-input pairs. In Proceedings of
the International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 83-94, September 2002.

L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Designing
workloads for computer architecture research. IEEE Computer, 36(2):
65-71, February 2003.

L. Eeckhout, J. Sampson, and B. Calder. Exploiting program microar-
chitecture independent characteristics and phase behavior for reduced
benchmark suite simulation. In Proceedings of the 2005 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), pages 2-12, Oc-
tober 2005.

S. Eyerman and L. Eeckhout. Probabilistic job symbiosis modeling for
SMT processor scheduling. In The International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASP-
LOS), pages 91-102, March 2010.

S. Eyerman, J. E. Smith, and L. Eeckhout. Characterizing the branch
misprediction penalty. In IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 48-58, March 2006.

S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A Mechanistic
Performance Model for Superscalar Out-of-Order Processors. ACM
Transactions on Computer Systems (TOCS), 27(2):42-53, May 2009.

S. Eyerman, K. Hoste, and L. Eeckhout. Mechanistic-empirical proces-
sor performance modeling for constructing CPI stacks on real hard-
ware. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 216-226, April 2011.

M. Ferdman, A. Adileh, Y. O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi.
Clearing the clouds: A study of emerging scale-out workloads on
modern hardware. In Proceedings of the International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 37-48, March 2012.

P. Greenhalgh. Big little processing with arm cortex-al5 & cortex-a7:
Improving energy efficiency in high-performance mobile platforms.
http:/ /www.arm.com/files/downloads/big_LITTLE_Final _Final.pdf,
September 2011.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. MiBench: A free, commercially representative embedded

122 BIBLIOGRAPHY

benchmark suite. In Proceedings of the IEEE 4th Annual Workshop on
Workload Characterization (IWWC), December 2001.

[29] A.Gutierrez, J. Pusdesris, R.G. Dreslinski, T. Mudge, C. Sudanthi, C.D.
Emmons, M. Hayenga, and N. Paver. Sources of error in full-system
simulation. In Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 13-22, March 2014.

[30] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0: Faster
and more flexible program analysis. Journal of Instruction-Level Paral-
lelism, 7(11):1571-1580, September 2005.

[31] A.Hartstein and T. R. Puzak. The optimal pipeline depth for a micro-
processor. In Proceedings of the 29th Annual International Symposium on
Computer Architecture (ISCA), pages 7-13, May 2002.

[32] J. L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Com-
puter Architecture News, 34(4):1-17, September 2006.

[33] ARM Holdings. Cortex-A8: Technical Reference Manual. ARM Holdings,
110 Fulbourn Road, Cambridge, GB-CB1 9NJ, 3p2 edition, May 2010.

[34] K. Hoste and L. Eeckhout. Cole: Compiler optimization level explo-
ration. In Proceedings of the 6th Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization, CGO ’08, pages 165-174,
2008.

[35] Texas Instruments Incorporated. AM335x Sitara Processors: Technical
Reference Manual. Texas Instruments Incorporated, 12500 TI Boule-
vard, Dallas, Texas 75243, USA, 6 2014.

[36] E. Ipek, S. A. McKee, B. R. de Supinski, M. Schulz, and R. Caruana.
Efficiently exploring architectural design spaces via predictive model-
ing. In Proceedings of the Twelfth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
pages 195-206, October 2006.

[37] Z. Jin and A. C. Cheng. SubsetTrio: An evolutionary, geometric and
statistical benchmark subsetting approach. ACM Transactions on Mod-
eling and Computer Simulation (TOMACS), 21, March 2011.

[38] P.]J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. A predictive per-
formance model for superscalar processors. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pages 161-170, December 2006.

[39] P.].Joseph, K. Vaswani, and M. J. Thazhuthaveetil. Construction and
use of linear regression models for processor performance analysis.

BIBLIOGRAPHY 123

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

In Proceedings of the 12th International Symposium on High-Performance
Computer Architecture (HPCA), pages 99-108, February 2006.

A.Joshi, A. Phansalkar, L. Eeckhout, and L. K. John. Measuring bench-
mark similarity using inherent program characteristics. IEEE Transac-
tions on Computers, 55(6):769-782, June 2006.

T. Karkhanis and J. E. Smith. A first-order superscalar processor
model. In Proceedings of the 31st Annual International Symposium on
Computer Architecture (ISCA), pages 338-349, June 2004.

A.J. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC bench-
mark workload for simulation-based computer architecture research.
Computer Architecture Letters, 1(2):10-13, June 2002.

J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The strong
correlation between code signatures and performance. In Proceedings
of the International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 236—247, March 2005.

H. Leather, E. Bonilla, and M. O’boyle. Automatic feature genera-
tion for machine learning-based optimising compilation. ACM Trans-
actions on Archititecture Code Optimization (TACO), 11(1):14:1-14:32,
February 2014.

B. Lee and D. Brooks. Accurate and efficient regression modeling for
microarchitectural performance and power prediction. In Proceedings
of the Twelfth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 185-194,
October 2006.

S. Li, J. H. Ahn, R. D. Strong,]J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of
the International Symposium on Microarchitecture (MICRO), pages 469—
480, December 2009.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In Proceedings of
the ACM SIGPLAN Conference on Programming Languages Design and
Implementation (PLDI), pages 190-200, June 2005.

P. Michaud, A. Seznec, and S. Jourdan. Exploring instruction-fetch
bandwidth requirement in wide-issue superscalar processors. In Pro-
ceedings of the 1999 International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 2-10, October 1999.

124

BIBLIOGRAPHY

[49]

[52]

[53]

[58]

N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(PLDI), pages 89-100, June 2007.

E. Ould-Ahmed-Vall, J. Woodlee, C. Yount, K. A. Doshi, and S. Abra-
ham. Using model trees for computer architecture performance anal-
ysis of software applications. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 116-125, April 2007.

E. Park, S. Kulkarni, and J. Cavazos. An evaluation of different mod-
eling techniques for iterative compilation. In Proceedings of the 14th
International Conference on Compilers, Architectures and Synthesis for Em-
bedded Systems (CASES), pages 65-74, October 2011.

A. Phansalkar, A. Joshi, and L. K. John. Analysis of redundancy and
application balance in the SPEC CPU2006 benchmark suite. In Pro-
ceedings of the Annual International Symposium on Computer Architecture
(ISCA), pages 412-423, June 2007.

R.N. Sanchez, J. N. Amaral, D. Szafron, M. Pirvu, and M. Stoodley. Us-
ing machines to learn method-specific compilation strategies. In Pro-
ceedings of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 257-266, April 2011.

A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer. Mod-
eling performance variation due to cache sharing. In Proceedings of
the International Symposium on High-Performance Computer Architecture
(HPCA), pages 155-166, February 2013.

Y. Sazeides, R. Kumar, D. M. Tullsen, and T. Constantinou. The danger
of interval-based power efficiency metrics: When worst is best. IEEE
Computer Architecture Letters, 4, 2005.

T. Sherwood, E. Perelman, and B. Calder. Basic block distribution anal-
ysis to find periodic behavior and simulation points in applications.
In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 3-14, September 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
Characterizing Large Scale Program Behavior. In Proceedings of the
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 45-57, October 2002.

R. A. Sugumar and S. G. Abraham. Set-associative cache simulation
using generalized binomial trees. ACM Transactions on Computer Sys-
tems (TOCS), 13(1):32-56, February 1995.

BIBLIOGRAPHY 125

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

T. M. Taha and D. S. Wills. An instruction throughput model of su-
perscalar processors. IEEE Transactions on Computers, 57(3):389-403,
March 2008.

M. Tartara and S. Crespi R. Continuous learning of compiler heuris-
tics. ACM Transactions on Architecture and Code Optimization (TACO), 9
(4):46:1-46:25, January 2013.

M. Van Biesbrouck, T. Sherwood, and B. Calder. A co-phase matrix
to guide simultaneous multithreading simulation. In Proceedings of the
International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 45-56, March 2004.

M. Van Biesbrouck, L. Eeckhout, and B. Calder. Considering all start-
ing points for simultaneous multithreading simulation. In Proceedings
of the International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 143-153, March 2006.

M. Van Biesbrouck, L. Eeckhout, and B. Calder. Representative mul-
tiprogram workloads for multithreaded processor simulation. In Pro-
ceedings of the IEEE International Symposium on Workload Characteriza-
tion (IISWC), pages 193-203, October 2007.

K. Van Craeynest and L. Eeckhout. The multi-program performance
model: Debunking current practice in multi-core simulation. In Pro-
ceedings of the IEEE International Symposium on Workload Characteriza-
tion (IISWC), pages 26-37, November 2011.

K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer.
Scheduling heterogeneous multi-cores through performance impact
estimation (pie). In Proceedings of the 39th Annual International Sym-
posium on Computer Architecture (ISCA), pages 213-224, June 2012.

R. A. Velasquez, P. Michaud, and A. Seznec. Selecting benchmark com-
binations for the evaluation of multicore throughput. In Proceedings of
the IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), April 2013.

Xiph.org. Video test media - derf’s collection. http://media.xiph.
org/video/derf/, 2012.

J. J. Yi, D. J. Lilja, and D. M. Hawkins. A statistically rigorous ap-
proach for improving simulation methodology. In Proceedings of the
Ninth International Symposium on High Performance Computer Architec-
ture (HPCA), pages 281-291, February 2003.

http://media.xiph.org/video/derf/
http://media.xiph.org/video/derf/

126 BIBLIOGRAPHY

[69] J.].Yi, H. Vandierendonck, L. Eeckhout, and D. J. Lilja. The exigency of
benchmark and compiler drift: Designing tomorrow’s processors with
yesterday’s tools. In Proceedings of the 20th ACM International Confer-
ence on Supercomputing (ICS), pages 75-86, June 2006.

	Nederlandse samenvatting
	English Summary
	Introduction
	Motivation and focus
	The Contributions of this Thesis
	Contribution 1: Fast microarchitectual evaluation and bottleneck visualization
	Contribution 2: Selection methodology for representative benchmark inputs

	Thesis Outline

	Background
	Superscalar Processors
	Superscalar in-order processors
	Superscalar out-of-order processors

	Analytical Performance Modeling
	Mechanistic Modeling
	Empirical Modeling
	Hybrid mechanistic-empirical modeling

	Workload selection techniques
	Benchmark Selection
	Sample Selection
	Input Selection
	Summary

	Mechanistic Analytical Performance Modeling of Superscalar In-order Processors
	Modeling context
	General overview
	Microarchitecture description

	Overall formula
	Miss events
	Penalty due to cache and TLB misses
	Penalty due to branch mispredictions

	Inter-instruction dependences and functional unit contention
	Inter-Instruction Dependences
	Functional Unit Contention

	Experimental setup
	Model Validation
	Validation Against Detailed Simulation
	Validation Against Hardware

	Guiding design space exploration
	Minimizing Number of Functional Units for a Given Performance Target
	Minimizing the Energy Delay Product

	Gaining insights
	Revealing Performance Bottlenecks
	Compiler Optimizations
	In-order versus out-of-order performance

	Summary

	Selecting Representative Benchmark Inputs for Design Space Exploration
	Potential pitfall of current practice
	Experimental Setup
	Design Space
	Workloads
	Modeling Infrastructure
	Optimization Criterion

	Quantifying the impact of implicit parameters on microprocessor design space exploration
	Sensitivity to Benchmark Inputs
	Sensitivity to Compiler Optimization Flags
	The impact of the microarchitecture on compiler optimization flags

	Representative Benchmark Input Selection
	Random Selection
	Microarchitecture-Independent Selection
	Filtered Selection
	CPI-Sampled Selection
	Overview and Discussion

	Summary

	Conclusion
	Summary
	Analytical performance modeling
	Selecting representative benchmark inputs

	Future work
	Mechanistic performance modeling of superscalar in-order processors
	Quantification of compiler optimization flags on design space exploration
	Selecting representative benchmark inputs

	Instruction Profiler
	Representative Benchmark inputs

