
In#vivo
study&of&R

N
A
&interference,&the&JA

K
/STAT&

pathw
ay&and&their&cross;talk&in&B

om
bus

terrestris
upon&viral&infections

Jinzhi N
iu

In#vivo study&of&RNA&interference,&
the&JAK/STAT&pathway&and&their&
cross;talk&in&Bombus terrestris

upon&viral&infections

2015

Jinzhi&Niu



!
!

 

 
 
 
 

In vivo study of RNA interference, the JAK/STAT 
pathway and their cross-talk in Bombus terrestris upon 

viral infections 
 

 

 

Jinzhi Niu 

 

Thesis submitted in fulfillment of the requirements  

for the degree of Doctor (PhD) in Applied Biological Sciences  



 

i!
!

 

 

Promoters:  Prof. dr. ir. Guy Smagghe 

                   Department of Crop Protection 

                    Faculty of Bioscience Engineering 

                    Ghent University 

                    

                    Dr. Ivan Meeus 

                    Department of Crop Protection 

                    Faculty of Bioscience Engineering 

                    Ghent University 

 

Dean:   Prof. dr. ir. Guido Van Huylenbroeck 

Rector:  Prof. dr. Anne De Paepe 

  



 

ii!
!

!
!
 
 

 

Please refer to this thesis as: 

Jinzhi N., 2015. In vivo study of RNA interference, the JAK/STAT pathway and their cross-talk 

in Bombus terrestris upon viral infections.  PhD thesis. Ghent University, Ghent, Belgium. 

 

ISBN-number:  ISBN 978-90-5989-824-0 

 

Front cover: 

Top left: Bombus terrestris with the word cloud of host immunity associated key words, protein 

and DNA structures. Top right: virus structures with the word cloud of bee virus related key 

words. Bottom: a figure of earth and line represent the balance scale.  

 

The author and promoter give the authorization to consult and to copy parts of this work for 

personal use only. Every other use is subject to the copyright laws. Permission to reproduce any 

material contained in this work should be obtained from the author.   



 

iii!
!

  



 

iv!
!

Members of the examination committee 
 
Prof. dr. ir. Guy Smagghe 
Department of Crop Protection 
Faculty of Bioscience Engineering 

Ghent University, Belgium 
 
Dr. Ivan Meeus 
Department of Crop Protection 

Faculty of Bioscience Engineering 
Ghent University, Belgium 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Prof. dr. ir. Peter Bossier 
Department of Animal Production 
Faculty of Bioscience Engineering 

Ghent University, Belgium 
 
Prof. dr. Daisy Vanrompay 
Department of Animal Production,  

Faculty of Bioscience Engineering,  
Ghent University, Belgium 

 
Prof. dr. Els Van Damme 
Department of Molecular Biotechnology 
Faculty of Bioscience Engineering 

Ghent University, Belgium 
 
Prof. dr. Dirk de Graaf 
Department of Biochemistry and 
Microbiology  
Faculty of Science 

Ghent University, Belgium 
 

Prof. dr. Jinjun Wang 
College of Plant Protection  

Faculty of Agricultural Science 
Southwest University, China 

 



 

iv!
!

 

Table of Contents 
Table&of&Contents&................................................................................................................................................&iv!

LIST%OF%ABBREVIATIONS%................................................................................................................%VII!

SCOPE%......................................................................................................................................................%IX!

CHAPTER%I3GENERAL%INTRODUCTION%..........................................................................................%1!

1.! Bumblebee&..................................................................................................................................................&2!
1.1.! Bumblebee!colony!......................................................................................................................................!2!
1.2.! Bumblebee!genome!...................................................................................................................................!5!

2.! Bee&viruses&..................................................................................................................................................&6!
2.1.! Bee!virus!species!........................................................................................................................................!6!
2.2.! The!pathogenicity!of!bee!virus:!what!we!know!from!the!honeybee!.........................................................!7!
2.3.! Bee!viruses!confirmed!in!the!bumblebee!..................................................................................................!8!

3.! Bee&antiviral&immune&system&....................................................................................................................&14!
3.1.! Bee!immune!pathways!.............................................................................................................................!14!
3.2.! Transcriptome!analysis!upon!bee!virus!infection!.....................................................................................!18!
3.3.! The!immune!response!of!the!siRNA!pathway!in!the!defense!against!bee!viruses!...................................!20!
3.4.! The!miRNA!pathway!.................................................................................................................................!28!
3.5.! The!JAK/STAT!pathway!.............................................................................................................................!32!

CHAPTER%II3IN#VIVO%STUDY%OF%DICER*2%MEDIATED%IMMUNE%RESPONSE%FROM%THE%
SMALL%INTERFERING%RNA%PATHWAY%UPON%VIRAL%INFECTIONS%IN%BUMBLEBEES%
(BOMBUS#TERRESTRIS)%....................................................................................................................%35!

1.! Introduction&..............................................................................................................................................&36!

2.! Materials&and&methods&.............................................................................................................................&38!
2.1.! Insects!and!viruses!...................................................................................................................................!38!
2.2.! Infections!and!survival!analysis!................................................................................................................!39!
2.3.! Analysis!of!reference!gene!stability!in!bumblebee!..................................................................................!39!
2.4.! Dynamics!of!genome!copy!number!during!virus!infections!.....................................................................!41!
2.5.! The!expression!of!core!genes!of!the!siRNA!pathway!upon!viral!infections!.............................................!41!
2.6.! RNA!isolation,!cDNA!synthesis,!and!qPCR!................................................................................................!42!
2.7.! Small!RNA!libraries,!sequencing!and!data!analysis!of!virusTderived!siRNA!..............................................!43!
2.8.! DsRNA!synthesis!and!gene!silencing!optimization!...................................................................................!44!
2.9.! The!effect!of!silencing!Dicer&2!on!the!RNAi!efficiency!and!virus!infection!...............................................!44!

3.! Results&......................................................................................................................................................&45!
3.1.! High!mortality!after!IAPV!injection!and!low!mortality!after!SBPV!injection!............................................!45!



 

v!
!!

3.2.! Analysis!of!reference!gene!stability!in!bumblebee!..................................................................................!47!
3.3.! Fast!replication!of!IAPV!and!SBPV!after!injection!....................................................................................!51!
3.4.! Induction!of!Dicer&2!expression!after!infection!with!virulent!IAPV!and!avirulent!SBPV!..........................!52!
3.5.! Production!of!vsiRNAs!during!virus!infection!...........................................................................................!55!
3.6.! Dicer&2!silencing!.......................................................................................................................................!61!
3.7.! Influence!to!gene!silencing!efficiency!and!virus!infection!through!preTsilencing!of!Dicer&2!....................!63!

4.! Discussion&.................................................................................................................................................&67!

5.! Conclusion&.................................................................................................................................................&72!

CHAPTER%III3%DIFFERENT%EXPRESSION%OF%DICER*1�AGO*1,%AND%MICRORNAS%UPON%
DIFFERENT%VIRAL%INFECTIONS%IN%BOMBUS#TERRESTRIS%....................................................%79!

1.! Introduction&..............................................................................................................................................&80!

2.! Material&and&Methods&...............................................................................................................................&82!
2.1.! Insects!and!viral!inoculation!.....................................................................................................................!82!
2.2.! RNA!isolation,!cDNA!synthesis,!and!qPCR!................................................................................................!83!
2.3.! Core!gene!expression!of!the!miRNA!pathway!..........................................................................................!83!
2.4.! Small!RNA!sequencing!and!targets!prediction!of!miRNAs!.......................................................................!84!
2.5.! Validation!of!stability!and!differential!expressions!of!miRNAs!by!RTTqPCR!.............................................!86!
2.6.! Silencing!Dicer&1!and!detection!of!its!effect!on!viral!genome!copy!number!...........................................!87!

3.! Results&and&Discussion&..............................................................................................................................&88!
3.1.! Significant!effects!of!SBPV!and!IAPV!infections!on!the!expressions!of!Dicer&1!and!Ago&1!......................!88!
3.2.! Small!RNA!sequencing!reveals!differentially!expressed!miRNAs!upon!SBPV!and!IAPV!infections!...........!91!
3.3.! In.silico!target!prediction!of!differentially!expressed!miRNAs!shows!a!possible!hostTvirus!interaction!
network!mediated!by!miRNAs!................................................................................................................................!95!
3.4.! Validation!of!stability!and!differentially!expressed!miRNAs!by!RTTqPCR!...............................................!102!
3.5.! Depletion!of!Dicer&1!by!RNAi!did!not!lead!to!an!altered!genome!copy!number!of!SBPV!......................!105!

4.! Conclusion&...............................................................................................................................................&107!

CHAPTER%IV3INVOLVEMENT%OF%BOMBUS#TERRESTRIS#JAK/STAT%PATHWAY%IN%
ANTIVIRAL%RESPONSE%AND%POSSIBLE%INTERACTION%WITH%THE%SMALL%INTERFERING%
RNA%PATHWAY%THROUGH%VAGO%...............................................................................................%113!

1.! Introduction&............................................................................................................................................&114!

2.! Material&and&Methods&.............................................................................................................................&118!
2.1.! Insects!and!viruses!.................................................................................................................................!118!
2.2.! Viral!inoculations!....................................................................................................................................!118!
2.3.! Gene!silencing!by!dsRNA!........................................................................................................................!119!
2.4.! Samples!preparation!for!exploring!the!roles!of!BtVago!in!communications!between!the!siRNA!and!
JAK/STAT!pathways!..............................................................................................................................................!119!
2.5.! Virus!genome!copy!number!detection!...................................................................................................!121!
2.6.! Mortality!test!.........................................................................................................................................!121!
2.7.! RNA!isolation,!cDNA,!and!qPCR!..............................................................................................................!122!

3.! Results&....................................................................................................................................................&123!



 

vi!
!

3.1.! JAK/STAT!pathway!in!B..terrestris!is!involved!in!the!control!of!SBPV!....................................................!123!
3.2.! The!orthologues!of!Vago!in!B..terrestris!.................................................................................................!126!
3.3.! BtVago!is!downregulated!by!IAPV!infection!(Setup!I)!............................................................................!131!
3.4.! Silencing!of!BtVago!downregulates!the!expression!of!BtHop!(Setup!II)!.................................................!131!
3.5.! Combined!effects!(the!BtDicerT2!or!BtVago!depletion,!and!the!viral!infections)!show!the!proposed!
communications!between!the!siRNA!pathway!and!JAK/STAT!pathway!(Setup!III)!..............................................!135!
3.6.! Silencing!of!BtVago!did!not!alter!the!viral!genome!copy!number!..........................................................!135!

4.! Discussion&...............................................................................................................................................&136!

CHAPTER%V%3GENERAL%CONCLUSIONS%AND%FUTURE%PERSPECTIVES%.............................%149!

1.! General&conclusions&................................................................................................................................&150!
1.1.! The!siRNA!pathway!upon!viral!infections!...............................................................................................!150!
1.2.! The!miRNA!pathway!upon!viral!infections!.............................................................................................!151!
1.3.! The!JAK/STAT!pathway!upon!viral!infections!.........................................................................................!151!

2.! Interactions&of&the&siRNA,&miRNA,&and&JAK/STAT&pathways&upon&viral&infections&....................................&152!
2.1.! Interaction!between!the!siRNA!pathway!and!the!miRNA!pathway!upon!viral!infections!.....................!152!
2.2.! Interaction!between!the!siRNA!pathway!and!the!JAK/STAT!pathway!upon!viral!infections!.................!154!
2.3.! Interaction!between!the!miRNA!pathway!and!the!JAK/STAT!pathway!upon!viral!infections!................!155!

3.! Some&points&to&rethink&about&hostPvirus&interaction&................................................................................&155!
3.1.! Not!only!proteins!but!also!nonTcoding!RNAs!.........................................................................................!155!
3.2.! Host!developmental!stages!....................................................................................................................!156!
3.3.! Multiple!viral!infections!.........................................................................................................................!157!
3.4.! From!lab!to!field:!consider!more!factors!................................................................................................!157!

REFERENCES%......................................................................................................................................%158!

SUMMARY%...........................................................................................................................................%177!

SAMENVATTING%...............................................................................................................................%181!

CURRICULUM%VITAE%.......................................................................................................................%185!

ACKNOWLEDGEMENTS%..................................................................................................................%187!
 

 



 

vii!
!

List of abbreviations 

Abbreviation Name  
ABPV acute bee paralysis virus 
Ago Argonaute 
ALPV aphid lethal paralysis virus 
AMPs Antimicrobial peptides 
BQCV black queen cell virus 
BSRV Big Soux River virus 
CrPV Cricket paralysis virus 
DCV Drosophila C virus 
DENV dengue virus 
Dome domeless 
dpi days post injection 
dsRNA double-stranded RNA 
DWV deformed wing virus 
EGF epidermal growth factor 
ELF1α  elongation factor-1 α 
ES Elution buffer 
gcn genome copy number 
GFP green fluorescent protein 
GO gene ontology 
Hop tyrosine-protein kinase JAK2 
IAPV Israeli acute paralysis virus 
IFN interferon 
Imd immune deficiency  
IRES internal ribosome entry site 
JAK/STAT janus kinase/signal transducer and activator of transcription 
JH juvenile hormone 
JNK c-Jun N-terminal kinase 
KBV Kashmir bee virus 
KEGG Kyoto Encyclopedia of Genes and Genomes 
LSV1 Lake Sinai virus 1 
LSV2 Lake Sinai virus 2 
MAPK mitogen-activated protein kinases 
miRNA microRNA 
ncRNAs non-coding RNAs 



 

viii!
!

 
  
Abbreviation Name  
NF-κB nuclear factor κB 
ORF open reading frame 
PAMPs pathogen associated molecular patterns  
PBS 10 mM phosphate buffer (pH 7.0)/0.02% diethyl dithiocarbamate 
PPIA  peptidylprolyl isomerase A  
pre-miRNA precursor miRNA 
pri-miRNA primary miRNA 
RISC RNA-induced silencing complex 
RNAi RNA interference 
RPL23  60S ribosomal protein 
RT-qPCR reverse transcription quantitative real-time polymerase chain reaction 
SBPV slow bee paralysis virus 
SBV sacbrood virus 
Sid systemic RNA interference–deficient  
SINV Sindbis virus 
SINV-GFP Sindbis virus with green fluorescent protein 
siRNA small interfering RNA 
sRNAs small RNAs 
STAT signal transducer and activator of transcription 
TBP  TATA-binding protein 
TEM transmission electron microscopy 
TEP7 thioester-containing protein 7 
TEPA thioester-containing protein A 
TEPB thioester-containing protein B 
TRSV tobacco ring spot virus 
UBI polyubiquitin  
Upd ligand unpaired 
UTR untranslated region 
VDV-1 Varroa destructor virus-1 
vir-1 virus induced gene 1 
vsiRNA virus-derived small interfering RNAs 
VSR viral suppressors of RNAi 
VWC von Willebrand factor C-domain 
WNV West Nile virus 



 

ix!
!

Scope 

 

In super model insects, like Drosophila and the mosquito, the interactions between hosts and 

viruses are relatively well-described. However, this kind of knowledge is still very limited in 

bumblebees. With the recent release of two genomes from Bombus terrestris and B. impatiens, 

the research of bumblebees also steps into the genomic era. Although honeybees, bumblebees, 

and solitary bees, range from eusocial to solitary, they all have a relatively same small immune 

repertoire compared with other insects. The unique genetic aspects of the bee immune repertoire 

would be interesting to study in order to improve our basic understanding in insect immune 

evolution. Currently, scientists are trying to understand the reasons for bee colony collapse in the 

association with viral infections. The study on the antiviral immunity in the bees upon infection 

of different viruses may be useful to search for efficient measures to tackle the current problem 

in bees. In this dissertation we focused on the antiviral immunity upon two bee viruses, i.e. 

Israeli acute paralysis virus (IAPV) and slow bee paralysis virus (SBPV). Secondly, we chose 

IAPV and SBPV because: 1) both naturally infect bumblebees in the field; 2) each represents a 

key bee virus family, i.e. Dicistroviridae and Iflaviridae; 3) In our experimental setup, IAPV 

induced an extremely virulent infection while SBPV did not induce mortality of bees. We chose 

three important and possibly interacting pathways, namely the small interfering RNA (siRNA), 

microRNA (miRNA) and JAK/STAT (janus kinase/signal transducer and activator of 

transcription), to investigate immune responses of bees in the defense against viral infections.  

The siRNA pathway is the most studied pathway with antiviral activity in bees and its usefulness 

to tackle bee virus-related diseases in the field is promising. However, the involvement of the 
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siRNA pathway to defend against different bee viruses is still poorly understood. Therefore, in 

Chapter II, we comparatively analyzed the siRNA antiviral response after inducing systemic 

infections of IAPV and SBPV in bumblebees based on three approaches: 1) analysis of core gene 

expressions of the siRNA upon virus infection; 2) deep sequencing to analyze small RNAs in 

virus infected samples; 3) using RNAi (RNA interference) to check the virus infection after 

silencing one of the core genes of the siRNA pathway, Dicer-2.  

The miRNA pathway, a closely related pathway to the siRNA pathway, is also established to be 

involved in insect-pathogen interactions. In virus-infected hosts the miRNAs can have two 

origins, either encoded by the host or the virus. Both origins of miRNAs may target host genes 

and/or the viral RNA (genome), which results in a complex network of host-virus interactions 

based on miRNAs. In Chapter III, we aimed to generate more insight in the involvement of the 

miRNA pathway and bumblebee-encoded miRNAs upon viral infections. We performed a 

comparative analysis of the bumblebee miRNA pathway, upon infections of IAPV and SBPV. 

First, we screened the expression of core genes (Dicer-1 and Ago-1) of the miRNA pathway 

upon viral infections; secondly, through small RNA sequencing, we analyzed the miRNA 

transcriptomes with viral infections. To have a further insight in miRNA-mRNA interaction, we 

predicted the possible targets for these miRNAs. Finally, we silenced Dicer-1 to analyze the 

outcome of SBPV infection.  

Next to nucleotides-based RNAi (including siRNA and miRNA pathways) immunity, another 

conserved protein-based pathway in insects, JAK/STAT, not only contributes to antiviral activity, 

but also represents a cross-talk with the siRNA pathway. In Chapter IV, we studied the role of 

the bumblebee JAK/STAT pathway in the control of IAPV and SBPV through silencing Hop, a 

key component of JAK/STAT pathway. Two different viruses with different virulence also gave 
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us the opportunity to study the immune cross-talk between the siRNA pathway and JAK/STAT. 

Through screening key gene expressions, we mainly focused on Dicer-2 as a proxy for the 

siRNA pathway, Vago as a proxy for the cross-talk between the siRNA pathway and JAK/STAT 

pathway, and Hop as a proxy for JAK/STAT pathways, upon various treatments.  

In the final Chapter V we integrated and discussed some perspectives in the links among the 

siRNA, miRNA, and JAK/STAT pathways. We emphasized on what our current results could 

imply for bee health upon bee virus infection and discussed possible research directions and 

applications.  
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Chapter I-General introduction 

 

 

 

 

 

Parts of this chapter are published in: 

Niu J, Meeus I, Cappelle K, Piot N,Smagghe G: The immune response of the small interfering 

RNA pathway in the defense against bee viruses. Current Opinion in Insect Science 2014, 6:22-

27. 
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1.!Bumblebee 

 

1.1.! Bumblebee colony 

The common name, bumblebee, refers to a bee which bumbles, meaning making a buzzing or 

humming sound. Compared with the honeybee, bumblebees generally have larger, fuzzier, 

stouter bodies. When flying, they make a more noticeable sound and an energy sound (sonication) 

to expel pollen from flowers evolved to only release pollen after buzz pollination. They also have 

fewer stripes, large parts of the body covered in black fur and have lower provision of 

nectar/honey compared with the sister genus honeybees. Being most successful in temperate 

regions, bumblebees are natively found around the globe except for sub-Saharan Africa and 

Oceania. There are about 250 species of bumblebees recorded, which belong to the genus 

Bombus. Some species are social parasites taking advantage of the nest of other bumblebees and 

were originally classified as a separate genus Psythirus, but are currently classified as one of the 

many subgenera of Bombus. Although there is a big group of bumblebee species reported, 

studies have only focused on a handful of species, particularly Bombus terrestris, B. impatiens, 

and B. ignitus. Most of bumblebee species, exhibit an annual colony cycle (Figure 1) (Sadd et al., 

2015). Unlike honeybees, bumblebees pass through several phases from solitary to eusocial 

during their life cycle. Thus, the study of bumblebee species can provide profound insights in the 

evolution of social behavior (Amsalem et al., 2015).  
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Figure 1: An illustrative colony cycle of bumblebee species living in temperate regions 
(Sadd et al., 2015)  
(a). This is representative for the colony cycles of the two species, Bombus terrestris (b) and B. 
impatiens (c). Queen bumblebees emerge from hibernation, establish a nest as a single foundress 
and provision it with pollen and nectar. Egg batches are laid that develop into female worker 
offspring. Once these offspring have developed and emerged as adults they take over foraging 
duties from the queen, and tend to developing brood. After sustained colony growth, males and 
new queens are produced. These sexuals leave the colony and mate, following which the new 
queens hibernate while males and the remainder of the colony perishes. (Sadd et al., 2015) 
 

Bumblebees generally visit flowers that exhibit the bee pollination syndrome to collect nectar 

and pollen, thus they are very important in pollination for crops and wildflowers. In recent 

decades, some species of bumblebee, such as B. terrestris and B. impatiens, have been 

commercially reared and distributed internationally for crop pollination, mainly for greenhouse 

crops. The honeybee, a highly advanced eusocial insect, has been intensively studied in various 

aspects, while the research on bumblebees is still relatively far behind. For instance, a web of 
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science search using the keyword “honeybee”, “honeybee”, or “Apis mellifera” resulted in 

10,128, 12,056, or 12,071 hits, respectively. However using “bumblebee”, “bumble bee” or 

“Bombus terrestris” it obtained 2,765, 1,775, or 1,432, respectively (accessed on September 9, 

2015: http://apps.webofknowledge.com). Certainly, the studies from honeybee provide a good 

basis to study bumblebee as they share some similarities. When specially looking at differences 

of bumblebees compared with honeybees (Table 1) (Sadd et al., 2015), it forms an exciting case. 

Especially, with regard to the eusocial spectrum, bumblebees are an outstanding model system 

since they are in an intermediate position on the eusocial spectrum. The evolution of bee 

eusociality may arise from multiple independent transitions (Kapheim et al., 2015). 

 

Table 1: Key differences and similarities between honeybees and the bumblebees. (Sadd et 
al., 2015) 
 

  Honeybee Bumblebees 
  Apis mellifera Bombus impatiens Bombus terrestris 

Native range Africa/Asia/Europe 
Temperate North 
America Palaearctic region 

Nesting Cavity nesters 
Nest location Trees Ground 
Foraging Generalist foragers of nectar and pollen 
Colony cycle Perennial Annual with queen diapause 
Colony founding Colony fission Solitary nest founding 
Sociality Advanced eusocial Primitively eusocial 

Colony size 
Approximately 20,000-100,000 
workers <400 workers 

Queen mating system Highly polyandrous Limited polyandry Monandrous 
Worker division of labor Age-based Some size- and age-based 
Caste differentiation Morphology/Size/Physiology Size/Physiology 
Worker reproduction Rare Common 

Human links 
Managed (hundreds thousands of 
years) Managed (decades) 
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1.2.! Bumblebee genome  

Recently, two genomes of bumblebees, B. terrestris (249 Mb, Bter_1.0, accession 

AELG00000000.1) and B. impatiens (248 Mb, BIMP_2.0, accession AEQM00000000.2), have 

been sequenced. This makes bumblebee research enter a genomic era and would greatly improve 

the molecular study on these species. Some key features of these two genomes are listed by Sadd 

et al. (Sadd et al., 2015):  

•! The two bumblebee genomes exhibit extensive synteny, with limited rearrangements over 
the estimated 18 million years of divergence between the two lineages. 

•! Relatively few repetitive elements and a low diversity of transposable elements are 
presented, although there is some evidence of recent activity. 

•! Orthology and protein domain analysis uncover bee- and bumblebee-specific genes and 
domains, with hints of evolutionary processes differentially acting upon aspects relating 
to chemosensation and muscle function in the bumblebee lineage. 

•! B. terrestris and B. impatiens are extremely similar in terms of gene content related to 
developmental pathways in molting, metamorphosis, and exoskeleton dynamics. This 
gene repertoire shows striking similarities among social and non-social Hymenoptera. 

•! A similar set of genes underlying haplo-diploid sex determination is present relative to 
honeybees, despite an alternative primary signal for sex determination being employed. 

•! Genes associated with behavior, neurophysiology, and endocrinology are broadly 
conserved between A. mellifera and bumblebees, yet limited differences do exist, and in 
particular among Juvenile Hormone Binding Proteins this may be connected to functional 
differences between these species. 

•! Xenobiotic detoxifying enzymes present to be depauperate, as in A. mellifera, which has 
consequences for the ability of these species to deal with novel environmental 
xenobiotics, such as insecticides. 

•! Genes involved in chemoreception show expected complex patterns of gene birth and 
death. However, surprisingly, the gene repertoire of B. terrestris suggests that, relative to 
honeybees, bumblebees emphasize gustation over olfaction.  

•! Venom constituents, in general, are highly similar between honeybees and bumblebees. 
•! While components of all major immune pathways are present, as in A. mellifera, the 

complement of immune genes in the bumblebees is much reduced relative to Dipteran 
models, suggesting this is not a honeybee-specific characteristic, nor is it linked to 
advanced eusociality. Rather, it is likely that a reduced immune repertoire is basal to the 
bee lineage. 

•! RNAi core genes, RNA editing, and DNA methylation genes and genome wide patterns 
are highly conserved between A. mellifera and the two bumblebees. 

•! MicroRNAs (miRNAs) show a distinct pattern between the bumblebees and honeybees. 
Unique miRNAs were identified in both groups as well as potentially functionally 
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relevant changes in conserved miRNAs. These are excellent candidates that may tune key 
biological differences between advanced eusocial honeybees and primitively eusocial 
bumblebees. 

 

2.!Bee viruses 

 

2.1.!  Bee virus species  

The spreading of viral diseases is one of the suspects responsible for decline of bee colonies 

(Cox-Foster et al., 2007; Fürst et al., 2014). Under natural conditions, bee viruses are found in an 

array of wild and domesticated pollinators, forming an intricate multi-host network where the 

viruses can be transmitted among the different pollinators (Fürst et al., 2014; Levitt et al., 2013; 

Singh et al., 2010). The transmission pre-dominantly occurs due to common food sources, such 

as pollen and nectar, shared by the pollinator community. Moreover, multiple virus infections are 

also present in bees, specially honeybees and bumblebees, a number of up to 3-4 viruses can 

infect a single bee (De Smet et al., 2012; McMahon et al., 2015; Singh et al., 2010). These 

complex characteristics of viral infections challenge the bee’s innate immune system. In addition, 

stressors like insecticides and Varroa mites (a viral vector for honeybees), could also affect the 

immune response of the bee, facilitating viral infection (Di Prisco et al., 2013; Francis et al., 

2013; Ryabov et al., 2014).! To date, there are around 23 viruses, the number varies based on 

different categories reported to infect bees worldwide. Mainly, they are from the families of 

Dicistroviridae and Iflaviridae in the order of Picornavirales. These viruses are non-enveloped 

small icosahedral virions, covering a positive sense single stranded RNA genome. Their 

genomes are around ~9 kb and contain one (in case of the Iflaviridae) or two (in case of the 

Dicistroviridae) open reading frames (ORF), encoding one or two long polyproteins which, 
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subsequently, are cleaved into functional viral proteins. Generally, these viruses undergo a covert 

infection pattern, but under certain environmental stresses, such as V. destructor infestation, they 

can undergo re-emergence toward an overt infection-type. Table 2 summarizes these symptoms 

in honeybees for the most common emerging honeybee viruses  (McMenamin and Genersch, 

2015).  

2.2.! The pathogenicity of bee virus: what we know from the honeybee 

Currently, the knowledge about pathogenicity of bee virus is still limited and mainly relates to 

the European honeybee (A. mellifera) and its sister species (primarily the Asian hive bee; A. 

cerana).  Mainly the pioneering work of Bailey and Ball (Bailey and Ball, 1991) during the 

second half of the twentieth century let to discovery and understanding of RNA viruses in 

honeybees. The evidence increasingly suggests a large degree of commonality of honeybee 

viruses among the Apis species (Meeus et al., 2014), usually with similar symptoms. Herein the 

mite, V. destructor plays a crucial role. Since mites directly feed on haemolymph of the 

honeybee, it can quickly transmit virus into host haemolymph and lead to systemic infection. In 

addition, uninfected mites or mites free of virus could also be easily contaminated by virus 

through sucking haemolymph meal from virus infected bees. These virus contaminated mites 

could be dangerous to uninfected hosts. Through ingestion of contaminated food, viruses could 

also breakthrough gut or other parts of digestion system to achieve infection. Once virus 

establishes systemic infection in host, most of tissues can be infected (Chen et al., 2014).   
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Table 2: Lists of common and emerging bee viruses 
 

Virus Family 
Varroa 
vector status Symptoms of overt infection in honeybees 

*ABPV clade Dicistroviridae ++ 

Paralysis; Darkened cuticle pigment; Impaired cognition 
and homing ability; Mortality (adult and immature bees); 
Colony collapse 

»ALPV Dicistroviridae Unknown Unknown 

*BQCV Dicistroviridae + 

Pale-yellowish, leathery cuticle of capped larva; Failure of 
larva to pupate; Sac-like appearance;  Mortality (of 
larvae) ; Deceased larvae and walls of cell turn black 

»BRSV Dicistroviridae Unknown Unknown 

*DWV clade Iflaviridae +++ 

Deformed wings; Learning deficits; Discoloring; 
Shortened and bloated abdomens; Mortality (adult and 
immature bees); Colony collapse 

»LSV1/2 Nodaviridae Unknown Unknown 

*SBV 
Picornavirales 
(super family) ++ 

Pale-yellowish, leathery cuticle of capped larva; Failure of 
larva to pupate; Sac-like appearance; Mortality (potentially 
of adults, certainly capped larvae); Dead larva becomes 
dark, brittle scale 

»TRSV Secoviridae + Winter colony collapse? (correlative only) 
 

This list gives a summary of the most common (designated with *) and recently emerging 
(designated with ») honeybee viruses, whether they are vectored by Varroa, and their symptoms. 
If Varroa has been shown to be a significant biological vector, the virus was designated with 
(+++). If the virus is frequently associated with Varroa but the mite has not been determined to 
be a biological vector, the vector status was designated with (++). Finally, if the virus is 
sporadically associated with tissues of the mite, or the vectoring status is in question but possible, 
it was designated with (+) (McMenamin and Genersch, 2015).  
 

2.3.! Bee viruses confirmed in the bumblebee 

Within the intricate bee-pathogens network, infectious viruses are transmitted among different 

species, especially honeybees and bumblebees (Fürst et al., 2014; Levitt et al., 2013; McMahon 

et al., 2015; Singh et al., 2010). Viruses initially reported to infect the honeybees, such as acute 

bee paralysis virus (ABPV), Israeli acute paralysis virus (IAPV), Kashmir bee virus (KBV), 

deformed wing virus (DWV), black queen cell virus (BQCV), slow bee paralysis virus (SBPV) 
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and sacbrood virus (SBV), are also recently identified to infect bumblebees. In this project, we 

focused on the study of two bee viruses, IAPV and SBPV. 

IAPV (Family: Dicistroviridae)  

This virus was first isolated in honeybee colonies that suffered from severe mortality in Israel, 

with symptoms reminiscent of those infected with ABPV, therefore, the virus isolated was 

named as Israeli acute paralysis virus. The genome sequencing (Maori et al., 2007) indicated that 

IAPV was a distinct dicistrovirus, with single RNA genome of ~9487 nt in positive orientation, 

and with two open reading frames that encode viral polyproteins which are processed to 

functional proteins later on (Figure 2). Through transmission electron microscopy (TEM), IAPV 

particles in purified solutions can be visualized (Figure 3).  
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IAPV together with two other genetically and biologically closely related viruses, ABPV and 

KBV, constitute a virus complex (de Miranda et al., 2010a), which is capable of inducing rapid 

and acute mortality of both brood and adult honeybees, in response to unspecified environmental 

stressors or through active transmission by the parasitic mite Varroa destructor. In honeybee 

colonies, IAPV is established as a persistent infection, likely enabled by both horizontal and 

vertical transmissions (Chen et al., 2014). Through oral IAPV feeding, it can provoke 

neurological symptoms within 20-24 hours in honey (Galbraith et al., 2015). Effects on 

reproduction of bumblebees have been described after IAPV or KBV artificial feeding (Meeus et 

al., 2014). 

 

 

 
Figure 2:   ABPV–KBV–IAPV genomes.  
The identified functional domains are the helicase, 3C-protease and the RNA-dependent RNA 
polymerase in the non-structural open reading frame, followed by an Internal Ribosome Entry 
Site (IRES) in the intergenic region, and the four capsid proteins in the structural open reading 
frame. An IRES is also expected in the 5′ untranslated region (5′UTR) (de Miranda et al., 2010a).  
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Figure 3. Representative micrograph of IAPV particles by transmission electron 
microscopy.  
Three viral particles (arrows) with icosahedral structure and a size of approximately 34 nm. 
Scale bar: 100 nm. 
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SBPV (Family: Iflaviridae) 
 
SBPV was discovered in England in 1974, it induces paralysis after injection into honeybees. 

Like most bee viruses, SBPV acts as a covert infection, and can be transmitted by both oral 

ingestion and a vector such as the Varroa mite.  Genome (Figure 4) sequencing revealed 

approximately 9500 nt containing a single open reading frame (de Miranda et al., 2010b). An 

investigation of 847 colonies in 162 apiaries across five European countries found < 2% 

prevalence of SBPV (de Miranda et al., 2010b). Through TEM, SBPV particles in purified 

solutions can be visualized (Figure 5). A survey in the UK shows a higher prevalence of SBPV 

in bumblebees than in  honeybees (McMahon et al., 2015). 

 

 
 
Figure 4:   SBPV genome.  
The identified functional domains are the helicase, 3C-protease, the RNA-dependent RNA 
polymerase, and capsid proteins. (de Miranda et al., 2010b) 
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Figure 5. Representative micrograph of SBPV particles by transmission electron 
microscopy.  
The viral particle (arrow) with icosahedral structure and a size of approximately 34 nm. Scale 
bar: 100 nm. 
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3.!Bee antiviral immune system  

 

3.1.! Bee immune pathways 

Being obligate intracellular parasites, the replication of a virus is dependent on the host cellular 

machinery. The interplay between a host and a virus leads to a constant “arms-race”. In one hand 

the host’s immune system tries to eliminate viral infections, on the other hand viruses try to 

surpass the host’s immune system in an attempt to successfully infect the host. In addition, the 

host has to allocate resources to trigger immune responses during pathogen invasion, which has 

its trade-off against other physiological functions (Bascuñán-García et al., 2010; Hosken, 2001). 

The immunity response of the host is not static and often depends on viral characteristics and 

host physiological conditions (Schneider, 2009).  

From the view of host defense,  an infection occurs after a virus has breached the physical and 

chemical barriers, then the insects rely on their innate immunity responses, such as RNA 

interference (RNAi), Toll, Imd, JAK/STAT (Janus kinase/Signal Transducer and Activator of 

Transcription) and autophagy pathways to combat viruses (reviewed by (Kingsolver et al., 2013; 

Merkling et al., 2013; Vijayendran et al., 2013)).  Figure 6 summarizes the canonical honeybee 

immune pathways (Brutscher et al., 2015). The honeybee genome encodes major members of 

insect immune pathways including: RNAi; JAK/STAT; Toll; JNK (c-Jun N-terminal kinase); 

and MAPK (Mitogen-Activated Protein Kinases), as well as orthologs of genes involved in 

autophagy, eicosanoid biosynthesis, endocytosis, and melanization.  
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Figure 6: Honeybee immune pathways — highlighting genes implicated in antiviral 

immune responses (Brutscher et al., 2015).  

 
In social insects, common features like high population density and low genetic diversity are 

ideal for parasite transmission. One could expect that social behavior of bees plays an important 

role in the protection of the colonies from infection. Therefore, for bees, we need to take both 

individual and social immunity into consideration. Somewhat unexpected, the genes of the 
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immune systems of social bees and solitary bee are similar (Barribeau et al., 2015; Kapheim et 

al., 2015). In addition, evidence of positive selection in genes encoding antiviral responses in 

both social and solitary bees are also presented in Figure 7. It is known that honeybees have a 

relatively lower immune gene repertoire compared to other insects (Honeybee Genome 

Sequencing Consortium, 2006). The recent studies showing the similarity in immune 

complement across a gradient of sociality of bees suggests that the small set of immune 

repertoire is rather a bee property instead of property solely present in the social honeybee and 

thus predates the evolution of sociality (Barribeau et al., 2015). Based on this hypothesis, the 

small set of immune gene repertoire in bumblebee and honeybee compared with Drosophila, 

highlight immunity studies in bees could also enhance our understanding about immunity origin 

and evolution in insects.  
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Figure 7: Diagram of the classical insect immune genes. 
Colors of the genes indicate evidence of selection as detected by either positive selection (across 
the four taxa phylogeny, on the branch between Bombus and Apis, the branch leading 
to Bombus,  Apis, or Megachile) in red, or differences in selection 
between Bombus and Apis (yellow), or between the social and solitary clades (blue) (Barribeau et 
al., 2015).  
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3.2.! Transcriptome analysis upon bee virus infection 

A venn diagram (Figure 8)  (Galbraith et al., 2015) shows the overlap of transcriptional 

responses to bee viruses, IAPV (Chen et al., 2014; Galbraith et al., 2015), DWV (Ryabov et al., 

2014) and the non-natural bee virus Sindbis virus (SINV) (Flenniken and Andino, 2013). 

Although a great degree of overlap for differentially expressed genes upon viral infections is 

revealed, the variability among different data is noticeable which could be due to differences in 

antiviral responses across life stages or to the different viruses (Galbraith et al., 2015). 

Intriguingly, the infection of 

IAPV also significantly 

changes DNA methylation 

status of 156 genes in 

honeybee , which shows no 

significant overlap with the 

significantly differentially 

expressed genes (Galbraith et 

al., 2015).  

 
Figure 8:  Comparative analysis of transcriptional responses to different bee viruses 
(Galbraith et al., 2015)  
 

 Table 3 (Brutscher et al., 2015),shows that some of these differentially expressed genes upon 

viral infections are associated with some honeybee canonical immune pathways, such as RNAi, 

Toll, JAK/STAT, and Imd. 
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Table 3: Honeybee immune genes with differential expression in virus-infected honeybees 
(Brutscher et al., 2015) 

Gene name Pathway Accession number Virus 

abaecin AMP NM_001011617.1 SINV 

apidaecin 1 (apid 1) AMP NM_001011613.1 SINV,DWV 
apidaecin 1 (apid73) AMP XM_006572699.1 SINV,DWV 

apidaecin type 22 (apid22) AMP NM_001011642.1 SINV,DWV 
hymenoptaecin AMP NM_001011615.1 SINV,DWV 

defensin-2 AMP NM_001011638.1 DWV 
vago antivir XM_395092.4 DWV 

nimrod c1 (nimc1) EGF Family XM_006561053.1 SINV 
unc-80/endocytosis Endocytosis XM_006558847.1 SINV 

dscam IG superfamily 

NM_001014991.1 
XM_006567003.1–
XM_006567105.1 SINV 

relish (rel), var x1 IMD XM_006562219.1 DWV 

relish (rel),var x2 IMD XM_006562220.1 DWV 
relish (rel),var x3 IMD XM_006562221.1 DWV 

d-pias,var x1 JAK/STAT XM_006561055.1 IAPV 
d-pias,var x2 JAK/STAT XM_006561056.1 IAPV 

d-pias,var x3 JAK/STAT XM_623568.4 IAPV 
hopscotch (hop),var x1 JAK/STAT XM_001121783.3 IAPV 

hopscotch (hop),var x2 JAK/STAT XM_006567688.1 IAPV 
hopscotch (hop),var x3 JAK/STAT XM_006567689.1 IAPV 

hopscotch (hop),var x4 JAK/STAT XM_006567690.1 IAPV 
stat92e-like JAK/STAT XM_397181.5 IAPV 

Raptor PI3K-Akt-Tor XM_624057.4 IAPV 
argonaute 2 (ago2) RNAi XM_395048.5 IAPV 

dicer-like RNAi XM_006571316.1 IAPV 
nf-κ-β inhibitor cactus 1 Toll/TLR NM_001163712.1 IAPV 

toll-6 Toll/TLR XM_393712.4 IAPV 
dorsal,var a Toll/TLR NM_001011577.1 IAPV 
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3.3.! The immune response of the siRNA pathway in the defense against bee 

viruses 

RNAi is activated by double-stranded RNA (dsRNA) which leads to the down-regulation of gene 

expression at the post-transcriptional level. The RNAi mechanism can be divided into three 

major pathways based on the type of the small RNAs produced: microRNAs (miRNAs), small 

interfering RNAs (siRNAs) and Piwi-interacting RNAs (Vijayendran et al., 2013; Wilson and 

Doudna, 2013). In comparison with other insects, bumblebee genomes encode common 

components of RNAi pathways (Table 4). During viral infection, the siRNA pathway is triggered 

by virus-derived dsRNAs, which finally results in cleavage of viral RNA. Here we focus on the 

current research progress in the understanding of the siRNA pathway of bees, its response during 

viral infection, and its applications in the protection of pollinator health.  

 The molecular mechanism of the siRNA pathway and its antiviral action 

During viral infection, virus-related dsRNAs are generated, such as replication intermediates, 

viral genome itself with dsRNA structure, virus-encoded siRNAs and viral transcript-genome 

hybrids (Marques et al., 2013; Vijayendran et al., 2013). Those virus-related dsRNAs are 

recognized by the host and processed into 21 to 22 nucleotide-long vsiRNAs by a ribonuclease 

III (RNase III) enzyme called Dicer-2; then the vsiRNAs are loaded onto Argonaute (Ago-2), 

forming the RNA-induced silencing complex (RISC). Then the passenger strand of the vsiRNAs 

is degraded and the other strand (guide strand) serves as a viral sequence-specific guide to 

degrade viral RNA by complementary binding (Figure 9).  
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Table 4: Overview of the genes coding for RNAi core machinery proteins in various insect 

species (Sadd et al., 2015). 

 

  

Gene family D. melanogaster T. castaneum B. mori A. mellifera B. terrestris B. impatiens 

RNAse III Dicer-1 

Dicer-2 

drosha 

Dicer-1 

Dicer-2 

drosha 

Dicer-1 

Dicer-2 

drosha 

Dicer-1 

Dicer-2 

drosha 

Dicer-1 

Dicer-2 

drosha 

Dicer-1 

Dicer-2  

drosha 

Argonaute Ago-1  

Ago-2  

Ago-3  

aubergine 

piwi 

Ago-1 

Ago-2 

Ago-3 

aubergine 

piwi 

Ago-1  

Ago-2  

Ago-3 

aubergine 

Ago-1  

Ago-2  

Ago-3 

aubergine 

Ago-1  

Ago-2  

Ago-3 

aubergine 

Ago-1  

Ago-2  

Ago-3 

aubergine 

Genes coding 

dsRNA binding 

proteins 

pasha 

R2D2 

loquacious 

pasha 

R2D2 

loquacious 

pasha 

R2D2 

loquacious 

pasha 

R2D2 

loquacious 

pasha 

R2D2 

loquacious 

pasha 

R2D2 

loquacious 
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Figure 9: Proposed response of the siRNA pathway to viral infection in bees.  
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Figure 10: Phylogenetic trees of Dicer-2 and Ago-2 (Niu et al., 2014b). 

Phylogenetic trees were constructed by MEGA 6.0 (Tamura et al., 2013). The sequences from 
Bombus terrestris (XP_003394821.1), B. impatiens (XP_003485689.1), Megachile rotundata 
(XP_003703800.1), Harpegnathos saltator (EFN79336.1), Apis florea (XP_003697097.1), A. 
dorsata (XP_006623214.1), A. mellifera (XP_006571379.1), Acromyrmex echinatior 
(EGI69620.1), Microplitis demolitor (EZA46212.1), Cerapachys biroi (EZA61552.1), Nasonia 
vitripennis (XP_001605287.1, XP_001602524.2) were used for Dicer-2 based on RNase III and 
PAZ domains; the sequences from B. terrestris (XP_003398529.1), B. impatiens 
(XP_003492410.1), A. mellifera (XP_395048.4), A. dorsata (XP_006625010.1), A. dorsata 
(XP_006625011.1), M. rotundata (XP_003705687.1, XP_003708345.1), N. vitripennis 
(XP_008214884.1), A. echinatior (EGI64275.1), Camponotus floridanus (EFN68927.1), C. biroi 
(EZA61145.1) were used for Ago-2 based on PAZ and Piwi domains. 
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To achieve an effective antiviral activity by the siRNA pathway it is also crucial to pass on the 

local siRNA response in infected cells to uninfected cells. This mechanism is called a systemic 

response of RNAi, although the exact signaling molecules are unknown, it normally requires 

uptake of dsRNA by uninfected cells (Saleh et al., 2009). This process could be important for 

viral immunity as insects, unlike vertebrates, lack an adaptive immune system. The uptake of 

virus-related dsRNA by uninfected cells could prime these cells for an effective immune 

response upon viral infection. Currently, two dsRNA uptake mechanisms are described in insects, 

transmembrane channel-mediated uptake and endocytosis-mediated uptake (Huvenne and 

Smagghe, 2010; Scott et al., 2013). Little is known about dsRNA uptake or the spreading of 

RNAi signals in bees, but it seems that honeybees are inefficient in spreading RNAi signals such 

as siRNAs across tissues (Jarosch and Moritz, 2011). Moreover, in most cases the silencing of 

genes in honeybees or bumblebees requires high amounts of dsRNA, especially compared with 

that in the desert locust Schistocerca gregaria (Wynant et al., 2012). The latter may suggest a 

low dsRNA uptake efficiency in bees. SID-1, a multispan transmembrane protein, is speculated 

to be an important factor in systemic RNAi, however, its function in bees is still unknown. While 

it should be remarked that after silencing the honeybee Toll-related receptor 18W, the expression 

level of the transmembrane protein SID-1 increased 3.4-fold, while the target gene’s expression 

was decreased 60-fold (Aronstein et al., 2006). The latter may indicate a role of SID-1 in dsRNA 

uptake, but solid evidence is still lacking. Therefore, two questions concerning dsRNA uptake in 

bees: i) What is the mechanism for dsRNA uptake? and ii) What is the contribution of virus-

related dsRNA uptake in controlling viral infection? need to be addressed in future studies.  

Silencing genes in honeybees and bumblebees has been achieved by administrating gene-specific 
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dsRNA, and titers of honeybee viruses can also be reduced with virus-specific dsRNA (including 

siRNA) (Chen et al., 2014; Desai et al., 2012; Maori et al., 2009). These studies confirmed the 

conserved function of the siRNA pathway. To better understand the molecular aspects of this 

pathway, we searched for available protein sequences of core components of the siRNA pathway 

such as Dicer-2 and Ago-2 in bees, ants, and wasps from Genbank, analyzed the predicted 

domains, and then phylogenetic trees were constructed (Figure 10). Analyzed by HMMER 

(http://hmmer.janelia.org/), RNase III and PAZ domains in Dicer-2-like proteins, PAZ and Piwi 

domains in Ago-2-like proteins were found in bees, ants and wasps. All the sequences of Dicer-2 

and Ago-2 were clearly separated from their close counterparts Dicer-1 (Nasonia vitripennis), 

and Piwi-Ago (Megachile rotundata), respectively (Figure 10). It was not surprising that the 

sequences were clustered together based on taxonomic kinship. Insect behavior (social vs. 

solitary lifestyle) seemed to have no influence on the similarity of the genes. This seems to be 

consistent with the genome level comparison of bees from social to solitary which shows 

immune genes may be predated before evolution of sociality (Barribeau et al., 2015). To prove 

the relation of these genes with the siRNA response, further study is required, and here the 

RNAi-of-RNAi approach is proposed as a useful technique to evaluate the involvement of these 

core proteins in insects (Wynant et al., 2012). This approach is widely used to deplete the core 

gene expression of RNAi pathway in order to study its function.  

 Responses of the siRNA pathway upon viral infection  

Deep-sequencing analysis of samples collected from colonies suffering from colony collapse 

disorder revealed abundant siRNAs of 21-22 nucleotides perfectly matching the IAPV, KBV and 

DWV genomes (Chejanovsky et al., 2014). To further confirm if these small RNAs were derived 

from viruses, honeybees experimentally infected with IAPV showed a high incidence of small 
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RNAs matching the IAPV genome (Chejanovsky et al., 2014). In addition, small RNAs 

matching to Varroa destructor virus-1 (VDV-1) and DWV genomic sequences were also found 

in field-collected honeybees but not in bumblebees (Wang et al., 2013a). Lack of detection of 

these RNAs in these bumblebees without virus pre-screening could be caused by limited sample 

collection, as DWV and VDV-1 can infect bumblebees and other pollinators (Fürst et al., 2014; 

Levitt et al., 2013; Singh et al., 2010). Therefore, it can be concluded that the siRNA pathway in 

bees can generate virus-derived small interfering RNAs (vsiRNAs) from various viruses. The 

siRNA response in multi-virus infections is still unclear since these two studies used pooled 

samples for sequencing and the infection status of the individual bees was not confirmed. DWV, 

when transmitted by V. destructor mites, can directly be delivered into the hemolymph of 

honeybees, thereby giving DWV an advantage over its host, facilitating replication and spread, 

which can lead to high virus titers (Martin et al., 2012). Although the significant changes in 

expression of Dicer-2 and Ago-2, were absent in bees, vsiRNAs matching to DWV were detected 

by small RNA sequencing. Moreover, the intensity of infection seemed to be correlated with the 

amount of vsiRNAs, indicating that the siRNA response is proportional to the intensity of the 

viral infection (Ryabov et al., 2014). However, one needs to consider that these high levels of 

vsiRNAs do not necessarily mean an RNAi antiviral action. Indeed virus encoded suppressors of 

RNAi (VSR) may inhibit downstream activity of RNAi, for instance, inhibiting slicer activity of 

Ago-2 (van Mierlo et al., 2012). Recently, it has been suggested that IAPV encodes a VSR (Chen 

et al., 2014). However, the data is not yet conclusive and needs further analysis.  

Beyond the siRNA pathway, also Toll, Imd and JAK/STAT pathways may be activated during 

viral infection (Merkling et al., 2013). Intriguingly, the siRNA and the JAK/STAT pathways 

perform cross-talk in mosquitoes in a Dicer-2-dependent manner through the action of a secreted 
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signaling molecule, namely Vago, leading to an antiviral defense state in uninfected cells 

(Kingsolver and Hardy, 2012; Paradkar et al., 2012). Apart from virus-specific dsRNA generated 

during viral infections, non-specific dsRNA also seems to mediate an antiviral response in 

reducing viral titers. Co-injection of non-specific dsRNA with a model virus, the recombinant 

Sindbis virus with green fluorescent protein (SINV-GFP), to honeybees, showed reduced SINV-

GFP titers (Flenniken and Andino, 2013). Both non-specific dsRNA and SINV-GFP 

significantly decreased the expression of various Antimicrobial peptides (AMPs) in these bees, 

but the majority of genes for which the transcription levels increased were not canonical insect 

immune genes. In  bumblebees, non-specific dsRNA and IAPV specific dsRNA showed a 

relatively similar level of antiviral effects to IAPV (Piot et al., 2015). So far, three hypotheses 

can be drawn about the involvement of a non-specific dsRNA in the induction of the immune 

response: i) non-specific dsRNA induces the siRNA immune response to some extent, and this 

helps to restrict viral infection; ii) dsRNA can work as a pathogen associated molecular pattern 

(PAMP) which are recognized  by the host thus triggering other immune pathways;  iii) Non-

specific dsRNA is recognized by different immune pathways, including the siRNA and some 

other immune pathways, the antiviral response is a combined effect from various pathways.  

Using the siRNA pathway to control bee viruses  

Through ingestion of IAPV-specific dsRNA or siRNA in honeybees infected with IAPV, the 

IAPV titers were reduced (Chen et al., 2014; Maori et al., 2009). Feeding larvae with DWV-

specific dsRNA before inoculation with DWV reduced the DWV viral titer and wing deformity, 

while feeding adult workers with DWV-specific dsRNA in advance of inoculation with DWV 

increased their longevity and reduced DWV titers. In addition, direct feeding DWV-specific 

dsRNA did not affect larval survival rates which suggests that it is non-toxic to larvae (Desai et 
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al., 2012). Also ingestion of SBV-specific dsRNA could significantly reduce virus titers in SBV-

infected bees (Liu et al., 2010). Besides laboratory conditions, the large-scale field application of 

this strategy is also able to reduce the IAPV disease in honeybees. These studies together 

demonstrate the use of targeted treatments for viral diseases in bees by using the innate RNAi 

immune pathway (Hunter et al., 2010). Moreover, dsRNA ingested by bees can be transferred to 

the Varroa mite and from the mite onwards to a parasitized bee. This bidirectional transfer of 

dsRNA between honeybee and V. destructor can lead to an approach to use RNAi to control 

mites, thereby reducing virus transmission (Garbian et al., 2012).  

In conclusion, during viral infection, the siRNA pathway in bees is activated and thus leads to 

the degradation of the viral RNA or its genome, therefore playing a major role in the defense 

against different viruses in bees. Moreover, the bees can be protected through the introduction of 

virus specific-dsRNA in large scale field applications. However, there are still some questions 

that need to be addressed in the future: i) What is the involvement of the siRNA pathway in 

multi-virus infections? ii) What is the influence of pre-infection with a non-virulent virus (or 

persistent infection) on the siRNA pathway, and subsequent effect to the infection of other 

viruses? iii) What kind of factors can enhance the activity of siRNA pathway? iv) How does the 

host sustain the balance between its siRNA immune investment to control virus and other 

stressors presented, such as food shortage, pesticides, parasite mites or other pathogen load.  

3.4.! The miRNA pathway 

MicroRNAs (miRNA) play an important role in regulating gene expression and influence various 

biological processes in eukaryotes.  In insects, the miRNA pathway has been documented to be 

involved in different aspects of development, such as formation of germ cells, wing, and muscle, 

neurogenesis, apoptosis, and phenotypic plasticity (Asgari, 2013). The miRNA pathway is also 
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well established to be involved in host-pathogen interactions (Asgari, 2013; Hussain and Asgari, 

2014b). The canonical biogenesis (Figure 11) of miRNA initiates in the nucleus where 

monocistronic, bicistronic or polycistronic transcripts are produced. These contain stem-loop 

structures known as the primary miRNA (pri-miRNA). The pri-miRNA is cleaved by Drosha and 

Pasha to liberate the precursor miRNA (pre-miRNA). After exportation to the cytoplasm, the 

pre-miRNA is cut by Dicer-1 to yield a miRNA duplex. The duplex strands are then sorted and 

the miRNA strand is loaded into RNA induced silencing complex (RISC) which typically 

includes Argonaut 1 (Ago-1). Then, the mature miRNA binds to the target mRNA and leads to 

mRNA degradation or translational repression (Lucas and Raikhel, 2013).  

 

 
 
 
Figure 11. A model for microRNA biogenesis (Lucas and Raikhel, 2013).  
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Besides, there are also non-canonical pathways of miRNA biogenesis, which are Drosha-

independent but can be Dicer-dependent or Dicer-independent (Yang and Lai, 2011).  The 

production and regulatory effects of miRNAs on insect-virus interactions could be complex. The 

first layer of complexity relates to the origin of miRNAs, which could be from the host or the 

virus. The second layer of complexity arises from the two-way interplay, meaning host encoded 

miRNAs can target genes from both host and viral genes and vice versa for virus encoded 

miRNAs (Figure 12) (Asgari, 2015).  

 

Figure 12: Virus-encoded miRNAs could be produced by nuclear or cytoplasmic viruses 
through canonical or non-canonical pathways (Asgari, 2015). 
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Differential expression of miRNAs has been associated with honeybee development and social 

behavior (Behura and Whitfield, 2010; Greenberg et al., 2012; Liu et al., 2012b; Weaver et al., 

2007). Recently, with the genome sequencing of two bumblebee species, Bombus terrestris, and 

B. impatiens, two datasets of miRNAs have been annotated for both species (Sadd et al., 2015).  

In comparison of miRNAs between the bumblebees and honeybees (Figure 13), unique miRNAs 

are identified in both groups. A total of 116 miRNAs were found in the genomes of all three 

species. Strikingly, 103 miRNAs of the 219 in A. mellifera were not found in the genome of 

either bumblebee species. These unique miRNAs are excellent candidates that may tune key 

biological differences between advanced eusocial honeybees and primitively eusocial 

bumblebees (Sadd et al., 2015). 

 

Figure 13: Venn diagram of the distribution of unique and shared miRNAs across the two 
bumblebee species investigated and Apis mellifera (Sadd et al., 2015). 
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3.5.! The JAK/STAT pathway 

Upon virus invasion or certain stresses, the JAK/STAT pathway is generally initiated by the 

ligand unpaired (Upd) binding to the transmembrane receptor Domeless (Dome) which is a 

distant homolog of the vertebrate type I cytokine receptor. However, the homologues of Upd in 

bees is not identified (Figure 14). The conformational change of Dome after Upd binding leads 

to the self-phosphorylation of the Janus kinase Hopscotch (Hop).  

 

 

Figure 14: Proposed JAK/STAT pathway upon viral invasion in bees. 

The activated Hop will phosphorylate Dome, thereby forming docking sites for the cytoplasmic 

signal transducer and activator of transcription (STAT). The recruitment of STAT to these 

docking sites enables Hop to phosphorylate STAT which leads to its dimerization. Subsequently, 

the STAT dimers translocate to the nucleus where they activate transcription of specific effector 
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genes to achieve controlling of  viruses (Myllymäki and Rämet, 2014). Activated STATs 

transcriptionally regulate antimicrobial effectors TEP7 (thioester-containing protein 7), TEPA 

and TEPB. Virus induced gene 1 (vir-1) is the downstream transcribed gene of JAK/STAT 

during virus infection in Drosophila (Deddouche et al., 2008; Dostert et al., 2005). However, it is 

less clear whether this protein is presented in bees. The protein sequence of vir-1 in Drosophila 

and mosquito showed a significant similarity to a  newly identified protein in honeybees, namely 

icarapin, a novel IgE-binging venom protein, which can evoke an immune response in subjects 

after a bee sting (Peiren et al., 2006).  
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Chapter II-In vivo study of Dicer-2 mediated immune 

response from the small interfering RNA pathway 

upon viral infections in bumblebees (Bombus terrestris) 

 

 

 

Parts of this chapter were submitted to: 

Niu J, Smagghe G, Coninck DID, Nieuwerburgh FV, Deforce D, Meeus I. (2015) In vivo study 

of Dicer-2 mediated immune response from the small interfering RNA pathway upon systemic 

infections of virulent and avirulent viruses in Bombus terrestris. Insect Biochemistry and 

Molecular Biology Submitted. 

Parts of this chapter were published in: 

Niu J, Cappelle K, de Miranda JR, Smagghe G,Meeus I: Analysis of reference gene stability 

after Israeli acute paralysis virus infection in bumblebees Bombus terrestris. Journal 

of Invertebrate Pathology. 2014, 115:76-79.



 

36!
!

 

1.!Introduction 

 

Bee pollination is an indispensable component of global food production and plays a crucial role 

in sustainable agriculture. The recent decline of bee colonies including wild populations poses a 

threat to this system (Goulson et al., 2015; Potts et al., 2010). Bees share common food sources 

and habitats, thereby form an intricate host-pathogen network where infectious diseases can be 

transmitted among different species, especially honeybees and bumblebees. In this network, 

viruses represent one of the most important groups of pathogens. (Fürst et al., 2014; Levitt et al., 

2013; McMahon et al., 2015; Singh et al., 2010). The common bee viruses are from the families 

Dicistroviridae and Iflaviridae. These viruses are non-enveloped small icosahedral virions, 

containing a positive sense single stranded RNA genome. Their genomes are around ~9 kb and 

contain one (in case of the Iflaviridae) or two (in case of the Dicistroviridae) open reading 

frames, encoding one or two long polyproteins which, subsequently, are cleaved into functional 

viral proteins. Viruses initially reported to infect the honeybees, such as acute bee paralysis virus, 

IAPV, KBV, DWV, BQCV, SBPV and sacbrood virus (SBV), are also recently identified to 

infect bumblebees (Fürst et al., 2014; Levitt et al., 2013; McMahon et al., 2015; Singh et al., 

2010). Effects on reproduction of bumblebees have been described after IAPV or KBV artificial 

feeding (Meeus et al., 2014). In honeybees IAPV is established as a persistent infection in 

colonies and the link with winter mortality has been reported (Chen et al., 2014). In honeybees, 

parasite mites, such as Varroa destructor, act as a vector for virus transmission (Martin et al., 

2012; Ryabov et al., 2014). Tracheal mites, such as Locustacarus buchneri, infest on ~30 species 
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of bumblebees (Goka et al., 2006; Rożej et al., 2012; Yoneda et al., 2008), while it is still unclear 

whether these mites could play a role in virus transmission. Commercial colonies including 

honeybees and bumblebees are widely transported around the world, which could disrupt local 

host-virus interactions in sympatric wild bees. Indeed, pathogen spillovers between managed 

colonies after transportation and wild bees is a risk, particularly, for endangered bee populations 

(see review (Meeus et al., 2011)). 

RNAi can be divided into three pathways based on different types of the small RNAs produced, 

including: miRNAs, siRNAs and Piwi-interacting RNAs. For the siRNA pathway, briefly, long 

dsRNA is processed into small RNAs by Dicer; these small RNAs are then loaded onto Ago, 

forming the RISC with other proteins (Wilson and Doudna, 2013). The guide strand of siRNAs 

serves as a sequence-specific guide to cleave target mRNA by complementary binding. During 

viral infection, especially for RNA viruses, virus related dsRNAs are generated, such as, viral 

dsRNA replication intermediates, the viral genome itself, and viral transcripts (Marques et al., 

2013). These virus related dsRNAs can trigger an antiviral response of the siRNA pathway 

(Wang et al., 2015). Currently, research has been focused on two aspects of the siRNA pathway 

mediated antiviral response in bees (see review (Niu et al., 2014b)): 1) deep-sequencing analysis 

revealed several bee vsiRNAs in honeybees (Chejanovsky et al., 2014; Ryabov et al., 2014; 

Wang et al., 2013a); 2) the utilization of the siRNA pathway to restrict viral replication through 

viral sequence specific dsRNAs (Chen et al., 2014; Desai et al., 2012; Liu et al., 2010; Maori et 

al., 2009). Intriguingly, non-specific dsRNA also seems to mediate an antiviral response by 

restricting viral replication through an unknown mechanism (Flenniken and Andino, 2013; Piot 

et al., 2015). These studies provide some basic understanding of the interaction between the 

siRNA pathway and bee virus, but the antiviral response of the siRNA pathway is still poorly 
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studied during the systemic infection of virulent and avirulent viruses. Recently, genome 

sequencing of two key bumblebee species, Bombus terrestris and B. impatiens (Sadd et al., 2015) 

and the evolution analysis of immune genes in bees (Barribeau et al., 2015), highlights the 

importance to study the immune responses in primary social insect in order to better understand 

the evolution of insect antiviral immunity. Therefore, in this study, we comparatively analyzed 

the siRNA antiviral response after inducing systemic infections of IAPV and SBPV in 

bumblebees based on three approaches: 1) analysis of core gene expressions of the siRNA upon 

virus infection; 2) deep sequencing to analyze viral derived small RNAs in virus infected 

samples; 3) using “RNAi of RNAi” to check the virus infection after silencing one of the core 

genes of the siRNA pathway, Dicer-2. Our results provide a comprehensive insight in the 

involvement of bumblebee siRNA pathway, especially, characterizations of the antiviral 

activities possibly mediated by Dicer-2 in the control of different viruses.  

2.!Materials and methods 

 

2.1.! Insects and viruses  

Newly emerged workers were collected from the colonies of B. terrestris obtained from Biobest 

NV (Westerlo, Belgium), and kept in micro-colonies fed with pollen and sugar water ad libitum 

for further experiments. All the micro-colonies were maintained in an incubator (Panasonic, 

Japan) at 29-31°C, 60-65% relative humidity, and continuous darkness. IAPV and SBPV inocula 

were produced in PBS  by following the protocol as described previously (Niu et al., 2014a). The 

virus particles were counted by using transmission electron microscopy. Bees used in this study 

were screened by RT-PCR (primers in supplementary table S1) to make sure that they were free 
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of IAPV and SBPV. 

2.2.! Infections and survival analysis 

To test the mortality caused by viral injection, serial dilutions were made and injected in five to 

eight day old workers by the nanoinjector (Eppendorf, Germany). The viral solution was injected 

in the side of soft white-like cuticle between the 1st and 2nd abdominal segments. The amount of 

viruses, IAPV with a range of 20 to 2,000 particles, and SBPV with a range of 2,000 to 200,000 

particles, was ascertained by a pre-experiment. The mortality was checked each day until all bees 

died for IAPV treatment. Most bees survived after injection of SBPV, and the survival rate was 

followed for at least six weeks after injection of SBPV. The PBS used to make virus inocula, was 

applied to inject bumblebees as a control. We used 15~20 replicates for each dilution injection. 

The survival curves were analyzed by Kaplan-Meier in SPSS statistics 22.  

2.3.! Analysis of reference gene stability in bumblebee   

Firstly, we selected more than 10 candidates reference genes in bumblebee due to their 

homologies showed stable expressions in other virus-host interaction experiments (Jorgensen et 

al., 2006; Liu et al., 2012a; Maroniche et al., 2011). With pre-evaluation, such as, primer 

amplification efficiency and melting curves, we eventually chose five candidate reference genes 

(supplementary data Table S1) from different gene families, namely Elongation factor-1 α 

(ELF1α), peptidylprolyl isomerase A (PPIA), 60S ribosomal protein L23 (RPL23), TATA-

binding protein (TBP) and polyubiquitin (UBI), for their stability analysis. Subsequently, these 

five candidate reference genes were evaluated in two series of B. terrestris samples. The 1st 

series consisted of separate extracts of whole bumblebee bodies and isolated bumblebee body 

parts (head, gut and remnants: the remaining part of bumblebee separated from head and gut).  
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For the 1st series of experiments, we collected five to eight days-old workers, from which four 

whole body samples were prepared and three samples of each body part (head, gut and remnants; 

separated under a binocular microscope). For the 2nd series of experiments, we produced an 

IAPV inoculum by propagating an IAPV reference isolate (Allen and Ball, 1995) in 50 white-

eyed honeybee pupae and preparing a chloroform-clarified extract in PBS (de Miranda et al., 

2013). This IAPV inoculum had <0.1% contamination with other common honeybee viruses, as 

determined by RT-qPCR using previously published assays for IAPV, ABPV, KBV, Chronic bee 

paralysis virus, DWV, Varroa destructor virus-1 (VDV-1), SBPV, SBV and BQCV (Locke et al., 

2012). The identity of the reference isolate and propagated inoculum was confirmed by 

sequencing the IAPV PCR product. Five to eight day-old workers were injected with 2 µl IAPV 

inoculation solution (20 IAPV particles), or 2 µl PBS. Afterwards, four individuals were 

collected for the IAPV-injected or control samples at each time moment of 8, 24, 48 and 72 h.  

The stability of the different reference genes were calculated by GeNormPLUS (Hellemans et al., 

2007). Although different default limits of M values have been used in various studies as ≤1.5 

(Zhang et al., 2012), ≤1.0 (Shen et al., 2010), and ≤0.5 (Everaert et al., 2011), we have chosen in 

our study the strict M value of 0.5 as considering the number of candidate reference genes 

studied and the number of samples to validate the candidate reference genes. The stability 

ranking of the candidate reference genes was also obtained by NormFinder, in contrast to 

GeNorm, it also accounts for optimum reference gene out of a group of genes from diverse 

samples (Andersen et al., 2004) e.g. from individual body parts, whole bodies, virus infected and 

non-infected bumblebees in our case. 
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2.4.! Dynamics of genome copy number during virus infections 

To screen viral genome copy number (gcn) during infection, we collected samples at 8 h, 1, 2, 

and 3 days post injection (dpi) for IAPV (20 particles per bee for injection) and 8 h, 1, 2, 3, 7 and 

13 dpi for SBPV (20,000 particles per bee for injection). For each biological replicate, the whole 

body of each individual bee was used to extract RNA. Relative viral gcn was evaluated based on 

a DNA standard curve. A part of the virus genome was amplified (primers in supplementary 

table S1) and purified by E.Z.N.A.® Cycle-Pure Kit (Omega, USA). The partial sequences of 

IAPV and SBPV by Sanger sequencing (LGC genomics, Germany) showed the highest identity 

to nt (nucleotide) reference EU436423.1 (IAPV) and GU938761.1 (SBPV, Harpenden strain), 

respectively. The concentration of purified templates was measured by Quant-iTTM PicoGreen® 

dsDNA assay kit (Invitrogen, USA). The concentration was calculated to gcn per µl by the 

online tool (URL: http://cels.uri.edu/gsc/cndna.html; Accessed date: 20/June/2014). A serial 10 

times dilution of the templates was made to obtain a standard curve for each virus by qPCR. The 

normalized gcn of each sample was represented by the ratio of the gcn calculated based on the 

DNA standard curve and the normalization factor from the internal reference gene peptidylprolyl 

isomerase A (PPIA) (Niu et al., 2014a) with the framework of qBase (Hellemans et al., 2007).  

2.5.! The expression of core genes of the siRNA pathway upon viral 

infections 

The expression of key components, Dicer-2 and Ago-2, of the siRNA pathway was measured on 

the above collected samples used for detecting virus gcn and PBS injected bees in all different 

time points served as controls. PPIA was used as internal control to normalize qPCR data as it 

was validated as the most stable reference gene cross different viral infection times and tissues 

(Niu et al., 2014a). Four to five biological replicates were included in each time point for virus 
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and PBS, respectively. The fold change of the mRNA level at each time point was given as the 

ratio of the relative gene expressions of the virus treated samples over the PBS controls collected 

at the same time point. All the experiments were performed on RNA extractions from the whole 

body. Extra experiments were performed on the RNA extracted from the abdomen, such as, 

abdomen was used in additional samples of SBPV and PBS injected bees at 3 dpi to measure 

Dicer-2 expression. To investigate different viral inoculations in relation with Dicer-2 expression, 

an amount of ~108 IAPV particles (mixed with sugar water instantly before feeding) was 

ingested per bee of two days old, and the feeding of PBS with the same condition served as a 

control. Subsequently, RNA samples were collected after 9 days for analyzing gene expression.  

2.6.! RNA isolation, cDNA synthesis, and qPCR 

Extra RLT buffer (1.5~2 ml) was used to homogenize the lysed bumblebee tissues by mortar and 

the supernatant was centrifuged for three times to remove the deposit, then it was followed by 

the protocol of RNeasy mini kit (Qiagen, Germany). Afterwards, RNA was treated by TURBO 

DNA-free™ kit (Ambion, USA) to remove possible genomic DNA contamination. RNA 

quantity and quality were checked by Nanodrop and electrophoresis on 1.5% agarose gel. Two 

microgram of RNA was used to synthesize the cDNA by SuperScript® II Reverse Transcriptase 

(Invitrogen, USA) using oligo (dT) primers. To make sure that genomic DNA was removed we 

checked cDNA samples by PCR with exon spanning primers for RPL23 (supplementary data 

Table S1). The cDNA should produce an amplicon of 143 bp while the presence of genomic 

DNA will produce an extra amplicon of 452 bp. The qPCR was performed on a CFX96™ Real-

Time PCR Detection using GoTaq® qPCR master (Promega, USA). Each reaction was 

performed in duplicate. The amplification specificities of primers were checked by both 

electrophoresis of the RT-PCR products and analysis of the dissociation curve. In addition, the 
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RT-PCR products were sequenced in order to confirm the amplification specificities.  The qPCR 

data was normalized by suitable reference genes based on (amplification efficiency)-Delta Delta Cq in 

qBasePLUS.   

2.7.! Small RNA libraries, sequencing and data analysis of virus-derived 

siRNA 

The RNA samples were collected from whole body of 2 dpi IAPV (20 particles per bee) and 

SBPV (20,000 particles per bee) for small RNA sequencing. The PBS injected bees was also 

included as control. For each virus and control, four biological replicates were sequenced by the 

NXTGNT sequencing platform from the Ghent University. Concentration and quality of the total 

extracted RNA was checked by the Quant-iTTM RiboGreen® RNA assay kit (Invitrogen, USA) 

and the RNA 6000 pico chip (Agilent Technologies, USA). Subsequently, one microgram of 

total RNA was used to start the library preparation by TailorMix miRNA Sample Preparation Kit 

v7 (SeqMatic, USA). Library preparation was carried out according to the manufacturer's 

instructions. The tRNA was added as carrier to minimize the loss of RNA via tube interaction. 

Libraries were quantified by qPCR, according to Illumina's protocol 'Sequencing Library qPCR 

Quantification protocol guide' (version February 2011). A high sensitivity DNA chip (Agilent 

Technologies, USA) was used to control the library's size distribution and quality. Single-end 

index 50 bp sequencing was performed on an Illumina MiSeq sequencer by loading 7 pM of each 

sample on the flowcell. A 10% PhiX spike-in was added as control.  

 Ambiguous and low quality bases and adaptor sequences were trimmed from the sequencing 

reads using CLC Genomics Workbench 7.0.2. No ambiguous bases were allowed and a quality 

setting of 0.05 was applied. Reads smaller than 15 bp after trimming or reads containing more 

than 10% of bases with Phred quality score lower than 20 were filtered with CLC Genomics 
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Workbench 7.0.2 and fastX-toolkit 0.0.13.1, respectively. The distribution of vsiRNAs was 

obtained by mapping reads to the IAPV (EU436423.1) and SBPV (GU938761.1) nt reference 

genomes using Bowtie 1.0.0 in 'best' mode with a seed length of 20. Maximum one mismatch 

was allowed in the seed, and two mismatches in the whole read sequence.   

2.8.! DsRNA synthesis and gene silencing optimization  

A fragment of each target gene was amplified by PCR with target gene sequence specific primers 

plus T7 promoters (primers in supplementary table S1). These partial DNA templates of each 

gene were purified by E.Z.N.A.® Cycle-Pure Kit (Omega, USA), and were sequenced in order to 

confirm their specific amplifications. Then, one microgram of template was used to synthesize 

dsRNA according to the guideline of MEGAscript® RNAi Kit (Invitrogen, USA). The 

concentration and quality of each dsRNA were verified by Nanodrop and electrophoresis on 1.5% 

agarose gel. Based on experiments on successful silencing of six different genes, inlcuidng Hop, 

PPIA, Dicer-1, Dicer-2, Sid, and Vago (supplementary data Figure S1). We found out that 20 µg 

dsRNA in 20 µl /injection per bee/post 2 days injection can obtain effective gene silencing. The 

dsRNA was injected in the side of soft white-like cuticle between the 1st and 2nd abdominal 

segments into five to eight day old workers. The abdomen of each individual was collected for 

RNA isolation. The same procedure for dsGFP injection served as a negative control. The mock 

(no treatment) and elution buffer (provided by the dsRNA synthesis kit) were included as the 

control to check the possible effect of pure injection and dsGFP, respectively.  

2.9.! The effect of silencing Dicer-2 on the RNAi efficiency and virus infection 

We used “RNAi of RNAi” approach to investigate whether silencing of Dicer-2 influenced the 

RNAi efficiency. First we silenced Dicer-2 by injection of dsDicer2 (dsGFP serves as a control). 

After two days, the second injections were performed with dsPPIA (again with dsGFP as a 
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control) for silencing PPIA. Subsequently, the samples were collected for RNA extractions. The 

silencing efficiency of PPIA was used to evaluate if pre-silencing of Dicer-2 was biologically 

significant to influence the later gene silencing efficiency. Two reference genes, RPL23 and UBI, 

were used to normalize the expression of PPIA as the most stable reference gene (Niu et al., 

2014a) by qBase (Hellemans et al., 2007). A similar approach was applied to check the effect of 

pre-silencing of Dicer-2 on the amount of viral gcn.  

3.!Results  

 

3.1.! High mortality after IAPV injection and low mortality after SBPV 

injection 

IAPV caused extremely high mortality regardless of the amount of viral particles injected 

(Figure 1A), as there was no significant difference among 20, 200, and 2,000 particles injected 

(n=15~20 per treatment). All the IAPV injected bees died within 8 days, while PBS injection 

caused no mortality. In addition, feeding of high IAPV dose (1x108) also led to a ~80% mortality 

within two weeks (supplementary data Figure S2). In contrast, SBPV showed a marginal 

mortality of less than 30% after injection of 200,000 virus particles (Log Rank p<0.046, Breslow 

p<0.045). Injection of lower viral amounts (20,000 and 2,000 SBPV particles) resulted in few 

dead bees, which showed no significant difference in mortality with the PBS control (Fig 1B). 
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Figure 1. Survival percentage of bumblebees upon different viral injection doses and the 
genome copy number (gcn) during infection period.  
 
(A): survival percentage of bumblebees upon IAPV injection (doses ranging from 20~2,000 
particles). (B): survival percentage of bumblebees upon SBPV injection (doses ranging from 
2,000 ~ 200,000 particles). Age fixed adult bees were used to perform injections and 15~20 
biological replicates were included in each dose injection. PBS injected bees were used as 
control. The mean of survival percentage was based on three repeats and the error bar 
represented the standard error of mean.  (C): quantification of IAPV and SBPV gcn during 
infection period. A number of 20 and 20,000 particles were injected per bee for IAPV and SBPV, 
respectively. The means of each gcn were represented based on Log10 transformation and the 
error bar represented the standard error of mean. 
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3.2.! Analysis of reference gene stability in bumblebee   

For the 1st series of experiments, the M values calculated by GeNormPLUS were less than 0.5 for 

all of the five candidate reference genes in whole bodies, guts and remnants, while in the heads 

the M values of three of the candidate genes (RPL23, UBI and ELF1α) were less than 0.5 (Table 

1). When analyzing RT-PCR data from all the samples in 1st series together, all reference genes 

had an M value higher than 0.5 and ranked from the most stable (lowest M value) to the least 

stable (highest M value) as: PPIA<TBP<RPL23<UBI<ELF1α (Table 1). For the 2nd series of 

experiments, concerning the virus-infection time course, we analyzed the stability of the 

reference genes at 8, 24, 48, 72 h after injecting the bumblebees with IAPV. The IAPV transcript 

levels in the 8 h and 24 h post-inoculation samples were below the detection limit of RT-PCR 

and comprised the ‘low IAPV’ samples, while the 48 h and 72 h post-inoculation samples 

comprised the ‘high IAPV’ samples (Figure 2A – IAPV inoculation). The IAPV detection limit 

(1x105 particles/bee) was determined by spiking a virus-free bumblebee extract with 1×107 IAPV 

particles, purifying the RNA and preparing a ten-fold serial dilution of the RNA prior to RT-PCR 

(Figure 2A – IAPV particles). This detection limit corresponds to ~2 IAPV cDNA molecules per 

PCR reaction (i.e. close to the theoretical detection limit of PCR), after accounting for the 

different dilution factors associated with RNA extraction, DNAse treatment, cDNA synthesis 

and PCR. As shown in Table 1, at 8, 48 and 72 h post-inoculation, most of the candidate 

reference genes were relatively stable, with M values less than 0.5. Although at 24 h post-

inoculation the M values of all candidate reference genes were elevated relative to the other time-

points, while that of PPIA stayed below 0.5. When combining all IAPV- and control-injected 

samples into a single analysis, PPIA, RPL23 and UBI were the most stable reference genes, all 

with M values below 0.5 (Table 1). To assess the effect of virus infection on reference gene 
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stability, we combined only the virus infected samples from all time points into a single analysis. 

These results indicated that RPL23 and PPIA were the two most stable internal reference genes.   

 

 
 
Figure 2. IAPV detection and determination of optimal number of reference genes.  
 
(A) left: IAPV detection threshold determination using dilution series of IAPV particles; right: 
IAPV detection at different post-injection time points. (B) Determination of optimal number of 
reference genes for all samples of each series. 
 
The results from the data analysis using GeNormPLUS were compared with those obtained using 

NormFinder, an alternative program for analyzing the stability of potential internal reference 

genes. The rankings of the five candidate internal reference genes for individual body parts (1st 

series) and individual post-inoculation time points (2nd series) slightly differ between the two 

analyses except the whole body group (Table 1). This in itself is not unexpected, since the two 

analyses use different algorithms. However, both algorithms identify PPIA and RPL23 as the 
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best two internal reference genes for IAPV infection studies in bumblebees and these are also 

among the top three genes identified by both algorithms for body parts-specific studies. One 

remarkable observation for the body parts-specific studies (1st series) was the stability values 

were (with a few exceptions) well below 0.5 for individual tissues or whole body extracts, but 

above 0.5 when the data was pooled into a single analysis indicated by GeNormPLUS.  We 

therefore evaluated, using GeNormPLUS, whether the use of multiple reference genes could 

improve the normalization in such cases. This was done by calculating the pairwise variation 

Vn/n+1, which measures the effect of adding extra reference gene on the normalization factor (the 

geometric mean of the expression values of selected reference genes). So the value of Vn/n+1 was 

equal to the ratio of two sequential normalization factors through stepwise inclusion of more 

reference genes. None of the Vn/n+1 values dropped below the recommended upper threshold of 

0.15 (Vandesompele et al., 2002), suggesting that extra candidate reference genes are needed for 

stabilizing the normalization of RT-qPCR in gene expression analysis when grouping the data 

from various body parts and whole body extracts together. We also calculated the Vn/n+1 for all 

samples of the 2nd series (Figure 2B), where bumblebees were analyzed at different time 

intervals after IAPV infection. The combined data of all IAPV-infected and control samples 

suggested that just three internal reference genes (PPIA, RPL23 and UBI) were sufficient to 

normalize the data for all samples and that including a fourth reference gene would not improve 

normalization. To sum up, PPIA was the single most optimal internal reference gene for IAPV 

infection studies in bumblebees, due to its good stability at individual time intervals after virus 

infection, as well as for all time intervals combined, while the PPIA-RPL23-UBI combination 

was optimal and fully sufficient for normalization of IAPV infection experiments when using 

multiple reference genes. 
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Table 1. Ranking of the stability for the five candidate internal reference genes investigated 
in two different series of samples.  
 

 
The data were a nalyzed by both GeNormPLUS and Normfinder, The stability values are given 
between parentheses.   

Method First series: Samples of virus-free whole body and body parts of Bombus terrestris  

Ranking 
Whole 
Body Head Gut Remnants 

Whole 
Body/Head/Gut/Remnants 

 
 

GeNorm
PLUS 

1 
PPIA 
(0.194) 

RPL23 
(0.300) 

RPL23 
(0.145) 

PPIA 
(0.195) PPIA (0.652) 

2 TBP (0.196) UBI (0.346) 
PPIA 
(0.151) TBP (0.213) TBP (0.655) 

3 
ELF1α  
(0.220) 

ELF1α  
(0.400) TBP (0.164) 

RPL23 
(0.244) RPL23 (0.696) 

4 
RPL23 
(0.282) 

PPIA 
(0.542) UBI (0.196) UBI (0.389) UBI (0.857) 

5 UBI (0.401) TBP (0.704) 
ELF1α  
(0.347) 

ELF1α  
(0.493) ELF1α (1.326) 

Normfin
der 1 TBP (0.115) 

RPL23 
(0.005)  

RPL23 
(0.057) 

PPIA 
(0.027) TBP (0.173) 

2 UBI(0.144) TBP (0.018) 
ELF1α 
(0.061) 

RPL23 
(0.027) RPL23(0.241) 

3 
RPL23 
(0.207) 

PPIA 
(0.036) 

PPIA 
(0.071) TBP (0.155) PPIA (0.339) 

4 
ELF1α 
(0.235) UBI(0.159) TBP (0.081) UBI(0.398) UBI(0.357) 

5 
PPIA 
(0.260) 

ELF1α 
(0.706) UBI(0.123) 

ELF1α 
(0.400) ELF1α  (0.669) 

 Second series: Samples of whole bodies of Bombus terrestris at different time intervals after IAPV 
infection  

 Ranking 8 h  24 h  48 h  72 h  8/24/48/72 h  
 
 

GeNorm
PLUS 

1 UBI (0.278) 
PPIA 
(0.426) 

PPIA 
(0.400) UBI (0.316) PPIA (0.483) 

2 
ELF1α 
(0.301) TBP (0.511) 

RPL23 
(0.400) 

RPL23 
(0.319) RPL23 (0.491) 

3 
RPL23 
(0.309) 

RPL23 
(0.565) 

ELF1α  
(0.402) 

PPIA 
(0.359) UBI (0.498) 

4 
PPIA 
(0.388) UBI (0.632) UBI (0.473) TBP (0.468) ELF1α  (0.566) 

5 TBP (0.516) 
ELF1α 
(0.722) TBP (0.520) 

ELF1α  
(0.622) TBP (0.651) 

Normfin
der 1 

RPL23 
(0.075) PPIA(0.016) 

RPL23 
(0.059) 

PPIA 
(0.129) PPIA (0.138) 

2 
PPIA 
(0.079) 

RPL23(0.08
9) 

PPIA 
(0.061) 

RPL23 
(0.192) RPL23 (0.262) 

3 UBI(0.150) UBI(0.106) UBI(0.180) 
ELF1α  
(0.210) UBI(0.289) 

4 
ELF1α  
(0.164) 

ELF1α  
(0.331) 

ELF1α 
(0.209) UBI(0.213) ELF1α  (0.385) 

5 TBP (0.274) TBP (0.344) TBP (0.345) TBP(0.575) TBP (0.496) 
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3.3.! Fast replication of IAPV and SBPV after injection 

To know the replication dynamics of viruses after injection into bees, we checked viral gcn at 

various time points. Based on the standard curves of the two viruses (supplementary data Figure 

S3), we calculated viral gcn at different time points, i.e. 8 hours, 1, 2, and 3 days for IAPV, and 8 

hours, 1, 2, 3, 7, and 13 days for SBPV (Figure 1C). Within one dpi we could not yet detect 

IAPV (n=8) and SBPV (n=9). Our theoretical detection limit was around 104 viral particles since 

the sample collection through the processes of RNA extraction, DNase treatment, cDNA prep 

and qPCR (Niu et al., 2014a). After one dpi, the gcn for both viruses rapidly increased. IAPV 

reached the highest gcn within two days, while it took longer for SBPV to reach the highest 

plateau. At two dpi, the viral gcn of IAPV was already ~284 times higher than that in SBPV at 

two dpi (t-test: t=-5.521, df=6, p=0.001).  

Bees injected with 20,000 particles of SBPV showed no mortality (Figure 1B) but the relative 

viral load in these infected bees reached a plateau around three dpi (Figure 1C). Based on viral 

detection by RT-PCR, lower dosage of SBPV (less than 2,000 particles) was not able to 

successfully infect the host in our study (data not shown). In contrast, IAPV acts as a very 

virulent virus to bumblebees after injection, which showed a noticeable mortality already after 

two dpi. It should be pointed out that the mortality between 2 and 3 dpi could somehow influence 

the detection of IAPV gcn at samples collected in 3 dpi. We could only use bees which were still 

alive at 3 dpi to detect viral gcn because we could not perform normalization with stable internal 

reference gene in dead bees. Therefore, we speculated that IAPV could still reach higher titers in 

bumblebees. IAPV gcn was sharply increased between 1 and 2 dpi, extra time points within this 

period could improve more detailed characterizations of IAPV replication dynamics. 
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3.4.! Induction of Dicer-2 expression after infection with virulent IAPV and 

avirulent SBPV  

Next, we followed the gene expression of two key components (Dicer-2 and Ago-2) of the 

siRNA pathway. The fold change of each gene expression at each dpi (Figure 3) was represented 

by the ratio of the normalized expression of the gene in the virus injected bees over the PBS 

injected bees. For each dpi we had virus injected bees (n =4~5) and PBS injected bees (n=4~5). 

There was a significant induction (t-test: t=9.127, df=6, p<0.001) of Dicer-2 expression (~3.3 

fold) at 2 dpi of IAPV on the level of whole body (Figure 3A). We did not detect a significant 

induction of Dicer-2 expression after SBPV infection at level of whole body, but a significant 

induction (t-test: t=-5.060, df=14, p<0.001) of Dicer-2 was detected in the abdomen 3 dpi of 

SBPV (n=8) (Figure 4A). Upon IAPV feeding (n=8) we also detected a significant upregulation 

(t-test: t=3.853, df=9.5, p=0.004) of Dicer-2 (Figure 4B). However, the expression of Ago-2 

upon the infection of two viruses was stable in all detected time points (Figure 3B).  
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Figure 3. Fold changes of two core genes in the siRNA pathway upon IAPV and SBPV 
infection.  
 
(A): fold change of Dicer-2 expression upon viral infections; (B): fold change of Ago-2 
expression upon viral infections. A number of 20 and 20,000 particles were injected per bee for 
IAPV and SBPV, respectively.  The fold changes of gene expression were equal to the ratio of 
the relative expression of each gene in virus infected samples over the relative expression of this 
gene in control samples (PBS injected bees). The relative expression of each gene was calculated 
based on internal reference gene PPIA. The error bar represented the standard error of mean. The 
level of significance was calculated by T-test and p< 0.05 was labelled with asterisks (*). 
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Figure 4. The relative expression of Dicer-2.  
 
(A): Dicer-2 expression in the abdomen of SBPV injected bees. An amount of 20,000 particles 
SBPV were injected per bee and the abdomen of each individual was collected at 3 dpi for RNA 
extraction. The same procedure for PBS injected bees was used as a control. (B): Dicer-2 
expression in IAPV infected bees through feeding. An amount of ~108 particles IAPV (mixed 
with sugar water instantly before feeding) was ingested per bee. Post 9 days of IAPV feeding, 
RNA was isolated from the abdomens of individual bees, and those fed with PBS served as the 
control. ). The relative expression of each gene was calculated based on internal reference gene 
PPIA. The error bar represented the standard error of mean. The level of significance was 
calculated by T-test and p< 0.05 was labelled with asterisks (*). 
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3.5.! Production of vsiRNAs during virus infection 

In order to identify further evidences of the siRNA pathway activity, we sequenced the small 

RNAs of viral infected samples. Our results showed that in IAPV infected samples the range of 

the proportion of vsiRNA among the total small RNAs was 1.5~21.6%, which was 0.1~1.3% in 

SBPV infected samples (Table 1). Looking at the length distribution of vsiRNAs, it exhibited a 

high peak at 22 nt-long vsiRNAs in all IAPV infected samples, which may represent as Dicer-2 

products (Figure 4A). Intriguingly, the increase of 22 nt-long vsiRNAs derived from IAPV 

antigenome but not genome showed the correlation with virus titers in four biological controls of 

IAPV infected samples. For SBPV, the peak at 22 nt-long vsiRNAs was not observed and only 

few antigenome derived vsiRNA were detected (Figure 4B), and the distribution of 18~27 nt-

long vsiRANs of SBPV mainly derived from genome (supplementary data Figure S3). The 

results also showed that IAPV vsiRNAs (Figure 5 and supplementary data Figure S4) covered 

most regions of the viral genome and antigenome. We also observed some vsiRNAs with high 

counts. These observed high counts were not artifacts of small fragments of host RNA with high 

similarity to the IAPV genome because the small RNAs of SBPV and PBS samples did not show 

similar peaks when mapping to IAPV genomes. 
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Table 2: The number of total sequenced small RNAs (sRNAs) and virus-derived sRNAs 

(vsRNAs). 

Sample Number of sRNA (*) 
Number of vsRNAs  

(IAPV or SBPV) 
vsRNA/ sRNA (%) 

IAPV1 775,032 167,230 21.6 

IAPV2 788,819 11,451 1.5 

IAPV3 764,809 16,998 2.2 

IAPV4 807,746 65,502 8.1 

SBPV1 633,488 606 0.1 

SBPV2 577,622 5,873 1.0 

SBPV3 911,559 1,072 0.1 

SBPV4 791,227 10,178 1.3 

 

(*) total siRNAs after clean-up, i.e. after adapter and quality trimming and rRNA/tRNA filteri



 

57!
!

 

Figure 5. The distribution (in length: percentage of total number of virus-derived small 
RNAs) of virus-derived small RNAs.  
 
(A): length distribution of IAPV-derived small RNAs and viral genome copy number in each 
biological replicate; (B): length distribution of SBPV-derived small RNAs and viral genome 
copy number in each biological replicates. The sequenced samples were collected from whole 
body at 2 dpi injection of IAPV (20 particles per bee) and SBPV (20,000 particles per bee). The 
gcn in each sample was represented by Log10 transformation. The sample SBPV1 had the least 
gcn (the absolute value was very close to 0 based on standard curves), but the status of infection 
by SBPV could be detected by RT-PCR in this sample. 
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Figure 6: distribution of 18~27nt vsiRNA on SBPV genome and antigenome. 
 
The sequenced samples were collected from whole body at 2 dpi injection of SBPV (20,000 particles per bee). The counts of vsiRNAs 
derived from SBPV genome represented by positive number and in blue bars, and for those derived from SBPV antigenome 
represented by negative number and in red bars.  
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Figure 7. The distribution of ~22 nt-long small RNAs (vsiRNA) on regions of IAPV genome and antigenome.  
 
The sequenced samples were collected from whole body at 2 dpi injection of IAPV (20 particles per bee). The counts of vsiRNAs 
derived from IAPV genome represented by positive number and in blue bars, and for those derived from IAPV antigenome 
represented by negative number and in red bars.   
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Figure 8: distribution of 18~27nt vsiRNA on IAPV genome and antigenome. 

The sequenced samples were collected from whole body at 2 dpi injection of IAPV (20 particles per bee). The counts of vsiRNAs 
derived from IAPV genome represented by positive number and in blue bars, and for those derived from IAPV antigenome 
represented by negative number and in red bars.  
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3.6.! Dicer-2 silencing  

The amount of dsRNA required to sufficiently silence genes in bumblebees was optimized in 

pre-experiments. It turned out that a high dose of dsRNA was needed (~20 µg). The high dose of 

dsRNA used to silence genes was also reported in some experiments of bumblebees and 

honeybees (see table 1 in review (Niu et al., 2014b)). Compared with dsGFP treatment, we could 

get ~60% down-regulation of Dicer-2 (Figure 6A: silencing effect). However, this result was 

complex: injection of dsGFP can actually induce the expression of Dicer-2 up to 43 or 50% 

compared with the injection of elution buffer or mock (Figure 6A: induction effect), respectively. 

A same level of induction to Dicer-2 was also observed by injection of dsSBPV (SBPV 

sequence-specific dsRNA) or by injection of dsPPIA which can silence host gene PPIA (Figure 

6A: induction effect). Therefore, in general, dsRNA (such as random control gene: dsGFP, virus: 

dsSBPV, or host: dsPPIA) induced the transcriptional level of Dicer-2. However, in the case of 

injection of dsDicer2, the expression of Dicer-2 was significantly lower compared with injection 

of dsGFP, dsSBPV or dsPPIA, but not significantly different with the mock or elution buffer 

injected groups (ANOVA: F=15.191, p<0.001 , multiple comparisons- Tukey HSD). It has to be 

admitted that, silencing of Dicer-2 can reach ~60% depletion of its expression in our setup, but 

biologically, it is as the same level as normal conditions (mock or elution buffer). Therefore, our 

“silencing of Dicer-2” should only be regarded in the context of the appropriate control-dsGFP.  
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Figure 9. Silencing of Dicer-2 and its effect on RNAi efficiency.  
 
 (A): expression of Dicer-2 after injection of different dsRNAs. A total of 20 µg (in 20 µl) of 
dsRNA was injected per bee, and a same dose of dsGFP served as control. The abdomen of each 
individual was collected for RNA isolation. The mock (no treatment) and elution buffer 
(provided by the dsRNA synthesis kit) were included as the control for effect of pure injection 
and dsRNA injection, respectively. DsDicer-2 (Dicer-2 sequence-specific dsRNA) was the 
silencing treatment, and dsGFP, dsSBPV (SBPV sequence-specific dsRNA) and dsPPIA (PPIA 
sequence-specific dsRNA) were used as controls. The expression of Dicer-2 was normalized by 
reference genes RPL23 and UBI. The significant difference of Dicer-2 expression (p<0.05) 
among different treatments were represented by different capital letters (ANOVA: F=15.191, 
p<0.000, multiple comparisons-Tukey HSD). Compared with mock and elution buffer, the 
injections of dsPPIA, dsSBPV, and dsGFP could induce the expression of Dicer-2, referred as 
“induction effect”. In comparison with other dsRNA injections, the injection of dsDicer-2 could 
reduce the expression of Dicer-2, referred as “silencing effect”. (B): silencing efficiency of PPIA 
through pre-silencing of Dicer-2 (1st injeciton-2nd injection, GG: dsGFP-dsGFP; GP: dsGFP-
dsPPIA; DG: dsDicer2-dsGFP; DP: dsDicer2-dsPPIA (n=5). The significant difference (p<0.05) 
among different treatments were represented by different capital letters (ANOVA: F=84.062, 
p<0.001, multiple comparisons-Tukey HSD): p = 0.015 (GP vs. DP), p = 0.08 (GG vs. DG), p < 
0.001 for other comparisons).  
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3.7.! Influence to gene silencing efficiency and virus infection through pre-

silencing of Dicer-2 

This experiment was conducted to test whether the silencing of Dicer-2 could inhibit the RNAi 

efficiency. Two injections were included: the Dicer-2 silencing was achieved through the 1st 

injection and the later PPIA silencing (PPIA as the indicator) was performed by the 2nd injection. 

This design created four treatments (1st injection-2nd injection): dsGFP-dsGFP, dsGFP-dsPPIA, 

dsDicer2-dsGFP, and dsDicer2-dsPPIA (n=5), in which we measured PPIA expression at two 

days after the 2nd injection (Figure 6B) (ANOVA: F=84.062, p<0.001, p value for each 

comparison calculated by Tukey HSD). First, we noticed a significant silencing of PPIA in 

Dicer-2 pre-silenced samples (dsDicer2-dsGFP vs. dsDicer2-dsPPIA: p<0.001) and non-pre-

silenced samples (dsGFP-dsGFP vs. dsGFP-dsPPIA: p<0.001). This could be regarded as a 

successful PPIA silencing in bumblebees. A second control was the stable expression of PPIA 

when comparing dsGFP-dsGFP and dsDicer2-dsGFP, meaning that the injection of dsDicer2 had 

no effect on the expression of PPIA. Therefore, the significant lower expression of ~21% of 

PPIA in dsGFP-dsPPIA compared with dsDicer2-dsPPIA (p=0.015) was a consequence of the 

pre-silencing of Dicer-2 (Figure 6B). This result indicated the pre-silencing of Dicer-2 could 

influence RNAi efficiency. Under this basis, we tested whether Dicer-2 silencing could influence 

the amount of viral gcn. By performing the same “RNAi of RNAi” strategy, the gcn level was 

5.04 and 5.11 on dsGFP and dsDicer2 injected samples (n=17-18) for IAPV (Figure 7A), 

respectively. It was 1.51 and 1.34 for the SBPV (figure 7B) gcn on dsGFP and dsDicer2 injected 

samples (n=11~12). For both viruses, compared with the control groups of dsGFP, pre-silencing 

of Dicer-2 did not significantly influence the amount of viral gcn (Figure 7).  

Although pre-silencing of Dicer-2 (~60%) was achieved before the viral inoculations, virus 
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infection could also influence the expression of Dicer-2. Indeed, the expression of Dicer-2 was 

induced by IAPV and SBPV infections. Our results showed the remaining Dicer-2 silencing 

proficiency was 23.5% with significant difference in dsGFP compared with dsDicer2 (T-test: 

t=3.043, df=30, p=0.005) in IAPV infected samples, and the remaining Dicer-2 silencing 

proficiency was 49.5% with significant difference in dsGFP compared with dsDicer2 (T-test: 

t=4.419, df=14.354, p=0.001) in SBPV infected samples (supplementary data Table S2). This 

reduced Dicer-2 silencing proficiency compared with ~60% pre-silencing may be partially 

influenced by reduced silencing effects as longer time of post injection of dsRNA. 
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Figure 10. Genome copy numbers (gcn) of viruses after silencing of Dicer-2. 

(A): IAPV gcn after silencing of Dicer-2. Firstly, dsDicer2 was injected to silence Dicer-2, post 
48h injection, then IAPV (20 particles per bee) was injected to inoculate bees. Subsequently, 
RNA was collected post 36h injection of IAPV for measuring viral gcn. DsGFP injection was 
included as control; (B): SBPV gcn upon pre-silencing of Dicer-2. Firstly dsDicer2 was injected 
to silence Dicer-2, post 48h injection, then SBPV was injected to inoculate bees. Subsequently, 
RNA was collected post 48h injection of SBPV for measuring viral gcn. DsGFP injection was 
included as control. The means of each gcn were represented based on Log10 transformation and 
the error bar represented the standard error of mean. The level of significance was tested by T-
test. 



 

66#
#

 

 

Table 3: Dicer-2 expressions in the samples collected to detect the effect of pre-silencing of 

Dicer-2 on viral genome copy numbers (samples associated with Figure 7) 

  

Experiment    

Treatment 
Relative expression  
Dicer-2  
(mean ± sem) 

Test 

Remaining  
Dicer-2 
silencing 
proficiency 

Pre-silencing 
Dicer-2 to test 
effect on IAPV 

dsGFP-IAPV 1.13 ± 0.08 (T-test: t=3.043, 
df=30, p=0.005) 23.52% dsDicer2-IAPV 0.87 ± 0.04 

Pre-silencing 
Dicer-2 to test 
effect on SBPV 

dsGFP-SBPV 1.23 ± 0.12 (T-test: t=4.419, 
df=14.354, 
p=0.001) 49.44% dsDicer2-SBPV 0.62 ± 0.06 
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4.!Discussion 

 

The immune response in insect is a cascade of protection levels within different organ systems 

and tissue layers (Buchon et al., 2014). Tissues like the gut in the digestive system, the 

Malpighian tubules in the excretory system, and trachea in the respiratory system, are the first 

barriers for the virus to break. Each organ system has its own local immunity trying to prevent 

the initial infection. Once the pathogen enters the circulatory system a systemic immune 

response will be activated. Bee viruses often infect multiple tissues without inducing obvious 

symptoms (covert infection pattern) in honeybees (Aubert et al., 2008). When the local immunity 

is passed, the systemic immunity will play an important role in the attenuation of viral replication 

to prevent the overflow from a covert infection toward a diseased bee with overt symptoms. In 

our current experimental setup, IAPV acts as a highly lethal infection in bumblebees, it replicates 

fast and kills the bee within a few days. In contrast, as a non-lethal infection, SBPV, replicates 

fast but slower compared to IAPV. Screenings of wild bumblebees have also retrieved these two 

viruses, but symptoms in wild bumblebees have not yet been reported (Fürst et al., 2014; Levitt 

et al., 2013; McMahon et al., 2015; Singh et al., 2010). Here we investigated the involvement of 

the siRNA pathway for these two viruses. We found that both virus infections induced the 

transcriptional level of Dicer-2 in the bumblebee. Intriguingly, we also detected the induction of 

Dicer-2 expression by injection of different dsRNAs. In bumblebee and honeybee, it is suggested 

that non-specific dsRNA can mediate certain antiviral responses, but the mechanism is still 

unclear (Flenniken and Andino, 2013; Piot et al., 2015). DsRNA, a pathogen-associated 

molecular pattern (PAMP) recognized by the host immunity system, can influence the 

expressions of genes in bees (Flenniken and Andino, 2013; Nunes et al., 2013). The up-
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regulation of Dicer-2 upon different dsRNAs (dsGFP/dsPPIA/dsSBPV) in the current study may 

suggest that the non-specific dsRNA mediated antiviral responses could be partially associated 

with the siRNA pathway. However, it remains to be investigated whether the expression of 

Dicer-2 is induced because of a PAMP function of dsRNAs, or because of a positive feedback 

mechanism sensing the Dicer-2 processing in the host, or other unknown off-target effects of 

dsRNAs.  

For RNA viruses, the major source cleaved by Dicer-2 is viral-derived dsRNAs (Marques et al., 

2013; Sabin et al., 2013; Siu et al., 2011). In honeybees, samples from the field and artificial 

infections were found to contain vsiRNAs with matches to IAPV, KBV, DWV and/or Varroa 

destructor virus-1 (Chejanovsky et al., 2014; Ryabov et al., 2014; Wang et al., 2013). However, 

only limited samples from wild bumblebees have been investigated, which showed no detectable 

vsiRNAs (Wang et al., 2013). In our artificially infected bumblebees we detected vsiRNAs from 

both IAPV and SBPV. Nevertheless, only samples infected with IAPV showed the typical 

predominant peak of 22 nt-long vsiRNAs which may suggest the Dicer-2 activity. We noticed 

that 22 nt-long of vsiRNAs showed a high proportion of the antigenome. In the four biological 

replicates, the increase of 22 nt-long vsiRNAs derived from IAPV antigenome but not genome 

showed the correlation with virus titers. In other word, the higher IAPV gcn in sequenced sample, 

the higher proportion of 22 nt-long vsiRNAs derived from antigenome but not genome. This 

suggests the increased virus titer in infected bumblebees tends to generate more 22 nt-long 

vsiRNAs derived from antigenome than that from genome. Strikingly, in IAPV infected 

honeybees the 22 nt-long vsiRNA was also showed a high proportion from the antigenome 

(Chejanovsky et al., 2014). However, in DWV infected honeybees, it was shown that the number 

of 21~22 nt-long vsiRNAs originating from the genome were 3 to 4 times highly compared to 
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antigenome (Ryabov et al., 2014). The dominance of vsiRNAs with rather a genome orientation 

over an antigenome is widely reported in virus infected insects (Marques et al., 2013; Sabin et al., 

2013; Schirtzinger et al., 2015). In some plant RNA viruses, it has already been observed that 

different viruses induced different vsiRNA polarity, which speculate that the mechanism of 

strand polarity would be virus specific rather than host dependent (Pantaleo et al., 2010). It is 

well-known that some dicistroviruses could inhibit the antiviral activity of the siRNA pathway 

(Nayak et al., 2010; van Rij et al., 2006). Interestingly, it has been suggested that IAPV encoded 

a putative viral suppressors of RNAi (VSR) to impair the honey bee antiviral response of RNAi 

(Chen et al., 2014). The existence of this VSR is based on the presence of a conserved protein 

cleavage site, encompassing the consensus octamer DvExNPGP in IAPV (Chen et al., 2014). 

Accordingly, the upstream RNA genome of this consensus octamer DvExNPGP encodes a 

protein, namely 1A, which, in two closely related viruses of IAPV, i.e. Drosophila C virus (DCV) 

and Cricket paralysis virus (CrPV), acts as viral VSRs (Nayak et al., 2010; van Rij et al., 2006). 

Specifically, DCV-1A inhibits the activity of Dicer-2 to generate vsiRNA from virus related 

dsRNAs (van Rij et al., 2006). Whereas, CrPV-1A acts through inhibition of the slicer activity of 

mature Ago-2 associated RISC (Nayak et al., 2010). However, it needs to be pointed out that the 

presence of VSR in IAPV is still speculative and is only based on in silico similarity because the 

biological evidence of VSR in IAPV (Chen et al., 2014) could also alternatively be explained by 

different target accessibility of the siRNAs used in their study to target different parts of viral 

genome (Kieft, 2008; Ren et al., 2012; Shao et al., 2007) or by effects on the initiation of whole 

mRNA degradation of the viral genome leading to no or less translation of viral polyproteins 

(Houseley and Tollervey, 2009; Niu et al., 2014b).  

As an avirulent virus in the current study, SBPV infected samples showed the induction of 
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Dicer-2 expression, while we did not detect possible Dicer-2 processing products- 22 nt-long 

vsiRNAs. The detection of possible Dicer-2 processed vsiRNA could be influenced by the total 

amount of virus. For example, the amount of gcn in SBPV was much lower than that in 

sequenced samples of IAPV. Indeed, the percentage of vsiRNAs within the total sequenced 

siRNA was much lower than that from IAPV samples. The samples of SBPV in 3 dpi showed 

relatively equivalent viral gcn compared with samples of IAPV infection in 2 dpi, therefore, 

small RNA sequencing on these samples may be useful to see whether SBPV infection can lead 

to the production of ~22 nt-long vsiRNAs peak. However, with up to 10,178 of siRNAs in one of 

the SBPV sequenced samples which is relatively in the same level as one of the IAPV samples 

with 11,451 vsiRNAs (Table 1 and supplementary data Figure S3), it seems we have enough 

sequencing reads to see the results of Dicer-2 processing in SBPV infection if it would be present. 

The low number of vsiRNAs derived from SBPV may suggest us to explore possible SBPV 

encoded VSR in future studies.  

The “RNAi of RNAi” approach resulted in a different Dicer-2 expression of ~60% between the 

dsGFP and dsDicer2 treatments. This could significantly influence the silencing efficiency of the 

housekeeping gene PPIA, but we did not detect a significant influence to the amount of IAPV 

and SBPV gcn. Taken all evidences together for both viruses, there are several proposed 

explanations for not detecting an effect on viral gcn after pre-silencing of Dicer-2, 1) virus 

replication after injection in both dsGFP and dsDicer2 were so fast that the attenuation 

performed by ~60% differential expression of Dicer-2 was almost negligible. We knew that viral 

infections could induce the expression of Dicer-2 which might hamper some extent of the effect 

provided by pre-silencing of Dicer-2; 2) the undetermined activity downstream of the siRNA 

pathway, especially Ago-2 associated RISC could be more crucial in the case of IAPV infection; 
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Ago-2 another core component of the siRNA pathway,  whose expression is not induced by 

dsRNA injection or viral infection, may be a good candidate to silence in order to study the 

involvement of bumblebee siRNA pathway upon viral infections in further studies. However, the 

possible association of Ago-2 to the miRNA pathway activity (Yang et al., 2014) should be 

considered when the silencing of Ago-2 is adopted to study the antiviral activity of the siRNA 

pathway. 3) together with the absence of a 22 nt-long peak for SBPV, it seems that the siRNA 

pathway may not be sufficient but other pathways could play more important roles in the control 

of SBPV. It should also be noticed that artificial delivery of IAPV specific dsRNA (Hunter et al., 

2010; Maori et al., 2009) or siRNA (Chen et al., 2014) has some rescue effect in honeybees, 

which is likely because of getting a plethora of virus specific dsRNA or siRNA to overshadow 

the effect of viral counterdefense. In addition, ingestion of IAPV specific dsRNA could also 

significantly reduce viral titers in bumblebees (unpublished data).  

At the level of whole body, systemic immunity requires the coordination of various antiviral 

pathways. For instance, the cross-talk between RNAi and Jak/STAT pathway upon virus 

infection is mediated by Vago in a Dicer-2 dependent manner in mosquito (Paradkar et al., 2012). 

Although some evidence show the expression of Vago in honeybee is altered under DWV 

infection (Ryabov et al., 2014), its role in crosstalk is still unknown. It could be that virus 

defense by other pathways is triggered through Dicer-2 processing activity, and these pathways 

are more effective in comparison with the siRNA pathway to combat virus. In addition, the 

insect innate immune response is triggered with recognition of viruses in the form of PAMP or 

stress caused by viruses (Buchon et al., 2014; Lemaitre and Hoffmann, 2007; Wang et al., 2015). 

Different cellular pathways beyond the siRNA pathway are known to be triggered and they are 

possibly involved in virus defense. For instance, Toll, Imd, Jak/STAT, and Jnk, direct 
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involvement of these pathways could compensate the deficiency of the siRNA pathway to some 

extent. Intriguingly, aside from genes of the RNAi pathway (such as Dicer-like, Ago-2), Toll-6 

of the Toll pathway is also up-regulated in IAPV infected honeybees (Galbraith et al., 2015).  

 

5.!Conclusion  

 

Our work provides different evidences to look at the possible involvement of bumblebee siRNA 

pathway upon viral infections, more specifically on possible Dicer-2 mediated antiviral activities 

in the bumblebee upon systemic infection of two different bee viruses. Both viruses replicate fast, 

and the host can cope with SBPV but not IAPV.  The induction of Dicer-2 expression by viruses 

or dsRNA, suggests the increased Dicer-2 transcripts related with virus or dsRNA associated 

stresses. The predominant peak of ~22 nt-long vsiRNAs of IAPV may suggest the processing 

activity of Dicer-2. Although pre-silencing of Dicer-2 in bumblebees can significantly influence 

gene silencing efficiency, it did not influence the viruses’ gcn. Further studies about the 

downstream activity of the siRNA pathway upon virus infection, especially, VSR in inhibition of 

antiviral activity of bee siRNA pathway, and cross-talk of the siRNA pathway with other 

immune pathways, would enhance our understanding of the antiviral activity of the siRNA 

pathway of non-model insects against different viruses.  
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Supplementary materials  

Table S1: Description of primers used in this chapter 

Figure S1. Gene silencing in bumblebees by RNAi 

Figure S2: Standard curves for detecting IAPV and SBPV genome copy number 

Figure S3: Mortality of bees after IAPV feeding  
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Table S1: Description of primers used in this chapter (to be continued) 
 
 

Gene Acronym 
Forward primer 
(5’-3’) 

Reverse Primer 
(5’-3’) 

Amplification 
efficiency 

Elongation factor-
1 α ELF1α  

CCAGGCATGCT
GGTAACATT 

TTTCACGGAGA
TGTTCTTTACG 1.970 

60S ribosomal 
protein RPL23  

GGGAAAACCT
GAACTTAGGAA
AA 

ACCCTTTCATT
TCTCCCTTGTT
A 1.985 

TATA-binding 
protein TBP  

ACTGGAGCAA
AAAGTGAAGA
AGA 

ACATCACAGCT
GCCTACCATAT
T 1.966 

Polyubiquitin  UBI 
GGTATTTGGAT
GCCAGTGATTT 

ATGGGCATTTC
TACCCCTTTTA 2.003 

Peptidylprolyl 
isomerase A  PPIA  

TCGTAATGGAG
TTGAGGAGTGA 

CTTGGCACATG
AAGTTTGGAAT 1.988 

Peptidylprolyl 
isomerase A  

PPIA (dsRNA 
synthesis) 

TAATACGACTC
ACTATAGG 
GCACTGGTGGA
AGGTCCATCT 

TAATACGACTC
ACTATAGGG 
AAGGGAAAAT
GGTGATGATTA
GAA  

Vago Vago (qPCR) 
TGTTACCCTTC
AACGCAATTC 

ACAGATTCCGA
AACGCTGAT 2.012 

Vago 
Vago (dsRNA 
synthesis) 

TAATACGACTC
ACTATAGGG 
AGACCTAGTCC
CGGAAGTCGA
GA 

TAATACGACTC
ACTATAGGGA 
GAGTACGTACG
AATTACAAGAT
CAACT  

tyrosine-protein 
kinase JAK2 Hop (qPCR) 

TGGCACAATGT
GTCTCATCTT 

GAGGTACACA
ACGAGGTCCAG 1.969 

tyrosine-protein 
kinase JAK2 

Hop (dsRNA 
synthesis) 

TAATACGACTC
ACTATAGGG 
AGATGTCCTTT
GTTTCTGCTCT
GGA 

TAATACGACTC
ACTATAGGGAG 
ATGACTGTCCT
TCAGAATCTTG
GA  

Dicer-2 Dicer-2 (qPCR) 

TGGTCAAAACA
TCAAGAACAAC
CA 
 

GATCGGGGCCA
TACGAACAT 
 1.952 

Dicer-2 
Dicer-2 (dsRNA 
synthesis) 

TAATACGACTC
ACTATAGGG 
AGAGCGAAGG
TGTCACCAAAT
GT 

TAATACGACTC
ACTATAGGGAG
A 
GGGTGTGTAAA
GGCCTGCAA  
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Gene Acronym 
Forward primer 
(5’-3’) 

Reverse Primer 
(5’-3’) 

Amplification 
efficiency 

Dicer-1 Dicer-1 (qPCR) 

AGAGGAACAA
ATTTCAAATGA
CGA 

CTGATTCACAC
GCAGGGGAT 1.931 

     

Dicer-1 
Dicer-1 (dsRNA 
synthesis) 

TAATACGACTC
ACTATAGGGAG
A 
TTGGTCAAGCG
ACATGGCAA 
 

TAATACGACTC
ACTATAGGGAG
A 
AATGAGCTTGT
CTATGCTTCGT 
  

Sid 
transmembrane 
family member 1 Sid (qPCR) 

CGAGCCCATCA
ACGGTAGAA 

CGAGCCAAATC
ACAAACGGA  

Sid 
transmembrane 
family member 1 

Sid (dsRNA 
synthesis) 

TAATACGACTC
ACTATAGGGAG
A 
TCATGGCAAAT
CCCCCTTGT 

TAATACGACTC
ACTATAGGGAG
A 
TGGCACAGTTA
TACCGCCTT  

Peptidylprolyl 
isomerase A 

PPIA (dsRNA 
synthesis) 

TAATACGACTC
ACTATAGGGCA
CTGGTGGAAGG
TCCATCT 

TAATACGACTC
ACTATAGGGAA
GGGAAAATGG
TGATGATTAGA
A  

Israeli acute 
paralysis virus 

IAPV (amply 
partial genome) 

CACCAATCACG
GACCTCACA 

ACAGTGTTAGC
TGCAGGACA  

Israeli acute 
paralysis virus IAPV (qPCR) 

CCATGCCTGGC
GATTCAC 

CTGAATAATAC
TGTGCGTATC 1.999 

slow bee paralysis 
virus  

SBPV (amply 
partial genome) 

CCAGGATCGCA
TCCCCTTAG 

TGTTGTCTCCC
ACCTCATGC  

slow bee paralysis 
virus SBPV (qPCR) 

TCCAAGAGCAA
GTATGCGGG 

AGCATCAAAGC
TAATTGCGGA 1.999 

slow bee paralysis 
virus 

SBPV (dsRNA 
synthesis) 

TAATACGACTC
ACTATAGGGAG
AAGACCAGCTG
GAGTTACAGG 

TAATACGACTC
ACTATAGGGAG
ATGTTGTCTCC
CACCTCATGC  
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Figure S1. Gene silencing in bumblebees. 
 Hop (A), PPIA (B), Dicer-1 (C), Dicer-2 (D), Sid (E), Vago (F) in abdomen. After injection of 
20 µg dsRNA in 20 µl per bee we detected a downregulation of 67.6% (T-test: t=7.462, 
df=12.706, p<0.000) of Hop (Figure 4A), 43.2 % (T-test: t=2.218, df=7, p=0.062) of PPIA 
(Figure 4B), 77.2% (T-test: t=-8.881, df=8, p=0.000) of Dicer-1 (Figure 4C), 59.6% (T-test: 
t=7.958, df=24.160, p<0.000) of Dicer-2 (Figure 4D), 30.7% (T-test: t=2.419, df=8, p=0.042) of 
Sid (Figure 4E), and 60.6% (T-test: t=1.997, df=6, p=0.093) of Vago (Figure 4F), respectively, 
compared with the controls of dsGFP injection.  
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Figure S2: Mortality of bees after IAPV feeding  
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Figure S3: standard curves for detecting IAPV and SBPV genome copy number 
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Chapter III- Different expression of Dicer-1�Ago-1, 

and microRNAs upon different viral infections in 

Bombus terrestris 

 

 

 

 

Parts of this chapter are submitted to: 

Niu, J., Meeus, I., Coninck, D.I.D., Etebari, K., Asgari, S., Smagghe, G., 2015. Differential 

expression of microRNAs upon different viral infections in Bombus terrestris. Insect Biochem. 

Mol. Biol. submitted. 
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1.!Introduction 

 

The recent decline of bee populations including wild pollinators poses a threat to global food 

production (Goulson et al., 2015; Potts et al., 2010).  Bee viruses are transmitted among different 

species, which has been particularly described between honeybees and bumblebees (Fürst et al., 

2014; Levitt et al., 2013; McMahon et al., 2015; Singh et al., 2010). The common bee viruses are 

mainly from families of Dicistroviridae and Iflaviridae, which are non-enveloped small 

icosahedral virions covering a positive sense single stranded RNA genome. Currently, viruses 

initially reported to infect the honeybees, such as ABPV, IAPV, KBV, DWV, BQCV, SBPV and 

SBV, are also being identified to infect bumblebees. Commercial colonies of honeybees and 

bumblebees are widely transported which could also disrupt local host-virus interactions in 

sympatric wild bees. Indeed, pathogen spillovers from managed colonies after transportation 

towards wild bees is regarded as a risk, particularly for endangered bee populations (see review 

(Meeus et al., 2011)). 

As one of the major small non-coding RNAs, miRNA play an important role in regulating gene 

expression and influence various biological processes in eukaryotes.  In insects, the miRNA 

pathway has been documented to be involved in different aspects of development, such as 

formation of germ cells, wing, and muscle, neurogenesis, apoptosis, and phenotypic plasticity 

(Asgari, 2013). The miRNA pathway is also well established to be involved in host-pathogen 

interactions (Asgari, 2013; Hussain and Asgari, 2014b). The canonical biogenesis of miRNA 

initiates in the nucleus where monocistronic, bicistronic or polycistronic transcripts are produced. 

These contain stem-loop structures known as the pri-miRNA. The pri-miRNA is cleaved by 
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Drosha and Pasha to liberate the pre-miRNA. After exportation to the cytoplasm, the pre-miRNA 

is cut by Dicer-1 to yield a miRNA duplex. The duplex strands are then sorted and the miRNA 

strand is loaded into RISC which typically includes Ago-1. Then, the mature miRNA binds to 

the target mRNA and leads to mRNA degradation or translational repression (Lucas and Raikhel, 

2013). Besides, there are also non-canonical pathways of miRNA biogenesis, which are Drosha-

independent but can be Dicer-dependent or Dicer-independent (Yang and Lai, 2011).  The 

production and regulatory effects of miRNAs on insect-virus interactions could be complex. The 

first layer of complexity relates to the origin of miRNAs, which could be derived from the host 

or the virus. The second layer of complexity arises from the two-way interplay, meaning host 

encoded miRNAs can target genes from both host and viral genes and vice versa for virus 

encoded miRNAs (Asgari, 2015).  

Differential expression of miRNAs has been associated with honeybee development and social 

behaviors (Behura and Whitfield, 2010; Greenberg et al., 2012; Liu et al., 2012b; Weaver et al., 

2007). Recently, with the genome sequencing of two bumblebee species, Bombus terrestris, and 

B. impatiens, two datasets of miRNAs have been annotated for both species (Sadd et al., 2015). 

However, the regulatory effect of the miRNA pathway on bee-virus interaction is still unknown. 

Thus, in the current report, we comparatively analyzed the involvement of bumblebee miRNAs, 

in our experimental setup, upon infections of an avirulent virus SBPV and a virulent virus IAPV. 

First, we analyzed the expression of the core genes (Dicer-1 and Ago-1) of the miRNA pathway 

upon virus infection; secondly, through small RNA sequencing, we analyzed the miRNA profiles 

following viral infections. To have a further insight into miRNA-mRNA interaction, we 

predicted the possible targets for these miRNAs. Finally, we silenced Dicer-1 to analyze the 

outcome of SBPV infection. Our study may provide initial insights in the importance of miRNAs, 
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an additional layer in cell regulatory systems of bee-virus interactions.   

 

2.!Material and Methods  

 

2.1.! Insects and viral inoculation 

The colonies of B. terrestris were obtained from Biobest NV (Westerlo, Belgium). The colonies 

used in this study were screened by RT-PCR (primers in supplementary table S1) to make sure 

that they were free of SBPV and IAPV. Newly emerged workers were collected and kept in 

micro-colonies fed with pollen and sugar water ad libitum for further experiments. All the micro-

colonies were maintained in an incubator (Panasonic, Japan) at 29-31°C, 60-65% relative 

humidity, and continuous darkness.  

Viruses inocula were produced as described previously (Niu et al., 2014a). The virus particles 

were counted by using transmission electron microscopy. To inoculate bees we injected an 

amount of 20,000 particles and 20 particles for SBPV and IAPV into five to eight days old 

workers in the side of the soft white-like cuticle between the 1st and 2nd abdominal segments by 

the nanoinjector (Eppendorf, Germany). PBS injected bumblebees served as control, which was 

the same solution used to purify viral samples. Although both viruses replicate very fast, we 

define SBPV as an avirulent virus infection pattern while IAPV represent a highly virulent 

infection pattern as the injection of SBPV causes no mortality and IAPV causes 100% mortality 

around 8 days even both viruses replicate very fast.  
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2.2.! RNA isolation, cDNA synthesis, and qPCR 

A total of 1.5~2 ml RLT buffer was initially used to homogenize the bumblebee by mortar and 

the supernatant was centrifuged three times to remove debris. Thereafter the protocol of the 

RNeasy mini kit (Qiagen, Germany) was followed. The TURBO DNA-free™ kit (Ambion, USA) 

was used to remove the possible genomic DNA contamination in RNA samples. The quantity 

and quality of RNA samples were checked by Nanodrop and electrophoresis on 1.5% agarose gel. 

An amount of 2 µg total RNA was used to synthesize the cDNA by SuperScript® II Reverse 

Transcriptase (Invitrogen, USA) using oligo (dT) primers. To make sure there was no genomic 

DNA contamination we checked cDNA samples by PCR with exon spanning primers for RPL23 

(supplementary data table S1). The cDNA should produce an amplicon of 143 bp whereas the 

presence of genomic DNA will produce an extra amplicon of 452 bp. The qPCR was performed 

on a CFX96™ Real-Time PCR Detection with GoTaq® qPCR master (Promega, USA). Each 

reaction was performed in duplicate. The amplification specificities of primers used in this study 

were checked by both electrophoresis of the RT-PCR products and analysis of the dissociation 

curve by qPCR. A 10 fold serial dilution of cDNA was applied to calculate the amplification 

efficiency (supplementary data table S1). In addition, the RT-PCR products were sequenced in 

order to confirm their primers’ amplification specificities.  

2.3.! Core gene expression of the miRNA pathway 

We collected RNA samples at 8 h, 1, 2, 3, 7 and 13 days post injection (dpi) for SBPV and 8 h, 1, 

2, and 3 dpi for IAPV, to analyze gene expressions. These samples were the same samples used 

in Chapter II (Section 2.5). For each biological replicate, the whole body of each individual bee 

was used to extract RNA. PBS injected bees were also collected in all different time points to 

serve as non-infected controls. Four to five biological replicates were included in each time point 
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for virus and PBS. The relative expression of key components, Dicer-1 and Ago-1, of the 

miRNA pathway were normalized by internal control PPIA as the most stable reference gene 

during viral infections and different tissues (Niu et al., 2014a). The fold change of gene 

expression at each time point was given as the ratio of the relative gene expressions of the virus 

treated samples over the PBS controls collected at the same time point.  

2.4.! Small RNA sequencing and targets prediction of miRNAs  

Small RNA sequencing was performed on RNA samples of SBPV and IAPV at 2 dpi. The PBS 

injected bees were included as control. Those samples were same ones used in Chapter II 

(section 2.7). Concentration and quality of the total extracted RNA was checked using the Quant-

iTTM RiboGreen® RNA assay kit (Invitrogen, USA) and the RNA 6000 pico chip (Agilent 

Technologies, USA). Subsequently, 1 µg of total RNA was used to start the library preparation 

using the TailorMix miRNA Sample Preparation Kit v7 (SeqMatic, USA). Library preparation 

was carried out according to the manufacturer's instructions. The tRNA was added as carrier to 

minimize the loss of RNA via tube interaction. Libraries were quantified by qPCR, according to 

Illumina's protocol 'Sequencing Library qPCR Quantification protocol guide' (version February 

2011). A high sensitivity DNA chip (Agilent Technologies, USA) was used to check the libraries’ 

size distribution and quality. Single-end index 50 bp sequencing was performed on an Illumina 

MiSeq sequencer by loading 7 pM of each sample on the flowcell. A 10% PhiX spike-in was 

added as control. Four biological replicates for each treatment were sequenced by the NXTGNT 

sequencing platform from the Ghent University. 

Ambiguous and low quality bases and adaptor sequences were trimmed from the sequencing 

reads using CLC Genomics Workbench 7.0.2. No ambiguous bases were allowed and a quality 

setting of 0.05 was applied. Reads smaller than 15 bp after trimming or reads containing more 
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than 10% of bases with Phred quality score lower than 20 were filtered with CLC Genomics 

Workbench 7.0.2 and fastX-toolkit 0.0.13.1, respectively. MiRNA reads were counted by CLC 

Genomics Workbench 7.0.2 based on annotated bumblebee miRNA dataset (Sadd et al., 2015). 

Differential expression analysis between virus-infected and non-infected bees was performed in 

the R Bioconductor-package limma on quantile normalized data. The results were corrected by 

multiple testing using a Benjamini-Hochberg False Discovery Ratio at a cut-off value of 0.05. To 

select differentially expressed miRNAs, we used a strict criteria based on miRNA counts (higher 

that 100), fold change (higher that 20% difference), and adjusted p value (less than 0.01).  

Next, we predicted the potential targets of miRNAs to bumblebee mRNAs by RNA22 (Miranda 

et al., 2006). To further view the potential targets of miRNAs with differential expressions upon 

viral infections, we built a network of enrichment of Gene Ontology (GO) terms or Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways by ClueGO (Bindea et al., 2009). 

Briefly, ClueGO is a Cytoscape plug-in App to facilitate the visualization of functionally 

grouped terms in the form of networks and charts. We used a maximum of 25 predicted targets 

per miRNAs (folding energy cut-off: -20 Kcal/mol) as input. The GO term retrieved from 

Uniprot (ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/) and KEGG annotation 

(http://www.genome.jp/kegg/kegg2.html) of B. terrestris were input with ClueGO main id, 

Entrez gene ID. The default parameters of ClueGO 2.1.7 was followed for network construction. 

In details, the GO term level was defined with minimum 3 and maximum 8. For each term 

cluster, it required a minimum of 3 genes with a minimum of 4.0 % clustered genes over the total 

genes in the term. The enrichment of predicted target genes of miRNAs to GO term/KEGG 

pathway was tested based on the hypergeometric distribution. A further multiple testing was 

followed by Bonferroni step-down. Finally, ClueGO created a binary gene-term matrix with the 
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selected terms and their associated genes. Based on this matrix, a term-term similarity matix was 

calculated using chance corrected kappa statistics to determine the association strength between 

the terms. In current analysis, we used a cut-off value 4.0 for kappa score, to represent the most 

significant (leading) terms in associated functional groups, which could be visualized in the 

network.  

In addition, we also predicted the potential targets of B. terrestris miRNAs on SBPV and IAPV 

RNA (genome) by RNA22 (Miranda et al., 2006) and RNAhybrid (Krüger and Rehmsmeier, 

2006), which used different prediction assumptions and thus made our prediction more reliable. 

2.5.! Validation of stability and differential expressions of miRNAs by RT-

qPCR 

The same samples collected at 8, 24, 48, 72 h (n=3) in section 2.3 for both virus injections and 

PBS controls were used to further analyze the expressions of miRNAs. An amount of 2 µg total 

RNA was used to prepare cDNA by miScript® II RT kit (QIAGEN, Germany). To quantify 

mature miRNAs in the study, the 5x miScript HiSpec buffer was used. The total volume of 20 µl 

reaction system was mixed by adding buffer, nucleics mix, reverse transcriptase mix, RNA 

template and RNase-free water, and then followed the manufacture’ instruction. For RT-qPCR, 

an volume of 20 µl reaction system was mixed by adding SYBR green PCR master mix, 

universal primer (provided by the kit), microRNA specific primer (supplementary data table S2), 

template cDNA prepared above and RNase free water, by following the protocol of miScript 

SYBR® Green PCR kit (QIAGEN, Germany). Each reaction contained two technical replicates. 

To check the efficiency and specificity of miRNA primers, we evaluated the miRNAs’ 

amplification efficiencies by using a 10 fold serial dilution of mixture cDNA and the melting 

curves in all tested cDNA samples.  
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The validation of references as the same principle of mRNA expressions through RT-qPCR, was 

also suggested before the detection of miRNAs’ expressions (Kagias et al., 2014; Luo et al., 

2014). To select good candidates reference miRNAs, we selected those with high counts (>100) 

and low expression variability indicated by sequencing data. Some miRNAs with significant 

changes upon viral infections revealed by the small RNA sequencing (section 2.4) were chosen 

to analyze their expressions in samples described above. The analysis of stable reference 

miRNAs were calculated by plug-in software geNorm in qBasePLUS and the relative expressions 

of miRNAs were normalized by selected optimal reference miRNAs through qBasePLUS.  

2.6.! Silencing Dicer-1 and detection of its effect on viral genome copy 

number 

A fragment of Dicer-1 was amplified by PCR with target gene sequence specific primers plus T7 

promoters (supplementary data table S1). This partial DNA template was purified by 

E.Z.N.A.® Cycle-Pure Kit (Omega, USA), and was sequenced in order to confirm the identity of 

amplification. Then, one microgram of template was used to synthesize dsRNA according to the 

guideline of MEGAscript® RNAi Kit (Invitrogen, USA). The concentration and quality of 

dsRNA were verified by Nanodrop and electrophoresis on 1.5% agarose gel. A total of 20 µg (20 

µl) of dsRNA was injected into five to eight days old workers, and the same dose of dsGFP 

served as negative control. The abdomen of each individual was collected for RNA isolation. We 

used RNAi approach to investigate whether silencing of Dicer-1 influences the genome copy 

number (gcn) of SBPV. First we silenced Dicer-1 by injection of dsDicer1 (dsGFP serves as a 

control). After two days, the second injections were performed to inoculate bees by SBPV. 

Subsequently, the samples were collected for RNA extractions.  
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The measurement of SBPV gcn was based on a standard curve made from the Cq values (x) 

detected from a dilution of DNA templates of partial SBPV genome converting to corresponding 

gcn (y). In detail, a part of the SBPV genome (supplementary data table S1) was amplified and 

purified by E.Z.N.A.® Cycle-Pure Kit (Omega, USA). The partial sequence was confirmed by 

Sanger sequencing (LGC genomics, Germany). The concentration of purified templates was 

measured by Quant-iTTM PicoGreen® dsDNA assay kit (Invitrogen, USA). The concentration 

was converted to gcn per µl by the online tool (URL: http://cels.uri.edu/gsc/cndna.html; 

Accessed date: 20/June/2014). A 10 fold serial dilution of templates was made to obtain a 

standard curve for each virus by qPCR. The equation is y = -0.2926x + 9.4426 (R² = 0.9996). 

The normalized gcn of each sample was represented by the ratio of the gcn calculated based on 

the standard curve and the normalization factor from the internal reference gene PPIA (Niu et al., 

2014a) with the framework of qBase (Hellemans et al., 2007).  

3.!Results and Discussion  

 

3.1.! Significant effects of SBPV and IAPV infections on the expressions of 

Dicer-1 and Ago-1 

Aside from some non-canonical pathways of miRNA biogenesis, both Dicer-1 and Ago-1 are 

core components of miRNA biogenesis and determine the pathway’s activity on gene regulation 

(Yang and Lai, 2011). In this study, we measured the expressions of B. terrestris Dicer-1 and 

Ago-1 upon two viral infections. Our results showed only a non-significant upregulation of both 

Dicer-1 and Ago-1 at 3 dpi of IAPV (Figure 1). While both Dicer-1 (T-test: t=5.861, df=8, 

p<0.001) and Ago-1 (T-test: t=5.370, df=4.578, p=0.004) were significantly upregulated at 2 dpi 
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of SBPV (Figure 1). In contrast, we detected a significant downregulation of Ago-1 after 8 h 

injection of IAPV (T-test: t=2.616, df=6, p=0.040) (Figure 1B). Differential expression of Dicer-

1 and Ago-1 may affect the activity of miRNAs. For instance, a significant upregulation of 

Dicer-1 and/or Ago-1 during desert locust phase transition and feeding was observed (Wynant et 

al., 2015). The expression of Dicer in human tumors can be either high or low (Huang et al., 

2014a). Upon infection of non-human model (Rhesus macaques) by simian immunodeficiency 

virus, the protein level of Dicer increased in intestinal mucosa cells (Gaulke et al., 2014). On the 

other hand, upon viral infections, such as influenza A virus (Matskevich and Moelling, 2007) 

and vaccinia virus (Grinberg et al., 2012), the expression of Dicer-1 was downregulated, which 

could be explained as a virus strategy to influence miRNAs biogenesis.  

Regulation of miRNAs and their influence on host-virus interactions is complex (Asgari, 2015). 

For example, it is difficult to predict whether the increase or decrease in the expression of 

important genes in the miRNA biogenesis work in favor of the host or the virus. However, since 

we know the outcome of these two viral infections in bumblebees in our setup, we may speculate 

on who profits from the observed differential expressions of those genes. Both viruses replicate 

fast, but the two viruses differ largely in causing mortality in bees, SBPV as an avirulent virus 

and IAPV as an extremely virulent virus. Thus, the increase in Dicer-1 and Ago-1 expressions 

after SBPV infection may be needed for the host to try to control the virus infection. The 

downregulation of Ago-1 at early stage of IAPV infection may be a strategy by IAPV in an 

attempt to facilitate its own replication and spreading. Intriguingly, with feeding solution 

containing IAPV, honeybees can exhibit neurological symptoms within 20-24 h,  which leads to 

753 differentially expressed genes in the fat body (Galbraith et al., 2015). This might indicate a 

very early interaction between the bees and IAPV.  



 

90#
#

 

 

 

 

 

 

Figure 1: Fold changes of two core gene expressions in the miRNA pathway upon IAPV 
and SBPV infection.  

(A): fold change of Dicer-1 expression upon viral infections; (B): fold change of Ago-1 
expression upon viral infections. The fold changes of gene expression were equal to the ratio of 
the relative expression of each gene in virus infected samples over the relative expression of this 
gene in control samples (PBS injected bees). The relative expression of each gene was calculated 
based on internal reference gene PPIA. The error bar represented the standard error of mean. The 
level of significance was calculated by T-test and p< 0.05 was labelled with asterisks (*). 
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3.2.! Small RNA sequencing reveals differentially expressed miRNAs upon 

SBPV and IAPV infections  

Above we presented indications that the expression of components of the miRNA pathway could 

be altered upon viral infections in B. terrestris implying their potential involvement in host-virus 

interaction. To explore this possibility further, we used small RNA sequencing to find out which 

miRNA could be influenced. Currently, there are 217 miRNAs described for A. mellifera in 

miRBase, while in the two bumblebee species, B. terrestris and B. impatiens, 130 and 115 

miRNAs have been identified, respectively (Sadd et al., 2015). Our results revealed that 17 and 

12 miRNAs were differentially expressed upon infection with SBPV and IAPV, respectively 

(Table 1). From the 17 miRNAs differentially expressed in bees infected with SBPV, 10 

miRNAs were upreguled and 7 were downregulated. In bees infected with IAPV, 12 miRNAs 

were differentially expressed, which included 7 upregulated and 5 downregulated miRNAs. 

Among all these differentially expressed miRNAs, 3 miRNAs (bte-miR-277, bte-bantam, and 

bte-miR-263a) were upregulated and 3 (bte-miR-3759, bte-miR-11, and bte-miR-24) were 

downregulated in both viral infections. Table 1 summarized the potential functions of the 

differentially abundant miRNAs based on the function of homologous miRNAs demonstrated in 

others insects. Two reappearing functions (apoptosis and energy homeostasis), known to be 

regulated by miRNAs, struck our attention as they have also been described to be important 

factors in virus-host interactions.   

Apoptosis: Apoptosis or programmed cell death is an evolutionary conserved process in which 

the cells activate intracellular death pathways to terminate themselves in a programmed way in 

response to a wide variety of stimuli. It is clear that apoptosis in insects is an effective antiviral 

response to determine the outcome of DNA (Clem, 2005) and RNA viruses (Olagnier et al., 
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2014). In view of host-virus interaction, apoptosis is one of the most ancestral defense 

mechanisms against virus infection; conversely, viruses may also interfere with the mechanism 

(Huang et al., 2014b; Urbanowski and Hobman, 2013) or take advantage of the stimulated 

apoptosis (Galluzzi et al., 2008). Homologous miRNAs of bte-miR-263a, bte-bantam, and bte-

miR-11, three differentially expressed miRNAs during SBPV and IAPV infections, have been 

shown to be involved in apoptosis (Brennecke et al., 2003; Hilgers et al., 2010; Truscott et al., 

2011). In addition, a homolog of bte-miR-263b, which is upregulated by SBPV infection but not 

IAPV, has been linked with apoptosis (Hilgers et al., 2010).  

Energy homeostasis (insulin associated): Energy homeostasis plays a crucial role in host-virus 

interaction since viruses need energy in the form of ATP to replicate while hosts need energy to 

mount an immune response. The insulin signal transduction pathway responds to the nutritional 

status of the animal to control circulating sugar levels and fat metabolism. In addition, it can also 

influence the antiviral activity (Xu et al., 2013). Intriguingly, a homologue of bte-miR-278, 

upregulated by IAPV infection, is involved in energy homeostasis resulting in the regulation of 

levels of insulin (Teleman and Cohen, 2006) and regulation of the detoxification enzyme P450s 

(Lei et al., 2015). Homologs of bte-miR-13a upregulated by IAPV infection and bte-miR-13b 

upregulated by SBPV, regulate the expression of juvenile hormone (JH) (Lozano et al., 2015). 

JH plays an import role in regulation of insect growth and molting, which are also associated 

with ecdysone and insulin signaling pathways (Mirth et al., 2014). The homolog of another 

miRNA regulated by IAPV infection, bte-miR-305, was shown to regulate Notch and insulin 

pathways in the intestinal stem cells of the Drosophila gut (Foronda et al., 2014).  

Intriguingly, a homolog of bte-miR-252a downregulated by SBPV, was shown to have a direct 

interaction with dengue virus (DENV) via targeting the DENV E protein transmembrane region
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Table 1: Differentially expressed miRNAs upon virus infection 

miRNA name 

Fold change Targets of homologous miRNA in insects and its relative prediction in Bombus terrestris 
SBPV 
/PBS 

IAPV 
/PBS Homologous miRNA functions (target) in insects Prediction of homologous targets or related targets in Bombus terrestris  

bte-mir-13b  2.26 
 

Juvenile hormone signaling pathway  
(Lozano et al., 2015) 

insulin-like growth factor 2 mRNA-binding protein 1-like 
(LOC100647990); ecdysone-induced protein 75B, isoforms C/D-like, 
(LOC100644185) 

bte-mir-927a  1.75 
  

 

bte-mir-277  1.60 1.45 

Branched-chain amino acid catabolism 
(Esslinger et al., 2013) 
Neurodegeneration  
(Tan et al., 2012) 

insulin receptor substrate 1-like (LOC100644779); insulin-degrading 
enzyme-like (LOC100644699) 

bte-mir-263b  1.54 
 

Apoptosis (Hilgers et al., 2010) 

apoptosis-inducing factor 1, mitochondrial-like (LOC100651200); cell 
division cycle and apoptosis regulator protein 1-like (LOC100651179); 
apoptosis 2 inhibitor-like (LOC100647685); apoptosis regulator R1-like 
(LOC100649633); PRKC apoptosis WT1 regulator protein-like, 
transcript variant 1 (LOC100649375) 

bte-bantam  1.49 1.28 

Apoptosis 
 (Brennecke et al., 2003);  
Stem cell regulation  
(Yang et al., 2009);  
Cell proliferation  
(Becam et al., 2011); 
Tumor suppressor 
 (Zhang and Lai, 2013) 

apoptosis 2 inhibitor-like (LOC100650673); SWI/SNF-related matrix-
associated actin-dependent regulator of chromatin subfamily A containing 
DEAD/H box 1-like (LOC100645044); disks large 1 tumor suppressor 
protein-like (LOC100643982); fat-like cadherin-related tumor suppressor 
homolog (LOC100650960); cadherin-related tumor suppressor-like 
(LOC100651028) 

bte-mir-9a  1.36 
 

Wing development  
(Biryukova et al., 2009) 
Transcription factor of senseless   
(Cassidy et al., 2013; Li et al., 2006); 

neurogenic locus Notch protein-like (LOC100645932); strawberry notch-
like (LOC100649094) 

bte-mir-31a  1.32 
  

 

bte-mir-263a  1.26 1.42 
Apoptosis 
 (Hilgers et al., 2010) 

apoptosis-inducing factor 1, mitochondrial-like (LOC100651200); 
cell division cycle and apoptosis regulator protein 1-like 
(LOC100651179); apoptosis-inducing factor 3-like, transcript variant 1 
(LOC100649657) 

bte-mir-10  1.26 
  

 
bte-mir-750  1.22 

 
   

to be continued 
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miRNA name 

Fold change Targets of homologous miRNA in insects and its relative prediction in Bombus terrestris 
SBPV 
/PBS 

IAPV 
/PBS Homologous miRNA functions (target) in insects Prediction of homologous targets or related targets in Bombus terrestris  

bte-mir-305  
 

1.30 
Intestinal stem cells 
 (Foronda et al., 2014) 

insulin-like growth factor-binding protein complex acid labile subunit-
like (LOC100651887); insulin-degrading enzyme-like (LOC100644699); 
insulin-like peptide receptor-like (LOC100645413); insulin-like receptor-
like (LOC100650952); insulin-like growth factor-binding protein 
complex acid labile subunit-like (LOC100643961) 

bte-mir-13a  
 

1.30 
Juvenile hormone signaling pathway 
(Lozano et al., 2015) 

insulin-like growth factor-binding protein complex acid labile subunit-
like (LOC100647673); insulin-like receptor-like (LOC100651348); 
ecdysone-induced protein 75B, isoforms C/D-like (LOC100644185) 

bte-mir-278  
 

1.28 

Energy homeostasis  
(Teleman and Cohen, 2006); 
P450s (Lei et al., 2015); 

insulin-like peptide receptor-like (LOC100645413); insulin gene 
enhancer protein ISL-1-like (LOC100644486); cytochrome P450 18a1-
like (LOC100642897); cytochrome P450 49a1-like (LOC100646342); 
cytochrome P450 4C1-like (LOC100651255); cytochrome P450 4g15-
like (LOC100652170); cytochrome P450 6a13-like (LOC100646677); 
cytochrome P450 6a2-like (LOC100646434), (LOC100647785), 
(LOC100651291), (LOC100647041); cytochrome P450 6k1-like 
(LOC100642816), (LOC100642936), (LOC100643678), 
(LOC100647803), (LOC100648391), (LOC100648995), 
(LOC100650427); cytochrome P450 9e2-like (LOC100647566), 
(LOC100648545), (LOC100649871), (LOC100649988) 

bte-mir-375  
 

1.22 
 

 

bte-mir-252a  0.78 
 

Dengue virus replication 
 (Yan et al., 2014) 

3'UTR of SBPV 

bte-mir-316  0.72 
  

 

bte-mir-276  0.67 
 

Olfactory 
 (Li et al., 2013) 

putative odorant receptor 13a-like (LOC100647497); odorant receptor 
Or2-like (LOC100644343); putative odorant receptor 82a-like 
(LOC100646456); odorant receptor 47b-like (LOC100646577); putative 
odorant receptor 13a-like (LOC100646817); putative odorant receptor 
63a-like (LOC100644217) 

bte-mir-3718a  0.66 
  

 
bte-mir-3759  0.57 0.76 

 
 

bte-mir-11  0.56 0.61 
Apoptosis  
(Truscott et al., 2011) 

DNA damage-binding protein 1-like (LOC100650523) 

bte-mc-24  0.44 0.68 
 

 
bte-mc-753  

 
0.75 

 
 

bte-mir-283  
 

0.71 
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 (Yan et al., 2014). Through RNAhybrid and RNA22, we also predicted that bte-miR-252a could 

possibly target the 3’UTR of SBPV (Table 2). Whether a similar mechanism of virus regulation 

is present in bumblebee remains to be explored. 

3.3.! In silico target prediction of differentially expressed miRNAs shows a 

possible host-virus interaction network mediated by miRNAs 

Until now, the analyses of targets of miRNAs have only shown the tip of the iceberg of their 

potential in gene regulation. The current understanding is that one miRNA may target hundreds 

of genes, while a gene may be regulated by multiple miRNAs. Based on RNA22, we identified a 

total of 7465 genes possibly targeted by 130 miRNAs in B. terrestris. Among them, 7216 genes 

were possibly targeted by the 23 differentially expressed miRNAs upon virus infection. Some 

predicted targets of these 23 miRNAs were visualized in the GO and KEGG enrichments by 

ClueGO in two groups: 17 miRNAs differentially expressed by SBPV infection, and 12 miRNAs 

differentially expressed by IAPV infection. The analysis showed that there were 32 and 21 

groups of GO/KEGG pathways that popped out in the network of SBPV (Figure 2) and IAPV 

(Figure 3).  A number of 11 GO/KEGG pathways were common in the two datasets, which is 

consistent with the 6 common miRNAs influenced by SBPV and IAPV infections. Generally, 

these pathways can be associated with a certain level of molecular activities in the view of virus-

host interaction, such as DNA/RNA, protein, metabolism, cell activity, host disease, and host 

antiviral immunity (Table 3). These visualizations of miRNA-mRNA-GO/KEGG enrichments 

may show a possible host-virus interaction network. Moreover, these potential targets reported of 

the homologous miRNAs also showed an overlap with our predictions (Table 1). It may be a 

good start to verify the role of apoptosis and insulin associated energy homeostatis in host-virus 

interaction based on miRNAs. 
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Table 2: Predicted targets of host miRNAs to viral genomes 

Target  miRNA MFE (Kcal/mol) 

Binding 
Site Start 
Position Target Gene Annotation 

SBPV bte-mir-276 -21.8 7261 Polyprotein_ORF 
SBPV bte-mir-276 -20.7 2285 Polyprotein_ORF 
IAPV bte-bantam -25 4919 Polymerase Polyprotein_ORF 
IAPV bte-mc-24 -28.5 6219 Polymerase Polyprotein_ORF 
IAPV bte-mc-24 -28.1 6554 UTR 
IAPV bte-mc-24 -25 328 5'UTR 
SBPV bte-mir-252a -29.6 9370 3'UTR 
SBPV bte-mir-9a -25.1 3777 Polyprotein_ORF 
IAPV bte-mir-11 -21.8 7752 Structural Polyprotein_ORF 
IAPV bte-mir-283 -20.8 1145 Polymerase Polyprotein_ORF 
IAPV bte-mc-24 -22.5 9474 3'UTR 
IAPV bte-mc-753 -22.4 7878 Structural Polyprotein_ORF 
SBPV bte-mir-263b -21.9 3705 Polyprotein_ORF 
SBPV bte-mir-276 -22.9 2500 Polyprotein_ORF 
SBPV bte-mir-3759 -23.3 7714 Polyprotein_ORF 
SBPV bte-mc-24 -20.1 9239 3'UTR 
SBPV bte-mc-753 * -26.3 7748 Polyprotein_ORF 
IAPV bte-mir-263b* -24.2 8501 Structural Polyprotein_ORF 
IAPV bte-mir-9a* -20.2 5318 Polymerase Polyprotein_ORF 
IAPV bte-mir-252a* -22.2 3819 Polymerase Polyprotein_ORF 
IAPV bte-mir-252a* -21.8 7091 Structural Polyprotein_ORF 
IAPV bte-mir-263b* -20.1 6255 Polymerase Polyprotein_ORF 
IAPV bte-mir-750* -21.9 1993 Polymerase Polyprotein_ORF 
SBPV bte-mir-305* -22.7 785 Polyprotein_ORF 

 

* Not differentially expressed due to that particular viral infection 
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Figure 2: The 
enrichment of 
Gene 
Ontology (GO) 
terms and 
Kyoto 
Encyclopedia 
of Genes and 
Genomes 
(KEGG) 
pathways of 
predicted 
targets of 
differentially 
expressed 
miRNAs by 
SBPV 
infection. For 
each miRNA, a 
maximum of 
25 predicted 
targets (folding 
energy cut-off: 
-20 Kcal/mol) 
was used as 
input to 
ClueGO. The 
GO and KEGG 
presented in 
the figure were 
based on 
Kappa score 
higher than 0.4.  
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Figure 3: The 
enrichment of 
Gene 
Ontology (GO) 
terms and 
Kyoto 
Encyclopedia 
of Genes and 
Genomes 
(KEGG) 
pathways of 
predicted 
targets of 
differentially 
expressed 
miRNAs by 
IAPV 
infection. For 
each miRNA, a 
maximum of 
25 predicted 
targets (folding 
energy cut-off: 
-20 Kcal/mol) 
was used as 
input to 
ClueGO. The 
GO and KEGG 
presented in 
the figure were 
based on 
Kappa score 
higher than 0.4. 
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Table 3: The most significant enriched GO/KEGG from the targets of differentially expressed miRNA upon virus infection.  

Differentially expressed miRNAs by SBPV Differentially expressed miRNAs by IAPV 
GO/KEGG ID Name GO/KEGG ID name 
KEGG:00250 Alanine, aspartate and glutamate metabolism KEGG:00250 Alanine, aspartate and glutamate metabolism 
GO:0005524 ATP binding GO:0005524 ATP binding 
KEGG:04360 Axon guidance KEGG:04360 Axon guidance 
GO:0005975 carbohydrate metabolic process GO:0005975 carbohydrate metabolic process 
GO:0003924 GTPase activity GO:0003924 GTPase activity 
KEGG:05410 Hypertrophic cardiomyopathy (HCM) KEGG:05410 Hypertrophic cardiomyopathy (HCM) 
GO:0048519 negative regulation of biological process GO:0048519 negative regulation of biological process 
GO:0000166 nucleotide binding GO:0000166 nucleotide binding 
GO:0006082 organic acid metabolic process GO:0006082 organic acid metabolic process 
KEGG:03008 Ribosome biogenesis in eukaryotes KEGG:03008 Ribosome biogenesis in eukaryotes 
KEGG:05202 Transcriptional misregulation in cancer KEGG:05202 Transcriptional misregulation in cancer 
GO:0016887 ATPase activity GO:0006520 cellular amino acid metabolic process 
GO:0016830 carbon-carbon lyase activity GO:0005856 cytoskeleton 
KEGG:04110 Cell cycle GO:0003677 DNA binding 
KEGG:04713 Circadian entrainment GO:0006259 DNA metabolic process 
GO:0006732 coenzyme metabolic process GO:0004386 helicase activity 
GO:0005794 Golgi apparatus GO:0008237 metallopeptidase activity 
KEGG:04390 Hippo signaling pathway KEGG:04145 Phagosome 
GO:0016788 hydrolase activity, acting on ester bonds GO:0004672 protein kinase activity 
KEGG:04630 JAK/STAT signaling pathway GO:0038023 signaling receptor activity 
GO:0000278 mitotic cell cycle KEGG:04530 Tight junction 
GO:0002009 morphogenesis of an epithelium 

  GO:0001882 nucleoside binding 
  GO:0031090 organelle membrane 
  to be continued 
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Differentially expressed miRNAs by SBPV Differentially expressed miRNAs by IAPV 
GO/KEGG ID Name GO/KEGG ID name 
GO:0006508 Proteolysis 

  KEGG:00230 Purine metabolism 
  KEGG:04015 Rap1 signaling pathway 
  GO:0010646 regulation of cell communication 
  GO:0010033 response to organic substance 
  

KEGG:04550 
Signaling pathways regulating pluripotency  
of stem cells 

 GO:0004888 transmembrane signaling receptor activity 
  KEGG:05203 Viral carcinogenesis 
   

Notes: pathways with bold are the same GO/KEGG appeared in both SBPV and IAPV dataset. These GO/KEGG could be associated 
with certain biological functions in the view of host-virus virus interaction. Network of SBPV influenced miRNAs-targets-GO/KEGG: 
In DNA/RNA associated GO/KEGG, (GO:0005524), (GO:0003924), (GO:0000166), (GO:0016887), (GO:0001882), (KEGG:00230). 
In protein associated GO/KEGG, (KEGG:00250), (KEGG:03008), (GO:0005794), (GO:0006508). In metabolism associated 
GO/KEGG, (GO:0005975), (GO:0006082), (GO:0016830), (GO:0006732). In cell activity associated GO/KEGG, (KEGG:04110), 
(GO:0000278), (KEGG:04015), (GO:0010646), (GO:0010033), (KEGG:04550), (GO:0004888). In host disease associated GO/KEGG, 
(KEGG:05410), (KEGG:05202), (KEGG:05203). In host antiviral immunity associated GO/KEGG, (KEGG:04390), (KEGG:04630). 
Network of IAPV influenced miRNAs-targets-GO/KEGG: In DNA/RNA associated GO/KEGG, (GO:0005524), (GO:0003924), 
(GO:0000166), (GO:0003677), (GO:0006259), (GO:0004386). In protein associated GO/KEGG, (KEGG:00250), (KEGG:03008), 
(GO:0006520), (GO:0008237), (GO:0004672). In metabolism associated GO/KEGG, (GO:0005975), (GO:0006082). In cell activity 
associated GO/KEGG, (GO:0005856), (GO:0038023), (KEGG:04530). In host disease associated GO/KEGG, (KEGG:05410), 
(KEGG:05202). In host antiviral immunity Phagosome (KEGG:04145). 
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In addition, we also explored if host miRNAs could directly target viral RNAs (genomes) using 

RNAhybrid and RNA22. The results identified a total of 24 target sites on SBPV and IAPV 

genomes by host miRNAs (Table 2). The predicted target sites were located in the UTRs as well 

as ORFs (open reading frame). Of these 24 targets sites, 16 were predicted to be targeted by 

differentially expressed miRNAs upon virus infections. We then applied a Chi square test to 

analyze whether these predictions acted just by chance. Chi square tests indicated that an 

significant difference of the number of differentially expressed bumblebee miRNAs upon each 

viral infection in targeting its own viral RNAs (genomes), and all bumblebee miRNAs in 

targeting viral RNAs (genomes) for both SBPV (χ²=14.816, p<0.001) and IAPV (χ²=13.422, 

p<0.001) analysis. This could suggest that the host miRNAs might also play a role in directly 

regulating SBPV/IAPV genome or RNA. Further analyses are needed to elucidate these direct 

miRNAs-virus interaction, which may give us another strategy to use miRNAs to control the 

viruses or in a combination with the strategy of virus specific siRNA and dsRNA through the 

siRNA pathways (Niu et al., 2014b).  
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3.4.! Validation of stability and differentially expressed miRNAs by RT-

qPCR 

Until now, there are no stable reference miRNAs known to normalize the data upon viral 

infections and non-infection in bumblebees. With the pre-selection of more than 10 candidates in 

their performance based on primers efficiency and specificity (supplementary data Table S2 and 

Figure S1), we eventually validated six miRNAs, including bte-mir-14, bte-mir-100, bte-mir-34, 

bte-mir-87, bte-mir-184 and bte-mir-281, in the same samples used to validate several key 

differentially expressed miRNAs indicated by small RNA sequencing. By geNorm, the results 

showed that all these candidate reference showed an M value less than 1 except that bte-mir-184 

showed an M value of 1.002 (supplementary data Figure S2A). Pairwise variations indicated a 

lowest V value of 0.165 (V4/5) upon the combination of the four most stable reference miRNAs 

(supplementary data Figure S2B). These results suggested the optimal references within these 

candidate references were the combination of four microRNAs, mir-281+bte-mir-34+bte-mir-

87+bte-mir-100, for data analysis of miRNA expressions upon different injection time points ( 8, 

24, 48, and 72 h) of IAPV and SBPV, respectively.   
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Figure 4: Fold changes of key differentially expressed microRNAs by sequencing upon 
different injection time points of IAPV and SBPV.   

The fold changes of microRNA expression were equal to the ratio of the relative expression of 
microRNA in virus infected samples over the relative expression of this microRNA in control 
samples (PBS injected bees). The relative expression of microRNA was calculated based the 
combination of four optimal reference microRNAs: mir-281+bte-mir-34+bte-mir-87+bte-mir-
100. The error bar represented the standard error of mean. The level of significance was 
calculated by T-test and p<0.0125 was labelled with asterisks (*). 
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To further analyze the differentially expressed miRNAs from sequencing, with the pre-selection 

based on primers efficiency and specificity (supplementary data Table S2 and Figure S1), we 

eventually evaluated the stabilities of bte-mir-11, bte-mir-13b, bte-mir-263a, bte-mir-263b, bte-

mir-277, bte-mir-283, bte-mir-3718a and bte-mc-24, in all samples by RT-qPCR. The relative 

expressions of these miRNAs were normalized by four miRNAs selected above (mir-281+bte-

mir-34+bte-mir-87+bte-mir-100). In each time points, we had separated PBS controls for two 

viruses, thus we used independent t-test to separate means but with bonferroni correction as four 

times multi-comparison for each virus at four time points between virus injections and PBS 

injections. Therefore, the strict p value of 0.0125 was used to judge the statistical difference of 

miRNAs expressions. In Figure 4, we calculated the fold change (log2 transformed) of miRNAs 

based on the division of miRNAs expression in virus injected samples and the very time points 

of PBS injected samples. We found that bte-mir-13b was upregulated at 48 and 72 h post 

injection of SBPV, but only with significant difference at 72 h (p=0.010). The significant 

downregulation of bte-mc-24 (p<0.001) was detected at 48 h post injection of SBPV and a 

tendency of downregulation at 48 h post injection of IAPV. These results were consistent with 

our miRNA sequencing results which showed these two miRNAs were the most changed 

miRNAs (Table 1). Other six miRNAs did not show the same results as the sequencing results at 

48 h post viral injections. This may be associated with the fact that different samples were used 

in this section compared with the samples of miRNA sequencing, and virus titers were variable 

in each treatment among individuals. Bte-mir-263b was found to be significantly downregulated 

(p=0.010) at 72 h post injection of IAPV, and the significant downregulation of bte-mir-283 

(p=0.007) was detected at 8 h post injection of SBPV. These results might suggest that some 

miRNAs could also play roles at early and late infectious stages.  
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3.5.! Depletion of Dicer-1 by RNAi did not lead to an altered genome copy 

number of SBPV      

Although our results showed an altered expression of Dicer-1 and Ago-1 and differential 

abundance of miRNAs upon virus infections, the role of the miRNA pathway itself on the 

outcome of viral pathogenicity is not clear. Therefore, we used RNAi to silence Dicer-1 to 

detect its influence on the outcome of SBPV gcn. Our results showed a ~77% depletion of 

Dicer-1 transcripts after two days of injection of dsRNA (Figure 5A), but this pre-silencing of 

Dicer-1 did not result in a significant difference in SBPV gcn (Figure 5B). Silencing or 

mutation of Dicer-1 in insects can significantly inhibit the production of some host miRNAs 

(Lozano et al., 2015; Wang et al., 2013b) and viral miRNA-like small RNAs (Hussain and 

Asgari, 2014a), and the assembly of miRNA-RISC (Liu et al., 2007). However, why we did not 

find an effect on SBPV gcn after silencing Dicer-1 in B. terrestris? One explanation could be 

that silencing of Dicer-1 in B. terrestris might influence the benefits of both players in the 

interaction. For instance, some miRNAs could be of benefit to the host to recruit pathway with 

antiviral activitys or directly act on viral genome. In contrast, some miRNAs could be of 

benefit to the virus to replicate and spread which are normally host miRNAs manipulated by 

virus and/or viral encoded miRNAs.  
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Figure 5: Silencing of Dicer-1 and its effect on the genome copy number of SBPV.  
(A): the injection of dsDicer-1 (n=5) to target Dicer-1 led to 77.2% reduction of its transcript 
levels compared with injection of the negative control dsGFP (n=5). (B): pre-silencing of Dicer-
1 led to no difference of genome copy number of SBPV (n=12). 
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Thus, silencing Dicer-1 would sabotage the activities of miRNAs benefited both the host and 

the virus, which might lead to an equivalent situation for both parties. Secondly, it could be 

that silencing of Dicer-1 may not influence the miRNAs produced through non-canonical 

pathways (Asgari, 2015; Yang and Lai, 2011), which might play a more important role here. 

Nevertheless, silencing of Dicer-1 may not lead to a complete inhibition of Dicer-1 activity, 

but a temporal silencing of Dicer-1, and perhaps does not turnover the activity of the whole 

pathway.  

 

4.!Conclusion  

The miRNA pathway plays an important role in mediating insect host-virus interactions. In our 

experiments, we found that an avirulent virus infection induced by SBPV and a virulent infection 

induced by IAPV in bumblebee B. terrestris could alter the expression of the miRNA pathway 

core genes and abundance of miRNAs. It seems that based on the level of induction of Dicer-1 

and Ago-1 and the number of differentially expressed miRNAs, the miRNA regulation was more 

disturbed or influenced after SBPV infection compared with IAPV infection. The potential target 

predictions and GO and KEGG enrichments were produced for initial visualization purposes and 

still need biological evidence, while it reflected the potential of bumblebee miRNAs could be 

involved in various aspects of molecular activities in the view of virus-host interaction. In 

addition, some differentially expressed miRNAs upon virus infection may directly target the 

viral genome based on our prediction. In summary, our study opens a new insight into bee-virus 

interaction meditated by the miRNA pathway, which might also enhance our general 

understanding in interactions between insects and various pathogenic viruses. 
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Supplementary data 1 

 

Table S1: Primers used in this chapter 

Gene Forward primer (5’-3’) Reverse Primer (5’-3’) Amplification 
efficiency (AE) 

NCBI accession 
number  

reference 

PPIA �qPCR� TCGTAATGGAGTTGAGGA
GTGA 

CTTGGCACATGAAGTTTG
GAAT 

1.988 XM_003402218.2 (Niu et al., 
2014a) 

RPL23 �qPCR� GGGAAAACCTGAACTTAG
GAAAA 

ACCCTTTCATTTCTCCCT
TGTTA 

1.985  XM_003400707.2 (Niu et al., 
2014a) 

IAPV (amply 
partial genome) 

CACCAATCACGGACCTCA
CA 

ACAGTGTTAGCTGCAGG
ACA 

 EU436443.1  

IAPV (qPCR) CCATGCCTGGCGATTCAC CTGAATAATACTGTGCGT
ATC 

 EU436443.1 (de Miranda 
et al., 2010a) 

SBPV (amply 
partial genome) 

CCAGGATCGCATCCCCTTA
G 

TGTTGTCTCCCACCTCAT
GC 

 GU938761.1  

SBPV (qPCR) TCCAAGAGCAAGTATGCG
GG 

AGCATCAAAGCTAATTG
CGGA 

 GU938761.1  

Dicer-1 �qPCR� AGAGGAACAAATTTCAAA
TGACGA 

CTGATTCACACGCAGGG
GAT 

1.931 XM_003401907.2  

Dicer-1 � dsRNA 
synthesis� 

TAATACGACTCACTATAGG
GAGATTGGTCAAGCGACA
TGGCAA 

TAATACGACTCACTATA
GGGAGAAATGAGCTTGT
CTATGCTTCGT 

 XM_003401907.2  

Ago-1�qPCR� AGTAGTGGGGTCTTTCTCG
C 

TGCTCGCACTTATTTTAC
AATGACA 

2.069 XM_012315499.1  
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Table S2: Specific primers to detect miRNA expression by RT-qPCR. 
 

Goal microRNA  specific primer (5’-3’) 
amplification 
efficiency 

expression test 

bte-mir-11 CATCACAGGCAGAGTTCTAGTT 2.063 
bte-mir-13b TATCACAGCCATTTTTGACGATT 1.992 
bte-mir-263a AATGGCACTGGAAGAATTCACG 2.046 
bte-mir-263b CTTGGCACTGGAAGAATTCACAG 2.061 
bte-mir-277 TAAATGCACTATCTGGTACGACA 2.163 
bte-mir-283 AAATATCAGCTGGTAATTCTG 2.056 
bte-mir-3718a TCCCCTGTCCTGTCCCGATAGT 2.015 
bte-mc-24 TGTGGGGCGGCGTCCGGGTCACT 2.092 

Candidate reference 

bte-mir-184 TGGACGGAGAACTGATAAGG 2.076 
bte-mir-14 GGGGGTGAGAAACTGGCTTGGCT 2.076 
bte-mir-100 AACCCGTAGATCCGAACTTGTG 2.011 
bte-mir-87 GTGAGCAAAGTTTCAGGTGTGT 2.009 
bte-mir-34 TGGCAGTGTTGTTAGCTGGTTGTG 2.017 
bte-mir-281 AAGAGAGCTATCCATCGACAGT 2.057 
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Figure S1: Melt curves of miRNA primers by RT-qPCR performed in all samples.  
 

 

  bte-mc-24 bte-mir-11 bte-mir-13b bte-mir-14 

bte-mir-34 bte-mir-87 

bte-mir-263a bte-mir-263b bte-mir-277 bte-mir-281 

bte-mir-
283 

bte-mir-3718a 

bte-mir-184 bte-mir-100 
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Figure S2: Validation of miRNA references for RT-qPCR in all samples.  
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Chapter IV-Involvement of Bombus 

terrestris JAK/STAT pathway in antiviral response 

and possible interaction with the small interfering 

RNA pathway through Vago 

 

 

 

 

 

 

Parts of this chapter are submitted to: 

Niu, J, Meeus I, Smagghe G, 2015. Involvement of Bombus terrestris JAK/STAT pathway in 

antiviral response and possible interaction with the small interfering RNA pathway through Vago. 

Scientific Reports submitted. 
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1.!Introduction 

 

Insects and other invertebrates lack adaptive immune system, which highlights that the innate 

immunity in these species is critical to modulate the outcome of virus infections. Currently, the 

antiviral innate immune pathways in insects can be grouped into two strategies of either 

nucleotides-based (such as RNAi) or protein-based (such as Toll, Imd and the JAK/STAT 

(Buchon et al., 2014; Merkling et al., 2013). Taken the siRNA pathway (sub-pathway of RNAi) 

as example for nucleotides-based antiviral strategy in insects:  during viral infection, especially 

for RNA viruses, virus related dsRNAs are generated, from viral dsRNA replication 

intermediates, the viral genome itself, and/or viral transcriptions (Marques et al., 2013). These 

virus related dsRNAs, are processed into 21~22 nt siRNAs by Dicer, then these siRNAs are 

loaded onto Argonaute (Ago) forming the RISC with other proteins (Wilson and Doudna, 2013). 

One of the strands of siRNAs is selected and serves as a sequence-specific guide to cleave target 

viral mRNA (or genome) by complementary binding (Wang et al., 2015). However, in 

mammalian species, these viral derived long dsRNAs generally induce a protein-based innate 

antiviral immune response called the interferon (IFN) response to control viral infection, which 

supplants the siRNA pathway antiviral response (Cullen, 2014). This pathway was discovered 

from studies on the role of IFN in the control of immune response in vertebrates, but it is now 

recognized to play a very important role in the regulation of both innate immune and adaptive 

immune systems (O'Shea and Plenge, 2012; Stark and Darnell Jr, 2012). As a protein-based 

innate antiviral immune pathway, JAK/STAT has also been reported to control various viruses in 
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insects (Dostert et al., 2005; Paradkar et al., 2012; Souza-Neto et al., 2009). In insect, the 

JAK/STAT pathway is generally initiated by the Upd binding to the transmembrane receptor 

Dome which is a distant homolog of the vertebrate type I cytokine receptor. The conformational 

change of Dome after Upd binding leads to the self-phosphorylation of the Hop. The activated 

Hop will phosphorylate Dome, thereby forming docking sites for the cytoplasmic STATs. The 

recruitment of STAT to these docking sites enables Hop to phosphorylate STAT which leads to 

its dimerization. Subsequently, the STAT dimers translocate to the nucleus where they activate 

transcription of specific effector to control viruses (Myllymäki and Rämet, 2014).  

From mammals to insects, the studies of antiviral responses partially disclosure the evolution of 

the innate immune pathways, especially those RNAi and protein based. Unlike mammals, insects 

without adaptive immunity may not only linearly rely on RNAi and protein based immune 

pathways, but also the communications among them. Therefore, the communications between 

nucleotides-based and protein-based antiviral strategies are currently an interest in insects. 

Intriguingly, in the well-studied model insect mosquito, the siRNA pathway communicates with 

the JAK/STAT pathway during viral infection (Kingsolver and Hardy, 2012; Paradkar et al., 

2014; Paradkar et al., 2012). As shown in Figure 1, upon viral infection, the upregulation of 

Dicer-2 of the siRNA pathway leads to the activation of Vago transcription, which increases the 

level of secreted Vago. Subsequently, Vago induces the JAK/STAT antiviral immunity in 

neighboring uninfected cells, which is similar to mammalian interferon (Paradkar et al., 2014; 

Paradkar et al., 2012). 

Viruses, being often transmitted between domesticated and wild bees (Fürst et al., 2014; Levitt et 

al., 2013; McMahon et al., 2015; Singh et al., 2010), are a possible driver of bee declines 

(Goulson et al., 2015; Potts et al., 2010). Bee viruses are mainly from the families of 
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Dicistroviridae and Iflaviridae, both in the order of Picornavirales, which are non-enveloped 

small icosahedral virions, covering a positive sense single stranded RNA genome. In both 

honeybees and bumblebees non-specific dsRNA can induce a noticeable antiviral activity 

(Flenniken and Andino, 2013; Piot et al., 2015), which may suggest the nucleotides-based 

antiviral response goes beyond the siRNA pathway and involves other pathway with antiviral 

activitys in bees. In addition, studies in honeybee showed some differentially expressed genes 

associated with the siRNA, Toll, JAK/STAT pathways upon IAPV infection (Chen et al., 2014; 

Galbraith et al., 2015). Intriguingly, bees from different spectrum of sociality ranging from 

solitary to social bees, they all have a rather small immune genes repertoire (Barribeau et al., 

2015; Kapheim et al., 2015; Sadd et al., 2015) in comparison with the super model insect 

Drosophila, which indicate the evolution of bee immunity predates the evolution of sociality 

(Barribeau et al., 2015; Kapheim et al., 2015). Therefore, with the model of bumblebees, Bombus 

terrestris, which have a small immune genes repertoire and stand in the middle of eusociality, we 

first analyzed the involvement of JAK/STAT upon viral infections and then comprehensively 

investigated whether Vago could communicate the siRNA with JAK/STAT pathways in vivo by 

taking gene expression as indictor, upon three setups, including viral infection (IAPV from 

Dicistroviridae as virulent infection and SBPV from Iflaviridae as avirulent infection), core 

genes depletion (Dicer-2, Vago, and Hop), and combinations of viral infection and core genes 

depletion.  
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Figure 1: Characterization of the cross-talk between the siRNA and JAK/STAT pathways 
in the model of mosquito upon viral infections (Paradkar et al., 2014; Paradkar et al., 2012; 
Souza-Neto et al., 2009).  
 
During viral infections, the siRNA pathway and JAK/STAT pathway are directly involved to 
combat viruses. In addition, a Vago related cross-talk between these two pathways upon viral 
infections also exists in the manner of Dicer-2 and Hop dependent. Activated STATs 
transcriptionally regulate antimicrobial effectors TEP7, TEPA and TEPB. Although vir-1 is the 
downstream transcribed gene of JAK/STAT during virus infection (Deddouche et al., 2008; 
Dostert et al., 2005), the protein sequence of vir-1 in Drosophila and mosquito showed a 
significant similarity to the newly identified protein in bees, namely icarapin, a novel IgE-
binging venom protein, which can evoke an immune response in subjects after a bee sting 
(Peiren et al., 2006).  
  



 

118#
#

2.!Material and Methods 

 

2.1.! Insects and viruses  

Newly emerged workers were collected from the colonies of B. terrestris provided by Biobest 

NV (Belgium), and kept in micro-colonies fed with pollen and sugar water ad libitum in 

incubator (Panasonic) under the condition of 29-31°C, 60-65% relative humidity, and continuous 

darkness, for further experiments. Colonies used in this study were screened to be free of IAPV 

and SBPV infections by RT-PCR (supplementary data: Table S1). IAPV and SBPV inocula were 

produced by following the protocol described in a previous study (Niu et al., 2014a). The exact 

virus particles were counted by using transmission electron microscopy. These two viruses were 

chosen based on their virulence in bumblebees in our setup: IAPV (virulent virus) presents an 

extremely fast replication and causes high mortalities of the bees within few days; SBPV 

(avirulent virus), its infection causing no mortality, still replicates fast but slower compared with 

that of IAPV (Chapter II Figure 1). The bees used in our experiments were five to eight days old, 

except the experiment of IAPV feeding (two days old worker were used), all the RNA samples 

were collected in less than 11 days old adult bees.  

2.2.! Viral inoculations 

We used ~20 particles (in 5!µl solution) of IAPV per bee to apply the injection. The amount of 

SBPV is ~200, 000 particles (in 5!µl solution) per bee for injection. PBS injected bees served as 

control. Before the injection, bees were transferred into 50 ml tube and incubated on ice for ~20 

min. Then, the unconscious bees were immediately injected with virus by the nano-injector. To 

maintain an accurate injection and avoid any leak of injection solutions, we chose the soft white-
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like cuticle between the 1st and 2nd segments as injection site and the injection process were 

strictly screened under microscope. The injected bees were immediately transferred back to 

micro-colonies with same condition as described above. When IAPV feeding was required, bees 

with 5 hours starvation were transferred into a petri dish, and a liquid drop (in 20!µl solution) 

containing of an amount of 108 particles (mixed with sugar water instantly before feeding) were 

ingested per bee. Only bees that directly and completely ingested the solution within one hour 

were put back to micro-colonies. The control treatment was followed with the same procedure 

but with PBS spiked sugar water. 

2.3.! Gene silencing by dsRNA 

A fragment of target gene was amplified by PCR with target gene sequence specific primers plus 

T7 promoters (supplementary file: Table S2). Then, these partial DNA templates of each gene 

were purified by E.Z.N.A.® Cycle-Pure Kit (Omega, GA). The specificity of each template was 

checked by running the PCR products in an electrophoresis on 1.5% agarose gel and sequence 

confirmations for these templates (LGC genomics, Berlin, Germany). Next, one microgram 

templates were used to synthesis dsRNA according to the guideline of MEGAscript® RNAi Kit 

(Invitrogen, USA). The concentration and quality of each dsRNA were verified by Nanodrop and 

electrophoresis on 1.5% agarose gel. With the same procedure, a partial of GFP sequence 

(Supplementary file: S2) was used as template to synthesis dsGFP as negative control. For each 

gene silencing, a total of 20 µg (in a volume of 20 µl) of dsRNA were injected per bee, and same 

dose of dsGFP was served as negative control for the effect of non-specific dsRNA.  

2.4.! Samples preparation for exploring the roles of BtVago in 

communications between the siRNA and JAK/STAT pathways 

To comprehensively investigate the possible roles of BtVago in communications between the 
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siRNA and JAK/STAT pathways, we chose the expression of BtDicer-2, BtVago and BtHop, as 

the indicator to follow the interactions for the pathways, upon three experimental setups. The 

“Setup I” focused on the influence of the single factor “virus infection” on the expressions on 

BtDicer-2, BtVago, and BtHop; The “Setup II” was about silencing one of these three genes and 

detected its influence on the other’s expressions; The “Setup III” combined the above two factors, 

viral infection and gene silencing. The details of sample collections were described in following:  

Setup I: gene expression upon viral infections. Two days after injection of IAPV, the whole 

body of the bee was collected for RNA extraction (n= 10), the expression of BtDicer-2, BtVago 

and BtHop was compared with control bees (n = 10) undergoing the same procedure except 

injected with PBS. For IAPV infection by feeding, we collected bees after 9 days after IAPV 

feeding, and the abdomen of each individual (n=8) was used to extract RNA. PBS fed bees (n=8) 

were used as controls. For SBPV, after 3 days injection, the abdomen of each bee was used for 

RNA isolation (n=8), and the same treatment of PBS injection was used as control (n=8).  

Setup II: gene expression upon gene silencing. Gene silencing was performed by injection of 

gene specific dsRNA to target mRNA of BtDicer-2, BtVago, and BtHop, respectively. Two days 

after dsRNA injection, the abdomens of each individual were collected for RNA extraction. 

DsDicer-2 (n=10), dsVago (n=4), and dsHop (n=10) were applied to silence BtDicer-2, BtVago, 

and BtHop, respectively. For each gene silencing, dsGFP were used as negative control. 

Setup III: gene expression in combined effect on gene silencing and viral infections. This 

setup combined the factors of gene silencing (BtDicer-2 and BtVago) and viral infections (IAPV 

and SBPV). We first silenced the genes through injection with sequence specific dsRNA, after 

two days, we inoculated bees with SBPV or IAPV by injection. Subsequently, post two days of 

SBPV injection and post 1.5 days IAPV infection, RNA for each groups were collected. For 
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group of SBPV, two treatments were applied, dsDicer-2-SBPV (n=8) and dsVago-SBPV (n=15). 

For groups of IAPV, two groups were involved: dsDicer-2-IAPV (n=18) and dsVago-IAPV 

(n=9). In each treatment, dsGFP controls were applied as the controls.  

2.5.! Virus genome copy number detection  

To measure whether the silencing of BtHop and BtVago could influence the amount of IAPV and 

SBPV gcn, the relative viral genome copies in each sample were evaluated based on a DNA 

standard curve. A part of the each virus genome was amplified (primers in supplementary table 

S1) and purified by E.Z.N.A.® Cycle-Pure Kit . The sequences of each virus were confirmed by 

Sanger sequencing. The concentration of purified templates was measured by Quant-iTTM 

PicoGreen® dsDNA assay kit (Invitrogen, USA). The concentration was converted to gcn per µl 

by the online tool (URL: http://cels.uri.edu/gsc/cndna.html; Accessed date: 20 June 2014). A 

serial 10 times dilution of templates was made to obtain a standard curve for each virus by qPCR. 

With cq values (x) and corresponding gcn (y), for IAPV, the equation is y = -0.3017x + 8.8995 

(R² = 0.9997); for SBPV, the equation is y = -0.2926x + 9.4426 (R² = 0.9996). The normalized 

gcn of each sample was represented by the ratio of the gcn calculated that is based on the DNA 

standard curve and the normalization factor from the internal reference gene peptidylprolyl 

isomerase A (PPIA) (Niu et al., 2014a) with the frame work of qBase (Hellemans et al., 2007).  

2.6.! Mortality test  

To further test whether silencing of BtHop would lead to a change of mortality caused by virus 

infection, the mortalities of BtHop silenced bees under viral infection were followed for around 

six weeks. Each treatment included 15 biological replicates, and the mortality was checked per 

day. The dead bees were removed out of micro-colonies after scoring the mortality.  
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2.7.! RNA isolation, cDNA, and qPCR 

RNA isolations were applied by RNeasy mini kit (Qiagen, Germany). Extra RLT buffer (1.5~2 

ml) were used to homogenize the lysed bumblebee tissues by mortar and the supernatants were 

centrifuged for three times to remove the deposit, afterwards the steps were followed by the 

standard protocol of kit. Then, RNA was treated by TURBO DNA-free™ kit (Ambion, USA) to 

remove possible genomic DNA. RNA quantity and quality were checked by Nanodrop and 

electrophoresis on 1.5% agarose gel. Two microgram RNA was used to synthesize the cDNA by 

SuperScript® II Reverse Transcriptase (Invitrogen, USA) using oligo (dT) primers. To make sure 

that genomic DNA was removed completely we checked cDNA samples with exon spanning 

primers for RPL23 (Supplementary data Table S1). The cDNA should produce an amplicon of 

143 bp while possible genomic DNA contamination would produce an extra amplicon of 452 bp. 

The qPCR was performed on a CFX96™ Real-Time PCR Detection using GoTaq® qPCR master 

(Promega, USA). Each reaction was performed in duplicate. The amplification specificity of 

primers used in this study was checked by both electrophoresis of the RT-PCR products and 

analysis of the dissociation curve of qPCR. Each RT-PCR products amplified by these primers 

were sequenced in order to confirm their primers’ specificities.   
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3.!Results 

 

3.1.! JAK/STAT pathway in B. terrestris is involved in the control of SBPV 

To identify the involvement of the JAK/STAT pathway upon virus infection, we looked at 

whether silencing of BtHop (one of key components of JAK/STAT pathway) would change the 

infection types of viruses, such as causing higher mortality. The results showed that the silencing 

of BtHop did not increase the mortalities upon both viral infections (Figure 2). Then, we 

wondered whether there was any difference in the viral gcn by the silencing of BtHop. The 

results revealed that silencing of BtHop did not influence the amount of  

IAPV gcn compared with dsGFP control (Figure 3A). However, it significantly increased the 

amount of gcn of SBPV at two dpi (T-test: t=-2.683, df=19, p=0.015), but at three pdi, there was 

no significant difference of gcn compared with dsGFP control (Figure 3B). Thus, these results 

suggest the involvement of the JAK/STAT pathway against SBPV infection, but the temporal 

silencing of BtHop did not alter the SBPV infection type, such as from a covert to an overt 

infection.  
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Figure 2: Survival percentage of bumblebees caused by virus infection upon silencing of 
core JAK/STAT pathway gene: BtHop.  
 
(A) IAPV: The injection of IAPV causes extremely high and fast mortality, therefore, we used 
feeding as the inoculation method. IAPV was firstly ingested by fixed age adult bees, and then 
after five days later, dsRNA were injected to silence BtHop. DsGFP and ES were included as the 
controls. (B) SBPV: DsRNA were firstly injected to silence BtHop in age fixed adult bees. After 
two days later, we injected SBPV to infect bumblebees. For all treatments including controls, at 
least 15 biological replicates were used and the mortalities of bees were checked per day.  
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Figure 3: Genome copy numbers of viruses upon silencing of core JAK/STAT pathway 
gene: BtHop.  
(A) IAPV: The injection of IAPV causes extremely high and fast mortality, therefore, we used 
feeding as the inoculation method. IAPV was firstly ingested by fixed age adult bees, and then 
after five days, dsRNA were injected to silence BtHop. DsGFP and ES were included as the 
controls. Subsequently, post four days injection of dsRNA, genome copy number of IAPV was 
measured. (B) SBPV: dsRNA were firstly injected to silence BtHop in age fixed adult bees. After 
two days later, we injected SBPV to infect bumblebees. Subsequently, post two and three days 
injection of dsRNA, genome copy number of SBPV was measured.  At least 8 biological 
replicates were included in each treatment. The means of each genome copy number were 
represented based on Log10 transformation. The error bar represented the standard error of mean. 
The level of significance was calculated by T-test and p< 0.05 was labelled with asterisks (*). 
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3.2.! The orthologues of Vago in B. terrestris 

An orthologue of mosquito Vago was identified in the genome of B. terrestris, namely, BtVago 

(XP_003399812.1). The 153-aa protein sequence of BtVago showed 69% identity with CxVago 

(Vago of Culex quinquefasciatus: XP_001844380.1) based on NCBI-Blast. BtVago presented 

eight conserved cysteine residues which form a von Willebrand factor C-domain (VWC) (Figure 

4). SingalP 4.1 (Petersen et al., 2011) analysis of the BtVago amino acid sequence indicated a 

predicted signal peptide cleavage site between amino acids 16 and 17 (Figure 5). This suggests 

that BtVago may also be secreted and has an IFN-like antiviral function as described in mosquito 

(Paradkar et al., 2014; Paradkar et al., 2012). Phylogenetic analysis of Vago-related protein 

sequences revealed that insects Vago mainly followed their taxonomy (Figure 6). Based on the 

VWC domain as a template from Protein Data Bank (PDB code 1U5M), the proposed 3D protein 

structure of BtVago and CxVago were constructed by Swiss-model 

(http://swissmodel.expasy.org/interactive accessed on: April 22, 2015), while only seven 

conserved cysteine residues of each Vago were aligned with the 1U5M during the model 

constructions (Figure 6). In order to identify the possible promoter region responsible for BtVago 

activation, the 5’ regions ~2 kb upstream from the transcription start site of B. terrestris gene, 

was analyzed by PROMO.  
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Figure 4: The eight conserved cysteine residues of Vago in different insect species.  

The amino acid in yellow background indicated the eight conserved cysteine residues. The 
conservation of amino acid at each location were indicated by *, : , ., with the level of similarity 
from high to low.  
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Figure 5: Predicted signal peptide cleavage site of BtVago 
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Figure 6: 
Phylogenetic 
analysis of 
Vago-like 
protein 
sequences and 
proposed 3D 
structures of 
BtVago and 
CqVago based 
on 1U5M.  
MEGA 6.0 
(Tamura et al., 
2013), was used 
to construct the 
phylogenetic tree 
of Vago-like 
proteins through 
Maximun 
Likelihood. The 
conserved amino 
acids from 
chosen sequences 
of each species 
were used 
(supplementary 
file: S1). The 
number of 
Bootstrap 

replications was 500 to test the phylogeny. The model of LG+G was adapted according to the model test of all input sequences. The 
proposed protein 3D structures of Culex quinquefasciatus Vago and Bombus terrestris Vago-like proteins, was constructed based by 
SWIS-MODEL through the template from Protein Data Bank (PDB code 1U5M). The amino acids in red shows conserved cysteine 
residues of each Vago were alignment with the 1U5M during the model constructions.  
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Table 1: Predicted NF-κB binding site in BtVago promoter region 

 

Factor name 
 Start 
position 

 End 
position 

 
Dissimilarity  String  RE equally  RE query 

 RelA [T00595] 438 448 12.115729  TCTAACGAAGC 0.02146 0.01273 
 GATA-1 [T00305] 735 742 4.138263  CACGATAA 0.54932 0.69044 
 GATA-1 [T00305] 925 932 1.520654  TTATCATT 0.30518 0.65047 
 GATA-1 [T00305] 1609 1616 4.052395  TCGGATAA 0.54932 0.69044 
 GATA-1 [T00305] 1896 1903 1.682543  TTATCACA 0.30518 0.65047 
 GATA-1 [T00267] 735 743 8.557309  CACGATAAT 0.06866 0.14082 
 GATA-1 [T00267] 924 932 4.979757  TTTATCATT 0.18311 0.36798 
 GATA-1 [T00267] 1609 1617 3.166737  TCGGATAAG 0.11444 0.16757 
 GATA-1 [T00267] 1895 1903 3.40581  CTTATCACA 0.10681 0.17821 
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The results indicated the presence of NF-κB biding site in BtVago promoter region (Table 1).  

The above in silico analysis provides evidences for sequence conservation of Vago in 

bumblebees. In mosquito it has been reported that the siRNA pathway can induce the expression 

of Vago, and further lead to activate the JAK/STAT pathway, upon virus infection (Figure 1). In 

order to analyze this possible activity of BtVago, we comprehensively investigated the 

expression of associated key genes (Figure 1) including BtDicer-2, BtVago and BtHop, in three 

experimental setups, including upon virus infection (Setup I), upon dsRNA injection to silence 

one of the three genes (Setup II), and upon effects in combined viral infections with silencing of 

BtDicer-2 or BtVago (Setup III). 

3.3.! BtVago is downregulated by IAPV infection (Setup I) 

In contrast to the results from mosquito showing an upregulation of Vago upon virus infections 

(Paradkar et al., 2014; Paradkar et al., 2012), our results demonstrated that the expression of 

BtVago was downregulated, after infection with IAPV in both inoculation ways, injection (T-test: 

t=-3.773, df=8.5, p=0.005) and ingestion (T-test: t=2.211, df=14, p=0.044), while at the same 

time BtDicer-2 was significantly upregulated (Figure 7A and B). The expression of BtVago was 

not changed in SBPV infected samples, although the virus could also significantly induce the 

expression of BtDicer-2 (Figure 7C).  

3.4.! Silencing of BtVago downregulates the expression of BtHop (Setup II) 

Two days after the injection of gene specific dsRNA to target BtDicer-2, BtVago, or BtHop, the 

target genes were silenced in the comparison with controls (i.e. injection of dsGFP). Under the 

silencing of BtDicer-2, the expression of BtVago and BtHop was not changed (Figure 8A). The 

marginal silencing of BtVago significantly downregulated the expression of BtHop (T-test: 

t=4.889, df=6, p=0.003) (Figure 8B), which suggests the possible association of BtVago with the 
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Figure 7: Fold changes of BtDicer-2, BtVago, and BtHop upon viral infections in comparison with controls (PBS).  
 
(A): IAPV infection was inoculated by injection. Two days after IAPV injection, the RNA samples were collected for gene expression 
analysis, PBS injected samples were collected as control. (B): IAPV infection was inoculated by ingestion (feeding). Five days after 
IAPV ingestion, the RNA samples were collected for gene expression analysis, PBS ingested samples were collected as control. (C): 
SBPV infection was inoculated by injection. Three days after SBPV injection, the RNA samples were collected for gene expression 
analysis, PBS injected samples were collected as control. Each treatment included eight biological replicates. The fold changes of 
gene expression were equal to the ratio of the relative expression of each gene in virus infected samples over the relative expression of 
this gene in control samples (PBS injected bees). The relative expression of each gene was calculated based on internal reference gene 
PPIA. The error bar represented the standard error of mean. The level of significance was calculated by T-test and p< 0.05 was 
labelled with asterisks (*). 
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Figure 8: Fold changes of BtDicer-2, BtVago, and BtHop upon relative dsRNA injection in comparison with controls (dsGFP 
injection).  
 
(A): Injection of dsDicer2 to silence BtDicer-2 (n=9~12).  (B): Injection of dsVago to silence BtVago (n=4~5). (C): Injection of dsHop 
to silence BtHop (n=10).  In each treatment, dsGFP injected samples were served as controls. All RNA samples were collected post 
two days injection of dsRNA. The fold changes of gene expression were equal to the ratio of the relative expression of each gene in 
virus infected samples over the relative expression of this gene in control samples (dsGFP injected bees). The relative expression of 
each gene was calculated based on internal reference gene PPIA. The error bar represented the standard error of mean. The level of 
significance was calculated by T-test and p< 0.05 was labelled with asterisks (*). After two days of dsRNA injection, all the target 
genes were downregulated compared with dsGFP controls.  
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Figure 9: Fold changes of BtDicer-2, BtVago, and BtHop upon viral infections with pre-
silencing of BtDicer-2 or BtVago in comparison with controls.  
 
(A): IAPV infection with BtDicer-2 pre-silencing. DsDicer2 was injected to silence BtDicer-2, 
two days later, IAPV was injected to inoculate bees. Subsequently, RNA was collected post 1.5 
days injection of IAPV for measuring gene expressions (n=18). (B): IAPV infection with BtVago 
pre-silencing. DsVago was injected to silence BtVago, two days later, IAPV was injected to 
inoculate bees. Subsequently, RNA was collected post 1.5 days injection of IAPV for measuring 
gene expressions (n=9). (C): SBPV infection with BtDicer-2 pre-silencing. DsDicer2 was 
injected to silence BtDicer-2, two days later, SBPV was injected to inoculate bees. Subsequently, 
RNA was collected post two days injection of SBPV for measuring gene expressions (n=8). (D): 
SBPV infection with BtVago pre-silencing. DsVago was injected to silence BtVago, two days 
later, SBPV was injected to inoculate bees. Subsequently, RNA was collected post two days 
injection of SBPV for measuring gene expressions (n=15). We used dsGFP and PBS injections 
as controls for dsRNA and viral injections, respectively, for each treatment. The fold changes of 
gene expression were equal to the ratio of the relative expression of each gene in virus infected 
samples over the relative expression of this gene in control samples. The relative expression of 
each gene was calculated based on internal reference gene PPIA. The error bar represented the 
standard error of mean. The level of significance was calculated by T-test and p< 0.05 was 
labelled with asterisks (*). 
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JAK/STAT pathway. We did not detect any influence on the expression of BtDicer-2 and 

BtVago by the silencing of BtHop (Figure 8C). 

3.5.! Combined effects (the BtDicer-2 or BtVago depletion, and the viral 

infections) show the proposed communications between the siRNA 

pathway and JAK/STAT pathway (Setup III) 

With the evidences of viral infection in influence the expressions of BtDicer-2 and BtVago 

(Setup I), and silencing of BtVago on influence the expression of BtHop (Setup II), we wondered 

whether the combination the silencing of these core genes to interfere the pathway activities, and 

viral infections, would show more clear evidences on the proposed communications. The results 

(Setup III) showed that silencing of BtDicer-2 upon IAPV infection did not influence the 

expression of BtVago but marginally downregulated the expression of BtHop (T-test: t=-1.856, 

df=24.2, p=0.076) (Figure 9A), and the silencing of BtDicer-2 upon SBPV infection marginally 

decreased the expression of BtVago (T-test: t=1.889, df=21, p=0.073) but no effect on the 

expression of BtHop was observed (Figure 9C). The silencing of BtVago upon IAPV infection 

significantly decreased the expression of BtDicer-2 (T-test: t=4.009, df=17.3, p=0.001) (Figure 

9B), while the silencing of BtVago upon SBPV infection showed a significant downregulation of 

BtHop (T-test: t=2.153, df=18, p=0.045) (Figure 9D).  

3.6.! Silencing of BtVago did not alter the viral genome copy number 

To further explore the role of BtVago to viral infections, we measured the amount of viral gcn 

after the silencing of BtVago. The results showed that the amount of IAPV showed no difference 

between treatments in dsGFP (n=15) and dsVago (n=9) (Figure 10A). The amount of SBPV gcn 

also remained constant between treatments of dsGFP (n=20) and dsVago (n=16) (Figure 10B).  
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Figure 10: Genome copy numbers (gcn) of viruses upon silencing of BtVago.  
(A) IAPV: DsVago (n=9) was injected to silence BtVago, two days after injection, IAPV was 
injected to inoculate bees. Subsequently, RNA was collected post 1.5 days injection of IAPV for 
measuring viral gcn. DsGFP injection was included as control (n=15). (B) SBPV: DsVago (n=16) 
was injected to silence BtVago, two days after injection, SBPV was injected to inoculate bees. 
Subsequently, RNA was collected post two days injection of SBPV for measuring viral gcn. 
DsGFP injection was included as control (n=20). The means of each gcn were represented based 
on Log10 transformation and the error bar represented the standard error of mean.   Different 
letters represent statistical significant difference of mean (p < 0.05). 
 

4.!Discussion 

 

In insects, especially, Drosophila and mosquito, the antiviral activities of JAK/STAT are well 

described, such as DCV, DENV and West Nile virus (WNV) (Dostert et al., 2005; Paradkar et al., 

2012; Souza-Neto et al., 2009). In B. terrestris the JAK/STAT may also be involved in antiviral 

defense. Indeed when we silenced BtHop we observed an increased gcn of SBPV at 2 dpi. 

However the involvement of this pathway in IAPV infection is less clear, as the same approach 

failed to detect any influence on IAPV gcn. In wild bumblebees, IAPV and SBPV have also been 
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detected (Fürst et al., 2014; Levitt et al., 2013; McMahon et al., 2015; Singh et al., 2010) while 

viral infection symptoms in wild bumblebees have not yet been reported.  Upon the artificial 

injection, IAPV replicates very fast and acts as a very virulent virus in bumblebees, while SBPV 

replicates relatively slower (data not shown) and induces no mortality. Ingestion of IAPV by the 

bumblebee is less harmful than injection which causes 100% mortality rapidly, but the high 

mortality is still observed after the ingestion of a high viral dose (Figure 2A). Since its virulence 

in current setup, a temporal inhibition of JAK/STAT through the silencing BtHop, may not 

provide a significant effect on IAPV gcn to be detected if the JAK/STAT pathway is involved in 

combating IAPV infection in bumblebee.  

The induction of core genes in the siRNA pathway upon virus infection is detected in the 

honeybee (Galbraith et al., 2015) and the bumblebee, especially Dicer-2 (Setup I). Dicer-2 

belongs to the same DExD/H-box helicase family as the RIG-I-like receptors, which sense viral 

infection and mediate interferon induction in mammals (Deddouche et al., 2008). In studies from 

Drosophila and mosquito, it was shown that Vago can be induced in a Dicer-2 dependent manner 

upon viral infection (Deddouche et al., 2008; Paradkar et al., 2014; Paradkar et al., 2012). 

However, upon both injection and ingestion of IAPV, the expression of BtDicer-2 was increased 

but meanwhile the expression of BtVago was deceased. To the best of our knowledge this is the 

first time to report the downregulation of Vago in insects upon virus infection. The 

downregulation of BtVago is rather linked with IAPV than with Dicer-2 upregulation since the 

other virus, SBPV, resulted in upregulation of BtDicer-2 while the expression of BtVago is not 

altered. In Drosophila, Vago is induced after viral infection like DCV and SINV, but no effect 

has been reported from flock house virus (FHV) (Deddouche et al., 2008). These evidences 

suggest that the induction of Vago, may be dependent on the specific virus and virus–host 
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interaction.  

Vago appears to be a cytokine that acts in a similar manner to mammalian interferon to induce 

the antiviral activity of the JAK/STAT pathway in neighboring cells (Paradkar et al., 2014; 

Paradkar et al., 2012). The silencing of CqHop, but not CqDome, influences the CqVago induced 

suppression of WNV replication (Paradkar et al., 2012). Therefore, the silencing of BtVago led 

to a downregulation of BtHop in B. terrestris may imply that there could be an interaction of 

BtVago with the JAK/STAT pathway in B. terrestris and the relative small drop of BtHop 

expression could be estimated as the partial activity of the JAK/STAT pathway associated with 

BtVago. Infection of different bacteria can also induce the expression of Vago but does not 

influence the expression of vir-1 being the downstream transcribed gene of JAK/STAT during 

virus infection (Deddouche et al., 2008; Dostert et al., 2005). Intriguingly, the protein sequence 

of vir-1 in Drosophila and mosquito only showed a significant similarity to the newly identified 

protein in bees, namely icarapin, a novel IgE-binging venom protein, which can evoke an 

immune response in subjects after a bee sting (Peiren et al., 2006). Therefore, the transcribed 

genes in the JAK/STAT pathway of bees upon virus infection await further investigations.  

The silencing of BtDicer-2 led to a lower expression of BtHop with a noticeable level (p=0.076) 

in IAPV infected bees, while it led to the decrease of BtVago with a noticeable level (p=0.073) 

under the infection of SBPV. Although we lack the evidence of a relatively altered expression of 

BtVago and BtHop in IAPV- and SBPV-infected bumblebee, respectively, it seems that the 

silencing of BtDicer-2 could partially influence the “BtVago-JAK/STAT (BtHop)” association 

upon virus infection. If we take into consideration that the gene expression was performed in 

vivo and on whole abdomens, we could argue that some apparent effect can be missed. 

Nevertheless, these evidences may still be consistent with the proposed function of Vago as 
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across-talk molecule between the siRNA pathway and the JAK/STAT pathway in a Dicer-2 

dependent manner in Drosophila and mosquito. 

Upon IAPV infection the silencing of BtVago can influence the expression of BtDicer-2 (Fig 9A). 

Together with the fact that IAPV induces lower expression of BtVago, could this lower 

expression of Vago be a virus strategy not only to silence JAK/STAT defense, but also the 

siRNA antiviral immunity? To verify the biological context of the downregulation of Vago to 

viral infection, we silenced BtVago to detect its impact on IAPV and SBPV infection. In contrast 

to our expectations it did not show any influence on virus gcn. However, in other studies, the 

silencing of Vago or the mutation of Vago could lead to an increase of virus titers (Deddouche et 

al., 2008; Paradkar et al., 2012).  

Taken all evidences together (as summary in Table 2), the interaction between the siRNA and 

JAK/STAT pathways through BtVago could be more complex in bumblebee compared to recent 

reports in Drosophila and mosquito. Indeed we observed that the innate immunity is not static 

and the role of Vago is highly dependent on the viral infections. Here we formulate some 

speculations on how the different types of viral infections influence BtVago in associations with 

communications. One, BtVago severs as the cross-talk bridge between the siRNA pathway and 

the JAK/STAT pathway in a similar way as described in mosquito (Paradkar et al., 2014; 

Paradkar et al., 2012). However this classical cross-talk could be complex upon infection of 

virulent virus such as IAPV. We can ask whether this downregulation of BtVago by IAPV is of 

interest to the host or the virus. At first glance one would say beneficiary to the virus via partially 

shutting off BtVago associated communications of the siRNA and JAK/STAT pathways. 

However, it could also be beneficiary to the host because switching off the induction of the extra 

activities of JAK/STAT may be able to open opportunities for other pathway with antiviral 
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activitys.  

Table 2: Summary of differential expressions of BtDicer-2, BtVago and BtHop under three 

setups 

Experimental 
design Treatment 

Gene expression 
BtDicer-2 BtVago BtHop 

Setup I: 
Viral infection 
 

IAPV (injection) up down - 
IAPV (ingestion) up down - 
SBPV (injection) up - - 

Setup II: 
Gene silencing 
 

BtDicer-2 silencing  down - - 

BtVago silencing - 
down 
(p=0.093) down 

BtHop silencing - - down 

Setup III: 
viral infection 
& 
Gene silencing 

BtDicer-2 
silencing IAPV(injection) down - 

down 
(p=0.076) 

BtDicer-2 
silencing SBPV(injection) down 

down 
(p=0.073) - 

BtVago silencing IAPV(injection) down down - 
BtVago silencing SBPV(injection) - down down 

 

-! Indicated that the expression of gene was no altered. 
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For instance, the activation of CqVago requires Relish2 (Paradkar et al., 2014) which is one of 

the components in the Imd pathway with antiviral activity (Costa et al., 2009). The down 

regulation of Vago could possibly be related with the pre-occupation of Relish2 by Imd in order 

to maintain high antiviral activities from Imd; Another possible speculation is that the feedback 

mechanism between Dicer-2 linked the siRNA pathway and Vago linked JAK/STAT pathway in 

B. terrestris upon viral infection, could be bidirectional.  This is more in a “coordination” 

manner of both pathways to combat with viral infection. Nevertheless, since most of evidences 

provided in mosquito about the interaction between Dicer-2 and Vago are based on cell lines 

(Paradkar et al., 2012), thus the study on in vivo could be more complex as the antiviral activities 

organized in different tissues might be various, for instance, Vago might be differently regulated 

in different tissues, some tissues are more important in immunities. Indeed, the study of DCV 

infected flies revealed that Vago is induced in fat bodies but not in tracheae or oenocytes 

(Deddouche et al., 2008).  

In conclusion, the innate immune pathways are important to control pathogen invasions in 

insects, and the communication among various immune pathways, especially nucleotides-based 

and protein-based, may be crucial to give rise to a complex and systemic response to pathogen 

challenge. In this study, we firstly showed the bumblebee JAK/STAT pathway might be 

involved as pathway with antiviral activity. Then we comprehensively investigated the possible 

communication with the siRNA and JAK/STAT pathways, through Vago, in in vivo bumblebee, 

as a primary social insect model with a small immune genes repertoire. According to the best 

characterized cross-talk model of the siRNA pathway and the JAK/STAT pathway through Vago 

in insects, we observed a similar possible association upon virus infection in bumblebees. 

However, some unexpected results were also observed, specifically, the downregulation of Vago 
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instead of the upregulation upon infection of IAPV, and silencing of Vago upon IAPV infection 

leads to downregulation of Dicer-2. Thus, we propose a more complex communication of the 

siRNA pathway and the JAK/STAT pathway through Vago in bumblebee compared with the 

current reports in insects. 
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Supplementary data  

Table S1: Primers used in this chapter 

S1: Conserved proteins sequences used to construct phylogenetic tree of Vago  
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Table S1: Primers used in this chapter 

Name Primer sequence (5’-3’) Amplicon length  Purpose 

qPCRVagoF2 TGTTACCCTTCAACGCAATTC 
 

194 QPCR 

for Vago qPCRVagoR2 ACAGATTCCGAAACGCTGAT 
 

 

Vago-T7dsF2 TAATACGACTCACTATAGGGAGACCTAGTCCCGGAA
GTCGAGA 

418 dsRNA 

synthesis 

for Vago 
Vago-T7dsR2 TAATACGACTCACTATAGGGAGAGTACGTACGAATT

ACAAGATCAACT 
 

qPCRHopF3 TGGCACAATGTGTCTCATCTT 186 QPCR 

for Hop qPCRHopR3 GAGGTACACAACGAGGTCCAG  

Ds2ndHOP-F4 TAATACGACTCACTATAGGGAGATGTCCTTTGTTTCT
GCTCTGGA 

374 dsRNA 

synthesis 

for Hop 

Ds2ndHOP-R4 TAATACGACTCACTATAGGGAGATGACTGTCCTTCA
GAATCTTGGA 

 

q-Ri-dicer2-F2 TGGTCAAAACATCAAGAACAACCA 

 

166 QPCR for 

Dicer-2 

q-Ri-dicer2-R2 GATCGGGGCCATACGAACAT 

 

 

C-dsDicer2-2nd-

F4 

TAATACGACTCACTATAGGGAGAGCGAAGGTGTCAC
CAAATGT 

437 dsRNA 

synthesis 

 for Dicer-2 C-dsDicer2-2nd-

R4 

TAATACGACTCACTATAGGGAGAGGGTGTGTAAAGG
CCTGCAA 
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S1: Conserved proteins sequences used to construct phylogenetic tree of Vago  

>Bombus_terrestris                                                                                    

MKLVPVLLLVAAIVFAAEEKKEEERPKTFRRLIPADVLRDFPGMCFASTRCATIEPTKSWDLTPFCGRSTCV
PADDNSGR 

LFELVEDCGPLPKANPKCKLSDKTNKTATFPDCCPIFECEEGAKLEYPEIPTLPPPTEIVETEKTPEATPA 

>PREDICTED:_uncharacterized_protein_LOC411622_Apis_mellifera.                                         

MKFAPILLFVIAIVFAAEE-
KEEERPKTFRRLIPADVLRDFPGMCFASTRCATIEPTKSWELTPFCGRSTCVPADDNSGR 

LFELVEDCGPLPKANPKCKLSDKTNKTAAFPNCCPIFECEEGAKLEYPEIPTLPPPTEIIETEKTSEEVPT 

>PREDICTED:_uncharacterized_protein_LOC105185794_Harpegnathos_saltator.                               

MEHAFVLLFTTIVFIAIADEKEEERPKTFRRLIPADVLRDFPGMCFASTKCATIEPTKTWELSPFCGRSTCVPA
DDNSGR 

LFELVEDCGPLPKANPKCKLSDKTNKTASFPDCCPIFECEDGAKLEYPEIPTLPPPTEIEASEITAAPKV- 

>PREDICTED:_uncharacterized_protein_LOC100878806_Megachile_rotundata.                                 

MKLATILLLVVAVVFAAEE-
KEEERPKTFRRLIPADVLRDFPGRCFASTKCATIEPTKSWDLTPFCGRSTCVPADDNSGR 

LFELVEDCGPLPKANPKCKLSEKTNKSAPFPDCCPIFECEDGAKLEYPEIPTLPPPTEIVETEKTPEAAPA 

>PREDICTED:_uncharacterized_protein_LOC105623255_Atta_cephalotes.                                     

MKLVFALLCVAVAFVAAEDAQVQERPKTFRRLIPADVLRDFPGMCFASTKCATIEPTKSWELSPFCGRSTC
VPADDNSGR 

LFELVEDCGPLPKANPKCKLSDKTNKTASFPECCPIFECEDGAKLEYPEIPTLPPPSDEDAAKAQPETPKP 

>PREDICTED:_uncharacterized_protein_LOC105282831_isoform_X2_Cerapachys_biroi.                         

MAFLLPHPCASSSV---------KIERNFR--------ENFPGMCFASTKCATIEPTKSWQLAPFCGRSTCVPADDNSGR 

LFELVEDCGPLPKANPKCKLSDKTNKTASFPDCCPIFECEDGAKLEYPEIPTLPTPTED-AAKGEPAAAAP 

>PREDICTED:_uncharacterized_protein_LOC105148313_Acromyrmex_echinatior.                               

MKLVFALLCVAAVFVATQDAQVQERPKTFRRLIPADVLRDFPGMCFASTKCATIEPTKSWELAPFCGRSTC
VPADDNSGR 

LFELVEDCGPLPKANPKCKLSDKTNKTASFPECCPIFECENGAKLEYPEIPTLPPPSED-AAKAQPEAPKP 

>PREDICTED:_uncharacterized_protein_LOC105455873_Wasmannia_auropunctata.                              

MKTVFALLCVAVAFVATQGAQEQERPKTFRRLIPADVLRDFPGMCFASTKCATIEPTKSWELAPFCGRSTC
VPADDNSGR 

LFELVEDCGPLPKANPKCKLSDKTNKTSSFPDCCPIFECEDGAKLEYPEIPTLPPPSGEDAAAAQPQAPKP 

>PREDICTED:_uncharacterized_protein_LOC105258902_Camponotus_floridanus.                               

MKLIFILLCAAVAFVAAEGTTEQERPKTFRRLIPADVLRDFPGMCFASTKCATIEPTKTWELSPFCGRSTCVP
ADDNSGR 

LFELVEDCGPLPKANPKCKLSEKTNKTASFPDCCPIFECEEGVKLEYPEIPTLPPPTEAEAANVPPEATPK 

>PREDICTED:_uncharacterized_protein_LOC105561162_Vollenhovia_emeryi.                                  

MKTIFVLLCVAVAFVAAQDVQEQERPKTFRRLIPADVLRDFPGMCFASTKCATIEPTKSWELAPFCGRSTC
VPADDNSGR 
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LFELVEDCGPLPKANSKCKLSDKTNKTASFPDCCPIFECEDGAKLEYPDIPTLPPPSDAI-AKAQPETPKP 

>PREDICTED:_uncharacterized_protein_LOC103577816_Microplitis_demolitor.                               

NKYFAIVLLVAAVVVAEEE----
ERPKTFRRLIPADVLRDFPGMCFASTKCATVEPTKSWELSPFCGRSTCVPSDDDSGR 

LFELVEDCGPLPKANPKCKLSEKTNKTASFPDCCPIFECEEGAKLEYPEIPTVPPPPS--EAEAKPEVAKV 

>PREDICTED:_uncharacterized_protein_LOC105197444_Solenopsis_invicta.                                  

MKI-VFALCVAVAFVAANA-
EEQERPKTFRRLIPADVLRDFPGMCFASTKCATIEPLKSWELSPFCGRSTCVLADDNSGR 

LFELVEDCGPLPKANPKCKLSDKTNKTASFPDCCPLFECEEGAKLEYPEIPTLPPPSGVDTAKAQPEAPQS 

>PREDICTED:_uncharacterized_protein_LOC100113619_Nasonia_vitripennis.                                 

FSLALVAIVAVVAVHAAEEKKDEDRPKTYRRLIPADVLRDFPGMCFASTKCATIEPKQSWDLAPFCGRSTC
VPADDNSGR 

LFELVEDCGPLPKANPKCKLSEKTNKTAPFPDCCPVFECEDGAKLEYPEIPTLPPPTAEEIAKAAAAGKPA 

>PREDICTED:_LOW_QUALITY_PROTEIN:_uncharacterized_protein_LOC105428984_partial_Pogonomyrmex_
barbatus.  

WKLTYLFTISEVLFFDSFLSGFYPNKRKCHLFVLFHYIVDFPGTCFASTKCATIEPGKSWELSPFCGRSTCVS
ADDNSGR 

LFELVEDCGPLPKANPKCKLSDKTNKTASFPECCPIFECEDGATLEYPDIPTLPPPTED-AAKAQPEAPKP 

>PREDICTED:_uncharacterized_protein_LOC105268204_Fopius_arisanus.                                     

MKYVVAILFIAALVVAED--
KDEERPKTYRRLIPADILRDFPGMCFASTKCATVEPGKTWDLSPFCGRSTCVPAEDNSGR 

LFELVEDCGPLPKENPKCKLSEKTKKTSPFPDCCPIFECEEGAKLEYPEIPTIPPPELVEPTETTTAKA-- 

>conserved_hypothetical_protein_Pediculus_humanus_corporis.                                           

MKFLIVFLIGFGAFCFGQETETTERPKVFRRLIPADVLRDFPGMCFASTKCTTVEPGKSWDLTPFCGRSTCV
VAEEQAGR 

LLELVEDCGPLPKANPKCKLSEKTNKTAPFPDCCPIFECEKGVKLEYPELPTVPPPTDKKKA--------- 

>CG31997_isoform_A_Drosophila_melanogaster.                                                           

MSFHTLILTAFTVSLCAEQKKSDAGERIFKRLIPADVLRDFPGMCFASTRCATVEPGKSWDLTPFCGRSTCV
QNEENDAK 

LFELVEDCGPLPLANDKCKLTEKTNKTASFPYCCPIFTCDPGVKLEYPEIGKDNDKKNSE----------- 

>PREDICTED:_uncharacterized_protein_LOC105220319_Bactrocera_cucurbitae.                               

MKAFLVVACALFVCVAAQDDTSQTNSKIYKRLIPADVLRDFPGMCFASTRCATVEPTKTWELTPFCGRSTC
VQNDENPAK 

LLELVEDCGPLPLANEKCKLTEKTNKTAPFPYCCPIFTCEPGVKLEYPEIPKEEAKKE------------- 

>uncharacterized_protein_LOC100167365_precursor_Acyrthosiphon_pisum.                                  

MDYRAVVLGVAAIVLSADEKTPAPEARIYRRLIPADVLRDFPGLCFASTKCATVEPGHTWELSPFCGRSTC
VQGE-GTDR 

LLELVEDCGPYPKSNPKCKLSEKTNKTASFPECCPVFDCEPGVKLEYPEVTVVENPESSDDSTTTTSTEKP 

>PREDICTED:_uncharacterized_protein_LOC655864_Tribolium_castaneum.                                    
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MKV-
FLVLALCLAVAAAEDKKEEERPKTFKRLIPADVLRDFPGMCFASTKCATIEPGKTWELHPFCGRSTCVVSE
DKPPR 

LLELVEDCGPLPLANPKCKLEEKTNKTAAFPDCCPVFKCEEGAKLEYPEIPTVAPVPE--ASSTTPKA--- 

>hypothetical_protein_KGM_07285_Danaus_plexippus.                                                     

MKY-LIVLAIIAFSYAADD-
KDDERPKTFRRLIPADVLRDFPGLCFASTRCATVEPGNTWDLAPFCGKSTCVVSEDTPPR 

LLELVEDCGPLPIANPKCKLTDKTNKTAPFPDCCPIFTCEDGVKLEYPELPTPPEEEKKEKS--------- 

>PREDICTED:_uncharacterized_protein_LOC105665112_Ceratitis_capitata.                                  

MKASLVIFVALFLYGAAQDAKNSSELKIYKRLIPADVLRDFPGMCFASTRCATVEPTKTWELTPFCGRSTC
VQNEDNPSK 

LLELVEDCGPLPLANEKCKLTGKTNKTAPFPYCCPIFICEPGIKLEYPEVPREELNKE------------- 

>unknown_Manduca_sexta.                                                                               

MKYLVVVAVFALAFAAEEKE---
DIPKTYKRLIPADVLRDFPGTCFASTRCATVEPGNTWELSPFCGRSTCVLSEDHPPR 

LLELVEDCGPLPLANPKCKLTDKTNKTAPFPGCCPIFTCEEGAKLEYPELPTPPPEGE--KAEEKPKKA-- 

>similar_to_CG31997_Papilio_xuthus.                                                                   

MKYLFVLAVFALAFAAEEE-
KDGERPKTFRRLIPADVLRDFPGLCFASTRCATVEPGNSWDLAPFCGRSMCVVSEDTPPR 

LLELVEDCGPLPLANPKCKLTDKTNKTAPFPGCCPIFTCEDGVKLEYPELPTAAPEEEK-KAEEKPKA--- 

>conserved_hypothetical_protein_Culex_quinquefasciatus.                                               

GVFVVAAALCVANVFAADEPTKDEGVKIYKRLIPADVLRDFPGMCFASTRCATIEPGKSWDLAPFCGRSTC
VVSESNPAQ 

LLELVEDCGPLPLANDKCKLTDKTNKTAPFPYCCPKFTCEPGVKLEYPEIKPSDASEEKK----------- 

>AAEL000445-PA_Aedes_aegypti.                                                                         

GVLIAATLCVANVFAADEAPTDEDTVKIYKRLIPADVLRDFPGMCFASTRCATIEPGKSWDLAPFCGRSTCV
VSETNPSQ 

LLELVEDCGPLPLANDKCKLTDKTNKTAPFPYCCPKFTCEPGVKLEYPDVKGPEAAPEDD--KKN------ 

>PREDICTED:_uncharacterized_protein_LOC105381502_Plutella_xylostella.                                 

MKY-
LVAFAVFALAFAAEEKAEEERPKTFRRLIPADVLRDFPGMCFASTRCATVEPGNAWDLSPFCGRSTCVVSE
DEPPR 

LLELVEDCGPLPLANDKCKLTDKTNKTAPFPGCCPVFTCTDGAKLEYPELPTPPPEGE----EKKPEEEKP 

>PREDICTED:_uncharacterized_protein_LOC101888253_Musca_domestica.                                     

MKFFAVFLLVACVYGAATDKTKEEAPKIYKRLIPADVLRDFPGMCFASTRCATVEVGKSWELTPFCGRSTC
VQNEEDPSK 

LLELVEDCGPLPLANDKCKLTEKTNKTAAFPYCCPVFTCEPGVKLEYPEAVKETKKE-------------- 

>AGAP002085-PA_Anopheles_gambiae_str._PEST.                                                           

MRSFTVVAVLALYVQAADEATKDAAPKTYKRLIPADVLRDFPGMCFASTKCATFEPGQYWDLTPFCGRST
CVLSDDAQPR 

LLELVEDCGPLPLANDKCKLTEKTNKTAPFPACCPTFTCEPGAKLEYPEIKTAPESTSEQN---------- 
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>hypothetical_protein_YQE_10125_partial_Dendroctonus_ponderosae.                                      

-------------------------------------------MCFASTKCATVEPGKTWELYPFCGRSTCVVSEDQPPR 

LLELVEDCGPLPLANEKCKLEEKTNKTAPFPACCPEFKCEAGAKLEYPEIPTVAPVPEDASTTTAKSA--- 

>PREDICTED:_uncharacterized_protein_LOC101741978_Bombyx_mori.                                         

MKYLIVLAVFALAFAAEEKE---
ERPKTFRRLIPADVLRDFPGMCFASTRCITVEPGNTWELSPFCGRSTCVVSEDQPPR 

LLELVEDCGPLPLTNPKCQLTEKTNKTAPFPGCCPIFTCEEGAKLEYPELPTPPPEDK--KAEEKPKA--- 

>unknown_Culicoides_sp._LJH-2002.                                                                     

MRFPFVFFVIVSLSFASET-
KNDDGIKVYKRLIPADVLRDFPGVCFASTKCAMFEPGKQWDLKPFCGRSTCVTPEDGSSR 

LLELVEDCGPLPIANDKCKLTEKTNKTADFPYCCPQFACQDGAKLEYPEVKTSSA---------------- 

>hypothetical_protein_DAPPUDRAFT_214640_Daphnia_pulex.                                                

MKFILCFSLLFVLVASVE-----ITPKTLTREIKADVLRDFPGVCYASTQCRTFKENEEWDLKPFCGKSICIKGA-
-DGI 

LKERVSDCGPPAKANPECKV--NANATLPYPNCCPVYDCAPGVQLEFPDIPVA------------------ 

>single_VWC_domain_protein_1_Litopenaeus_vannamei.                                                    

MKF-
LLIACLGSLVFAQQGPADLQGPGPFVRDLKADVLRDFPELCFSSTNFRLFLENQSWSLFPFCGKAECVKSG--
-AD 

YIERVHDCGPQPKNAEACTILQRNDTILEYPSCCPKYVCPDGVTLEYPEIQKQNQAALQAAAAAREAAGPQ 

>Chain_A_Structure_Of_A_Chordin-Like_Cysteine-Rich_Repeat_(Vwc_Module)_From_Collagen_Iia.             

-------------YVEFQEA----------------------GSCVQDGQ--RYNDKDVWKPEP-CRICVCDTGTLCDDI 

ICEDVKDC---------------LSPEIPFGECCPI--CPA-------DLAAAA----------------- 
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Chapter V -General conclusions and future 

perspectives 
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1.!General conclusions 

 

The involvement of siRNA, miRNA, and JAK/STAT pathways upon viral infections, were 

concluded, respectively, in Chapter 3, 4 and 5. Some key points are listed here: 

 

1.1.! The siRNA pathway upon viral infections  

Although the siRNA pathway is the most studied pathway in bee virus research and its 

usefulness to tackle bee virus-related diseases in the field is promising, the involvement of the 

siRNA pathway in the defense against different bee viruses is still poorly understood. Our results 

showed that the infections of IAPV and SBPV could both induce the expression of Dicer-2, and 

IAPV infections triggered the production of predominantly ~22 nt IAPV-derived siRNAs with a 

strong antigenome polarity whereas no Dicer-2-processed ~22 nt vsiRNA were detected in 

SBPV infection. Together with the “RNAi of RNAi” experiment on Dicer-2 which did not result 

in altered genome copy numbers of IAPV or SBPV, we speculated about the importance of the 

siRNA pathway as an antiviral response against bee viruses. For IAPV, this pathway was 

recruited but was insufficient to control viral infection. While SBPV seemed to be controlled by 

the host, aside from Dicer-2 induction upon viral infection, no evidence of the activity of the 

siRNA pathway was found, suggesting that other pathway with antiviral activity may play more 

important roles in managing viral infections.  
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1.2.! The miRNA pathway upon viral infections 

The miRNA pathway, a closely related pathway to the siRNA pathway, is also established to be 

involved in insect-pathogen interactions. In a virus-infected host the miRNAs can have two 

origins, either encoded by the host or the virus. Both origins of miRNAs may target host genes 

and/or the viral RNA (genome), which results in a complex network of host-virus interactions 

based on miRNAs. Our results showed that the infections of IAPV and SBPV could alter the 

expressions of Dicer-1 and/or Ago-1 and the expression of some different miRNAs, which might 

indicate the involvement of the miRNA pathway in bumblebee-virus interaction. The targets 

predicted for these differentially expressed miRNAs clustered into some bumblebee Gene 

Ontology (GO) terms or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which 

may represent a possible regulatory network in virus-host interaction. Intriguingly, the target 

predictions showed that these differentially expressed host miRNAs could also directly target the 

viral RNA (genome). The silencing of Dicer-1 did not lead to an altered genome copy number of 

SBPV, which might imply that these differentially expressed bumblebee miRNAs could serve as 

co-interests for the host and the virus, and/or non-canonical production of miRNAs may also 

play an important role.  

 

1.3.! The JAK/STAT pathway upon viral infections 

Next to the nucleotide-based RNAi (siRNA and miRNA pathways) immunity, there exists 

another conserved protein-based pathway in insects, JAK/STAT, directly contributes to combat 

viral infections. In addition, it also represents a cross-talk with the siRNA pathway through Vago. 

Our results showed that the infections of IAPV and SBPV did not result in any detected effect in 

the expression of Hop, but the silencing of Hop through RNAi resulted in an increased gcn for 
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SBPV but not for IAPV. These results suggested a role of the bumblebee JAK/STAT pathway in 

the control of an avirulent virus SBPV, but its role in the defense against a virulent virus as 

IAPV remained unclear. The potent cross-talk of the siRNA and JAK/STAT pathways through 

Vago might be occurring differently in the bumblebee compared with that in the mosquito. Here, 

we proposed a more complex communication between the siRNA pathway and the JAK/STAT 

pathway through Vago in bumblebees compared with the current reports in insects. 

2.!Interactions of the siRNA, miRNA, and JAK/STAT pathways 

upon viral infections 

 

The siRNA, miRNA and JAK/STAT pathways may not act linearly but may also communicate 

with each other.  With some initial evidences, we proposed possible interplay among them. We 

also speculated some possible future research directions to see if these required fundamental 

knowledges could be valorized in actual applications to improve bee health.   

 

2.1.! Interaction between the siRNA pathway and the miRNA pathway upon 

viral infections 

In insects, the siRNA and miRNA pathways are both essentially evolved to regulate gene 

expressions. Although each pathway has its own machinery to regulate gene regulation, some 

core components, such as Ago-2 are shared by both pathways (Chandradoss et al., 2015). In our 

study, we showed some evidences on the involvement of both pathways upon viral infections in 

bumblebees (Chapter III and IV). In addition, our small RNAs sequencing not only revealed the 
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virus-derived siRNAs, especially 22nt vsiRNAs as the possibly processing activity of Dicer-2, 

but also some peaks of small RNAs which may have possible functions, such as viral originated 

miRNAs. In fact, virus-encoded miRNAs could serve different  interests to host and virus 

(Asgari, 2015). Virus-encoded miRNAs could manipulate the host machinery to benefit for its 

own pathogenicity (Singh et al., 2012). Virus can also negatively regulate their own replication 

by encoding miRNA (Hussain and Asgari, 2014a). Another interesting observation from our 

study was that the large fraction of miRNAs with differential expressions were predicted to 

potentially target viral genomes in bumblebees, which certainly needs further investigation 

before drawing any conclusions. 

Currently there is a focus on virus-specific dsRNA to trigger the siRNAs pathway. This approach 

has been proven to be potent to control bee viruses (Niu et al., 2014b).  Indeed the pioneer 

company Beeologics is currently working on the BioDirect™ technology, a bee health product 

based on dsRNA molecules to control bee viruses and Varroa mites. This strategy is only based 

on antiviral response from the siRNA pathway, but another closed related pathway, the miRNA 

pathway, could also be promising in control viruses as well. Elaborating on potential interactions 

of two small non-coding RNAs, one could design a new kind of therapeutics to control viral 

infection based on combinations of the antiviral effect of these two pathways. First of all, more 

fundamental research is needed to validate candidates of host and virus miRNAs which can 

target viral genome. In addition, some host miRNAs may also regulate the pathways with 

antiviral activities which could also be evaluated. Secondly, through the use of mimics (gain of 

function) or antagomirs (loss of function) of candidate miRNAs, we can identify good candidates 

of miRNAs which have an inhibiting effect on viral infection.  Furthermore, a design of mixing 

the virus-specific dsRNA/siRNA and miRNA which can directly target the viral genome, may be 
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more effective and also be difficult for virus to develop resistance mechanisms as taking 

advantage of two RNAi pathways (siRNA and miRNA).  

2.2.! Interaction between the siRNA pathway and the JAK/STAT pathway 

upon viral infections 

In both honeybees and bumblebees non-specific dsRNA can induce a noticeable host antiviral 

activity (Flenniken and Andino, 2013; Piot et al., 2015). Based on the current understanding, two 

interpretations can be associated: one is that dsRNA could act as a PAMP which can induce 

several immune pathways, instead of only the siRNA pathway. The investigation on the majority 

of canonical insect immune pathways in honeybee upon viral infections could not link any of 

these with the antiviral activity of the non-specific dsRNA molecule induced (Flenniken and 

Andino, 2013). This study may imply that some unknown pathways are holding keys in non-

specific dsRNA induced antiviral immunity in bees. The other is that non-specific dsRNA can 

activate the siRNA pathway, and this pathway communicates with other immune pathways in 

order to achieve effective immune responses. The latter seems to fit with our observation on 

interactions of the siRNA and JAK/STAT pathways through Vago in bumblebee upon viral 

infection. In addition, this interaction in bumblebee seemed more complex than that in the well-

described cross-talk of these two pathways in mosquito. Therefore, it is worthwhile to focus on 

the validation of two key communication genes, Dicer-2 and Vago, which could be good targets 

to enhance the bees’ antiviral activity. This is still very speculative but enhancing the activity of 

either gene could be a potential direction for application-based research. For instance, non-

specific dsRNA as well as some avirulent virus such as SBPV can induce the expression of 

Dicer-2 thus may enhance the siRNA antiviral response and/or leading a further communication 

with another immune pathway.  This also shows the idea of using an avirulent virus to combat 
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some virulent virus. Another approach is to make a Vago-associated vaccine to control viruses in 

beneficial insects.  

2.3.! Interaction between the miRNA pathway and the JAK/STAT pathway 

upon viral infections 

Several differentially expressed bumblebee miRNAs upon infections of IAPV and/or SBPV, are 

predicted to possibly regulate some immune pathways, such as JAK/STAT pathway 

(KEGG:04630), Hippo signaling pathway (KEGG:04390), and Phagosome (KEGG:04145). This 

initial result requires more studies to investigate the miRNAs in the interaction with immune 

pathways in general, specially, the JAK/STAT pathway. Our recommended approach would be 

firstly to validate the miRNAs in the regulations with the immune genes. On the next level we 

proposed to test good candidate miRNAs mimics (gain of function) or antagomirs (loss of 

function) which could enhance host immune activities and lead to an inhibition on viral infection.  

In summary these ideas presented above allow us to explore a small RNAs-based approach, 

which was not only focused on direct degradation of viral genome (RNA), but also focus on 

enhancing bee antiviral immunities.  

 

3.!Some points to rethink about host-virus interaction 

 

3.1.! Not only proteins but also non-coding RNAs 

As an obligated parasite of living cells, virus is dependent on the host machinery to achieve its 

own replication. Thus two factors should always be kept in mind, the virus and the host, when 
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thinking about viral pathogenicity. Currently, proteins are generally recognized as the main 

functional building blocks of life, however, with more and more increasing knowledge, it seems 

that non-coding RNAs (ncRNAs) play an important role in gene regulation by interfering protein 

translation (Cech and Steitz, 2014). Especially, in the case of host-virus interaction, the ncRNAs-

based regulation tends to be more straightforward between host-virus compared with protein 

regulation as both players can easily take advantage of the ncRNAs. Therefore, both proteins and 

ncRNAs should be investigated to study the regulation on host-virus interaction.  

3.2.! Host developmental stages  

It is not only the viruses’ characters which can determine differences in host antiviral immune 

responses, the insect host developmental stages are also important.  In our current study, we only 

tested antiviral immunity in the adult stage, which is the stage that goes out to forage and might 

meet potential viruses. On the other hand, viral transmission inside colonies is also regularly 

happening. Some viral infections actually only occur in larval stages through ingestion of the 

collected foods containing virions. However, a study on immature bee stages is difficult, 

especially, in bumblebees. In vitro cultivation of larva is still not possible thus all experiments 

need to be done within the colony. The experimentally treated larvae are often not accepted by 

the colony again, thus the current methodology still does not allow a feasible setup when trying 

to work with larvae.   

Another aspect which needs to be considered is that studies are mostly performed on the non-

fertile workers, as these are produced in mass. Bumblebees are social insects and the health of 

queen is critical to maintain the colony, thus the study on the queen in combating viral infections 

is also needed to understand the antiviral immunity of bees.  
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3.3.! Multiple viral infections  

Multiple viral infections (De Smet et al., 2012; McMahon et al., 2015; Singh et al., 2010) can be 

an important context in impacting bee antiviral immunity. Generally, bee viruses and their hosts 

form a complex network, where multiple viruses can infect a single host. How one viral infection 

can influence the infection of the other viruses still remains unknown. This kind of interaction is 

indirect, which could be linked into two ways. One is that a viral infection may trigger host 

immunity which may impact on the latter viral invasion, if the first viral infection could induce 

an antiviral immunity and may make the host immune system ready to combat the latter viral 

infection. The second pattern could be that the first viral infection inhibits the host antiviral 

immunity, thus it would give the latter viral infection some advantage to get a successful 

invasion. For example, some viruses can encode VSR to compete with the immune activity from 

RNAi. It is not unlikely that some viruses benefit from VSR encoded by co-infected viruses.  

3.4.! From lab to field: consider more factors 

In nature, various factors can have an impact on the host antiviral immunity, while 

immunological studies often remain within the context of the lab where we have control over 

external conditions and can study the exact “point to point” interaction. The study in non-model 

but economically important insects is often not only to understand their immunity but also to try 

to find the solutions, such as for bee decline in an association with viruses. Wild bees in nature 

all encounter many factors that could influence their antiviral immunity, the well described 

factors such as Varroa mites (McMenamin and Genersch, 2015), pesticides (Di Prisco et al., 

2013) and the overwinter period (Steinmann et al., 2015), can influence viral infection patterns. 

Considering the complexity of nature, these factors are still too few to provide the picture of the 

real bee-virus interaction in the field.  
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Summary 

 

Understanding the interaction between host and virus, especially host antiviral immunity in super 

model insects such as Drosophila and mosquitoes, greatly facilitates the research in non-model 

insects. Although honeybees, bumblebees and solitary bees show behavior ranging from eusocial 

to solitary, genome-level comparison shows they all have a relatively small immune repertoire 

compared with other insects. This makes the study of immunity in these bees needed to not only 

understand insect immune evolution, but also to elucidate hos different they are from those super 

model insects and if general knowledges could be expanded by different organisms. Here in this 

project we worked with the bumblebee, Bombus terrestris, which stands in an intermediate 

position on the eusocial spectrum. Currently, scientists are trying to understand the reasons for 

bee decline in the association with different kinds of viral infections. Thus an exact antiviral 

immunity study in the bee itself in correspondence to different bee viruses is important to draw 

the correct conclusions and to search for efficient measures to tackle the current virus-related 

problem in bees. We initiated this study by optimizing the reference genes to perform RT-qPCR 

analyses for viral detection and gene expression measurements and also the conditions to obtain 

a sufficient RNAi efficacy for gene silencing. Both are two key strategies used in this 

dissertation. As the innate immunity in insects is not a static response, it could be possibly 

altered by a different virulence of viral infections. Here, we opted for two viruses, the Israeli 

acute paralysis virus (IAPV) and the slow bee paralysis virus (SBPV), and this decision was 

based on: 1) both viruses naturally infect bumblebees in the field; 2) each represents a key bee 

virus family, i.e. Dicistroviridae and Iflaviridae; 3) in our experimental setup, IAPV (as virulent 

infection) induces an extremely virulent infection while SBPV (as avirulent infection) does not 

cause mortality of bees. On the basis of the current understanding of antiviral immunity of bees, 

we chose three important and possibly interacting pathways, namely the small interfering RNA 

(siRNA), microRNA (miRNA) and JAK/STAT pathways, to investigate the immune responses 

of bumblebees in their defense against viral infections.  

The siRNA pathway activity upon viral infections  
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Although the siRNA pathway is the most studied pathway with antiviral activity in bee virus 

research and its usefulness to tackle bee virus-related diseases in the field is promising, the 

involvement of the siRNA pathway in the defense against different bee viruses is still poorly 

understood. Our results showed that the infections of IAPV and SBPV could both induce the 

expression of Dicer-2, and IAPV infections also triggered the production of predominantly ~22 

nt IAPV-derived siRNAs (vsiRNAs) with a strong antigenome polarity whereas no Dicer-2-

processed ~22 nt vsiRNA were detected in SBPV infection. Together with the “RNAi of RNAi” 

experiment on Dicer-2 which did not result in altered genome copy numbers of IAPV or SBPV, 

we can speculate about the importance of the siRNA pathway as an antiviral response against 

bee viruses. For IAPV, this pathway is recruited but is insufficient to control viral infection. 

While SBPV seems to be controlled by the host, aside from Dicer-2 induction upon viral 

infection, no evidence of the activity of the siRNA pathway was found, suggesting other pathway 

with antiviral activity may play more important roles.  

 

The miRNA pathway activity upon viral infections 

The miRNA pathway, as a closely related pathway to the siRNA pathway, is also established to 

be involved in insect-pathogen interactions. In a virus-infected host the miRNAs can have two 

origins, either encoded by the host or the virus. Both origins of miRNAs may target host genes 

and/or the viral RNA (genome), which results in a complex network of host-virus interactions 

based on miRNAs. Our results showed that the infections of IAPV and SBPV could alter the 

expressions of Dicer-1 and/or Ago-1 and the expression of multiple miRNAs, which might 

indicate the involvement of the miRNA pathway in bumblebee-virus interaction. The targets 

predicted for these differentially expressed miRNAs clustered into some bumblebee Gene 

Ontology (GO) terms or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which 

may represent a possible regulatory network. Intriguingly, the prediction showed that some 

differentially expressed host miRNAs could also directly target the viral RNA (genome). The 

silencing of Dicer-1 did not lead to an altered genome copy number of SBPV, which might 

imply that these differentially expressed bumblebee miRNAs could serve as co-interests for the 

host and the virus, and/or non-canonical production of miRNAs may also play an important role.  

The JAK/STAT pathway activity upon viral infections 
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Next to the nucleotide-based RNAi (siRNA and miRNA pathways) immunity, there exists 

another conserved protein-based pathway in insects, JAK/STAT directly contributes to deal with 

viral infections. It also shows a cross-talk with the siRNA pathway upon viral infections to rise 

efficient antiviral response. Our results showed that the infections of IAPV and SBPV did not 

result in any detected effect in the expression of Hop, but the silencing of Hop through RNAi 

resulted in an increased genome copy number for SBPV but not for IAPV. These results suggest 

a role of the bumblebee JAK/STAT pathway in the control of an avirulent virus SBPV, but its 

role in the defense against a virulent virus as IAPV remains unclear. The potent cross-talk of the 

siRNA and JAK/STAT pathways through Vago might be occurring differently in the bumblebee 

compared with the mosquito. Thus, we propose a more complex communication between the 

siRNA pathway and the JAK/STAT pathway through Vago in bumblebees compared with the 

current reports in insects. 

  



 

180$
$

 

 



 

181$
$

Samenvatting 

 

Onze kennis omtrent de interactie tussen virussen en hun gastheer, meer bepaald over de 

antivirale immuniteit in modelinsecten zoals Drosophila en de mug vereenvoudigt gelijkaardig 

onderzoek in niet-model insecten. Alhoewel honingbijen, hommels en solitaire bijen een gedrag 

vertonen dat reikt van een eusociaal tot solitair bestaan, toch werd tijdens het vergelijken van hun 

genomen gevonden dat ze allen slechts over een relatief klein aantal genen beschikken die  

betrokken zijn in immuniteit, in vergelijking met andere insecten. Hierdoor is de studie van 

immuniteit in deze bijen waardevol om zo de evolutie van immuniteit in insecten te doorgronden. 

In dit onderzoek werd gewerkt met de aardhommel, Bombus terrestris, die een gedrag vertoont 

dat intermediair is tussen eusociaal en solitair. Op dit moment trachten wetenschappers de 

redenen voor de achteruitgang van bijen te doorgronden, onder andere de rol die de verschillende 

soorten virussen hierin kunnen spelen. Daarom is de studie van antivirale immuniteit ten gevolge 

van verschillende types van virussen in de bij belangrijk om zo de juiste conclusies te kunnen 

trekken en op zoek te gaan naar efficiënte methoden om de virus-gerelateerde problemen in bijen 

aan te pakken.  

In een eerste fase van deze studie werden twee belangrijke strategieën binnen dit werk 

geoptimaliseerd: als eerste werden geschikte referentiegenen voor RT-qPCR bepaald om zo een 

betrouwbare virale detectie en meting van genexpressie mogelijk te maken, en daarnaast werden 

ook de parameters voor het bereiken van een succesvol RNAi experiment geoptimaliseerd. 

Aangezien de aangeboren immuunrespons in insecten niet statisch is, zou deze mogelijk 

afhankelijk kunnen zijn van verschillen in virulentie tussen virale infecties. Er werd gekozen te 
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werken met twee virussen: Israeli acute paralysis virus (IAPV)  en slow bee paralysis virus 

(SBPV). Deze beslissing was gebaseerd op drie observaties: 1) beide kunnen op een natuurlijke 

wijze hommels infecteren in het veld,  2)  ze vertegenwoordigen elk een belangrijke bijenvirus-

familie, i.e. de  Dicistroviridae en Iflaviridae, en 3) tijdens experimenten werd gezien dat IAPV 

een zeer virulente infectie veroorzaakt, terwijl een SBPV-infectie niet tot mortaliteit leidt. Op 

basis van wat op dit moment geweten is over antivirale immuniteit in bijen werden drie 

interessante pathways geselecteerd (die mogelijk ook met elkaar interageren): de small 

interfering RNA (siRNA), microRNA (miRNA) en JAK/STAT pathway, om zo de 

immuunrespons tegen virale infecties in hommels te onderzoeken. 

De activiteit van de siRNA pathway bij virale infecties 

Alhoewel de siRNA pathway de meest bestudeerde antivirale pathway in bijen is en het een zeer 

beloftevolle techniek lijkt om bijenvirussen te bestrijden in het veld, is nog steeds weinig 

geweten over de betrokkenheid van deze pathway in de afweer tegen verschillende bijenvirussen. 

Onze resultaten tonen dat infecties door beiden IAPV en SBPV de expressie van Dicer-2 

induceren en dat IAPV-infecties leiden tot de productie van voornamelijk 22nt-lange siRNAs 

afgeleid van IAPV (vsiRNAs). Deze vertonen een sterke polariteit voor het antigenoom. In het 

geval van een SBPV-infectie werden geen 22nt-lange vsiRNAs, geproduceerd door Dicer-2, 

gedetecteerd. Wanneer we ook het “RNAi of RNAi” experiment in rekening brengen waarin het 

silencen van Dicer-2 niet resulteerde in veranderingen in aantal genoomkopijen van IAPV of 

SBPV, kunnen we speculeren over het belang van de siRNA pathway in de antivirale 

immuunrespons tegen bijenvirussen. In het geval van IAPV is de pathway wel geactiveerd maar 

is ze onvoldoende om de virale infectie in te perken. Bij SBPV-infectie slaagt de gastheer er wel 

in om de infectie van SBPV te controleren. Maar in dit geval werd behalve de inductie van 
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Dicer-2 geen bewijs gevonden van de activiteit van de siRNA pathway, wat doet vermoeden dat 

andere antivirale pathways een belangrijkere rol spelen 

 

De activiteit van de miRNA pathway bij virale infecties 

De miRNA pathway is nauw verwant met de siRNA pathway en zijn betrokkenheid bij insect-

pathogeen interacties werd reeds gerapporteerd. In een virus-geïnfecteerde gastheer kunnen 

miRNAs ontstaan op twee manieren: gecodeerd door de gastheer of door het virus. Beide types 

van miRNAs kunnen genen van de gastheer en/of het virus als doelwit hebben, wat leidt tot een 

complex netwerk van gastheer-virus interacties. Onze resultaten toonden dat infecties met IAPV 

en SBPV de expressie van Dicer-1 en Ago-1 konden veranderen. Daarnaast werden meerdere 

miRNAs met een veranderd expressieniveau gevonden, wat erop wijst dat de miRNA pathway 

mogelijk betrokken is in de interactie tussen de hommel en het virus. Voor de miRNAs die 

verschillen in expressie vertoonden werden de targets voorspeld en deze clusterden in enkele 

Gene Ontology (GO) termen of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 

die een regulerend netwerk vormen. Intrigerend is dat deze gastheer-miRNAs volgens onze 

predictie ook het virale RNA (genoom) kunnen targetten. Het silencen van Dicer-1 zorgde niet 

voor een veranderd aantal genoomkopijen van SBPV. Dit wijst erop dat deze miRNAs, die 

verschillend tot expressie komen na virusinfectie in de hommel, voordelig kunnen zijn voor 

zowel de gastheer als het virus en dat de niet-gebruikelijke productie van miRNAs ook een 

belangrijke rol kan spelen. 

De activiteit van de JAK/STAT pathway bij virale infecties 

Naast de RNAi (zowel siRNA als miRNA pathways)-gebaseerde immuniteit, op 

nucleotideniveau, is er een andere geconserveerde, op eiwit gebaseerde pathway beschikbaar in 
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insecten, namelijk de JAK/STAT pathway. Deze vertoont niet alleen antivirale activiteit, maar 

ook crosstalk met de siRNA pathway. Onze resultaten toonden aan dat infecties met IAPV en 

SBPV geen veranderingen in expressie van Hop teweeg brachten, en dat het silencen van Hop 

wel een verhoogd aantal genoomkopijen oplevert bij SBPV, maar niet bij IAPV. Dit doet 

vermoeden dat de JAK/STAT pathway een rol speelt in de afweer tegen het avirulent virus 

SBPV, maar zijn betrokkenheid in de afweer tegen het virulent virus IAPV blijft onbekend. De 

krachtige crosstalk tussen de siRNA pathway en de JAK/STAT pathway met behulp van Vago 

kan mogelijk op een andere manier gebeuren in de hommel dan in de mug. We suggereren dan 

ook dat er een meer complexe communicatie aan de gang is tussen de siRNA pathway en de 

JAK/STAT pathway met behulp van Vago in de hommel dan wat tot nu toe beschreven is in 

insecten. 

 



 

185$
$

Curriculum Vitae 

 

Jinzhi Niu 
 

Lab of Agrozoology, 
Faculty of Bioscience Engineering, Ghent University,  

Coupure Links 653, B-9000 Ghent, Belgium  
Email: jinzhi.niu@ugent.be 

Office number: 32-09-264-6146 

 
Personal information 
Nationality: China 
Place of birth: Qingyang Gansu  

Date of birth: 07/14/1985 

 
Education 
10/2011- 09/2015: Ph.D study in Applied Biology Science, Ghent University, Belgium 

09/2008-09/2011: MSc study in Entomology, Southwest University, China 
09/2004-06/2008: Bachelor study in Plant Protection, Southwest University, China.  

 
Research Experience 
10/ 2011- 09/2015: Immune response of bumblebee to viral infections  
09/2008-09/2011: Characterization of glutathione S-transferase in Panonychus citri and its            
association with acaricides tolerance. 
04/2008- 08/2008: Cloning COI gene of Paederinae  

04/2007-10/2007: Comparison of life tables of Coccinella septempunctata and Harmonia 
axyridis reared on Bemisia tabaci biotype B prey  

 
Publications associated with this project 



 

186$
$

Niu, J, Meeus I, Smagghe G, 2015. Involvement of Bombus terrestris JAK/STAT pathway in 
antiviral response and possible interaction with the small interfering RNA pathway 
through Vago. Scientific Reports submitted. 

Niu J, Smagghe G, Coninck DID, Nieuwerburgh FV, Deforce D, Meeus I. (2015) In vivo study 
of Dicer-2 mediated immune response from the small interfering RNA pathway upon 
systemic infections of virulent and avirulent viruses in Bombus terrestris. Insect 
Biochemistry and Molecular Biology Submitted. 

Niu, J., Meeus, I., Coninck, D.I.D., Etebari, K., Asgari, S., Smagghe, G., 2015. Differential 
expression of microRNAs upon different viral infections in Bombus terrestris. Insect 
Biochem. Mol. Biol. submitted. 

Sadd B, Barribeau S, Bloch G, de Graaf DC, Peter D, Elsik CG, …, Niu J, Nunes FM, Oakeshott 
JG,…, Richards S, Robinson GE, Gibbs RA, Schmid-Hempel P, Worley KC: The 
genomes of two key bumblebee species with primitive eusocial organization. Genome 
Biology 2015, 16:76.  

Barribeau S, Sadd B, du Plessis L, Brown M, Buechel S, Cappelle K, Carolan J, Christiaens O, 
Colgan T, Erler S, Evans J, Helbing S, Karaus E, Lattorff H, Marxer M, Meeus I, Napflin 
K, Niu J, Schmid-Hempel R, Smagghe G, Waterhouse R, Yu N, Zdobnov E,Schmid-
Hempel P: A depauperate immune repertoire precedes evolution of sociality in bees. 
Genome Biology 2015, 16:83.  

Niu J, Meeus I, Cappelle K, Piot N, Smagghe G: The immune response of the small interfering 
RNA pathway in the defense against bee viruses. Current Opinion in Insect Science 2014, 
6:22-27. 

Niu J, Cappelle K, de Miranda JR, Smagghe G, Meeus I: Analysis of reference gene stability 
after Israeli acute paralysis virus infection in bumblebees Bombus terrestris. Journal 
of Invertebrate Pathology. 2014, 115:76-79.  

Meeus I, Mosallanejad H, Niu J, de Graaf DC, Wäckers F, Smagghe G: Gamma irradiation of 
pollen and eradication of Israeli acute paralysis virus. Journal of Invertebrate Pathology. 
2014, 121:74-77.  

 

Conferences with oral presentation 
08/2015: 48th Annual Meeting of the Society for Invertebrate Pathology, Vancouver, British 
Columbia, Canada Presentation title: From the mosquito model to the bumblebee: a different 
behaviour of Vago mediated cross-talk between the small interfering RNA and JAK/STAT 
pathways upon virus infection. (FWO travel grant) 

08/2014: 47th Annual Meeting of the Society for Invertebrate Pathology, Mainz, Germany. 
Presentation title: The involvement of bumblebee small interfering RNA pathway against two 
different bee viruses.  

08/2013: 46th Annual Meeting of the Society for Invertebrate Pathology, Pittsburgh, 
Pennsylvania, USA Presentation title: Study on interaction between bumblebee Bombus 
terrestris RNAi pathway and IAPV/KBV by RT-qPCR. (FWO travel grant)  



 

187$
$

Acknowledgements  

 

It is the last few days of me in Belgium and it is still raining and windy. The weather like this 

may not be convenient but I always enjoy this kind of whether without specific reason. The 

continuous raining is like all my gratitude to you. At this very moment, I would like to thank all 

of you to be part of my PhD journey.  

To my promoters, Prof. dr. ir. Guy Smagghe and Dr. Ivan Meeus:  

First of all, I want to express my deepest appreciation to your supports of my project. I can’t list 

all things you both did for me, but there is something I want to mention at this moment.  

Guy: you delivered a very good freedom in my experimental designs and encouraged me not 

only to conceive my ideas but also bravely put them out and defended on them. Academic 

communication is very important to learn from excellent scientists and you were always positive 

to the conferences I chose and I enjoyed my times in conferences I participated.  

Ivan: nearly the end of my first year, you welcomed me in the bumblebee group. Since then, I 

started a research direction, virus-insect interaction, which I also want to devote my career on it. 

I enjoyed all the countless conversations and meetings with you, about designing experiments, 

analyzing results, and writing articles/thesis. I learned a lot from you and it makes me ready to 

embrace a new position.  

To Prof. dr. ir. Peter Bossier, Prof. dr. Daisy Vanrompay, Prof. dr. Els Van Damme, Prof. 

dr. Dirk de Graaf, Prof. dr. Jinjun Wang:  



 

188$
$

I am honored to have you in my PhD examination committee. I appreciated all the times and 

efforts that you had made to improve my thesis.  

To Leen Dierick, Bjorn Vandeberkhove, Rik Van Caenegem and Didider Van de Velde: 

I can’t recall how many times I knocked the door and ask for your help, but I do remember every 

time I came to your office, you were always very nice and patient to help me to organize my lab 

materials and other matters.  

To Prof. dr. Joachim R. de Mirand, Prof. dr. Sassan Asgari, Dr. Kayvan Etebari, Dr. 

Dieter IM De Coninck: 

It was really my pleasure to work with you on parts of my study: Joachim for virus purification 

and detection; Sassan and Kayvan for microRNA target prediction and expression analysis; 

Dieter for data analysis on small RNA sequencing.  

To all my colleagues:  

Lab of Agrozoology: I am very happy that I met all of you in the lab. I loved music of “Brussel 

studio” and appreciated every greeting from you every day. Without your help, I couldn’t finish 

this project. I wish you all good luck on your projects.  

Lab of Insect Molecular Ecology (Southwest University, China): I started my Master study 

from here, I learned basic molecular skills from here, and I found my motivations to become a 

scientist from here. Prof. Jinjun Wang was very supportive when he knew I wanted to obtain a 

PhD degree abroad. Every time I paid a visit to lab, he always looked after me and encouraged 

me to communicate with students in lab, and I learned a lot from all of you. 

To my dear groups of friends: 



 

189$
$

Life is interesting and full of adventures when you study abroad, but sometimes it can be hard. 

However, I am very lucky I have all of you.  

Sports group: twice a week with a combination of running+ swimming+ one drink (maybe two) 

per time, may be the most brilliant idea to be healthy and happy. I can’t express how much I 

enjoyed your companionship and the team sprits always encouraged me to keep running.  

Chinese friends in Ghent: some of you can really cook nice Chinese foods and I would like to 

eat them again. I enjoyed lots of moments we shared together and I appreciated every single help 

from you in my past four years.  

My Belgium friends and housemates: I admired all your effort to constrain yourself not to 

speak Dutch when I was present. I am sorry I tried my best to learn your language but it did not 

work out…I learned lots of Belgium culture from you and most of them were very interesting for 

me. I had lots of happy moments with you.  

To my beloved family ������ � 

��(
���������������(
�:
	)��

 

 

Jinzhi Niu ����  

 

September 17, 2015 

 


