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Chapter 1: Problem statement, 

objectives and outline 
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The emergence, evolution and spread of new fungal diseases and new variants of existing 

diseases on agriculturally important crops is considered to be one of the main threats to 

worldwide food availability and safety (Fisher et al., 2012). Feeding an estimated 9.5 billion 

people in 2050 will require the international community to increase productivity of the existing 

range of crops, as well as to improve the inherent resistance of the highest yielding cultivars. 

Fisher et al. (2012) have shown that even relatively low levels of disease on the most important 

agricultural crops in 2011 resulted in yield losses that would have been enough to feed 8.5% of 

the world’s population.  

One of the most important agricultural crops is wheat, the number three grain crop in the world 

after maize and rice (Shewry, 2009). Domestication of wheat started in the Fertile Crescent 

circa 10 000 years ago and encompassed the transformation of a natural ecosystem into an agro-

ecosystem. The gradual selection of performant cultivars and desirable phenotypes led to a 

depletion of genetic diversity, more dense cultivation and monoculture growth schemes. 

Stukenbrock and McDonald (2008) concluded that this had, and has, an important conducive 

effect on fungal populations, and led to the co-domestication of plant pathogens. On the other 

hand, various processes lead to the emergence of new (variants of) fungal pathogens, and human 

intervention with new resistant crops and antifungals accelerates fungal evolution. What results 

is a continued “arms race” between fungal pathogens and their hosts. The genomics era has 

made it feasible to study this interaction and the evolution of plant pathogens at a previously 

impossible depth. 

Fusarium Head Blight (FHB) is an important disease on small grain cereals such as wheat, 

barley and oats (Parry et al., 1995). While this disease is caused by a whole range of Fusarium 

species (hereafter named the FHB complex), F. graminearum is widely considered as the most 

important (Goswami and Kistler, 2004). This complex is not fixed, and it varies depending on 

climatic conditions, geography, host cultivar, fungicide application and other agricultural 

practices. Species such as F. langsethiae and F. poae have gained importance in recent years 

as they have become prominent members of the FHB complex. The risk associated with 

infection by these species originates primarily from the toxic secondary metabolites called 

mycotoxins that they deposit in the host matrix. Through processing of the cereals, these end 

up in the food and feed chain where they pose a significant risk to human and animal health.  
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The aim of this PhD thesis was to gain an improved understanding of F. poae, which has been 

described as a prominent member of the FHB complex in Belgium and other European countries 

(Xu et al., 2005; Audenaert et al., 2009). Broadly, this thesis is divided into two major parts. In 

a first part (comprising Chapters 2 and 3), it is investigated whether, in fact, F. poae may be 

designated as “successful”. Within the context of this thesis, a successful pathogen is considered 

a pathogen that manages to establish colonization of its host, regardless of whether that leads 

to detectable symptoms or not. Questions that are considered in the first part of this thesis are 

what is the incidence and abundance of F. poae in Belgium? Is it an emerging pathogen, or has 

it been prominent for a long time? What is its epidemiology like, and are there similarities or 

differences with other FHB pathogens? Is it efficiently controlled by fungicide application?  

The second part, comprising Chapters 4, 5, and 6, attempts to uncover potential “keys to 

success” for F. poae. What mycotoxins does it produce, and how does it do this? Is there large 

genetic variability present in the population, and how does this correlate with mycotoxin 

production? Does it reproduce sexually? Can any genomic determinants explain for its 

persistence? Finally, in Chapter 7, we try to determine whether the new information on this 

organism may indeed be linked to its “success”.  

Chapter 2 reviews the current state-of-the-art on F. poae and other FHB causing species, 

particularly F. langsethiae, and highlights if and how they may have emerged in recent decades. 

Additionally, the epidemiology and taxonomy of F. poae and F. langsethiae are reviewed and 

compared to other Fusarium species. 

Chapter 3 details a survey that was carried out in Belgian fields and markets to assess the 

prevalence of different Fusarium species and their mycotoxins. F. poae is confirmed as an 

important species on wheat, and F. langsethiae is shown to be associated with a complex of 

trichothecene mycotoxins.  

In Chapter 4, the genomes of four F. poae isolates are sequenced, and for one isolate novel 

long read sequencing was performed, making it possible to assemble the genome to a highly 

contiguous level. This allows for an in depth look at the genome dynamics within F. poae, and 

shed light on an active exchange between two distinct classes of co-occuring chromosomes. 

Finally, significant indications of a combination of sexual and asexual reproduction are found 

for F. poae. 
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Chapter 5 widens the scope to a broad collection of F. poae isolates and uses the amplified 

fragment length polymorphism technique (AFLP) to investigate population genetics. The 

toxigenic potential of the isolates is assessed at the chemotype and genotype level, and it was 

observed that almost all isolates produce an unusual combination of trichothecene mycotoxins.  

This chemotype detected in Chapter 5, is investigated in depth in Chapter 6. The organization 

of the trichothecene biosynthesis genes is taken from the sequenced genomes, and fungal 

transformation and in silico simulations are undertaken to identify the physiological mechanism 

behind this unusual chemotype.  

Finally, in Chapter 7 the gathered results are combined in an overall discussion and 

identification of future perspectives. The unique chemotype and genome dynamics of F. poae 

appear unlinked, but they may each have contributed in their own right to the success of F. poae 

as a pathogen, by providing the tools for more rapid adaptation and evolution, and a more toxic 

arsenal of secondary metabolites than closely related species in the FHB complex. 
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Chapter 2: General introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parts of this chapter were redrafted from: 

Audenaert, K, Vanheule, A, Höfte, M, Haesaert, G. (2013) Deoxynivalenol: a major player in 

the multifaceted response of Fusarium to its environment. Toxins, 6, 1-19. 

Audenaert, K, Landschoot, S, Vanheule, A, Waegeman, W, De Baets, B, Haesaert, G. (2011) 

Impact of fungicide timing on the composition of the Fusarium head blight disease complex 

and the presence of deoxynivalenol (DON) in wheat, in: Fungicides - Beneficial and Harmful 

Aspects, edited by Nooruddin Thajuddin, INTECH Open Access Publisher.  
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2.1 Taxonomy and phylogeny of Fusarium species 

The genus Fusarium belongs to the Ascomycota phylum of fungi. Members of the genus are 

ubiquitous and are known to infect plants and immuno-compromised humans (Booth, 1971; 

Nucci and Anaissie, 2007). Their epidemiologies are diverse and include saprophytes, 

endophytes and prominent plant pathogens, responsible for some of the most economically 

devastating diseases of important agricultural crops, vegetables and ornamentals. Some of these 

pathogens are toxigenic and produce an arsenal of mycotoxins that in turn are responsible for 

serious threats to human and animal health (D’mello et al., 1999).  

The taxonomy and circumscription of Fusarium is complex. In the past, classification of 

Fusarium species depended on their morphology, which was used to group species into 

“sections”. Up to 17 sections have been described (Gerlach and Nirenberg, 1982).  

Leslie (1991) noted that based solely on morphology, it was not always possible to distinguish 

the organisms within a “section” to the species level. Classification of Fusarium species 

therefore evolved to include the ability of individuals to mate with one another, leading to viable 

offspring: if so, they are part of the same “mating population” – and presumably the same 

species (Leslie, 1991). Reports exist however of individuals from different species that lead to 

viable offspring after mating (Nor, 2014).  

Today, molecular techniques using conserved “barcoding genes” have become the standard for 

the classification of Fusarium, and inferring the relation between different species (Geiser et 

al., 2004). The evolutionary phylogeny of all medically and agriculturally important Fusarium 

species was investigated by O'Donnell et al. (2013). Using combined RPB1+RPB2 (DNA-

directed RNA polymerase II, largest and second largest subunit) sequences, these authors 

inferred the evolutionary phylogeny of 93 Fusarium species, the result of which can be found 

in Figure 2.1. Where appropriate, these species have been grouped into species complexes, 

shaded grey in the figure. Four of these complexes are discussed in the following graph, and 

they are marked in Figure 2.1 with red asterisks.  

The F. solani and the F. oxysporum complexes are divided into formae speciales, capable of 

infecting different hosts depending on whichever virulence factors are encoded within their 

genome. Within the F. solani complex, F. solani f. sp. pisi (Coleman et al., 2009) infects pea, 

and other species within the complex are responsible for Sudden Death Syndrome of soybean. 

Members of the F. oxysporum complex are responsible for vascular wilt of a plethora of hosts 

(Michielse and Rep, 2009). Well-known examples include F. oxysporum f. sp. lycopersici (Ma 
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et al., 2010) infecting tomato and F. oxysporum f. sp. cubense infecting banana. The latter is 

considered an acute threat to worldwide banana production (Kema and Weise, 2013). The F. 

fujikuroi species complex, with its different geographic lineages, comprises dozens of species 

colonizing a wide range of plants (Kvas et al., 2009). Important examples are F. fujikuroi which 

infects rice leading to bakanae disease (Wiemann et al., 2013), and F. verticillioides which 

infects maize leading to ear rot (Logrieco et al., 2002).  

The focus of this PhD is on the sambucinum species complex which includes F. graminearum, 

F. langsethiae and F. poae among others. These species infect primarily small grain cereals 

such as barley, wheat and oats, leading to FHB or “scab”. This leads to shriveling of the grain 

with lower thousand kernel weight as a consequence (Parry et al., 1995). However, importantly, 

the contamination of the host with mycotoxins adds another layer of damage with significant 

economic consequence. Nganje et al. (2004) estimate that from 1998 to 2000 the direct 

economic loss due to FHB in the United States was 870 million US dollars in wheat and barley. 

A FHB epidemic in the US during the 1990s caused up to 3 billion US dollars in losses 

according to Windels (2000). Various classes of mycotoxins are produced by Fusarium species, 

and O'Donnell et al. (2013) pinpointed when the biosynthesis of four of the most important 

chemical classes of mycotoxins and other secondary metabolites was gained in the evolutionary 

history of the genus Fusarium (“birth” of the secondary metabolite biosynthesis). These four 

classes of metabolites (fusarins, fumonisins, gibberellins and trichothecenes) are superposed on 

Figure 2.1. 
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Figure 2.1 – Evolutionary phylogeny of Fusarium species as reported by O'Donnell et al. (2013). These 

authors built the tree based on combined RPB1+RPB2 sequence. For 20 nodes (numbered), estimated 

divergence times have been calculated by these authors. Labelled nodes include the origin of certain 

lineages (such as the FGSC (Fusarium graminearum species complex) and the type B trichothecene 

producing lineage), and the estimated point where the capability to produce important secondary 

metabolites was gained (fusarins, fumonisins, gibberellins and trichothecenes). All species 

complexes are shaded in grey. Four of the most important species complexes are elaborated upon in 

the text and are designated with red asterisks. This thesis deals especially with the sambucinum 
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complex (upper side of the tree). F. poae is part of the sambucinum species complex (A/B lineage; 

purple arrow).  

Evolutionary phylogeny as depicted by the RPB1+RPB2 tree does not necessarily line up with 

morphological similarity as defined by the previously described “sections” (Figure 2.2). F. 

sporotrichioides, F. langsethiae and F. poae belong to the section Sporotrichiella, based on the 

morphology that they share: particularly the pyriform shaped microconidia which are 

abundantly produced by these species. The genetic relationship between the three species was 

the subject of an early 2000s EU COST action which culminated in a 2004 special issue of the 

International Journal of Food Microbiology (Torp and Adler, 2004). The papers in this special 

issue lay the framework for F. langsethiae as a novel species, that had previously been 

described only as “powdery F. poae” because of their morphological similarities (Torp and 

Nirenberg, 2004). The conclusion of this project, summarized in a polyphasic paper (Schmidt 

et al., 2004a), was that the three taxa are well separated and F. sporotrichioides and F. 

langsethiae are closely related sister species, in turn closely related to F. poae. As Figure 2.2 

shows, F. poae is not a direct sister species of F. sporotrichioides and F. langsethiae, while 

these three species are grouped within the same section based on morphology (Sporotrichiella).  

 

Figure 2.2 – Extract from a phylogenetic tree from O'Donnell et al. (2013) representing the 

sambucinum species complex based on RPB1+RPB2 sequences. Species names are colored according 

to “sections”, classifications of Fusarium based on morphology (Gerlach and Nirenberg, 1982). The 

orange section is Sporotrichiella, the green section is Discolor and the lightblue section is Gibbosum. It 

can be seen that the phylogeny of the species does not fully line up with their morphological similarity 

as defined by the sections.  

Another major development of the last decade is the elucidation of the F. graminearum – clade 

of species. In the past, “F. graminearum sensu lato” was used to designate a species complex 

of F. graminearum sensu stricto and several sister lineages (Fusarium graminearum species 
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complex; FGSC). O'Donnell et al. (2004) identified nine distinct lineages within the F. 

graminearum clade and elevated them to species level. These include F. graminearum sensu 

stricto, F. meridionale, F. asiaticum and F. boothii as prominent disease causing species. Since 

2004, more species have been discovered that are part of the F. graminearum species complex, 

including F. gerlachii and F. vorosii in 2007 (Starkey et al., 2007), F. aethiopicum in 2008 

(O'Donnell et al., 2008), F. ussurianum in 2009 (Yli-Mattila et al., 2009) and F. nepalense and 

F. louisianense in 2011 (Sarver et al., 2011). Finally, Aoki et al. (2012) described a sixteenth 

species within the FGSC in 2012 which has not been formally described yet.  

In addition to novel species being identified and species complexes being unraveled, the 

guidelines for correct nomenclature of fungal species have been a contentious issue. For sexual 

species, it was common to identify the species by the name of its teleomorph (given to its sexual 

stage), such as Gibberella zeae for F. graminearum and Nectria haematococca for F. solani. 

This led to dual nomenclature for many species. For this reason, a “one fungus, one name” 

policy has recently been adopted (Geiser et al., 2013).  

2.2 Modes of reproduction in Fusarium species 

Throughout the genus Fusarium, species show diverse modes of reproduction: putatively 

asexual, sexual in a heterothallic fashion and sexual in a homothallic fashion (see Box 2.1). 

Asexual species reproduce by the formation of conidia, propagules that are the result of mitotic 

divisions containing the exact same genetic material as the parent and that are therefore clonal. 

The benefits of clonal propagation include a rapid spread of successful genotypes, and the 

conservation of successful combinations of alleles which may otherwise be distorted by meiotic 

crossover. On the other hand, species that rely solely on clonal reproduction may loose genetic 

diversity and the power to adjust to adverse conditions, or gradually accumulate deleterious 

mutations (Lynch et al., 1993). Sexual species have the advantage of novel genotypes being 

generated through recombination, and the sexual propagules are often reinforced structures 

capable of enduring stress-related conditions (Neiman, 2005). Moreover, a fungal-specific 

defense mechanism against potentially disruptive transposable elements is only functional 

during meiosis (see Chapter 4).  

For several Fusarium species, sexual reproduction has not been witnessed in the field, but it is 

suspected that they do contain a “cryptic” sexual cycle (Turgeon, 1998). F. poae is considered 

to be such a species, as isolates of both required mating types have been identified but a sexual 
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cycle has never been observed (Kerenyi et al., 2004). F. oxysporum is an example of a species 

reproducing strictly asexually. 

 

For other Fusarium species, it is certain that a sexual stage exists because the sexual structure 

has been witnessed and a teleomorph is described. Examples include F. graminearum, F. 

avenaceum and F. solani. As is stated in Figure 2.1, within the sambucinum species complex, 

both homothallic and heterothallic species exist (see nodes 19 and 20 in Figure 2.1). Notably, 

species within the FGSC are homothallic (indicated at node 20 in Figure 2.1), indicating that 

Box 2.1: Modes of reproduction in fungi 

Fungi reproduce either asexually or sexually. Asexual reproduction has the benefit of rapid 

dispersal of successful genotypes by the production of large numbers of conidia which 

contain the exact same genetic material as the parent. Sexual reproduction on the other hand 

results in new, potentially advantageous combinations of genes in offspring by 

recombination during meiosis. Moreover, sexual propagules are often capable of enduring 

adverse conditions, and a fungal-specific defense mechanism against potentially disruptive 

transposable elements is only active during meisosis (see Chapter 4). The sexual cycle in 

fungi is partly regulated by the genes that occupy the mating locus, and the two versions of 

this locus are called “idiomorphs” as they share no similarity to one another (opposed to 

alleles of the same gene). Heterothallic species contain the genes from either the MAT1-1 

or MAT1-2 idiomorph in their genome. These require a partner of the opposing mating type 

to enter meiosis and are self-sterile. The Figure in this Box shows this for F. 

pseudograminearum (annotations extracted from NCBI accessions HG323867 and 

HG323861 respectively). Homothallic species such as F. graminearum contain the genes 

from both idiomorphs tightly linked, and these organisms are self-fertile and do not need a 

partner of the opposing mating type to cross (annotation extracted from NCBI accession 

HG970333). Black lines indicate homologous sequences, crossed lines indicate that the 

sequence is inverted. The flanks of the idiomorphs are circled with black lines, and this is 

sequence which is universally shared between the different species/isolates. Only the 

composition of the idiomorphs differs between them. Within the genus Fusarium is it 

speculated that heterothallism is the ancestral mode of reproduction and the homothallic 

configuration resulted from a complex fusion event (O'Donnell et al., 2004). 

 
1kb

MAT1-1-3 MAT1-1-2 MAT1-1-1

MAT1-2-1 MAT1-2-3

F. pseudograminearum CS3487
MAT1-2 (heterothallic)

F. pseudograminearum CS5834 
MAT1-1 (heterothallic)

F. graminearum PH-1
homothallic
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they do not need a mating partner to engage in a sexual cycle, and they are self-fertile 

(O'Donnell et al., 2004). This is different from closely related species such as F. 

pseudograminearum and F. culmorum, which are heterothallic and need a partner of the 

opposite mating type to enter meiosis.  

F. graminearum reproduces mainly sexually (Manstretta et al., 2015). As a homothallic species, 

it is able to self, leading to “clonal ascospores”, but it also engages in outcrossing with other 

homothallic F. graminearum isolates (Bowden and Leslie, 1999) giving rise to “recombinant 

ascospores” (Ma et al., 2013). The nature of the agro-ecosystem may influence the mode of 

reproduction of a pathogen (Stukenbrock and McDonald, 2008). This was recently 

demonstrated in Canada where regional factors influenced F. graminearum population 

dynamics (Kelly et al., 2015). In accordance with this finding, Liang et al. (2015) have 

suggested that F. graminearum populations on wheat are sexually more active than populations 

on barley in the upper Midwestern United States.  

The different modes of dispersal in sexual and asexual species, and the different ways that they 

may cope with newly released antifungals or crop varieties have a profound effect on their 

epidemiology and the measures that should be taken for durable disease management 

(McDonald and Linde, 2002). Pathogens with a mixed reproduction system have the greatest 

potential for evolution, as sexual recombination may be able to overcome resistance gene 

pyramids in the plant and virulent lineages may easily spread clonally. Puccinia graminis f. sp. 

tritici, the causal agent of wheat stem rust is currently one of the greatest threats to worldwide 

wheat production due to the emergence in 1999 of a virulent pathotype Ug99 (Singh et al., 

2011). Phytophthora infestans which causes late blight in potato and was responsible for the 

Irish potato famine in the 1840s has traditionally been an asexual species in Europe with only 

a single mating type occurring, until the introduction of the opposing mating type during the 

1970s. Since then it has begun to reproduce sexually leading to offspring which is able to 

overcome popular resistance genes in the plant, however these genotypes have only seen limited 

clonal spread up to now (Li et al., 2012).  

2.3 Fusarium head blight on small grain cereals 

The latest complete figures of the Food and Agriculture organization of the United Nations 

(FAO) highlight the importance of wheat, barley and oats in worldwide agriculture. In 2012, 

wheat constituted 27% of the Belgian total arable soil (217 060 ha of 801 800 ha total). 

Worldwide this was 15.5%. In Belgium, barley is grown on 5.7% of available arable land, 
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worldwide this percentage is 3.5%. Wheat is particularly important for food and feed production 

and is in many countries a staple food. Currently up to 50% of wheat harvest may be lost 

globally as a result of various pests and diseases (Oerke, 2006). Barley is primarily a feed 

component and is the main input stream of the malting and beer industry.  

The term FHB is used to identify a set of symptoms on small grain cereals caused by a number 

of species which regularly co-occur on their host. These symptoms include bleaching of the 

wheat ear and shriveling of the grains. In the United States FHB may lead to economic losses 

in excess of one billion USD per year (McMullen et al., 2012). Depending on the small grain 

cereal crop, yield losses may range up to 50% in severe FHB epidemics (Parry et al., 1995).  

F. graminearum is the most important member of the FHB complexs. It is a fairly aggressive 

pathogen and a primary invader of healthy tissue (Walter et al., 2010). F. culmorum is a closely 

related species, and has in the past been implicated in FHB epidemics (Scherm et al., 2013). 

Within the European Fusarium population on wheat and barley, these two species are the most 

aggressive and likely account for most of the easily discerned damages such as the typical 

bleaching. However, there are several other species which may occur on the ears of the plant. 

Examples are F. poae, F. langsethiae and F. avenaceum. F. poae has been increasingly detected 

by several researchers over the past decade (Xu et al., 2005; Audenaert et al., 2009). F. 

langsethiae is of major importance in oat cultivation (Imathiu et al., 2013). F. avenaceum is a 

typically generalist fungus which may occupy the wheat ear (Lysoe et al., 2014).  

The damage these pathogens cause to the cereal ear is not limited to the introduction of 

morphological symptoms. Less visible, but likely accounting for more economical damages 

and food safety concerns, is the deposition of mycotoxins in the cereal matrix. While the visible 

damage of species such as F. poae, F. langsethiae and F. avenaceum may be disputable, their 

production of toxic compounds in the host is not (Thrane et al., 2004; Vogelgsang et al., 2008b).  

Mycotoxins are toxic secondary metabolites produced by fungi. They are toxic in the sense that 

they are damaging to often both plant and animal cells, and can lead to health issues as a result 

of chronic exposure, or in some cases to acute toxicity (Placinta et al., 1999). They are 

secondary metabolites, which implies that they are dispensable for standard vegetative growth, 

but in many cases they may be involved in host infection or stress coping mechanisms 

(Reverberi et al., 2010). Their production depends on a range of environmental and genetic 

factors. The specific roles these compounds play in the life cycle of the organism is the subject 

of research. Deoxynivalenol (DON) and its acetylated derivatives (ADON) are the most 
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important trichothecene mycotoxins produced by Fusarium species, particularly F. 

graminearum. 

2.4 FHB severity and composition are dynamic 

The complex of species co-occurring on the cereal ear is not static. The population may evolve 

during the growing season, may differ between growing seasons and may be implicated in large 

population shifts when studied over multiple years. For example, during the growing season, 

Xu et al. (2008) found that from the milky ripe stage (Z77) to harvest time, F. avenaceum and 

Microdochium majus (another member of the FHB complex) showed a dramatic increase in 

fungal biomass in spikelets at the expense of F. culmorum in particular. 

Multi-year studies allow for the evolution of the FHB complex to be monitored. Research 

carried out at Ghent University (Figure 2.3) shows that the composition of the complex, 

represented by the five most dominant species, is highly variable over the sampled years. In 

some years (2007, 2008), F. poae occurred in almost half of the sampled ears. 

 

Figure 2.3 – Multi-year survey carried out in Flanders, Belgium to monitor the composition of the 

FHB population on wheat. Percentage of wheat ears (average 228 ears of multiple cultivars on ~9 

locations tested every year) that contain Fusarium species are given. Presence of Fusarium species is 

determined by diagnostic PCR, methods are described in Audenaert et al. (2009). Microdochium (M.) 

nivale is a species that is frequently implicated in the FHB complex. No species sampling was performed 

in 2006. This graph is based upon data gathered in a PhD project at Ghent University (Landschoot, 

2012). 

Multiple FHB species may co-occur on the same ear and their presence may even be 

significantly correlated (Xu et al., 2008; Audenaert et al., 2009). Analyses carried out at Ghent 

University indicate that the FHB composition becomes more complex as the general disease 
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severity becomes higher (Figure 2.4; dataset and materials and methods described in 

Landschoot (2012)). In vivo artificial inoculation studies have shown that usually only one 

species is dominant in the wheat ear (Siou et al., 2015), which may be different under natural 

circumstances (Waalwijk et al., 2003).  

 

Figure 2.4 – Relation between disease index and complexity of the FHB population occupying wheat 

ears. Data is shown for on average 228 ears per year. In 2005, species were sampled but disease index 

was not determined. No species were sampled in the 2006 growing season and this year is skipped in 

the graph. Disease index is a composite measure for the severity of FHB. This graph is based upon data 

gathered in a PhD project at Ghent University (Landschoot, 2012). 

Various environmental and agronomic variables influence the severity and the composition of 

the FHB (Landschoot et al., 2012). The influence of previous crops and other agronomic 

practices such as tillage versus no-tillage has been extensively investigated for several 

Fusarium species. Wheat after maize, and no-tillage, consistently give a higher risk for FHB 

infection and DON contamination (Dill-Macky and Jones, 2000). This is related to the enhanced 

opportunities for inoculum build-up outside of the growing season, as crop debris with 

Fusarium biomass remains at the surface of the field. Notably, for F. poae, no relationship to 

previous cropping factors has been uncovered (Thorp and Jennings, 2015). Uncertainty remains 

however, as Yli-Mattila (2010) indicates that tillage increases the F. poae contamination, 

opposite to the situation for F. graminearum. Importantly, weather conditions may impact the 

composition and severity of FHB (Doohan et al., 2003; Landschoot et al., 2012). The 

importance of relative humidity during flowering for the development of FHB has been 

extensively illustrated (Xu, 2003). Figure 2.5 shows the influence of relative humidity in June 

and mean temperature during winter on overall Fusarium disease severity (research carried out 

at Ghent University). The list of variables impacting the composition and severity of FHB 
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presented here is not exhaustive, and other environmental and agronomic factors play a role 

such as fertilization (Lemmens et al., 2004), fungicide use (Audenaert et al., 2011), crop species 

and varieties (Mesterhazy, 1995), various meteorological parameters at the time of flowering 

(Landschoot et al., 2012), etcetera. Multiple reviews and studies have been published that go 

deeper into the wide range of environmental variables impacting FHB (Parry et al., 1995; Xu, 

2003; Landschoot et al., 2012). A recently developed predictive model for FHB in Belgium 

uses up to 70 meteorological and other variables (Landschoot et al., 2013). 

 

Figure 2.5 – Pattern of selected weather variables compared with overall Fusarium disease 

severity for the 2003-2011 growing seasons. Disease index is a composite measure for the 

severity of FHB. This graph is based upon data gathered in a PhD project at Ghent University 

(Landschoot, 2012). In 2005, no disease index was determined and this year is skipped in the 

graph. A: relative humidity (averaged over all days in June) and disease index are correlated. 

B: mean temperature during winter (averaged over four months: November, December, 

January and February) and disease index are correlated. 
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When the evolution of the FHB complex is monitored over greater time periods, major 

populations shifts or geographic migration patterns may be detected (van der Lee et al., 2015). 

In the Netherlands, a major shift from F. culmorum dominated populations to F. graminearum 

dominated ones has occurred at the end of the last century. The authors who have observed this 

shift have speculated that increased maize acreage, the ability of F. graminearum to readily 

form ascospores and worldwide climate changes could account for this major shift (Waalwijk 

et al., 2003). Also in the United States, the increased dominance of F. graminearum has led to 

a global re-emergence of FHB as a disease (Goswami and Kistler, 2004).  

While the shift from F. culmorum to F. graminearum was noted by several researchers (Kosiak 

et al., 2003; Waalwijk et al., 2003) and has been generally accepted, other evolution in the FHB 

complex are less straightforward. Two morphologically closely related species (Schmidt et al., 

2004a) which may be subject to drastic population trends are Fusarium poae and Fusarium 

langsethiae. Both species are among the most frequently detected FHB pathogens on small-

grain cereals, where F. poae appears to be frequently recovered from barley and wheat, and F. 

langsethiae infestation is especially problematic in oats.  

F. poae has been included in field surveys since the late-eighties of last century. Even at that 

time, it was often among the most common detected FHB pathogens in geographically distant 

places, such as Norway (Haave, 1985), Canada (Clear and Patrick, 1993) and the United 

Kingdom (Polley and Turner, 1995). Today it is still one of the most frequently detected species 

in wheat, barley and oats. Recent studies that show F. poae is among the dominant species in 

wheat include Wagacha et al. (2010), Lindblad et al. (2013) and Lazzaro et al. (2015), who 

analyzed samples from Kenya, Sweden and Italy respectively. Fredlund et al. (2013) noted a 

similar finding in oats. In barley, Nielsen et al. (2014) showed that F. poae is the dominant 

species in the United Kingdom. This finding holds true over a wide array of detection methods. 

In our analyses at Ghent University, we used in different studies diagnostic PCR (Audenaert et 

al., 2009) as well as qPCR (Chapter 3 of this thesis), both designating F. poae as one of the 

dominant species in Flanders. However, it must also be noted that F. poae is not always among 

the most frequently detected species when FHB is investigated, different from F. graminearum 

which is consistently detected as the most important cause of FHB. 

The first reports dealing with F. langsethiae originate from the mid-nineties, at which time it 

was termed “powdery F. poae” (Torp and Langseth, 1999; Kosiak et al., 2004), and isolates of 

the species were in the past indeed sometimes identified as F. poae (Knutsen et al., 2004). It is 

unclear how frequently this may have occurred and when F. langsethiae was therefore first 
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detected. It has been detected in British wheat samples that were isolated in the early 1900s (dr. 

Cees Waalwijk, personal communication).  

2.5 F. graminearum pathogenesis  

F. graminearum is currently the most important pathogen within the FHB complex, and its 

distribution is near cosmopolitan. For this reason, F. graminearum infection has been studied 

more in depth than any other Fusarium – host interaction, but nevertheless the categorization 

of its mode of pathogenicity has been troublesome. Jansen et al. (2005) set out to identify 

whether the typical F. graminearum mediated necrosis is preceded by a biotrophic phase. They 

found that as soon as the fungal hyphae enter the cytosol of the wheat or barley epicarp cells, 

cell death was induced. Therefore, a strict biotrophic phase whereby nutrients are exchanged 

between the pathogen and the host in specialized structures does not occur. However, a 

multitude of reports indicate that F. graminearum infection is organized into distinct phases, 

and that it may be classified as a hemibiotroph or hemibiotroph-like pathogen (Kazan et al., 

2012).  

The precise series of events from spore landing to successful pathogenesis in F. graminearum 

has recently been reviewed (Walter et al., 2010; Audenaert et al., 2014). In wheat, penetration 

of the anthers during flowering is the preferred infection route. Up to two days after this initial 

infection, hyphae may grow subcuticularly and intercellularly in the glume, palea and lemma 

of the spikelet. Spreading to other spikelets besides the primary infection spikelet depends in 

wheat on DON production that hampers the host’s reinforcement of the rachis (Jansen et al., 

2005). In barley, DON is less of a virulence factor, as both wildtype and Tri5 knockout isolates 

are inhibited at the rachis. The same conclusion was reached by Maier et al. (2006) who found 

that infection of barley was not linked to trichothecene biosynthesis. Indeed, barley has been 

identified as containing natural resistance against FHB which prohibits the pathogen from 

spreading within the ear. In wheat, F. graminearum spreads throughout the ear beyond the 

initial spikelet and produces DON in large amounts, and complete necrosis is accomplished and 

the typical bleaching of the ears are apparent symptoms.  

The division into a non-necrotic and necrotic phase of F. graminearum infection is substantiated 

by transcriptomics analysis performed in wheat by Ding et al. (2011). These authors determined 

that in a first stage, signaling pathways mediated by salicylic acid (SA) are upregulated 

followed at later time points by pathways mediated by jasmonic acid (JA). SA and JA are 

implicated in defense against biotrophs respectively necrotrophs. The sequential and 
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meticulously timed defense strategy of wheat against hemibiotrophic F. graminearum (Pritsch 

et al., 2000) was confirmed by Ameye et al. (2015). In barley different stages of infection were 

elucidated by Boddu et al. (2006), who coupled barley transcriptomics with DON measurement 

and symptom determination. In the first 48h after infection, there was limited fungal growth 

and low DON accumulation, and limited host transcriptional response. This was followed by a 

phase of increasing infection, DON production and increased host response. The ability of F. 

graminearum to transverse the rachis in wheat but not in barley may be reflected by the very 

high amount of fungal genes expressed during wheat infection at the 96 hai time point, which 

were identified in a study of the transcriptome of F. graminearum (Lysoe et al., 2011).  

A crosstalk exists between the pathogen and the host during infection (Walter et al., 2010). 

Many of the involved metabolites are shared between both organisms and in fact, the fungus 

may hijack some of the signals and compounds implicated in plant defense. An example is the 

production of polyamines which is an early plant defense response to FHB infection (Gardiner 

et al., 2010a). Oxidation of polyamines by the plant’s polyamine oxidase (PAO) enzyme leads 

to H2O2 production and cell death, restricting the growth of the pathogen in its biotrophic stage. 

Indeed, Ding et al. (2011) have shown an early activation and peaking of PAO transcription in 

resistant wheat cultivars. However, intermediates and end products of the polyamine pathway 

have been shown to be strong inducers of DON biosynthesis in F. graminearum, and these may 

thus be a cue for the pathogen to enter its fully nectrotrophic stage. Additionally, H2O2 which 

is produced by PAO also leads to increased trichothecene production (Audenaert et al., 2010). 

As H2O2 induced cell death is not an efficient defense against necrotrophs, the expression of 

plant PAO decreases from 12 hai, but interestingly a fungal PAO is activated in wheat (but not 

in barley) from 48 hai (Lysoe et al., 2011). The hijacking of the plant’s primary nitrogen 

metabolism to the pathogen’s advantage is most definitely not Fusarium specific, and knows 

many more examples (Seifi et al., 2013). However, during infection also the primary 

metabolism of the fungal pathogen is intricately associated with pathogenicity, as was recently 

demonstrated for the leucine metabolic pathway in F. graminearum (Subramaniam et al., 2015). 

DON plays roles in the physiology of F. graminearum besides its demonstrated role in 

penetration of the rachis in wheat spikelets. It is in fact a vital part of the fungal armor against 

external stressors such as oxidative stress, sublethal fungicide application and increased plant 

defense (Audenaert et al., 2010; Audenaert et al., 2014; Ameye et al., 2015). One of the core 

defense mechanisms of the wheat plant is depriving the pathogen of its virulence factor. 

Conjugation of DON, primarily to glucose, renders it significantly less toxic to both plants and 



20 

 

animals (Berthiller et al., 2013). The ability of the plant to detoxify DON is correlated with its 

resistance against F. graminearum (Audenaert et al., 2013). These conjugated metabolites still 

end up in the food and feed chain however and may as such still pose a risk to human health 

(see Chapter 3 of this thesis). Indeed, reports indicate that they may be hydrolyzed in the 

gastrointestinal tract, releasing anew the parent toxic compound (Berthiller et al., 2011). In 

barley, Gardiner et al. (2010b) discovered a novel inactivation mechanism of DON dependent 

on glutathione conjugation. 

Within the species F. graminearum, different trichothecene chemotypes (see Box 2.2) may 

confer competitive advantages among one another and lead to population displacement. In the 

Southern United States, NIV chemotypes are dominant, while a 3-ADON population diverged 

in several Northern states in the last decade (Liang et al., 2014). In Canada, the 3-ADON 

population of F. graminearum increased more than 14-fold between 1998 and 2004 (Ward et 

al., 2008). 
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Box 2.2 – Of chemotypes and genotypes 

The chemotype of a Fusarium isolate or species is defined as the spectrum of different 

mycotoxins that it produces. The capability to produce this mycotoxin blend is determined 

by the genes that are present within the genome of an individual, often designated the 

“genotype”. However, the actual production of mycotoxins is dependent on a range of 

environmental factors, substrate, etcetera. Within the scope of this thesis, the chemotype 

refers to the blend of trichothecenes that is produced. These are a family of toxins with a 

tricyclic 12,13-epoxytrichothec-9-ene backbone structure. Different groups of 

trichothecenes exist, and Fusarium species produce type A and type B trichothecenes, such 

as respectively diacetoxyscirpenol (DAS), neosolaniol (NEO), T-2, HT-2, and 

deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol 

(15-ADON), fusarenone-x (FUS-X) and nivalenol (NIV) (McCormick et al., 2011). Type A 

trichothecenes contain either a hydroxyl group, ester function or no oxygen substitution at 

the C8 position, while type B trichothecenes have a keto function at C8 (see the Figure in 

this Box). Chapter 6 goes deeper into the genetic distinction between type A and type B 

trichothecenes.  
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2.6 F. poae / F. langsethiae pathogenesis 

The importance of F. poae and F. langsethiae within the FHB complex, at least on certain hosts 

or under certain conditions, is without doubt. Less is known about the epidemiology of these 

species when compared to F. graminearum. In the following paragraphs the current knowledge 

is reviewed, and the differences with F. graminearum are highlighted.  

Regarding trichothecene contamination related to F. poae, nivalenol (NIV) is probably the 

primary concern. It has been determined that a correlation exists between the NIV concentration 

and the degree of F. poae infestation after artificial inoculation (Vogelgsang et al., 2008b). This 

may indicate that NIV plays a similar role in the biology of F. poae as DON does in F. 

graminearum, but knockout studies in F. poae are still lacking. Brennan et al. (2007) showed 

that two F. poae isolates produced NIV in three out of seven tested wheat cultivars. In a study 

by Covarelli et al. (2015), ten out of twelve tested F. poae isolates produced NIV on autoclaved 

rice medium. Thrane et al. (2004) found that 51 out of 52 isolates produced NIV on various in 

vitro media. While these in vitro studies show an unequivocal correlation between F. poae and 

NIV production, such correlations are in the field less clear. Edwards et al. (2012) found only 

a weak correlation between F. poae DNA and NIV concentration, and the same has been found 

in Switzerland (dr. Susanne Vogelgsang, personal communication). DON concentration and F. 

graminearum DNA are usually well-correlated (Waalwijk et al., 2004; van der Fels-Klerx et 

al., 2012). 

F. poae has additionally been implicated as a producer of enniatins (ENNs) and beauvericin 

(BEAU) (Thrane et al., 2004; Kulik and Jestoi, 2009), which are cyclic hexadepsipeptide 

mycotoxins that are produced by a range of Fusarium species (Jestoi, 2008). Finally, and most 

surprisingly, F. poae is also a type A trichothecene producer, which are more toxic to the plant 

than type B trichothecenes (Desjardins et al., 2007). This makes it, together with F. equiseti 

(Barros et al., 2012), the only species of which isolates are able to simultaneously produce type 

A and type B trichothecenes. Chapters 5 and 6 of this thesis go deeper into this finding. 

However, it is interesting to note that the type A trichothecenes which are produced by F. poae 

in vitro (DAS and NEO) are seldom detected in relation to this species in the field. Possibly, 

any production of DAS goes unnoticed as it may occur in the form of scirpentriol (SCR) or 

other closely related derivatives, which are rarely included in standard mycotoxin analysis 

methods (Schollenberger et al., 2007). Indeed, Schollenberger et al. (2011) noted a decrease of 

DAS followed by an increase in SCR after inoculation of autoclaved oats with F. 

sporotrichioides and F. poae. SCR is not often included in routine analytical methods.  
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Much is unknown about the epidemiology of F. poae. It is not regularly isolated from soil 

samples, and reports on its saprophytic character are sometimes contradictory. Pereyra and Dill-

Macky (2008) mention that F. poae is a strong saprophyte under competition with other species. 

Landschoot et al. (2011) analyzed crop residues (maize and wheat residues) in November and 

found for two consecutive years that F. poae comprised 8 and 14% of isolated Fusarium 

species, making it the fifth and third most prominent species respectively. Fernandez et al. 

(2008) did not regularly detect F. poae from crop residues in Saskatchewan, Canada. Studies 

investigating the epidemiology of F. langsethiae have shown that by far its preferred infection 

route is through the cereal ear (Opoku et al., 2013). Root infection and inoculation of soil 

samples did not lead to notable infection (Divon et al., 2012).  

From the above, it seems that soil and crop residues are not particularly important overwintering 

niches for F. poae and F. langsethiae, in contrast to F. graminearum. However, they may be 

able to grow on weeds and other less typical Fusarium hosts. Landschoot et al. (2011) remarked 

that in November, 38% of the Fusarium species on gramineous weeds was made up of F. poae. 

Remarkably, Jenkinson and Parry (1994) reached the exact same conclusion and were the first 

to suggest that weeds may be an important overwintering niche for F. poae. The broad host 

range of F. poae may be a significant asset in its epidemiology. It has been isolated as a 

pathogen from tomato (Stenglein et al., 2009), and from residues of sunflower (Pereyra and 

Dill-Macky, 2008). Interestingly, it has recently been identified as the dominant Fusarium 

species on Miscanthus in Ireland, which the authors consider as a possible reservoir for cereal 

pathogens (Glynn et al., 2015). Similar studies have not been carried out for F. langsethiae at 

the time of this writing, so pinpointing the favored overwintering niche for this pathogen is 

troublesome. However, we argue that its specific mode of infection (see above) makes a soil-

based origin unlikely, and relocation of the pathogen to non-cereal hosts outside of the cereal 

growing season is a plausible hypothesis. 

Regardless of whether the origins of their inocula are shared, the morphological outcome of F. 

poae and F. langsethiae infection is similar. F. poae infection does not lead to a clear FHB-

phenotype (Vogelgsang et al., 2008b), and instead of traditional bleaching only small necrotic 

lesions can be detected (Figure 2.6). It is frequently isolated from asymptomatic ears (Hudec 

and Rohacik, 2003; Kulik and Jestoi, 2009). Its effect on yield parameters has been shown to 

be limited in published studies (Doohan et al., 1999; Vogelgsang et al., 2008b). Nevertheless, 

it has been reported that on barley in Argentina F. poae leads to clearly distinguishable spots 

on the leaf sheaths, glumes and grains (Barreto et al., 2004). Xu et al. (2008) found that while 
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F. poae was the most dominant species in four European countries on the level of incidence, its 

abundance (measured as fungal DNA) was the lowest of all species. The general lack of 

aggressiveness by F. poae supports the notion that it is a secondary invader of wheat ears. 

Correlations between the DNA of F. poae and other species of the FHB complex in several 

studies, particularly F. graminearum and F. avenaceum, are in agreement with this hypothesis 

(Xu et al., 2005; Audenaert et al., 2009).  

In the case of F. langsethiae, two symptom types have been described, on the one hand distinct 

glume spots (Torp and Adler, 2004) and on the other hand subtle browning of panicle structures 

(Divon et al., 2012), see Figure 2.6. These reports are unanimous in their conclusion that F. 

langsethiae produces limited symptoms and does not result in reduction of grain yield. 

However, even asymptomatic grains can contain elevated levels of T-2 and HT-2 toxin (Opoku 

et al., 2013). F. langsethiae is responsible for the production of a series of type A trichothecenes. 

It is a potent producer of NEO, DAS, T-2 and HT-2, and close derivatives thereof such as T-2 

triol and T-2 tetraol (Thrane et al., 2004). In oats, these were detected as a complex closely 

correlating with F. langsethiae incidence which is detailed in Chapter 3 of this thesis.  

 

Figure 2.6 – Symptoms of F. langsethiae, F. poae and F. graminearum infection. A and B: F. 
langsethiae symptoms on respectively oat (Divon et al., 2012) and wheat (Torp and Adler, 2004). C and 
D: F. poae infected wheat ears, two different isolates (Vogelgsang et al., 2008b). E: F. graminearum 
infected wheat ear, own work.  

As indicated above, we do not know whether trichothecenes produced by F. poae and F. 

langsethiae perform similar roles as they do in F. graminearum. However, the plant’s response 

to this toxic metabolites may be similar, as glucosylated forms of NIV, FUS-X and all type A 

trichothecenes have been detected in recent years in a variety of matrices (Nakagawa et al., 

2011; Nakagawa et al., 2013; De Boevre et al., 2014). This does not automatically subscribe a 

virulence related role to these mycotoxins, as plants likely conjugate a wide range of 

xenobiotics. 
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The epidemiology of F. poae and F. langsethiae seems very different from that of F. 

graminearum, and this does not explain their prominence in the FHB complex, as they are rather 

weak pathogens with limited aggressiveness to their host plant. Perhaps their toxic type A 

trichothecenes give these species a competitive advantage against other micro-organisms 

occupying the ear, but information on this subject is lacking. In the next section, several 

hypotheses are proposed to explain the prominence of F. poae and F. langsethiae in the disease 

complex. 

2.7 Population shifts unraveled 

Fisher et al. (2012) describe emerging infectious diseases as those pathogens that are increasing 

in their incidence, geographic or host range, and virulence. It remains to be seen whether F. 

poae and F. langsethiae can truly be designated emerging fungal diseases, as F. poae has been 

a commonly detected FHB pathogens for several decades (see section 2.3), and F. langsethiae 

was only very recently described for the first time and sampling and identification may have 

been troublesome before then. Nevertheless, their purported lack of aggressiveness and cryptic 

epidemiologies are remarkable in light of their high incidence. In this section, possible causal 

factors for the prominence of F. poae and the potential emergence of F. langsethiae are 

identified, that may be shared between the two organisms. In the following sections 1) their 

fungicide resistance patterns and the potential link with a more toxic chemotype and 2) how 

they might respond to a changing climate are considered. 

Tolerance of triazoles and production of type A trichothecenes 

We hypothesize that the widespread occurrence of F. langsethiae in several (European) 

countries may have followed the adoption of triazoles as the preferred fungicide against 

Fusarium during the eighties of last century (Morton and Staub, 2008). Box 2.3 gives some 

background and history on the use of triazoles.  
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A finding in a Norwegian field study carried out by Bioforsk was that F. langsethiae is not 

consistently controlled by Proline (active ingredient prothioconazole). Unpublished data from 

the Norwegian field trials was kindly provided by dr. Ingerd Hofgaard (Bioforsk, Norway). 

Results are detailed in Figure 2.7. Kokkonen et al. (2014) found that tebuconazole, the most 

popular triazole on the market, had no effect on F. langsethiae in an oat based medium. Figure 

2.7 also shows that F. poae is not a major problem in oats in Norway, as it only rarely occurred 

in the control treatment, but in two instances its share increased after prothioconazole 

application, particularly when this was carried out at GS55 (Hedmark, Vestfold). 

A similar result for F. poae was found in a large scale field study in Belgium (Figure 2.8). The 

results of these experiments are detailed in Audenaert et al. (2011). In a first experiment, F. 

poae appeared in the population after prothioconazole application at GS55. In a second 

experiment, F. poae was already present in the untreated control, at ~15% of total isolates 

Box 2.3 – Triazoles as the preferred antifungal against Fusarium species  

Information in this Box is largely adapted from Morton and Staub (2008). Triazoles are the 

largest class of fungicides used worldwide, and the most important disease management tool 

for Fusarium control. They were introduced in the 1970s and started to become widely used 

in the 1980s. Triazoles are broad spectrum antifungals, with functionality against Fusarium 

but also mildew and Septoria. They function by inhibiting demethylation during sterol 

biosynthesis in fungi at the target enzyme C-14 demethylase, a cytochrome P450 of the 

CYP51 family (see Figure in this Box). Their mode of action assigns them to the group of 

demethylation inhibitors (DMI). Ergosterol is a vital component of the fungal cell 

membrane. The efficacy of triazoles has been remarkably durable, as they are still the 

preferred fungicide against agronomically important fungi such as powdery mildew, rust and 

Fusarium after close to four decades. Nevertheless, several mechanisms have been described 

that confer resistance to fungi such as sequence mutations at the P450 target site, higher 

expression of the P450 gene, sequence alterations at the promotor of the P450 and additional 

copies of the P450 gene. A combination of these may lead to the erosion of efficacy of 

triazole compounds. The most popular triazoles are tebuconazole, epoxiconazole, 

propiconazole and prothioconazole. For the treatment against Fusarium triazoles are 

generally applied from halfway heading (GS55) to mid flowering/anthesis (GS65), 

expressed as growth stages on the Zadoks scale (Zadoks et al., 1974).  

 

 

Lanosterol Ergosterol

P450 14-α demethylase

Prothioconazole
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characterized to be Fusarium. The F. poae share in the population increased drastically upon 

triazole application at GS55. Apparently, a species displacement takes place whereby species 

such as F. graminearum and F. culmorum are controlled by the fungicide, and F. poae is not, 

or less so. While F. poae has been described as a prominent member of the FHB complex 

already in the eighties of last century (Haave, 1985; Clear and Patrick, 1993; Polley and Turner, 

1995) and therefore its “emergence” does not necessarily correlate with the introduction of 

triazoles, the use of triazoles may be conducive to the perpetuation of this otherwise rather weak 

pathogen. Moreover, it was detected already as the predominant species in durum wheat seeds 

collected between 1937 and 1943 in Canada (Gordon, 2006). 
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Figure 2.7 – Results of Norwegian field trials investigating fungicide efficacy on Fusarium species in oats, unpublished results kindly shared by dr. Ingerd 

Hofgaard (Bioforsk, Norway). Thirteen separate trials are shown (carried out from 2006 to 2008 over four locations). Proline (active ingredient: 

prothioconazole) was either not applied (control), or applied at GS55 or GS65. The major problem in oats, F. langsethiae (red) is in most cases not efficiently 

controlled by fungicide application. 
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Figure 2.8 – Results of Belgian wheat field trials surveying the changes  in  the Fusarium population 

after prothioconazole application. Commercial wheat varieties and normal crop husbandry were used. 

In a first experiment (EXP1), prothioconazole was applied at GS55 or GS65 (results for one location and 

one year). No F. poae is present in the control treatment (no fungicide), but the species appears in the 

GS55 treatment. In a second experiment (EXP2), prothioconazole was applied at GS55 (combined 

results of two locations, Bottelare and Beitem, from 2008-2010). The share of F. poae increases 

dramatically after fungicide application. Source: Audenaert et al. (2011). 

The results of these field studies do not necessarily agree with the results of laboratory tests. 

Indeed, in vitro studies have been published that confirm the efficacy of triazoles in the control 

of F. langsethiae and F. poae (Mullenborn et al., 2008; Mateo et al., 2013). However, in 

standard growth assays, it is unlikely that secondary metabolite production will mimic that of 

the field situation, where all the plant precursors and inducers are present. Where possible, in 

vivo studies in the field are strongly preferred. Conclusions from in vitro studies could therefore 

be hampered if secondary metabolite production plays a role in fungicide resistance. This 

conclusion was reached in the system F. graminearum – DON, in which a Tri5 knockout mutant 

becomes completely susceptible to triazole application, even at low doses (Audenaert et al., 

2010).  

Information is currently lacking on why F. poae and F. langsethiae appear to deal with triazole 

application in the field setting better than other Fusarium species do. As mentioned in Box 2.3, 

the target of triazole antifungal compounds is sterol 14 alpha-demethylase, a vital enzyme in 
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ergosterol biosynthesis, encoded in fungi by the CYP51 gene. In Fusarium species three classes 

of CYP51 are present in the genome, one of which is mainly implicated as the target of triazoles 

(Fan et al., 2013). Mutations in the CYP51 genes are known to confer resistance to triazoles in 

Mycosphaerella graminicola (Leroux et al., 2007) and Blumeria graminis (Wyand and Brown, 

2005), however no such mutations have been reported for F. graminearum. Isolates that were 

adapted in vitro to tebuconazole did not show sequence alterations at any of the CYP51 genes 

(Becher et al., 2010), and neither did resistant isolates from multiple field surveys (Yin et al., 

2009; Talas and McDonald, 2015). Therefore, triazole resistance in F. graminearum likely 

depends on other mechanisms. No information is available on CYP51 configuration for either 

F. poae and F. langsethiae. 

Aside from at the CYP51 level (see Box 2.3), fungal resistance against triazoles and antifungal 

compounds in general is mediated by efficient efflux of these compounds from the intracellular 

space (Coleman and Mylonakis, 2009). According to Stergiopoulos et al. (2002), ABC 

transporters broadly are generally implicated in tolerance against xenobiotics as well as 

externally added mycotoxin (intermediates) (Seong et al., 2009; Abou Ammar et al., 2013), 

while MFS transporters are involved in efflux of fungal toxins or virulence factors (Menke et 

al., 2012). However, there are indications that this division is not absolute. In F. graminearum, 

several ABC transporters are under the direct control of TRI6, a transcription factor specifically 

regulating trichothecene production (Seong et al., 2009). Two ABC transporters of M. 

graminicola have been shown to simultaneously confer tolerance against exogenously added 

DAS and triazoles (Zwiers et al., 2003). As type A trichothecenes have been shown to be more 

acutely toxic than type B trichothecenes, at least to plants (Desjardins et al., 2007), it is possible 

that F. poae and F. langsethiae have evolved more efficient efflux systems for their mycotoxins, 

a system which in turn could be hijacked towards elevated triazole mediation. Significant 

substrate redundancy among transporters complicates research in this field, but nevertheless it 

should be investigated whether there is a link between a more toxic chemotype and elevated 

fungicide tolerance in these Fusarium species.  

A changing climate 

The worldwide effect of global warming on plant pathogens and pests was recently investigated 

(Bebber et al., 2013). It was determined that since the 1960s, fungi have generally migrated 

poleward. Two Fusarium species with sufficient observations and significant outcome were F. 

sporotrichioides, sister species to F. langsethiae, and F. avenaceum which have significantly 

moved polewards and in the direction of the equator, respectively. A high optimal growth 
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temperature was determined for F. sporotrichioides (Nazari et al., 2014). In vitro studies that 

designate optimal growth temperatures for fungal species based on vegetative growth 

experiments should be interpreted with caution however. These do not necessarily concur with 

the actual in planta optima, as was clearly illustrated for F. langsethiae (Divon et al., 2012).  

Since reports exist that distinguish F. poae as one of the dominant FHB species since the mid-

eighties of last century, it is rather unlikely that climate change has been responsible for an 

“emergence” of F. poae. It has however been described that the species prefers warm and dry 

conditions (Xu et al., 2008), which are the effects that global climate change is expected to 

have. We therefore suggest that F. poae predominance may even increase above its current 

levels in the coming decades. A general increase of FHB has been predicted as a result of wheat 

anthesis occurring earlier in the growing season with rising temperatures (Madgwick et al., 

2011). The high minimum growth temperature of F. poae was previously seen as an explanation 

of low F. poae levels in Mid-Norway (Kosiak et al., 2003). In this study, F. langsethiae was 

well correlated with F. poae, raising the possibility that they share environmental preferences. 

Accordingly, Parikka et al. (2012) suggested that the prevalence of both F. langsethiae and F. 

poae may increase in the future. 

2.8 Conclusions and perspectives 

The importance of F. poae and F. langsethiae has been extensively illustrated from literature. 

Chapter 3 of this thesis details their incidence in the Belgian fields, and food and feed chain. F. 

poae and F. langsethiae produce a toxic chemotype that includes type A trichothecenes, which 

may be linked to their elevated resistance against triazoles in field trials. Chapters 5 and 6 go 

into detail on the chemotype of F. poae isolates. Finally, much is still unclear about the 

epidemiology and mode of reproduction of F. poae and F. langsethiae. Chapter 4 details the 

genome sequencing effort for F. poae, and we identified indications for a mixed reproduction 

system, together with dynamic genomic elements, that have previously been identified as 

significant threats to durable disease management. Taken together, this thesis aims to uncover 

potential keys to success for F. poae.   
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Chapter 3: Fusarium species and 

mycotoxins in Belgium: a one year case 

study 
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3.1 Abstract 

In Chapter 2, the importance of F. poae in agro-ecosystems was illustrated by a screening of 

literature. In this Chapter, we present a case study of Fusarium species incidence and mycotoxin 

contamination by analyzing field samples from a single harvest year, as well a series of food 

and feed samples collected throughout the cereal processing chain in Belgium. This provides a 

single snapshot of Fusarium species and mycotoxins in Belgium in 2012, without going deeper 

into the agronomic and environmental parameters that may influence FHB, and the agricultural 

background of most of the samples is unknown. Ultra performance liquid chromatograpy 

tandem mass spectrometry (UPLC-MS/MS) was applied to detect twelve different mycotoxins, 

and quantitative PCR (qPCR) was used to measure the presence of ten Fusarium species. We 

found that different cereal matrices have different characteristic contamination profiles, and 

correlation studies identified certain mycotoxins for future assessment (e.g. moniliformin 

(MON) produced by the F. avenaceum/F. tricinctum species group). The investigated harvest 

year of 2012 yielded non-processed field materials containing elevated levels of DON, while 

even in what is likely a so-called “DON-year” less prevalent toxins such as T-2 and HT-2 might 

be considered problematic due to their consistent co-occurrence with related type A 

mycotoxins. F. graminearum and F. poae were among the most important species in wheat, 

confirming earlier reports.  

3.2 Introduction 

In recent years, the scientific community has taken great steps towards a better understanding 

and surveillance of mycotoxin contamination of cereals and their derived feed and food 

products. Mycotoxins are produced by several toxigenic fungi, the most important of which are 

Fusarium, Alternaria, Claviceps, Aspergillus and Penicillium (Pitt, 2000). Historically, several 

notable instances of mycotoxin exposure in humans or animals exist, with widespread 

consequences. During World War II, Russian harvests heavily infected with the toxigenic 

species Fusarium sporotrichioides were contaminated with high levels of T-2 toxin, a 

trichothecene compound with notable toxicity (Li et al., 2011). Consumption of this harvest led 

to the death of thousands of people (Joffe, 1974). In 2012-2013, elevated levels of aflatoxin 

were detected in milk produced on several farms in the Netherlands. This particularly toxic 

compound is produced by Aspergillus species. Milk from cattle that are fed with contaminated 

feed lots may in turn be contaminated with aflatoxins. It was found that these maize lots were 

imported from South-East European countries where the harvest in the 2012-2013 season 

contained particularly high levels of aflatoxin. This sparked several international alerts and 
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significantly impacted production and import-export regulations across the continent 

(Verstraete, 2013). Even more recently, several lots of breakfast cereal had to be taken from 

shelves in Belgian supermarkets, as they were contaminated with DON 

(http://deredactie.be/permalink/1.2241974).  

When contaminated lots are found, they can be re-orientated to a purpose where regulatory 

limits are lower and where the compounds exert less damage. Table 3.1 shows which regulatory 

limits and guidance values are in place for Fusarium mycotoxins. T-2 and HT-2 toxins are not 

regulated at the moment, but “indicative values” have been set by the European Commission 

for a range of cereal commodities (European Commission, 2013). Repeated findings above this 

indicative level should spark investigation into causal factors. These indicative values are the 

Commission’s response to a Scientific Opinion by the European Food Safety Authority (EFSA) 

on T-2 and HT-2 in 2011 (EFSA CONTAM Panel, 2011b). More Scientific Opinions are 

expected in the coming years, e.g. on DAS, DON and MON, and Member States of the 

European Union are encouraged to submit surveys of these mycotoxins to EFSA in official “call 

for data” requests.  

http://deredactie.be/permalink/1.2241974
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Table 3.1 – Legislative values for Fusarium mycotoxins. These are maximum regulatory limits for deoxynivalenol, zearalenone and the sum of fumonisin 

B1 and B2 in foodstuffs, guidance values for deoxynivalenol, zearalenone and the sum of fumonisin B1 and B2 in feedstuffs, and indicative values for the sum 

of T-2 and HT-2, as detailed in Commission Regulation 1881/2006 (European Commission, 2006a), Commission Recommendation 2006/576/EC (European 

Commission, 2006b), and Commission Recommendation 2013/165/EU (European Commission, 2013) respectively. 

Mycotoxin Matrix 

Value 

(µg/kg) 

Deoxynivalenol FOOD   

 Unprocessed cereals other than durum wheat, oats and maize 1250 

 Unprocessed durum wheat and oats  1750 

 Unprocessed maize, with the exception of unprocessed maize intended to be processed by wet milling 1750 

 Cereals intended for direct human consumption, cereal flour, bran and germ as end product marketed for direct human 750 

 consumption, with the exception of foodstuffs listed below  

 Pasta (dry)  750 

 Bread (including small bakery wares), pastries, biscuits, cereal snacks and breakfast cereals 500 

 Processed cereal-based foods and baby foods for infants and young children 200 

 FEED   

 Cereals and cereal products with the exception of maize by-products 8000 

 Maize by-products 12000 

 Complementary and complete feedingstuffs with exception of those below 5000 

 Complementary and complete feedingstuffs for pigs 900 

  Complementary and complete feedingstuffs for calves (<4 months), lambs and kids 2000 

Zearalenone FOOD   

 Unprocessed cereals other than maize 100 

 Unprocessed maize with the exception of unprocessed maize intended to be processed by wet milling 350 

 Cereals intended for direct human consumption, cereal flour, bran and germ as end product marketed for direct human 75 

 consumption, with the exception of foodstuffs listed below  

 Refined maize oil 400 

 Bread (including small bakery wares), pastries, biscuits, cereal snacks and breakfast cereals, excluding  50 

 maize-snacks and maize-based breakfast cereals  
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 Maize intended for direct human consumption, maize-based snacks and maize-based breakfast cereals 100 

 Processed cereal-based foods (excluding processed maize-based foods) and baby foods for infants and young children 20 

 Processed maize-based foods for infants and young children  20 

 FEED   

 Cereals and cereal products with the exception of maize by-products 2000 

 Maize by-products 3000 

 Complementary and complete feedingstuffs for piglets and gilts (young sows) 100 

 Complementary and complete feedingstuffs for sows and fattening pigs 250 

  Complementary and complete feedingstuffs for calves, dairy cattle, sheep (including lamb) and goats (including kids) 500 

T-2 + HT-2 UNPROCESSED CEREALS   

 Barley (including malting  barley) and maize 200 

 Oats (with husk) 1000 

 Wheat, rye and other cereals 100 

 CEREAL GRAINS FOR DIRECT HUMAN  CONSUMPTION   

 Oats 200 

 Maize 100 

 Other cereals 50 

 CEREAL PRODUCTS FOR HUMAN CONSUMPTION   

 Oat bran and flaked oats 200 

 Cereal bran except oat bran, oat milling products other than oat bran and flaked oats, and maize milling products 100 

 Other cereal milling products 50 

 Breakfast cereals including formed cereal flakes 75 

 Bread (including small bakery wares), pastries, biscuits, cereal snacks, pasta 25 

 Cereal-based foods for infants and young children 15 

 CEREAL PRODUCTS FOR FEED AND COMPOUND FEED   

 Oat milling products (husks) 2000 

 Other cereal products 500 

  Compound feed, with the exception of feed for cats 250 

Fumonisin B1 + B2 FOOD   



38 

 

 Unprocessed maize 2000 

 Maize based foods for direct human consumption, excluding those listed below 1000 

 Maize flour, maize meal, maize grits, maize germ and refined maize oil 400 

 Processed maize-based foods and baby foods for infants and young children 200 

 FEED   

 Feed materials: maize and maize products 60000 

 Complementary and complete feedingstuffs for pigs, horses (Equidae), rabbits and pet animals 5000 

 Complementary and complete feedingstuffs for fish 10000 

 Complementary and complete feedingstuffs for poultry, calves (< 4 months), lambs and kids 20000 

 Complementary and complete feedingstuffs for adult ruminants (> 4 months) and mink 50000 
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The year-to-year variability in mycotoxin contamination of small-grain cereals is large, and 

troublesome to interpret and predict (Landschoot et al., 2012). Logically, the population 

structure and disease pressure of the FHB complex play an important part (van der Fels-Klerx 

et al., 2012). Why Fusarium spp. should invest energy in the production of mycotoxins has not 

yet been fully elucidated, although in recent years progress has been made towards a central 

“oxidative stress theory” of mycotoxin biosynthesis, which states that within the conditions that 

are favourable for production of secondary metabolites in fungi, oxidative stress always plays 

a role (Reverberi et al., 2010). Indeed, studies have been published that assign an important role 

to DON in fusariosis of wheat (Maier et al., 2006; Audenaert et al., 2014) and the fungal 

response to oxidative stress (Audenaert et al., 2010).  

Phytotoxicity of DON and other mycotoxins has been well established (Eudes et al., 2000; 

Desjardins et al., 2007), which explains why the plant has developed mechanisms to detoxify 

these toxins (Berthiller et al., 2013). Reports on new derivatives of previously well-described 

toxins have been regularly published in recent years (Gardiner et al., 2010b; Nakagawa et al., 

2011), but the glucosylation of DON to DON-3-glucoside (DON-3G) is by far the best 

described mechanism of the “masked mycotoxin” formation. The conjugated forms of these 

toxins still end up in the food and feed chain however, and should not be underestimated as a 

potential health hazard (De Boevre et al., 2013). They are subject to potential hydrolysis after 

ingestion, and may thus result in an additional delivery of the toxic parent form (Berthiller et 

al., 2011).  

The goal of this study was to get a snapshot of Fusarium species and mycotoxins incidence in 

Belgium, both on the field and in feed and food samples. Both UPLC-MS/MS and qPCR 

analyses were performed on 237 samples and the results were correlated in order to understand 

which Fusarium species were at the basis of the mycotoxins detected within these samples. 

However, it was not within the scope of the study to correlate this occurrence with agronomic 

or other environmental variables, and therefore only one harvest year and a limited set of food 

and feed products was considered.  

3.3 Material and methods 

3.3.1 Collection of small-grain cereals, food and feed samples  

A total of 237 samples from different matrices were collected. Small-grain cereals were 

collected during the harvest of 2012 from fields in eight locations in Flanders, Belgium, in 

collaboration with the Agricultural Centre for Cereals. The locations and small-grain species 
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(wheat, barley, triticale) were selected based on their importance in cultivation in Flanders and 

are shown in Figure 3.1.  

 

Figure 3.1 – Eight locations in Flanders where small-grain cereals were sampled from the field in the 

2012 harvest year. 

Feed samples were collected in November and December of 2012. Twenty-six samples were 

collected from several manufacturers in different geographic regions of Flanders. Ten samples 

consisted of processed oats, and 16 samples comprised diverse matrices, intended for pig (13) 

and poultry (3) feeding. The composition of these mixed feed samples reflects the investigated 

field materials: barley, wheat and triticale. The quantitative composition of the mixed feed 

samples is not known and was not considered for this study.  

Forty-five cereal-derived food samples, consisting of 25 breads and 20 breakfast cereals, were 

collected from various retail markets during August – December 2012. Fiber contents of the 

food samples ranged from 2 % to 16 %. Cereal matrices present in the food samples included 

wheat, rye, oats, barley, soybean, corn, rice and buckwheat. The composition of the food 

samples (in qualitative terms) can be found in Table S3.1. 

3.3.2 Processing of samples and LC-MS/MS procedure 

An UPLC-MS/MS method was developed and validated in the framework of this study. The 

extraction protocol, parameters of the LC-MS/MS method and method validation can be found 

in the Appendix of this thesis. Due to a technical error, NIV levels could not be measured in 

this study.  
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Representative parts of each sample were obtained and ground to obtain a homogenous matrix. 

Small-grain cereals (wheat, barley, triticale) and feed samples were ground using a M20 grinder 

(Ika Werke, Staufen, Germany). Food samples were pulverized with a mortar after treatment 

with liquid nitrogen. After vigorous homogenization of the matrix, 2.5 g of each sample was 

weighed for extraction which was performed as described previously (De Boevre et al., 2012b). 

3.3.3 DNA extraction and qPCR conditions 

DNA was extracted from all 237 samples collected in the survey. DNA extraction was 

performed using the Invisorb Spin Plant mini kit (Invitek, Germany), as per the manufacturer’s 

instructions. 

qPCR primers for fungal and plant DNA based on elongation factor-1α (EF-1α) sequences were 

taken from literature and have been described as discriminating for ten FHB-causing Fusarium 

species most frequently encountered in Europe (Nicolaisen et al., 2009). The qPCR reactions 

were performed in a total reaction volume of 12.5 µl, consisting of 6.25 µl proprietary GoTaq 

qPCR Master Mix (Promega), 0.208 µl of CXR reference dye (Promega), 250 nM of each 

primer and 2.5 µl of DNA. Analysis was performed on an ABI 7000 Sequence Detection 

System with the following cycle settings: 50 °C during 2 min; 95 °C during 10 min; 40 cycles 

of 95 °C during 15 s and 63.5 °C during 1 min; followed by dissociation curve analysis from 

65 °C to 95 °C. Results were analyzed with the Applied Biosystems’ 7000 System SDS 

Software and Microsoft Excel 2010.  

Fungal DNA for every species was normalized on the amount of amplified plant DNA. All 

primers were tested and confirmed for specificity among the 10 Fusarium species investigated 

in this study. This validation was performed with at least one Mycothèque Université catholique 

de Louvain (MUCL) reference isolate per species. For quantification of the plant DNA, a 

standard dilution series of plant DNA extracted of non-contaminated material was made and 

assigned concentrations after measurement with Nanodrop 1000.  

3.3.4 Statistical analysis 

For statistical evaluation, the R software package (version 2.15.3) was used (R Core 

Development Team, 2012). Since normality assumptions of parametric tests were not met, 

differences between groups of data were tested for significance using a non-parametric Kruskal-

Wallis test with a Bonferroni correction for multiple comparisons at  = 0.05/n with n the 

number of pair-wise comparisons.  
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The relationship between the toxin contents, species presence and different food, feed and field 

samples was investigated using the Spearman correlation coefficient. These correlations are 

represented using a heat map with different colors corresponding to the strength of the 

correlation. Average linkage clustering using the Spearman distance was used to generate the 

heat map dendrograms. The Spearman correlations that the heat maps are based on can be found 

in Table S3.2 to Table S3.5.  

3.4 Results 

3.4.1 Different categories have different characteristic contamination profiles 

Figure 3.2 depicts a graphic presentation of the Spearman correlations between the amounts of 

DNA for all determined Fusarium species, mycotoxin levels, and the tested categories of field, 

feed and food samples.  

 

Figure 3.2 – Heat map based on the pairwise Spearman rank correlations between every class of 

sampled cereal matrix, and the different variables that were measured. A lighter color designates a 

higher correlation, as is shown in the color scale bar. The dendrogram, clustering the different classes 

of cereal matrices, was generated using average linkage clustering and the Spearman distance. The 

correlations at the basis of this heat map can be found in Table S3.2. 
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The heat map provides a general overview of contaminants characteristic for certain sample 

categories, but nevertheless the graph should be interpreted cautiously. A Fusarium species or 

mycotoxin can be designated as characteristic for certain sample categories, but this does not 

exclude it from being present in the others; it only implies that the contamination is present in 

the sample category more than expected in a random distribution of contamination levels in all 

237 samples. This means that these designations are only valid when they are used in a 

comparative context, e.g. a Fusarium species or mycotoxin has a much higher qualitative and 

quantitative incidence in one category than in the other, rendering it a characteristic contaminant 

for the one category, but not the other. Finally, the dendrogram on the left-hand side of Figure 

3.2 clusters together those sample categories that have similar characteristic contamination 

profiles.  

Oat feed and food samples have profiles that cluster together, with a marked presence in oat 

feed of NEO, DAS, T-2, HT-2 and F. langsethiae. The category of mixed feed samples and the 

categories of field samples demonstrate profiles that cluster together. For the field samples, 

DON, DON-3G and F. graminearum stand out in barley, and F. culmorum and F. poae stand 

out in wheat. F. proliferatum stands out in mixed feed. Triticale demonstrates no distinct 

mycotoxins or Fusarium species in this comparative framework.  

Table 3.2 and Table 3.3 detail the incidence of Fusarium species and mycotoxins for every 

sample category.  
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Table 3.2 - Results of the fungal biomass analysis on small-grain cereals, feed and food products. Values represented are the mean amount of fungal DNA 

present in the sample (pg fungal DNA / ng plant DNA), with the total number of positive samples between brackets. Mean values were calculated from positive 

samples only. In the header of the table, the number of tested samples for each sample type are reported. Within each separate Fusarium species, significant 

differences between the evaluated sample categories according to a post-hoc Kruskal-Wallis test are denoted with different letters. Only variables with more 

than one positive sample were included in the Kruskal-Wallis test. 

 Wheat (field)   

(n = 93) 

Barley (field)    

(n = 65) 

Triticale (field) 

(n = 10) 

Oat feed  

(n = 10) 

Feed (mixed)  

(n = 16) 

Bread 

(n = 25) 

Breakfast cereals 

(n = 20) 

F. poae 0.61 ab  (81) 0.08 d  (8) 0.12 b  (9) 1.00 a  (10) 0.32 b  (13) 0.17 cd  (5) 0.67 c  (8) 

F. langsethiae 0.56 c  (7) 0.10 bc (13) 0.00  (0) 2.43 a  (10) 0.03 b  (7) 0.00  (0) 0.19 b  (6) 

F. sporotrichioides 0.05 ab  (5) 0.31 ab  (3) 0.00  (0) 0.00  (0) 0.02 a  (3) 0.00  (0) 0.00  (0) 

F. graminearum 1.53 c  (89) 1.52 ab  (65) 0.67 cd  (10) 4.27 a  (10) 1.20 bc  (16) 0.45 d  (21) 0.20 e  (9) 

F. equiseti 0.03 b  (2) 0.03 a  (14) 0.00  (0) 0.05 a  (2) 0.04 a  (5) 0.00  (0) 0.00  (0) 

F. culmorum 0.13 a  (66) 0.16 ab  (34) 0.06 abc  (6) 0.41 cd  (2) 0.05 abc  (11) 0.09 bcd  (6) 0.01 d  (2) 

F. proliferatum 0.00  (0) 0.00  (0) 0.00  (0) 0.00  (0) 0.04 a  (4) 0.00  (0) 0.01   (1) 

F. tricinctum 0.02 b  (36) 0.06 b  (11) 0.02 b  (2) 0.11 a  (9) 0.08 a  (11) 0.04 b  (3) 0.01 b  (4) 

F. verticillioides 0.00  (0) 0.08 ab (9) 0.00  (0) 0.00  (0) 0.01 a  (3) 0.13   (1) 7.32 ab  (3) 

F. avenaceum 0.36 b  (88) 0.32 b  (58) 0.20 bc  (9) 1.23 a  (10) 1.16 ab  (16) 0.20 cd  (15) 0.11 d  (9) 
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Table 3.3 - Results of the multi-mycotoxin survey on small-grain cereals, feed and food products. Values represented are the mean concentration of 

mycotoxin present in the sample (µg / kg sample material), with the total number of positive samples between brackets. Mean values were calculated from 

positive samples only. In the header of the table, the number of tested samples for each sample type are reported. For each separate mycotoxin, significant 

differences between the evaluated sample categories according to a post-hoc Kruskal-Wallis test are denoted with different letters. Only variables with more 

than one positive sample were included in the Kruskal-Wallis test. NQ (not quantifiable) designates samples that were just below the decision limit, these 

were not included in the Kruskal-Wallis test. ND represents a non-detected compound. 

 Wheat (field) 

(n = 93) 

Barley (field) 

(n = 65) 

Triticale (field) 

(n = 10) 

Oat feed 

(n = 10) 

Feed (mixed) 

(n = 16) 

Bread  

(n = 25) 

Breakfast cereals 

(n = 20) 

DON 1053 abc  (81) 2029 a  (64) 1145 bc  (8) 2385 ab  (6) 565 cd  (14) 316 de  (24) 1295 e  (5) 

3-ADON 38 a  (4) 120 a  (8) ND  (0) 135  (1) 75   (1) ND   (0) ND  (0) 

15-ADON 87 c (2) 97 bc  (10) ND (0) 49 ab  (2) 59 a  (6) ND (0) ND  (0) 

DON-3G 250 bc  (54) 390 a  (59) 169 cd  (6) 616 a  (7) 231 cd  (7) 490 ab  (15) 325 d (5) 

ZEN 33 a  (5) 18   (1) ND  (0) 16   (1) ND  (0) 22 a  (3) ND  (0) 

α-ZEL 39 b  (15) ND  (0) ND  (0) 136 b  (1) 62 a  (6) 64 b (3) ND (0) 

β-ZEL 104  (1) ND  (0) ND (0)  ND  (0) ND (0) 19 a (2) ND (0) 

FUS-X 508   (1) NQ (1) ND (0) NQ (1) ND (0) 505 a  (2) 796 a  (3) 

NEO 161   (1) ND (0) ND (0) 178  (5) ND (0) NQ (2) NQ (1) 

DAS 87 b  (3) ND (0) ND (0) 32 a  (8) NQ (3) ND  (0) 37 b  (2) 

T-2 123   (1) NQ (2) ND (0) 77 a  (9) ND (0) 24 b (2) 31 c (7) 

HT-2 70 c  (2) NQ (2) ND (0) 196 a  (10) NQ (2) NQ (12) 38 b  (6) 
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Some findings from Figure 3.2 are nuanced in Table 3.2 and Table 3.3. Indeed, F. poae is 

consistently an important species in wheat samples from the field. Quantitatively, oat feed 

samples do contain higher biomass concentration of this species, but it was not designated as 

particularly characteristic for this class, as from a comparative point of view the levels of F. 

langsethiae, DAS, T-2 and HT-2 are even higher. F. proliferatum is only marginally present in 

feed (four samples at low concentration), but since this is high in incidence and abundance in 

comparison to the other sample categories it stands out in Figure 3.2. This could be seen as an 

artefact of the heat map based approach and illustrates that caution should be exercised when 

interpreting these graphical representations.  

A relatively high number of barley field samples contains F. equiseti and F. verticillioides, 

albeit in low concentration. Generally, and expectedly, low amounts of fungal DNA were 

detected in bread and breakfast cereal samples. 

3.4.2 Different correlations are present within the different sample categories 

Correlation studies were performed within every sample category. Again, caution should be 

exercised when interpreting these heat maps, as they inadvertently also include the correlations 

which are artefacts based on a very limited number of positive samples. Figure 3.3 shows the 

results of the correlation study for the wheat and barley field samples. 
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Figure 3.3 – Heat map based on the pairwise Spearman rank correlation coefficients between the 

measured toxin contents and Fusarium DNA from the different species in wheat field samples (A) and 
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barley field samples (B). A lighter color designates a higher correlation, as is shown in the color scale 

bar. Both (identical) dendrograms are generated using average linkage clustering with the Spearman 

distance. The correlations at the basis of these heat maps can be found in Table S3.3 and Table S3.4 

respectively. 

Some marked differences can be observed between the wheat and barley field samples. DON 

and DON-3G are better correlated in barley than in wheat, as Table 3.3 already showed there 

are more samples with DON and no DON-3G in wheat. Aside from DON and DON-3G, all 

other correlations are generally weaker in barley than in wheat. 

Some interesting inter-species correlations are present in the wheat samples. The weak 

pathogen F. poae, and F. tricinctum and F. avenaceum, which are closely related, are highly 

correlated with the aggressive species F. graminearum and F. culmorum. The inclusion of DON 

and its glucoside DON-3G in this cluster follows from the presence of F. graminearum as the 

main producer of DON. In wheat, but not in barley, F. culmorum is tightly linked with the DON 

– F. graminearum axis. Surprisingly, the acetylated forms of DON, 3-ADON and 15-ADON, 

are not well correlated with DON, F. graminearum and F. culmorum.  

While correlations between Fusarium species and type A trichothecenes exist for these field 

samples, such as the cluster T-2, HT-2 and F. sporotrichioides in barley, these should be 

cautiously interpreted due to the very low number of positive samples and lack of quantification 

in the case of barley. Indeed, in one of the two T-2/HT-2 positive samples in barley, F. 

sporotrichioides but not F. langsethiae was detected. On the other hand, one of the two HT-2 

positive samples in wheat also contained the highest load of F. langsethiae detected in the entire 

study, while the other contained F. sporotrichioides.  

Twenty-five bread samples were fully analyzed, but performing a correlation study for this 

matrix was troublesome, as degradation of the DNA is likely to have occurred during 

processing. Indeed, Figure 3.4 and Table 3.2 illustrate that in bread, the lowest levels of fungal 

DNA were retrieved. Figure 3.4 reveals a situation that is different for breakfast cereals than 

for the other analyzed matrices. F. verticillioides seems at first sight to be the most important 

species in this sample category, which is in fact a consequence of one hyper-contaminated 

sample of breakfast cereal. Due to the likely degradation of DNA in the food products, an intra-

category correlation study is not useful for breads and breakfast cereals.  
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Figure 3.4 – Amount of fungal DNA (pg Fusarium DNA normalized on ng plant DNA) retrieved in every 

matrix for every species. Values depicted are the means of all samples for every matrix. A separate bar 

graph with standard errors can be found in Figure S3.1. 

Finally, 26 feed samples were analyzed. Sixteen feed samples had a mixed origin and the 

contamination profile of this category clustered together with the profiles of the investigated 

field samples (Figure 3.2). The heat map for the mixed feed samples can be found in Figure 

S3.2. Certain correlations that were also present in the the wheat field samples are found in the 

mixed feed samples such as the clustering of F. graminearum and F. avenaceum. F. poae, F. 

tricinctum and F. langsethiae form a separate cluster, and F. poae is correlated with F. 

culmorum. One exceedance of guidance values was noted when only considering native DON 

levels, with two more feedstuffs containing more than 900 µg/kg for pig feed when all DON-

equivalents (sum of DON, 3-ADON, 15-ADON and DON-3G) were taken into account 

(European Commission, 2006b).  

Figure 3.5 shows the heat map calculated from the analyzed oat feed samples. From Figure 

3.2, it is clear that the segment of “feed samples” is not uniform. Indeed, oat-based feed shows 

a radically different contamination profile than feed based on other small-grain cereals.  
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Figure 3.5 – Heat map based on the pairwise Spearman rank correlation coefficients between the 

measured toxin contents and Fusarium DNA from the different species in oat feed samples. A lighter 

color designates a higher correlation, as is shown in the color scale bar. Both (identical) dendrograms 

are generated using average linkage clustering with the Spearman distance. The correlations at the 

basis of this heat map can be found in Table S3.5. 

The central cluster of F. langsethiae with the four type A trichothecenes, and the lack of F. 

sporotrichioides inclusion, depicts the former species as the main causal agent for these toxic 

compounds. It is obvious that indeed in oats, F. langsethiae is the undeniable causal agent of 

an entire complex of type A trichothecenes, contrary to the ambiguous situation in the field 

samples. It is noteworthy that levels of Fusarium infection are much higher in oats than in the 

other analyzed sample categories. This is not only the case for the expected F. langsethiae, but 

also for F. graminearum, F. poae and F. avenaceum, as can be seen in Figure 3.4. In oats, F. 

culmorum is correlated with ZEN and 3-ADON contamination, which was not the case in wheat 

and barley. 
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3.5 Discussion 

In this study, a screening of common FHB related mycotoxins and Fusarium species was 

performed for non-processed field samples, feed samples, and food samples on the Belgian 

market. This results in a single snapshot of FHB related species and mycotoxins in Belgium. 

Throughout the following discussion it should therefore be kept in mind that the detected 

correlations between species and mycotoxins are valid for the considered one year case study, 

but these could be different in different growing seasons, as agronomic and environmental 

factors heavily influence FHB. Moreover, at several points a comparison is made between the 

contamination profiles of the field samples and the mixed feed samples (and the profiles of 

these classes cluster together as can be seen in Figure 3.2), it must be noted that the raw 

materials used for the considered feed samples likely do not have the same geographic origin 

as the considered field samples, and may even be from different harvest years.   

The species that were encountered most in this study include F. poae, F. graminearum, F. 

culmorum and F. avenaceum. While Ioos et al. (2004) used a very different technique in a large-

scale survey in France, these authors found very similar results. More recent investigations for 

France are lacking. In Luxemburg for 2007-2008 however, F. poae, F. graminearum and F. 

avenaceum were also the three most retrieved species (Giraud et al., 2010).  

Previous correlation studies have often focused on the relation between the main causal agent 

of FHB, F. graminearum, and DON. Our results indicate a slightly stronger link in wheat than 

in barley (r = 0.53 and r = 0.42; respectively, correlations can be found in Table S3.3 and Table 

S3.4). Interestingly, it has been described that DON is a virulence factor for F. graminearum 

infection in wheat, but not in barley (Maier et al., 2006). The relation between F. culmorum and 

DON is difficult to interpret. F. culmorum can exhibit two chemotypes, either it is a producer 

of NIV/FUS-X, or a producer of DON/3-ADON (Quarta et al., 2005). In 2009, 88-95% (over 

two sampling years) of F. culmorum isolates in Belgium was of the NIV chemotype (Audenaert 

et al., 2009). Recent efforts within the EU FP7 project MycoRed indicate that the 3-DON 

chemotype of F. culmorum may have become more important in recent years (Pasquali et al., 

submitted), which may explain the tight inclusion of F. culmorum in the DON – F. 

graminearum cluster in wheat. Unfortunately, 3-ADON could at the same time not be linked to 

F. culmorum, but it is notable that F. culmorum was present in much lower levels than F. 

graminearum in all matrices.  
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In barley, F. graminearum seems to be the sole causal agent of DON (Figure 3.3), up to levels 

2-fold higher than is the case in wheat (Table 3.3). This finding is surprising, since a five-year 

study in the United Kingdom indicated that levels of DON in wheat exceeded those in barley 

by far (Edwards, 2009c, a).  

Taking into account that field samples collected in this survey were all destined for the 

production of animal feed, only one barley sample exceeded the EU guidance value of 8000 

µg/kg (cereals and cereal products with the expection of maize by-products, see Table 3.1). 

Nevertheless, chronic exposure to even low levels of mycotoxins could lead to economic 

damage by decreasing animal productivity (Bryden, 2012). The situation for the food products 

is slightly more worrisome, as only three breads exceeded the limit of 500 µg/kg when only 

considering DON, but when taking into account the sum of DON-equivalents (the sum of DON, 

3-ADON, 15-ADON and DON-3G) 15 breads contained more than 500 µg/kg. Finally, one oat-

based breakfast cereal was encountered with a DON content of over 5000 µg/kg, an alarming 

exceedance of the EU maximum 500 µg/kg limit (Table 3.1).   

The acetylated forms of DON are usually co-occurring with DON as a certain low percentage 

of the total DON load, which is confirmed in this study. A dominance of 15-ADON over 3-

ADON could be noted in the feed samples, but was only poorly reflected in the constituting 

compounds barley and wheat.  

ZEN was not a major contaminant in any of the tested products, which does not concur with 

previous studies (De Boevre et al., 2012a). The high variability of ZEN contamination related 

to weather variables has however been described (Edwards, 2011). Interestingly, ZEN was well 

correlated with F. graminearum in wheat, while the one barley sample that was contaminated 

with ZEN, had a high F. culmorum load. Its derivatives α-ZEL and β-ZEL were sporadically 

detected, with α-ZEL detected more often and in larger amounts, confirming previous findings 

(De Boevre et al., 2012a). ZEN values did not exceed regulatory limits throughout the entire 

study. If the sum of ZEN and its derivatives is taken into account, the concentrations are higher 

than the maximum regulatory limit (100 µg/kg) in one unprocessed cereals sample, and higher 

than the limit (50 µg/kg) for three breads.  

F. avenaceum is a frequently detected species in this study and in neighboring countries in 

Western Europe. It has been described as a slow grower and was closely correlated with the 

presence of F. graminearum (r = 0.72 in wheat, r = 0.43 in barley; correlations in Table S3.3 

and Table S3.4) (Yli-Mattila, 2010). In both cereal species, it clustered together with the closely 
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related species F. tricinctum. The high prominence of these moniliformin and enniatin 

producers dictates that future surveys should include these compounds in multi-mycotoxin 

methods.  

In this study, only one year of harvest was analyzed for its mycotoxin contamination. It has 

been shown that DON and T-2/HT-2 show signs of mutual exclusion in planta, indicating the 

different climatic conditions that each Fusarium species favors (Edwards, 2009c, b, a). The 

very low levels of T-2/HT-2 in the field samples, along with the elevated DON-levels, allow us 

to classify the growing season of 2012 as favoring DON-producing species. Inter-genus 

competition between toxigenic fungi on the other hand is less well described. Müller and Korn 

(2013) hypothesized that depending on the year’s specific weather conditions, Alternaria and 

Fusarium may be in competition in planta leading to only one genus’ specific mycotoxins, or 

both species may co-exist and a wide range of mycotoxins originating from both species may 

be detected. The latter was confirmed in an extensive screening by Streit et al. (2013).  

DON glucosylation to DON-3G is a well-described part of the plant’s defense (Berthiller et al., 

2013). In barley field samples, DON and DON-3G were better correlated than in wheat (r = 

0.57 and r = 0.45; respectively; correlations in Table S3.3 and Table S3.4). Possibly, this 

indicates the larger presence of other DON-detoxifying mechanisms in wheat.  

Data on the presence of DON-3G in neighboring countries is still rather lacking. Berthiller et 

al. (2009) investigated the situation for wheat from Germany, Austria and Slovakia in 2005, 

and found mean DON and DON-3G levels of respectively 1500 µg/kg and 393 µg/kg; absolute 

values that are about 50% higher than those found for wheat in this study. On the other hand, 

Streit et al. (2013) found lower values in a large study of mixed origin samples. Vendl et al. 

(2010) screened a large set of food products for DON, ZEN and their conjugates, and found 

markedly lower mycotoxin levels than were detected in the current study. A large inter-year 

variability in these surveys should be pointed out, as in a 2010-2011 survey on cereal-based 

food products in Belgium (De Boevre et al., 2012a) mycotoxin levels that are lower than those 

in this 2012 study and more similar to those by Vendl et al. (2010) were reported. It is notable 

that all the studies listed in this paragraph mention molar ratios of DON-3G/DON of about 15%, 

a mean value which we also recorded for all unprocessed cereal product classes. 

The occurrence of T-2 and HT-2 is usually caused by F. langsethiae and F. sporotrichioides, 

species with a highly similar chemotype, but different morphology and epidemiology (Thrane 

et al., 2004; Edwards et al., 2012). Due to the low number of T-2/HT-2 positive wheat and 
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barley field samples, the identification of the causal agent in those classes is troublesome. F. 

langsethiae was not a very important pathogen of wheat and barley, but nevertheless is detected 

in 7 respectively 13 samples. More recently other researchers also detected F. langsethiae from 

wheat in Belgium (Dedeurwaerder et al., 2014).  

In oats, F. langsethiae was the causal agent for the presence of not only T-2 and HT-2, but an 

entire type A trichothecene complex, which has also been firmly established in the United 

Kingdom (Edwards et al., 2012). Clearly, when faced with a T-2 or HT-2 contamination in this 

matrix, it is likely that NEO and DAS will co-occur, possibly leading to as yet unknown additive 

or synergistic effects. For example, additive adverse effects of T-2 and DAS in poultry have 

been reported (Grenier and Oswald, 2011). It would therefore be prudent to no longer ignore 

these highly toxic metabolites in legislation and surveillance, however the increasing awareness 

in this matter is evidenced by the recent European Commission recommendations on T-2/HT-

2 indicative values (European Commission, 2013), and the upcoming EFSA Scientific Opinion 

on DAS.  

This study showed that in the single harvest year that was investigated, F. poae was an 

important part of the FHB complex on wheat. In wheat, it was detected in 87% of samples and 

overall stands as the second most abundant species in the wheat ear, after F. graminearum. Its 

occurrence in barley stands in marked contrast to wheat. It has been determined in infection 

trials that wheat cultivars are generally more susceptible to F. poae than barley (Stenglein et 

al., 2014). Still, F. poae has been found as one of the predominant FHB on barley in other 

countries such as Slovakia and the UK (Hudec and Rohacik, 2009; Nielsen et al., 2014), so the 

lack of F. poae in barley in this study is surprising. 
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3.6 Supporting information 

Table S3.1 – Qualitative composition of the bread and breakfast cereals as indicated on the labels. 

ID Foodstuff Wheat Rye Oat Barley Rice Maize Soy Buckwheat 

1 Bread x x       

2 Bread x x x      

3 Bread x        

4 Bread x x  x     

5 Bread x       x 

6 Bread x   x     

7 Bread x        

8 Bread x x       

9 Bread x x     x  

10 Bread x x       

11 Bread x        

12 Bread x x     x  

13 Bread x x       

14 Bread x  x      

15 Bread x        

16 Bread x x       

17 Bread x x       

18 Bread x x       

19 Bread x x x      

20 Bread x        

21 Bread x   x     

22 Bread x        

23 Bread x        

24 Bread x  x x     

25 Bread x   x     

1 Breakfast cereal x   x x    

2 Breakfast cereal x        

3 Breakfast cereal x   x     

4 Breakfast cereal x   x     

5 Breakfast cereal x   x     

6 Breakfast cereal x   x x    

7 Breakfast cereal x   x     

8 Breakfast cereal   x      

9 Breakfast cereal   x      

10 Breakfast cereal x  x x     

11 Breakfast cereal    x  x   

12 Breakfast cereal x  x x     

13 Breakfast cereal x  x x  x   

14 Breakfast cereal x        

15 Breakfast cereal x   x     

16 Breakfast cereal x  x      

17 Breakfast cereal x    x x   
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18 Breakfast cereal x     x   

19 Breakfast cereal   x   x   

20 Breakfast cereal x  x      

 

Table S3.2 - Table depicting the pairwise Spearman rank correlations between every class of sampled 

cereal matrix, and the different variables that were measured. Correlations with a value higher than 

|0.25| are significant at α=0.05. Some correlations may be artefacts due to low numbers of positive 

samples, and the relevant correlations are discussed in the text. 

  

Barley 

(field) 

n = 65 

Wheat 

(field)  

n = 93 

Triticale 

(field) 

n = 10 

Mixed 

feed 

n = 16 

Oat feed 

n = 10 

Bread 

n = 25 

Breakfast 

cereals 

n = 20 

F. poae -0.53 0.54 0.06 0.1 0.23 -0.25 -0.12 

F. langsethiae 0.02 -0.21 -0.1 0.15 0.48 -0.16 0.09 

F. sporotrichioides 0 0.03 -0.05 0.17 -0.05 -0.08 -0.07 

F. graminearum 0.35 -0.03 -0.03 0.04 0.17 -0.23 -0.4 

F. equiseti 0.25 -0.2 -0.07 0.19 0.08 -0.11 -0.1 

F. culmorum 0.05 0.27 0 0 -0.12 -0.18 -0.27 

F. proliferatum -0.09 -0.12 -0.03 0.43 -0.03 -0.05 0.06 

F. tricinctum -0.18 0.09 -0.05 0.24 0.29 -0.13 -0.1 

F. verticillioides 0.17 -0.21 -0.06 0.12 -0.06 -0.04 0.1 

F. avenaceum 0.04 0.14 -0.01 0.14 0.17 -0.21 -0.32 

DON 0.39 0.07 -0.01 -0.12 0.03 -0.27 -0.36 

3-ADON 0.17 -0.06 -0.05 0 0.04 -0.09 -0.08 

15-ADON 0.16 -0.18 -0.06 0.28 0.09 -0.1 -0.09 

DON-3G 0.37 -0.17 -0.09 -0.12 0.08 0.06 -0.25 

ZEN -0.08 0.05 -0.04 -0.06 0.06 0.14 -0.06 

A-ZEL -0.21 0.14 -0.07 0.24 0 0.02 -0.1 

B-ZEL -0.07 -0.01 -0.02 -0.03 -0.02 0.21 -0.03 

FUS-X -0.06 -0.1 -0.04 -0.05 0.07 0.09 0.2 

NEO -0.12 -0.11 -0.04 -0.05 0.51 0.07 0.02 

DAS -0.17 -0.11 -0.06 0.13 0.61 -0.09 0.04 

T-2 -0.13 -0.21 -0.07 -0.08 0.62 -0.02 0.28 

HT-2 -0.2 -0.27 -0.09 -0.02 0.57 0.3 0.14 
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Table S3.3 - Table depicting the pairwise Spearman rank correlation coefficients between the measured toxin contents and Fusarium DNA from the different 

species in wheat field samples (n = 93). Correlations with a value higher than |0.18| are significant at α=0.05. F. lang = F. langsethiae; F. spor = F. 

sporotrichioides; F. gram = F. graminearum; F. equi = F. equiseti; F. culm = F. culmorum; F. tric = F. tricinctum; F. avena = F. avenaceum. 3-AD = 3-ADON; 15-

AD = 15-ADON. Some correlations may be artefacts due to low numbers of positive samples, and the relevant correlations are discussed in the text. 

  

F. 

poae 

F. 

lang 

F. 

spor 

F. 

gram 

F. 

equi 

F. 

culm 

F.  

tric    

F. 

avena DON 3-AD 

15-

AD 

DON-

3G ZEN 

A-

ZEL 

B-

ZEL 

FUS-

X NEO DAS T-2 HT-2 

F. poae 1.00 -0.06 0.05 0.54 -0.02 0.47 0.24 0.65 0.36 -0.15 0.07 0.63 0.05 0.20 0.08 0.08 0.08 0.23 0.08 0.09 

F. lang  1.00 -0.07 0.12 0.25 -0.07 -0.12 -0.04 0.08 0.13 -0.04 -0.27 0.28 -0.13 -0.03 -0.03 -0.03 -0.05 -0.03 0.25 

F. spor   1.00 0.14 0.27 0.04 0.07 0.07 -0.08 0.20 0.30 0.05 0.39 0.29 0.45 0.45 0.45 0.24 0.45 0.30 

F. gram    1.00 0.06 0.44 0.23 0.72 0.53 0.08 0.14 0.46 0.33 0.16 0.15 0.15 0.15 0.28 0.15 0.22 

F. equi     1.00 -0.15 -0.12 -0.17 -0.01 -0.03 -0.02 -0.09 0.29 -0.07 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 

F. culm      1.00 0.24 0.52 0.45 -0.11 -0.05 0.46 0.03 0.07 0.06 0.06 0.06 0.05 0.06 0.15 

F. tric       1.00 0.23 0.17 0.06 0.00 0.20 -0.04 0.03 0.08 0.08 0.08 0.06 0.08 0.17 

F. avena        1.00 0.49 -0.01 0.15 0.54 0.11 0.18 0.13 0.13 0.13 0.26 0.13 0.16 

DON         1.00 -0.07 -0.06 0.48 -0.19 0.01 -0.13 -0.13 -0.13 -0.03 -0.13 0.00 

3-AD          1.00 0.35 -0.09 0.42 0.08 0.51 0.51 0.51 0.28 0.51 0.35 

15-AD           1.00 -0.01 0.31 0.37 0.71 0.71 0.71 0.41 0.71 0.50 

DON-3G            1.00 -0.10 -0.02 0.00 0.00 0.00 0.11 0.00 -0.08 

ZEN             1.00 0.17 0.46 0.46 0.46 0.24 0.46 0.31 

A-ZEL              1.00 0.28 0.28 0.28 0.26 0.28 0.17 

B-ZEL               1.00 1.00 1.00 0.58 1.00 0.71 

FUS-X                1.00 1.00 0.58 1.00 0.71 

NEO                 1.00 0.58 1.00 0.71 

DAS                  1.00 0.58 0.41 

T-2                   1.00 0.71 

HT-2                    1.00 

 

 



58 

 

Table S3.4 - Table depicting the pairwise Spearman rank correlation coefficients between the measured toxin contents and Fusarium DNA from the different 

species in barley field samples (n = 65). Correlations with a value higher than |0.21| are significant at α=0.05. F. lang = F. langsethiae; F. spor = F. 

sporotrichioides; F. gram = F. graminearum; F. equi = F. equiseti; F. culm = F. culmorum; F. tric = F. tricinctum; F. verti = F. verticillioides; F. avena = F. avenaceum. 

3-AD = 3-ADON; 15-AD = 15-ADON. Some correlations may be artefacts due to low numbers of positive samples, and the relevant correlations are discussed 

in the text. 

  F. poae F. lang F. spor F. gram F. equi F. culm F. tric F. verti F. avena DON 3-AD 15-AD DON-3G ZEN FUS-X T-2 HT-2 

F. poae 1.00 0.16 -0.08 -0.14 -0.03 0.15 0.18 -0.15 0.17 -0.14 0.00 0.08 -0.09 -0.05 -0.05 -0.07 -0.07 

F. lang  1.00 -0.11 -0.13 -0.11 0.00 0.07 -0.10 0.02 -0.28 -0.09 -0.12 -0.36 -0.06 -0.06 -0.09 -0.09 

F. spor   1.00 -0.10 0.06 0.24 0.07 -0.09 0.06 -0.08 0.14 0.11 -0.12 -0.03 -0.03 0.39 0.41 

F. gram    1.00 0.05 -0.11 0.06 0.06 0.43 0.42 0.23 0.03 0.49 0.03 0.01 -0.08 -0.08 

F. equi     1.00 0.11 -0.23 -0.02 0.15 -0.08 0.12 0.25 0.02 0.28 -0.06 0.11 0.12 

F. culm      1.00 -0.05 0.03 0.26 -0.30 -0.12 -0.21 -0.17 0.22 0.20 0.25 0.25 

F. tric       1.00 -0.09 0.13 -0.05 -0.05 0.03 -0.13 -0.06 0.27 -0.08 -0.08 

F. verti        1.00 0.12 0.01 -0.15 -0.02 0.10 -0.05 -0.05 0.18 0.17 

F. avena         1.00 -0.11 0.06 -0.02 0.03 0.13 0.21 0.06 0.06 

DON          1.00 0.18 0.26 0.67 -0.08 -0.10 -0.02 -0.02 

3-AD           1.00 0.36 0.20 -0.05 -0.05 0.20 0.20 

15-AD            1.00 0.21 0.25 -0.05 0.16 0.16 

DON-3G             1.00 0.08 -0.17 0.07 0.07 

ZEN              1.00 -0.02 -0.02 -0.02 

FUS-X               1.00 -0.02 -0.02 

T-2                1.00 1.00 

HT-2                 1.00 
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Table S3.5 - Table depicting the pairwise Spearman rank correlation coefficients between the measured toxin contents and Fusarium DNA from the different 

species in oat feed samples (n = 10). Correlations with a value higher than |0.68| are significant at α=0.05. F. lang = F. langsethiae; F. gram = F. graminearum; 

F. equi = F. equiseti; F. culm = F. culmorum; F. tric = F. tricinctum; F. avena = F. avenaceum. 3-AD = 3-ADON; 15-AD = 15-ADON. Some correlations may be 

artefacts due to low numbers of positive samples, and the relevant correlations are discussed in the text.  

  

F. 

poae F. lang F. gram F. equi 

F. 

culm F. tric F. avena DON 3-AD 15-AD DON-3G ZEN A-ZEL FUS-X NEO DAS T-2 HT-2 

F. poae 1.00 0.42 0.52 0.54 0.16 0.71 0.82 0.51 -0.41 0.53 0.39 -0.41 -0.29 0.06 -0.06 0.11 -0.10 0.05 

F. lang  1.00 0.64 0.29 0.22 0.52 0.75 0.43 -0.17 0.16 0.17 -0.17 -0.52 0.17 0.73 0.58 0.63 0.67 

F. gram   1.00 0.16 0.47 0.52 0.73 0.69 0.06 0.12 0.25 0.06 -0.52 0.41 0.24 0.18 0.41 0.52 

F. equi    1.00 0.50 0.34 0.54 0.20 -0.17 -0.25 0.47 -0.17 -0.17 -0.17 -0.06 0.29 -0.37 -0.22 

F. culm     1.00 -0.21 0.16 0.20 0.58 -0.25 0.16 0.58 -0.17 -0.17 0.19 0.14 -0.06 -0.07 

F. tric      1.00 0.87 0.31 -0.52 0.29 0.39 -0.52 -0.41 0.52 -0.15 0.05 0.05 0.16 

F. avena       1.00 0.60 -0.41 0.22 0.44 -0.41 -0.52 0.29 0.16 0.33 0.22 0.39 

DON        1.00 -0.36 -0.01 0.28 -0.36 -0.36 0.18 0.21 0.32 0.27 0.56 

3-AD         1.00 -0.17 -0.41 1.00 -0.11 -0.11 0.06 -0.29 0.06 -0.17 

15-AD          1.00 0.07 -0.17 -0.17 -0.17 0.15 0.03 0.23 0.14 

DON-3G           1.00 -0.41 -0.41 -0.18 -0.03 0.61 0.04 0.15 

ZEN            1.00 -0.11 -0.11 0.06 -0.29 0.06 -0.17 

A-ZEL             1.00 -0.11 -0.31 -0.47 -0.52 -0.52 

FUS-X              1.00 -0.31 -0.47 -0.12 -0.06 

NEO               1.00 0.72 0.80 0.74 

DAS                1.00 0.61 0.67 

T-2                 1.00 0.94 

HT-2                  1.00 
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Table S3.6 - Table depicting the pairwise Spearman rank correlation coefficients between the measured toxin contents and Fusarium DNA from the different 

species in mixed feed samples (n = 16). Correlations with a value higher than |0.43| are significant at α=0.05. F. lang = F. langsethiae; F. spor = F. 

sporotrichioides; F. gram = F. graminearum; F. equi = F. equiseti; F. culm = F. culmorum; F. culm = F. culmorum; F. tric = F. tricinctum; F. verti = F. verticillioides; 

F. avena = F. avenaceum. 3-AD = 3-ADON; 15-AD = 15-ADON. Some correlations may be artefacts due to low numbers of positive samples, and the relevant 

correlations are discussed in the text. 

 F. poae F. lang F. spor F. gram F. equi F. culm F. prol F. tric F. verti F. avena DON 3-AD 15-AD DON-3G A-ZEL DAS HT-2 

F. poae 1 0.58 0.1 -0.13 0.26 0.52 0.27 0.4 -0.07 -0.24 -0.12 -0.14 -0.24 0.07 0.06 0.17 0.03 

F. lang  1 0.13 -0.15 0.07 0.06 0.1 0.59 -0.4 -0.18 -0.28 -0.22 -0.52 -0.06 -0.14 -0.1 0.02 

F. spor   1 -0.31 0.24 0.07 0.07 -0.25 0.08 -0.53 -0.11 -0.12 0.01 -0.1 -0.36 0.17 -0.18 

F. gram    1 0.19 0.44 -0.22 0.34 -0.26 0.77 0.69 -0.25 0.14 0.23 0.11 -0.14 -0.21 

F. equi     1 0.37 0.22 -0.23 -0.09 0.19 0.03 -0.17 0.08 0.2 -0.49 -0.03 -0.25 

F. culm      1 0.39 0.16 0.21 0.13 0.36 0.03 -0.12 0.14 -0.02 0.31 0.12 

F. prol       1 -0.1 0.55 -0.29 -0.12 0.55 0.29 -0.07 -0.12 0.46 0.65 

F. tric        1 -0.37 0.08 -0.04 -0.31 -0.2 -0.16 0.41 -0.11 -0.15 

F. verti         1 -0.38 0.07 0.62 0.34 0.03 -0.06 0.53 0.39 

F. avena          1 0.45 -0.2 -0.03 0.24 -0.07 -0.29 -0.13 

DON           1 -0.08 0.32 0.44 0.16 0.25 0.07 

3-AD            1 0.29 0.4 -0.19 -0.12 0.73 

15-AD             1 0.24 0.04 0.11 0.09 

DON-3G              1 -0.37 -0.4 0.16 

A-ZEL               1 0.32 0.18 

DAS                1 0.27 

HT-2                 1 
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Figure S3.1 - Amount of fungal DNA (pg Fusarium DNA normalized on ng plant DNA) retrieved in 

every matrix for every species. Mean values and standard errors are calculated based on all (rather 

than only positive) samples of every matrix. 
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Figure S3.2 - Heat map based on the pairwise Spearman rank correlation coefficients between the 

measured toxin contents and Fusarium DNA from the different species in mixed feed samples. A lighter 

color designates a higher correlation, as is shown in the color scale bar. Both (identical) dendrograms 

are generated using average linkage clustering with the Spearman distance. The correlations at the 

basis of this heat map can be found in Table S3.6. 
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Chapter 4: Unique genome dynamics in 

Fusarium poae 
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4.1 Abstract 

In the previous Chapters of this thesis the prominence of F. poae in the FHB disease complex 

was detailed. In this Chapter the goal was to create a solid basis for future work on F. poae by 

delivering a high quality genome assembly and annotation. The link between genome plasticity 

and biology and fungal evolution and adaptation is well-documented. The presence of 

supernumerary chromosomes that differ markedly from the core chromosomes is a key example 

of fungal genome plasticity. The origin of these supernumerary chromosomes, the reason for 

their different characteristics, and their interactions with the core genome are still largely 

unknown. Throughout this Chapter, we report on the supernumerary chromosomes of F. poae. 

Using single molecule real time (SMRT) long reads, the 38 Mb core genome was assembled 

into four chromosomes that contain the complete genome complement of related Fusarium 

species in a highly syntenic fashion. An additional ~8 Mb of sequence was assembled into 

contigs that make up at least one supernumerary chromosome. Clear differences exist between 

the core and supernumerary genome. The core chromosomes contain 2% transposable elements 

(TEs) while the supernumerary genome consists of 25% TEs. The TEs on the core 

chromosomes show clear signs of repeat-induced point mutation (RIP), in sharp contrast no 

RIP was found on the supernumerary genome. Furthermore, no duplicated genes are present on 

the core, but at least 81 are found on the supernumerary genome. Importantly, the specific 

absence of RIP in the supernumerary genome accounts for the differences between the core and 

supernumerary genomes in F. poae. An exchange of genetic material occurs between the core 

and supernumerary genomes. Intact TEs from the supernumerary genome integrate into the core 

chromosomes, occasionally leading to gene disruptions. On the core chromosomes, the 

integrated TEs become subjected to RIP. In addition, large blocks of supernumerary sequence 

(>200kb) have recently been translocated to the core chromosomes. Vice versa, genes from the 

core chromosomes are duplicated to the supernumerary genome, where they may increase in 

copy number. This genetic exchange bestows significant opportunities for adaptation and 

evolution on the organism, and shows that the presence of the supernumerary genome causes 

novel genotypes to arise.   

4.2 Introduction 

Genome plasticity is one of the most important drivers of evolution in eukaryotes. This 

plasticity includes large scale genome duplications, rearrangements, deletions and 

compartmentalization (Coghlan et al., 2005; Stukenbrock and Croll, 2014). Fungi represent 

these dynamics better than any other kingdom. They occupy a highly diverse set of niches, and 
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emerging fungal diseases are considered one of the primary threats for plant health and food 

safety (Fisher et al., 2012). The organization of fungal genomes varies remarkably and has been 

described to facilitate rapid evolution and speciation (Stukenbrock, 2013). Supernumerary 

chromosomes are one of most radical extensions of this genome plasticity. They represent 

chromosomal structures that vary in size and distribution among individuals of the same 

species. In some cases they contain genes needed for pathogenicity and efficient colonization 

of the host as in Alternaria alternata (Hatta et al., 2002), Fusarium solani (formerly known as 

Nectria haematococca) (Coleman et al., 2009), and F. oxysporum f. sp. lycopersici (Ma et al., 

2010). In other species, the role of supernumerary chromosomes is less clear as they do not 

show obvious pathogenicity related functions, as in Zymoseptoria tritici (formerly known as 

Mycosphaerella graminicola) (Goodwin et al., 2011). In all cases however, these chromosomes 

differ markedly from the core chromosomes in characteristics such as gene content, codon 

usage and distribution of transposable elements. The specific reasons for the differences 

between core and supernumerary chromosomes are for most species unknown, and speculations 

include different origins and evolutionary pressure (Mehrabi et al., 2011; Croll and McDonald, 

2012).  

TEs play an important role in fungal genome diversity and the evolutionary success of some 

pathogens (Stukenbrock and Croll, 2014). Examples are the vast differences in genome sizes 

of Fusarium (Ma et al., 2010) and Phytophthora species (Haas et al., 2009), and the shaping of 

pathogenicity in Pyrenophora tritici-repentis (Manning et al., 2013) and Leptosphaeria 

maculans (Rouxel et al., 2011). The possible deleterious effects of mobilization of TEs include 

gene disruption and intra- or inter-element recombination, potentially leading to gene loss. 

Fungi have evolved a specific genome defense mechanism against repetitive DNA, RIP, that 

efficiently inactivates TEs by introducing cytosine to thymidine mutations, thereby leading to 

a premature stop of translation (Cambareri et al., 1989). However, this process does not 

discriminate between TE proliferation and duplicated genes, and therefore the near-absence of 

paralogs has been found to be a hallmark of a RIP-active species, e.g. in Fusarium graminearum 

(Cuomo et al., 2007) and Neurospora crassa (Galagan et al., 2003). This finding has been 

termed the evolutionary cost of genome defense (Galagan and Selker, 2004). RIP functions on 

repetitive sequences with greater than 80% identity and exceeding +/- 1000 bp in length 

(Galagan and Selker, 2004). Box 4.1 gives an impression of how RIP works. 
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The RIP process occurs only during the di-karyotic pre-meiotic phase (after plasmogamy but 

preceding karyogamy) and is therefore intricately associated with the sexual cycle (Pomraning, 

2012). Meiosis in fungi is partially regulated by the genes occupying the mating type locus. In 

heterothallic fungal species the locus is occupied by either the MAT1-1 or the MAT1-2 

idiomorph (an idiomorph consists of genes that share no similarity to those of the opposing 

idiomorph, see Box 2.1), and isolates of these species require partners of the opposing mating 

type to enter into meiosis. For certain species, a “cryptic” sexual cycle is presumed to occur in 

the field, which has however never been observed (Turgeon, 1998). The presumption of active 

meiosis becomes substantiated when markers for a sexual mode of reproduction are considered, 

including recombination (Tavanti et al., 2004), RIP (Clutterbuck, 2011), distributions of the 

mating idiomorphs in the population (Paoletti et al., 2005), and functional constraint on the 

genes implicated for meiosis (Ropars et al., 2012). 

Box 4.1 – Repeat-induced point mutation: genome defense wanted! 

Repeat-induced point mutation is a defense mechanism against disruptive transposable 

elements, specific to fungi. During the pre-meiotic phase, repetitive DNA is detected and 

inactivated by multiple C→T mutations and as such premature stopcodons are likely 

introduced in the coding region of the TE. RIP acts on all copies of the repetitive DNA 

during this inactivation. However, RIP is not able to discriminate between TE proliferation 

(scenario on the left in the figure) and potentially beneficial gene duplications (scenario on 

the right in the figure), and therefore a species with efficient RIP usually does not contain 

any paralogs within its genome. 

 

Gene disruptions!
Unwanted rearrangements!

TE Gene

Neofunctionalization: new functions
Dosage effects

Repeat-induced point mutations (RIP)
Deactivates all repeated DNA

Only during sexual cycle

Genome with “RIPped” TE Genome with no duplicated genes: evolutionary cost

Sexual cycle…
RIP does not discriminate…

This individual likely to be less fit
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Meiosis is one of the drivers of diversity in length and number of supernumerary chromosomes 

in fungi. It has been shown that during meiosis a process called nondisjunction is responsible 

for the loss of these chromosomes in Z. tritici offspring, even if both parents contained the 

supernumerary chromosome (Wittenberg et al., 2009). Importantly, the offspring of these 

crosses are viable, underlining the conditionally dispensable nature of this part of the genome. 

The birth of a new supernumerary chromosome has been experimentally shown to occur 

through fusion of sister chromatids during meiosis, followed by breakage-fusion-bridge cycles 

(Croll et al., 2013). Other proposed origins of these chromosomes include horizontal gene 

transfer from other fungi (Ma et al., 2010; Hu et al., 2012) and degeneration from the core 

genome (Galazka and Freitag, 2014). It has been argued that supernumerary chromosomes may 

be extreme cases of genome compartmentalization, demonstrated to occur within the core 

chromosomes of Fusarium graminearum (Galazka and Freitag, 2014; Zhao et al., 2014). These 

compartments may serve as evolutionary cradles with higher mutation rates and increased 

recombination (Cuomo et al., 2007), enriched for genes such as secondary metabolite clusters 

but often transcriptionally silent or only expressed under specific conditions (“cryptic” 

genome). How the presence of supernumerary chromosomes influences the fate of the core 

chromosomes and whether a genetic exchange between the two genome components exists has 

not been investigated.  

As is evident from the examples in the paragraphs above, species of the genus Fusarium contain 

the hallmarks of fungal genome plasticity such as supernumerary chromosomes and 

compartmentalization of the core chromosomes. They are therefore excellent model organisms 

to investigate fungal genome plasticity and evolution. The genome of F. graminearum was 

recently finished to completion, making it an excellent model system for comparative genomics 

(King et al., 2015). Previous chapters of this thesis described the importance of F. poae within 

the FHB complex. Individuals of this species were shown to contain a highly variable set of 

supernumerary chromosomes (Fekete and Hornok, 1997). This is visualized in Figure 4.1. 
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Figure 4.1 – Supernumerary chromosomes in F. poae. A: stylized result of a karyotyping experiment 

with nine F. poae isolates taken from Fekete and Hornok (1997). These authors separated 

chromosomes by pulsed-field gel electrophoresis. Larger chromosomes are more difficult to separate 

and may co-migrate (thicker bands). The asterisks represent chromosomes that gave a positive signal 

after hybridization with a ZIT1 probe (see further for description of this element). Aside from the 

conserved larger sized chromosomes (likely core chromosomes), every isolate contains 2-3 

chromosomes of smaller size (likely supernumerary chromosomes). B: visualization of four core 

chromosomes and two supernumerary chromosomes (red arrows) with the “germ tube burst method” 

(source: dr. Cees Waalwijk, personal communication).  

In this study, we sequenced the genome of one isolate of F. poae using SMRT long read 

technology. Box 4.2 illustrates the importance of long reads in genome sequencing. Using these 

reads we performed a high quality genome assembly and annotation, and with HiSeq reads of 

three additional isolates we assessed the TE landscape over the genome. We determined that F. 

poae is likely a sexual species, with active RIP, that does not act on the supernumerary 

chromosomes however. This accounts for the marked differences between the two genomic 

components. We detected an exchange of genetic material between the core and supernumerary 

chromosomes, with both advantageous and deleterious consequences, and we suggest that the 

co-occurrence of the core and supernumerary chromosomes may confer novel opportunities for 

adaptation and evolution to the species. 
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4.3 Materials and methods 

4.3.1 Fungal material 

Table 4.1 lists the F. poae isolates that were used for whole genome sequencing. Three isolates 

originate from Belgian fields (isolates 2516, 2548 and 7555), of which two were isolated from 

the same field at the same time (isolate 2516 and 2548). Isolate 7555 was purchased from a 

culture collection and was isolated long before the others. One isolate was collected in China 

(bfb0173). An additional 69 F. poae isolates were collected from various sources (Table S4.1) 

and used for diagnostic PCRs (see further). Chapter 5 of this thesis lists more information on 

the source of the fungal isolates and the process that was used to make them single spore 

cultures. 

Table 4.1 - Isolates used for whole genome sequencing. MUCL = Mycothèque de l’Université 

catholique de Louvain (Louvain-la-Neuve, Belgium). 

ID Sequencing Location Year Host Reference 

bfb0173 HiSeq Shayang, Hubei, China 2005 Barley Yang et al. (2008) 

2516 HiSeq + SMRT Zwevegem, Belgium 2011 Wheat this study 

2548 HiSeq Zwevegem, Belgium 2011 Wheat this study 

7555 HiSeq Heverlee, Belgium 1965 Wheat MUCL 

 

Box 4.2 – Read length in the genomics era: size matters  

The output of genome sequencing is numerous short and contiguous pieces of sequenced 

DNA. These can be computationally assembled to longer sequence units, and ideally to 

whole chromosomal structures. These longer units are callled contigs, and they are the 

consensus sequence of overlapping individual sequences, or “reads”. The length of these 

individual reads is the most important determinant for genome assembly, and longer reads 

will make it easier to reach the “golden standard” of one chromosome = one contig (Koren 

and Phillippy, 2015). Short reads will not be able to span repetitive elements such as 

transposable elements and the rDNA tandem unit. These repetitive sequences match on 

multiple genomic locations and when interspersed throughout the genome lead to a 

fragmented assembly.  

Typically, next generation sequencing methods such as Illumina sequencing have produced 

short reads, currently at a maximum of 2 x 300 bp. These methods are able to produce paired 

reads whereby two ends of a DNA fragment are sequenced in opposing directions, with an 

insert of known size in between. Assembly with short reads routinely leads to a large number 

of relatively short contigs, and for every repetitive element a “collapsed”, high-coverage 

contig. Recently developed single molecule real time (SMRT) sequencing has made it 

possible to obtain reads over 10kb in length. These reads span repetitive elements and allow 

them to be placed within their correct genomic environment. This leads to a reduced number 

of contigs (no longer broken up by repetitive elements) and greater resolution to investigate 

chromosomal variation and biology. 
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4.3.2 Growth conditions and nucleic acid manipulation 

Conidia were taken from long term storage (-80°C in 20% glycerol solution for Belgian isolates, 

deep frozen in liquid nitrogen for the Chinese isolate) and plated on PDA plates. For isolates 

2548, 7555 and 2516 (HiSeq sequencing), mycelium was picked from the edges of the grown 

plates (5 days old), and cultured in liquid GPY (glucose peptone yeast, 10 g/l glucose; 1 g/l 

yeast extract; 1 g/l peptone, Oxoid, Belgium) medium for 5 days with 100rpm shaking at room 

temperature and 16h light/8h dark regime. Mycelium was collected, lyophilized and pulverized 

in liquid nitrogen with a pestle. DNA was extracted with the Invisorb Spin Plant Mini kit 

(Invitek) according to the manufacturer’s instruction. Mycelium from isolate bfb0173 was 

inoculated in 100ml potato dextrose broth and was kept stationary for six days at room 

temperature and 16h light/8h dark regime. Mycelium was harvested, lyophilized and pulverized 

by beadbeating with 3.2mm chrome-steel beads at 2500 rpm for 20 seconds in a Hybaid 

Ribolyser. DNA was extracted with the Wizard Magnetic DNA Purification System for Food 

(Promega) according to the manufacturer’s instructions. For SMRT sequencing, DNA was 

isolated from isolate 2516. After growth in stationary liquid GPY medium, under conditions as 

described above (5 days with 100rpm shaking at room temperature and 16h light/8h dark 

regime), mycelium was immediately crushed in liquid nitrogen with a pestle. Genomic DNA 

was extracted with the Wizard Magnetic DNA Purification System for Food (Promega) 

according to the manufacturer’s instructions.  

Two different RNA samples were prepared from isolate 2516 for RNA sequencing, one 

favoring primary metabolism (growth in complete medium (CM) (Correll et al., 1987)) and one 

favoring secondary metabolism (a composite of 5 conditions that are known to induce stress or 

secondary metabolism). For all treatments, conidia were prepared by inoculating young 

mycelium on PDA plates and incubating them for 7 days under conidiation inducing conditions 

(UV 10 hours / dark 14 hours at room temperature). Spores were harvested with Tween20 

(0.01%) and gentle disruption with a spatula. After filtration through Miracloth (Merck), 

concentrations were determined with a Bürker chamber. All replicates were performed at 100 

rpm shaking, room temperature and 16h light/8h dark regime. For the primary metabolism 

sample, 106 conidia were inoculated in 250ml CM and incubated for 30 hours. For the 

“secondary metabolism” sample, five different conditions were used: trichothecene 

biosynthesis induction, fungicide application, N starvation, C starvation, and conidiation under 

UV. RNA was extracted from two replicates of every condition, the two RNA extracts were 
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pooled for every condition, and the five resulting RNA extracts (from five conditions) were 

pooled again for sequencing,  

Trichothecene biosynthesis inducing medium consisted of basal medium (Correll et al., 1987) 

without agar, but amended with L-arginine at 5mM (Gardiner et al., 2009), and was inoculated 

with 106 conidia in 250 ml for 48 hours. For prothioconazole application, N-starvation and C-

starvation, 106 spores were inoculated in 250ml CM, and after 12 hours the mycelia were 

harvested on sterile filter paper, flushed with sterile water, and transferred to erlenmeyers 

containing 250 ml of the prothioconazole containing or starvation media for another 12 hours. 

Fungicide containing medium consisted of CM amended with 3 mg/kg of prothioconazole. N-

starvation medium consisted of pure basal medium without added N-source, while for C-

starvation NaNO3 was included in this medium, and sucrose was dropped.  

RNA was extracted with TRIzol (Life Technologies). Subsequently, the crude RNA was 

purified with the RNA cleanup protocol included in the RNeasy Plant Mini kit (Qiagen) 

according to the manufacturer’s instructions. Quantity of DNA/RNA were assessed with 

respectively Picogreen or Ribogreen (Life Technologies). 

4.3.3 HiSeq library preparation and sequencing 

DNA from isolate bfb0173 was used for random sheared shotgun library preparation using the 

NEXTflex ChIP-seq Library prep kit with adaptations for low gDNA input (optimized for 1-10 

ng of DNA) according to the manufacturer’s instructions (Bioscientific). In short, 

approximately 10 ng DNA was used for fragmentation in a 50 µl volume using a Covaris E210 

device targeting 400-500 bp fragment sizes. From the fragmented DNA, 40 µl was used for end 

repair at 22°C for 30 minutes with the enzyme provided by the manufacturer. End repaired 

DNA was purified using the purification column provided and eluted in 16 µl elution buffer. 3’ 

adenylation and barcoded adapter ligation was done according to the manufacturer’s 

instructions (Bioscientific). For all temperature incubation steps a 2720 Thermocycler (Life 

Technologies) was used. Adapter ligated fragments were then purified twice using 1 volume 

Ampure XP beads (Agencourt) and finally used in a 50 µl PCR reaction with 15 cycles for 

library amplification. Amplified libraries were purified using AmpureXP beads and eluted in 

20 µl. Final libraries were quantified by Qubit (Life Technologies) and Bioanalyzer High 

Sensitivity DNA assay (Agilent technologies). The library was loaded as (part of) one lane of 

an Illumina Paired End flowcell for cluster generation using a cBot. Sequencing was performed 
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on an Illumina HiSeq2000 instrument using 101, 7, 101 flow cycles for forward, index and 

reverse reads respectively. De-multiplexing of resulting data was carried out using Casava 1.8. 

For isolates 2516, 2548 and 7555, shotgun libraries were made using the Illumina TruSeq LT 

DNA sample prep kit according to the manufacturer’s instructions (Illumina). Libraries were 

quantified by Qubit fluorescence and library fragment size was analyzed by Bioanalyzer High 

Sensitivity DNA assay. Libraries were then pooled equimolarly and loaded on one flowcell lane 

for 2x100 nt paired end sequencing on an Illumina HiSeq2000 platform as described above. 

4.3.4 RNAseq library preparation and sequencing 

RNAseq library preparation was carried out using the Illumina TruSeq total RNA sample 

preparation kit and guidelines. From 1 µg of total RNA, mRNA was isolated using oligo dT 

beads, fragmented thermochemically and used for first and second strand cDNA synthesis by 

random priming. cDNA fragments were (end) repaired, purified using AmpureXP, 3’ 

adenylated and used for adapter ligation. Adapter ligated cDNA fragments were purified using 

AmpureXP beads and enriched by PCR amplification using 15 cycles. Final libraries were 

quantified by Qubit (Life Technologies) and fragment size distribution was determined by 

Bioanalyzer RNA6000 pico DNA assay (Agilent technologies). These libraries were pooled 

equimolarly and loaded on one Illumina HiSeq2000 flowcell lane for 2x100 nt paired end 

sequencing as described above. 

4.3.5 SMRT library preparation and sequencing 

Twenty µg DNA was used for a large (10 kb) library prep according to the manufacturer’s 

instructions (Pacific Biosciences) with small adaptations. For all bead purifications, siliconized 

tubes (Sigma) and a Labquake rotator were used to homogenize DNA bead solutions and DNA 

was eluted for at least 30 minutes. In short, DNA was sheared using a Covaris g-tube by 

centrifugation two times for 1 minute at 6000 rpm. Sheared DNA was purified and concentrated 

using 0.45 x washed AmpureXP beads. Fragmented DNA was analyzed on a Bioanalyzer 12000 

DNA chip (Agilent technologies). DNA damage repair and polishing was done according to 

the provided protocol. Using the enzyme provided in library prep kit, adapters were ligated over 

night at 25˚C, followed by heat inactivation of the enzyme at 65˚C for 10 minutes. 

Subsequently, ligated DNA fragments were treated with ExoIII and ExoVII to remove linear 

DNA molecules (i.e. those that are bound to no or only one SMRT bell(s)), and finally SMRT 

bells were purified with Ampure XP beads. SMRT bells were quantified using Qubit (Life 

Technologies) and Bioanalyzer 12000 DNA chip. 
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SMRT bells were size selected on a Bluepippin High-Pass v3 cassette (Sage science) with a 

7000 bp minimum cutoff. After elution, DNA was left for 45 minutes in the elution port before 

collection and the elution port was washed once to increase the yield of recovered DNA. Size 

selected SMRT bells were finally purified with AmpureXP beads and eluted in 10 µl, and part 

was quantified and analyzed on a Bioanalyzer 12000 DNA assay. 

Size selected purified SMRT bells were used for primer binding and subsequent P6 polymerase 

complexing in long term storage buffer for four SMRT cells according to PacBio’s binding 

calculator version 2.3.0.0. Complex Magbead binding was done for 45 minutes at 4˚C and 

finally used for a 0.05 nM on plate loading concentration on a Pacbio RS II system. Sequencing 

was done using one cell per well, C4 chemistry and 240 minutes movie time. Magbead binding 

complexes for an addition twelve SMRT cells were prepared for 0.12 nM on plate loading and 

sequencing, with same settings as described. 

4.3.6 Genome assembly 

From SMRT Portal version 2.3.0.140893, the Hierarchical Genome Assembly Process 

(HGAP2) was initiated using data from 16 SMRT cells. Raw reads were filtered on read quality 

>= 0.83, polymerase read length >1000bp and subread length >1200bp. The seed read length 

for the error correction procedure was manually set to 6kb. After the error correction step, the 

data was filtered for reads >9kb. With this dataset the assembly was performed with Celera, 

using the default settings provided by HGAP2. The contigs from this assembly (base assembly) 

were taken as the basis for a hybrid assembly approach, for which the contigs were 

supplemented with those derived from two additional automatic HGAP2 assemblies. One 

assembly was performed with 10 SMRT cells using default settings, and one with 16 SMRT 

cells using only HQ input data (read quality >= 0.85, polymerase and subread length >4000bp).  

The largest contigs, corresponding to a major part of a hypothetical chromosome were used as 

queries for blastn searches against the other contigs in the assemblies. Contigs were joined on 

the basis of their collinearity (usually excluding the very end of one contig and the very 

beginning of another, where the assembler presumably stalled or followed a wrong seed for a 

particular assembly) and their macrosynteny with other Fusarium species. Rightful joining of 

contigs was checked by evaluating SMRT long reads mapping. The resulting hybrid assembly 

of four chromosomes was polished using Quiver (SMRT Portal resequencing protocol) for 2 

times, using HQ reads (read quality >= 0.80, polymerase and subread length >3000bp). The 

hybrid assembly was supplemented with the remaining contigs and the degenerate unitigs from 
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the base assembly (see above). Nine contigs that only contained rDNA tandem repeats, and 66 

contigs that contained mitochondrial sequence were removed. The remaining contigs were 

added to the four-chromosome assembly and the entire assembly was error corrected in 1 pass 

using quiver (read quality >= 0.84, polymerase and subread length >1000bp). After this quiver 

run, 13 contigs were removed from the assembly because of overall base quality scores close 

to zero, compared to an average base quality of 50 for the rest of the assembly.  

The mitochondrial genome was assembled with GRABb using standard settings and with the 

PH-1 mitochondrion (NCBI accession HG970331.1) as bait (Brankovics et al., submitted). One 

mitochondrial plasmid was assembled in SMRT assembly A. Two additional mitochondrial 

plasmids were taken from the HiSeq assembly (see below), that were not present in the SMRT 

assembly. This may result from the fragment size selection that was performed, as the plasmids 

are <3kb in size. The final assembly therefore contains four chromosomes, 172 unplaced 

contigs, one mitochondrial genome and three mitochondrial plasmids. For the four 

chromosomes, the error rate of the SMRT assembly was checked by mapping the HiSeq reads 

of isolate 2516 to the SMRT assembly with CLC Genomics Workbench 7.5 (length and 

similarity fraction = 0.8). Basic variant detection was run with minimum coverage = 50, 

minimum count = 10 and minimum frequency = 70%, and other settings at standard value. A 

de novo assembly of Illumina HiSeq reads for isolate 2516 was performed with CLC Genomics 

Workbench 7.5 using standard settings. 

4.3.7 Annotation of the reference genome 

The Illumina HiSeq RNAseq paired-end reads (combined from both “primary metabolism” and 

“secondary metabolism” samples) were cleaned and trimmed using Trimmomatic (Bolger et 

al., 2014). Tophat2 (Kim et al., 2013) was used to map the trimmed reads to the SMRT assembly 

of isolate 2516. The mapping results were used in the genome annotation pipeline BRAKER1 

(Hoff et al., 2015) for training GeneMark (Lukashin and Borodovsky, 1998) and Augustus 

(Stanke et al., 2006). BRAKER1 uses the introns parsed from the TopHat2 mapping as extrinsic 

evidence for the final gene models predicted by Augustus. The annotation was outputted as a 

GFF file with genes, introns, exons and the protein sequences predicted to be encoded by these 

genes. A short Python script was used to extract the protein sequences from the GFF.  

4.3.8 Repeat identification, localization, structural and functional characterization 

RepeatModeler (Smit and Hubley, 2008-2015) was run on the genome of isolate 2516 with 

standard settings. RepeatModeler output was manually curated to obtain complete elements. 
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These elements were then subjected to functional and structural characterization. When 

possible, terminal inverted repeats (TIR) and long terminal repeats (LTR) were identified. 

Bowtie2/TopHat2 read mapping as well as related NCBI accessions were examined to find 

intron/exon boundaries. The translations of the predicted ORF for every TE were used as blastp 

queries against the NCBI non-redundant protein sequences database. The 15 best hits were 

aligned with the TE query using ClustalO (Sievers et al., 2011) implemented in CLC Genomics 

Workbench 7.5. The resulting neighbor-joining phylogenetic trees are included in the TE data 

sheets. The elements were divided into superfamilies based on their domain similarities to 

described TEs. For RIP analysis, all copies from every family were identified with blastn in 

CLC Genomics Workbench 7.5, and exported by using the getfasta functionality of BEDtools 

(Quinlan and Hall, 2010). They were aligned with ClustalO (Sievers et al., 2011) and subjected 

to alignment-based repeat-induced point mutation analysis using RIPcal (Hane and Oliver, 

2008).  

4.3.9 Analysis of transposable element integration sites 

Blastn (expect value < 1e-10) was used to obtain genomic coordinates of all intact and RIPped 

copies of TEs. RIPped copies are easily distinguishable from intact copies, as they are still 

picked up by blastn but their identity is as low as 60% and nearly all mutations are C→T or 

G→A transitions. Using the getfasta utility of BEDtools (Quinlan and Hall, 2010) these hits, 

including their flanking regions were extracted. HiSeq reads from all isolates in this study were 

subsequently mapped to the extracted reference sequences at high stringency (minimum length 

fraction 0.95, minimum similarity fraction 0.95) in CLC Genomics Workbench 7.5. Results 

were manually inspected to find identical genomic environments. Elements with read support 

for only one flank were also considered to be identically inserted. 

For synteny of the MITE, a prototype of the element was used as a blastn query against the 

entire genome (expect value < 1e-10), hits were extracted including 500bp upstream and 

downstream flanking sequence with the getfasta utility of BEDtools (Quinlan and Hall, 2010). 

This was done for the assembly with long reads of isolate 2516 and the short read de novo 

assemblies of isolates 2548, 7555 and bfb0173. For every isolate, the resulting sequence list 

was queried against the genome assemblies of the other isolates with blastn, and the matches 

longer than 640bp were counted (indicating instances where the localization of the MITE 

coincides between isolates: at least one flank of 500bp and the 140bp element are shared).  
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4.3.10 Divergence estimates of TE copies 

Intact (not RIPped) copies were extracted as described above from the core and unplaced 

sequence separately. Only families containing five or more copies were retained. ClustalO 

alignments (Sievers et al., 2011) were fed to PhyML (Guindon and Gascuel, 2003) and 

maximum-likelihood phylogenies were built for every family with settings retrieved from 

literature (Rouxel et al., 2011). Specifically, a neighborhood joining tree was used as starting 

tree, the transition/transversion ratio was 4, the HKY85 evolution model was used and 

distribution parameters were allowed to optimize. In the resulting phylogenies, terminal branch 

lengths represent the relative age of every separate element. These branch lengths were 

extracted from the Newick files with Newick Utilities (Junier and Zdobnov, 2010). Using the 

substitution rate determined for protein-coding genes in fungi (1.05 * 10-9 (Kasuga et al., 

2002)), divergence time estimates were calculated from the branch lengths. These were then 

visualized as Box-Whisker plots using SPSS22.  

4.3.11 Paralogs and gene duplications 

All genes from the repeat masked core genome and all genes from the repeat masked 

supernumerary genome were extracted separately. The genes from the supernumerary genome 

were queried against those from the core genome with blastn (expect value < 1e-5). Results were 

filtererd to hits > 80% nucleotide identity and length above the RIP threshold of +/- 1000 

nucleotides (Watters et al., 1999). This resulted in 81 instances of a gene on the supernumerary 

genome having a hit with a gene from the core genome above the RIP thresholds, indicating a 

likely duplicated gene. These were formatted for Circos visualization. When the genes from the 

core genome were queried against themselves, there were no such hits other than self hits. Using 

the gff2sequence tool (Camiolo and Porceddu, 2013) the 81 genes in the supernumerary genome 

and their 31 paralogs on the core chromosomes were extracted, including 500bp up- and 

downstream. These sequences were aligned all-vs-all with Smith-Waterman using a python 

application based on PaSWAS (Warris et al., 2015), which produced local alignments in SAM 

(Li et al., 2009) format.  

For phylogeny of paralogs, the predicted protein of paralog on the core genome was used as 

blastp query against the NCBI non-redundant protein sequences database. The 15 best hits were 

aligned with the query and the predicted proteins of the paralogs on the supernumerary genome 

using ClustalO (Sievers et al., 2011) implemented in CLC Genomics Workbench 7.5. The 

resulting neighbor-joining phylogenetic trees was constructed using midpoint rooting.  
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4.3.12 Genome visualization 

Circos (Krzywinski et al., 2009) was used for circular genome visualization. Locations of TEs 

were extracted from blastn output (expect value < 1e-10). Duplicated genes above the RIP 

threshold were parsed from the blastn output as detailed above.  

4.3.13 Diagnostic PCRs 

To determine the MAT1-1 and MAT1-2 distribution in the collection of 69 F. poae isolates, 

primer pairs POA-1-F/POA-1-R and POA-2-F/POA-2-R were used (Kerenyi et al., 2004). For 

the two insertions of supernumerary sequence into the core chromosomes, primers were 

designed flanking insertion site as well as covering the extremes of the inserted block 

(visualized in Figure 4.12). All primers used in this study can be found in Table 4.2. PCR 

reactions were carried out with Promega GoTaq G2 Polymerase according to the 

manufacturer’s instructions (Promega, Leiden, the Netherlands). Annealing temperatures were 

calculated based on Promega’s Biomath Calculator. PCR was performed in an Applied 

Biosystems GeneAmp PCR System 9700. PCR products were separated on 1.5% (wt/vol) 

agarose gels stained with 0.1 μg/ml ethidium bromide, and visualized with a Biorad Gel Doc 

XR+. 

Table 4.2 – Primers used in this study. 

ID Sequence (5' → 3') Reference Target 

POA-1-F GCCTCACACTTTTTTCCTTCTTC Kerenyi et al. (2004) MAT1-1 

POA-1-R CAGTAAACCGGAATCATCAACG Kerenyi et al. (2004) MAT1-1 

POA-2-F ACGTACCATCTGACACTTGCTCG Kerenyi et al. (2004) MAT1-2 

POA-2-R AGTCGAGGAGGTCGTCAATCAAT Kerenyi et al. (2004) MAT1-2 

Fp82F CAAGCAAACAGGCTCTTCACC Parry and Nicholson (1996) EF-1α 

Fp82R TGTTCCACCTCAGTGACAGGTT Parry and Nicholson (1996) EF-1α 

INS1-FLANK-fwd CAGCGACTTGGTTCCGTATG this study Insertion 1 

INS1-BLOCK-rev GAAGCTTGTGACCACCCAAG this study Insertion 1 

INS1-BLOCK-fwd AGGTTCCGTCTTACTGGGTG this study Insertion 1 

INS1-FLANK-rev TCAACCAAGGCGTCGAAAAG this study Insertion 1 

INS2-FLANK-fwd GCATTGTGACGGATGGTACC this study Insertion 2 

INS2-BLOCK-rev GGTCTCACGATTTTCAGGCG this study Insertion 2 

INS2-BLOCK-fwd AGGTTCCGTCTTACTGGGTG this study Insertion 2 

INS2-FLANK-rev GCAGTACAAGCTACGATGGC this study Insertion 2 
 

4.3.14 Comparative genomics intra- and inter-species 

To estimate the number of intact copies for every family in the isolates that were sequenced 

with only Illumina technology, reads were mapped to the curated library of repeats (see above), 
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and the resulting coverage was normalized against the mean coverage of the single-copy 

genome for each isolate. To estimate the coverage across the four largest supernumerary 

contigs, HiSeq reads from every isolate were mapped with CLC Genomics Workbench 7.5 

(length and similarity fraction = 0.8) to the reference assembly which was masked for TEs with 

RepeatMasker. BAM files were processed with the coverage utility of BEDtools (Quinlan and 

Hall, 2010) to find the fraction of bases covered by reads in a 1kb sliding window. For whole-

genome alignment, the genome of the reference isolate was masked using the curated repeat 

library with RepeatMasker. The masked genome was aligned with the completed genome of F. 

graminearum PH-1 using MUMmer (Kurtz et al., 2004).  

4.4 Results 

4.4.1 The genome is composed of a core and supernumerary component 

The genome of F. poae isolate 2516 was assembled from the SMRT reads using a hybrid 

approach, based on macrosynteny with related Fusarium species as well as support from 

different assemblies using different parameters. The general statistics of the assembly can be 

found in Table 4.3, and are compared with a de novo assembly of the HiSeq reads for this 

isolate. The SMRT assembly contains an additional 7.28Mb of sequence, significantly reduces 

the total number of contigs and has a much larger representation of bases in large contigs. In 

the SMRT assembly, four chromosomes were built from 9 contigs (two, three, three and one 

respectively), accounting for a total 38.13Mb of sequence. They contain one, two, two and one 

telomere caps respectively. The long arm of chromosome 1 misses the telomere in this 

assembly. The short arm of chromosome 4 ends in the ribosomal DNA tandem repeat. The long 

arm of chromosome 3 contains a series of 5000 “N”s at 150kb into the sequence. At this junction 

a 150kb contig was joined to the rest of the assembly on the basis of its collinearity with F. 

graminearum and other F. poae isolates.  
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Table 4.3 - Assembly statistics of the assembly with SMRT long reads and the assembly with HiSeq 

reads for isolate 2516. The statistics for the SMRT assembly are based on the manually refined final 

assembly: 4 core chromosomes (originally built from 9 contigs) and 172 supernumerary contigs. 

 Parameter SMRT assembly HiSeq assembly 

Number of contigs 176 1 253 

Average coverage over all contigs 20.2 111.5 

Total assembly sequence size (bp) 46 309 701 39 020 932 

Average contig sequence length (bp) 263 123 31 142 

Minimum contig length (bp) 10 816 1 004 

Maximum contig length (bp) 11 790 407 701 709 

N50 sequence index (# of contigs) 2 62 

N50 sequence length (bp) 8 783 590 170 721 

 

The base quality of the assembly of the four core chromosomes was checked by mapping the 

HiSeq reads of isolate 2516 to the reference assembly. Over these 38.13 Mb, only one single 

nucleotide polymorphism (SNP) was detected between the HiSeq and SMRT reads. Two 

hundred and twenty-two variants were detected in homopolymeric stretches of nucleotides and 

low complexity (low GC%) regions (219 and 3 respectively). For these variants, read mapping 

was inconclusive for both HiSeq and SMRT reads.  

Figure 4.2 shows the result of a whole genome alignment of the four core chromosomes of F. 

poae 2516 and F. graminearum PH-1. The latter was recently assembled to the chromosomal 

level (King et al., 2015). Aside from two major chromosomal inversions and several smaller 

ones, the core chromosomes show extensive macrosynteny among the species. Moreover, the 

entire F. graminearum sequence complement is present in our assembly, with a 1.4 Mb series 

of rDNA tandem repeats at the end of chromosome 4 as the exception. Two blocks of 204 and 

464kb in chromosome 3 of F. poae 2516 do not show synteny with F. graminearum (black 

arrows in Figure 4.2) and are described in detail further below. 
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Figure 4.2 – Chromosome alignments between F. graminearum (x axis; NCBI accessions HG970332 

to HG970335) and F. poae (y axis). The best 1:1 alignment is shown between the four chromosomes of 

F. graminearum and the four core chromosomes of F. poae. Red indicates best hits in the same 

orientation while blue indicates inversions. The short arm of F. graminearum chromosome four ends 

in ~1.4Mb of rDNA repeats that are not assembled in F. poae. All F. graminearum telomeres except the 

telomere of the short arm of chromosome 4 are assembled. For F. poae, the same telomere is lacking 

as well as the one on the long arm of chromosome 1. Telomeres that are assembled are shown with 

green bars on the arms of the chromosomes. Two insertions into F. poae chromosome 3 are denoted 

with black arrows. Approximate locations of the centromeres are shown with black circles. 

The remaining 172 contigs (8.18Mb) do not show any synteny with closely related species F. 

graminearum. These 172 contigs contain eight copies of the ZIT1 TE described earlier as a 

specific marker for supernumerary chromosomes in F. poae (Fekete and Hornok, 1997); this 
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element was not found on the four core chromosomes. Not only ZIT1, but all TEs show an 

unequal distribution between the core chromosomes and supernumerary contigs, which is 

described in detail further below. The most striking difference in TE distribution comes from a 

Miniature Inverted–Repeat Transposable Element (MITE) that is the most abundant repetitive 

element in the genome. All 712 copies (with expect value < e-10) were found dispersed over the 

core chromosomes. In sharp contrast no MITE was found on the 172 supernumerary contigs. 

Its positional conservation among F. poae isolates was investigated, and for all four isolates the 

localization of the vast majority of MITE instances (97.7-99.8%) was identical to at least one 

other isolate.  

Taken together, the 172 contigs are likely to make up one or more supernumerary 

chromosomes, and they are designated as the “supernumerary genome” for the purpose of this 

study. The 8.18 Mb that the 172 contigs contain is likely a slight overestimation, as in some 

instances the end of one contig (contig x) is collinear and identical to the start of the contig that 

follows in the assembly (contig x+1), potentially indicating a (partial) double assembly (see 

Figure 4.13 for an example). These are likely instances where the assembly algorithm “stalled” 

or followed a wrong seed, leading to the termination of contigs which should otherwise be 

joined/overlap. Besides the four core chromosomes and 172 supernumerary contigs, the 

assembly contains the mitochondrial genome of 138kb, and three mitochondrial plasmids. 

These plasmids were confirmed to be mitochondrial as their ORFs encode a reverse 

transcriptase only with the mold mitochondrial genetic code.  

4.4.2 A high quality machine annotation  

Isolate 2516 was grown in six diverse conditions (one favouring primary metabolism and five 

favouring secondary metabolism) to stimulate transcription of as many genes as possible. RNA 

was extracted and sequenced, and 659 076 900 RNAseq sequence reads were obtained from all 

conditions combined. These were quality trimmed and the resulting 562 136 710 reads were 

used in the BRAKER1 pipeline (Hoff et al., 2015). This is a novel annotation method that uses 

RNAseq reads as extrinsic evidence, to annotate the genome in a rapid and automated way 

without any manual curation steps. In total 14817 genes were predicted for isolate 2516. Table 

4.4 lists core features of the machine annotation of F. poae 2516 compared to the annotation of 

F. graminearum PH-1 (King et al., 2015). Figure 4.3 shows an example of a BRAKER1 

annotation based on a TopHat mapping of the RNAseq reads. 
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Table 4.4 - General features of the machine annotation of F. poae 2516 compared to the published 

annotation of F. graminearum PH-1. 

 

 

Figure 4.3 – Mapping of the RNAseq reads with TopHat, and BRAKER1 annotation. Red and green 

represent reads in different directions (as paired reads get broken up through the import of the TopHat 

mapping to CLC Genomics Workbench for visualization). Below the individual reads, the peaks give an 

impression of the overall read coverage. Note that untranslated regions (UTRs) of the two genes 

overlap, a significant issue for annotation efforts in gene-dense fungal genomes. 

The BUSCO (Benchmarking Universal Single-Copy Orthologs) data set for fungi was used to 

assess whether the annotation can be considered complete (Simão et al., 2015). This set 

comprises proteins that are very likely to be present in a queried genome, based on an analysis 

of other genomes within a particular kingdom. The predicted proteins from F. poae 2516 as 

well as the proteins from the most recent annotation of F. graminearum PH-1 (King et al., 2015) 

were analyzed by comparing them to the BUSCO data set. Table 4.5 shows the output for both 

species. The F. poae protein set is assessed at equally high quality as the F. graminearum set, 

indicating that the F. poae genome annotation is as accurate and complete as the F. 

graminearum annotation. 

 F. poae  

 Parameter Total Core Supernumerary F. graminearum 

Genome size (bp) 46 309 701 38 129 297 8 180 404 37 958 956 

GC% 46.30% 46.00% 47.60% 48.20% 

# of genes  14 817 12 097 2 720 14 160 

Mean gene density (per Mb) 320 317 332 373 

Median gene length (bp) 1 391 1 406 1 309 1 257 

Avg introns/gene 1.82 1.88 1.57 1.72 

Median intron length (bp) 54 54 57 55 
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Table 4.5 - BUSCO analyses of F. poae and F. graminearum. 

Organism Complete Fragmented Missing Total 

F. poae 1431 7 0 1438 

F. graminearum 1432 6 0 1438 

 

Fragmented BUSCOs are proteins that are only partially recovered (Simão et al., 2015). These 

were analyzed manually with RNAseq data. For F. graminearum an RNAseq data set described 

before was used (Zhao et al., 2013). Three of the fragmented BUSCOs were shared between F. 

poae and F. graminearum, and examination of the RNAseq data did not provide conclusive 

evidence that the genes are miss-annotated. The remaining four and three proteins of F. poae 

and F. graminearum represent gene models that are likely to be miss-annotated in these species. 

In all four cases of F. poae and in one case of F. graminearum, a hybrid gene model was built 

from two separate genes. The remaining two F. graminearum gene models respectively lack 

two exons and contain two exons in excess. The BUSCO analysis suggests that the annotation 

of F. poae 2516 did not miss any conserved genes, and within the conserved genes, <0.5% is 

miss-annotated.  

4.4.3 The ingredients for meiosis and RIP are present in the genome 

RIP only functions during the sexual cycle, which has not been definitively shown in F. poae. 

Therefore the conservation of the necessary ingredients for meiosis was investigated for isolate 

2516. The MAT1-1 locus was extracted from the assembly, and its architecture is presented in 

Figure 4.4. As all four isolates in this study have the MAT1-1 mating type, the architecture of 

the MAT1-2 locus could not be investigated. The number, order and direction of the genes 

occupying the MAT1-1 locus is identical to that in other Fusarium species (Ma et al., 2013). 

The MAT1-1-1, MAT1-1-2 and MAT1-1-3 genes have a predicted ORF with high similarity to 

those found in related species (85%, 86% and 92% similarity to proteins from F. graminearum). 

The MAT1-1-1 gene was previously identified for F. poae (Kerenyi et al., 2004) and has 99% 

protein similarity with the gene model in this study. Transcription of the genes within the 

MAT1-1 idiomorph was noted in the RNAseq data, and the predicted splice forms lead to 

functional proteins (Figure 4.4). A collection of 69 isolates was screened for the presence of 

MAT1-1 and MAT1-2 and both idiomorphs were detected, albeit in heavily skewed distribution 

(81% MAT1-1, 19% MAT1-2; 1 undetermined; Table S4.1).  
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Figure 4.4 - Architecture of the MAT1 locus in F. poae isolate 2516, located at 3 120 000 bp into 

chromosome 2. The top track represents the predicted gene model, the second track represents the 

predicted coding features and the bottom track shows the TopHat mapping of the RNAseq reads. Red 

and green represent reads in different directions (as paired reads get broken up through the import of 

the TopHat mapping to CLC Genomics Workbench for visualization). Below the individual reads, the 

peaks give an impression of overall read coverage. Note the correct splicing of introns for all three 

alleles. 

The KEGG pathway for meiosis in F. graminearum (fgr04113) was examined to identify 

proteins involved in a putative sexual cycle. The conservation of this ‘meiotic toolbox’ was 

investigated in F. poae. All fifty-one entries in fgr01443 give best reciprocal protein hits with 

F. poae at expect values below 10-150, indicating that all ingredients of the meiotic toolbox are 

present in F. poae. 

The rid (RIP defective) gene has been described to be essential for RIP, initially in Neurospora 

crassa (Freitag et al., 2002) and recently also in F. graminearum (Pomraning, 2012). A 

homolog of this gene is present, intact and transcribed in F. poae (Figure 4.5). However, the 

expected intron was not spliced in the RNAseq data and the splice variant that was observed 

encodes a protein with a premature termination of translation.  
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Figure 4.5 - The rid (RIP defective) gene in F. poae isolate 2516, located at 2 232 000 bp into 

chromosome 2. The top track represents the predicted gene models, the second track represents the 

predicted coding features and the bottom track shows the TopHat mapping of the RNAseq reads. Red 

and green represent reads in different directions (as paired reads get broken up through the import of 

the TopHat mapping to CLC Genomics Workbench for visualization). Below the individual reads, the 

peaks give an impression of overall read coverage. Two separate genes were predicted by the BRAKER1 

pipeline. The F. pseudograminearum like gene model is superimposed as the single long coding feature. 

There is no splicing that supports this model under the conditions tested in this study.   

4.4.4 Distribution of transposable elements differs markedly between core and 

supernumerary genome 

The distribution of TEs throughout the genome is listed in Table 4.6. Figure 4.6 visualizes the 

chromosomal distribution of TEs. Twenty-four out of thirty-three TE families only contain 

intact copies on the supernumerary component of the genome. RepeatMasker analysis with the 

identified TEs classified 2.1% of the core genome and 25.6% of the supernumerary genome as 

TEs.  

Table 4.6 - Classification and key characteristics of TE families in the genome of F. poae 2516. 

Elements below the length threshold for RIP (1000bp) are not included (MITE, ZIT1). Repetitive 

elements such as the rDNA tandem and two families of telomere linked RecQ helicases are not 

included. Nomenclature of TEs is as recommended in literature (Wicker et al., 2007). Each TE is 

assigned a three letter code for its class, order and superfamily. Class: R = retrotransposon; D = DNA 

transposon. Order: L = long terminal repeat (LTR); T = terminal inverted repeat (TIR). Superfamily: G = 



86 

 

Gypsy; C = Copia; F = Fot1/Pogo; T = Tc1/mariner; M = Mutator; A = hAT; x = unknown. n/a designates 

instances where a TIR/LTR could not be detected for a specific element. 

   Core Supernumerary    

    
Intact  RIP Intact  RIP 

Size 

(bp) 

LTR/TIR 

(bp) 
Family 

Retrotransposons        

 RLG_Maggy 27 25 11 - 5684 240 Gypsy/Ty3 like 

 RLG_Skippy 5 7 13 - 6561 379 Gypsy/Ty3 like 

 RLC_Ghost - 1 14 - 4900 195 Copia/Ty1 like 

 Rxx_marsu - - 30 - 2234 n/a unknown 

DNA transposons        

 DTF_Fot4 1 - - - 1852 48 Pogo 

 DTF_Fot8 - - 1 - 2133 43 Pogo 

 DTF_Fot2 - 2 41 - 2220 90 Pogo 

 DTF_Fot3-A - 1 7 - 2212 75 Pogo 

 DTF_Fot3-B - 1 20 - 2200 73 Pogo 

 DTF_Fot3-C - - 9 - 2203 73 Pogo 

 DTF_Fot5-A 40 10 9 - 1865 51 Pogo 

 DTF_Fot5-C - 15 7 - 1865 51 Pogo 

 DTF_ESP4-A - - 21 - 2909 98 Pogo 

 DTF_ESP4-B 12 11 24 - 2868 90 Pogo 

 DTF_Drogon 33 - 24 - 1934 51 Pogo 

 DTF_Viserion 8 6 8 - 2885 84 Pogo 

 DTF_Rhaegal - 1 10 - 1854 36 Pogo 

 DTF_Balerion - - 12 - 2749 79 Pogo 

 DTA_RLT1 - - 17 - 2912 27 hAT-like 

 DTA_RLT2 - - 11 - 2975 22 hAT-like 

 DTA_RLT3 - - 12 - 2954 n/a hAT-like 

 DTA_Hornet1 - 1 10 - 2613 n/a hAT-like 

 DTA_Hornet2 - - 22 - 2739 n/a hAT-like 

 DTA_Hornet3 - - 11 - 2965 n/a hAT-like 

 DTA_Tfo1 - - 20 - 2852 28 hAT-like 

 DTA_Tfo2 - - 15 - 2838 26 hAT-like 

 DTA_Drifter - - 23 - 2779 n/a hAT-like 

 DTA_Obara - - 13 - 3867 19 hAT-like 

 DTA_Nymeria - - 36 - 2850 30 hAT-like 

 DTA_Obella - - 5 - 2480 29 hAT-like 

 DTA_Sarella - - 12 - 4236 n/a hAT-like 

 DTM_Hop7 8 10 2 - 3449 81 Mutator 

  DTM_Hop4 1 - 7 - 2825 97 Mutator 

Sum   135 91 477 0    
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Figure 4.6 - Circos plot showing differences between the core and supernumerary components of 

the genome. Outer circle: blue lines denote the distribution of a MITE, red triangles denote ZIT1 copies. 

Second circle: core chromosomes and supernumerary contigs are colored, blue blocks on the 

chromosomes indicate the centromeres, black blocks show the two insertions of supernumerary 

sequence into the core chromosomes. Third circle: black lines represent intact (not RIPped) copies of 

TEs. Fourth circle: red lines represent RIPped copies of TEs. At the center of the plot, black lines connect 

likely duplicated genes between the core genome and the supernumerary genome. Only those pairs 

of genes with blastn hits exceeding 80% nucleotide identity and 1000bp length are shown, as these 

values have been described as the thresholds for RIP (Galagan and Selker, 2004). Duplicated genes 

within the supernumerary genome are not mapped. 

Transcription and splicing of the predicted introns were noted for all intact TE families. Single 

nucleotide polymorphisms (SNPs) in the RNAseq reads allowed for the specific copy/copies of 

TEs that were transcribed to be identified. Two examples of the resulting data sheets are given 
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in Figure 4.7 and Figure 4.8. The functional and structural features of every TE were used for 

the classification into superfamilies (Table 4.6). Phylogenetic trees were made for every 

element for which a protein coding sequence could be determined. In most cases, TE phylogeny 

lines up well with species phylogeny (example DTF_Fot-3A in Figure 4.7). Exceptions are the 

TEs DTA_Nymeria (item C in Figure 4.8) and DTM_Hop7, that show higher similarity to 

elements from unrelated fungi than to elements from related Fusarium species.  
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Figure 4.7 - Example information sheet on DTF_Fot-3A. A: Tracks from top to bottom: annotation of 

the LTR/TIR, annotation of the coding region, mapping of individual RNAseq reads (blue for paired 

reads; red and green for broken pairs) and total reads coverage (blue). B: RIP calculation with the RIPcal 

package after alignment of all copies with ClustalO. Each color represents the frequency of RIP-like 

mutations (C→T mutations or conversely G→A mutations) according to type (different dinucleotide 

environment) across the length of the TE (x-axis) in a 50bp sliding window. C: Neighbour-joining 

phylogenetic tree based on alignment of the predicted protein of every TE (denoted by an asterisk in 

the tree) and its 15 best blastp hits. No outgroup was set and the trees are mid-point rooted. The 

predicted protein was determined from an expressed copy of the TE (as determined by inspecting the 

RNAseq read mapping). 
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Figure 4.8 – Example information sheet on DTA_Nymeria. A: Tracks from top to bottom: annotation 

of the LTR/TIR, annotation of the coding region, mapping of individual RNAseq reads (blue for paired 

reads; red and green for broken pairs) and total reads coverage (blue). B: RIP calculation with the RIPcal 

package after alignment of all copies with ClustalO. Each color represents the frequency of RIP-like 

mutations (C→T mutations or conversely G→A mutations) according to type (different dinucleotide 

environment) across the length of the TE (x-axis) in a 50bp sliding window. C: Neighbour-joining 

phylogenetic tree based on alignment of the predicted protein of every TE (denoted by an asterisk in 

the tree) and its 15 best blastp hits. No outgroup was set and the trees are mid-point rooted. The 

predicted protein was determined from an expressed copy of the TE (as determined by inspecting the 

RNAseq read mapping). 
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4.4.5 Unbalanced RIP between core and supernumerary genome 

RIPped copies of TEs were only detected on the core genome (Figure 4.6 and Table 4.6). 

RIPcal profiles as exemplified in Figure 4.8 showed that for 13 out of 34 TE families CpA → 

TpA mutations are predominant, which is characteristic for RIP, while also the CpT → TpT 

dinucleotide is a preferred secondary target for RIP. 

In three cases, low complexity regions on the supernumerary genome resembled RIP of intact 

elements. These also contained most transversions when compared to genuinely RIPped copies. 

An example is given in Table 4.7. 

Table 4.7 - RIP-like mutations in RLG_Maggy on the supernumerary genome. The intact element (not 

RIPped, located on the core genome) is compared with RIPped copies on the core chromosomes, and 

"RIP-like copies" (unknown) on the supernumerary genome. The total number of transitions and 

transversions compared to the intact reference (ref) is given, as well as the transition/transversion 

ratio, which is lower for the "RIP-like copies" on the supernumerary genome. 

Sequence Location Length GC% Transitions Transversions 

Transition/ 

transversion 

ratio 

Intact (ref) Core 5684 55,2 0 0  

Intact Core 5683 55,2 0 2 0,0 

Intact Core 5681 55,2 1 0  

Intact Core 5677 55,2 0 0  

RIPped Core 5992 16,4 2165 11 196,8 

RIPped Core 5762 15,4 2258 9 250,9 

RIPped Core 6022 12,2 2427 12 202,3 

unknown Supernumerary 3454 14,5 1340 112 12,0 

unknown Supernumerary 1157 16,7 445 51 8,7 

unknown Supernumerary 3455 14,5 1340 112 12,0 

unknown Supernumerary 1534 14,2 595 36 16,5 

unknown Supernumerary 1332 17,0 513 38 13,5 

unknown Supernumerary 1057 14,9 430 27 15,9 

 

4.4.6 Transposable elements copy number is dynamic between isolates of the same 

species 

The TE copy number variation among the isolates in this study is shown in Table 4.8. Based 

on genome coverage the most abundant element in isolate 2516 (DTM_Drogon) occurs only 

once in isolate bfb0173, a strain originating from China. As its ORF and TIRs are intact, it 

remains unknown why this element has not proliferated in isolate bfb0173. Isolates 2516 and 

2548 were isolated from the same Belgian field at the same time, but show sharp differences in 

TE copy number. Two families that contain multiple copies in the Belgian isolates, are not 
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present as intact copies in the Chinese isolate (RLG_Maggy, DTM_Hop7). However, RIPped 

copies present in the genome of bfb0173 indicate that during the evolution of the lineage that 

isolate bfb0173 belongs to, intact copies of these families have been present but were effectively 

eradicated from the genome. 

Table 4.8 - Prediction of TE numbers in the different F. poae isolates used in the study, as determined 

by a coverage-based method. Repeat families are classified in decreasing order of incidence in the 

genome of F. poae 2516; only class I and II transposable elements that are intact in F. poae 2516 are 

included, therefore elements such as the rDNA tandem and two families of telomere linked RecQ 

helicases are not in the table. X denotes families for which RIP was detected. It should be noted that 

average read coverage does not account for possible truncations and therefore the numbers in this 

table should be considered an estimate. For this reason, they do not completely line up with the figures 

in Table 4.6 (which also separates the TEs according to their localization, something that is not 

possible with this coverage based method). The darker the grey shading of the isolate-TE combination, 

the more copies of this TE were detected with this coverage based method. 
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Interestingly, RIP of certain elements seems isolate-specific, such as DTA_RLT1 in isolate 

bfb0173 and RLC_Ghost in isolate 2516. A process similar to the loss of DTM_Hop7 and 

RLG_Maggy in isolate bfb0173 may have occurred species-wide, as RIPped elements in isolate 

2516 were detected of up to 14 families that no longer contain any intact copies in this isolate, 

or any other isolate in this study. For a retrotransposon of the Gypsy family, RIPped copies are 

present in all isolates, but only isolate 2548 contains intact copies.  

4.4.7 Localization and divergence of transposable elements differs between the core 

and supernumerary genome 

The localization and divergence of the intact TEs was investigated. One hundred and thirty-five 

intact TEs are present on the core chromosomes of isolate 2516 (Table 4.6). Table 4.8 shows 

that elements of these families are often, but not always, present in multiple copies in the 

genomes of the other isolates in this study. However, read mapping shows that none of the 135 

elements on the core chromosomes of isolate 2516 are present in the same location in isolates 
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2548, 7555 and bfb0173. An example is given in Figure 4.9. The integration of these elements 

therefore seems to have happened recently.  

 

Figure 4.9 - Integration of a RLG_Maggy element in chromosome 4 of isolate 2516. Location of the 

TE is shown in the RepeatMasker track. Mapping of the HiSeq reads of isolates 2516, 2548, 7555 and 

bfb0173 is shown. This TE is not present at the same location in the other isolates. In isolate 2548 and 

7555, no reads span the borders of the element (but the element is present in other locations in the 

genomes of isolates 2548 and 7555, and therefore reads for this sequence do exist). In isolate bfb0173, 

RLG_Maggy is not present at all. Yellow indicates that the reads could have mapped to other places in 

the genome of isolate 2516 as well. 

In contrast, on the supernumerary genome of isolate 2516 elements can be found that show 

identical integration in isolate 2516 and one or more of the other isolates. Figure 4.10 illustrates 

this for supernumerary contig 308. The four tracks show the TE presence (yellow diamonds) 

and genome coverage (lines) for every isolate. Several elements have identical flanks in all 

isolates, indicating that they are ancestral integrations (yellow diamonds that line up vertically 

in Figure 4.10). Figure S4.1 shows the profile for supernumerary contigs 668, 561 and 550. 

Together these four contigs are the largest supernumerary contigs, totaling 1.26Mb. Whole 

blocks of sequence are absent from some isolates: most of contig 550 in isolate bfb0173, parts 
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of contig 561 in isolates 2548 and bfb0173. This absence/presence of sequence on the 

supernumerary genome is not cumulative for any one isolate or contig investigated. Moreover, 

the integration of TEs on the supernumerary genome is also not concordant with vertical 

inheritance. This is illustrated in Figure S4.2. The recombination-like picture of sequence 

absence/presence and TE integration, may reflect the dynamics the supernumerary 

chromosomes undergo during crossing.  

 

Figure 4.10 - Integration of intact TEs on supernumerary contig 308. The graphs shows in a sliding 

1kb window the fraction of bases from the reference contig that is covered by HiSeq reads of every 

isolate (value between 0 and 1). The upper track shows all TEs on contig 308 of isolate 2516 that are 

>1kb and >90% identity to the element prototype with yellow diamonds. This TE landscape was used 

for comparison with isolates 2548, 7555 and bfb0173. Yellow diamonds for these three isolates 

indicate elements for which there is read mapping that an element has integrated in the exact same 

location as the element in isolate 2516 (and is therefore ancestral). Yellow diamonds that align 

vertically are conserved in multiple isolates. 

A comparison was made between the estimated divergence time of TEs in the core genome and 

those in the supernumerary genome of isolate 2516. This is based on the principle that when 

TEs are present at a certain location for a longer period of time, they gradually accumulate more 

SNPs, which can be used to calculate the time elapsed since their insertion. As can be seen in 

Figure 4.11, TEs in the supernumerary genome are more divergent and are therefore presumed 

to result from more ancient transposition events.  
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Figure 4.11 - Divergence estimation of intact (not RIPped) TE copies on the core (A) and 

supernumerary (B) genomes. Copies were aligned and branch lengths extracted from a maximum-

likelihood phylogenetic tree. Branch lengths were used to calculate divergence times with a fixed 

substitution rate (1.05 * 10-9 substitutions per site per year (Kasuga et al., 2002)). Y axis scale was cut 

off at 25 Mya, but for the supernumerary genome several extreme values are above this value (1 for 

DTF_Fot5-A, 1 for RLG_Skippy, 1 for DTF_ESP4-B, 3 for DTF_Fot2, 1 fot DTF_Fot3-C, 1 for DTF_Fot5-C, 

1 for DTA_Sarella, 1 for DTA_Hornet1, 2 for DTA_RLT1, 1 for DTA_RLT2, 1 for DTA_Tfo1 and 1 for 

DTA_Tfo2, all of them ranging between 25 Mya and 120 Mya). The boxes for every TE show the lower 

and upper quartile of the divergence estimates and the median (thick line within the boxes). The 

whiskers represent the minimum and maximum values. Circles and asterisks are outliers and extreme 

values which fall respectively outside of one-and-a-half additional box lengths and three additional box 

lengths counted from the upper quartile limit. 

4.4.8 The core genome is invaded by transposable elements from the supernumerary 

genome 

TEs on the supernumerary genome are more divergent than TEs on the core chromosomes 

(Figure 4.11) and some are present at identical sites in at least two isolates (Figure 4.10). We 

therefore wanted to test whether TEs in the core genome may originate from the supernumerary 

genome. This directionality was best illustrated by one element of RLG_Skippy located on the 

short arm of chromosome 3. This TE has recently integrated into the genome of isolate 2516 

and contains 23 SNPs compared to the other copies on the core genome of this isolate. These 

23 SNPs, together with one additional SNP, are also present in a copy on the supernumerary 

genome, that is at the exact same location for all isolates and therefore is an ancestral insertion.  
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The recent integration of TEs into the core genome of isolate 2516 has sometimes occurred 

within the coding region of genes. The environment of all 135 recent integrations in the core 

genome was investigated. Ten instances were found where integration disrupted a gene. 

Notably, DTF_Drogon integrations account for nine of these. Remarkable differences can be 

detected between the environments of the different TE families. DTF_Fot5-A elements 

consistently integrate within RIPped or low complexity (low GC%) environments, while 

DTF_Drogon elements have integrated within regions of average GC% (46.00% averaged over 

the entire core genome).  

An extreme case of core genome invasion is found near the telomere of the long arm of 

chromosome 3. Two sequence blocks do not show any synteny with F. graminearum, with 

coordinates 115 073-319 336 bp (204kb) and 883 738-1 348 064 bp (464kb). Analysis of the 

flanking sequences of these two regions shows that they are continuous in isolates 2548, 7555 

and bfb0173. Therefore, these regions represent translocations of supernumerary sequence to 

the core genome of isolate 2516. All parameters that were used to compare the core and 

supernumerary genome in this study, support the classification of these sequence blocks as 

supernumerary sequence (they contain no RIPped TEs, a high concentration of TEs and several 

gene paralogs). For the purpose of this study they have been regarded as part of the 

“supernumerary genome”. The 204kb insertion is an underestimate as a stretch of 5000 “N”s 

was inserted at 150kb into chromosome 3 during the assembly phase, where presumably one or 

more of the 172 supernumerary contigs belong – all of which are larger than 5000 bp. 

These insertions into the core genome, both of single TEs and whole blocks of supernumerary 

sequence, may have large implications for the organism such as respectively gene disruptions 

(as illustrated above for 10 TE insertions) and hampered meiotic alignment (as parts of 

chromosome 3 of an isolate with the supernumerary sequence insertions will not be able to align 

with the chromosome 3 of an isolate that does not have the insertions). We investigated how 

common the two supernumerary sequence translocations are in a population of 69 F. poae 

isolates and found that eight isolates contain the first insertion, closest to the telomere. These 

eight isolates were isolated from three different locations in Belgium. Three of these eight 

isolates also contain the second insertion, at 883 738 bp into chromosome 3 (Table S4.1). 

Isolate 2516 is one of these three isolates. Isolates 2548, 7555 and bfb0173 were confirmed not 

to have any of the insertions. Figure 4.12 shows the strategy and gel electrophoresis for the 

detection of the two insertions. 
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Figure 4.12 - Gel electrophoresis and PCR schematic for two major insertions into chromosome 3. A: 

insertion 1 at 115-319kb of chromosome 3. A single amplicon of 1010 bp is formed in the absence of 

the insertion (primers INS1-FLANK-fwd + INS1-FLANK-rev), for example isolates 2375 and 2380. When 

the insertion is present, two amplicons of 848 bp (INS1-FLANK-fwd + INS1-BLOCK-rev) and 1158 bp 

(INS1-BLOCK-fwd + INS1-FLANK-rev) are formed, for example isolates 2570 and 2671. M is for the 

molecular weight marker (Thermofisher’s Massruler DNA Ladder Mix). B: insertion 2 at 883-1.348 kb 

of chromosome 3. A single amplicon of 1213 bp is formed in the absence of the insertion (primers 

INS2-FLANK-fwd + INS2-FLANK-rev), for example isolates 2476 and 185. When the insertion is present, 

two amplicons of 932 bp (INS2-FLANK-fwd + INS2-BLOCK-rev) and 1294 bp (INS2-BLOCK-fwd + INS2-

FLANK-rev) are formed, for example isolate 2531. M is for the molecular weight marker 

(Thermofisher’s Massruler DNA Ladder Mix). C: An impression of the PCR schematic is given, the 

principle is the same for both insertions. It is not certain what caused the PCR reaction to fail repeatedly 

for certain isolates, and divergence at the sequence level may be one explanation. 

4.4.9 The supernumerary genome is a refuge for duplicated genes 

The absence of paralogs is a hallmark of a RIP-active species (Cuomo et al., 2007). In a blastn 

(expect value < 1e-5) of all genes on the core chromosomes against themselves, no hits with 

nucleotide identity >80% and lengths above the RIP length threshold (+/- 1000 nucleotides; 

Watters et al. (1999)) were found. This confirms that the core chromosomes are subjected to 

RIP. Subsequently, all genes on the supernumerary genome were queried against those on the 

core genome with blastn (expect value < 1e-5). Eighty-one hits above the RIP length threshold 

show nucleotide identity exceeding 80% and represent paralogs that have not been inactivated 

by RIP. A total of 31 genes on the core chromosomes have one or more duplicates in the 

supernumerary genome, totaling 81 hits on the latter. Figure 4.6 visualizes these paralogs as 
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lines connecting both the gene on one of the four core chromosomes and its paralog(s) on the 

supernumerary genome. 

Table S4.2 lists the functional annotation of these duplicated genes. Notable instances include 

key component of the RNA silencing machinery Dicer2 (Segers et al., 2007) and secondary 

metabolite backbone gene PKS8 (Hansen et al., 2015). To ascertain that these paralogs are not 

artefacts from the assembly, the duplicated sequences and their 500bp flanking regions were 

aligned. Potential assembly artefacts are identified by sequence alignments with nearly 100% 

sequence identity across the entire region. Four of the 81 paralogs on the supernumerary 

genome were identified as potential double assemblies at the extremes of contigs which follow 

each other in the assembly, as is explained in section 4.4.3 (asterisks in Table S4.2). Figure 

4.13 shows examples of both a genuine paralog and an instance of two identical genes that is 

likely caused by double assembly. 
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Figure 4.13 - Genuine duplicated gene (A) and likely double assembly (B and C). Upper track in every 

panel: CDS annotations. Second track: mapping of the SMRT reads; green and red represent forward 

and reverse reads respectively. Lower track: mapping of the HiSeq reads of isolate 2516. Yellow reads 

represent reads that could have fit equally well on another place of the genome (repetitive sequence). 

Blue reads represent paired reads. The peaks below the reads give an impression of overall read 
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coverage. A: two identical genes (circled in black, g12962 and g12967) on contig 459, separated by 

20kb of sequence. SMRT read mapping shows contiguous sequence without assembly mistakes. B and 

C: identical genes (circled in black) are present at respectively the end of contig 440 (g12779 at 17kb 

of the 23kb contig) and the beginning of contig 441 (g12783 at 6kb into the contig). Note the untangling 

of the SMRT reads near the end of the contig 440, where the assembler presumably stalled. The 

environment of the “duplicated genes” is identical in both instances. This is likely a case of double 

assembly.  

While duplication from a gene on the core genome is the most likely origin of the detected 

paralogs on the supernumerary genome, there are other potential origins such as horizontal gene 

transfer. The detected paralogs of an aspartic peptidase, PKS8 and Dicer2 were investigated for 

their phylogeny. The result can be found in Figure 4.14. For the aspartic peptidase (A) the 

paralog on the supernumerary genome may be older than its paralog on the core genome of F. 

poae and its homologs in related Fusarium species. For PKS8, phylogeny supports the notion 

that the paralogs on the supernumerary genome are duplications from the gene on the core 

genome. For Dicer2 (C), phylogeny is inconclusive for one copy on the supernumerary genome 

(g14523 on contig 658), but for the other paralogs duplication and divergence from the gene on 

the core genome is most plausible. The inclusion of Dicer2 from F. langsethiae within the clade 

of paralogs on the supernumerary genome of F. poae is unexpected. 
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Figure 4.14 – Phylogenetic tree based on the detected paralogs of three genes. For every case, the potentially duplicated gene on the core genome was 

queried against the nonredundant NCBI protein database and the 15 best hits were used together with the query and the paralogs in the supernumerary 

genome for alignment with ClustalO. The resulting neighbor joining tree is shown, for which midpoint rooting was used. The F. poae gene on the core genome 

is denoted with an asterisk. If any annotation of the 15 hits was included, this was added to the labels in the tree. A: aspartic peptidase (core g13371, one 

paralog on the supernumereary genome g9699). B: PKS8 (core g4456; two paralogs on the supernumerary genome g9871 and g13380). C: Dicer2 (core g5569; 

10 paralogs on the supernumerary genome included in the analysis).  
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4.5 Discussion 

Chromosomes that vary in both size and number, and have an uneven distribution among 

individuals of the same species, have been described in animals (Vujosevic and Blagojevic, 

2004), plants (Jones and Houben, 2003) and fungi (Galazka and Freitag, 2014). Throughout 

these kingdoms they are identified as supernumerary, accessory, dispensable or B 

chromosomes, in contrast to the core or A chromosomes. These supernumerary chromosomes 

show distinct features compared to the core chromosomes: they can be high in repeats and 

transposable elements (Coleman et al., 2009), have different gene density and function (Jones, 

1995) and/or GC-content (Goodwin et al., 2011), can be transmitted by horizontal transfer (Ma 

et al., 2010) and are unstable in meiosis (Wittenberg et al., 2009). This sharp contrast between 

the two sets of chromosomes can be explained by different evolutionary pressure, different 

origins, or a combination of both (Mehrabi et al., 2011; Croll and McDonald, 2012). The 

functions of the supernumerary chromosomes are unclear. Speculations range from selfish 

DNA fragments without benefit to the host (Nur et al., 1988) to components that are critical for 

pathogenicity and survival (Ma et al., 2010). As they occur in the same nucleus, this raises 

questions how the different sub-genomes are managed within the organism and if there are 

potential conflicts and interactions. The dynamics between the core genome of an organism and 

its extra-chromosomal DNA have been studied for plasmids in bacteria (Godfrey et al., 2011), 

and mitochondrial DNA insertions into the nuclear genome of many eukaryotes (Hazkani-Covo 

et al., 2010). In this study we aimed to elucidate the differences between the two genomic 

components, to identify a cause for these differences, and to investigate any resulting genetic 

exchange that occurs between the core and supernumerary chromosomes. 

We analyzed the genome of Fusarium poae, a species previously shown to contain 

supernumerary chromosomes based on pulse field gel electrophoresis (Fekete and Hornok, 

1997), and compared it to its well-studied related species F. graminearum that only contains 

four core chromosomes. For this comparison a high quality genome assembly and annotation 

of F. poae was generated. The assembly using SMRT long reads allowed the division of the 

genome into a core and supernumerary component, a feature that was not possible with the 

assembly using short reads due to the presence of highly repetitive DNA. A novel genome 

annotation pipeline was used to annotate the genome of F. poae (Hoff et al., 2015). This method 

uses RNAseq data as extrinsic evidence, and is particularly suited for gene-dense genomes as 

it extracts only intron information from the RNAseq data, and therefore hybrid gene models 
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due to overlapping UTRs become less of a concern (Yandell and Ence, 2012). The BUSCO 

analysis showed that the machine annotation of the F. poae genome is of a high quality.  

The core chromosomes of F. poae showed a high level of macrosynteny with F. graminearum 

and cover the entire F. graminearum sequence complement. They showed characteristics of 

chromosomes under the control of RIP, such as inactivated TEs and no gene paralogs with high 

sequence identity. The opposite is true for the supernumerary chromosomes, and the absence 

of RIP on the supernumerary genome is responsible for the differences between the core and 

supernumerary genome in F. poae. Indeed, on the supernumerary chromosomes, no RIPped TE 

copies are found, and at least 81 duplicated genes are present. This is the first time a clear reason 

is identified for the sharp contrast between the core and supernumerary chromosomes in a 

fungal pathogen. 

The different rules that govern the core and supernumerary chromosomes make it possible for 

a genetic exchange to occur between them. We found several cases of exchange of genetic 

material between the core and supernumerary genomes. Thirty-one genes from the core 

chromosomes have been duplicated to the supernumerary genome, where some of these genes 

have undergone further copy number expansion (leading to 81 paralogs on the supernumerary 

genome). Vice versa, transposable elements originating from the supernumerary genome have 

integrated into the core chromosomes and, in 10 instances have led to gene disruptions. Most 

drastically, large sequence blocks (>200 kb) have been translocated from the supernumerary 

genome to the core chromosomes. Translocation of whole regions from supernumerary 

chromosomes to core chromosomes is not restricted to F. poae. A region of core chromosome 

1 of F. oxysporum f. sp. lycopersici has all the characteristics of supernumerary sequence (Ma 

et al., 2010; Galazka and Freitag, 2014). It has been shown that this region is highly syntenic 

with one of its supernumerary chromosomes (Zhao et al., 2014). This situation may have arisen 

from ancient translocation followed by chromosome gain, or by duplication and integration of 

the supernumerary sequence into the core chromosome. Our results show that unique events 

such as large insertions into the core chromosomes give rise to novel genotypes in F. poae, 

which may be able to rapidly spread as they were recovered from three different locations. 

Interestingly, both in F. poae and F. oxysporum f. sp. lycopersici, insertion of blocks of 

supernumerary sequence has occurred close to a telomere of core chromosomes, which supports 

the finding that core chromosomes in Fusarium species may be divided into distinct 

chromosomal regions on both structural and functional levels (Connolly et al., 2013; Zhao et 

al., 2014). 



106 

 

The evolutionary advantage of a genomic region not burdened by RIP defense is evident from 

the duplicated genes occurring specifically on that region. In Metarhizium, it has been 

hypothesized that an arrest of RIP was instrumental in the evolution to generalist infection 

agents (Hu et al., 2014), and the advantages of a temporary RIP relaxation or arrest may include 

accelerated evolution and divergence between related species (Stukenbrock and Croll, 2014). 

The mechanism that gave rise to the existence of supernumerary chromosomes in F. poae is 

unknown. In Z. tritici, it has been suggested that supernumerary chromosomes may have 

originated from core chromosomes and subsequently degenerated and evolved separately (Croll 

et al., 2013). A recent large scale duplication seems unlikely for F. poae, as an ancient MITE 

(occurring in the same genomic locations for the four isolates in this study) that characterizes 

the core chromosomes is completely absent from the supernumerary chromosomes. The 

contribution of horizontal chromosome transfer remains to be investigated, but has likely 

contributed to the supernumerary chromosome diversity in other species (Ma et al., 2010; Hu 

et al., 2012). Figure 4.14 showed that phylogeny of paralogs on the supernumerary genome 

does not necessarily line up with duplication and divergence from the counterpart on the core 

genome. It will be interesting to investigate whether horizontal gene transfer from related 

Fusarium species has played a role in the occurrence of paralogs on the supernumerary genome, 

but regardless, these paralogs have not been inactivated by RIP.  

Specific exclusion of duplicated genes from RIP has been observed before in F. solani 

(formerly known as N. haematococca) (Coleman et al., 2009). Similar to those in F. poae, its 

supernumerary chromosomes are rich in TEs and duplicated genes. It was experimentally 

determined that progeny, of which one of the parents contained two copies of the hygromycin 

phosphotransferase marker gene, contained both an intact and a RIPped copy of that gene 

(Coleman et al., 2009), contrary to the standard modus operandi of RIP wherein all copies are 

inactivated. Apparently, a region in the genome of N. haematococca is excluded from RIP, but 

it is not known whether this coincides with the supernumerary chromosome(s). The regional 

variability of RIP extends beyond supernumerary chromosomes however. Nucleolus organizer 

regions (NORs) contain the rDNA tandem repeats in many fungal species, and within this 

region they are protected from RIP (Galagan and Selker, 2004). Either this is an active form of 

protection, which may be similar to what is happening on the supernumerary chromosomes of 

F. poae, or rDNA is mutated by RIP and mutated copies subsequently undergo reduced 

intrachromosomal recombination to give rise to a full-length rDNA tandem during meiosis 

(Pomraning, 2012).  
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As is described above, F. poae is not the only Fusarium species with supernumerary 

chromosomes. Analyses similar to those in this study have not been carried out for F. solani 

and F. oxysporum. In the former, RIP was experimentally demonstrated but localization of 

RIPped TEs has not been investigated, and potential paralogs occur on all chromosomes 

(Coleman et al., 2009). F. oxysporum is considered an asexual species and therefore likely does 

not have active RIP. Several other Fusarium have been shown to contain supernumerary 

chromosomes, such as F. asiaticum (Galazka and Freitag, 2014), F. sporotrichioides (Fekete et 

al., 1993) and F. langsethiae (Lysoe et al., 2015), but contiguous assemblies are lacking for 

these species. It is therefore difficult to assess whether or not our findings in F. poae are directly 

applicable to other Fusarium species or not.  

Balancing clonal propagation with intermittent sexual reproduction is a key trait of a successful 

pathogen system (Li et al., 2012; Wicker et al., 2013). The sexual cycle has never been shown 

for F. poae, but in light of the findings in this study is highly likely to occur. Indeed, RIPped 

copies in isolate 2516 are not shared with the other sequenced isolates and therefore were 

independently inactivated in this isolate or its ancestors. Additionally, several isolates contain 

RIPped copies of families that are not RIPped in the other isolates. Since RIP is isolate-specific, 

we conclude that in F. poae RIP is an active process that periodically inactivates TEs that have 

integrated in the core chromosomes since the last sexual cycle. This also confirms that F. poae 

should be a sexual species, which has been speculated in the past (Kerenyi et al., 2004). The 

tight correlation between RIP and meiosis should offer opportunities for understanding the 

balance between clonal and sexual reproduction, by using TE insertions as markers for “track 

and trace” studies and monitoring when/if they become RIPped. Species capable of combining 

both sexual and asexual reproduction, and containing an active arsenal of transposable 

elements, are considered to be the biggest challenges for durable disease management 

(McDonald and Linde, 2002). In this study, the clonal spread of novel genotypes and indications 

for an active sexual cycle were found for F. poae. 

Meiosis and RIP may not have happened for isolate 2516 very recently, allowing for the modest 

accumulation of intact TEs on the core genome during asexual propagation. The demonstrated 

gene disruptions that these TE insertions caused, may account for the instability of single spore 

cultures previously reported for F. poae (Kerenyi et al., 1997). Isolate bfb0173 generally had 

lower numbers of TEs and several families have become completely extinct in this isolate (with 

only RIPped copies still present). Frequent meiosis, associated with frequent RIP and the 

possibility for loss of supernumerary chromosomes and the reservoir of TEs that they contain, 
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could account for such extinction events. Whether bfb0173, a Chinese isolate, is indeed part of 

a sexually more active population is unknown. Geographical differences in sexual activity have 

been demonstrated before in Magnaporthe oryzae (Saleh et al., 2012). The skewed mating type 

distribution within a set of Belgian F. poae isolates may indicate that meiosis does not occur at 

high frequency in that population.  

The occurrence of both recently integrated intact TEs as well as recently RIPped copies, side 

by side in the genome has not been observed before. Most of the previously sequenced fungi 

verge towards either extinction of TEs (F. graminearum, F. solani, Z. tritici (Cuomo et al., 

2007; Coleman et al., 2009; Dhillon et al., 2014)), or heavy proliferation with little to no genome 

defense (F. oxysporum f. sp. lycopersici, P. tritici-repentis (Ma et al., 2010; Manning et al., 

2013)). A recent study investigated the TE/RIP landscape for 49 ascomycete fungi (Clutterbuck, 

2011). For many of these species, signatures of RIP could be ancient and therefore may not 

indicate active RIP. In F. oxysporum, the RIP signatures investigated were specifically found 

on the core rather than the supernumerary chromosomes. In Aspergillus oryzae, fragments of 

AT-rich TEs were attributed to an ancient wave of TE amplification and RIP, with intact 

elements constituting a more recent wave (Clutterbuck, 2011). In F. poae three low complexity 

alleles on the supernumerary chromosomes resemble RIP, but these also contain high levels of 

transversions, and they may therefore be ancient RIPped copies that have since diverged.  

It is thought that RIP functions after plasmogamy but before the final pre-meiotic DNA 

replication and karyogamy. It works multiple times during the rounds of nuclear division that 

occur at this point, presumably during G1 or near the replication fork during the S phase 

(Pomraning, 2012). It functions only in the nucleus, or nuclei, that contain(s) DNA duplications 

and does so on a single DNA strand. Mis-pairing of duplicated DNA has been hypothesized to 

deliver the substrate for RIP (Pomraning, 2012). Why supernumerary chromosomes in F. poae 

escape RIP is unknown. While physical alignment of duplicated copies is presumed to be 

important, the exact scanning mechanism for homology is unknown. Clutterbuck (2011) 

proposed two hypotheses for the function of RIP that implicate either the temporal or the spatial 

proximity of haploid nuclei in dikaryotic cells, where RIP acts, to diploid cells undergoing 

meiotic pairing. This pairing was previously shown to be hampered for supernumerary 

chromosomes through their high variability (Wittenberg et al., 2009). The splice form of the rid 

gene, shown to be vital for RIP, that was detected in this study does not lead to a functional 

protein. One explanation for this may be that the gene model constitutes a case of crucial 

alternative splicing, and the rid gene is only correctly spliced in the pre-meiotic phase. 
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Supernumerary or extra-chromosomal structures are considered to be evolutionary cradles for 

pathogenicity in viruses, bacteria and fungi, as they often contain the determinants for 

successful infection of the host (Croll and McDonald, 2012). In our study, we determined that 

the supernumerary genome in the prominent plant pathogen F. poae is governed by different 

rules than the core chromosomes. Whether the regional selectivity of RIP explains the 

differences between the core and supernumerary genomes in other pathogenic fungi remains to 

be seen. Regardless, the co-occurrence of the core and the  supernumerary genome within the 

same nucleus, “living apart together” as they are separate entities but with significant 

interaction, bestows the organism with unique tools for rapid adaptation and evolution. Future 

investigation will  also have to show whether this gives F. poae a competitive advantage over 

other species in the FHB complex, and whether any parallels can be drawn with related species. 

Moreover, a functional characterization of the duplicated genes will shed light on any 

advantages such as gene dosage effects or neofunctionalization that F. poae may have due to 

its supernumerary genome.  



110 

 

4.6 Supporting information  

Table S4.1 – List of 69 F. poae isolates used in this study. Chapter 5 of this thesis includes more information on the source of the isolates and the way that 

they were single spored. For one isolate (isolate 2547), no mating type could be determined. Insertion 1 and insertion 2 are the two insertions of 

supernumerary sequence into chromosome 3 of eight respectively three F. poae isolates (insertion 1 closest to the telomere: 115-319kb into the chromosome; 

insertion 2: 883-1348kb into the chromosome). 

ID Location Host Year Reference Mating type Insertion 1 Insertion 2 

175 Aas, Norway Barley 1996 CBS MAT1-2 no amplicon no 

177 Aas, Norway Wheat 1996 CBS MAT1-1 no no 

182 Aas, Norway Barley 1996 CBS MAT1-1 no no 

185 Aas, Norway Barley 1996 CBS MAT1-1 no no 

1879 Bottelare, Belgium Wheat 2010 this study MAT1-1 no amplicon no 

2004 Zwevegem, Belgium Wheat 2010 this study MAT1-1 no no 

2019 Zwevegem, Belgium Wheat 2010 this study MAT1-1 no no 

2022 Zwevegem, Belgium Wheat 2010 this study MAT1-1 no no 

2023 Zwevegem, Belgium Wheat 2010 this study MAT1-1 no amplicon no 

2028 Zwevegem, Belgium Wheat 2010 this study MAT1-1 no no 

2031 Zwevegem, Belgium Wheat 2010 this study MAT1-1 no no 

2033 Zwevegem, Belgium Wheat 2010 this study MAT1-1 no no 

2041 Zwevegem, Belgium Wheat 2010 this study MAT1-2 no no 

2043 Zwevegem, Belgium Wheat 2010 this study MAT1-1 no no 

2044 Zwevegem, Belgium Wheat 2010 this study MAT1-2 no no 

2056 Zwevegem, Belgium Wheat 2010 this study MAT1-1 no no 

2371 Bottelare, Belgium Wheat 2011 this study MAT1-2 no no 

2375 Bottelare, Belgium Wheat 2011 this study MAT1-1 no no 

2377 Bottelare, Belgium Wheat 2011 this study MAT1-1 no amplicon no 

2380 Bottelare, Belgium Wheat 2011 this study MAT1-1 no no 

2381 Bottelare, Belgium Wheat 2011 this study MAT1-1 no amplicon no 

2390 Bottelare, Belgium Wheat 2011 this study MAT1-1 no no 

2392 Bottelare, Belgium Wheat 2011 this study MAT1-1 no no 
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2395 Bottelare, Belgium Wheat 2011 this study MAT1-1 no no 

2410 Bottelare, Belgium Wheat 2011 this study MAT1-1 no amplicon no 

2411 Bottelare, Belgium Wheat 2011 this study MAT1-1 no no 

2424 Koksijde, Belgium Wheat 2011 this study MAT1-1 no amplicon no 

2476 Poperinge, Belgium Wheat 2011 this study MAT1-1 no amplicon no 

2491 Poperinge, Belgium Wheat 2011 this study MAT1-2 no amplicon no 

2514 Zwevegem, Belgium Wheat 2011 this study MAT1-1 no no 

2516 Zwevegem, Belgium Wheat 2011 this study MAT1-1 yes yes 

2517 Zwevegem, Belgium Wheat 2011 this study MAT1-1 no no 

2519 Zwevegem, Belgium Wheat 2011 this study MAT1-2 no no 

2521 Zwevegem, Belgium Wheat 2011 this study MAT1-1 yes no 

2524 Zwevegem, Belgium Wheat 2011 this study MAT1-1 no amplicon no 

2525 Zwevegem, Belgium Wheat 2011 this study MAT1-1 no no 

2531 Zwevegem, Belgium Wheat 2011 this study MAT1-1 yes yes 

2532 Zwevegem, Belgium Wheat 2011 this study MAT1-1 no amplicon no 

2547 Zwevegem, Belgium Wheat 2011 this study no amplicon no no 

2548 Zwevegem, Belgium Wheat 2011 this study MAT1-1 no no 

2565 Zuienkerke, Belgium Wheat 2011 this study MAT1-1 yes no 

2569 Zuienkerke, Belgium Wheat 2011 this study MAT1-1 yes no 

2570 Zuienkerke, Belgium Wheat 2011 this study MAT1-1 yes no 

2571 Zuienkerke, Belgium Wheat 2011 this study MAT1-1 yes no 

2671 Linter, Belgium Wheat 2011 this study MAT1-1 yes yes 

6114 Denmark Barley 1964 MUCL MAT1-2 no amplicon no 

6127 Wageningen, the Netherlands Wheat 1964 MUCL MAT1-2 no no 

7555 Heverlee, Belgium Wheat 1965 MUCL MAT1-1 no amplicon no 

9125 Ferrara, Italy Wheat 2005 Somma et al. (2010) MAT1-1 no no 

9139 Ferrara, Italy Wheat 2005 Somma et al. (2010) MAT1-2 no amplicon no 

9181 Ferrara, Italy Wheat 2005 Somma et al. (2010) MAT1-2 no no 

9186 Ferrara, Italy Wheat 2005 Somma et al. (2010) MAT1-1 no no 

9189 Ferrara, Italy Wheat 2005 Somma et al. (2010) MAT1-1 no amplicon no 
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9192 Ferrara, Italy Wheat 2005 Somma et al. (2010) MAT1-1 no no 

9194 Ferrara, Italy Wheat 2005 Somma et al. (2010) MAT1-1 no no 

9196 Ferrara, Italy Wheat 2005 Somma et al. (2010) MAT1-2 no amplicon no 

9203 Ferrara, Italy Wheat 2005 Somma et al. (2010) MAT1-1 no no 

9209 Ferrara, Italy Wheat 2005 Somma et al. (2010) MAT1-1 no amplicon no 

11456 Heverlee, Belgium Barley 1968 MUCL MAT1-2 no amplicon no 

15926 Quebec, Canada Wheat 1970 MUCL MAT1-1 no no 

30702 unknown In vitro ornamental plant 1990 MUCL MAT1-2 no no 

42824 Belgium Wheat 2000 MUCL MAT1-1 no no 

bfb0173 Shayang, Hubei, China Barley 2005 Yang et al. (2008) MAT1-1 no no 

PD 93/1780 The Netherlands carnation 1993 dr. Cees Waalwijk MAT1-1 no no 

F49 Ath, Belgium Maize 2007 MUCL MAT1-1 no amplicon no 

K46 Ath, Belgium Maize 2007 MUCL MAT1-1 no no 

L24 Buissenal, Belgium Maize 2007 MUCL MAT1-1 no amplicon no 

Q57 Buissenal, Belgium Maize 2007 MUCL MAT1-1 no amplicon no 

S46 Villeroux, Belgium Maize 2007 MUCL MAT1-1 no no 

 

Table S4.2 - Genes from the core that have been duplicated to the supernumerary chromosomes. Gene identifier for the core and supernumerary gene(s) 

are given as well as the blastn hit length and nucleotide similarity. Locations of the duplicated genes on the supernumerary genome are given. Finally the 

functional annotation of the gene on the core that was duplicated is detailed. Likely double assemblies are denoted by an asterisk. 

Core ID Supernumerary ID Paralog location %ID (nt) Hit length (nt) Functional annotation 

g10194 g13851 Contig 566 89.49 2606 Peptidase C2, calpain family 

g10194 g14036 Contig 587 90.73 1693 Peptidase C2, calpain family 

g10194 g14344 Contig 640 91.48 1045 Peptidase C2, calpain family 

g1026 g14359 Contig 640 87.05 1151 Hypothetical protein 

g1026 g9930 Contig 415 86.94 1141 Hypothetical protein 

g1026 g14362 Contig 641 87.09 1139 Hypothetical protein 

g113 g13770 Contig 563 87.06 2287 Alpha-L-rhamnosidase 
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g11371 g9699 Contig 308 92.49 1118 Aspartic peptidase 

g11386 g13752 Contig 563 88.32 1139 Hypothetical protein 

g12303 g13087 Contig 475 90.08 1945 Kinetochore protein Ndc80  

g12303 g14699 Contig 668 89.92 1945 Kinetochore protein Ndc80  

g1343 g9986 Contig 419 92.67 1679 Hypothetical protein 

g14 g13753 Contig 563 82.27 1190 P-loop containing nucleoside triphosphate hydrolase,  exonuclease 

g158 g14572 Contig 650 82.84 1795 Zn(2)-C6 fungal-type transcription factor 

g1866 g14009 Contig 586 88.19 1745 Hypothetical protein; unintegrated signatures 

g1866 g14550 Contig 649 87.99 1441 Hypothetical protein; unintegrated signatures 

g1991 g9761 Contig 308 93.49 1244 Protein kinase 

g1991 g14564 Contig 650 93.56 1243 Protein kinase 

g2589 g14007 Contig 586 98.39 1868 Acyl-CoA dehydrogenase 

g2589 g12736 Contig 439 98.39 1868 Acyl-CoA dehydrogenase 

g2589 g9693 Contig 308 98.29 1868 Acyl-CoA dehydrogenase 

g2589 g12964 Contig 459 98.18 1868 Acyl-CoA dehydrogenase 

g2760 g13489 Contig 550 85.38 1881 DUF3468; Zn(2)-C6 fungal-type transcription factor 

g2869 g9741 Contig 308 100 1457 S-adenosyl-L-methionine-dependent methyltransferase 

g2869 g13637 Contig 561 98.76 1456 S-adenosyl-L-methionine-dependent methyltransferase 

g3381 g13938 Contig 581 84.94 1720 Protein of unknown function DUF3468 

g3381 g9962 Contig 417 84.94 1720 Protein of unknown function DUF3468 

g3381 g9967 Contig 418 84.83 1720 Protein of unknown function DUF3468 

g3381 g9960 Contig 416 84.89 1588 Protein of unknown function DUF3468 

g3381 g14167 Contig 628 84.62 1443 Protein of unknown function DUF3468 

g4456 g13380 Contig 527 86.68 8553 Polyketide synthase 

g4456 g9871 Contig 333 85.72 2703 Polyketide synthase 

g4537 g9765 Contig 308 90.17 1984 Zn(2)-C6 fungal-type transcription factor 

g5515 g13454 Contig 550 84.58 1323 Hypothetical protein 

g5515 g14578 Contig 650 84.43 1323 Hypothetical protein 

g5515 g14662 Contig 668 84.43 1323 Hypothetical protein 

g5515 g9814 Contig 315 84.43 1323 Hypothetical protein 
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g5515 g9578 Contig 293 84.2 1323 Hypothetical protein 

g5515 g13063 Contig 475 84.13 1323 Hypothetical protein 

g5515 g10071 Contig 431 84.57 1322 Hypothetical protein 

g5515 g13672 Contig 561 84.42 1322 Hypothetical protein 

g5515 g9582 Contig 293 84.42 1322 Hypothetical protein 

g5515 g70 Chromosome 3 84.51 1278 Hypothetical protein 

g5515 g14722 Contig 668 84.43 1278 Hypothetical protein 

g5515 g14324 Contig 639 84.19 1278 Hypothetical protein 

g5515 g13675 Contig 561 84.42 1271 Hypothetical protein 

g5515 g13221 Contig 496 83.86 1270 Hypothetical protein 

g5515 g13487 Contig 550 84.15 1243 Hypothetical protein 

g5569 g13533 Contig 550 82.75 4619 Dicer2 

g5569 g14805 Contig 669 82.57 3643 Dicer2 

g5569 g9620 Contig 297 82.54 3609 Dicer2 

g5569 g13360 * Contig 525 82.57 3608 Dicer2 

g5569 g13363 * Contig 526 82.57 3608 Dicer2 

g5569 g10062 Contig 431 82.48 3608 Dicer2 

g5569 g14016 Contig 586 82.6 3574 Dicer2 

g5569 g14801 Contig 668 81.46 2249 Dicer2 

g5569 g13356 Contig 524 81.81 2012 Dicer2 

g5569 g10012 Contig 421 83.3 1976 Dicer2 

g5569 g14623 Contig 658 84.26 1703 Dicer2 

g5569 g9601 Contig 293 83.71 1467 Dicer2 

g5670 g9948 Contig 415 81.96 1386 CFEM superfamily 

g5670 g12779 * Contig 440 81.82 1386 CFEM superfamily 

g5670 g12783 * Contig 441 81.82 1386 CFEM superfamily 

g5670 g13668 Contig 561 81.92 1372 CFEM superfamily 

g5893 g13233 Contig 496 93.41 1442 Hypothetical protein 

g5941 g57 Chromosome 3 94.46 2437 Hypothetical protein 

g5941 g14743 Contig 668 95.29 1295 Hypothetical protein 
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g5941 g14744 Contig 668 93.59 1138 Hypothetical protein 

g5942 g58 Chromosome 3 94.66 1218 Aminoglycoside 3-phosphotransferase 

g6413 g12840 Contig 443 89.5 1362 Taurine catabolism dioxygenase TauD/TfdA 

g6413 g12790 Contig 441 89.43 1353 Taurine catabolism dioxygenase TauD/TfdA 

g7188 g9701 Contig 308 93.22 3185 P-type ATPase, subfamily IIA, SERCA-type 

g7188 g13640 Contig 561 93.37 1433 P-type ATPase, subfamily IIA, SERCA-type 

g7188 g13646 Contig 561 93.37 1433 P-type ATPase, subfamily IIA, SERCA-type 

g7680 g9717 Contig 308 82.54 1329 Epoxide hydrolase-like 

g8238 g13621 Contig 561 86.92 1713 Cytochrome P450 

g8239 g13622 Contig 561 81.04 1271 Ankyrin repeat containing 

g8240 g13623 Contig 561 88.91 1560 Ergosterol biosynthesis ERG4/ERG24  

g8552 g14207 Contig 630 91.21 1354 Alfa/beta hydrolase fold 

g8553 g14206 Contig 630 92.94 3653 Haem peroxidase; cytochrome P450 

g8824 g13651 Contig 561 85.71 1001 Transketolase, bacterial-like 
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Figure S4.1 - Integration of intact TEs on supernumerary contigs 668 (A), 561 (B) and 550 (C). The 

graphs shows in a sliding 1kb window the fraction of bases from the reference contig that is covered 

by HiSeq reads of every isolate (value between 0 and 1). The upper track shows all TEs on contig 668, 
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561 and 550 of isolate 2516 that are >1kb and >90% identity to the element prototype with yellow 

diamonds. This TE landscape was used for comparison with isolates 2548, 7555 and bfb0173. 

Diamonds for these three isolates indicate elements for which there is read mapping that an element 

has integrated in the exact same location as the element in isolate 2516 (and is therefore ancestral). 

Diamonds that align vertically are conserved in multiple isolates.  
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Figure S4.2 - Synteny of transposable elements on the supernumerary genome. Two instances are 

shown where a transposable element is in the same location for isolate 2516 and one or more other 

isolates. Tracks from top to bottom: RepeatMasker output, HiSeq reads from isolate 2516, HiSeq reads 

from isolate 2548, HiSeq reads from isolate 7555, and HiSeq reads from isolate bfb0173. Reads that 

can map to more than one location in the genome are automatically colored yellow in CLC Genomics 

Workbench.First screenshot: A DTF_Fot3-B element has inserted into a DTA_RLT2 element on contig 

308. The DTA_RLT2 element is shared between 2516, 7555 and bfb0173. The insertion of DTF_Fot3-B 

is shared between 2516 and bfb0173. Second screenshot: a DTF_Fot2 element is shared between 2516, 

2548 and 7555 on contig 550.  
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5.1 Abstract 

In this Chapter, the goal was to determine the genetic diversity and trichothecene chemotype of 

F. poae. In addition to the 69 isolates of F. poae that are already described in Chapter 4, isolates 

from related species were collected. Genetic diversity was assessed with AFLP, which showed 

a high intra-species variability, potentially explained by the active genome dynamics described 

in Chapter 4. Trichothecene biosynthesis inducing medium was used to stimulate trichothecene 

production, and was analyzed with LC-MS/MS to identify the produced compounds. Isolates 

of F. poae were found to produce both type A and type B trichothecenes, with the former likely 

being the first to be produced in the biosynthetic pathway. Indeed, a strictly sequential scheme 

of trichothecenes was consistently detected, consisting of DAS, NEO, FUS-X and NIV. DAS 

was produced in by far the highest concentration with this approach. Opposed to the well-

described situation in the FGSC, the chemotype was not fixed in vitro, and especially type B 

production was variable. The genotype of the isolates was determined by diagnostic PCR and 

all were found to have the NIV genotype. The troublesome link between the genotype and 

chemotype in F. poae is discussed. We conclude that likely all F. poae isolates have the 

potential to produce both type A and type B trichothecenes, up to NIV, but yet unknown 

environmental or epigenetic cues determine to which stage the sequential chemotype is 

followed. 

5.2 Introduction 

An increasing number of studies has shown the importance of Fusarium poae within the FHB 

complex on small grain cereals (Xu et al., 2005; Audenaert et al., 2009). Within the last decade, 

this has sparked a number of studies that aimed to elucidate the intricacies of F. poae 

populations and the genetic diversity it contains. Additionally, a lot of attention has gone out to 

identifying the set of mycotoxins (chemotype) that isolates of the species produce in vitro and 

in vivo. 

Several studies have been carried out that investigate the population composition of F. poae. 

Kerenyi et al. (1997) detected a large number of vegetative compatibility groups (VCGs) in 50 

geographically diverse isolates. Somma et al. (2010) found in a geographically narrow 

population a high level of intra-species variability with AFLP, which was also found for 

worldwide F. poae collections by a number of techniques (AFLP, ISSR, RAPD) in a series of 

studies from an Argentinian research group (Dinolfo et al., 2010; Dinolfo et al., 2014). 

Consistently, geography can only partially explain for this large diversity at best, supporting 

the notion that F. poae isolates are generally part of one global population. Moreover, the broad 
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host range of F. poae isolates and their nature as secondary attackers within the FHB complex 

have been suggested as reasons for the lack of pathogenic subgroups associated with host 

specific specialization, in contrast to for example F. oxysporum.   

Contrary to the results in genome-wide approaches, multi-locus barcoding consistently leads to 

the detection of rather low intra-species variability (Stenglein et al., 2010; Kulik and 

Pszczolkowska, 2011). Possibly, this discrepancy may be in part explained by the specific 

genome composition of F. poae. Isolates of this species have a highly variable set of 

supernumerary chromosomes, differing in size and number between individuals (Fekete and 

Hornok, 1997). Chapter 4 of this thesis has shown that sequence absence/presence is frequent 

on these chromosomes, and moreover their presence leads to significant rearrangements within 

the core chromosomes as well. The dynamics mediated by the supernumerary chromosomes, 

and transposable elements in particular, may lead to significant genotype diversity on a short 

evolutionary timescale, not picked up with a multi-locus analysis of barcoding genes.  

Similarly, it is plausible that VCG compatibility may be quickly distorted by these genome 

dynamics. Moreover, at the time of the VCG studies, F. poae was thought of as a strictly asexual 

fungus, and recombination was not one of the causal factors considered for the highly 

complicated VCG pattern. Since then, we know that F. poae contains all the ingredients 

necessary for meiosis and it likely has an active, though perhaps infrequent, sexual cycle 

(Kerenyi et al., 2004 and Chapter 4 of this thesis).  

Investigations into the mycotoxin production profile of F. poae isolates have focused primarily 

on the trichothecenes. Trichothecenes are produced by a large number of Fusarium species and 

can be divided mainly into type A (DAS, NEO, T-2, HT-2) and type B trichothecenes (NIV, 

FUS-X, DON), differing at the functional group occupying the carbon 8 position (McCormick 

et al., 2011 and Box 2.2). The precise structure of the end products of the trichothecene 

biosynthesis depends on whichever enzymes are encoded by genes in the genome of the 

Fusarium species. Genes for trichothecene biosynthesis are organized in clusters at up to three 

different loci and homologues with different functionality may occupy the same locus in 

different Fusarium species (Kimura et al., 2007). For the case of type A versus type B 

production, different alleles of the Tri1 gene have been found to be the main determinant 

(McCormick et al., 2006). 

The mycotoxin production potential of F. poae has been the subject of debate. Roughly two 

decades ago with a first report in 1999 (Torp and Langseth, 1999), the highly toxigenic species 
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F. langsethiae emerged in Scandinavian countries, which is morphologically similar to F. poae 

(Torp and Nirenberg, 2004). The production of T-2 and HT-2 toxin was at that time sometimes 

erroneously attributed to F. poae isolates. Presently it is generally accepted that most isolates 

of F. poae are not able to produce these highly toxic trichothecenes, as they lack the functional 

Tri16 gene that is necessary for their biosynthesis (Proctor et al., 2009). Surprisingly, many 

authors have detected production of both type A and type B trichothecenes simultaneously by 

isolates of F. poae (Sugiura et al., 1993; Thrane et al., 2004; Vogelgsang et al., 2008a; Somma 

et al., 2010).  

In this study we have set up a Fusarium poae collection and analyzed the genetic diversity 

among the isolates with both a single locus barcoding and whole genome approach. Using an 

in vitro method and a validated LC-MS/MS, the chemotype of every isolate was determined.  

5.3 Material and methods 

5.3.1 Fusarium collection 

Chapter 4 of this thesis described the characteristics of 69 F. poae isolates (Table S4.1). Of 

these 69 F. poae isolates, ten isolates were kindly donated by dr. Antonio Moretti and are of 

Italian origin (Somma et al., 2010). Four isolates were donated by dr. Anne van Diepeningen 

from the CBS collection. Two isolates were donated from the Fusarium collection at 

Wageningen University and Research Centre. Five isolates originating from maize were 

donated by dr. Jonathan Scauflaire. Six isolates were purchased from the MUCL collection. 

Finally, forty-one isolates were collected from fields all over Flanders, Belgium.  

Table 5.1 – Isolates from additional Fusarium species collected for this study. “-” indicates that the 

year of isolation is unknown. 

ID Species Location Host Year Reference 

1070 F. culmorum Verrebroek, Belgium soil 2011 this study 

2702 F. culmorum Zwalm, Belgium wheat 2011 this study 

2799 F. culmorum Scy, Belgium wheat 2011 this study 

861 F. culmorum Koksijde, Belgium soil 2011 this study 

888 F. culmorum Poperinge, Belgium soil 2011 this study 

2321 F. graminearum Ciney, Belgium wheat 2010 this study 

2322 F. graminearum Ciney, Belgium wheat 2010 this study 

2415 F. graminearum Bottelare, Belgium wheat 2011 this study 

2471 F. graminearum Poperinge, Belgium wheat 2011 this study 

2472 F. graminearum Poperinge, Belgium wheat 2011 this study 

2475 F. graminearum Poperinge, Belgium wheat 2011 this study 

2598 F. graminearum Zuienkerke, Belgium wheat 2011 this study 

2715 F. graminearum Verrebroek, Belgium wheat 2011 this study 
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8/1 F. graminearum Germany unknown - Jansen et al. (2005) 

6133 F. sporotrichioides Heverlee, Belgium tobacco 1964 MUCL 

113234 F. langsethiae Norway oats - CBS 

2004/170 F. langsethiae United Kingdom wheat 2004 Imathiu et al. (2009) 

2004/171 F. langsethiae United Kingdom wheat 2004 Imathiu et al. (2009) 

041/11 F. langsethiae United Kingdom oats 2004 Imathiu et al. (2009) 

2004/59 F. langsethiae United Kingdom oats 2004 Imathiu et al. (2009) 

201086 F. langsethiae Roverud, Norway oats 2011 dr. Ingerd Hofgaard 

201087 F. langsethiae Roverud, Norway oats 2011 dr. Ingerd Hofgaard 

NRRL54940 F. langsethiae Norway oats 2011 dr. Ingerd Hofgaard 

34988 F. langsethiae Unknown wheat 1992 MUCL 

 

Field isolates, presumed to consist of a mix of species and genotypes, were obtained and 

confirmed to contain F. poae as described in Audenaert et al. (2009). These were single spored 

according to a method developed by dr. Susanne Vogelgsang (Agroscope, Zürich, Switzerland, 

personal communication). Briefly, composite isolates were sporulated by incubating a 

mycelium plug on a PDA plate for 7 days under a light regime of UV/darkness (12h (365 nm 

10W)/12h). With a cork borer, a piece of agar and sporulated mycelium was taken from the 

plate and added to 9 ml of distilled water. After vortexing and diluting the resulting conidial 

suspension six and thirty-six times, three suspensions (including the undiluted suspension) were 

obtained which were poured on plates containing water agar. Conidia were allowed to settle 

briefly after which the suspension was poured off. Plates were incubated for 16 h in the dark in 

a slanted position. Finally, with a light microscope germinating conidia with the typical F. poae 

shape were identified. These were extracted with a sterile Pasteur pipette tip and positioned on 

a fresh PDA plate.  

Eight F. graminearum isolates and five F. culmorum isolates were obtained from Belgian fields 

as described above. The F. graminearum 8/1 isolate was kindly provided by dr. Karl-Heinz 

Kogel. The F. sporotrichioides isolate and one F. langsethiae isolate were purchased from the 

MUCL collection. One F. langsethiae isolate was purchased from the CBS collection. Four and 

three F. langsethiae isolates were kindly donated by dr. Simon Edwards (Harper Adams 

College, UK) and dr. Ingerd Hofgaard (Bioforsk, Norway) respectively. These isolates are 

described in Table 5.1. The geographic origins of the isolates for the four major species in this 

study are given in Figure 5.1. 
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Figure 5.1 – Geographic origins of isolates for F. poae (yellow), F. langsethiae (red), F. culmorum 

(orange) and F. graminearum (blue). Circles are not scaled to the number of isolates collected at every 

location.  

DNA extraction of single spored isolates was performed as described by Audenaert et al. 

(2009). Isolates confirmed to be F. poae with primers Fp82F/R (Parry and Nicholson, 1996) 

were preserved at -80°C as spores in a 20% glycerol solution.  

5.3.2 Phylogenetic analyses 

DNA for AFLP was extracted with the Invisorb Spin Plant MiniKit (Invitek, Berlin, Germany) 

according to the manufacturer’s instructions and quantified with the Nanodrop 1000 system. 

Broadly, AFLP analysis was performed as described in Scauflaire et al. (2011). Restriction and 

ligation of genomic DNA was performed with EcoRI and MseI enzymes and reagents from the 

AFLP Core reagent kit (Invitrogen, now Life Technologies, USA). Pre-amplification was 

performed with the Amplification Core mix from the AFLP Microbial Fingerprinting kit of 

Applied Biosystems (now Life Technologies, USA). For the selective amplification, four 

primer pairs based on literature were used: EcoRI-AC – MseI-CC, EcoRI-AC – MseI-CA, 

EcoRI-AC – EcoRI-CG and EcoRI-GG – MseI-CA. Fragments were analyzed on a CEQ 2000 

Genetic Analysis System (Beckman Coulter, Fullerton, California) and were visualized with 

the Genographer 1.6.0 software (Benham, Montana State University, Bozeman, Montana). 

Bands were scored visually and data was processed as described in Scauflaire et al. (2011). 

From the visual scoring, a binary matrix was constructed and UPGMA cluster analysis was 

performed based on the Dice similarity coefficients between the isolates. To determine the AFLP 

profile of a clonal isolate, and to determine the genotyping error rate, DNA from one isolate 

was included three times in the experiment. 
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For EF-1α phylogeny, PCR was performed with primers EF1 and EF2 (Geiser et al., 2004). 

PCR conditions were as described in Chapter 4 of this thesis. PCR products were purified with 

the EZNA Cycle-Pure kit (VWR Chemicals, Haasrode, Belgium) and sequenced in both 

directions by Macrogen Inc. (Amsterdam, the Netherlands). Forward and reverse sequences 

were manually curated for phylogeny. Sequences were aligned with ClustalO (Sievers et al., 

2011). Maximum parsimony analysis was performed with PAUP version 4.0b10 (Swofford, 

2003). F. langsethiae (NCBI accession AJ420822), F. sporotrichioides (NCBI accession 

AJ420818) and F. kyushuense (NCBI accession AJ427274) were included to be used as 

outgroup, however for construction of the tree mid-point rooting was used. Bootstrapping was 

performed with PAUP 4.0b10 based on 1000 replicates. 

5.3.3 Chemical analyses 

A trichothecene biosynthesis inducing medium described by Gardiner et al. (2009) was used. 

The general composition of the medium was identical as described in their study, but Phytagel 

was excluded and NaNO3 was exchanged with L-arginine (Duchefa Biochemie, Haarlem, the 

Netherlands) at 5 mM, as Gardiner et al. (2009) showed that this nitrogen source induces 

trichothecene biosynthesis in F. graminearum. Medium was prepared in double concentration 

so that the final medium+conidia was 1x concentrated. Conidia were harvested by adding 

distilled water amended with 0.01% Tween80 (Merck, Germany) to the fully grown PDA plates 

and by rubbing the sporulated mycelium with a spatula. Conidia were counted with a Bürker 

counting chamber and diluted to a final concentration of 2x106 conidia/ml. Finally, 0.5 ml of 

double concentrated medium and 0.5 ml of double concentrated conidial suspension were added 

together in 24 well plates (leading to 1x concentration of medium and 1x concentration of 

conidia) and grown in stationary phase under 16h light / 8h dark regime at 22°C. After seven 

days, supernatant was extracted from the cultures by centrifugation and immediately processed 

for LC-MS/MS analysis. 

Sample preparation and LC-MS/MS followed an “evap and shoot” principle, without extensive 

sample cleanup. Individual mycotoxin solid standards (1 mg) of DON, NIV, 3-ADON, 15-

ADON, NEO, FUS-X, T-2, HT-2, DAS and deepoxydeoxynivalenol (DOM) were supplied by 

Coring System Diagnostics (Gernsheim, Germany) as certified solutions. All mycotoxin solid 

standards were dissolved in acetonitrile (1 mg/ml), and were storable for a minimum of 1 year 

at -18 °C (Spanjer et al., 2008). Working solutions of 10 ng/µl for DON, NIV, 3-ADON, 15-

ADON, NEO, FUS-X, T-2, HT-2, DAS and DOM were prepared in methanol and stored at -18 

°C. From the individual working solutions, a mixture was prepared in methanol, stored at -18°C 
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and renewed monthly with the following concentrations: the mycotoxin mix (mycotoxins, 10 

ng/µl) and the internal standard (DOM, 10 ng/µl). 

An aliquot of the trichothecene biosynthesis inducing medium (1.0 ml) was transferred in a 10 

ml glass tube and the internal standard was added (DOM, 10 µl, final concentration 100 ng/ml). 

For the construction of a calibration curve, five blank aliquots were spiked with the mycotoxin 

mix in an increasing concentration range (2 µl (20 ng/ml), 5 µl (50 ng/ml), 10 µl (100 ng/ml), 

15 µl (150 ng/ml) and 20 µl (200 ng/ml), respectively). The sample was vortexed for 2 minutes 

(Labinco, Breda, The Netherlands). Then, the spiked medium was evaporated to dryness under 

a gentle N2-stream at 60 °C using the Turbovap® LV Evaporator (Biotage, Uppsala, Sweden). 

The dried residue was redissolved in 100 µl injection solvent, which consisted of 70% mobile 

phase A (water/methanol (95/5, v/v) + 5 mM ammonium acetate, 0.1% glacial acetic acid) and 

30% mobile phase B (water/methanol (95/5, v/v) + 5 mM ammonium acetate, 0.1% glacial 

acetic acid). Prior to injection, the sample was vigorously vortexed for 2 minutes, collected in 

a 0.22 µm Ultrafree-MC centrifugal device (Millipore, Bedford, MA, USA) and centrifuged for 

10 minutes at 10 000 g. LC-MS/MS methodology was as detailed in the Appendix of this thesis. 

LODs and LOQs for the trichothecenes produced by F. poae were respectively 30 and 61 ng/ml 

(NIV), 31 and 63 ng/ml (FUS-X), 39 and 78 ng/ml (NEO) and 41 and 82 ng/ml (DAS). Certain 

analyzed samples showed peaks which according to the calibration curve corresponded to 

concentrations between the LOD and the LOQ for DAS, NEO and FUS-X. These samples were 

assigned the LOD concentration as they could not be reliable quantified.  

Pearson correlations between the levels of trichothecenes were determined with Microsoft 

Excel 2013. The concentration range of the trichothecenes was visualized in Box-Whiskers 

plots, constructed with SPSS22.   

5.3.4 Diagnostic PCR 

The NIV genotype of the F. poae isolates was investigated with primers designed by Dinolfo 

et al. (2012). These primers amplify a 300 bp portion of the Tri7. PCR conditions were as 

described earlier in this thesis.   

5.4 Results 

5.4.1 Fusarium poae is a monophyletic species with high intra-species variability 

Figure 5.2 shows the result of the AFLP analysis. Over all isolates (n = 88), 423 markers were 

scored of which 421 were polymorphic. Considering only the F. poae isolates (n = 64), 247 markers 

were scored of which 201 were polymorphic. All isolates of F. poae described in Table S4.1 (n = 69) 
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were used for the AFLP analysis except five: isolates 175, 2521, 6127, 7555 and 42824. F. 

graminearum and F. culmorum, and F. langsethiae and F. sporotrichioides, cluster into 

separate clusters and are separated as species. This confirms the power of the analysis to 

discriminate between closely related species. Isolate 9125 was included three times in the 

analysis. The clustering of these three repetitions shows what a perfectly clonal isolate looks 

like and can serve as a reference for the rest of the tree. Finally, the genotyping error rate was 

only 3.3 to 3.8% over different primer pairs, similar to levels that have been described in 

literature (2-5%) (Mueller and Wolfenbarger, 1999; Bonin et al., 2004).  

The F. poae isolates are divided into subclusters that do not correspond to host or geographic 

origin. Indeed, isolates from maize (L24, K46, S46, Q57, F49), and isolates from Italy 

(designation 9###), are spread throughout the tree. However, the one Chinese isolate in the 

study (bfb0173) clusters apart from the other F. poae isolates. The ten Italian isolates were 

included in an AFLP analysis before (Somma et al., 2010). In this study, isolates 9181 and 9196 

clustered closely together as they do in our AFLP. Three of the four Italian isolates (9186, 9192, 

9203, 9194) that cluster together tightly in our study, also clustered together in the Italian study, 

but the fourth is in a different group.  

Figure 5.3 shows a maximum parsimony phylogenetic tree based on an alignment of the EF-

1α sequences, with F. langsethiae, F. sporotrichioides and F. kyushuense as outgroups. The 

twenty three F. poae isolates were aligned over a 651 bp EF-1α fragment, and 4 parsimony 

informative sites were retrieved. These cluster the isolates into three sets that consist of identical 

sequences. Isolates 2410 and 2524 are in the same AFLP subcluster. Isolates 9189 and 9209, 

and 2043 and 2377 are very tightly clustered as well, but these pairs of isolates do not cluster 

with each other or isolate 177 in the AFLP analysis.  
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Figure 5.2 – Result of the AFLP analysis on 65 F. poae isolates, and isolates from F. langsethiae, F. 

sporotrichioides, F. culmorum and F. graminearum as outgroups. All F. poae isolates described in Table 

S4.1 (n = 69) were included in the AFLP analysis except isolates 175, 2521, 6127, 7555 and 42824. 

UPGMA cluster analysis was performed based on the Dice similarity coefficients between the isolates. 

Over all isolates (n = 88), 423 markers were scored of which 421 were polymorphic. Considering only 

the F. poae isolates (n = 64), 247 markers were scored of which 201 were polymorphic. Bootstrap 

values exceeding 70% are given at the nodes, based on 1000 replications. Fp = F. poae; Fl = F. 

langsethiae; Fs = F. sporotrichioides; Fg = F. graminearum; Fc = F. culmorum. The scale bar at the 

bottom gives the genetic similarity based on the Dice coefficient, with a change in color at the 60% 

boundary. Three technical replicates of isolate 9125 are shown with a blue bar. Three isolates used for 

genome sequencing in Chapter 4 are indicated with a red arrow (isolate 7555 was not included in the 

AFLP analysis). Isolates that are discussed in the text in relation to the EF-1α phylogeny in Figure 5.3 

are denoted with asterisks.  

 

Figure 5.3 – Maximum parsimony phylogenetic tree for F. poae isolates based on partial EF-1α 

sequence, construed with PAUP* 4.0b10. F. langsethiae (NCBI accession AJ420822), F. sporotrichioides 
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(NCBI accession AJ420818) and F. kyushuense (NCBI accession AJ427274) were included in the analysis 

as outgroups, however these were not forced on to the tree and mid-point rooting was used. Bootstrap 

values exceeding 70% are given at the nodes based on 1000 replicates. Isolates designated with an 

asterisk are discussed explicitly in the text, in relation to the AFLP analysis in Figure 5.2. Three types of 

EF-1α were detected (marked by yellow, green and grey). 

5.4.2 Isolates of F. poae produce both type A and type B trichothecenes 

The chemotyping method, including the culturing on liquid medium and LC-MS/MS analysis 

without prior sample-cleanup, was biologically validated by analyzing a number of isolates 

from different species with known chemotype. F. langsethiae and F. sporotrichioides isolates 

produced abundant DAS, NEO, T-2 and HT-2. Two F. culmorum isolates with NIV genotype 

produced NIV, FUS-X and small amounts of 15-ADON. Three F. culmorum isolates with 3-

ADON genotype produced DON, 3-ADON and limited 15-ADON. Five isolates with F. 

graminearum 15-ADON genotype produced DON, 3-ADON and 15-ADON. Conversion 

between 3-ADON and 15-ADON is known to occur under certain conditions (Alexander et al., 

2011). 

Figure 5.4 shows for 61 F. poae isolates the trichothecenes that were detected in the 

trichothecene biosynthesis inducing medium. The values were log transformed as the amounts 

of DAS were several orders of magnitude larger than those of the other toxins. It is also at the 

highest incidence, with 59 of 61 isolates being positive for DAS, ranging from the LOD to 22 

300 ng/ml. Of these 59 isolates, 55 produced NEO in the range of the LOD to 375 ng/ml. Of 

this set, 24 isolates produced FUS-X in the range of the LOD to 171 ng/ml. Finally, of the FUS-

X producers, 14 isolates also produced NIV in the range of 88 ng/ml to 122 ng/ml. The 

sequential nature of the chemotype is visualized in Figure 5.5A.  
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Figure 5.4 – Detailed representation of the trichothecene production profile of 61 F. poae isolates. Isolates are ordered from highest DAS production to 

lowest DAS production (two isolates with no DAS detected). The y axis shows the log transformation of the amount of trichothecenes detected. DAS was 

produced by most isolates and in the highest concentrations, as can be seen in Figure 5.5A and C. 
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Figure 5.5 – A: simplified representation of the chemotype of 61 F. poae isolates. The chemotypes detected were strictly sequential, i.e. when compounds 

lower on the scheme are detected, the compounds higher on the scheme have also been produced. B: Pearson correlations between the four trichothecenes 

that are produced by F. poae isolates. A lighter color corresponds with a higher correlation. C: overview as Box-Whisker plots of the concentration ranges 

within which the four trichothecenes were detected. Note that the range of the y axis for DAS is two orders of magnitude higher than the range for NEO, FUS-

X and NIV concentrations. The boxes for every mycotoxin show the lower and upper quartile (delineating the boxes) of the measured concentrations (ng/ml) 

and the median (thick line within the boxes). The whiskers represent the minimum and maximum values. Circles and asterisks are outliers and extreme values 

which fall respectively outside of one-and-a-half additional box lengths and three additional box lengths counted from the upper quartile limit. 
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Figure 5.5C summarizes the trichothecene production in vitro for all isolates combined. DAS 

production is higher by several orders of magnitude compared to production of NEO, FUS-X 

and NIV. Note that two outliers/extreme values for DAS and NEO overlap, e.g. number 1 

(isolate 30702) and 2 (isolate 9194). Concordantly, Figure 5.5B shows that production of DAS 

and NEO is correlated.  

5.4.3 The type A+B trichothecene chemotype is not fixed in vitro 

Table 5.2 shows the result of two biological repetitions of the chemotyping experiment for 28 

isolates. Compounds with a plus sign were detected consistently, while compounds with a red 

“o” were only detected in one of the repetitions. For 20 of the isolates in this experiment, the 

sequential chemotype as it is illustrated in Figure 5.5A, could sometimes be expanded to move 

“further downstream”, with FUS-X or even NIV production where there was none in another 

iteration. The chemotype of seven isolates was identical in the different repetitions: for example 

isolate 7555 only produced DAS, and isolate 2569 produced all four compounds. Finally, isolate 

2521 did not produce any toxins in one of the repetitions (one of the two such isolates depicted 

in Figure 5.4). It should be noted that with only two biological repetitions, it is difficult to 

assign a definitive chemotype for every isolate, particularly as the chemotype appears to be 

variable in vitro. However, importantly, the sequential nature of the detected chemotype was 

never violated.  
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Table 5.2 – Result of two biological chemotype repetitions for 28 F. poae isolates. Black “+” marks 

denote compounds that were consistently detected, red “o” represent compounds that were detected 

only in one of the repetitions, “-” is not detected. Note that sample 2521 has only “o”, since in one 

interation no trichothecenes were detected from this isolate (see Figure 5.4). 

Isolate  DAS NEO FUS-X NIV 

2371 + + o - 

2375 + + o - 

2377 + + + o 

2381 + + o - 

2390 + + o o 

2392 + + o - 

2395 + + o - 

2411 + + - - 

2491 + + o - 

2514 + + + o 

2516 + + o o 

2517 + + o - 

2519 + + o - 

2521 o o - - 

2524 + + o - 

2525 + + o - 

2531 + + o o 

2532 + + + - 

2548 + o o - 

2569 + + + + 

S46 + + - - 

F49 + + o - 

6114 + + - - 

6127 + + + - 

7555 + - - - 

11456 + + + o 

30702 + + + o 

42824 + + o - 

 

5.4.4 All F. poae isolates have a NIV genotype 

The same 61 isolates that were used in the in vitro chemotyping were also used for genotyping. 

This is the process wherein a diagnostic PCR is used to predict the “chemotype” of an isolate 

based on the presence of some genetic marker, previously identified to be specific for the 

production of (a) certain compound(s). For all F. poae isolates, this PCR gave a positive result 

and therefore all isolates can be considered to have a NIV genotype and should have the genetic 

machinery for NIV production (Figure 5.6). 



137 

 

 

Figure 5.6 – Gel electrophoresis of diagnostic PCR targeting the NIV genotype in F. poae. According 

to Dinolfo et al. (2012), a ~300bp fragment indicates a NIV genotype, which was present for all isolates 

tested. M is for the molecular weight marker (Thermofisher’s Massruler DNA Ladder, Low range).  

5.5 Discussion 

The high intraspecies variability of F. poae when analyzed with genome wide methods has been 

noted before, as studies with VCGs (Liu and Sundheim, 1996), RAPD (Kerenyi et al., 1997), 

AFLP (Somma et al., 2010) and ISSR (Dinolfo et al., 2010). This is in sharp contrast to 

multilocus barcoding analyses, which consistently pick up only low genetic variability 

(Stenglein et al., 2010; Kulik and Pszczolkowska, 2011). The phylogenetic analyses carried out 

in this study fit with what has been described previously. EF-1α sequencing is the preferred 

barcoding approach for Fusarium species (Geiser et al., 2004), but is also used for phylogeny 

(Kristensen et al., 2005; Somma et al., 2010). AFLP is not generally usable for determining 

evolutionary phylogeny between species, and has higher resolution at the refined level of 

isolates from the same species (Baayen et al., 2000). Nevertheless, the clustering in the AFLP 

tree of F. sporotrichioides and F. langsethiae with F. poae fits with phylogeny and matches 

earlier observations by Schmidt et al. (2004a).  

The active genome dynamics within this species may partially account for the high intra-species 

variability in F. poae. A subcluster of the AFLP tree is made up of isolates that have a specific 

genome insertion of several 100kb of sequence (Chapter 4 of this thesis). The power of AFLP 

to discriminate Fusarium species to the clonal level has been shown before (Chulze et al., 2000). 

Chapter 4 of this thesis shows that both sexual and clonal reproduction is likely occurring in 

the F. poae population. Taking the technical repetition of isolate 9125 as the reference for a 
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clonal isolate, at most seven instances of two clonal isolates are present in the collection. 

Isolates 2516 and 2531 are one set of such likely clonal isolates. As TE-mediated disruptions 

and rearrangements occur on evolutionary very short timescales, this could be one of the factors 

explaining the discrepancy in intra-species variability between genome-wide and multi-locus 

barcoding approaches. Therefore, it is possible that transposable element proliferation is 

obscuring the similar or even clonal nature of some (sets of) isolates. 

Five isolates from maize are included in the study, aside from primarily isolates from wheat. 

The maize isolates cluster throughout the tree, suggesting that no significant host specialization 

has occurred within F. poae. This is in agreement with literature reports that suggest that most 

isolates have a broad host range (Kerenyi et al., 1997). No clear geographic subclustering was 

observed, which is in accordance with previous studies (Dinolfo et al., 2010; Dinolfo et al., 

2014). Nevertheless, isolate bfb0173 from China clustered separate from all other isolates, and 

Kerenyi et al. (1997) reported a partial correlation between geographic origin and VCG/RAPD. 

All isolates in the study share >75% similarity, suggesting that they are part of a single 

monophyletic lineage, which is similar to what was found before for F. poae (Schmidt et al., 

2004b; Kristensen et al., 2005).  

This study represents the first time an effective trichothecene biosynthesis inducing medium 

has been used for F. poae. Previous studies have utilized autoclaved cereal substrates 

(Vogelgsang et al., 2008a; Somma et al., 2010) and in planta inoculations (Vogelgsang et al., 

2008b). Notably, the genetically unusual chemotype of both type A and type B trichothecene 

production holds in both approaches. Inoculations in cereal matrices seemingly shift the balance 

more towards type B production, while the in vitro trichothecene biosynthesis induction 

medium mainly stimulated DAS production. The reason for this is unknown, however the 

sequential chemotype demonstrated here makes it highly likely that DAS is the first 

trichothecene produced. It is plausible that the cues for further progress down the metabolic 

grid are not present in vitro. MAS and NIV have been detected together from F. poae in several 

studies, however, there are some discrepancies as to which compound of the two is produced at 

the highest level (Liu et al., 1998; Vogelgsang et al., 2008b). Trichothecenes of the DAS-related 

group such as MAS and SCR are often overlooked in mycotoxin surveys, while they may be 

important compounds in nature, particularly associated with F. poae (Liu et al., 1998; 

Schollenberger et al., 2011). NEO, the other type A trichothecene produced by F. poae in our 

in vitro setup has been detected in small amounts from F. poae infected cereal matrices (Liu et 

al., 1998; Thrane et al., 2004).  
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The discrepancies in chemotype depending on the matrix or medium that is used, may lead to 

an underestimation of certain toxicological aspects of F. poae. The Italian isolates in this study 

were previously chemotyped by growth on autoclaved wheat. Three that were found to produce 

no type A trichothecenes, produced both DAS and NEO in the trichothecene biosynthesis 

induction medium. This may be an important point to make, as reports exist stating that at least 

in planta type A trichothecenes are more toxic than type B trichothecenes (Desjardins et al., 

2007). The situation is less clear when toxicity to animals is considered. While it is generally 

stated that again type A trichothecenes are more toxic than type B trichothecenes (Placinta et 

al., 1999), big differences between trichothecenes belonging to the same class make it difficult 

to make such an unequivocal distinction (Ueno, 1983). The instability of the F. poae chemotype 

with respect to type B trichothecene production and the strictly sequential chemotype pattern 

dictate that type A trichothecenes should be the first to be produced in F. poae (see Chapter 6 

of this thesis). 

The production of T-2 and HT-2 toxin, while contentious in the past, is not regularly found for 

F. poae isolates at present. Thrane et al. (2004) found T-2 and/or HT-2 production in five out 

of 49 investigated isolates, the genotype of which is not known. We found trace amounts of T-

2 for one isolate in our study (isolate 2548; data not shown). The Tri16 gene is not functional 

in this isolate (determined from the genome sequence obtained in Chapter 4), and T-2 was not 

detected again upon multiple repetitions. We argue that in certain media T-2 may be 

metabolized from closely related type A trichothecenes, whether enzymatically or by chemical 

equilibrium, but F. poae is likely not an active producer of the compound. Due to the close 

correlation between DAS and NEO found in the liquid medium (Figure 5.5B), we set out to 

determine whether a chemical equilibrium may be at play between these compounds. 

Incubation experiments with DAS at 10 and 20 mg/kg did not yield detectable NEO however. 

We found no correlation between the type A and the type B trichothecenes in our study, contrary 

to Liu et al. (1998) and Vogelgsang et al. (2008a) who saw a correlation between MAS and 

NIV.  

Within the type B producing FGSC, it is common to define the chemotype of an isolate by its 

genotype, determined by a diagnostic PCR of a differential trichothecene biosynthesis gene 

(Pasquali and Migheli, 2014). A similar method has been developed for the NIV chemotype in 

F. poae, which is based on the Tri7 gene (Dinolfo et al., 2012). However, the functionality of 

the acetyltransferase encoded by the Tri7 gene is required for the production of all 

trichothecenes produced by F. poae, DAS, NEO, FUS-X and NIV (McCormick et al., 2011), 
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and therefore the test based on the Tri7 gene may not be very selective. All F. poae isolates in 

the study of the research group that developed the diagnostic PCR, all F. poae isolates in the 

study by Covarelli et al. (2015), and all F. poae isolates in our study were determined to have 

the NIV genotype with this test.  

We conclude that likely all F. poae isolates have the genetic machinery to produce NIV, and 

defining the chemotype in this way may be rather uninformative. Instead of a separate 

chemotype on its own, NIV is the end product of a strictly sequential type A + type B 

trichothecene chemotype (Figure 5.5A), the production of which is heavily dependent on the 

environmental conditions. This sequential nature of the chemotype and the lack of cues in vitro 

that lead production all the way to NIV is likely the reason for the detected instability in this 

study. The absence of these cues could lead to the production of only marginal amounts of NIV 

in vitro, and inconsistently over repetitions. Therefore, the link between a diagnostic genotype 

and the chemical chemotype in F. poae may not be straightforward, and as Desjardins (2008) 

argued more generally, it should be treated with caution.  
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Chapter 6: Identifying the cause of the 

type A + B trichothecene chemotype in 

Fusarium poae 
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6.1 Abstract 

In this study, we set out to identify how the unique and sequential type A + type B trichothecene 

chemotype that was identified in Chapter 5 can be explained at the genetic level. Moreover, we 

wanted to uncover whether any genomic determinants may be responsible for the instability of 

the chemotype. Using the genome sequences obtained in Chapter 4, the composition of the 

trichothecene biosynthesis loci was investigated. As expected, these are highly syntenic with 

other toxigenic Fusarium species. Notably, the locus containing 12 of the 14 genes required for 

trichothecene biosynthesis in F. poae (hereafter referred to as the Tri cluster) and its 

environment are invaded by TEs, and using these elements as markers a recombination event 

in the Tri cluster was uncovered. A pogo TE in the middle of the Tri cluster, which occurs in 

more than half of the F. poae isolates, was however not correlated with the unstable chemotype 

determined in Chapter 5 of this thesis. As Tri1 is one of the molecular switches determining 

type A and type B trichothecene production in other fusaria, the allelic variation at this locus 

was assessed. Two major types of the gene were uncovered with 3% divergence, but nearly all 

SNPs were found to be synonymous, therefore chemotype variability could also not be 

explained by variability at the Tri1 locus. Comparative in silico homology modelling indicated 

that TRI1 function in F. poae may not be different from that in F. graminearum. However, 

based on overall similarity of the trichothecene clusters between species, the function of 

FpTRI13 is likely similar to that in F. sporotrichioides, with a broader substrate range than in 

F. graminearum. We argue that the combination of the F. sporotrichioides-like TRI13 and the 

F. graminearum-like TRI1 leads to the type A + type B trichothecene chemotype in F. poae. 

This hypothesis was confirmed by Tri13 gene swap transformations in F. poae. 

6.2 Introduction 

The ability of F. poae to produce both type A and type B trichothecenes was first described 

over 20 years ago (Sugiura et al., 1993). Since then, several researchers have seen the same 

chemotype associated with F. poae (Thrane et al., 2004; Somma et al., 2010). Chapter 5 of this 

thesis analyzed the trichothecene production of 61 isolates and described that most if not all 

isolates are able to produce type A and type B trichothecene under trichothecene biosynthesis 

inducing conditions. Moreover, a genetic chemotyping method identified all isolates as having 

a NIV chemotype. In planta, the most important factors determining trichothecene biosynthesis 

include the host and environmental conditions. However, in Chapter 5, an unstable type A + 

type B trichothecene chemotype was detected under controlled in vitro conditions. The nature 
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of the trichothecene combinations detected in vitro indicated that type A trichothecenes are 

likely the first to be produced in the biosynthetic pathway.  

It is believed that rather than a linear series of enzymatic conversions, trichothecene 

biosynthesis is accomplished by a molecular grid, wherein different routes can lead to the same 

end product, and minor and major pathways coexist (Kimura et al., 2007). Broadly, the 

biosynthesis starts with the cyclization of trichodiene out of farnesyl pyrophosphate by the TRI5 

enzyme. It is the first metabolic step that is specific to the trichothecene biosynthesis and is 

therefore a knockout target for physiological studies investigating the function of trichothecenes 

in different species (Jansen et al., 2005). The first steps of trichothecene biosynthesis are given 

in Figure 6.1. 

 

Figure 6.1 – First steps of trichothecene biosynthesis, leading to the backbone structure of the 

trichothecene molecule with the carbon positions for further substitutions numbered. Source: 

McCormick et al. (2011). 

McCormick et al. (2011) recently reviewed the trichothecene biosynthesis (see Figure 6.1 and 

Figure 6.2). Trichodiene undergoes a series of enzymatic and non-enzymatic modifications, 

including some for which no mechanism has been elucidated. The first step is mediated by Tri4 

which encodes a cytochrome P450 monooxygenase that catalyzes the addition of four hydroxyl 

groups to trichodiene. The resulting isotrichotriol is non-enzymatically converted to 

isotrichodermol. This intermediate is subsequently processed by an acetyltransferase encoded 

by Tri101, which has been proven to reduce the toxicity of the metabolite and can be seen as a 

form of self-protection for the organism (Kimura et al., 1998). A monooxygenase encoded by 

Tri11 adds another hydroxyl group which is then acetylated by the enzyme encoded by Tri3. 

These steps are shared between isolates of different Fusarium species or chemotypes. The steps 

that follow have different outcomes depending on whichever homologue of a certain gene is 
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present in the genome of an individual. They are “molecular switches” that define the 

chemotype of the organism (see Figure 6.2 and Table 6.1).  

 

Figure 6.2 – Trichothecene biosynthesis pathway in Fusarium species (adapted from McCormick et 

al. (2011)). Enzymatic steps in orange print are the molecular switches of trichothecene biosynthesis: 

the presence of specific homologues of these genes will lead to a particular chemotype in the 

individual. For steps in dashed lines, no enzyme has been identified. Toxins in red are type A 

trichothecenes, green represents type B trichothecenes. Finally, the four compounds produced in F. 

poae are identified with black boxes.  

The four molecular switches of trichothecene biosynthesis in Fusarium are listed in Table 6.1 

along with their respective functions. The most important determinant of type A versus type B 

trichothecene production is TRI1. Depending on whichever homologue is present within the 

genome, this P450 monooxygenase enzyme catalyzes the addition of one or two hydroxyl 

groups on its substrate (see Figure 6.3). FgTRI1 catalyzes the addition of two hydroxyl groups 

on its substrate calonectrin, which is not a substrate for FgTRI13 according to Kimura et al. 

(2007). The hydroxyl group at C8 is converted to a keto group by an unknown mechanism. The 

resulting 7,8 acetyl deoxynivalenol is a substrate for FgTRI13 and is hydroxylated in strains 

that have a NIV chemotype. In F. graminearum strains that have a DON chemotype, TRI8 

converts the diacetylated substrate to mono-acetylated compounds, removing an acetyl moiety 

at C3 or C15 depending on the specific ADON chemotype of the isolate. The final step of 

ADON to DON is genetically not yet understood. The role of TRI1 as a molecular switch for 

trichothecene biosynthesis in F. graminearum was confirmed recently, when mutations at the 

Tri1 locus in a subpopulation of this species led to novel trichothecene chemotypes (Varga et 

al., 2015).  
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Figure 6.3 – Functional characterization of two important molecular switches of trichothecene 

biosynthesis. A: TRI13 mediates hydroxylation at the C4 position. FlTRI13 has a broad substrate range, 

opposed to FgTRI13-NIV which has a narrow substrate range and can only hydroxylate the substrate 

after it has been hydroxylated at C7 and C8 (Kimura et al., 2007). B: FgTRI1 catalyzes hydroxylation at 

C7 and C8, while FlTRI1 catalyzes hydroxylation only at C8 (McCormick et al., 2006). 

The function of TRI1 is different in type A trichothecene producers. Most research into type A 

producers has been performed in F. sporotrichioides. This species is closely related to F. 

langsethiae and produces the same trichothecenes (Schmidt et al., 2004a), therefore it is 
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reasonable to assume that trichothecene biosynthesis should be similar, and the rest of this 

description will focus on F. langsethiae. In F. langsethiae, addition of only one hydroxyl group 

is catalyzed by FlTRI1. Biochemically this is possible with calonectrin as the substrate, as 

occurs in F. graminearum by FgTRI1. However, this is not the major pathway. Rather, 

calonectrin is a good substrate for FlTRI13 (in contrast to FgTRI13), and is hydroxylated by 

TRI13 and subsequently acetylated by TRI7 at C4. The resulting triacetoxyscirpenol is 

hydroxylated once at C8, giving rise to 3-acetylneosolaniol (3-ANEO). In F. langsethiae, a 

functional TRI16 enzyme is encoded, which subsequently acetylates 3-ANEO at C8, leading to 

3-acetyl T-2 toxin (3-AT-2). Both 3-ANEO and 3-AT-2 are good substrates for TRI8 which 

converts them to respectively neosolaniol and T-2 toxin. Finally in F. langsethiae, 

triacetoxyscirpenol may also be converted to a type A trichothecene without the intervention of 

TRI1, depending on the esterification by TRI8 to 4,15 diacetoxyscirpenol. Table 6.1 shows that 

depending on the species or chemotype, certain molecular switches may be non-functional due 

to mutations or deletions. The trichothecene producing Fusarium ancestor likely had functional 

Tri13 and Tri16 genes, as it is more likely for a functional gene to become non-functional than 

vice versa (Lee et al., 2002; Proctor et al., 2009). 

Table 6.1 – Molecular switches of trichothecene biosynthesis in Fusarium species. 

Species (chemotype) Enzyme Function Reference 

F. langsethiae (type A) TRI1 one hydroxylation at C8 McCormick et al. (2006) 

 TRI8 deacetylation at C3 Alexander et al. (2011) 

 TRI13 hydroxylation at C4, broad substrate range Kimura et al. (2007) 

 TRI16 esterification of C8 Peplow et al. (2003) 

F. poae (type A+B) TRI1 hydroxylation at C7 and C8  

 TRI8 deacetylation at C3  

 TRI13 hydroxylation at C4, broad substrate range  

 TRI16 absent/truncated Proctor et al. (2009) 

F. graminearum NIV (type B) TRI1 hydroxylation at C7 and C8 McCormick et al. (2006) 

 TRI8 deacetylation at C3 Alexander et al. (2011) 

 TRI13 hydroxylation at C4, narrow substrate range Kimura et al. (2007) 

 TRI16 Nonfunctional Proctor et al. (2009) 

F. graminearum DON (type B) TRI1 hydroxylation at C7 and C8 McCormick et al. (2006) 

 TRI8 deacetylation at C3 or C15  Alexander et al. (2011) 

 TRI13 Nonfunctional Lee et al. (2002) 

 TRI16 Nonfunctional Proctor et al. (2009) 
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The genes that code for the proteins that are described above are located together in clusters 

within the genome. It is thought that maintaining the genes for secondary metabolism together 

may confer an evolutionary advantage to pathogens, as epigenetic co-regulation becomes easier 

and genes have less chance of being separated during recombination events (Keller et al., 2005). 

Indeed, transcription factors tasked with the specific regulation of genes involved in the 

production of one secondary metabolite are often included within the secondary metabolite 

cluster. In the case of trichothecene biosynthesis, TRI6 and TRI10 are such transcription factors 

(Seong et al., 2009). Secondary metabolites are often classified by the nature of their chemical 

backbone structure, the formation of which is mediated by the first enzyme in the biochemical 

pathway. In the case of trichothecenes, this enzyme is TRI5. Beside the backbone gene, 

transcription factors and various tailoring enzymes (mediating hydroxylation, acetylation, etc.), 

efflux pumps may be encoded within the cluster that export the mycotoxins out of the hyphae, 

such as TRI12 in Fusarium (Menke et al., 2012). It was recently shown in Fusarium 

graminearum that during trichothecene metabolism, the involved enzymes are located in each 

other’s proximity in the cytoplasm of the cell in so-called toxisomes (Broz and Kistler, 2014).  

Rather unusual for secondary metabolite biosynthesis, the genes for trichothecene biosynthesis 

are located at 3 loci in Fusarium species. They are the Tri cluster, containing the Tri5 backbone 

gene, various tailoring enzymes (Tri11, Tri4, Tri13, Tri8), two transcription factors (Tri6, 

Tri10) and an efflux pump (Tri12). A second locus consists of the Tri1 gene, and in some 

species additionally the Tri16 gene. Finally the third locus only contains one gene implicated 

in trichothecene biosynthesis, namely Tri101. Phylogeny of the trichothecene genes included 

in the Tri cluster, and Tri101, follow species phylogeny (Proctor et al., 2009). The phylogeny 

of the Tri1 locus however is not concordant with species phylogeny, as alleles of Tri1 are more 

similar to their homologues in distantly related species than to those in more closely related 

species (Proctor et al., 2009). This is illustrated in Figure 6.4. It was concluded that the four 

alleles of Tri1 found within Fusarium species were likely to already have been present in the 

ancestral trichothecene producing Fusarium. The non-concordant phylogeny of Tri1 when 

compared to species phylogeny is similar to the principle of trans-species polymorphism, which 

may be found within the type B trichothecene producing species. In that case, features of genes 

in the Tri cluster are shared between chemotypes, transcending species boundaries, and species 

may have different versions of Tri genes depending on their chemotype (Ward et al., 2002).  

Surprisingly, in the F. equiseti clade, the Tri cluster has grown by relocation of the Tri1 and 

Tri101 genes, that have moved from their ancestral separate loci into the Tri cluster. Moreover, 
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regulation of F. equiseti trichothecene production may be different than in other Fusarium 

species, as an additional Zn2Cys6 transcription factor is present between Tri5 and Tri6 in the 

cluster (Proctor et al., 2009). The F. equiseti clade diverged from a trichothecene producing 

ancestor early in the evolution of trichothecene producing species. This can be seen in Figure 

2.1 (F. equiseti clade designated as the incarnatum-equiseti species complex, shaded grey). It 

has been described that F. equiseti isolates may also produce type A and type B trichothecenes 

simultaneously (Barros et al., 2012; Marin et al., 2012). 

 

Figure 6.4 – Four alleles of the Tri1 gene as described by Proctor et al. (2009). 

How the molecular switches that mediate type A and type B trichothecene production work 

together to allow simultaneous production of both trichothecene types is unknown. Both F. 

poae and F. equiseti individuals have been described to produce both types simultaneously. 

Regulation of trichothecene production in F. equiseti may be particularly divergent however 

(Proctor et al., 2009). Fusarium poae isolates may therefore be a better fitting model to 

investigate the unusual chemotype. In Chapter 5 of this thesis, we showed that the link between 

the genotype and the detected chemotype may be tenuous in this species, and likely all isolates 

have the potential to produce both type A and type B trichothecenes. In this Chapter, we took 

the genome sequence of one such isolate and characterized the nature and function of the 

molecular switches. We compared the build-up of the trichothecene loci with other whole 
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genome sequenced isolates and screened the population for diversity at the Tri1 locus. Finally, 

we propose a biosynthetic grid that explains the F. poae chemotype.  

6.3 Material and methods 

6.3.1 Sequence analysis 

The genome sequences described in Chapter 4 of this thesis were used to extract the sequence 

of the trichothecene loci in isolates 2516, bfb0173, 2548 and 7555. The machine annotation of 

isolate 2516 was checked to ascertain that genes were correctly annotated, in accordance with 

literature on related Fusarium species. Similarities between amino acid sequence of the 

predicted proteins, and between nucleotide sequence of the intergenic regions, were determined 

with ClustalW2 (Larkin et al., 2007). 

To visualize differences between Tri1 alleles, the HiSeq reads of isolates bfb0173 and 2548 

(see Chapter 4 of this thesis) were mapped to the only Tri1 allele already published (NCBI 

accession GQ915520) with CLC Genomics Workbench 7.5. Reads were mapped at 0.5 length 

fraction and 0.8 similarity fraction.  

A 1100 bp fragment of the Tri1 gene was sequenced for a set of 34 isolates selected from 

different backgrounds and characteristics (see Chapters 4 and 5 of this thesis). Primers are 

shown in Table 6.2. PCR and sequencing were performed as described in Chapter 4 and 5 of 

this thesis. Maximum parsimony analysis was performed with PAUP version 4.0b10 (Swofford, 

2003). The Tri1 fragment from Fusarium sp. NRRL 36351 (NCBI accession GQ915523.1) was 

used as the outgroup, however for construction of the phylogenetic tree mid-point rooting was 

used. Bootstrapping was performed with PHYLIP based on 1000 replicates (Plotree and 

Plotgram, 1989).  

The presence of a pogo TE in the Tri cluster was investigated with three primers as detailed in 

Table 6.2. Diagnostic PCR was performed as described earlier in this thesis. 

Table 6.2 – Diagnostic primers used in this Chapter. 

ID Sequence (5' → 3') Reference Target 

1285 GCGTCTCAGCTTCATCAAGGCAKCKAMTGAWTCG Proctor et al. (2009) Tri1 

1292 CTTGACTTSMTTGGCKGCAAAGAARCGACCA Proctor et al. (2009) Tri1 

pogo.fwd AGACTCCGTACTGCCTTCAC this study pogo insertion 

pogoabsent.rev CTCCCCTGCAAAACATAGCC this study pogo insertion 

pogopresent.rev TATAGGGCTCTTTCAGGGGC this study pogo insertion 
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6.3.2 Fungal transformation 

Isolate 2516 was selected for further analysis. A strategy was set up to first make a knockout of 

the Tri1 and Tri13 genes in this isolate, followed by integration of their counterparts from F. 

graminearum (NIV chemotype) and F. langsethiae (T-2 chemotype) into the knockout, 

restoring the trichothecene pathway back to functionality but with proteins with a described 

differential function at key points in the pathway, similar to an approach carried out before for 

Tri1 alleles in F. graminearum (Varga et al., 2015).  

The general outline of the transformation was carried out as described by Abou Ammar et al. 

(2013) with minor adaptations. For protoplasting, conidia were harvested from UV-exposed 

plates as described in Chapter 4 of this thesis. 5x106 conidia were inoculated into 100 ml 

trichothecene biosynthesis inducting medium (see Chapter 5) to induce transcription of 

trichothecene genes and therefore obtain less densely wound DNA in the later stages. Growth 

was allowed for 16 hours at 150 rpm and 26°C. Mycelium was harvested with sterile one layer 

filter paper and transferred with a spatula into a sterile 100 ml Erlenmeyer. 20 ml protoplasting 

enzyme mix was added, which consists of 500 mg driselase, 1 mg chitinase and 100 mg lysing 

enzyme of Trichoderma harzianum (all obtained from Sigma, Diegem, Belgium) in 1.2 M KCl. 

Before addition to the mycelium, the protoplasting mix was stirred at room temperature and 20 

rpm for 30 minutes, and subsequently filtersterilized with a 0.45 µm Millex-HA filter and 15 

ml syringe (VWR). Protoplasting was allowed to proceed for four hours at 30°C and 100 rpm 

shaking. Protoplasts were separated from undegraded mycelium with four layers of sterile 

Miracloth (Merck, Overijse, Belgium) into a 50 ml Falcon tube (VWR). The protoplasts were 

pelleted at 1500g for 10 minutes and resuspended in 0.5 ml STC buffer (1.2 M sorbitol, 50 mM 

CaCl and 10 mM Tris/HCl to pH 7.5, and autoclaved). Protoplasts were quantified with a 

Bürker counting chamber and adjusted to 2x107 protoplasts per ml. 

Transformation reactions were set up in 1.5 ml tubes containing 100 µl STC buffer, 2x106 

protoplasts in another 100 µl STC buffer, 50 µl PEG buffer (30% PEG8000, 0.5 mM CaCl, 10 

mM and 10 mM Tris/HCl to pH 8.0, and filtersterilized with a 0.45 µm Millex-HA filter) and 

~7.5 µg of the DNA construct (see further). The transformation reaction was gently shaken at 

room temperature for 20 minutes and 50 rpm and was subsequently transferred into a 15 ml 

Falcon tube containing 2 ml of the PEG buffer. After another 5 minutes of shaking at the same 

conditions, 4 ml STC buffer was added to the tube and carefully homogenized. Aliquots of 600 

µl were added to 15 ml of regeneration medium (0.5 g yeast extract, 0.5 g casein hydrolysate, 

275 g saccharose and 5 g agar per 1 l distilled water), carefully homogenized and left in 
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petridishes for 20 hours at 26°C. 15 ml of regeneration medium containing 200 µg/ml 

hygromycin (Sigma, Diegem, Belgium) was added to the Petri dishes and transformants that 

emerged after 6 days were transferred to Petri dishes containing PDA medium amended with 

100 µg/ml of the selective marker.  

A representative and confirmed knockout was selected for Tri1 and Tri13, and used for a second 

round of transformations. This was performed exactly as described above, but with different 

DNA constructs and selective agent. Beside the DNA construct carrying the Tri1 or Tri13 gene 

from F. graminearum or F. langsethiae between the flanks of FpTri13, a construct carrying a 

constitutively expressed resistance gene against G418 (geneticin) was used to enable selection 

of transformants in a co-transformation setup. Co-transformation entails that the desired 

transformant has two independent integration events: the Tri gene has integrated at the native 

locus, and the G418 cassette has integrated randomly in the genome. Geneticin (Sigma) was 

added to regeneration medium overlay at 200 µg/ml and to PDA plates for maintenance at 100 

µg/ml. Successful gene swap transformants have integrated the Tri1 or Tri13 construct at the 

native locus, removing hygromycin resistance and enabling negative selection on hygromycin 

containing media. Figure 6.5 visualizes the gene swap strategy.  

 

Figure 6.5 – Gene swap strategy. WT isolate 2516 is transformed with a hygromycine cassette to 

knockout FpTri13. A successful knockout has lost FpTri13 and has gained the hygromycine cassette, 

and is hygromycin resistant (Hyg+). This knockout is transformed simultaneously (co-transformation) 

with a G418 cassette and constructs carrying the FgTri13 or FlTri13 allele enclosed between the flanks 

of the FpTri13 gene, introducing G418 resistance and removing hygromycin resistance in co-

transformants (Hyg- G418+). The hygromycin cassette is removed as the FgTri13 or FlTri13 cassette has 

come in its place. It is therefore possible to perform negative selection on hygromycin containing 

medium: successful gene swaps (derived from the knockout) will not be resistant to hygromycin 

anymore.  
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6.3.3 DNA construct synthesis 

All primers that were used for DNA construct synthesis can be found in Table 6.3. DNA 

constructs for knockout transformation were made using two approaches: triple crossover, also 

referred to as the split-marker approach (Catlett et al., 2003) and the double crossover approach 

(Szewczyk et al., 2006) (see Box 6.1). All PCR reactions involving construct synthesis were 

carried out with Phusion High-Fidelity DNA Polymerase (Thermo Scientific) according to the 

manufacturer’s instructions, with minor adaptations for the amplification of construct 

fragments: the denaturation step of the PCR cycles was raised to 30 seconds and the final 

extension step was shortened to 1 minute. Broadly, for both approaches, flanks were amplified 

from genomic DNA of isolate 2516. Resistance cassettes were amplified from plasmid pAN7-

1, containing the hph gene; hygromycin phosphotransferase, conferring resistance to 

hygromycin; including a constitutive promotor (Punt et al., 1987). Primers were designed to 

function in fusion PCR (Szewczyk et al., 2006) without added primers. Several hph primers 

were taken from Abou Ammar et al. (2013). The amplicons were purified with the QIAquick 

PCR Purification Kit (Qiagen) according to the manufacturer’s instructions and were quantified 

with the Quantus fluorometer (Promega). Following fusion and double strand gap filling during 

10 PCR cycles, another 25 cycles were run after nested primers were added, during which bulk 

production of the complete construct is assured. Fusion protocols were carried out as outlined 

by Yu et al. (2004), with some adaptations. Only a combined ~2ng of fragment DNA was used 

as input for the fusion PCR. Fusion PCRs were performed with the following PCR cycle 

parameters: initial denaturation of 30 seconds at 98°C, 10 cycles of denaturation (98°C, 15 

seconds), annealing (60°C, 20 seconds) and extension (72°C, duration dependent on amplicon 

length), followed by a cooling down to 4°C. After nested primers were added, another 25 cycles 

of denaturation (98°C, 15 seconds), annealing (63°C, 20 seconds) and extension (72°C, duration 

dependent on amplicon length) were run, followed by a final extension period of 2 minutes 

(72°C) and cooling down to 4°C.  
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Box 6.1: double crossover versus triple crossover knockouts 

Two different approaches were taken to obtain Tri1 and Tri13 knockouts: the double 

crossover approach and the triple crossover approach. In the triple crossover approach, two 

overlapping segments of the marker gene (i.e. a gene conferring resistance to hygromycin) 

are fused to respectively the upstream or downstream flank of FpTri1 and FpTri13. Through 

triple crossover, a functional marker is obtained at the desired locus (see Figure in this Box). 

Crossover is shown with a dashed line. In the double crossover strategy, a functional marker 

gene is included within the DNA construct, requiring one less crossover event to have 

resistant colonies. This method has a higher chance of false positives, as simple ectopic 

integrations will lead to resistant colonies; ectopic integrations occur when after a naturally 

occurring strand break the DNA construct is included between the two ends during repair. 

The fusing of DNA fragments for both approaches is similar, i.e. tailed primers are used that 

add complementary pieces of sequence to each separate fragment, and which can be used for 

fusion PCR.  

 

3’ HYG 5’

target gene3’ 5’

HYG

DNA construct

Chromosomal target

Recombined chromosome

3’ HY
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Table 6.3 - List of primers used for knockouts and gene swaps in this study. BSC = bulk synthesis of construct; KO = knockout; GS = gene swap. 

Name Sequence (5' → 3') Target Amplicon 

FpTRI1_KO_LF5pr.F1 TGCTAACGTACCAAGGGAAAC Fp2516 5’ flank of Tri1 for KO and GS 

FpTRI1_KO_LF5pr_nest.F2 CGAGACCGTATCACGAAACATAG fusion PCR 5’ flank of Tri1, nested for BSC in KO and GS 

FpTRI1_KO_RF3pr.R1 GCTGATGGTGCCTCAGTG Fp2516 3’ flank of Tri1 for KO and GS 

FpTRI1_KO_RF3pr_nest.R2 GGTAGAAAGAATTTCAGTCGTGG fusion PCR 3’ flank of Tri1, nested for BSC in KO and GS 

FpTRI1_KO_LF5pr_fus_uni.R1 GTGCAACTGACAGTCGTACAGACAGCCATGATGTTGAGATG Fp2516 5’ flank of Tri1 for KO 

FpTRI1_KO_RF3pr_fus_uni.F1 GTCTGGAGTCTCACTAGCTTGGAGTCGTTGACACCTCATTACTAC Fp2516 3’ flank of Tri1 for KO 

Fp_LF_GS13_FWD ATGTAGAAGATCCAACGC Fp2516 5’ flank of Tri13 for KO and GS 

  fusion PCR 5’ flank of Tri3, nested for BSC in KO DJ-PCR and GS 

Fp_LF_GS13_NEST CTGAGACGCTGACCAAAGTAG fusion PCR 5’ flank of Tri13, nested for BSC 

Fp_RF_GS13_REV GTTCGGGCTGGCTGAATT Fp2516 3’ flank of Tri13 for KO and GS 

Fp_RF_GS13_fwd.2 GACCTGGAAAATGAATGGTGTC fusion PCR 3’ flank of Tri13, nested for BSC in split marker  

Fp_RF_GS13_NEST.2 GGCATTGTGTGGTAGAGCTG fusion PCR 3’ flank of Tri13, nested for BSC in KO DJ-PCR and GS 

FpTri13_KO_LF_uni.F1 GTCTGGAGTCTCACTAGCTTTCTTTGTAGCGTCAACCACC Fp2516 5’ flank of Tri13 for KO 

FpTri13_KO_RF_uni.R1 GTGCAACTGACAGTCGTACAGTTGCCATAGGACAAAAGAGTG Fp2516 3’ flank of Tri13 for KO 

uni-hyg.F1 TGTACGACTGTCAGTTGCACTGACCGGTGCCTGGATCTTC pAN7-1 hyg cassette 

uni-hyg.R1 AAGCTAGTGAGACTCCAGACGGTCGGCATCTACTCTATTCC pAN7-1 hyg cassette 

hyg.sm.rev AATCGCGCATATGAAATCAC pAN7-1 part of hyg cassette (construct A) 

hyg.sm.nest.rev TATTGACCGATTCCTTGCG fusion PCR nested for BSC 

hyg.sm.fwd TTGACTAACAGCTACCCCGC pAN7-1 part of hyg cassette (construct B) 

hyg.sm.nest.fwd.2 GTCTCCGACCTGATGCAG fusion PCR nested for BSC 

hyg.sm.nx2.rev AGCCGCGGCGATCCTGCAAG pAN7-1  part of hyg cassette (construct C) 

  fusion PCR BSC 

hyg.sm.nx2.fwd CTGTTCTGCAGCCGGTCGC pAN7-1 part of hyg cassette (construct D) 

  fusion PCR BSC 

FpTRI1_GS_LFfp_Rev2 GACAGCCATGATGTTGAGATG Fp2516 5’ flank of Tri1 for GS 



155 

 

FpTRI1_GS_RFfp_Fwd2 GCTTTCATTGGAGTCGTTGAC Fp2516 3’ flank of Tri1 for GS 

Fp_LF_GS13_Rev2 TAGACTTGATATATATTATAAACTAGTTC Fp2516 5’ flank of Tri13 for GS 

Fp_RF_GS13_Fgram_Fwd2 AGAAACATGATGGCTGCTTCG Fp2516 3’ flank of Tri13 for GS, F. graminearum tail 

Fp_RF_GS13_Flang_Fwd2 CAGAGAGAGAGAAACATGATGGCTG Fp2516 3’ flank of Tri13 for GS, F. langsethiae tail 

Fg_CDS13_Fwd2 GAACTAGTTTATAATATATATCAAGTCTATGCCCTTGTCAAGTCGAC FgMBC-7728 coding region of FgTri13 

Fg_CDS13_Rev2 GAAGCAGCCATCATGTTTCTCTCTATCGG FgMBC-7728 coding region of FgTri13 

Fl_CDS13_Fwd2 GAACTAGTTTATAATATATATCAAGTCTATGTCGTTGTTAAATCGACC Fl202063 coding region of FlTri13 

Fl_CDS13_Rev2 CATGTTTCTCTCTCTCTGTCTAATG Fl202063 coding region of FlTri13 

FpTRI1_GS_CDSFG_F1 CTCAACATCATGGCTGTCATGGCTCTCATCAC FgPH-1 coding region of FgTri1 

FpTRI1_GS_CDSFG_R1 GTCAACGACTCCAATGAAAGCCTAGTCATCCTGTACCAATTCC FgPH-1 coding region of FgTri1 

FpTRI1_GS_CDSFL_F1 CTCAACATCATGGCTGTCATGTCAAAAGTTGATAAAACTGG Fl202063 coding region of FlTri1 

FpTRI1_GS_CDSFL_R1 GTCAACGACTCCAATGAAAGCTTAGGACTCTGACTCCCTACTG Fl202063 coding region of FlTri1 
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In the triple crossover approach, two overlapping segments of the hph gene were joined to 

respectively the upstream and downstream flank of the gene to be knocked out (see Box 6.1). 

Joining of the fragments occurred through the principle of double joint PCR and employed 

tailed primers for amplicon generation, followed by a PCR step without primers and a PCR step 

with nested primers (Yu et al., 2004). The two resulting constructs were used for transformation, 

during which triple crossover takes place at the native locus which renders the resistance gene 

functional and deletes the target gene. Four constructs were made: two that overlap with 368 

bp (A+B) and two that overlap with 457 bp (C+D). Primers targeting the hph gene for constructs 

C and D were taken from Varga et al. (2015). In the double crossover approach, the complete 

constitutive promotor + hph gene was amplified from pAN7-1 and joined to the upstream and 

downstream flank of the target gene by double joint PCR (Yu et al., 2004).  

Constructs for gene swaps were made that join the Tri1 and Tri13 genes of both F. graminearum 

and F. langsethiae to the upstream and downstream flanks of FpTri1 and FpTri13. Flanks were 

amplified from genomic DNA of isolate 2516. Coding regions of Tri1 were amplified from F. 

graminearum PH1 (kindly donated by dr. Stefan Wirsel, MLU Halle-Wittenberg, Germany) 

and F. langsethiae 202063 (kindly donated by dr. Ingerd Hofgaard, Bioforsk, Norway) genomic 

DNA. The FgTri13 coding region was amplified from isolate MBC-7728, a NIV producing F. 

graminearum (therefore, with a functional Tri13 allele) kindly donated by Pierre Hellin (UCL, 

Belgium). Finally, the FlTri13 coding region was amplified from F. langsethiae isolate 202063. 

Chimeric primers were developed to synthesize constructs that are identical to the F. poae locus 

with only the exact region from start to stop codon replaced (for primers see Table 6.3). The 

double joint PCR protocols as outlined above were followed. As a separate construct for co-

transformation, the G418 resistance cassette was amplified from plasmid pII99 (Namiki et al., 

2001), containing a constitutive promotor, the npt gene (neomycin phosphotransferase; 

conferring resistance to G418) and a transcription termination site.  

The obtained constructs were purified with the QIAquick PCR Purification Kit (Qiagen) 

according to the manufacturer’s instructions and quantified using the Quantus fluorometer 

(Promega). Approximately 7.5 µg of construct was used for the double crossover approach, and 

approximately 5 µg of every construct in the triple crossover approach.  

6.3.4 Confirmation of transformants 

Freshly grown mycelium was scraped from the PDA plates and transferred to 1.5 ml centrifuge 

tubes, in which the mycelium were crushed using disposable Entogen inoculation loops that 



157 

 

were exposed to liquid nitrogen. 500 µl of lysis buffer (200 mM Tris/HCl, 50 mM EDTA, 200 

mM NaCl, 1% n-lauroylsarcosin, pH = 8.0) was added and microwaved at maximum intensity 

(800W) to the point of boiling (+/- 1 minute). Debris was pelleted by centrifuging for 15 

minutes at 13 200 rpm and room temperature, and 300 µl of supernatant was treated with 300 

µl of ice-cold isopropanol. DNA was pelleted by centrifuging for 15 minutes at 13.200 rpm and 

room temperature. The pellet was washed with ice-cold 70 % EtOH, was allowed to dry for 30 

minutes and was finally re-dissolved in 25 µl TE buffer. Correct integration of the selective 

marker gene was verified with triplex PCR. One amplicon spanned the left integration site, one 

amplicon spanned the right integration site and one amplicon was specific to the wild type gene. 

PCR was performed as described before. Primers used for confirmation of transformants can 

be found in Table 6.4. Transformants for which only the first two amplicons were obtained 

were selected for single sporing, by plating dilutions of conidial suspensions on PDA plates 

containing 100 µg/ml of the selective agent. Single outgrowing colonies were transferred to 

PDA containing the marker, and DNA was extracted using the CTAB method. Quantification 

was performed with the Quantus fluorometer (Promega). 
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Table 6.4 - List of primers used to confirm successful knockouts of Tri1 and Tri13. 

Name Sequence (5' → 3') Target Amplicon 

FpTri13.probe.fwd CCAGGAGTCCATACGCTAGG Fp2516-∆Tri13 wild type Tri13 

FpTri13WT.rev1 GTTTCTCAGCCCGTTACACC Fp2516-∆Tri13 wild type Tri13 

FL.Tri13.contr.Fw ACGCCATTACCATAGAATTGTCG Fp2516-∆Tri13 confirmation integration of upstream flank Tri13 

hyg.Fw2 GACATCACCATGCCTGAACTC Fp2516-∆Tri13, ∆Tri1 confirmation integration of upstream flank Tri1 and Tri13 KO 

FR.Tri13.contr.rv GCGTCAGGTCTCAGGATGAT Fp2516-∆Tri13 confirmation integration of downstream flank of Tri13 

hyg.conf.rev2 CCGGTGATTCGATGAAGCTC Fp2516-∆Tri13, ∆Tri1 confirmation integration of downstream flank Tri1 and Tri13 KO 

Tri1.FL.contr.fwd CGTGCAACTGTAGTCTTCCAG Fp2516-∆Tri1 confirmation integration of upstream flank Tri1 

Tri1.FR.contr.Rev2 GTAGAGTAATGCCAGCAACCG Fp2516-∆Tri1 confirmation integration of downstream flank Tri1 

FpTri1WT.fwd2  CTTAACCCCAAGCGCTGGTA Fp2516-∆Tri1 wild type Tri1 

FpTri1WT.rev2  GGCGGACTGTTCTCTCTCAC Fp2516-∆Tri1 wild type Tri1 
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To screen for ectopic integrations, beside the correct integrations identified by the triplex PCR, 

Southern blotting was performed. To this end, DIG labelled hygromycin probes were generated 

from plasmid pAN7-1 using the PCR DIG Labeling MixPLUS (Roche) protocol according to the 

manufacturer’s instructions. Five µg of gDNA of the transformants was restricted with XhoI in 

the case of Tri13 knockouts, and SacI in the case of Tri1 knockouts (restriction enzymes 

purchased from Thermo Scientific). Blotting of the restriction digest on a positively charged 

nylon membrane and hybridization with the DIG labelled probe occurred as described in the 

“DIG Application Manual for Filter Hybrization” (Roche). Subsequent binding with DIG-

specific antibody and detection of chemiluminescence with CSPD were performed with the 

DIG Luminescent Detection Kit (Roche) according to the manufacturer’s instructions.  

6.3.5 Comparative homology modelling 

The protein sequences of F. kyushuense Tri1 (FkTRI1), F. graminearum Tri1 (FpTRI1), F. 

langsethiae Tri1 (FlTRI1) and F. poae Tri1 (FpTRI1) were taken from NCBI (accessions 

ACZ63276.1; AAQ02672.1; AEB26549.1 and ACZ63280.1 respectively). Protein alignment 

was performed with ClustalO (Sievers et al., 2011). Protein sequences were used as queries for 

the Phyre2 algorithm (Kelley et al., 2015), which predicts a 3D structure for the protein based 

on local similarity with proteins that have been crystallized to determine their structure. DFire 

was used to assess the model quality (Zhou and Zhou, 2002) and select the top-ranking model 

for further analysis. Autodock VINA was used to dock selected substrates (calonectrin, 8-

hydroxycalonectrin, dihydrocalonectrin, triacetoxyscirpenol, 3-acetylneosolaniol) to the best 

ranking model for every species (Trott and Olson, 2010). Substrate structures were downloaded 

from PubChem. Binding affinities were extracted from the docking results. Docking results 

were visualized in PyMOL.  

6.3.6 Chemical analysis 

Methods for the induction of trichothecene biosynthesis and analytical procedures for 

measurement were identical to those described in Chapter 5 of this thesis. 

6.4 Results 

6.4.1 The organization of the trichothecene clusters in F. poae  

The configuration of the Tri cluster in F. poae isolate 2516 was extracted from its genome 

sequence and compared with those of F. sporotrichioides (NCBI accession AF359360.3) and 

F. graminearum (NIV chemotype, NCBI accession AF336365.2); the result can be seen in 

Figure 6.6. The overall organization of the Tri cluster is highly similar to what was described 
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previously for F. sporotrichioides and F. graminearum. The largest difference comes from the 

intergenic distance between Tri5 and Tri6, that is expanded in isolate 2516. A low complexity 

region with blastx hits for a pogo transposable element accounts for an additional 2.1 kb of 

sequence in this region. No intact copies of this element could be found in the genome, and it 

was likely RIPped to extinction in isolate 2516 (see Chapter 4 of this thesis). The best blastx 

hit for the pogo element is “pogo transposable element with KRAB domain from Fusarium 

oxysporum f. sp. cubense race 1” (NCBI accession ENH68388.1). Brown et al. (2004) described 

the flanking ORFs of F. sporotrichioides and F. graminearum. The flanking ORFs of F. poae 

isolate 2516 are similar in organization to those described in their study (data not shown). The 

organization of the Tri1 region in isolate 2516 is identical to what was described before by 

Proctor et al. (2009).  

 

Figure 6.6 – Organization of the Tri cluster in F. poae (isolate 2516), which is identical to the 

organization in F. graminearum (isolate 88-1, NIV chemotype, NCBI accession AF336365) and F. 

sporotrichioides (isolate NRRL 3299, NCBI accession AF359360). The difference in Tri6-Tri5 intergenic 

region between F. poae and F. graminearum/F. sporotrichioides is explained by the presence of a 

RIPped pogo transposable element (yellow). This element is also present at the same location in isolate 

bfb0173. In isolates 2516 and bfb0173, there is a 400bp repetitive element between Tri7 and Tri3 

(blue). Finally, in isolates 2548 and bfb0173, there is a RIPped retrotransposon downstream of Tri14. 

It is illustrated as a shaded box in this figure, but it should be stressed that this element is in fact not 

present at that location in isolate 2516.  

The highly contiguous assembly of F. poae isolate 2516 (see Chapter 4 of this thesis) allowed 

for the three loci to be positioned within their exact genomic coordinates. The Tri1 gene lies at 

55 207 – 56 959 bp into chromosome 1, the Tri cluster including Tri5 lies at 5 545 692 – 5 575 

616 bp into chromosome 2, and finally the Tri101 gene can be found at 4 906 101 – 4 907 486 

bp into chromosome 4. These positions are similar to those for the three loci in F. graminearum. 

Figure 6.7 visualizes the three loci on the F. poae core chromosomes. 
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Figure 6.7 – Position on the chromosomes of F. poae where the three loci of trichothecene 

production are situated. These are similar to the loci determined for F. graminearum. Chromosome 

numbering is consistent with literature and Chapter 4 of this thesis. The scale bar shows the size of the 

chromosomes in Mb.  

The genome sequence of isolates 2548, 7555 and bfb0173 were examined to find differences 

in the organization of the trichothecene clusters between these isolates and isolate 2516. The 

RIPped pogo TE that lies between Tri5 and Tri6 is also present in isolate bfb0173 and is highly 

conserved (three SNPs). It is not present in isolates 2548 and 7555. Because of its location in 

the middle of the trichothecene biosynthesis cluster, we set out to determine its incidence in the 

F. poae population (see Figure 6.8). Thirty-eight out of sixty-six isolates were confirmed to 

contain the insertion at the same location as isolates 2516 and bfb0173. For three isolates 

(isolates 2033, 2392 and 2491), the PCR did not deliver a result. There is no correlation with 

the chemotype, quantitatively nor qualitatively (Figure 6.9).  
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Figure 6.8 – Diagnostic PCR of the pogo insertion between Tri5 and Tri6. A: Gel electrophoresis of 

the diagnostic PCR. B: Primers pogo.fwd and pogopresent.rev result in an amplicon of 203 bp (isolates 

2371, 2043, 2044, 2375, 2570, 9194, 6127 and 2524), primers pogo.fwd and pogoabsent.rev result in 

an amplicon of 365 bp (isolates 2380 and 2410). M represents the molecular weight marker 

(Thermofisher’s Massruler DNA Ladder Mix, Low range).  
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Figure 6.9 – Trichothecene chemotype of 61 F. poae isolates (see Chapter 5 for scales and details), 

and the presence of a pogo element between Tri5 and Tri6 in the Tri cluster (asterisks).  

Downstream of Tri14, the outermost gene of the trichothecene cluster, a RIPped retrotransposon 

occurs in isolates 2548 and bfb0173. In isolate bfb0173 it consists of 3.7 kb of low complexity 

sequence (after which the contig ends), while in isolate 2548 1.2 kb of sequence that is highly 

identical to bfb0173 (10 SNPs) can be found before the contig ends. The best blastx hit for this 

retrotransposon is a protein from Claviceps purpurea (NCBI accession CCE29311.1). In 

isolates 2516 and bfb0173, there is a 400 bp repetitive element without blastx hits between Tri7 

and Tri3 that is not present in isolates 2548 and 7555.  

The genes in the Tri cluster are more closely related to F. sporotrichioides than to F. 

graminearum (Table 6.5). The same is true for Tri101.  
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Table 6.5 – Overall similarity (%) of all trichothecene biosynthesis genes between F. poae and F. 

sporotrichioides / F. graminearum. For the genes, protein similarity is given, while similarities of the 

intervening sequences (IVS) were determined on the nucleotide level. For F. poae, sequences were 

extracted from the genome of isolate 2516. For F. graminearum, information from the Tri cluster was 

extracted from NCBI accession AF336365 and TRI1 and TRI101 protein sequences were taken from 

NCBI accessions AAQ02672 and BAA33768 respectively. For F. sporotrichioides information from the 

Tri cluster was extracted from NCBI accession AF359360 and TRI1 and TRI101 protein sequences were 

taken from NCBI accessions AEB26547 and ADQ52715 respectively. There is no Tri16 in F. poae. 

 F. poae 

  - F. sporotrichioides - F. graminearum 

TRI8 85 74 

IVS 73 63 

TRI7 81 73 

IVS 72 67 

TRI3 86 84 

IVS 64 62 

TRI4 91 86 

IVS 75 74 

TRI6 88 89 

IVS 73 70 

TRI5 96 90 

IVS 81 74 

TRI10 89 89 

IVS 74 72 

TRI9 97 95 

IVS 72 62 

TRI11 94 91 

IVS 72 68 

TRI12 82 74 

IVS 68 66 

TRI13 88 78 

IVS 71 67 

TRI14 94 91 

TRI1 68 69 

TRI101 84 76 

 

6.4.2 Different Tri1 types in the F. poae population 

The genome sequence of isolates 2516, bfb0173, 2548 and 7555 was examined to uncover 

variability at the Tri1 locus, which is the most important determinant for type A versus type B 

trichothecene production. We found that the Tri1 alleles in isolates 2516 and bfb0173 are 

identical to one another and the published sequence for FpTri1 (NCBI accession GQ915520), 

and these have 97 % sequence identity to the Tri1 alleles of isolates 2548 and 7555 (respectively 
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51 and 52 (=51+1) SNPs over the 1753 bp gene). Respectively 24 and 25 of these SNPs occur 

in the exons of the gene, while 87% of the gene is exonic (1527 bp). Remarkably, only 

respectively 2 and 3 of these SNPs are non-synonymous mutations. Two of these amino acid 

substitutions occur at the N-terminal end of the protein within the first 14 amino acids. Figure 

6.10 shows the read mapping of reads from isolate bfb0173 and isolate 2548 on the published 

FpTri1 allele, and shows that a disproportionate amount of SNPs occurs in the introns of the 

genes. 

A subset of 34 isolates of the F. poae collection (see Chapters 4 and 5 of this thesis) was selected 

for sequencing of a 1100 bp fragment of Tri1. The existence of two major Tri1 types within the 

collection was confirmed, with additional variation at individual isolates’ level (Figure 6.11). 

There is no clear link between the chemotype and the Tri1 type determined here.  
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Figure 6.10 – Read mapping of reads from isolate bfb0173 (A and C) and isolate 2548 (B and D) on NCBI accession GQ915520, which is the only sequence of 

FpTri1 available (Proctor et al., 2009). The published allele is identical to the one in isolate 2516 and bfb0173. Paired reads are mapped as blue and they do 

not show any consistent SNPs (which are designated with divergent non-blue colour). A second FpTri1 type was identified in our study, occurring in isolates 

2548 and 7555. Most SNPs (a divergent nucleotide in a read is shown with a colour different than blue, when this occurs in all reads at a certain location it is 

very likely a SNP) are located in introns and intergenic regions, and SNPs in the exons are predominantly synonymous by far.  
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Figure 6.11 – Maximum parsimony phylogenetic tree that was built from the 1100 bp fragments of 

the Tri1 gene with PAUP* 4.0b10. The tree is based on 74 parsimony informative characters. Bootstrap 

values were calculated with the PHYLIP package and those exceeding 70% are shown on the tree. Three 

major types of Tri1 are designated with yellow, green and grey. Fusarium sp. NRRL 36351 (NCBI 

accession GQ915523.1) was used as the outgroup, however for construction of the 

phylogenetic tree mid-point rooting was used. 

6.4.3 Tri13 gene mutants show altered chemotypes 

Transformation of F. poae isolate 2516 with a hygromycin cassette designed to replace the Tri1 

gene delivered 60 resistant colonies, picked from triple crossover approaches with an overlap 
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of 368 and 457 bp (16 and 34 transformants respectively), and the double crossover approach 

(10 transformants). Triplex PCR showed that only three of these had lost the WT gene (Figure 

6.12). These were picked from the split marker transformation with 457 bp overlap. Overall 

integration efficiency is therefore at 5% (3/60). However, Southern blotting showed that each 

of these three transformants contained multiple ectopic integrations (Figure 6.14).Obtaining a 

Tri1 knockout was attempted multiple times with the double crossover strategy. Fifty-five 

additional hygromycin transformants were obtained, none of which contained a correct 

integration at the desired locus. 
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Figure 6.12 – Results of PCR analyses to confirm deletion of Tri1 and Tri13 in F. poae. The 

transformants marked with white arrows have lost the WT gene and show two amplicons indicative of 

correct integration (spanning the left and right integration sites). Triplex PCR was carried out for all 

hygromycin resistant colonies. A: Tri1 locus. Sample 2516-∆Tri1-120 shows two amplicons indicative 

of correct integration (1791 and 2143 bp). All other samples still show the WT band (1366 bp). M is for 

the molecular weight marker (Promega’s BenchTop 1kb DNA ladder). B: Tri13 locus. Samples 2516-

∆Tri13-36, 2516-∆Tri13-38, 2516-∆Tri13-39 and 2516-∆Tri13-46 show the two amplicons indicative of 

correct integration (1577 and 2411 bp). Samples such as 2516-∆Tri13-34 and 2516-∆Tri13-35 still have 

the WT amplicon (1201 bp). Note that sample 2516-∆Tri13-45 has lost the WT gene but does not show 

correct integration for both flanks. M is for the molecular weight marker (Thermofisher’s Massruler 

DNA Ladder Mix).  
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The strategy that was used in the triplex PCRs is illustrated in Figure 6.13.  

 

Figure 6.13 - Schematic of the triplex PCR strategy (not to scale). If the  wild type gene is still present, 

primers FpTri1WT.fwd2 and FpTri1WT.rev2 form an amplicon of 1366 bp in the case of Tri1, and 

primers FpTri13.probe.fwd and FpTri13WT.rev1 form an amplicon of 1201 bp in the case of Tri13. If 

the wild type gene has been replaced by the hygromycin cassette, the wild type primers do not lead 

to an amplicon, while two amplicons will be obtained that span the integration site (external primers 

lie outside the flanks used for crossover (yellow)). Primers matching the hygromycin cassette are 

hyg.Fw2 and hyg.conf.rev2. Primers outside the site of integration are Tri1.FL.contr.fwd and 

Tri1.FR.contr.Rev2 in the case of Tri1, and FL.Tri13.contr.Fw and FR.Tri13.contr.rv for Tri13. 

The frequency of correct integrations was higher for the Tri13 locus. One hundred and twenty-

one hygromycin resistant colonies were picked (39 for the triple crossover approach with an 

overlap of 368 bp; 71 for the triple crossover approach with an overlap of 457 bp; 11 for the 

double crossover approach), of which 28 showed an integration at the correct locus with 

corresponding loss of the WT gene (Figure 6.12). Integration efficiency is at 23%. Eighteen 

desired transformants were obtained from the triple crossover approach with 457 bp overlap, 

eight from the triple crossover approach with 368 bp overlap and 2 from the double crossover 

approach. Southern blotting showed that 10 of the 28 transformants did not contain additional 

ectopic integrations (Figure 6.14). Nine of these originated from triple crossover 

transformation with 457 bp overlap, and one from the triple crossover approach with shorter 

overlap. The final transformation efficiency is 10/128 or 7.8%.  
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Figure 6.14 – Hybridization with a probe targeting the hygromycin gene against gDNA of candidate 

knockout transformants. Genomic DNA of single spored transformants was digested with SacI in the 

case of Tri1 (target fragment size for hybridization: 3293 bp) and with XhoI in the case of Tri13 (target 

fragment size for hybridization: 6407 bp). Transformants that show hybridization only at the expected 

height are clean knockouts, others have also integrated the hygromycin cassette at ectopic locations 

(leading to hybridization of the hygromycin probe against other fragments of the restriction digest). 

(A) For the Tri1 gene, no transformants with an integration event only at the desired locus were 

obtained. Since only three transformants were confirmed to have lost the WT gene in the triplex PCR 

(see earlier), multiple separate single spore isolations were blotted from transformants 2516-∆Tri1-

112, 2516-∆Tri1-114 and 2516-∆Tri1-14. These led to similar hybridization profiles. (B) For the Tri13 

gene, multiple good transformants were obtained, including 2516-∆Tri13-69 which was selected for 

further transformations. The red arrows show the size of the expected fragment. M denotes the lane 

containing the molecular weight marker (Promega’s 1kb Benchtop ladder), wildtype (WT) is isolate 

2516. 

Tri1 knockout mutants that also contain multiple ectopic insertions were not considered fit for 

the gene swap experiment, and therefore the Tri1 gene swap was abandoned. A ∆Tri13 

transformant was selected for the Tri13 gene swap (2516-∆Tri13-69). In this approach, the 

FgTri13 or FlTri13 gene should replace the hygromycin cassette, and a construct carrying a 

G418 resistance gene is used in a co-transformation approach. This resulted in 11 FlTri13-

transformants and 6 FgTri13 transformants. Three FlTri13 (2516-∆Tri13-69-FlTri13-2, 2516-

∆Tri13-69-FlTri13-6 and 2516-∆Tri13-69-FlTri13-10), and two FgTri13 (2516-∆Tri13-69-

FgTri13-3 and 2516-∆Tri13-69-FgTri13-5) transformants showed no growth on hygromycin-

containing medium. These showed a highly divergent phenotype when grown in trichothecene 
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biosynthesis inducing medium, compared to those that showed normal growth on hygromycin-

containing medium (Figure 6.15).  

 

Figure 6.15 – Phenotype of Tri13 transformants when grown on trichothecene biosynthesis inducing 

medium. For FlTri13 and FgTri13 transformations, three and two transformants respectively showed 

strongly inhibited growth on hygromycin-containing medium, indicating that they may have lost the 

hygromycin resistance cassette, and may have integrated the FlTri13/FgTri13 gene. These showed a 

divergent phenotype on trichothecene biosynthesis inducing medium when compared to the Tri13 

knockout (KO) (colorless), and transformants growing normally on hygromycin-containing medium 

(colorless).  

Confirmation of the putative gene swap transformants with PCR, and chemical profiling of the 

confirmed transformants is currently ongoing. The expected chemotypes in the transformants 

are as follows: a FlTri13-transformant is expected to produce the WT chemotype (DAS, NEO, 

FUS-X, NIV), while a FgTri13-transformant is expected to produce only FUS-X and NIV, as 

FgTRI13 has a more narrow substrate range. In this way, TRI13 mediates different paths along 

the biosynthesis grid.  
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6.4.4 Comparative homology modelling TRI1 

Proctor et al. (2009) described four alleles of the Tri1 gene in trichothecene producing Fusarium 

species (Figure 6.4). Two of these have been functionally characterized: the F. graminearum 

TRI1 catalyzes hydroxylation of the trichothecene skeleton at C7 and C8, and the F. 

sporotrichioides/F. langsethiae TRI1 does so only at C8 (McCormick et al., 2006). The two 

remaining alleles have not been functionally characterized, but species containing these alleles 

have been described to produce trichothecenes containing both OH groups. Indeed, F. poae 

isolates are per se able to produce FUS-X and NIV (Chapter 4 of this thesis), and F. kyushuense 

has been described to produce (trace amounts of) NIV (Thrane et al., 2004) and the novel 

trichothecene compound pentahydroxyscirpene (Fruhmann et al., 2014). Another species 

containing a Tri1 allele similar to the one in F. kyushuense is F. equiseti which has also been 

described to produce compounds with two hydroxyl groups, as was described above. The 

genetic manipulation of Tri1 alleles in F. poae proved very difficult (Section 6.4.3). For this 

reason, an in silico approach was undertaken to address the functionality of the two remaining 

alleles in Fusarium species.  

Homology modelling with the Phyre2 server was used to build 3D models of the four alleles 

(Kelley et al., 2015). Twenty models are built for every allele, based on different Protein Data 

Bank (PDB) entries. While sequence identity was low for all models (approximately 15% for 

the top ranking models), coverage was close to 100% for the top ranking models and confidence 

was at 100%. As long as the confidence is high, the core of such models may still be very 

informative. The 20 proposed models were evaluated with DFire (Zhou and Zhou, 2002), which 

identified the model based on PDB entry 4lxj as the best model for all homologues, which is 

also the model that the Phyre2 algorithm favored. For this comparative homology framework, 

further analyses were performed based on the four models based on 4lxj. This is a P450 with a 

14-lanosterol demethylase function from Saccharomyces cerevisiae, with the first step of the 

demethylation process being a monooxygenation of a saturated C-H bond (Monk et al., 2014).  

Autodock VINA (Trott and Olson, 2010) was used to perform ligand docking to the selected 

models. The P450 type enzymes that TRI1 belongs to, CYP68C1 (Meek et al., 2003), contain 

a heme cofactor in their active site. During a series of electron transfers, in microbial P450s 

mediated by NADPH, and formation of a complex adduct between the iron atom and molecular 

oxygen, the unsaturated C-H bond is mono-oxygenated. The heme cofactor + molecular oxygen 

was docked to the four models first, and the best docking configuration (represented by the 

highest binding affinity as calculated by Autodock VINA) was retained for every model. The 
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heme group is primarily bound by a universally conserved cysteine residue and several flanking 

residues (Mestres, 2005). In the amino acid alignment of the four protein alleles and the 

representation of the FpTRI1 docking, these are marked blue (Figure 6.16).  

A second round of docking was performed, using the result from the previous docking round 

(P450 + heme + molecular oxygen) as the receptor and several trichothecene intermediates as 

ligands. The binding affinities that were found in this docking experiment can be found in Table 

6.6. The Autodock VINA algorithm delivers multiple possible docking configurations for every 

substrate-model combination. These differ inter- and intra-species by the hydrogen bonds that 

they are able to form, by the potential steric hindrance of residues in the active cavity that are 

different between species, etcetera. As there is not enough additional information to make an 

informed, and unbiased, choice on which docking configurations are most plausible, the two 

highest binding affinities are given as-is in Table 6.6, where possible. In two cases of FlTRI1 

docking, only one possible configuration was found. An example of the docking results is given 

in Figure 6.17 with the FpTRI1 model and TAS as a substrate. 
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Figure 6.16 – Amino acid alignment of TRI1 of four Fusarium species, belonging to the four different 

Tri1 alleles determined by Proctor et al. (2009). Conserved residues involved in heme binding are 

colored blue. Asterisks represent conserved amino acids, colons represent conservation between 

groups of strongly similar properties, points represent conservation between groups of weakly similar 

properties. 
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Figure 6.17 – Docking of the heme cofactor and molecular oxygen (red) and triacetoxyscirpenol 

(yellow) to an in silico predicted model of FpTRI1 (model residues as gray lines). Five conserved 

residues involved in heme binding are colored blue, the cysteine thiolate – iron binding is shown with 

a dashed line. Only one of the possible docking configurations is shown for TAS, and there is no 

guarantee that this configuration should take precedent over any others.  

With this unbiased approach, binding affinities are consistently lowest for the model of FlTRI1 

(Table 6.6), the only of the four homologues that can certainly not place a second OH group. 

Binding affinities for the FgTRI1 and FpTRI1 model are very similar, and are somewhat lower 

for the FkTRI1 model. This may indicate that at least FgTRI1 and FpTRI1, and perhaps also 

FkTRI1, are similar in function, and are different from FlTRI1.  
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Table 6.6 – Binding affinities for the different ligand – receptor docking simulations, expressed in 

kcal/mol. The two highest (most negative) binding affinities are shown for every substrate-ligand 

combination, except for TAS-FlTRI1 and 8-OHCAL-FlTRI1 for which only one possible docking was 

obtained. The top rated model for every protein was used as a receptor, with the heme cofactor and 

molecular oxygen docked to the active site. Five intermediates from the trichothecene biosynthesis 

pathway were docked as ligands: CAL = calonectrin; TAS = triacetoxyscirpenol; 8-OHCAL = 8-

hydroxycalonectrin; 3-ANEO = 3-acetylneosolaniol; DI-OHCAL = dihydroxycalonectrin. The importance 

of these substrates can be seen in Figure 6.2. Binding affinities for the FlTRI1 model are lowest.  

  FgTRI1 FpTRI1 FkTRI1 FlTRI1 

0 OH      

CAL -6.2 / -5.8 -6.6 / -6.1 -7.1 / -6.8 -5.5 / -5.0 

TAS -6.6 / -6.2 -7.1 / -6.8 -6.4 / -5.8 -5.1 

1 OH (C-8)     

8-OHCAL -7.1 / -5.9 -7.3 / -6.4 -6.0 / -6.0 -5.4 

3-ANEO -7.1 / -5.5 -7.5 / -5.9 -6.1 / -5.7 -4.0 / -3.6 

2 OH     

DI-OHCAL -6.6 / -6.6 -6.6 / -6.2 -6.0 / -5.5 -5.5 / -5.3 

 

6.5 Discussion 

Genetically unlinked from the Tri cluster locus, the Tri1 gene in F. poae is one of four major 

alleles in Fusarium species. Functionally, only two alleles have been characterized, namely the 

F. sporotrichioides-like allele which catalyzes the addition of one OH group on its substrate, 

and the F. graminearum-like allele which catalyzes the addition of two OH groups. Species 

containing one of the other two alleles, e.g. F. poae-like and F. kyushuense-like, produce 

trichothecenes that are hydroxylated at C7 and C8, but also trichothecenes that are only 

hydroxylated at C8. Two explanations could account for this. Either the F. kyushuense – F. 

poae alleles are fundamentally different and less efficient in the hydroxylation at C7, or they 

enter in competition with other enzymes, which sequester part of the substrate away with only 

one OH group placed. Based on this study, it is not possible to conclusively decide either way. 

Modelling the four alleles with the same structure as a template (4lxj), and using those models 

for molecular docking, indicated that FpTRI1 and FgTRI1 may be distinct from FlTRI1. In both 

scenarios, TRI1 has the biochemical capability to catalyze hydroxylation at both C7 and C8, 

and we hypothesize that the difference with F. graminearum is that it does so on a substrate 

that does not occur in F. graminearum, due to the different Tri13 allele. The pathway shown in 

Figure 6.18 indicates that a consequence of this shift in direction, mediated by the different 

Tri13 allele, leads to a competition between FpTRI1 and FpTRI8. This figure also includes all 

the recently described novel trichothecenes such as NX2/NX3/NX4, produced by a 
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subpopulation of F. graminearum (Varga et al., 2015) and pentahydroxyscirpene (PHS) 

produced by F. kyushuense (Fruhmann et al., 2014). 

 

Figure 6.18 – Proposed biosynthetic grid responsible for trichothecene production in Fusarium 

species. Steps mediated by different enzymes are depicted with different colours. The major 

biosynthesis route of F. graminearum (either DON or NIV) is shown in green compounds, the major 

biosynthesis route of F. langsethiae (leading to T2 toxin) is shown in red compounds. The proposed 

biosynthesis scheme for F. poae is shown in  purple compounds: initially similar to F. langsethiae, but 

continuing all the down to NIV because of a TRI1 enzyme which catalyzes the addition of two OH 

groups. Dashed lines represent reactions for which no genetic component has been elucidated. This 

figure was adapted from Kimura et al. (2007) and McCormick et al. (2011).   

The type A + type B trichothecene chemotype in F. poae is best explained by the combination 

of “contrasting” TRI1 and TRI13 functions (Figure 6.18). FpTRI1 has a F. graminearum-like 

function with possible hydroxylation at both C7 and C8, and FpTRI13 has a F. sporotrichioides-

like function with a broad substrate range compared to FgTRI13.  

Several of the genes for trichothecene biosynthesis in F. poae have been investigated before by 

Proctor et al. (2009). They found that the phylogeny of three genes belonging to the Tri cluster 

(Tri4, Tri5 and Tri11), along with Tri101, followed species phylogeny. As expected this was 
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confirmed in our study for the rest of the genes in the Tri cluster, which are more closely related 

to F. sporotrichioides than to F. graminearum (Table 6.5). Since regulation of trichothecene 

biosynthesis by TRI6 and TRI10 is not the same between F. sporotrichioides and F. 

graminearum, this may indicate that regulation in F. poae is also more F. sporotrichioides-like 

(Tag et al., 2001; Seong et al., 2009). Phylogeny of Tri genes should not be regarded as a reliable 

indicator for the genetic identity of an individual however. Ward et al. (2002) showed 

conclusively that within the type B trichothecene (NIV, 3-ADON, 15-ADON) producing 

species, chemotype differentiation shows signs of trans-species polymorphism which has been 

maintained over multiple speciation events. This genotype polymorphism has originated after 

the divergence of type A and type B producing species. 

The variability of the Tri1 region in F. graminearum is responsible for recent shifts in 

trichothecene production within this species (Varga et al., 2015). A subpopulation of F. 

graminearum contains a Tri1 allele encoding for an enzyme with 14 AA substitutions when 

compared to the typical TRI1 e.g. in PH-1. By gene swap experiments it was confirmed that 

this TRI1 hydroxylates calonectrin only at C7, finally leading to a novel trichothecene 

compound, termed NX2. It is hypothesized that future outcrossing between populations 

carrying different chemotypes, determined by polymorphism in the Tri cluster (NIV versus 3-

ADON versus 15-ADON) will allow more novel trichothecene compounds to be produced in 

nature (Liang et al., 2014). Like in F. graminearum, different types of the FpTri1 gene can also 

be found in the population (Figure 6.11). It would appear that strong purifying selection acts 

on the Tri1 gene, as most of the SNPs are synonymous mutations. An untapped pool of diversity 

at the Tri1 locus exists in F. poae, but contrary to (the subpopulation of) F. graminearum, in 

this pathosystem TRI1 function is clearly heavily constrained.  

Several steps in the trichothecene biosynthesis pathway have not yet been genetically 

elucidated. Examples are the conversion of the OH group on C8 to a keto group, and the final 

conversions of the acetyl group of ADON and ANIV to an OH group in respectively DON and 

NIV. This has sparked multiple investigations to try and expand the trichothecene clusters to 

include genes that could fulfill these hypothesized functions. Brown et al. (2004) identified 12 

ORFs flanking the Tri cluster with similarity between F. graminearum and F. sporotrichioides. 

Some of the predicted functions of these genes matched biochemical reactions in trichothecene 

biosynthesis without assigned genes, but functional analysis showed that none of the ORFs 

were necessary for trichothecene production. Moreover, none of the ORFs had the TRI6 binding 

motif in their promotor regions. Sieber et al. (2014) included three additional genes downstream 
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of Tri8 in the F. graminearum isolate PH-1 trichothecene cluster, based on co-expression 

analysis. Functional analysis of these genes, with promising predicted functions, did not 

confirm their importance for trichothecene production.  

The genomes of the four isolates that were sequenced in Chapter 4, were mined for their 

trichothecene biosynthesis loci. In isolate 2516, the trichothecene cluster, and the neighboring 

genes, are similar in organization to the Tri cluster in F. graminearum and F. sporotrichioides 

(Brown et al., 2004). However, uniquely in F. poae, the cluster and its environment are invaded 

by TEs, in accordance with its genome dynamics. In isolates bfb0173 and 2516, the intergenic 

region between Tri6 and Tri5 is expanded by the insertion of a pogo transposable element that 

was deactivated by RIP. Also in isolates bfb0173 and 2516, a 400 bp repetitive element is 

present between Tri7 and Tri3. Finally, for isolates 2548 and bfb0173, the Tri cluster at the 

Tri14 side is bordered by a RIPped retrotransposon of the Ty1/Copia family, which is not 

present in the other isolates at this location (see Figure 6.6). Five RIPped copies of this TE are 

present throughout the genome of isolate 2516. The presence of a TE at the border of the cluster 

may support the demarcation of the Tri cluster with Tri14.  

Chapter 4 of this thesis illustrated that the insertion of repetitive sequence into the genome is a 

useful tool for track and trace studies in fungal populations, as every such insertion can be 

considered a unique event. The three insertions in and around the Tri cluster (between Tri7 and 

Tri3, between Tri6 and Tri5 and bordering Tri14) are not cumulative over the four isolates, 

which is best explained by a recombination event that occurred over (part of) the cluster. In 

Chapter 4 of this thesis indications were uncovered that F. poae is a sexual species. In F. 

graminearum, it was shown that the Tri cluster, with similar genomic coordinates as in F. poae, 

is situated in a region of the genome with elevated recombination rate (Cuomo et al., 2007). 

Ward et al. (2002) have shown that the composition of the Tri cluster the FGSC is the result of 

multiple recombination events. The Tri cluster is the result of recombination between different 

haplotypes in several species independently, but it remains to be seen what the functional 

consequences have been for trichothecene biosynthesis in either species. 

The localization of a RIPped pogo element between Tri6 and Tri5 in isolates 2516 and bfb0173 

is remarkable. In the F. equiseti complex, this space is occupied by an additional Zn2Cys6 

transcription factor. There is a strong link between transposable elements and transcription 

factors (TF). Many TF-associated DNA binding sites are derived from ancient transposable 

elements and TEs have played a defining role in the formation of complex regulatory networks 

(Feschotte, 2008). Moreover, some TF families are derived from ancient TE domestication 
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(Sinzelle et al., 2009). There is no similarity between the pogo element in F. poae and the 

Zn2Cys6 TF in F. equiseti, so an evolutionary link between the two seems unlikely. 

Nevertheless, the Tri6-Tri5 intergenic region is the centre of the trichothecene cluster and 

insertions into this region have been shown to influence trichothecene production (Tag et al., 

2001). It is remarkable that a disruption of this central region of the cluster apparently does not 

have an effect on the trichothecene chemotype of the isolates (Figure 6.8).  

It was not possible to obtain a Tri1 knockout without ectopic integrations in this study. The 

frequency of correct insertion of the selective marker was reduced when compared to Tri13 

knockouts. For F. graminearum, several researchers have been successful in making Tri1 

knockouts (McCormick et al., 2004; Varga et al., 2015). We hypothesize that the proximity of 

the Tri1 gene to the telomere in F. poae is the cause of this difficulty. In F. graminearum, the 

gene is at 292 kb of the telomere, and in this subtelomeric region the frequency of cross-over 

and double strand breaks is expected to be higher than in the rest of the genome (Cuomo et al., 

2007). On the other hand, in F. poae, Tri1 is at 55 kb of the telomere. In Saccharomyces 

cerevisiae, it was shown that the region at 0-20 kb from the telomere is particularly low in 

double strand breaks and cross-over events. Hotspots in such events were at 100 kb from the 

telomere (Blitzblau et al., 2007). The region closest to the telomere is subjected to extensive 

telomeric silencing, which may hamper the accessibility of the region for genomic 

rearrangements (Mitchell and Boeke, 2014). 

Chapter 5 of this thesis illustrated that a sequential chemotype is produced in vitro by isolates 

of F. poae, and the nature of the chemotype dictates that type A trichothecenes should be 

produced first, followed by FUS-X and NIV. The pathway that we propose in this Chapter 

(Figure 6.18) explains this chemotype, should be applicable to all trichothecene chemotypes 

described up to now, and trichothecene chemotypes that emerge in the future.   
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Chapter 7: General discussion and 

perspectives 
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7.1 Introduction 

The research in this PhD thesis was undertaken as a response to Belgian field surveys that 

showed F. poae as an important species within the FHB complex (Audenaert et al., 2009). In a 

first part, the body of knowledge on F. poae was reviewed and the prevalence of F. poae and 

other FHB species was assessed in a one year case study. Within this case study, F. poae was 

the second most occurring FHB species in wheat, after F. graminearum. A second part of the 

research was aimed at improving our understanding of F. poae by a genomics approach. The 

genome of one isolate was assembled to a highly contiguous state and this made it possible to 

describe genome dynamics for F. poae which have not been found in fungi before. Moreover, 

lessons regarding the mode of reproduction could be drawn from the genome assembly. A final 

part of the research focused on the production of both type A and type B trichothecenes by F. 

poae. Chemical and genetic investigations were aimed at thoroughly describing this combined 

chemotype and uncovering how it is produced. 

7.2 Strong indications of both sexual and asexual reproduction in F. poae 

McDonald and Linde (2002) detailed the characteristics of fungal pathogens that should pose 

the greatest challenge to durable disease management. These include a high mutation rate 

coupled with active transposable elements, high propensity for gene/genotype flow by 

sporulation and dispersal, and a mixed reproduction system wherein clonal and sexual 

reproduction can alternate. This thesis provides indications that F. poae fulfills all these criteria. 

Its genomic biology is potentially unique in the sense that the specific evasion of RIP on 

supernumerary chromosomes has not been described before. This allows for the retention of 

active transposable elements, that have the possibility of both positive and deleterious effects. 

Moreover, the generation of novel genotypes was demonstrated by the large translocation of 

sequence from the supernumerary to the core genome (Chapter 4).  

Indications are offered in this research that F. poae reproduces both clonally and sexually. 

Indications for a sexual mode of reproduction include RIP of transposable elements (Chapter 

4) and recombinations events (Chapter 6). Chapter 4 illustrated that a novel genotype could 

spread country-wide, and ready dispersal of genotypes is a key feature of a clonal mode of 

reproduction (see also Figure 7.2). Additionally, in Chapter 5 multiple instances of potentially 

clonal isolates were identified by AFLP. We took the F. poae set of the AFLP tree, and 

superimposed on to it the different genetic markers that were investigated throughout this thesis 

(MAT1, pogo, EF-1α, Tri1, translocation of supernumerary sequence). The markers are taken 

from Table S4.1, Figure 5.3 and Figure 6.11. The result can be found in Figure 7.1. With this 
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very limited set of markers, it can be seen that the different combinations of these markers have 

likely originated through recombination. At a smaller scale, the uneven distribution of the 

second supernumerary translocation could be explained by a recombination event. Finally, the 

recombination event over the Tri cluster described in Chapter 6 is an indication of past meiosis. 

Isolates that share >90% genetic similarity as determined by the Dice coefficient are grouped 

by the same color in Figure 7.1. With the same colors, the genetic profiles were mapped out 

geographically in Figure 7.2. As was determined in Chapter 4, only limited geographical 

clustering is found. The dominant genotype of the Italian isolates does not occur in Belgian 

isolates (blue), but the other two do (bright green and light blue).  
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Figure 7.1 – Superposition of genetic markers on the AFLP tree of 64 F. poae isolates (and additionally 

two technical replicates). All F. poae isolates in Table S4.1 were used for AFLP except 177, 2521, 7555, 

6127 and 42824. White entries are markers for which no data was collected (for the Tri1and EF-1α 

markers) or could be collected (for the MAT1 and pogo markers). MAT1: yellow is MAT1-1, green is 

MAT1-2 (see Chapter 4). Tri1: yellow and green are the major types defined in Chapter 5, grey are the 

three divergent isolates (15926, 9209 and 177; see Figure 6.11). EF-1α: yellow, green and grey 

represent the three different EF-1α types detected in Chapter 5 (see Figure 5.3). INS1 and INS2 are the 

major insertions of supernumerary sequence into chromosome 3 of a subset of isolates. Yellow 

indicates the absence of the insertion, green indicates the presence of the insertion. Eight isolates total 

were detected that have insertion 1 (closest to the telomere of chromosome 3), however isolate 2521 

was not included in the AFLP analysis therefore only 7 are depicted here (isolates 2565, 2570, 2571, 

2671, 2569, 2516 and 2531). Of the eight isolates with insertion 1 there are three that also contain 

insertion 2 (isolates 2671, 2516 and 2531). Pogo: green indicates presence of the pogo element 

between Tri5 and Tri6, red indicates absence (see Figure 6.8 and Figure 6.9). Clusters of isolates that 

share more than 90% genetic similarity according to the Dice similarity coefficient (see Figure 5.2) are 

grouped with the same colors.  

The track and trace opportunities that are gained from TE insertions and RIP were demonstrated 

with the diagnostic PCR for the translocation of supernumerary sequence into chromosome 3 

(Figure 7.2C). When in the future more insertions are used as genetic markers, as was already 

done for the pogo element between Tri5 and Tri6, recombination between different groups of 

isolates should become more clear.  
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Figure 7.2 – Summary of F. poae isolates and the genetic markers that were investigated in this thesis. 

Note that isolates from locations other than Italy and Belgium are not shown. Pie charts and circles are 

scaled to the number of isolates collected at every location. A and B: genetic profiles as determined by 

AFLP analysis of Italian and Belgian isolates. Isolates that are part of a cluster with >90% genetic 

similarity based on the Dice coefficient are are given the same colours as in Figure 7.1 and represent 

isolates that belong to the same genetic profile. From the 10 Italian isolates, 3 (isolates 9139, 9181 and 

9196) did not belong to such as a cluster and are included as the white segment of the circle. For the 

Belgian isolates this was the case for one isolate (isolate 2041) from Zwevegem. Two Belgian isolate 

from Zwevegem (isolate 2521) and Heverlee (isolate 7555) were not included in the AFLP analysis and 

are not included on the map. C: Three locations where the genotype containing major supernumerary 

sequence translocations was detected. Orange: five isolates with only insertion 1 (closest to the 

telomere of chromosome 3). Red: three isolates with both insertion 1 and insertion 2. D and E: 

distribution of the mating type in Italian and Belgian isolates (see Chapter 4). Yellow = MAT1-1; green 

= MAT1-2. For the four locations where MAT1-1 and MAT1-2 are shown to co-occur, isolates from both 

mating types were collected in the same sampling year except for Heverlee, Belgium where the two 

isolates of opposing mating type were collected in 1965 and 1968. For one isolate from Zwevegem, 

Belgium (isolate 2547) no mating type could be determined and it is not included on the map.     

A recent study indicated that a significant portion of the F. poae population may be homothallic, 

i.e. isolates contain genes from both the MAT1-1 and MAT1-2 idiomorphs within their genome 

(Dinolfo et al., 2014). In our set of sixty-nine isolates, we found no indications of homothallism. 

Within the genus Fusarium, the heterothallicmode of reproduction is the ancestral state and 

homothallic isolates belonging to the FGSC contain genes from the two idiomorphs closely 

linked together (O'Donnell et al., 2013); see Box 2.1. This is not always the case. In the 

Cochliobolus genus, there are also both heterothallic and homothallic species, and for three 

homothallic species the organization of the genes from the two idiomorphs is unique in every 

case (Yun et al., 1999). In the case of C. luttrellii, genes from the two idiomorphs have become 

fused through a recombination event between idiomorphs from heterothallic parents. On the 

other hand, in Aspergillus, heterothallism has been argued to be the derived state (Galagan et 

al., 2005). Isolates from the study by Dinolfo et al. (2014) should urgently be subjected to 

additional investigation in order to confirm the results of these authors, and to uncover how the 

genes of both idiomorphs are combined in any homothallic individuals.  

It is not known how homothallism in the FGSC came to be. O'Donnell et al. (2004) proposed 

an unequal crossover event, bringing together the genes from the two opposing idiomorphs 

from the most recent heterothallic ancestors. Box 2.1 shows that the homothallic configuration 

of F. graminearum has a complex relation to the heterothallic loci of F. pseudograminearum. 

The MAT1-1 locus in F. poae is identical as described in other fusaria. However, the MAT1-2 

locus in F. poae contains an additional inversion, bordering the MAT1-2-3 gene when 
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compared to the loci of type B trichothecene producers (extracted from isolates 6114 and 30702, 

data not shown).  

The heterothallic isolates collected within the scope of this thesis occur in a skewed distribution 

of MAT1-1/MAT1-2. Within the Italian isolates, 7 out of 10 isolates were of the MAT1-1 type. 

Mating type was determined for 48 Belgian isolates, 42 of which were of the MAT1-1 type 

(Figure 7.2D and E). This may indicate that sexual reproduction is infrequent within the 

population, though it is beyond doubt occurring considering the findings in this study. The 

skewed distribution of MAT1-1/MAT1-2 in Belgian F. poae populations was also found in a 

study at the UCL (Pierre Hellin, personal communication). 

7.3 Lifestyle parallels between Fusarium species 

We hypothesize that parallels can be drawn between F. poae and F. langsethiae. The F. 

langsethiae genome was recently sequenced, and by the state of its assembly it can be inferred 

that a great deal of repetitive sequence is present (dr. Erik Lysoe, personal communication). It 

stands to reason that RIP should be either completely inactive, or like in F. poae selective for 

certain regions of the genome. Long read sequencing and assembly will be able to answer this 

question in the future. However, supernumerary chromosomes are likely present within the 

genome of F. langsethiae, as evidenced by CHEF karyotyping (Lysoe et al., 2015). Moreover, 

karyotyping of F. sporotrichioides, a sister species of F. langsethiae, showed an identical 

karyotype as F. poae (Fekete et al., 1993). It will be interesting to see if F. langsethiae is able 

to combine sexual and asexual reproduction, or if it perhaps verges even further on the scale 

towards an asexual mode of reproduction. In any case, the different types of reproduction in F. 

graminearum, F. poae and potentially F. langsethiae is one of the exciting reasons for 

comparative studies between the three (Table 7.1).  

Table 7.1 – Comparison between F. graminearum, F. poae and F. langsethiae; including interesting 

targets for future research. Some F. langsethiae findings are based on unpublished data (dr. Erik Lysoe, 

personal communication). 

 Parameter F. graminearum F. poae F. langsethiae 

Trichothecene chemotype Type B Type A+B Type A 

Pathogenesis Necrotroph in late stages Largely symptomless Largely symptomless 

Mode of reproduction Predominantly sexual Sexual + asexual? Asexual? 

Supernumerary chromosomes No Yes Yes 

High level of repetitive DNA No Yes Yes 

Triazole application Efficient Shift towards F. poae  

Shift towards F. 

langsethiae 
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Sexual reproduction in Fusarium species has probably been best investigated in F. 

graminearum. Zeller et al. (2003) investigated the diversity of F. graminearum on wheat spikes 

in small quadrants. They detected a frequently recombining population, with limited spread 

after infection, as clonal isolates were almost exclusively detected from the same wheat ears. 

This is confirmed in a study by Manstretta et al. (2015) who investigated dispersal patterns of 

ascospores and conidia and found that 93% of the spores within a wheat canopy were 

ascospores. Liang et al. (2015) concluded from several large datasets and multiple studies that 

the F. graminearum population on wheat in the upper Midwestern United States is likely 

sexually more active that the population on barley.  

7.4 Opportunities for pathogenomics 

In Chapter 4, it was shown that the obtained genome assembly is a valuable tool for population 

monitoring of F. poae and understanding the balance between clonal and sexual reproduction. 

However, significant opportunities for pathogenomics are also available. Typically, novel 

sequenced genomes are mined for their secondary metabolite arsenal (Wiemann et al., 2013) 

and predicted effector genes and cell wall degrading enzymes (Gardiner et al., 2012). 

Investigations of this type offer invaluable insights into the epidemiology of the fungus. For 

example, F. avenaceum is a generalist pathogen occupying the extracellular space of a plethora 

of hosts, and this is reflected in the very high level of predicted secreted proteins (Lysoe et al., 

2014). In the early stages of infection, Z. tritici is characterized by a latent biotrophic phase 

with little symptom development and during which it evades host defenses, termed “stealth 

pathogenesis”. Accordingly, its genome contains a very low level of plant cell wall degrading 

enzymes (Goodwin et al., 2011).  

Aside from an in depth look at the trichothecene biosynthesis loci, pathogenomics 

investigations like this have not been performed for F. poae yet and undoubtedly provide some 

of the most exciting opportunities for this species in the near future. The high quality genome 

annotation in Chapter 4 offers some interesting research questions. At least 31 genes have been 

duplicated to the supernumerary genome, several of which have predicted pathogenicity or 

secondary metabolite biosynthesis functions (Table S4.2).  

The toxigenic potential of Fusarium species is not yet fully understood. As more genomes are 

sequenced, researchers find that a plethora of secondary metabolite clusters is present, for which 

no compound has been assigned or discovered yet. Moreover, Fusarium genomes up to now 

have in most cases contained unique clusters, not present in other species (Hansen et al., 2015). 
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These are part of the “cryptic genome” of the organism, regions on the chromosomes that are 

only expressed under specific circumstances such as under stress or during plant infection 

(Wiemann et al., 2013). Plant pathogenic Fusarium species contain record numbers of such 

secondary metabolite clusters, for example F. avenaceum contains up to 80 core genes involved 

in secondary metabolite biosynthesis (Lysoe et al., 2014). Prediction of secondary metabolite 

clusters, and their localization across the core and supernumerary genome of F. poae, should 

offer valuable insight into the toxigenic potential of this species. Often, phylogenetic studies on 

secondary metabolite biosynthesis clusters (SMCs) offer evidence of horizontal gene transfer 

between fungi, or even between different kingdoms (Gardiner et al., 2012; Sieber et al., 2014). 

The presence of TEs in or around SMCs such as the trichothecene cluster (see Chapter 6) may 

facilitate such horizontal gene transfer events.  

A duplicated gene that is present in 10 copies (though not all full length; Table S4.2) is the 

Dicer2 gene. This is a vital part of the RNA silencing machinery in fungal species (Segers et 

al., 2007), which has recently been confirmed for F. graminearum in particular (Chen et al., 

2015). Notably, Dicer2 activity provides protection against mycoviruses, which are RNA 

viruses commonly infecting many fungal species. It has been stated that within the genus 

Fusarium, F. poae has particularly high levels of mycovirus infection (Fekete et al., 1995; Cho 

et al., 2013). This was confirmed by a de novo assembly of RNAseq reads collected in Chapter 

4 (data not shown), as 2 mycoviruses (occurring within the nucleus) and 2 mitoviruses 

(occurring within the mitochondria) were detected. In light of the prevalence of RNA viruses 

in F. poae, the high copy number of the antiviral Dicer2 gene is conspicuous and warrants 

further investigation.  

The lessons learnt from the F. poae genome in Chapter 4 should hopefully help us to understand 

the genome dynamics of other Fusarium species, and pathogens from other genera. The genome 

dynamics that we detected between the core and supernumerary chromosomes were largely 

caused by the absence of RIP on the supernumerary genome. At least in F. solani, a similar 

exclusion could be ongoing as it was experimentally shown that a part of the genome was not 

affected by RIP. The supernumerary chromosomes of F. solani and of F. oxysporum f. sp. 

lycopersici have been shown to play a role in pathogenicity (Coleman et al., 2009; Ma et al., 

2010), but it is not known if they have additional characteristics as those described in this thesis 

for F. poae. Several other Fusarium species have been shown to contain supernumerary 

chromosomes such as F. sporotrichioides (Fekete et al., 1993), F. langsethiae (Lysoe et al., 

2015) and F. asiaticum (Galazka and Freitag, 2014), but for these either sequence information 
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or assembly quality is not yet sufficient to allow for an investigation as in depth as that carried 

out in Chapter 4. In a broader sense, different genome biology, rather than the currently widely 

adopted hypothesis of different origins could explain the differences between core and 

supernumerary genomes in many species.  

During the genomics work that is described in Chapter 4, peculiar patterns of mutations were 

detected in the genomes of the four F. poae isolates. Blocks of high SNP levels between certain 

isolates alternated with blocks that contained little to no variation in a mosaic-like pattern. This 

is highly reminiscent of the situation in Zymoseptoria pseudotritici, a sister species of Z. tritici 

(Stukenbrock et al., 2012). It was found that this species originated through a single fusion 

event between two divergent individuals and all haplotypes that are present in current isolates 

of the species can be traced back to the divergence of the population founders. It will be highly 

interesting to investigate the origin of F. poae as a species, which is feasible with the highly 

contiguous assembly of its genome. Stukenbrock and McDonald (2008) reviewed the different 

origins of plant pathogens in agro-ecosystems and found several instances where hybridization 

led to the making of new pathogen. However, host and pathogen co-evolution is the more 

frequent scenario, often associated with the domestication of agricultural crops and the 

concordant loss in genetic diversity, both in the host and the pathogen. Finally, sudden host 

jumps and horizontal gene transfer may drastically alter the pathogenic potential of an organism 

and may lead to the formation of novel pathogens.  

7.5 Longevity in the FHB complex 

It is unknown whether F. poae fits the criteria of an “emerging” species or not. At least within 

the last decades it has been continuously prominent, as it has been detected frequently since the 

eighties of last century, and one study even assigns an important role to F. poae on wheat seeds 

of the 1930s-1940s (Gordon, 2006). It has also been detected from wheat samples collected in 

the early 1900s in the UK (dr. Cees Waalwijk, personal communication). Chapter 2 indicated 

that F. poae and F. langsethiae show an increased tolerance towards triazoles in field trials. We 

argue that this may contribute to upholding the share of these weaker pathogens in the 

population.  

The genome sequence of F. poae was mined for the presence of the three CYP51 known to 

Fusarium species (Becher et al., 2011). All three described genes are present in single copy in 

the genome; therefore copy number variation, for example by duplication to the supernumerary 

genome, is not responsible for higher triazoles tolerance. The genes code for functional proteins 
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(data not shown). We argue that like in F. graminearum, variation at the CYP51 level may not 

be responsible for tolerance against triazoles. Transcriptional regulation (i.e. constitutively 

higher expression of the target genes, or higher expression upon triazoles exposure) has not 

been investigated yet. 

Conclusively proving a link between elevated triazole mediation and a more toxic mycotoxin 

chemotype is troublesome. If efflux transporters of the ABC or MFS type are involved, there is 

significant substrate redundancy to cope with in experimental setups (Zwiers et al., 2003; 

Coleman and Mylonakis, 2009). Individual knockout of transporters are therefore not likely to 

offer convincing results. Micro-array or RNAseq experiments that monitor transporter 

upregulation under certain conditions may be more successful (Becher et al., 2011). It should 

be possible to uncover whether the same transporters are upregulated as a response to 

endogenous toxin production (e.g. as identified by Seong et al. (2009)) and exogenous triazole 

application. In F. graminearum, at least two such ABC transporters exist (FGSG_08830, 

FGSG_11028). For our hypothesis to be valid, self-protection of the fungus against its toxic 

trichothecenes should be more efficient or faster in F. langsethiae than in F. graminearum. 

Exposure experiments with DON and T-2 against both F. graminearum and F. langsethiae 

could help to elucidate this.  

7.6 FHB and mycotoxin profiling 

Chapter 3 of this thesis elaborated on the Fusarium survey work that was carried out for cereals 

and cereal-derived samples in a one year case study. Several of the measured trichothecenes are 

the subject of currently ongoing official investigation from legislative authorities. Traditionally, 

for mycotoxins that may pose a risk for human or animal health, the European Commission 

(EC; DG SANTE, Directorate General for Health and Food Safety) will ask the European Food 

Safety Authority (EFSA) to form a Scientific Opinion on that compound. For example, in the 

case of T-2/HT-2, this request was formulated in June 2010. The CONTAM (contaminants) 

panel of EFSA accepts the question and provides a deadline for the publication of a Scientific 

Opinion. Next, EFSA will ask the Member States of the European Union for scientific data and 

reports on the investigated subject, in an official “call for data”. The data collected in the 

framework of Chapter 3 was submitted to EFSA as part of this procedure. EFSA will form a 

Scientific Opinion including a summary of available literature, values for lowest-observed-

adverse-effect level (LOAEL) and no-observed-adverse-effect level (NOAEL), and occurrence 

data based on mycotoxin surveys. By combining this data, a risk assessment is performed for 

different target groups. In the case of the Scientific Opinion on T-2/HT-2, this was published 
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by EFSA in December 2011 (EFSA CONTAM Panel, 2011b). The EC uses the information 

provided in the Scientific Opinion to create legislation if necessary, such as was the case in 

2013 when indicative values were set for T-2/HT-2 occurrence in cereals and cereal matrices 

(European Commission, 2013). 

Scientific Opinions have been published in very recent years for Fusarium mycotoxins such as 

ZEN (EFSA CONTAM Panel, 2011a), T-2/HT-2 (EFSA CONTAM Panel, 2011b), NIV (EFSA 

CONTAM Panel, 2013) and BEAU/ENN (EFSA CONTAM Panel, 2014). Three Scientific 

Opinions for Fusarium mycotoxins are still ongoing, namely DON and its (masked) metabolites 

(deadline December 31st, 2015), MON (deadline December 31st, 2016) and DAS (deadline 

December 31st, 2016). This shows that the data collected in the framework of Chapter 3 is 

relevant for ongoing legislative efforts.  

7.7 Fusarium poae epidemiology 

Fusarium poae has been designated as one of the most prominent members of the FHB complex 

in Belgium during recent years. Together with F. graminearum, it was the most frequently 

isolated species by Audenaert et al. (2009). These researchers used a plating-based method, 

whereby colonies that emerge from wheat ears are characterized by diagnostic PCR and 

population distributions are calculated based on the total number of outgrowing colonies. In 

Chapter 3 of this thesis, we deployed a quantitative approach over a large number of samples, 

which shows less bias towards species that may have an in vitro advantage over slower growers. 

Importantly, even with this completely different approach, F. graminearum and F. poae were 

the two species with the highest incidence (the percentage of positive samples) and abundance 

(the amount of DNA normalized on plant DNA). This is a unifying trend over F. poae literature: 

despite the very different surveying strategies that are used by different research groups, F. 

poae stands as one of the most frequently encountered species within the FHB complex; 

Chapter 2 indicates that such reports existed already in the eighties of last century. 

Much is still unclear about the epidemiology of F. poae. It has been described as a secondary 

species and its close correlation with other Fusarium species in field samples support this 

hypothesis. To improve our understanding of the epidemiology of F. poae, we need thorough 

field monitoring at different times in the growing season, which to the best of our knowledge 

has not been performed for F. poae. Moreover, to investigate the role of primary infection with 

F. graminearum, double inoculation experiments should be performed. It will be interesting to 

monitor whether F. poae profits from the metabolic changes that F. graminearum induces in 
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planta, such as increased concentration of metabolites from the polyamine pathway. 

Trichothecene biosynthesis in F. poae is likely regulated by yet unknown in planta signals, as 

L-arginine as the sole nitrogen source in vitro did not particularly stimulate type B trichothecene 

production, which is abundantly produced by F. poae in planta (Vogelgsang et al., 2008b). 

Nitrogen metabolism of both the plant and the fungus has a profound impact on the 

pathogenicity of the pathogen (Seifi et al., 2013; Subramaniam et al., 2015). One of the exciting 

questions for the future is to determine whether F. poae, and F. langsethiae, react differently to 

various nitrogen cues than F. graminearum. 

The host preference of F. poae is unclear. In Chapter 3, we found that in Belgium it is more 

dominant on wheat than on barley. However, the literature review in Chapter 2 showed that in 

several countries, F. poae is dominant on barley as well, and the reason for this discrepancy is 

not known. The same samples that had low F. poae infestation in Chapter 3, had also higher 

DON levels (due to higher DON production by F. graminearum). Possibly the colonization of 

the ear with F. graminearum and DON was too high for F. poae to take hold. 

7.8 Unique genome and chemotype at a crossroads 

A type A + type B trichothecene chemotype was detected in F. poae, which is unstable in vitro 

with regard to the type B production when F. poae is cultured in trichothecene biosynthesis 

inducing medium. This can be explained by picturing the chemotype as a linear series of four 

compounds, DAS, NEO, FUS-X and NIV, and the biosynthesis of these compounds does not 

necessarily continue all the way through to NIV. The Tri cluster and its environment are invaded 

by TEs, which can be seen as a consequence of the unique F. poae genome biology, as no other 

Fusarium species have been described with a similar invasion. It is tempting to speculate that 

isolates with a pogo element in the important Tri6 – Tri5 backbone region are affected in their 

trichothecene biosynthesis, but the instability of the chemotype could not easily be linked to the 

presence of this element.  

New trichothecene chemotypes and metabolites are regularly detected (Fruhmann et al., 2014; 

Varga et al., 2015). As recombining populations bring together the different alleles that are 

present at the trichothecene loci, new chemotypes can be expected to arise in the future (Liang 

et al., 2014). We illustrate in Chapter 6 that a combination of Tri13 and Tri1 alleles, respectively 

coding for enzymes with a broad substrate range (F. sporotrichioides-like) and the possibility 

of hydroxylation at both C7 and C8 (F. graminearum-like), is responsible for the type A + B 

trichothecene chemotype in F. poae. This model may explain other such chemotypes, as in F. 
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equiseti where simultaneous type A + B production has also been reported from isolates. Indeed, 

the TRI13 in F. equiseti is more closely related to to FsTRI13 (79.2%) than to FgTRI13 

(72.1%). Nevertheless, we should take care with identifying the link between genotype and 

chemotype, and in vitro chemotypes may be very different from in vivo production depending 

on what methods are used. Predicting the chemotype of F. poae isolates by a genetic diagnostic 

method may be particularly troublesome, as all F. poae isolates have a “NIV genotype”, but 

production of NIV, at the last stage of the biosynthetic grid, may be dependent on unknown 

environmental or epigenetic factors. 

7.9 General conclusion and perspective 

The goal of this thesis was to increase our understanding of F. poae, a species that is consistently 

described as weakly pathogenic, but is a prominent member of the FHB complex nevertheless. 

In a first major part of the thesis, we set out to ascertain whether we are right to call F. poae a 

“successful” species. Results of field trials indicate that F. poae, for reasons that are yet 

unknown, is more tolerant towards triazoles than other species of the complex. Moreover, field 

surveys have indicated that the biomass of F. poae in the wheat ear is at the same high level as 

F. graminearum. A literature survey showed that the species has occasionally been reported as 

one of the most frequently detected FHB species for decades. Therefore, it seems like by all 

accounts, F. poae is indeed a successful species despite its limited ability to induce FHB 

symptoms in cereals.  

In a second major part of the thesis, some of the reasons for the endurance of F. poae in the 

FHB complex were investigated. With state of the art genomics, we uncovered genome 

dynamics within this organism that have not been described for any fungus before, as the 

supernumerary chromosomes are not under the control of genome defense, which may confer 

significant opportunities for adaptation, and should accelerate chromosomal and organismal 

evolution in F. poae. With a polyphasic in vitro approach, a unique chemotype of both type A 

and type B trichothecenes was detected and investigated at the mechanistic level. Moreover, 

indications were found that F. poae combines sexual and asexual reproduction. Both the unique 

genome dynamics of F. poae, and the unique chemotype are connected in the finding that the 

Tri cluster is invaded by TEs, nevertheless no clear consequences on the trichothecene 

chemotype could be detected.  

A key F. poae research topic for the future includes determining the actual effects that the 

unique genome biology of F. poae has had on its lifestyle, for example by investigation the 
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function of genes that have been duplicated to the supernumerary genome by knockout 

experiments. It will be interesting to uncover whether dosage effects and  neofunctionalization 

play a role for genes of interest such as those involved in production of secondary metabolites 

and host colonization.  

To map the spread and reproductive strategy of F. poae, simple diagnostic PCRs similar to 

those developed in this thesis will be useful. It will be possible to determine whether the 

genotype with major translocation(s) of sequence has spread to other locations or neighbouring 

countries, and with thorough monitoring schemes even the speed of such spreading events could 

be ascertained. The current assembly of F. poae is among the best within the fungi and should 

aid in further understanding genome evolution and biology in fungi. However, some drawbacks 

remain, such as the lack of knowledge on the occurrence of meiosis. Future investigations 

should further attempt to induce sexual reproduction in the lab, or lacking that, redirect field 

surveys to monitoring the occurrence of the sexual cycle. By evaluating when/if (new) TE 

insertions become RIPped over and during growing seasons, it will be possible to identify the 

frequence of meiosis (using RIP as a proxy for the sexual cycle).  

While this thesis provides an explanation for the genetic basis of the type A+B chemotype in 

F. poae, there was no attempt to identify whether this chemotype offers any advantages over 

other FHB pathogens. This is another important research question for the future. With gene 

swaps of Tri1 and Tri13, it should be possible to develop mutant strains that produce only type 

A (DAS and NEO; FlTri1 gene swap) and type B (FUS-X and NIV; FgTri13 gene swap) 

trichothecenes. Combining these in comparative experiments with the wildtype, a Tri5 

knockout mutant (producing no trichothecenes) and a knockout at Tri1 (producing only DAS) 

will help uncover what role trichothecenes play in the epidemiology of F. poae, both for 

colonization of the host in planta and in its competition with other FHB species. In planta 

studies will also shed more light on the production of type A and type B trichothecenes by F. 

poae in the field, and for this purpose analytical methods should include not only the major 

trichothecene end products but also their related compounds. These experiments will also shed 

light on whether the instability detected in vitro is also present in planta, and which cues 

stimulate NIV production by F. poae.  
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Summary 
The disease Fusarium Head Blight (FHB) on small grain cereals such as wheat and barley, is 

caused by a complex of Fusarium species that co-occur on the ear. This complex is dynamic, 

and evolves during the growing season, but may also show drastic differences between growing 

seasons or over multiple years. Within this complex, F. graminearum is the most important 

species. It causes significant economic damage, primarily due to its production of 

deoxynivalenol (DON). This is a mycotoxin, i.e. a secondary metabolite produced by the fungus 

which is not vital for its survival, but does play a role in certain niches or under certain 

conditions. F. poae has repeatedly been described as one of the most frequently detected 

Fusarium species, which is surprising because of its limited aggressiveness to the cereal host. 

In contrast to its consistent occurrence, the knowledge on F. poae is limited, particularly in 

comparison to F. graminearum. The goal of this thesis therefore was to improve our 

understanding of F. poae.  

Broadly, the research in this thesis may be divided into two parts. In a first part, we set out to 

uncover whether F. poae can rightfully be called a successful species, and in a second part some 

of the more fundamental reasons for this success were addressed.  

From the information in Chapters 1 and 2, it can be concluded that F. poae may be considered 

a successful species, despite its lack of aggressiveness. In field trials, it seems to profit from 

triazole application as its share in the Fusarium population increases while the share of other 

species such as F. graminearum decreases. The same finding holds true for F. langsethiae, 

which is morphologically similar to F. poae, and which is an emerging problem on oats in 

Scandinavian countries and the UK. A survey of literature indicates that it has been among the 

most prominently detected FHB species for decades, across a geographically broad distribution. 

Moreover, a detailed survey of Belgian small grain cereal field samples, indicated that F. poae 

biomass accumulates to levels similar to those of F. graminearum in wheat. Nevertheless, a lot 

is still unknown about its pathogenesis, and it remains to be seen how F. poae colonizes the 

wheat ear, but does not induce advanced necrosis – and particulary whether it may benefit the 

organism not to.  

In Chapters 4, 5 and 6 we set out to identify determinants in the lifestyle of F. poae which may 

have contributed to its success. The basis for this approach was laid in Chapter 4, with the whole 

genome sequencing approach for four F. poae isolates. A high quality genome may galvanize 
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research of an organism, and therefore one isolate was sequenced with novel SMRT technology, 

which produces long reads and eventually leads to a more contiguous assembly. This provides 

otherwise impossible opportunities for genome biology and evolution studies. This allowed us 

to divide the genome of one F. poae isolate into a core and supernumerary component. The 

core genome is conserved and relatively stable between isolates, and it contains four 

chromosomes that show extensive synteny to those of F. graminearum. The supernumerary 

genome on the other hand is highly dynamic between isolates, and these chromosomes have 

been shown to differ in size and number between individuals. We found that the supernumerary 

chromosomes show high levels of TEs and paralogs, opposite to the situation on the core 

chromosomes. This was traced back to RIP, a fungus-specific defense mechanism against TEs, 

which is active on the core genome but not on the supernumerary genome.  

The consequences of the core and supernumerary genome “living apart together” in F. poae 

were shown to be significant. The integration of TEs, and even whole blocks of supernumerary 

sequence, may accelerate evolution and adaptation in F. poae. By acting as a refuge from RIP 

for repetitive DNA, duplicated genes may persist in F. poae that would not have survived in F. 

graminearum. Elucidating the function of these duplicated genes will be one of the exciting F. 

poae related research questions for the future.  

During the genome work on F. poae, clear indications surfaced that isolates of this species 

combine both sexual and asexual reproduction. RIP is only active during the pre-meiotic phase, 

and all the ingredients for the sexual cycle were found to be present within the genome. Both 

MAT1-1 and MAT1-2 mating types required for meiosis were found in the population, albeit 

in a heavily skewed but co-occurring fashion. A genotype where >200kb blocks of 

supernumerary sequence had translocated to the core chromosomes was found in three locations 

across Belgium, heavily indicative of clonal spread. For these purposes, a collection of 69 F. 

poae isolates was tested. In accordance with literature, we found that genome-wide intra-species 

diversity (determined with AFLP) heavily exceeded the diversity at the locus of a barcoding 

gene (EF-1α), which may be explained by the disruptive nature of TEs and supernumerary 

genome – mediated rearrangements on evolutionary short timescales. Indeed, the similar or 

even clonal nature of some (groups of) isolates may be obscured by TE proliferation. 

Since DON has been shown to be an important part of the life cycle of F. graminearum, we set 

out to test which trichothecenes F. poae produces in a trichothecene biosynthesis inducing 

medium, and whether the described genome dynamics may have an effect on trichothecene 

production. We found that, uniquely, both type A and type B trichothecenes are produced in a 
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strictly sequential fashion, from DAS over NEO and FUS-X to NIV. If any of the compounds 

at the later stages is produced, all those coming before could also be detected. The triggers 

which are needed to move production all the way to NIV are still unknown. It was determined 

that this chemotype is not fixed, opposite to what has been described for the FGSC. All isolates 

are likely part of a universal NIV producing population, and opposed to the FGSC, defining a 

genetic “genotype” for this unstable chemotype may therefore be uninformative. 

Different loci in the genomes of Fusarium species contain genes that are responsible for 

trichothecene production, grouped in clusters. Variation at the Tri1 locus has been shown to be 

responsible for the switch between type A and type B production. In F. poae, we found different 

types of the Tri1 gene with up to 3% divergence, however nearly all SNPs were synonymous. 

Clearly, TRI1 function is heavily constrained in this pathogen. In accordance with the unique 

genome dynamics of F. poae, the Tri cluster and its environment was found to be invaded by 

TEs. A RIPped pogo TE was found in the central region of the cluster in more than half of the 

isolates, however this could also not explain for any qualitative or quantitative differences in 

chemotype between the isolates. Like in several other Fusarium species, a recombination event 

was detected over the Tri cluster by using the TEs as genetic markers.  

The production of both type A and type B trichothecenes was traced back to the combination 

of “opposing functions” by TRI1 and TRI13: TRI1 has F. graminearum – like function with 

the hydroxylation of its substrate at both C7 and C8, and TRI13 has F. sporotrichioides – like 

function by taking CAL as a substrate. In this manner, TRI13 mediates different paths along a 

complex biosynthesis grid.  

In conclusion, we argue that the unique chemotype and genome dynamics of F. poae may be 

conducive to its continued persistence in the FHB complex, but as of yet a definitive link has 

not been shown. Future investigations will be able to elucidate whether characteristics such as 

a rapid generation of novel genotypes, a more toxic chemotype than its close relatives in the 

FHB complex, and the likely combination of sexual and asexual production have aided in the 

success of F. poae as a pathogen. 
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Samenvatting 
De ziekte aarfusarium die vooral voorkomt op graangewassen zoals tarwe en gerst, wordt 

veroorzaakt door een gans complex van Fusarium species, die samen voorkomen op de aar van 

het gewas. De samenstelling van dit complex is zeer dynamisch, en kan gedurende het 

groeiseizoen veranderen, maar kan ook tussen verschillende groeiseizoenen grote verschillen 

vertonen. Binnen de verschillende species van het complex is F. graminearum allicht de 

belangrijkste. Ze leidt tot significante economische verliezen, vooral dan door de productie van 

de toxische stof deoxynivalenol (DON). Dit is een mycotoxine, d.w.z. een secundair metaboliet 

dat niet strikt noodzakelijk is voor het overleven van de schimmel, maar dat in bepaalde niches 

of onder bepaalde omstandigheden geproduceerd wordt. F. poae is in veel landen één van de 

meest gedetecteerde Fusarium species, een verrassende bevinding gezien het een vrij zwak 

pathogeen is. Het frequente voorkomen van F. poae staat in sterk contrast met de kennis die 

erover beschikbaar is, vooral in vergelijking met F. graminearum. Het doel van deze thesis was 

dan ook om een beter begrip te krijgen van F. poae.  

In het algemeen kan deze thesis onderverdeeld worden in twee grote delen. In een eerste deel 

was het onze bedoeling om te bepalen als F. poae terecht een “succesvol” species mag genoemd 

worden. In een tweede deel werden een aantal verklaringen voor dit succes gezocht.  

In Hoofdstukken 1 en 2 konden we vaststellen dat F. poae op veel vlakken een succesvol species 

is, ongeacht zijn beperkte aggressiviteit ten opzichte van de waardplant. In veldproeven die de 

efficiëntie van triazolen testten, konden we vaststellen dat F. poae mogelijk resistenter is dan 

andere species, en zo zijn aandeel in de populatie kan vergroten na fungiciden applicatie. Een 

gelijkaardig resultaat werd bekomen voor F. langsethiae, een opkomende species op haver in 

Scandinavische landen en het Verenigd Koninkrijk. Een literatuur studie toonde dat F. poae 

reeds tientallen jaren bij de meest gedetecteerde FHB species hoort, en dit over een geografisch 

wijde schaal. Ten laatste werd een gedetailleerde veld monitoring uitgevoerd, en deze toonde 

aan dat in België de graad van tarwe infestatie door F. poae gemiddeld even hoog is als deze 

door F. graminearum. Ongeacht deze duidelijke tekenen van “succes” als species, is slechts 

weinig geweten over de pathogenese van F. poae. Zo moet het nog onderzocht worden hoe de 

species de tarwe aar koloniseert, maar toch weinig symptomen induceert – en of dit misschien 

onderdeel is van de specifieke strategie van de schimmel.  

In Hoofdstukken 4, 5 en 6 wilden we bepaalde karakteristieken van F. poae identificeren, die 

mogelijk hebben bijgedragen aan zijn succes. De solide basis voor deze aanpak werd gelegd in 
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Hoofdstuk 4, door de genoomsequentie van vier F. poae isolaten te bepalen. Een hoog 

kwalitatieve genoom sequentie kan onderzoek omtrent een organisme drastisch vooruit helpen, 

en daarom werd voor één isolaat SMRT technologie aangewend. Deze nieuwe techniek 

produceert lange DNA sequenties, en leidt daarom tot een meer continue genoom assemblage. 

Hierdoor worden nieuwe kansen aangesneden voor onderzoek naar de biologie en evolutie van 

een genoom. Het F. poae genoom kon onderverdeeld worden in een “basis” en “extra” deel. 

Het basisgenoom is sterk geconserveerd en vrij stabiel tussen de isolaten, en bestaat uit vier 

chromosomen die grote gelijkenis tonen met de chromosomen van, bijvoorbeeld, F. 

graminearum. Het “extra” genoom echter is zeer dynamisch, en de chromosomen hier 

verschillen in aantal en grootte tussen verschillende isolaten. Het basis en extra genoom 

verschillen onderling door hun niveau van repetitief DNA. We konden vastellen dat het 

ontbreken van “RIP” op het extra genoom, een verdedigingsmechanisme tegen “transposable 

elements”, verantwoordelijk is voor de verschillen tussen het basis en extra genoom in F. poae. 

De gevolgen van het samen voorkomen van het basis en extra genoom in F. poae, zijn 

significant. De dynamiek die ontstaat doordat TEs vanop het extra genoom naar het 

basisgenoom migreren, alsook door de volledige verplaatsing van grote stukken DNA, leidt tot 

een versnelde evolutie en groter adaptatie vermogen in F. poae. Doordat RIP niet actief is op 

het extra genoom, en repetitief DNA er niet uitgeschakeld wordt, ontstaan er gen duplicaties 

die in F. graminearum zouden uitgeschakeld zijn. Het uitzoeken van de functies van al deze 

gen duplicaties, is een interessante taak voor de toekomst.  

Gedurende het onderzoek naar de genoomsequentie van F. poae, kwam overtuigend bewijs naar 

voor dat isolaten van deze species zich zowel seksueel als aseksueel voortplanten. RIP 

functioneert immers enkel tijdens de pre-meiotische fase, en op het basis genoom werd zeer 

duidelijk vastgesteld dat RIP recent actief was. Beide “mating types” die nodig zijn voor meiose 

(MAT1-1 en MAT1-2) werden teruggevonden in de populatie, doch niet in gelijke frequentie. 

Dit zijn aanduidingen dat isolaten zich seksueel voortplanten. Een specifiek genotype dat 

>200kb aan extra sequentie had in het basis genoom, ten gevolge van een unieke verplaatsing 

vanuit het extra genoom, werd aangetroffen op drie locaties over België. Dit type van 

verspreiding van een genotype is typisch voor aseksuele voortplanting, waarbij snel grote 

afstanden kunnen afgelegd worden. Een collectie van 69 F. poae isolaten werd getest op zijn 

genetische diversiteit, en zoals het ook in de literatuur beschreven wordt, werd een veel grotere 

variabiliteit vastgelegd op genoom-wijd niveau dan op het niveau van één typerings gen. We 

stellen voor dat de genoom dynamiek in F. poae, met z’n actieve TEs en “extra” genoom, kan 
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zorgen voor veel variabiliteit op evolutionair korte tijdsschaal. Zodoende zou de identieke aard 

van sommige isolaten gemaskeerd kunnen worden door TE mobilisatie.  

Aangezien DON voor F. graminearum een belangrijk metaboliet is, wilden we achterhalen 

welke trichothecene mycotoxines F. poae aanmaakt op een inducerend medium. Zowel type A 

als type B trichothecenen werden geproduceerd in een strikt sequentieel patroon, van DAS, 

over NEO, over FUS-X, naar NIV. Wanneer een bepaalde stof verder in het schema was 

aangemaakt, konden ook al deze eerder in de rij gedetecteerd worden. Welke factoren nodig 

zijn om trichothecene productie tot en met NIV te bekomen is niet geweten. Dit “chemotype” 

was niet constant, in tegenstelling tot de situatie in het F. graminearum species complex. Alle 

isolaten van F. poae zijn waarschijnlijk onderdeel van een NIV producerende populatie, en een 

genetisch “genotype” vastleggen voor deze isolaten is dus allicht weinig betekenisvol.  

Verschillende loci in het genoom van Fusarium species bevatten genen die samen 

verantwoordelijk zijn voor de productie van trichothecenen. In andere Fusarium species is het 

reeds aangetoond dat het onderscheid tusssen type A en type B trichothecenen wordt gemaakt 

door variatie van de Tri1 locus. In F. poae vonden we verschillende types van het Tri1 gen, met 

tot 3% sequentie divergentie. Bijna geen enkele SNP leidde echter tot aminozuur substituties, 

en de functie van TRI1 lijkt in F. poae zeer sterk beschermd. In navolging van de unieke 

genoom dynamiek binnen F. poae, werden verschillende TEs aangetroffen in en rond de 

trichothecene biosynthese cluster. Een pogo TE dat onderhevig was aan RIP ligt middenin de 

cluster in meer dan de helft van de F. poae isolaten, maar deze aanwezigheid was niet 

gecorreleerd met de chemotype variabiliteit. Finaal werd, net als in verschillende andere 

Fusarium species, eenr recombinatie event vastgesteld in de trichothecene biosynthese cluster. 

De productie van zowel type A als type B trichothecene wordt veroorzaakt door de 

gecombineerde functie van twee enzymes met “tegengestelde” werking: TRI1 heeft een functie 

zoals in F. graminearum, het plaatst namelijk twee OH groepen op het substraat, terwijl TRI13 

een functie zoals in F. sporotrichioides heeft, met een breed substraat spectrum. Op deze manier 

zou kunnen gesteld worden dat TRI13 verschillende routes langs het trichothecene biosynthese 

network aanstuurt. Finaal concluderen we dat de unique genoom dynamiek en het unique 

chemotype van F. poae ondersteunend kunnen zijn voor het voortdurende success van F. poae 

in het FHB complex, maar een definitieve link is nog niet aangetoond. Verder onderzoek zal 

moeten aantonen of eigenschappen zoals het snelle onstaan van nieuwe genotypes, een meer 

toxisch chemotype dan nauw verwante species, en de combinatie van seksuele en aseksuele 

reproductie bepalend geweest zijn in het succes van F. poae als een pathogeen. 
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Note: dr. Marthe De Boevre carried out LC-MS/MS development and validation, and wrote the 

text for this Appendix.  
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Development and validation of LC-MS/MS method for detection of mycotoxins in 

grain, food and feed matrices 

Reagents and chemicals, sample preparation and extraction 

Methanol (LC-MS grade) was purchased from BioSolve BV (Valkenswaard, The Netherlands), 

while acetonitrile (Analar Normapur), n-hexane (Hipersolv Chromanorm) and ammonium 

acetate were obtained from VWR International (Zaventem, Belgium). Acetic acid (glacial, 

100%) was supplied by Merck (Darmstadt, Germany). Water was obtained from a Milli-Q® SP 

Reagent water system from Millipore Corp. (Brussels, Belgium). Individual mycotoxin solid 

standards (1 mg) of DON, 3-ADON, 15-ADON, DOM, α-ZEL, β-ZEL, zearalanone (ZAN), 

HT-2, NEO, FUS-X and DAS were purchased from Sigma Aldrich NV/SA (Bornem, Belgium). 

T-2 solid standard (1 mg), and DON-3G (50.2 ng/µl in acetonitrile) were obtained from Biopure 

Referenzsubstanzen GmbH (Tulln, Austria). ZEN (5 mg) was supplied by Fermentek 

(Jerusalem, Israel). All mycotoxin solid standards were dissolved in methanol (1 mg/ml), and 

were storable for a minimum of 1 year at -18 °C (Spanjer et al., 2008). The DON-3G solution 

was kept at 4 °C. 

Working solutions of DON, 3-ADON, 15-ADON, DOM, ZEN, α-ZEL, β-ZEL, ZAN, HT-2, T-

2, DAS, NEO and FUS-X (10 ng/µl) were prepared in methanol, and stored at -18 °C, while 

DON-3G was dissolved in acetonitrile, and stored at 4 °C. The internal standard-mixture 

(including DOM and ZAN) was prepared in methanol, stored at -18 °C, and renewed monthly. 

In short, after addition of the internal standards mix to every sample (DOM, 25 µg/kg; ZAN, 

25 µg/kg), the ground material was extracted with 10 ml acetonitrile/water/acetic acid 

(79/20/1), combined with a hexane defatting (5 ml hexane). The sample extract was vigourously 

shaken on the Agitator decanter overheadshaker (Agitelec, J. Toulemonde & Cie, Paris, France) 

for 60 minutes. After centrifugation (3 000 g, 15 min), the supernatant (hexane layer) was 

removed; the aqueous layer was filtered and evaporated to dryness under a gentle stream of 

nitrogen (40 °C). The residue was dissolved in ‘mobile phase for injection’ (methanol/water 

(50/50) with 5 mM ammonium acetate and 0.3% glacial acetic acid) and centrifuged in an 

Ultrafree-MC centrifugal device (Millipore, Bedford, MA, USA) for 10 min at 10 000 g. 

LC-MS/MS methodology 

UPLC-MS/MS analysis was performed using a Waters Acquity UPLC system coupled to a 

Quattro Premier XE mass spectrometer (Waters, Milford, MA, USA) equipped with an 

electrospray interface (ESI) by injecting a volume of 10 µl. Chromatographic separation was 

performed applying a ZORBAX RRHD Eclipse Plus-C18-column (1.8 µm, 100 mm x 2.1 mm) 
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(Agilent Technologies, Diegem, Belgium). The column was kept at 30°C, while the 

autosampler was set at 10 °C. A mobile phase consisting of water/methanol (95/5, v/v (A)) and 

methanol/water (95/5, v/v (B)), both buffered with 5 mM ammonium acetate and 0.3% glacial 

acetic acid was used at a flow rate of 0.4 ml/min. The gradient elution program started at 50% 

mobile phase A for 3.5 minutes, followed with a linear increase to 99% mobile phase B by 7.5 

minutes. An isocratic gradient of 99% mobile phase B initiated at 7.5 minutes for 1 minute. The 

duration of each UPLC run was 11 minutes, including reequilibration to 50% mobile phase A. 

The ESI interface was used in the positive electrospray ionisation mode (ESI+). The MS 

parameters include the following settings: ESI source block temperature 120 °C; desolvation 

temperature 300 °C; capillary voltage 4 kV; argon collision gas 9.10-6 bar; cone gas flow 50 

L/h, desolvation gas flow 800 L/h, and multiplier 750 V. The acquisition of data was performed 

applying selected reaction monitoring (SRM), in order to increase the sensitivity and the 

selectivity of the mass spectrometric conditions. The cone voltage and the collision energy were 

optimized, and selected for the most suitable precursor ion of each analyte, implemented with 

2 product ions. These MS-parameters are detailed in Table A.1. MassLynxTM version 4.1. and 

QuanLynx® version 4.1. software (Micromass, Manchester, UK) were used for the data 

acquisition and processing. 
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Table A.1 - Optimized ESI+ MS/MS-parameters. The asterisk designates the quantifier ion.  

Analyte 
Precursor 

ion (m/z) 

Molecular 

Ion 

Cone 

Voltage (V) 

Product 

Ions (m/z) 

Collision 

Energy (eV) 

DON 297.4 [M+H]+ 37 
203.4* 

249.3 

14 

12 

DON-3G 476.1 [M+NH4]+ 15 
248.6* 

296.9 

18 

12 

3-ADON 356.1 [M+NH4]+ 25 
203.1* 

339.2 

16 

15 

15-ADON 356.1 [M+NH4]+ 18 
137.4* 

339.2 

25 

8 

HT-2 442.2 [M+NH4]+ 27 
215.3* 

263.3 

15 

15 

T-2 484.1 [M+NH4]+ 31 
245.4* 

305.4 

14 

15 

ZEN 319.2 [M+H]+ 37 
283.3* 

301.4 

15 

10 

α-ZEL 321.3 [M+H]+ 30 
285.4* 

303.3 

12 

8 

β-ZEL 321.0 [M+H]+ 25 
285.1* 

303.3 

10 

8 

FUS-X 355.0 [M+H]+ 18 
174.9* 

137.0 

25 

20 

NEO 400.00 [M+NH4]+ 26 
305.3* 

185.0 

19 

12 

DAS 384.20 [M+NH4]+ 21 
307.1* 

247.0 

14 

12 

DOM (IS) 281.1 [M+H]+ 30 
108.8* 

233.3 

20 

12 

ZAN (IS) 321.2 [M+H]+ 35 
189.1* 

303.3 

22 

14 

 

Internal quality control was guaranteed using a standard measuring program. First, a standard 

mixture was injected, followed by mobile phase for injection. After the insertion of a blank 

sample, the spikes were analysed for the construction of a calibration curve. Then, 20 samples 

were injected followed by a control spike, which is a repeated injection of a spike of the 

calibration curve. The results were interpreted and identified according to 4 quality parameters: 

the analytes should have at least 3 or more identification points; the signal to noise ratio of each 

ion should be more than 3; the relative intensity of the selected ions, expressed as the percentage 

of the intensity of the most abundant ion, must correspond with those of the ions of the spike 

with a comparable concentration, and the relative retention time (with regard to the internal 

standard) of the analyte in the sample must range within a margin of 2.5% of the relative 
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retention time of the spiked sample. For all components DOM was used as the internal standard, 

except for ZEN, α-ZEL and β-ZEL where ZAN was used as the internal standard.  

Method validation 

The method was validated based on the Commission Regulation (EC) No 401/2006 of February 

23 2006 laying down the methods of sampling and analysis for the official control of the levels 

of mycotoxins in foodstuffs (European Commission, 2006c). The method was validated in 

terms of linearity, trueness, limit of detection (LOD), limit of quantification (LOQ), decision 

limit (CCα), detection capability (CCβ), precision, expanded measurement uncertainty and 

specificity. 

Five blank samples of each matrix were spiked in triplicate during 3 consecutive days with the 

different mycotoxins at 5 concentration levels of 0.5; 0.75; 1.0; 1.5 and 2 times the cut-off level 

as indicated in Table A.2. DOM and ZAN were added as internal standards, and by using the 

relative standard peak area, DOM was applied as a structural analogue for DON, 3-ADON, 15-

ADON, DON-3G, FUS-X, NEO, DAS, T-2 and HT-2, while ZAN was used for the myco-

estrogens and their derivatives.  

The linearity of the method was assessed for each toxin, by fitting the data with a linear 

regression model and description of the residual analysis. Establishing the linear regression 

model, no parallel curves were detected for both standard solution and matrix. Indeed, ion 

suppression was noted for the matrix curve, possibly due to interferences of matrix substances 

during ionisation. Hence, matrix-matched calibration curves were used for the determination of 

the analytes. In addition, the outcome of the residual analysis revealed a random distribution of 

the residues. 

Because no certified reference materials were available, the trueness of the analysis was 

determined on the basis of the apparent recovery after spiking of the target toxins. The apparent 

recovery was determined using a matrix-matched calibration curve for all five concentration 

levels. The observed signal (expressed as the relative peak area) was plotted against the actual 

concentration. The measured concentration was determined using the calibration curves, and 

the apparent recovery was calculated by Equation A.1. 

Equation A.1: Formula for the description of the trueness: apparent recovery 

measured concentration (µg/kg)

actual spiked concentration (µg/kg)
=apparent recovery (%) 
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In general, the results obtained are presented in Table A.3, and proved to be acceptable from 

90% to 107%, which fit the criteria mentioned in 401/2006. 

The LOD and LOQ were calculated by establishing the concentration equal to 3 and 6 times, 

respectively, the residual standard error of the intercept, divided by the slope of the constructed 

calibration curve. The CCα, for compounds with a maximum permissible limit (DON, ZEN and 

T-2 and HT-2), was determined as the concentration equal to the y-curve plus 1.64 the residual 

standard error of the intercept. For compounds without a maximum permissible limt the 

concentration was equal to the concentration ressembling the maximum tolerable limit plus 

1.64 the standard error of the intra-laboratory reproducibility. The detection capability (CCβ) 

is equal to CCα plus 1.64 the standard deviation of the intra-laboratory reproducibility of the 

mean measured amount at CCα level. All parameters were verified by the signal to noise ratio 

(s/n), which should be more than 3 and 10, respectively according to the IUPAC-guidelines. 

The developed method allowed the determination of all the target mycotoxins at a ppb-level 

lower than the maximum permissible levels (Table A.2). 

The repeatibility of the method was determined by the analysis of three replicates at five 

different concentrations on the same day by calculating the variation coefficient (VC). The same 

approach was applied for the determination of the intra-laboratory reproducibility, differing in 

three days instead of one. The VC’s were measured during the precision study at the five 

different concentration levels as pointed out in Table A.3. The repeatability and the intra-

laboratory reproducibility data obtained were for most mycotoxins in accordance with the 

described criteria. These criteria have only been described for some mycotoxins, however by 

processing the results they were also implemented for 3-ADON, 15-ADON, DON-3G, NEO, 

DAS, FUS-X and the ZEN-derivatives. NEO has for both the repeatability and the intra-

laboratory reproducibility high VC-values (29% and 23%, respectively) at the 0.5 * cut-off 

level. 

The combined standard uncertainty (uc) is an estimated standard deviation equal to the positive 

square root of the total variance obtained by combining the variance of repeatability (within 

day, s²w = s²r within day), the variance between days (s²b = s²L between day) and the bias of the 

uncertainty U (ó)² (Equation A.2). The expanded measurement uncertainty was calculated 

according to Equation A.3. The expanded measurement uncertainty (U) was obtained by 

multiplying uc by a coverage factor 2, based on a desired approximate level of confidence of 

95%. 
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Equation A.2: determination of the bias of uncertainty 

U(ó)² = = ((s2
R * (1-Ɣ)* (

Ɣ
n
p

) ) 

with s²R reproducibility variance, Ɣ = s²r/s²R, n = amount of series analysed, and p = amount of 

days analysed. 

Equation A.3: determination of the expanded measurement uncertainty 

uc = 2 * √(s²w + U(ó)² + sb²) 

with s²w variance of repeatability, the variance between days (s²b = s²L between day), and the bias of 

the uncertainty U (ó)². 

The expanded measurement uncertainty (U), calculated at the several concentration levels is a 

criterion for the integral acceptability of the UPLC-MS/MS method and ranged for all 

mycotoxins from 6% to 41%, except for NEO where the U was high for the 2 * cut-off level. 

This high value was attributed to the high VC-levels as previously mentioned and are rather 

questionable for this specific mycotoxin. 

The specificity was tested by the analysis of 20 blank samples of different matrices. The 

calculations were executed and processed using Microsoft Office Excel 2007 and IBM SPSS 

19. The same batches were used for most validation parameters; however the sample 

preparation procedure was completely independent, leading to completely independent data. 

The analysis of the results confirmed that no interferences occurred in the several MRM-

channels. The results of the performance characteristics of the UPLC-MS/MS method are 

presented in Table A.2 and Table A.3, moreover these are in good agreement with the criteria 

mentioned in the Commission Regulation (EC) No 401/2006. 
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Table A.2: Performance characteristics for the UPLC-MS/MS method for the analysed mycotoxins: cut-off level (CO; µg/kg), limit of detection 

(LOD; µg/kg), limit of quantification (LOQ; µg/kg), decision limit (CCα; µg/kg) and detection capability (CCβ; µg/kg). 

analyte CO (µg/kg) LOD (µg/kg) LOQ (µg/kg) CCα (µg/kg) CCβ (µg/kg) 

DON 100 31 62 17 27 

3-ADON 100 40 81 23 33 

15-ADON 100 25 49 15 22 

DON-3G  100 72 143 39 72 

ZEN 75 21 41 11 22 

α-ZEL 75 27 54 15 23 

β-ZEL 75 31 62 17 29 

T-2 150 38 77 20 43 

HT-2 150 52 104 27 53 

FUS-X 300 170 341 94 272 

DAS 150 60 119 31 64 

NEO 150 44 87 84 453 
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Table A.3: Performance characteristics for the UPLC-MS/MS method for the analysed mycotoxins: repeatability (%), intra-laboratory 

reproducibility (%), apparent recovery (%) and expanded measurement uncertainty (%). CO = cut-off level. 

 Repeatability (VC, %) Intra-laboratory reproducibility (VC, %) Apparent recovery (%) Expanded measurement uncertainty (%) 

analyte 
1

𝟐
*CO 

3

4
*CO 1*CO 

3

2
*CO 2*CO 

1

𝟐
*CO 

3

4
*CO 1*CO 

3

2
*CO 2*CO 

1

𝟐
*CO 

3

4
*CO 1*CO 

3

2
*CO 2*CO 

1

𝟐
*CO 

3

4
*CO 1*CO 

3

2
*CO 2*CO 

DON 12 10 7 4 2 2 6 8 2 1 96 98 104 100 99 14 17 22 15 8 

3-ADON 12 6 9 10 3 14 5 9 8 3 100 105 96 99 101 17 12 25 36 19 

15-ADON 8 3 6 3 2 9 7 5 3 1 107 98 98 99 101 12 12 15 14 8 

DON-3G  7 7 9 3 4 6 1 2 3 1 107 101 109 105 105 10 9 19 14 15 

ZEN 6 8 10 2 1 1 6 7 7 2 101 103 97 100 100 6 12 18 18 8 

α-ZEL 6 12 12 6 3 9 2 8 3 2 102 104 95 99 101 8 15 24 14 10 

β-ZEL 8 12 12 4 2 13 3 4 8 5 98 103 98 101 100 11 21 23 22 16 

T-2 8 4 4 8 3 4 6 2 6 1 106 101 99 98 102 16 15 15 45 18 

HT-2 12 9 7 5 1 19 10 10 3 2 100 100 102 100 100 34 34 37 31 21 

FUS-X 16 7 7 4 4 17 20 15 3 1 90 113 97 96 101 67 66 70 49 41 

DAS 9 11 11 10 4 7 12 6 2 1 107 102 95 96 102 18 40 13 43 25 

NEO 29 25 16 16 11 23 8 7 10 7 99 114 91 110 96 54 66 45 37 80 
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Dankwoord 
Fiieeeuuuwwww.  

Het was een lange, soms zware, maar achteraf bekeken vooral heel leerzame en verrijkende 

weg die me tot hier heeft gebracht, en het is niet zonder trots dat ik nu een afgewerkt doctoraat 

voor stel. Doctoreren is een speciale bezigheid, en multidisciplinair onderzoek doe je niet 

alleen. Er zijn heel wat mensen geweest zonder wie het absoluut niet zou gelukt zijn, en ik wil 

hen toch even speciaal bedanken. 

Eerst en vooral: Kris. Ik durf heel eerlijk stellen dat zonder jou dit doctoraat er niet zou liggen. 

Je was er elke dag voor de (in mijn geval: broodnodige) begeleiding, met onuitputtelijke 

wetenschappelijke nieuwsgierigheid en enthousiasme. Nog belangrijker echter: je was er op de 

momenten dat de experimenten minder vlot gingen en ik het wat minder zag zitten, en met een 

gezonde portie realisme en optimisme wist je mij opnieuw 100% te motiveren. Een schitterende 
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