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There is a crack in everything. That’s how the light gets in.

Leonard Cohen
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Introduction

Where water is, life flourishes. Clean water is one of human’s first needs
and was natural for a very long time in history. However, technological
revolutions have driven human population to the boundaries of
sustainability (Rockstrom et al., 2009). One of the consequences is
water pollution with organic and inorganic compounds and, since the

growing interest in organic chemistry in the 19*%

century, with persistent
chemicals.  Existing measures on the FEuropean level to prevent
pollution of water resources with persistent chemicals focus on 45
priority substances, which are listed in the Water Framework Directive
(2013/39/EU, European Union, 2013). These priority contaminants
include polycyclic aromatic hydrocarbons, biocides, pesticides, flame

retardants and metals. However, many other aquatic micropollutants

emerge and receive increasing attention.

Two decades of advances in environmental analytical chemistry have
resulted in the discovery of an increasing number of anthropogenic
emerging organic contaminants such as pharmaceuticals, pesticides,
sunscreen /ultraviolet filters, artificial sweeteners, brominated flame-
retardants, perfluorinated compounds, benzotriazoles, benzothiazoles,

plasticizers, surfactants and disinfection byproducts (Kimmerer,



Introduction

2009a,b; Richardson, 2012; Richardson & Ternes, 2011, 2009, 2014).
These contaminants are most probably not isolated cases; rather they
are expected to be the tip of the iceberg. The awareness grows that
even more unknown contaminants, such as transformation products,

are dispersed in the aquatic environment (Hug et al., 2014; Schymanski

& Singer, 2014).

This continuous burden on the environment of bio-recalcitrant
micropollutants being often poorly removed in wastewater treatment
plants (WWTPs) and with an intrinsic ability to interfere with
organisms concerns the scientific community. Although for most
organic contaminants the environmental fate is not well understood and
ecotoxicological knowledge is lacking, some contaminants have shown to
cause (eco)toxic effects in aquatic organisms at very low environmentally
relevant concentrations, namely microgram down to subnanogram per
liter. For example, endocrine-disrupting effects have been related to
estrogens, steroids, surfactants and phthalates (Thomas et al., 2001;
Weiss et al., 2011; Metcalfe et al., 2013). Behavioral changes and
other toxic effects have been observed for psychiatric drugs and the
anti-inflammatory drug diclofenac in fish (Hoeger et al., 2005; Brodin
et al., 2013) and for antidepressants in marine snail (Fong & Molnar,
2013). Additionally, the presence of antibiotics has been related to an
increased presence of resistance genes in bacteria in wastewater and
the environment (Hoa et al., 2011; Gao et al., 2012; Rizzo et al., 2013).
These potential (eco)toxic effects can be a threat for the good ecological

status of water bodies and for healthy drinking water.

The focus in this dissertation is on a special group of micropollutants,
namely pharmaceuticals. At date, about 3000 pharmaceuticals are

2
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produced and consumed to treat and prevent diseases (Richardson
& Ternes, 2011) and paradoxically, these chemicals are now seen as
emerging pollutants which might have toxic effects in our environment.
The occurrence, fate and (eco)toxicity of pharmaceuticals in the

environment is concisely overviewed in Chapter 1.

Analysis of trace concentrations of contaminants such as
pharmaceutical residues is very challenging but prerequisite for studying
and monitoring their environmental fate and occurrence. Therefore,
the interest in methods for multi-residue analysis of this variety of
micropollutants in all kinds of environmental samples is growing.
Analysis typically involves different steps including sample collection,
storage, pretreatment, separation and detection. Each of these
steps must be adequately performed because various processes such
as sorptive losses or instability of analytes can affect the results.
Sample pretreatment often consists of extraction steps such as solid-
phase extraction (SPE) or liquid-liquid extraction for enrichment and
purification. The aim is to concentrate the compounds of interest in
order to be able to detect trace concentrations in complex matrices. For
the subsequent separation, both gas chromatography (GC) and liquid
chromatography (LC) can be employed. Whereas GC is appropriate
for apolar volatile compounds, LC is suited for more polar, less
volatile and thermolabile compounds, such as pharmaceuticals and
many other water contaminants. For the final compound detection,
mass spectrometry (MS) is the preferred technique for selective and
sensitive analysis. Each of the mentioned steps must be thoroughly

optimized and evaluated, which is often challenging, especially in the
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light of multi-residue analysis when chemically different compounds are

of interest.

The state-of-the-art for target analysis of polar water contaminants,
such as pharmaceuticals, is SPE followed by (ultra)-high performance
liquid chromatography (UHPLC) and tandem mass spectrometry
(MS/MS). As such, trace levels of analytes can be confirmed and
quantified down to the subnanogram per liter level (Barcel6 & Petrovié,
2007). Most of the current knowledge about micropollutants in the
environment is based on this targeted technique, which enables to
measure a predefined set of known target compounds. Many potential

relevant, but unknown contaminants might thus be overlooked.

However, since the early 2000’s, new and advanced high-resolution
mass spectrometry (HRMS) technologies became a viable alternative.
With these instruments, wide MS spectra are continuously acquired over
the entire chromatogram allowing a quasi untargeted analysis, without
the requirement to define a priori which specific compounds should
be measured. The full-spectrum HRMS approach has therefore the
potential to both identify and quantify a virtually unlimited number of
analytes based on accurate mass measurement and offers the ability for
screening towards new (un)known contaminants (Petrovi¢ et al., 2006;
Lommen et al., 2007; Nielen et al., 2007; Ibanez et al., 2009; Krauss
et al., 2010; Diaz et al., 2011; Miller et al., 2011; Hernandez et al.,
2011; Chitescu et al., 2012; Masia et al., 2013). The basic principles
of HRMS and the achievements of full-spectrum HRMS for screening
and quantification of emerging organic micropollutants in the aquatic

environment are reviewed in Chapter 2.



Research objectives

Developing HRMS-based analytical methodologies as
steppingstones of an innovative screening-to-quantification
workflow is the general aim throughout the experimental
parts of this dissertation. Different techniques using double
focussing magnetic sector, Time-of-Flight, and Orbitrap
HRMS are applied and their applicability is investigated for
the analysis of pharmaceuticals in drinking water, surface

water and (biologically treated) wastewater.

The opportunity for untargeted analysis with full-spectrum HRMS
is the trigger for this screening-to-quantification workflow. The final
idea is to first screen the chromatograms for the presence of large lists
of suspect contaminants, named suspect screening. This is possible
because in HRMS wide mass spectra are acquired over the whole
chromatogram. No analytical standards are a priori required for
screening because analytes can be indicatively identified based on their
accurately measured molecular mass. As such, analytical standards are

only required to confirm the detected compounds. Subsequently, the
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validation for target quantification can be focussed on the confirmed

analytes.

To accomplish this general aim, the screening-to-quantification
workflow must be inverted. First, an analytical method based on
HRMS must be developed and a good performance of compounds
having different chemical characteristics must be assured. Therefore,
the method must be optimized and validated in a targeted quantitative
approach for a predefined set of target pharmaceuticals. Second,
screening techniques, which fit in the screening-to-quantification
workflow, must be developed, implemented and evaluated for the
developed full-spectrum HRMS method. The different research topics

in this dissertation are visually connected in Figure 1.

The first specific goal, elaborated in Chapter 3, is to obtain a
validated method for target analysis of 43 selected pharmaceuticals
in (treated) wastewater based on state-of-the-art SPE as sample
enrichment and purification technique. Therefore, high performance
liquid chromatography (HPLC) coupled to a double-focussing magnetic
sector HRMS operated in target mode is used for selective mass
measurement. The quality of the quantitative measurement results
is assessed in order to identify and eliminate source of quantification
variability and the applicability range of SPE in multi-residue analysis

is investigated.

As a second goal, in Chapters 4 and 5, a screening-to-quantification
strategy is developed and validated for 69 pharmaceuticals in drinking
water and surface water. The analytical method is based on large-

volume injection (LVI) ultra-high performance liquid chromatography



Research objectives

(UHPLC) and full-spectrum Time-of-Flight (TOF) HRMS. In Chapter
4, the specific nature of full-spectrum HRMS is investigated to formulate
guidelines for accurate mass measurement, selective quantification
and validation of multi-residue analysis using full-spectrum HRMS.
Subsequently, in Chapter 5, the suspect screening, taking into account
the accurate mass of the mono isotopic ions of the suspect compounds,
and quantitative validation results are presented. In addition, the use

of LVI as replacement of the SPE step is investigated.

Third, in Chapter 6, the suspect screening concept presented in
Chapter 5 is extended taking into account also the isotopic pattern in
order to improve the identification success and reduce both the number
of false negative and false positive findings. For this study, the SPE
method presented in Chapter 3 was combined with a UHPLC and
full-spectrum Orbitrap high-resolution mass spectrometer (HRMS) and

applied for 77 pharmaceuticals in treated wastewater.

As proof of concept, the developed methods have been applied on
different water matrices: drinking water and surface water (Chapter 5),
and influent and effluent of WWTPs (Chapters 3 and 6). The screening
and quantitative results revealed one of the first occurrence data and
concentrations of pharmaceuticals in the Belgian aquatic environment

and allowed to calculate removal efficiencies in WWTPs.

General conclusions and discussion about the outcomes of this work,
guidelines and future research perspectives for the whole screening-to-

quantification approach using HRMS are formulated in Chapter 7.
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Pharmaceuticals as emerging
micropollutants in the environment

Pharmaceuticals are a particular group of emerging micropollutants.
They are mainly used for human and veterinary applications and to a
smaller scale in agriculture. These chemicals are in most cases designed
with the intention of performing a biological effect (Halling-Sgrensen
et al., 1998). They must be able to pass biological membranes while at
the same time be persistent in order to avoid inactivation before having
a curing effect. Paradoxically, these properties are responsible for their
potential toxic effects and bioaccumulation in aquatic and terrestrial
ecosystems (Fent et al., 2006).

Advances in analytical chemistry from 1980 to 2000 allowed observation

11



Chapter 1

of pharmaceuticals in the ngl™? to pgl™! range in the aquatic
environment (Halling-Sgrensen et al., 1998; Daughton & Ternes, 1999;
Jorgenson & Halling-Sgrensen, 2000; Heberer, 2002). This led to an
increasing awareness of their potential effects over the past 15 years.
Even though the study of pharmaceutical residues is a fairly new topic,
a vast amount of research has already been published worldwide (e.g.
Europe (Zuccato et al., 2010; Morasch et al., 2010; Gros et al., 2012;
Samaras et al., 2013), America (Crouse et al., 2012; Hedgespeth et al.,
2012), Australia (Watkinson et al., 2009), Asia (Yiruhan et al., 2010),
Africa (K'oreje et al., 2012)). Figure 1.1 illustrates the impressive
increase of studies on the occurrence of pharmaceuticals in waste-,

surface- and groundwater in the years 2000 to 2010.

3000 1
2500 -

2000 -

1500 -
1000 - !!
& e

S D 3 %]
O S )
A

Number of publications

o
=
o

Year of publication

Figure 1.1 The number of publications about the occurrence of
pharmaceuticals in waste (white)-, surface (black)- and groundwater (gray)
increased over the period of 2000 to 2010. Figure from Fatta-Kassinos et al.
(2011).

In this introduction, the aim is to give a general overview of

the current knowledge about the environmental occurrence, fate and

12



Pharmaceuticals as emerging micropollutants

ecotoxicology of pharmaceuticals based on review articles published

from 1998 to 2014.

1.1 The complex biochemical characte-
ristics of pharmaceuticals

Pharmaceuticals are special chemicals. They are designed for a specific
action in the organism, are engineered with complex chemical structures,
and their size, lipophilicity and charge must in first instance allow their
permeation through biological membranes. Subsequently, they must
concentrate in the target organs, persist until mode of action, and finally

be removed from the body.

Most pharmaceuticals are relatively small molecules with a
molecular weight between 200 and 1000 Da, allowing their fast

permeation through biological membranes (Fatta-Kassinos et al., 2011).

The lipophilicity of pharmaceuticals (and by extent chemicals) is
the most used property to predict their partitioning in biological
systems. Van der Waals’ interactions, such as hydrogen bounding and
London dispersion forces are the underlying intermolecular interactions
(Fatta-Kassinos et al., 2011). The octanol-water partition coefficient
(Kow) is commonly used to describe the lipophilicity and indicates
thus the tendency to partition into biological matrices (i.e. lipids).
Pharmaceuticals have K, values in a broad range: iodated contrast
media for example are typically very hydrophilic allowing their
rapid removal from the body (e.g., iohexol, log K,, -3.1, Schriks

et al., 2010) whereas the antidepressant fluoxetine is a very lipophilic
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pharmaceutical, which allows them to partition into fatty organs such

as the nervous system (log K, 4.1, Minguez et al., 2014).

Heteroatoms (N and S) and functional groups (e.g. carboxyl) in
pharmaceuticals makes them ionizable. Dependent on the solution pH,
they can be neutral, have (multiple) positive or negative charges, or
be zwitterionic. The predominant speciation as a function of pH is
described by acid dissociation constants (pK,s). For example, the
fluoroquinolone antibiotic ciprofloxacin has 4 ionizable moieties with
3.32, 5.59, 6.14 and 8.85 as pK, values (Van Doorslaer et al., 2014a).
In antibiotics, these charges play a role in the transport through charged

bacterial cell membranes.

Many pharmaceuticals are metabolized as the organism attempts to
convert lipophilic compounds into more easily excreted polar residues.
This bioconversion into one or more metabolites can occur throughout
phase I (oxidation, reduction or hydrolysis) and phase II (conjugation)
reactions (Santos et al., 2010). However, often, only partial metabolism
occurs and a large fraction of the active pharmaceutical can be excreted
unaltered or only slightly transformed via urine and faeces (Heberer,
2002). Excretion factors of the unaltered pharmaceutical strongly differ
depending on the compound from almost 0% (e.g. carbamazepine) to

100 % (e.g. iohexol) (ter Laak et al., 2010; Celle-Jeanton et al., 2014).

Pharmaceuticals have thus a broad range of chemical characteristics
from hydrophilic to lipophilic, can be neutral, cationic, anionic or
zwitterionic, and undergo often only partial biotransformation. It is the
combination of these characteristics that gives them their functionality,

but at the same time, makes their environmental fate complex. For
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example, the K,, has also been used a lot in environmental science
to describe the fate of pollutants (e.g. neutral industrial chemicals
and pesticides): to predict sorption onto organic matter, sediment or
soil, and to estimate bioconcentration factors for aquatic life (Fatta-
Kassinos et al., 2011). The hydrophilics tend to partition to aqueous
phases whereas the lipophilics partition more into biota, organic matter
and soil. In addition, pH, ionic strength, and cation exchange capacity
(CEC) in soil, sediments or sludge can influence to a large extent the
sorption capacity when electrostatic interactions play a role. As a
result, on the one hand, charged chemicals become more hydrophilic as
compared to their neutral form. On the other hand, charged moieties
in pharmaceuticals can contribute to their partitioning behavior.
Therefore, pH dependent K,,, values, labeled often as Dy, Pow, Papp
or D, are considered to be more relevant for ionizable compounds. Their
bio-recalcitrant nature makes pharmaceuticals and their metabolites
persistent in the environment, and phase II metabolites may transform

back to their parent compound, i.e. deconjugation (Celiz et al., 2009).

1.2 Sources and pathways to the environ-
ment

Pharmaceuticals are used in various life sciences and the origin of
pharmaceutical pollution in the environment has been traced back
to 3 main sources: human consumption, agricultural, veterinary and
aquaculture applications, and pharmaceutical manufacturing facilities
(Halling-Sgrensen et al., 1998; Jorgenson & Halling-Sgrensen, 2000;
Heberer, 2002; Kiimmerer, 2009a; Santos et al., 2010; Lapworth
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et al., 2012). Aquatic or solid waste streams of these sources
can directly pollute the environment with pharmaceuticals or their
related transformation products. However, often, intermediate barriers
intended for purification or decontamination of these waste streams such
as wastewater treatment plants (WWTPs) and leachate from landfill
disposal are pathways to, in first instance, surface water. In addition,
run-off and percolation from agricultural soils fertilized with WWTP
sludge or with manure can be a very diffuse pathway to the environment.
In second instance, surface water can percolate and contaminate
groundwater. These sources and pathways are schematically connected

in Figure 1.2.

SOURCES
Hospital Urban Manufacturer Agriculture and veterinary
waste(water) waste(water) waste(water) applications
PATHWAYS
WWTP Landfill

ENVIRONMENT

Soil —> Surface water —> Ground water

| |

‘ Drinking water ‘

Figure 1.2 Sources and pathways of pharmaceuticals to and in the
environment.
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1.2.1 Human consumption

In terms of sources, human consumption has typically been divided into
inpatient hospital care and outpatient ambulatory care. Via urine and
faeces, pharmaceuticals and their residues end up in the wastewater.
Higher total concentrations of pharmaceuticals are typically found in
hospital wastewater than in urban wastewater. However, Le Corre et al.
(2012) estimated that hospitals contributed to only 1 to 9 % of the total
load of pharmaceuticals in combined hospital and urban wastewater,
but among the different therapeutic groups, the contribution of hospital
effluents entering the receiving WWTP varied in a wide range (Santos
et al., 2013). Anti-inflammatory drugs, analgesics and antibiotics
are amongst the groups with highest loads coming from hospitals
(> 50%), whereas the load of antihypertensives, psychiatric drugs or

lipid regulators could be mainly attributed to ambulatory care (> 90 %).

Next to consumed pharmaceuticals, overdue or excess pharmaceu-
ticals are sometimes incorrectly disposed with the solid waste or flushed
via toilet or sink (they should be returned to a pharmacy) and can end
up in landfills or in wastewater. Only 4 % of the questioned households
in a UK survey disposed unused drugs via sink or toilet (mainly liquid
medicine), while 71 % of the households discard them with solid waste
(Bound & Voulvoulis, 2005; Tong et al., 2011). Reports also indicate
incorrect disposal in pharmacies and in health care facilities (Tong et al.,

2011; Mankes & Silver, 2013).
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1.2.2 Pharmaceutical manufacturing facilities

Wastewater of manufacturing facilities of pharmaceuticals have been
identified as sometimes very concentrated sources of pharmaceutical
pollution. Chinese, Taiwanese, Indian and Korean bulk drug producers
seem to discharge the highest concentrations up to 30 mgl™t. Extreme
situations with average daily loads of 10 and 46 kg pharmaceuticals were
measured in wastewater flows from Korean and Indian pharmaceutical
producers, respectively (Sim et al., 2010; Larsson et al., 2007). However,
also factories in the USA, Germany, Switzerland and Denmark have
been traced back as polluters leading to concentrations up to the pgl™!
level in the environment (Cardoso et al., 2014). Significant pollution
from manufacturing facilities is thus not restricted to Asian countries,

but also occurs in the Western world.

1.2.3 Agricultural and veterinary applications

Antibiotics are among the most widely administered pharmaceuticals
for agricultural and veterinary applications (Sarmah et al., 2006;
Kiimmerer, 2009a). In veterinary and aquaculture, antibiotics are used
for prevention or therapy of infections, to improve feed efficiency, and,
although forbidden in Europe, to promote the growth of animals. In
addition, antibiotics such as streptomycins are used in bee-keeping
and mixtures of streptomycins and oxytetracycline are used to control
bacterial diseases in plants (Kiimmerer, 2009a). Veterinary medicine,
as in humans, are excreted via urine and faeces, which is mostly used

as manure for agriculture (Heberer, 2002).
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1.2.4 Wastewater treatment plants

Wastewater treatment plants (WWTPs) are often seen as a key
pathway for pharmaceutical residues to the aquatic environment.
Concentrations of pharmaceutical residues in WWTP influent range
from the ngl™! to almost mgl™ level (Verlicchi et al., 2012). For
some pharmaceuticals with the highest concentrations in wastewater,
the concentrations in WWTP effluent are reduced by a factor of about
10 (e.g. analgesic, anti-inflammatory and antibiotic drugs). However,
for many pharmaceuticals (e.g. S-blockers, psychiatric drugs, lipid
regulators, antihypertensives) the effluent concentrations for both

conventional active sludge (CAS) and membrane bioreactor (MBR)
systems are not reduced (Figure 1.3). For pharmaceuticals of all
classes, removal efficiencies calculated from the data in Figure 1.3
ranged from almost complete removal (> 99.9 %) to almost no removal
(about 0%). For some compounds, concentrations in the effluent were
even higher than in the filtered influent, which might be explained by
deconjugation or by desorption from solids entering the WWTP (and

thus not measured in the influent water) (Verlicchi et al., 2012).

In conventional WWTPs, sorption and biodegradation are two main
removal pathways. Rather lipophilic or charged pharmaceuticals tend
to sorb onto sludge in WWTPs and are as such at least partially
removed via excess sludge. This sludge might be anaerobically digested,
incinerated, landfilled or used as a fertilizer in agriculture (not in
Belgium). For both sorption and biodegradation, removal ranging
from 0 to almost 100% for pharmaceuticals of all classes has been

calculated, and often this variable behavior is not well understood.
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Figure 1.3 Comparison between the concentration ranges for 17 classes of
pharmaceuticals in the influent (solid lines) and effluent water (dashed lines)
of CAS (o) and MBR (x) WWTPs. The table reports the number of collected
data per class. Figure from Verlicchi et al. (2012).

Verlicchi et al. (2012) and Miége et al. (2008) concluded that the
different chemical characteristics of pharmaceuticals and the variety
in operational conditions of WWTPs, such as aerobic, anaerobic or
anoxic reactors, sludge retention time, hydraulic retention time, pH and
water temperature, might cause the variable fate of pharmaceuticals in

WWTPs.

In addition, WWTPs are intended mainly for the removal of
dissolved and suspended organic matter and the removal of nutrients
such as nitrogen and phosphorus. Although pharmaceuticals are
also organic chemicals, their concentrations might be too low for
sufficient biodegradation or they can be too persistent and thus not

biodegradable. More research is thus needed to upgrade existing
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wastewater treatment technology and eventually implement advanced
post-treatment technologies (Rivera-Utrilla et al., 2013; Eggen et al.,
2014).

1.3 Occurrence, fate and toxicity in the
environment

A variety of pharmaceuticals from different therapeutical classes has
been detected in the aquatic environment (Figure 1.4). An EU-wide
survey by Loos et al. (2009) reported maximal concentrations ranging
from about 200ngl™' up to 30ugl™! for 9 selected pharmaceuticals
in more than 100 rivers from 27 European countries (Table 1.1).
Concentrations higher than 100ng1~! were measured in at least 10 % of

the rivers for ibuprofen, carbamazepine, sulfamethoxazole and caffeine.

As in WWTPs, the fate of pharmaceuticals in the environment is
complex. In rivers, they might sorb onto suspended solids or onto
sediments (Figure 1.5), and undergo biotransformation and photolysis
(Yamamoto et al., 2009; Wang & Lin, 2014). River attenuation rates of
pharmaceuticals showed a very wide range with half-life times from 1.6
to 34 h for 34 pharmaceuticals (Acuna et al., 2014). These half-life times
showed to be very variable with relative standard deviations > 50 %
for 28 out of the 34 pharmaceuticals. Despite pharmaceuticals seem
to be (slowly) removed in the environment, they remain ubiquitously
present due to their continuous release, and are therefore often labeled

as pseudo-persistent (Hernando et al., 2006).
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Table 1.1 Maximum and 10% highest measured concentrations (ngl™)
in more than 100 European rivers (Loos et al., 2009) and examples of
pharmaceuticals for which RQs > 1 have been reported for river waters in
Europe.

Pharmaceutical 10%  maxi- Ref. reporting RQs > 1
high- mum
est

Analgesic/anti-inflammatory drugs
Acetylsalicylic acid - - Grung et al. (2008)
Diclofenac 43 247  Hernando et al. (2006)

Ibuprofen 220 31323 Grung et al. (2008); Hernando et al.
(2006); Vazquez-Roig et al. (2012)

Ketoprofen 17 239  Hernando et al. (2006)

Mefenamic acid - - Jones et al. (2002)

Naproxen 47 2027  Hernando et al. (2006)

Paracetamol - - Grung et al. (2008); Jones et al.
(2002); Carlsson et al. (2006)

Antibiotics

Amoxicillin - - Jones et al. (2002)

Azithromycin - - Valcarcel et al. (2011)

Ciprofloxacin - - Vazquez-Roig et al. (2012); Ferrari
et al. (2004); Grung et al. (2008)

Clarithromycin - - Isidori et al. (2005); Valcarcel et al.
(2011)

Lincomycin - - Isidori et al. (2005)

Sulfamethoxazole 104 4072 Ferrari et al. (2004); Valcarcel et al.
(2011)

Trimethopim - - Valcarcel et al. (2011)

Ofloxacin - - Vazquez-Roig et al. (2012); Ferrari
et al. (2004); Grung et al. (2008)

Oxytetracycline - - Jones et al. (2002)

Anti-epileptic

Carbamazepine 308 11561  Ferrari et al. (2004); Hernando et al.
(2006)

B-blocker

Propranolol - - Ferrari et al. (2004)

Fibrate

Bezafibrate 56 1235

Gemfibrozil 17 970

Hormones

173-estradiol <5 <5  Carlsson et al. (2006)

Estriol - - Carlsson et al. (2006)

17o-ethinylestradiol <5 <5  Carlsson et al. (2006)

Stimulant

Caffeine 542 39813  Valcarcel et al. (2011)

- Not measured by Loos et al. (2009).
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Figure 1.4 Therapeutic classes detected in the environment, expressed in
relative percentage. Data collected from 134 articles published between 1997
and 2009. Figure from Santos et al. (2010).

Pharmaceuticals are developed to permeate biological membranes
and can thus also bioconcentrate in aquatic live. Measured
concentrations in animals and in plants range from the low ngg™!
to about 100ngg™' depending on the species and environmental
concentrations (Zenker et al., 2014; Van Doorslaer et al., 2014a). For
example, Wille et al. (2011b) reported concentration of 1-11ng/g for
carbamazepine, 30-63 ng/g for propranolol and 14-288 ng/g for salicylic

acid in mollusks in the Belgian marine environment.

Although observed concentrations in the environment are for most

of the pharmaceuticals below the acute toxicity lowest observed effect
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Figure 1.5 In river water, pharmaceuticals can be completely sorbed onto
suspended solids (gray), partitioned between the water phase (black) and
suspended solids or remain completely in the water phase. Figure from Silva
et al. (2011).

concentrations (LOECs), concentration levels in watewater-influenced
surface waters approaching chronic toxicity LOECs have been observed
recently for some specific pharmaceuticals such as carbamazepine,
clofibric acid, diclofenac, fluoxetine, propranolol, salicylic acid and
oxazepam (Richardson & Ternes, 2011; Brodin et al., 2013). Ecological
risk assessment (ERA) has been used as a tool to evaluate the risk
associated to the potential effects of pollutants in the environment.
In environmental risk assessment (ERA), measured or predicted
environmental concentrations (ECs) are compared to predicted no-effect
concentrations (PNECs), which are derived from ecotoxicity data and
corrected by a uncertainty factors to extrapolate experimental data
on a limited number of species to the actual environment (European
Medicine Agency, 2005). A risk quotient (RQ), calculated as £

PNEC’
exceeding 1 indicates that their is a risk and that more research is
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required to better evaluate the effects on the ecosystem. RQs > 1
have been reported for pharmaceuticals from several therapeutic classes
such as analgesic/anti-inflammatory drugs, antibiotics, anti-epileptics,

B-blockers, hormones and stimulants (Table 1.1).

An interesting and thorough ecotoxicological risk evaluation has
been conducted by Segura et al. (2009) who evaluated the ecological
significance of the presence of the antibiotics sulfamethoxazole
(sulfonamide) and ofloxacin (fluoroquinolone) in the environment.
Therefore, they combined literature occurrence data (measured
concentrations) with ecotoxicological data from different species (Figure
1.6). They observed that < 1% of LOEC values and < 0.1% of
half-maximal effect concentration (ECsg) values were lower than the
highest 10% of the concentrations of sulfamethoxazole and ofloxacin
in the aquatic environment. Thus, the ecotoxicological significance
of the occurrence of sulfamethoxazole and ofloxacin in environmental
waters is low, however, cannot be neglected. According to the authors,
even a weak overlap between environmental concentration values and
ecotoxicological data could have detrimental effects on the most sensitive
species such as bacteria or algae. Because antibiotics are constantly
being released into surface waters, microbiota are constantly exposed to
these compounds. In addition, harmful effects can be more important
in small streams affected by urban or agricultural discharges, because of
their reduced dilution capacity. Given that large populations of bacteria
are being exposed to a selective pressure of antibiotics, environmental
waters and especially wastewaters, having even higher concentrations,

become ideal settings for the assembly and exchange of mobile genes
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encoding for resistance in bacteria (O’Brien, 2002; Kiimmerer, 2009b).
Such evaluations of the ecological significance of micropollutants based
on the current available data should be performed more frequently and

would help to direct future research towards the most relevant toxicants.

The environmental impact of mixtures of pharmaceuticals (and
eventually other micropollutants) in the environment is less clear.
However, it has been demonstrated that a mixture of paracetamol,
carbamazepine, gemfibrozil and venlaflaxine in the low pgl™' range
had a significant impact on fish-embryo development in the short term
(Galus et al, 2013). The chronic impact of drugs (i.e., ecological
and evolutionary), either individually or as mixtures, remains unknown

(Petrie et al., 2013).

1.4 Drinking water and the risk for human
health

Surface and groundwaters are used for drinking water production
(Figure 1.2) and pharmaceuticals have been measured in finished
drinking water at concentrations from the low ng1™! to about 100 ng 17!
(Stackelberg et al., 2004; Benotti et al., 2009; Valcéarcel et al., 2011;
Padhye et al., 2014). These concentrations are very low and from
human risk assessment no immediate risk could be concluded (Schwab
et al., 2005; de Jongh et al., 2012). However, according to Touraud
et al. (2011), no consensus among the scientific community exists on
what risk pharmaceuticals and endocrine disruptors pose to human

health. For example, the antibiotic sulfamethoxazole in a mixture
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Figure 1.6 Density histogram (blue bars) and density function (blue line)
of sulfamethoxazole and ofloxacin concentration in surface waters compared
with density histogram and density function of LOEC (left panels, red) and
ECso (right panels, green) values for several aquatic species. Figure from
Segura et al. (2009).
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with 12 other pharmaceuticals could potentially inhibit the growth
of human embryonic kidney cells at ngl™ level (Pal et al., 2014).
In addition, iodated contrast media have been identified in drinking
water as one of the precursors for the formation of highly genotoxic
and cytotoxic iodo-trihalomethanes and iodo-acids, being disinfection
byproducts of chlorination and chloramination (Duirk et al., 2011).
There are indications that low levels of micropollutants in drinking
water could be a threat for human health. More research is thus

required.

1.5 Conclusions

Pharmaceutical residues from human and veterinary applications are
continuously released in the environment with WWTPs as major
pathway. The highest concentrations (up to pgl™ and even mgl™') are
measured in wastewater and treated wastewater; lower concentrations
(up to about 10ugl™) are observed in surface waters, and the lowest
concentrations are measured in ground and drinking water (up to
100ngl™!). In all these environments, their fate and removal is
very variable and not well understood. The diversity in chemical
characteristics of pharmaceuticals seems to explain at least partially
their complex environmental fate. Over the past 15 years, it has
been realized that pharmaceuticals are ubiquitously present in the
aquatic environment and the awareness of their potential ecotoxic and
human health effects has grown. In addition, there are indications that

the toxicity of mixtures is underestimated and that antibiotics in the
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environment might induce the selection of resistance to antibiotics in

bacteria.

Also the European Union (EU) and United States Environmental
Protection Agency (US EPA) recognized the worrisome occurrence,
fate and (eco)toxicity of pharmaceutical residues. The US EPA
included the antibiotic erythromycin and 9 hormones, including 17a-
ethinylestradiol, in the Candidate Contaminant List 3 (CCL3, United
States Envrionmental Protection Agency, 2009) and the EU has
recently updated the Water Framework Directive with a Watch List for
micropollutants including the analgesic diclofenac and the hormones
175-estradiol and 17a-ethinylestradiol (Water Framework Directive
2013/39/EU, European Union, 2013).

To assure a good chemical status of water, increasing efforts should
go to measuring as prerequisite for studying the occurrence, fate and
risks of these organic micropollutants passing between wastewater,
surface water, groundwater and drinking water. Therefore, developing

innovative analytical methods is the aim in this research.
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chromatography - high-resolution mass spectrometry for multi-residue
analysis of organic micropollutants in aquatic environments. Submitted

to Trends in Analytical Chemistry.
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2.1 Introduction

In the demanding targeted multi-residue analysis of organic
micropollutants in water, tandem mass spectrometry (MS/MS) coupled
to (ultra) high performance liquid chromatography (UHPLC) has shown
its merits and is the most used technique nowadays. However, new
analytical opportunities rose with the development of modern Time-Of-
Flight (TOF) and Orbitrap high-resolution mass spectrometry (HRMS)
providing ultimate sensitivity and identification capabilities over the
full-spectrum in an untargeted analysis. A variety of multi-residue
LC-HRMS methods have been developed over the last decade for
the analysis of organic contaminants in environmental waters such as
drinking water, groundwater, surface water including seawater and fresh
water, and (biologically treated) wastewater. The majority of these
methods were developed for the analysis of pharmaceuticals (Petrovi¢
et al., 2006; Goémez et al., 2007; Farré et al., 2008; Lavén et al., 2009;
Gomez et al., 2010; Nurmi & Pellinen, 2011; Wille et al., 2011a; Cahill
et al., 2012; Ferrer & Thurman, 2012; Martin et al., 2012; Wode et al.,
2012; Diaz et al., 2013), pesticides (Ferrer & Thurman, 2007; Gémez
et al., 2010; Nurmi & Pellinen, 2011; Wille et al., 2011a; Cahill et al.,
2012; Wode et al., 2012; Diaz et al., 2013), drugs of abuse (Gonzalez-
Marino et al., 2012; Martinez Bueno et al., 2012; Bijlsma et al., 2013;
Fedorova et al., 2013), and their known degradation products. The
interest to analyze these classes of anthropogenic micropollutants using
full-spectrum HRMS might be related to the large number of substances
and degradation products (e.g. only a fraction of the more than 3000

pharmaceuticals have been investigated in environmental studies so
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far (Richardson & Ternes, 2011)), which are continuously released to
the environment originating from a variety of anthropogenic activities
(Lapworth et al., 2012) (e.g. industrial and domestic wastewater,
landfills, agriculture, aquaculture, livestock breeding). Other classes
of targeted micropollutants are endocrine-disrupting substances (Wang
et al., 2012), benzothiazoles and benzotriazoles (van Leerdam et al.,
2009), surfactants (Lara-Martin et al., 2011), sweeteners (Ferrer &
Thurman, 2010) and flame-retardants (Wode et al., 2012).

This critical review covers the achievements in HRMS for
qualitative and quantitative full-spectrum analysis of emerging organic
micropollutants in the aquatic environment over the period of 2003
to the first half of 2014. It is investigated how and what kinds of
information can be ultimately obtained from complex full-spectrum
HRMS chromatograms. Five key topics are postulated and used as
steppingstones to give a better insight in the specific nature and state-
of-the-art of HRMS and to formulate challenges for future research.
In Sections 2.2 and 2.3, basic principles of HRMS and analytical
aspects related to sample pretreatment and liquid-chromatography are
discussed, respectively. These aspects must reflect the multi-residue
concept of HRMS, which means that a broad variety of analytes with
different chemical characteristics must perform well throughout the
whole analysis. Insights in the nature of HRMS and the related mass
measurement selectivity and mass accuracy are reviewed in Section 2.4.
Building on the unique ability of HRMS to identify analytes from the
measured accurate mass, the newest trend in HRMS is screening towards

suspect or unknown contaminants. This enhanced the identification
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of emerging organic contaminants in the aquatic environment. The
achievements of these screening studies are overviewed in Section 2.5
and opportunities for screening towards relevant contaminants from
an environmental point of view are formulated. In Section 2.6,
quantitative aspects of HRMS and the relationship between resolving
power and quantitative selectivity are reviewed. Section 2.7 discusses
the performance of current HRMS with the state-of-the-art MS/MS as

a benchmark.

For this review, a total of 27 validated HRMS methods from 22
publications aiming quantitative target analysis of emerging pollutants
in environmental waters were found in open literature (Table 2.1). These
validated methods provided sufficient data, including several validation
parameters such as linearity, instrumental and method detection limits,
recoveries and matrix effects for a thorough discussion in Sections 2.3
and 2.6. In order to overview the recent trends in screening (Section 2.5),
a total of 14 multi-residue screening techniques using HRMS (mainly in
the aquatic environment) were found in open literature (Tables 2.2 and
2.3). Sections 2.4 and 2.7 are based on literature data on HRMS mainly
from environmental science but also from other related disciplines such

as food analysis.

2.2 Basic principles of high-resolution mass
spectrometry

Mass spectrometry is the last step in an analytical sequence and is

typically preceded by a chromatographic separation, such as liquid
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chromatography (LC), of the compounds of interest. The basic principle
of mass spectrometry (MS) is to generate ions from these compounds
by a suitable ionization method, to separate these ions by their mass-to-
charge (m/z) ratio, and to detect them qualitatively and quantitatively
by their respective m/z and abundance (Gross, 2011). As such, a mass

spectrum is acquired at each datapoint of the chromatogram.

For LC-MS coupling and the ionization of nonvolatile compounds,
electrospray ionization (ESI) is the most prominent atmospheric
pressure ionization (API) technique (Gross, 2011). ESI leads to the
formation of, in most cases, protonated [M+H]" or deprotonated [M-
H]™ ions with a single positive or negative charge, respectively. In that
case, the measured m/z values are equivalent to the exact molecular

mass plus or minus the mass of a proton.

2.2.1 Interpreting the mass spectrum and visualiz-
ing chromatograms in HRMS

In full-spectrum HRMS, wide mass spectra providing high mass
resolving power are acquired over the whole chromatogram. Two
neighboring mass peaks are assumed to be sufficiently separated when
the valley separating their maxima has decreased to 10% of their

intensity. Hence, this is known as the 10 % valley definition of resolving
m/z
Am/z
fulfilled if the peak width at 5% relative height equals the mass

power, Rigy = (Figure 2.1). The 10% valley conditions are

difference of the corresponding ions, because then the 5% contribution
of each peak adds up to 10% (Gross, 2011). However, the definition

in terms of the full width at half maximum (FWHM), with Rpw g =
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m/z
FWHM’
With Gaussian peak shapes, the ratio of Rpw gy to Rigy is 1.8. For

became widespread especially for TOF and Orbitrap MS.

near-baseline separation of two adjacent masses, ions should thus differ
by at least twice the FWHM in mass (Xia et al., 2011). Consequently,
increasing the resolving power is a key factor in HRMS allowing better
differentiation of ions of interest from background ions and endogenous
compounds (i.e. mass measurement selectivity). As a result, researchers
have deployed instruments providing increasing resolving power from
5000 FWHM with the first TOF MS (Petrovi¢ et al., 2006) up to
140000 FWHM with the newest Orbitrap MS (Moschet et al., 2013).

The importance of sufficient mass resolution is that accurate and
precise m/z measurements become possible, as such allowing improved
identification capabilities as compared to low-resolution MS. The term
accurate mass refers to the measured mass of an analyte and is the value
which corresponds to the center of a mass peak. The process to find the
center of a mass peak requires a centroiding algorithm, which convert
raw profile spectra to centroid spectra by attributing an accurate mass
to the mass peaks. As such, spectrum peaks are replaced by sticks.
For proper accurate mass measurement, the mass error, which is the
absolute (Equation 2.1a, in mDa) or relative (Equation 2.1b, in ppm)

difference between the measured accurate mass and the calculated exact
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mass of an analyte, should be as low as reasonably possible and mass

errors < 5ppm are often within the acceptable range.

absolute mass error = (Mm/Zezperimental = M| Zewact) - 10° mDa  (2.1a)

m/zexperimental - m/ze:vact

relative mass error =
m/zexact

-10% ppm  (2.1b)

Mass measurement uncertainty in terms of mass accuracy (i.e.
average mass error) and mass precision (i.e. standard deviation on the
mass error) is based on calculating the mass error of analytes (Brenton
& Godfrey, 2010). Both, mass accuracy and precision are essential for
proper accurate mass measurements and pinpointing different causes of

mass measurement uncertainty can lead to improvement (Section 2.4).

Figure 2.1 The 10% valley and FWHM definitions of resolution. Figure
from Gross (2011).

To visualize chromatograms from HRMS data, either a total ion
chromatogram (TIC) or extracted ion chromatograms (XICs) can be
plotted. A TIC is constructed by summation of all the measured peak
intensities in the mass spectrum as a function of retention time and gives

a general impression of the acquired chromatogram. Plotting the signals
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observed in a narrow mass range (i.e. mass window width) around the
exact mass of the ions of interest results in a more useful XIC. In full-
spectrum HRMS an untargeted analysis is performed, which means that
neither the mass nor retention time of the compounds of interest is a
priori required to perform the analysis. However, for the quantification
of the compounds, a targeted data processing procedure is followed by
constructing a XIC around the exact mass at the experimentally (with
analytical standards) determined retention time. XICs allow selective
identification, peak integration and quantification of compounds of
known m/z from the complex LC-HRMS data, which is further discussed

in Section 2.6.

2.2.2 High-resolution mass analyzers

The first MS used a single magnetic sector to separate ions at unit
resolution (Gross, 2011). Later, the introduction of double-focusing
sector instruments, with in addition an electrostatic sector, allowed
improved resolving power and mass accuracy. In recent years, there
has been a strong tendency to substitute sector instruments by Time-

of-Flight (TOF) or Orbitrap instruments (Gross, 2011).

In double-focussing sector instruments, deflection of a continuous ion
beam, generated during ionization and subsequently accelerated in an
electric field, is the basic principle for mass separation. In the magnetic
sector, masses are separated by momentum due to Lorentz force. The
magnetic field strength is set as such that only a target mass follows the
central trajectory of the magnet. In the electrostatic sector, the aim is a

reduction of the kinetic energy distribution of the ions. The combination
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of a magnetic sector and an electric sector is able to focus ions onto a
single point (i.e. the ion-multiplier detector), although these ions had
(slightly) different directions and (slightly) different kinetic energies at
the ion source (Figure 2.2). This process is called double focusing and
can improve the resolving power of a magnetic sector instrument more

than ten times (Gross, 2011).

MAGNETIC
SECTOR

ELECTROSTATIC
SECTOR

lon Source

I3 Detector

Figure 2.2 The operating principles of a double focusing sector mass
analyzer. Figure reproduced from Hart-Smith & Blanksby (2012).

In TOF instruments, ions are accelerated in an electric field and
injected into a flight tube (Figure 2.3). Provided all the ions start
their journey at the same time or at least within a sufficiently short
time interval and with the same kinetic energy, the lighter (with higher
velocity) ions will arrive earlier at the detector than the heavier ions
(with lower velocity). The m/z of the detected ions is calculated from
their flight time. In TOF MS, the ions should emerge from a pulsed
ion source which is realized by pulsing ion packages orthogonally out

of a continuous beam generated by the ionization source (Gross, 2011).
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TOF mass analyzers can employ an ion mirror and they operate by
sending ions toward this electrostatic mirror, which reflects the ions
toward a detector. In addition to compensating for differences in ion
kinetic energies, the use of an ion mirror has the additional advantage
of increasing the total flight distance without having to significantly
increase the size of the mass spectrometer. These improvements have

led to increased mass resolving power (Hart-Smith & Blanksby, 2012).

Drift Region

lon Source

lon Mirror

Detector
Acceleration Unit

Figure 2.3 An illustration of the basic components of an orthogonal
acceleration TOF mass analyzer with ion mirror. Figure from Hart-Smith
& Blanksby (2012).

In Orbitrap MS, ions generated by an ionization source are first
accumulated and stored in a bent quadrupole, called C-trap. When
sufficient ions are trapped, they are injected in the actual orbitrap.
There, ions are moving in spirals around a spindle-like-shaped central
electrode that creates an axial field gradient (Figure 2.4). The
electrostatic attraction towards the central electrode is compensated by

a centrifugal force that arises from the tangential velocity of ions. An
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outer electrode is split in half by an insulating ceramic ring. The axially
moving ions induce a current which is detected via a differential amplifier
between the two halves of the outer orbitrap electrode. The m/z of
different ions in the orbitrap can be determined from their respective

frequencies of oscillation after a Fourier transform (Gross, 2011).

Quter Electrode

Axial Electrode

Figure 2.4 An illustration of the basic components of an Orbitrap mass
analyzer. The black arrow represents an illustrative ion path. Figure from
Hart-Smith & Blanksby (2012).

2.2.3 Hybrid instruments

MS instrumentation may be constructed by combining different types
of mass analyzers and ion-guiding devices in a single so-called hybrid
instrument (Gross, 2011). The driving force to do so is the desire to
obtain mass spectrometers that unite the advantageous properties of
different mass analyzers. For example, HRMS can be preceded by a

quadrupole, which allows to preselect a target ion mass at unit resolution
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for further fragmentation. Subsequent analysis of the product ions in
the HRMS analyzer allows accurate mass measurement of fragment
ions. As such, in addition to full-spectrum MS, MS/HRMS and all ion
fragmentation/HRMS are possible measurement modes. In MS/HRMS,
a target ion is selected, fragmented and subsequently analyzed with the
HRMS, whereas in all ion fragmentation/HRMS all ions generated by

the ionizations source are fragmented and analyzed with the HRMS.

2.3 General aspects of multi-residue HRMS
analysis

An important aspect of full-spectrum HRMS is that it allows the
simultaneous measurement of a variety of analytes over a broad
m/z range. However, the whole analytical procedure, starting from
sampling, over sample storage, sample pretreatment, until the LC-
HRMS analysis, must reflect the multi-residue concept. A variety of
substances having very different physical-chemical characteristics must

perform well throughout the whole analytical procedure.

Among the 27 validated HRMS methods in Table 2.1, solid-phase
extraction (SPE) was amended in 25 methods (including 4 methods
applying online-SPE) as sample preconcentration and purification
technique. One author used a polydimethylsiloxane passive sampling
device (Wille et al., 2011a) in seawater. Although most authors aimed
to develop sample enrichment techniques such as SPE for a broad range
of substances, some compounds are still preconcentrated selectively and

achieving acceptable recoveries for all compounds is challenging in multi-
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residue applications (Busetti et al., 2012). For examples, recoveries
lower than 20 % were reported by different authors (e.g., Lavén et al.,
2009; Nurmi & Pellinen, 2011). Therefore, different SPE cartridge
materials for sorption based on hydrophilic/lipophilic interactions and
ion exchange have been combined to achieve sufficient enrichment for
a broader range of compounds (Kern et al., 2009). As an alternative,
Martinez Bueno et al. (2012) applied almost no sample pretreatment and
a direct large-volume injection (LVI) of 100l of surface water onto the

LC column was performed thereby omitting selective preconcentration.

For reversed phase separation, both HPLC and UHPLC have been
coupled to TOF or Orbitrap HRMS. In most of the cases water with
methanol/acetonitrile as organic modifier and formic/acetic acid or their
ammonium buffers as acidifiers were used (2 authors used ammonium
buffers as basic additives (Martinez Bueno et al., 2012; Nurmi &
Pellinen, 2011)) for ESI in positive ion mode (Table 2.1). For ESI
negative ion mode, the same solvents were applied and in one case
small amounts (0.05% (v/v), Nurmi & Pellinen, 2011) of acetic acid
was added. Although UHPLC separation has been amended in about
half of the studies in order to provide a high chromatographic resolution,
HPLC is still widely applied and can be preferential when multiple MS
modes are alternated (e.g. full-spectrum MS, MS/HRMS and all ion
fragmentation/HRMS) in order to provide sufficient data points across

the chromatographic peak.

Finally, also the interface, which is ESI for all the reviewed HRMS
methods listed in Tables 2.1, 2.2 and 2.3, must be compatible. In
particular for screening, Moschet et al. (2013) and Hug et al. (2014)
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verified whether the analytes are amendable for the used ionization
technique in order to improve the screening performance. They
concluded that it is not fully understood which compounds are ionizable
in ESI positive or negative ion mode and highlighted the need for
general quantitative structure-property relationship (QSPR) approaches
to predict ionization behaviour or ionization efficiencies for chemically

different compounds.

44



High-resolution mass spectrometry for micropollutant analysis

4(0102)

uew
~Mmu.L e g6 ¥ INHMA000ST
x (orgoad) +ISH (AOL S 0229 067€S 1r1xe 100G
LIRS 00T-0T  °qWOl  3ueI8Y) JOL (09) OIdH |d ‘(dTH s1se0) AdS Toyemassem (W 00g SIOUIOIMS €
1(6002) ' 945G ¢ INHMA 0005 peIyxd 100G
w0098 ‘gISH ‘(wruid JOLO  TVI-TI ‘(XVIN pue XDIN I9YeMm JULNuUl W GF,
ugae] -009 rqUIOg  sw1M) JOLD (9) DTJHN Y SISRQ) HJS ‘WonRnN[y pue juenige JILMM (W 0G sreonmoeoewreyd ¢T
(6002)
™ 12 INHMA 000 0€
wrep ‘LIS ‘(dexiqrQ 10RI)XD
-1097] OI1 oway ) deniqiQ w1 ‘(gTH siseQ) Ioyem 90vJINs So[0ZeI}0ZUSq
ueA 00T wdd ), dery wor xesur] ‘(0z) OTdH 'U S ‘UOIRINY pues pue 1oyem SUINULIP []  PU® SI[0ZELIJ0ZUS] 9
Ioyem JuaNUI
4(8002) B 9SS Y8 INHMA 0009 [W QT pue jusnigo
JCNE (proxjuoad) ‘4 1SH ‘(rrwerg 10O poenxe (w1 ‘(gTH JLMAM [W 07 ‘1oyem
oured 0000 edwWO0Z S193eM) AOLD ‘(01) DIJHN ®U sIseQ) HJS ‘UoneIY  SUB{ULp pue Al [u0g  s[eonneoeutreqd gg
(800¢) INHMJ 000 07-000 S
Topuoy (SINUH ‘4189 ‘(dennqio jorIIXe W T ‘(U0qIey
-[°H % INIS) bIT owey 1) deryqio €61-0 puoqisded-dTH Joyem jusnpgs pue
ssnelyy Q01 wddor  dex uor reour| ‘(0g) O'IdH ‘Wd  sIseQ) HdS ‘UOnR[Y  juenpul JLAMM [W00g SOUIESOIU
;(2002)
uew
~Mmu.L, e g6 ¥ INHMA 0056
3 ‘IS ‘(101 dSN 10RIIXS (W E() sponpoud uoryepeidep
IoLI0] 00T  BqWOg JueM8y) J0L ‘(0¢) O'1dH eu (47TH s1se0) ddS Ioyem ooeyIms [W QT pue sopronsed 10T
2(2002) ®( 556 12 INHMA 0056
FLES (proxjuso) ‘{18 ‘(A0 seres Q01T joenyxe (wi T ‘(4TH
Zowon) 00T euWOr JueMsy) J0L (02) O'1dH €U sise() HdS ‘UOneI)[Y Ioyema)sem [epdsoy [ QT sreonmeoewireyd (g
£(9002) ' 9GS ¥* INHMA 0008 Jojem juanpge 1w 00g
0 79 (pro1juod) 5+ ISH (AOL 011N poeIyxe (W T ‘(gTH pue juengul JAM
o1a0199d 000 00S equ g s1ep) JOLO (01) DTJHN e'u sise() HJS ‘UOTIRINY [W QT ‘Iojem ISALI [UI )0G sreonnedeurreyd 67
qSOIX
I0J IpIM Tomod Surajosax
,o8uer MOPUIM  ‘OPOUI UOIJRZIUOL ‘JUSWITLIISUL (%) SouWIn[oA
90ULDISJRY] IedUIT] sseN SINYH ‘(1 ut ‘foa -fur) DT A10r000y  Juawrjearyard ojdureg pordde pue xtiyepy sooue)sqns oSIe],

OIue3I0 JO SIsA[eue 9e81e) 10j suoryeotiqnd gg woay spoyjewr SINYH-DT Polepirea

"SI9YeM [RJUSIUOIIATS UT sjuwenjjodororur
LG JO SOIISLIO)ORIRYD [edNjATRUY T°Z Olqel

45



Chapter 2

Table 2.1 (continued)

Target substances Matrix and applied Sample pretreatment Recovery LC (inj. vol. in pl), HRMS Mass Linear Reference
volumes (%) instrument, ionization mode, window range®
resolving power width for
XICsP
300 pesticides, 87 400 ml river water, 200 ml filtration, SPE (Oasis PE: UHPLC (20), QTOF (Agilent n.a. 25-500 Goémez
pharmaceuticals and WWTP effluent water HLB), 1ml extract 22-127 6530 series), ESIT& et al.
metabolites 19500 FWHM at 922 Da (2010)!
56 surfactants and 1000 ml WWTP influent, filtration, SPE (Oasis PE: HPLC (10), TOF (Waters 50mDa n.a. Lara-
metabolites effluent and sea water HLB), 1 ml extract 43-117  LCT Premier TOF), ESIHé&- Martin
6000 FWHM et al.
(2011)™
68 pesticides and 16 ~ 200 ml wastewater filtration, SPE (Oasis RE: UHPLC (5), TOF (Waters 60 mDa 30-500 Nurmi
pharmaceuticals MCX and Strate-X), 2-183 LCT Permier TOF), ESIH&- (centroid) & Pelli-
400 pl extract > 11000 FWHM nen
(2011)"
17 pharmaceuticals sea water polydimethylsiloxane PE: UHPLC (10), Orbitrap 10 ppm 10000 Wille
and 13 pesticides passive sampler, 200 pl 88-102  (Thermo Exactive), ESI, et al.
extract 50000 FWHM at 400 Da (2011a)°
4 pesticides and 5 500 ml wastewater filtration, SPE (Oasis PE: HPLC (10), linear ion trap 4mDa 100-200 Cahill
pharmaceuticals HLB), 500 pl extract  79-96 Orbitrap (Thermo LTQ (profile) et al.
Orbitrap), ESI", (2012)P
30000 FWHM at 400 Da
100 pharmaceuticals 100 ml drinking and SPE (Oasis HLB), n.a. HPLC (40), QTOF (Agilent 50mDa 20 Ferrer
and transformation  surface water 500 nl extract 6540 series), ESITé&- &
products 30000 FWHM at 1522 Da Thur-
man
(2012)4
24 drugs of abuse and 200 ml WWTP influent filtration, SPE (Oasis n.a. HPLC (10), QTOF (Agilent 10mDa at 10-100 Gonzalez-
metabolites and 500 ml effluent water MCX), 1 ml extract 6520 series), ESIT& 9500- Marino
9500/22000 FWHM at 22000 FWHM/ et al.
113/980 Da in full-spectrum  20mDa at (2012)"
MS, 4750/11 000 FWHM at 4750-
113/980 Da in MS/MS 11000 FWHM
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2.4 Selective and accurate mass measure-
ment in HRMS

2.4.1 Measuring mass in the presence of isobaric
interferences

In HRMS, enhancing the resolving power increases the mass
measurement selectivity and thus reduces the chance that ions are
(partially) unresolved from other ions. In the case two adjacent masses
differ less than twice the FWHM in mass, their signals merge, and the
accurate mass will shift towards the interference. This phenomenon
has been illustrated by Kellmann et al. (2009). In Figure 2.5, it is
shown how increasing the resolving power from 10000 to 100000 FWHM
revealed the presence of two co-eluting substances. At 10000 FWHM,
the measured mass of the merged peaks corresponds to the intensity-
weighted mass average (Kaufmann & Butcher, 2006) resulting in mass
errors up to 94 ppm, whereas, at 100000 FWHM, mass errors not higher
than 1.3 ppm were obtained.

The selectivity, which is thus of utmost importance especially for
complex samples, results from the combination of HRMS and LC
selectivity, and has been assessed in different ways. A first approach
is by analysing the same sample(s) at different resolution settings (e.g.
10000, 20000, 50000, 70000 and 100000 FWHM, Kellmann et al., 2009;
van der Heeft et al., 2009; Xia et al., 2011; Kaufmann & Walker, 2013).
As such, isobaric interferences unresolved at low resolution can be
resolved at higher resolution and the effect on the mass error can be

investigated (e.g. Figure 2.5). The overall selectivity can be assessed
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Figure 2.5 Effect of resolving power on assigned mass accuracy of two
co-eluting analytes imazalil ([M+H|" 297.05560Da, C,,H,,CLLN,O, tr
= 7.26min) and flunixin ([M+H]" 297.08454 Da, C,H1F3N,0,, tr =
7.32min). Upper figure: extracted ion chromatograms (+5ppm around
the exact mass of each of the ions at 100000 FWHM and +100ppm at
10000 FWHM, respectively). Bottom figures: mass profiles at two resolving
power settings 10000 FWHM (10 k) and 100000 FWHM (100 k) of 3 different
scans (a-c). Figure from Kellmann et al. (2009).

by counting the number of isobaric peaks appearing in the XICs. For
example, the number of isobaric peaks reduced by a factor of 1.4-2.2
when analysing samples at 20000 instead of 10000 FWHM (Xia et al.,
2011).

A second approach consists in the continuous post-column infusion
of analytes of interest during the analysis of real matrix samples
(Kaufmann & Walker, 2013). Plotting the measured mass of the
analytes as a function of the retention time (so called mass traces,

exemplified in Figure 2.6) allows studying the deviation of the accurate

mass and the effect of isobaric interferences on the mass accuracy (and
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thus the mass measurement selectivity) over the whole chromatogram
at different resolution settings (Kaufmann & Walker, 2013). In Figure
2.6, it can be seen that the mass accuracy is severely affected (> 5 to
80ppm) in some regions of the chromatogram when using a resolving
power of 10000 FWHM, whereas very accurate mass measurements (<
1 ppm mass error) are obtained in other regions. In that case, enhancing
the resolving power to 50 000 FWHM (Figure 2.6) reduced the mass error

to < 1ppm over the whole chromatogram.

h D
o o

=
—_
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=]
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Figure 2.6 Mass trace of ciprofloxacin in liver (using lock mass) at two
resolving power settings (10000 and 50000 FWHM). A very strong mass
shift is observed at 6.9 min, where the signal for ciprofloxacin shifts about
80 ppm (10000 FWHM). A resolving power of 50000 FWHM is capable of
virtually eliminating any isobaric interferences (< 1 ppm mass shift). Figure
from Kaufmann & Walker (2013)

Even when using the highest resolving power, isobaric interferences
can occur, and thus it is important to process the acquired data
as such that the effect of possible interferences is minimized. With
respect to accurate mass measurement, different authors reported an
improved mass precision thanks to improved centroiding algorithms.

First, in general, centroiding algorithms can more precisely determine
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the accurate mass from narrower mass peaks (i.e. increased resolving
power) (Blom, 2001; Marshall & Hendrickson, 2008; Kellmann et al.,
2009; van der Heeft et al., 2009). Second, it has been emphasized
that centroiding algorithms should be able to precisely centroid low
and high signal intensity peaks and deconvolute partially unresolved
peaks in the mass spectrum (Botitsi & Garbis, 2011). By deconvolution,
unresolved mass peaks are decomposed into the underlying mass
peaks. Deconvolution resolving power is the degree to which nearly
isobaric mass peaks can be distinguished (deconvolved), and is defined
as the FWHM divided by the resolvable mass difference (Am/z)
TWHM (Sokkalingam et al., 2014). This

Am/z
dimensionless variable normalizes analyzer resolution, and above a

between two mass peaks:

value of +1, overlapping peaks become indistinguishable. Conventional
centroiding algorithms have thus a maximal deconvolution resolving
power of 1. However, a recently developed spectral deconvolution
centroiding algorithm named PeakInvestigator has shown the capability
to deconvolve overlapping peaks (Figure 2.7) and a deconvolution
resolving power ranging from about 2 to 4 was reported for merged mass
peaks having intensity ratios of 0.15 to 1, respectively (Sokkalingam
et al., 2014).

2.4.2 Instrumental characteristics and mass
calibration

With respect to instrumental characteristics, for both TOF and
Orbitrap mass analyzers, the dynamic range for mass accuracy is limited
on the one side statistically by too few ions detected or a too low signal-

to-noise (S/N) ratio, and on the other side by peak position shifts due
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Figure 2.7 At a resolving power of 5000 FWHM, C,,H,,N,0,Br; (green)
and CgH,,048S, (blue) are not resolved resulting in the black peak (mass error
of 45 ppm and -38 ppm versus the first and second compound, respectively).
PeaklInvestigator is able to deconvolve these nearly isobaric peaks of equal
abundance (i.e. signal intensity ratio of 1) resulting in the green (mass
error 0.8 ppm) and blue (mass error 1.1 ppm) peaks. Figure reproduced from
Sokkalingam et al. (2014).

to too many ions (Makarov et al., 2006). For TOF and Orbitrap MS, a
decreased mass precision at low ion abundance has been observed (Blom,
2001; Wolff et al., 2003; Makarov et al., 2006). For Orbitrap MS, this
was only at S/N ratios approaching 3 and could be mainly related to
the presence of noise (Makarov et al., 2006). However, for TOF MS,
mass imprecision has also been related to a statistically too low number
of ions detected and the minimum concentrations at which mass errors
are lower than 5ppm, is typically found to be 10 times higher than
those calculated at a signal-to-noise ratio of 3 (Calbiani et al., 2006).

Therefore, for TOF MS, some authors considered the mass measurement
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uncertainty in the evaluation of the limits of detection; e.g. they defined
the limits of detection as the minimum concentration providing a mass
error < 3ppm and a signal-to-noise ratio > 3 (Calbiani et al., 2006;
Gomez et al., 2007). For distorted or saturated mass peaks having
high signal intensity, mass errors up to 40 ppm have been reported
(Petrovié et al., 2006; Gonzalez-Marifio et al., 2012). Although the
issue of limited dynamic range can be avoided in some cases (e.g. the
mass can be measured from spectra having a lower signal intensity in
the chromatographic peak tails or diluted samples can be reanalyzed
(Petrovié et al., 2006; Gonzalez-Marifio et al., 2012)), this factor is
rather instrument related and more advanced HRMS showed to provide
improved accurate mass dynamic ranges of about a factor 1000 and
5000 for TOF and Orbitrap MS, respectively (Gonzalez-Marifio et al.,
2012; Makarov et al., 2006). In addition, for Orbitrap MS, mass shifts
can occur due to Coulombic interactions with other ions present at high
abundance (Gorshkov et al., 2012). Allowing fewer ions to enter the
C-trap and Orbitrap analyzer has been suggested to improve the mass

accuracy (Gorshkov et al., 2012).

With respect to mass calibration, both external (i.e. prior to
analysis) and internal (i.e. during analysis) mass calibration have been
frequently applied. Improper external mass calibration can lead to large
systematic erroneous mass measurements. For example, mass errors up
to 12 ppm were systematically measured for ions with mass lower than
the external mass calibration range (van Leerdam et al., 2009; Krauss &
Hollender, 2008). Therefore, the external mass calibration range must

at least include the mass range of interest. For example, a mixture
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of sodium hydroxide/formic acid diluted in acetonitrile/water, which
leads to the formation of different adducts, can be used for external
mass calibration over a wide range from 50 to 1000 Da in electrospray
positive and negative ionization (Masia et al., 2013). Different other
mixtures (e.g. polyethylene glycol) have been reported (Web et al.,
2004).

Drift of the external calibration over time has been reported,
leading to systematic errors (up to 2 and 5ppm after 8 days and
5 hours, respectively (van der Heeft et al., 2009; Fedorova et al.,
2013). Therefore, using lock masses for internal mass correction of
each acquired spectrum is recommended. Lock mass signals can be
obtained by post-column lock mass addition (Lapworth et al., 2012;
Nurmi et al., 2012) or by using a switching dual ionization source
providing alternating lock mass ions and the LC eluent (Blom, 2001;
Cahill et al., 2012). Other strategies might be to apply post-acquisition
mass correction using the measured target ions as reference (van der
Heeft et al., 2009) or to search for common LC-MS contaminants,
being present in the whole chromatogram (e.g. diisooctyl phthalate
CyHy5 O, for ESI positive mode, Ferrer & Thurman, 2007). No common
contaminant was found as lock mass for ESI negative mode. For
Orbitrap MS, combined internal and external calibration is typically
at least twice as accurate as only external calibration (van der Heeft

et al., 2009).
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2.5 Achievements in LC-HRMS screening

In 2006, Petrovi¢ & Barcel6 (2006), Sancho et al. (2006), and Lacorte &
Fernandez-Alba (2006) overviewed the first achievements in screening of
environmental samples based on both accurate mass and fragment ions
for confirmation. They concluded that achieving acceptable mass errors
— better than 5ppm — for identification at environmental trace levels
seemed to be challenging using TOF instruments providing a resolving
power in the range of 5000 to 10000 FWHM. In addition, elucidating
unknown compounds showed to be a complex matter taking into account

the accurate mass, the isotopic pattern and fragment spectra.

2.5.1 Suspect versus non-target screening

In 2010, Krauss et al. (2010) distinguished two predominant
workflows that were applied in literature for multi-residue screening of
micropollutants using HRMS (Figure 2.8). First, in suspect screening,
suspect compounds are suggested a priori. For the identification of
the compounds, their intrinsic exact mass and isotopic pattern are a
priori known. Apart from that, retention time can be predicted and
fragment ions can be matched with predicted spectra. Second, no a
priori information is presumed in non-target screening and molecular
formulae and chemical structures must be suggested from the measured
accurate mass, isotopic pattern and fragment ions. Basically, these
workflows diverge from the a priori knowledge of molecular formulae

and structures. Screening typically leads to indicative identification
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of analytes. Finally, for unequivocal confirmation and eventually also

quantification (Section 2.6) reference standards are required.

Suspect screening Nontarget screening

Selection of suspects
= known elemental

formula and structure
I
Peak picking
* Nontarget peak picking = peak list
*  From XIC (only for suspect screening)

Componentization isotope and adduct grouping
|

Section 2.5.1

Identification prioritization

I
Elemental formula and

structure assignment

Identification refinement
* Exact mass filtering
* Peak-noise filtering
* Isotopic pattern matching
* Retention time verification
* Hydrogen/deuterium exchange experiments
* Fragmentation pattern verification
I
Unequivocal confirmation
*  Confirm retention time and fragmentation pattern based
on analytical reference substances
*  Confirm structure based on NMR analysis

Section 2.5.2

Figure 2.8 Schematic workflow for suspect and non-target screening
starting with peak picking and componentization, over different identification
refinement strategies to finally unequivocal confirmation. The scheme includes
the variety of strategies that have been applied in different suspect (Table 2.2)
and non-target (Table 2.3) screening studies.
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With respect to 8 suspect screening studies summarized in Table 2.2,
surface water, wastewater and wastewater treatment plant (WWTP)
effluent have been screened towards a set of suspects varying from
about 40 (K’oreje et al., 2012) up to almost 2000 (Kern et al., 2009;
Hug et al., 2014) chemicals. In the majority of these studies, the
suspects were anthropogenic contaminants, which are known to occur
in the aquatic environment (e.g. several pharmaceuticals, personal
care products, pesticides and their transformation products (TPs), and
different classes of chemicals such as surfactants having homologous
series). A recent trend is that potential water contaminants are selected
based on the local supply or use of pharmaceuticals and industrial
chemicals (K’oreje et al., 2012; Hug et al., 2014) or based on predicted or
known transformation products of pharmaceuticals and pesticides (Kern
et al., 2009; Li et al., 2013). As HRMS instrument, TOF or Orbitrap
instruments were used in most of the studies, except by K’oreje et al.
(2012) who used a magnetic sector HRMS.

The complexity of the applied screening techniques increased over the
last years and a variety of algorithms have been written to automate the
screening procedure. In general, the first step is to construct extracted
ion chromatograms around the exact mass of the suspects (Ibanez et al.,
2008; Martinez Bueno et al., 2012; Nurmi et al., 2012) or to perform a
non-target peak picking on the chromatograms (Kern et al., 2009; Hug
et al., 2014; Li et al., 2013; Moschet et al., 2013; Schymanski & Singer,
2014). The latter requires a powerful algorithm, which is able to find
all the peaks in a chromatogram, but has the advantage that it lists the
m/z and retention time combination of all the found peaks in an easily

searchable peak list.
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Table 2.2 Characteristics of 8 suspect screening LC-HRMS methods.

Matrix Analytical Peak picking  Suspect screening list = H 2 g o Tentatively identified Confirmed compounds Reference
technique and componen- M m m .m mu £ compounds
tization ” o = dm = g
@ 2 A3 29
£ g a dfF
2 NS
Q S 2
g s 9 =
& ~ 2
wastewater SPE- XIC +500 pesticides, 5 ppm X x 4 pesticide, 3 Ibanez
UHPLC- pharmaceuticals, drugs pharmaceuticals, 2 et al.
ESI-QTOF of abuse and TPs drugs of abuse and TP (2008)
MS
surface water SPE- nontarget peak 1794 predicted or 5ppm X X X x 19 pesticide and 12 TPs Kern et al.
HPLC- picking known TPs of 52 pharmaceutical TPs (2009)
ESI-LTQ- pesticides and
Orbitrap pharmaceuticals
MS
WWTP SPE- XIC 147 pharmaceuticals 5mDa X X 25 pharmaceuticals 4 pharmaceuticals Nurmi
effluent UHPLC- and 54 metabolites et al.
ESI-TOF (2012)
MS
surface water SPE- XIC 43 pharmaceuticals 5ppm x 12 pharmaceuticals 10 pharmaceuticals K’oreje
HPLC- locally supplied et al.
ESI- (2012)
magnetic
sector MS
surface water LVI- XIC 1200 pharmaceuticals 5 ppm x 5 pharmaceuticals Martinez
HPLC- and personal care Bueno
ESI-QTOF products et al.
MS (2012)

58



High-resolution mass spectrometry for micropollutant analysis

"o[qe[reA® J0U BIR(] "B'U

(-0
‘sproe oI[AxoqIed [AY[e
[Aueydojns ‘sejeuoyns Surdnoid SIN
[AzuaqAy[e Ieaur] jonppe  deijqiQ
(¥102) SOLI8sS Sno3o[owoYy '89) sorr0s snoSojouwroy pue adojost -1 I/1-ISH
Io3urg 2y JO sosse[o TT 01 JO sosse[d GT ‘Sunprd -DT1dH Juan o
DsuewAyog pojerel spunodwod g9 X x x xwddgg¢ woy spunodwos yG¢ qead jeSIejuou -4dS dLMM
I9jem 90JINS Ul INDD0
09 pajrodal sTesTweyd SIN
Gge + Axysnpur [eo0] deniqiQ
Teornaoeurreyd ut pasn 10 paonpoad -O1T1-1SH
(F10g) T ‘sreotwaypd [eLIjsSnpur spunoduos a[qepusure Sunpord -01dH Juanye
D 79 Snyg ¥ ONY AN T spunodwod ¢ X x x x wddy [SH pue SIN-DT 90LT eod je8rejuou -qdS JdLMM
(erqepuowre 1S3 )
WOIROIDIAY SUO IS8 SIN
(syuewiBeay SINYH/SIN 1e pue (seoue)sqns deniqiQ
(e102) pajorpaid junoooe JueAS[aI I9JeM) G -O-1SH
‘0 92 sd]  ojul Surye) jou) sdJ, > moyr 3o[ Suiaey s, Sunpord -DT1dH
19UDSOIN G pue sepwijsad ¢ 11 pue sepmiysad 6T X x x wddg pue sepisad (F1 Yead je3rejuou -HdS  19jem 9oejIns
e 52
E2 = ..m g g
® 2 29 & %
Eg gD & uonyez)
@ &
spunodwod 5 2 5 ¢ = = -usuodwod pue  anbruyos)
o0uoIofeY Spunoduiod powLIguoy) PpoyIjuspl Aparjejus], ® @ B B 5 e 1s1] SurueaIds 10adsng  Junpid yeod [eonjA[euy’ XLIYRIN
(ponunyuod)  g'g 9[qEL

59



Chapter 2

The newest trend in screening aims finding and identifying non-
target unknown compounds. In 4 studies, matrices such as WWTP
effluent, process water, groundwater and landfill leachate have been
screened for the presence of unknown contaminants (Table 2.3). Two
non-target screening studies in river sediment were also incorporated in
Table 2.3 because of their interesting methodological approach (Terzic
& Ahel, 2011; Weiss et al., 2011).

In general, these non-target screening techniques start with peak
picking: a manual (Terzic & Ahel, 2011) or, in most cases, automated
search for peaks, i.e. non-target peak picking (Godejohann et al.,
2011; Miiller et al., 2011; Terzic & Ahel, 2011; Weiss et al., 2011;
Schymanski & Singer, 2014), in the chromatograms. Subsequently,
componentization aims isotope and adduct grouping resulting in
thousands (about 1000 to 10000) of unidentified analytes. Unless
identifying the most intense peaks (Godejohann et al., 2011; Terzic &
Ahel, 2011; Schymanski & Singer, 2014), in this workflow, incorporating
identification prioritization strategies has shown the ability to select
the most relevant unidentified analytes from an environmental point
of view. Pattern searching of analytes with temporal, spatial, or
process-based relationships has shown to be an effective approach to
reduce the number of analytes of interest. As such, Miiller et al.
(2011) prioritized by Venn diagram analysis those analytes relevant for
drinking water or for the waterworks (Figure 2.9). This resulted in the
assignment of 21 molecular formulae, from which 12 pharmaceuticals
could be unequivocally identified. Another promising approach was the
combined use of bioassays and LC-HRMS by Weiss et al. (2011) in

an effect directed analysis (EDA) for the prioritization of substances
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showing ecotoxicological activity. They selected 59 analytes showing
(anti-) androgenic activity in river sediment extracts leading to the
unequivocal identification of 8 contaminants. Considering the vast
amount of unidentified analytes in non-target analysis, more research
should focus to prioritize the most relevant analytes for identification.
As such, the demanding identification efforts may be restricted to the
most relevant analytes. This comprises proposing elemental formulae
based on accurate mass and heuristic rules (e.g. restriction of element
numbers, hydrogen or heteroatom/carbon element ratios) (Godfrey &

Brenton, 2012), and database searching for possible chemical structures.

Figure 2.9 [Illustration of a Venn diagram for determining substances
relevant for the waterworks. These compounds had to be present in landfill
leachate (LF) and in groundwater well A (GW A) but not in GW B. Figure
reproduced from Miiller et al. (2011).
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Table 2.3 Characteristics of 6 non-target screening LC-HRMS methods.

Matrix Analytical Peak picking Identification Tentatively identified Confirmed compounds Reference

5 5EE 92
technique and componen- prioritization strategy = = m .m £ £ compounds
tization for nontaget screening AM nm 2 .2 £ g
175] % AT 9O o
g T o & B F
e
8 A O om
g g3
& ~ 2
landfill SPE- peak picking, Venn diagram analysis n.a. X X X 12 pharmaceuticals, 1 12 pharmaceuticals Miiller
leachate, HPLC- isotope and in order to select pesticide, 1 et al.
groundwater, QTOF adduct substances relevant for benzothiazole, 7 (2011)
process water MS grouping drinking water or the unknown molecular
waterworks formulae
WWTP SPE- peak picking, 30 most intense peaks 5ppm x x x 9 formulae assigned 1 benzothiazole Schymanski
effluent HPLC- isotope and & Singer
LTQ- adduct (2014)
Orbitrap  grouping
MS
WWTP SPE- peak picking, identification of the n.a. X 22 compounds 6 pesticides, 1 UV Godejohann
effluent HPLC- adduct most concentrated tentatively identified filter and 1 food et al.
TOF MS / grouping compounds from the based on accurate additive (2011)
time-slice- NMR spectra mass and NMR
SPE-
NMR?
WWTP SPE- peak picking  peaks having distinct 7ppm x x x x 14 compounds 1 pharmaceutical, 1 Hug et al.
effluent HPLC- and isotope isotopic pattern pesticide TP and 3 (2014)
LTQ- grouping including 37Cl, 8!Br, industrial chemicals
Orbitrap 15N or 34S and peaks
MS with intensity >

threshold
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2.5.2 Identification refinement and confirmation

In both suspect and non-target screening, six different techniques
have been tested and applied for identification refinement (Figure 2.8).
Although the concept of identification for each of these techniques has
been proven, it is not always clear how they should be optimally applied
and combined with each other in order not to oversee truly present

contaminants and at the same time omit false positives.

First, intrinsic to HRMS, an exact mass filter is applied. Only
analytes (mono isotopic ion) having an accurate mass within a
predefined mass error tolerance are retained. The applied mass error
tolerance ranged from 3.5 to 10 ppm but was 5ppm in most studies

(Tables 2.2 and 2.3).

Second, several peak-noise differentiation strategies such as signal-
to-noise (Moschet et al., 2013), signal intensity (Kern et al., 2009;
Moschet et al., 2013) and peak shape (Hug et al., 2014; Moschet et al.,
2013) filters have been applied in order reduce the number of (noise)
peaks that are unlikely to be related to analytes. In addition, blank
subtraction was applied to eliminate compounds that do not originate
from the sample (Kern et al., 2009; Gerssen et al., 2011; Hug et al., 2014;
Li et al., 2013; Moschet et al., 2013; Schymanski & Singer, 2014). Next
to removing noise peaks, the risk exists that true peaks are omitted
(i.e. false negatives). For example, Moschet et al. (2013) could reduce
the number of initially picked peaks by 85 % using different peak filters.

However, this resulted in 23 % false negatives. Differentiating noise from
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true peaks without omitting too manny true peaks seems a challenging

task.

Third, isotopes are frequently used as diagnostic ions in order to
enhance the identification confidence. Some authors performed a visual
inspection of the isotopic pattern (Hug et al., 2014) or compared the
measured and theoretical isotope exact masses and/or ratios (Ibafiez
et al., 2008; Kern et al., 2009; Nurmi et al., 2012; Li et al., 2013;
Moschet et al., 2013; Schymanski & Singer, 2014). Although various
isotope matching methodologies have been applied, Cl- or Br-containing
compounds seem to be quite easily distinct thanks to their specific and

abundant isotopic pattern.

Fourth, predicting the retention time based on octanol-water
partition coefficients (K,y) (Kern et al., 2009; Nurmi et al., 2012)
or using linear solvation energy relationships (Hug et al., 2014) has
shown to improve the identification success. However, the application
of these models can be problematic for ionic compounds because these

substances showed unpredictable lower retention (Hug et al., 2014).

Fifth, recently, two authors introduced hydrogen/deuterium (H/D)
exchange experiments for the identification of non-target compounds by
using deuterated LC solvents (Miiller et al., 2011; Hug et al., 2014).
As such, during chromatography, deuterium replaces exchangeable
hydrogens in the analytes and their mass will shift by 1 unit per
deuterium. Comparing the number of exchanged hydrogens with the
predicted number of exchangeable hydrogens can lead to improved

structure elucidation.
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Sixth, several authors considered the occurrence of at least
one fragment ion as additional identification criterion. This could
be a fragment originating from in-source fragmentation, all ion
fragmentation/HRMS or data dependent MS/HRMS. At least four
strategies have been applied in order to interpret the fragmentation
spectra: (i) comparison to in-house (Ibafiez et al., 2008) or commercial
spectra (Martinez Bueno et al., 2012) or to fragments reported in
literature (Ibafiez et al., 2008; Moschet et al., 2013); (ii) reconciliation
of the measured fragments to substructures of the precursor ion
(Schymanski & Singer, 2014); (iii) comparison to fragments of similar
compounds (Kern et al., 2009; Gerssen et al., 2011; Hug et al., 2014);

(iv) and comparison to predicted fragments (Moschet et al., 2013).

In a final step, unequivocal confirmation can be reached through
obtaining and analysing analytical references of the indicatively
identified analytes. As such, the retention time and fragmentation
spectrum can be experimentally confirmed. In the case all mentioned
techniques are not successful or no reference substances are available
(e.g.  for transformation products), nuclear magnetic resonance
(NMR) spectroscopy is required to reveal the chemical structure of
analytes in combination with the information obtained from LC-HRMS
(Godejohann et al., 2011; Richardson & Ternes, 2014). However, NMR

requires intensive sample enrichment and pretreatment.

In suspect screening, the identified and confirmed substances were
mainly pesticides, pharmaceuticals, their transformation products and
some industrial chemicals (Table 2.2). Although some pesticides and

pharmaceuticals were also found by non-target screening, many other
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chemicals including benzothiazoles, musks, steroids, organophosphates,
UV filters, food additives and industrial chemicals were confirmed

(Table 2.3).

2.5.3 Evaluation of the screening performance

In order to establish the reliability of screening, recently, Moschet
et al. (2013) evaluated the identification success rate of their suspect
screening methodology for a variety of pesticides in surface water. This
was achieved through a hypothetical screening of artificially enriched
samples with known contaminants at different concentrations. As such,
false negatives and false positives could be observed and their frequency
was determined. A false negative rate (i.e. fraction of the analytes not
retained by the screening but detected by a target approach) and false
positive rate (i.e. false positive count divided by the number of suspects
in the screening library averaged over the analyzed samples) of about

30% and 2.3 %, respectively, were reported.

In the whole identification train, the false negative rate should be as
low as possible and, at the same time, not too many false positives must
be retained (Moschet et al., 2013). Therefore, identification criteria
should be set not too stringent (to avoid false negatives) and at the
same time sufficiently stringent (to avoid false positives). More research
is needed to reveal the relationship between the false negative and
false positive rate and how both can be minimized. From the study
of Moschet et al. (2013), the false negative and false positive rates seem

to be inversely related, thus an optimal trade-off must be found.
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2.6 Quantitative aspects of LC-HRMS

In full-spectrum TOF and Orbitrap HRMS, quantification has been
mainly performed from the measured signal of the mono isotopic ion of
the ionized analytes. However, recently, some authors also employed

selected ion monitoring (SIM) in which the molecular ion is preselected
using a quadrupole or linear ion trap during a predefined time window
(Krauss & Hollender, 2008; Fedorova et al., 2013). In that case, a
MS/HRMS experiment is performed and the quantification ion was the

selected molecular ion or one of its fragment ions.

2.6.1 Quantification in the presence of isobaric
interferences

In Section 2.4.1, it has been shown that the signals of a mass peak
unresolved from an isobaric interference merge. As such, not only
the mass shifts towards the interference but also their signals add up,
resulting in overestimation of the signal intensity. The latter can be
seen from the intensity scale in the XICs in Figure 2.5: the height of
the resolved peak (tg 7.32min) at 100000 FWHM is 1.1 x 10%, whereas
it increases to 1.3 x 10° due to the presence of an unresolved isobaric

ion when the resolving power is reduced to 10000 FWHM.

For the construction of XICs, different researchers applied different
mass window widths varying over a wide range from 7 to 10 ppm or
from 4 to 100 mDa for the validated HRMS studies in Table 2.1. Narrow
mass windows seem to increase the selectivity (Section 2.4, Kaufmann

& Butcher, 2006) but on the other hand the method sensitivity might be
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affected (Kaufmann et al., 2007; Kellmann et al., 2009). To this respect,
especially the use of centroid data (by centroiding, sticks replace the
mass peaks in the mass spectrum) can lead to signal interruption or the
complete disappearance of the signal when the accurate mass of an ion
is shifted out of the XIC mass window (Kaufmann & Butcher, 2006).
This can be due to isobaric interferences or other causes of mass error
discussed in Section 2.4.1. Therefore, using profile data seems to be
preferential for quantitative purposes. Although the use of centroid or
profile mode is not always specified for the validated methods in Table
2.1, centroid data is often used. The reason might be that centroid data

were chosen because this typically requires less storage capacity.

Overall, although selectivity will benefit from increased resolving
power of both the chromatographic separation and the mass
spectrometry (Kaufmann et al., 2007; Kellmann et al., 2009), it is not
fully understood to which extent selectivity and sensitivity vary as a

function of the mass window width.

2.6.2 Analytical performance of validated LC-
HRMS methods

With respect to the instrumental performance of TOF and Orbitrap
instruments, linear working ranges of 1 to 2.5 orders of magnitude were
reported for most of the validated HRMS methods (Table 2.1). Both
instruments showed quasi-similar instrumental detection limits (IDLs)
ranging for the majority of the compounds from 1 to 100 pg on column

(Figure 2.10).
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Figure 2.10 Boxplots of the IDLs for different combinations of
HPLC/UHPLC and TOF/Orbitrap HRMS of validated methods. The
number of compounds included is given below each boxplot. The references
[e-w] are given in Table 2.1

Regarding the method performance of the 27 validated HRMS
methods summarized in Table 2.1, overall, method detection limits
(MDLs) over a wide range from < 0.1ngl™ to almost 10pugl™ were
reported. The reported MDLs are presented in Figure 2.11 per type
of water matrix (drinking water, surface water, WWTP effluent and
wastewater) and ordered by what can be introduced as increasing

equivalent sample injection volume (ESIV). The ESIV is defined here

70



High-resolution mass spectrometry for micropollutant analysis

as the preconcentration factor of the sample pretreatment multiplied
by the injection volume. The ESIV ranged from 100 pl in the case of
LVI to 20000 pl in the case large volumes of 11 were concentrated by
SPE. For drinking and surface water, a clear trend can be observed
and lower MDLs are generally reached for increased ESIVs. For
WWTP effluent water and wastewater, a less pronounced trend is
observed with less decreasing MDLs for the same increase in ESIV.
The latter is reflected in the matrix effects. Matrix effects are the
signal enhancing or suppressing effect a matrix has on the peak area
of an analyte as compared to a pure solvent. Whereas minor matrix
effects, ranging from 80 to 120 %, were reported for the majority of
the compounds in drinking and surface water, severe matrix effects (<
50 %) were reported for wastewater, especially when the ESIV raised
above 2500 ul. At the same time, authors analysing larger ESIVs tend
to employ HRMS providing increased resolving power (from 5000 up
to 70000 FWHM). Therefore, although IDLs were for all instruments
in the range of 1 to 100pg on column (Figure 2.10), higher resolving
power and thus increased selectivity allows in general targeting lower
analyte concentrations in more complex matrices or, at the same time,
increased resolving power allows larger ESIVs. For example, Fedorova
et al. (2013) obtained relatively low method detection limits for 27 drugs
of abuse in wastewater ranging from 0.5 to 50ngl~! and matrix effects
from 50 to 150 % for most of the compounds using a relative low ESIV
of 1000 nl with online SPE-UHPLC-Orbitrap HRMS operated at a high
resolving power of 70000 FWHM.
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C) for the validated methods in Table 2.1. For each method, the number of

compounds included in the boxplot (bottom of panel A), matrix effects (panel

B) and resolving power (x in panel C) are presented. The references [d-y]| are

given in Table 2.1.
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Different authors (Ibanez et al., 2008; Krauss & Hollender, 2008;
Hogenboom et al., 2009; Hernandez et al., 2012; Zedda & Zwiener, 2012)
concluded that combined reliable qualitative analysis and subsequent
quantification in one instrument has emerged with the most recent TOF
and Orbitrap HRMS. However, some particular issues should not be
overlooked and need more investigation. First, matrix effects are a
known drawback related to ESI in LC-MS and similar matrix effects
have been observed for ESI-MS/MS and ESI-HRMS (Fedorova et al.,
2013). However, in particular for full-spectrum Orbitrap MS, enhanced
matrix suppression has been reported. This phenomenon, which is not
fully understood yet, has been called post-interface matrix suppression
and results in suppression or the complete loss of the signal of target
ions (Kaufmann et al., 2010b; Fedorova et al., 2013). Second, although
a resolving power starting from 5000 FHWM has been referred to as
HRMS, an increased resolving power is clearly beneficial due to its
improved selectivity and ability to detect lower analyte levels in more
complex matrices. Techniques to assess the selectivity, as discussed in
Section 2.4.1, must be employed more frequently in order to establish

the minimal required resolving power for different types of matrices.

2.7 Tandem and high-resolution mass spec-
trometry

The advantages of full-spectrum HRMS, as compared to MS/MS, have
been praised for different reasons. First, exact molecular mass, which
is accurately measured in HRMS, is universal and easily calculable.

Therefore, setting up a HRMS method does in se not rely on the a priori
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availability of reference standards whereas in MS /MS compound specific
transitions must be experimentally defined (Kaufmann & Walker,
2012b). In addition, in HRMS a wide spectrum can be measured
over the entire chromatogram, allowing the selective determination
of a virtually unlimited number of analytes (Petrovi¢ et al., 2006;
Lommen et al., 2007; Nielen et al., 2007; Ib4nez et al., 2009; Krauss
et al., 2010; Diaz et al., 2011; Miiller et al., 2011; Hernédndez et al.,
2011; Chitescu et al., 2012; Masia et al., 2013). In contrast, in
MS/MS the specific transitions are only measured in a time-window
around the experimentally determined retention time of the analytes.
Second, the high resolving power in HRMS allows accurate mass
measurement with high confidence to the ppm-level, hereby facilitating
the identification of analytes based on accurate mass. As a result,
HRMS and tandem MS/HRMS has been praised for its added value
for confirmatory purposes. According to the Commission Decision
2002/657/EC (European Union, 2002), at a resolving power of at
least 20 000 FWHM, precursor (HRMS) and fragment ions (MS/HRMS)
value 2 and 2.5 identification points (IPs), respectively. This contrasts
with 1 and 1.5 IPs for low-resolution precursor (MS) and fragment
ions (MS/MS), respectively. As such, in HRMS 1 precursor and
only 1 fragment ion is sufficient (= 4.5 IPs) to reach at least 4
identification points for unequivocal confirmation, whereas 1 precursor
plus 2 fragment ions (= 4 IPs) are required in low-resolution MS.
Third, post-run analysis of the acquired spectra is possible (Section
2.5) without having to set up additional instrumental runs. Screening
the acquired spectra can thus lead to the identification of non-targeted

compounds with the restriction that their mass falls within the acquired
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mass range and that the compounds are amendable to the applied

analytical techniques, as discussed in Section 2.3.

A fundamental question for the combined use of quantitative and
qualitative HRMS is from when on HRMS outperforms — from a
qualitative and quantitative point of view — tandem MS/MS, which
is considered as the state-of-the-art MS detection and quantification
technique (2002/657/EC, European Union, 2002). After all, as stated
in the Section 2.4, HRMS has the potential for an increasingly better
selectivity over the whole spectrum upon increasing the resolving power
whereas the selectivity in MS/MS is limited by specific transitions
over a predefined retention time window. For example, Farré et al.
(2008) reported overestimated concentrations for some pharmaceuticals
in wastewater using MS/MS as compared to HRMS. This could be
related to the presence of interferences that were well resolved using
a TOF instrument (5000 FWHM). Kaufmann et al. (2010a) calculated
that similar selectivity can be expected at a resolving power of at least
50 000 FWHM as compared to MS/MS (1 transition) acquisition for
pharmaceuticals in food matrices. However, from experiments with
27 drugs in wastewater samples, Fedorova et al. (2013) still observed
slightly more interferences for MS/MS versus HRMS (70000 FWHM)
when monitoring 1 transition. However, a clearly better specificity
for MS/MS was observed when 2 transitions are monitored. Although
in many studies the earliest HRMS (mainly TOF) showed to be less
sensitive in terms of detection limits than MS/MS (Farré et al., 2008;
Masia et al., 2013), Ferrer et al. (2008) elucidated that TOF sensitivity

would be superior over MS/MS sensitivity when more than 300 analytes
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are monitored in one run. This was explained by the fact that
analysing more analytes in MS/MS requires the use of shorter dwell
times (i.e. the time that is spend for the acquisition of an ion),
whereas in HRMS such limitations do almost not apply. Recently, quasi-
comparable performance characteristics including sensitivity, linearity,
accuracy and precision have been reached for LC-Orbitrap HRMS
(50000-70000 FWHM) and LC-MS/MS in multi-residue approaches
(Kaufmann et al., 2012; Fedorova et al., 2013). There was one exception,
namely with respect to matrix effects. Full spectrum Orbitrap-HRMS
seemed to be affected by the previously discussed post-interface matrix
suppression (Section 5.2), which is not present in quadrupole MS/MS.
Research results from the combined use of HRMS and MS/MS are
needed in order to provide fair comparisons of both MS technologies and
to find out how much resolving power is equivalent to one or multiple

MS/MS transitions for the definition of IP’s.

2.8 Conclusions and future challenges

High mass resolving power is the key factor for selectivity in HRMS
and allows the simultaneous accurate mass (qualitative) measurement
and quantification in one instrument. Therefore, analysts should realize
that sufficient selectivity, which results from the combined mass and
chromatographic selectivity, is of utmost importance and must be
thoroughly assessed for each matrix of interest. To do so, mass shifts
of the analyzed target compounds and the presence of many isobaric
peaks in XICs are a good indication for insufficient selectivity and

can indicate that also the quantitative accuracy might be affected.
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Therefore, qualitative and quantitative analysis are interrelated and
should not always be seen apart from each other. In general, a resolving
power of at least 50 000 to 70 000 FWHM seems to reach equivalent mass

selectivity as provided by one MS/MS transition.

With HRMS, the possibility for full-spectrum screening towards
suspect or unknown micropollutants has launched a revolution in
environmental analytics to accelerate the identification of more and
more environmental relevant contaminants. However, several analytical
challenges are formulated in this review. First, the whole analytical
procedure must reflect the multi-residue concept because a variety
of substances having very different physical-chemical characteristics
must perform well. Second, even at the highest resolving power,
isobaric interferences can occur. Therefore, for ultimate mass accuracy,
advanced centroiding algorithms for accurate mass determination in the
presence of isobaric interferences must be implemented. Third, a gamut
of suspect screening algorithms has shown the ability to reveal the
presence of large lists of suspects. Hence, the future challenge is not
to oversee truly present contaminants (i.e. low false negative rate) and
to obtain not too many false positive hits. Fourth, non-target screening
strategies have been invented and allowed the identification of unknown
contaminants. Here, prioritization is a key factor in order to direct the
demanding identification procedures towards the most relevant — from

an environmental point of view — unidentified analytes.

T






Quality assessment and
quantification of pharmaceuticals in
wastewater using solid-phase
extraction - HPLC - magnetic sector
mass spectrometry

Redrafted from:

L. Vergeynst, A. Haeck, P. De Wispelaere, H. Van Langenhove &
K. Demeestere (2015).  Multi-residue analysis of pharmaceuticals
i wastewater by liquid chromatography - magnetic sector mass

spectrometry: Method quality assessment and application in a Belgian

case study. Chemosphere 119: S2-S8.

79



Chapter 3

3.1 Introduction

Wastewater treatment plants (WWTP) have been pointed out as the
main contamination pathway for pharmaceuticals to the environment
(Section 1.2). For a broad range of pharmaceuticals often only partial
removal is achieved in biological treatment processes (Michael et al.,

2013; Petrie et al., 2013).

Measuring trace amounts of these micropollutants, as prerequisite
for studying their occurrence and fate, is challenging because wastewater
typically contain interferences causing matrix effects. In addition,
in order to be able to measure sufficiently low concentrations, a

preconcentration step is required.

Therefore, the objectives in this chapter are twofold.  First,
the goal is to develop and optimize a solid-phase extraction (SPE)
preconcentration and clean-up technique followed by double-focusing
sector HRMS for selective mass measurement hyphenated with HPLC
by electrospray ionization (ESI) for quantitative trace analysis of 43
selected pharmaceuticals in influent and effluent water of WWTPs.
Hereby, particular focus goes to the analytical performance, method
validation, quality assessment and variability analysis, the latter being
only scarcely discussed in multi-residue analysis. Although this type
of HRMS has shown its merits in the analysis of micropollutants
like dioxins and furans (Hernandez et al., 2012), and of oxygenated
polycyclic aromatic hydrocarbons in airborne matrices (Walgraeve
et al., 2012), its use in multi-residue water analysis is very scarce.

Recently, sector HRMS hyphenated to high performance liquid
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chromatography (HPLC) by ESI has been used a first time for
qualitative screening towards pharmaceuticals in surface water (K’oreje
et al., 2012), but so far, no reports are available describing its application

in quantitative water analysis.

The second goal is to study the occurrence of the selected
pharmaceuticals in influent and effluent waters of a parallel conventional
active sludge (CAS) system - membrane bioreactor (MBR) and a
second CAS WWTP in Belgium. This study brings forward one
of the first concentration data of pharmaceuticals in wastewater in
Belgium, and allows to perform a first tier environmental risk assessment
for the Belgian river affected by the second CAS-WWTP. Finally,
loads are calculated to determine removal efficiencies in both WWTP

technologies.

For this study, twenty-five pharmaceuticals were selected from three
studies (Cooper et al., 2008; Coutu et al., 2012; Kumar & Xagoraraki,
2010) dealing with prioritization of emerging contaminants. This
selection was extended with 8 quinolone antibiotics because of their bio-
recalcitrance in WWTPs (Jia et al., 2012), and with 10 antiviral drugs
belonging to the most hazardous pharmaceuticals based on predicted
toxicity towards fish, daphnia and algae (Sanderson et al., 2004) but
only measured in the environment in a limited number of studies (Ghosh

et al., 2010; K'oreje et al., 2012; Prasse et al., 2010).
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3.2 Experimental section
3.2.1 Chemicals and materials

The 43 pharmaceuticals selected in this study, their therapeutic
usage, and their analytical standard suppliers are listed in Table A.1.
Individual stock solutions of the pharmaceuticals were prepared on
weight basis to a final concentration of about 1mgml™ (solvents in
Table A.1). A standard mix of the pharmaceuticals was prepared at
a concentration of 2mgml™! in 10:90 methanol/water. Standard and
matrix-matched calibration curves were prepared by serial dilution of
the standard mix in 10:90 methanol/water, and in influent and effluent

water, respectively.

LC-MS grade methanol and LC-MS grade water (VWR, Belgium),
LC-MS grade acetonitrile (Biosolve, The Netherlands), formic acid (>
96 %), ammonium acetate (> 99.99%) and NagEDTA.2H,O (Sigma-
Aldrich, Belgium) were purchased. Deionized water was produced using

Aquadem ion exchanger cartridges (Werner, Germany).

3.2.2 Sampling and WWTP description

For the method development and validation (Section 3.3.2), influent
and effluent grab samples were collected in prerinsed amber glass
bottles at the WWTP of Lede, Belgium. For the method application
(Section 3.3.3), influent and effluent 24h time integrated samples
were collected in a parallel CAS-MBR WWTP (WWTPI1) and a
CAS WWTP (WWTP2) using an automatic sampler (50ml sample
each 20min, Sigma 900 and ISCO 4700, Elscolab, Belgium) during
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4 and 6 days, respectively, resulting in a total of 10 influent and 18
effluent samples. Effluent samples were collected 24 hours after their
corresponding influent sample. Figure 3.1 presents a schematic overview
with indication of the sampling points, and Table 3.1 summarizes the
sampling period, number of samples, precipitation data, and the main
physical and chemical characteristics of both WWTPs.

Formic acid was added to the samples (pH 3) to prevent microbial
activity during sample storage (at 4°C in the dark for < 4 days) prior

to extraction.

anaerobic/aerobic /7\
T EFF_CAS ‘
anaerobic/
INF aev_rﬂgb-icfl\"/l BR ‘ EFF_TOT
WWTP1 EFF_MBR
anaerobic oxidation
‘ selector ditch ‘
INF EFF
WWTP2

Figure 3.1 Scheme representing the design and sampling points (arrows)
of WWTP1 and WWTP2 (INF: influent, EFF: effluent, CAS: conventional
active sludge, MBR: membrane bioreactor, TOT: total).
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Table 3.1 Physical and chemical characteristics of WWTP1 and WWTP2 during the sampling period.

Parameter WWTP1, Schilde, Belgium WWTP2, Aalst, Belgium
Influent Effluent Effluent Effluent Influent Effluent
CAS+MBR CAS MBR CAS+MBR
Sampling period and duration March 2013, 4 days August 2013, 6 days
Inhabitant equivalents (I.E.) 28000 100000
Hydraulic retention time (h) 9 6 28
Sludge retention time (d) 6 not applicable 22
Number of samples 4 4 4 4 6 6
Daily flow rate Asw &Lv 12775£1082  5544+1036  7231+68 12775£1082 20846+8153  20846+8153
Chemical oxygen demand 186+5 37+3 23+4 26+5 407+192 3314
(COD) (mgO,/1)
Total nitrogen (mgN /1) 31+2 21x1 6+2 15+1 47£7 7.7+1.0
Total phophorus (mgP/1) 3.8+0.2 0.2+0.0 0.6+0.3 0.4+0.1 6.0£1.0 0.6+0.2
Suspended solids (mgl™!) 110+56 6.0+2.2 4.0£0.0 4.0£0.0 day 1-3: 7.9+4.0
163+42;
day 4-6:
277+93
pH 7.4£0.1 7.4£0.5 7.6+0.1 7.6+0.1 7.6+0.1 7.7+£0.1

Precipitation in Ukkel,
Belgium (mm)

no precipitation

day 4: 0.1; day 5: 14; day 6: 0.4
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3.2.3 Sample pretreatment and solid-phase extrac-
tion

The optimized sample pretreatment and SPE protocol was as follows.
Before SPE extraction, the pH of the samples was adjusted to 7.0
+ 0.1 by addition of a 5 M NaOH and 10% formic acid solution.
The samples were filtered first through a 1.0pm GF/B Whatman
glass fiber filter (VWR, Belgium), and then through a 0.45pm
Whatman nylon membrane (VWR, Belgium). 2ml of a 5 wt%
Nag-ethylenediaminetetraacetic acid (EDTA) solution were added per
100 ml of sample. By adding EDTA, soluble metals are bound to the
chelating agent, increasing the extraction efficiency of tetracycline and
fluoroquinolone antibiotics (Gros et al., 2009; Kasprzyk-Hordern et al.,

2007).

Oasis HLB SPE cartridges (6 ml, 200 mg sorbent) were placed on a
VacMaster-10 and the vacuum was controlled maintaining a flow rate of

approximately 5mlmin~!.

First, the cartridges were conditioned with
6 ml of methanol and 6 ml of deionized water. Then, 100 ml effluent or
50 ml influent sample were loaded on the cartridge. Subsequently, the
cartridge was washed with 4 times 6 ml of deionized water. After drying
the cartridges for 5min, elution was performed using 5 ml of methanol
and the eluents were collected in silanized glass tubes. The glass tubes
were silanized by rinsing first with 5% dichlorodimethylsilane (Alfa
Aesar, Belgium) in toluene, then twice with toluene, and finally thrice
with methanol. The glass tubes were placed in a TurboVap and the

eluent was evaporated under nitrogen stream until complete dryness.

The walls of the tubes were rinsed twice with methanol in order to
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prevent sorption of the analytes. Reconstitution was performed with
1ml of 10:90 methanol/water. Then, the tubes were vortexed for 20 s
and centrifuged for 5min at 1000 rounds per min. Finally, the extract
was distributed over 2 vials for ESI positive (+ 0.1 % formic acid) and

negative analysis.

3.2.4 Instrumental analysis

3.2.4.1 HPLC separation

Chromatographic separation of the analytes was achieved using
a Surveyor HPLC system (Thermo Finnigan) equipped with a
Phenomenex Luna C18(2) 150 x 2.0 mm column (3 pm particle size) and
operating at 35°C. The sample injection volume was 10 ul. The mobile
phase was a mixture of (A) methanol and (B) water, both with 0.1 %
formic acid, and a mixture of (C) acetonitrile and (D) water for analysis
in ESI positive and negative ion mode, respectively. The optimized
gradient was as follows. For analysis in ESI positive ion mode, the
mobile phase was (A) methanol and (B) water, both with 0.1 % formic
acid. After 1min isocratic at 10% A, the gradient increased linearly
to 20, 80 and 100 % A after 2, 35 and 40 min, respectively, followed by
10min isocratic at 100% A. Column equilibration was performed for
10min at 10 % A making a total analysis time of 60 min. For analysis in
ESI negative ion mode, the mobile phase was (C) acetonitrile and (D)
water. After 1 min isocratic at 40 % C, the gradient increased linearly to
100 % C after 25 min, followed by 10min isocratic at 100 % C. Column
equilibration was performed for 10 min at 40 % C making a total analysis

time of 45min. The mobile phase flow rate was 170 plmin~!, from
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which 40 pl min~! was combined with a 10 pl min~! reference solution for
internal mass calibration, resulting in a flow rate of 50 plmin~! going to

the ESI source.

3.2.4.2 Selective ion detection

The double focusing magnetic sector MAT95XP-TRAP HRMS (Thermo
Finnigan, Bremen, Germany) was equipped with an ESI source and
operated in multiple ion detection (MID) mode for selective target

analysis at a resolving power of 10000 (10 % valley definition).

The ESI capillary temperature (200, 225, 250, 275 and 300 °C) and
sheath gas (3 and 4bar) flow rate conditions were optimized from
duplicate injections of analytical standards (2mgl™) operating the
MS in unit-resolution full-spectrum mode. In the ESI positive and
negative ion mode, 4 bar, and 300 °C and 275 °C, respectively, showed
increased peak areas and a good compromise for all the compounds.
The final ESI parameters were as follows. The spray voltage was 3kV.
Nitrogen was used as sheath gas and optimized at 4 bar. The optimized
capillary temperature was set at 300 °C and 275 °C for ESI positive and
negative ion mode, respectively. Daily automatic tuning of the electric
potentials of capillary, tube lens, skimmer, octapole and source lenses

were performed for optimum sensitivity.

In the MID mode, the chromatographic analysis is divided in
multiple retention time windows. In each of them, a defined MID
window is analyzed (in which the highest mass is maximum 1.2 times
the lowest mass) and the mass of the target ions and the ions for

internal calibration are consecutively measured. In a MID cycle, the
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accelerating voltage, V, is set to its maximum value (ca. 5kV), and
the strength of the magnetic field, B, is set to the value corresponding
to 1 mass unit lower than the mass of the lightest ion to be measured.
After that, the accelerating voltage is reduced stepwise, in order to
obtain a consecutive pass of the masses of the target ions. To obtain
the best signal-to-noise (S/N) ratio and at least 10 data points per
chromatographic peak, the measuring time for each ion was set as close
as possible to the maximum of 500 ms. This resulted into a MID cycle
time of 0.9-2.8s. To assure a maximal measuring time for each ion,
and given the restriction of the MID window, 3 and 1 distinct runs in
the ESI positive and negative ion mode were required, respectively, in
order to be able to measure the 43 compounds. The MID windows are

presented in Table 3.2.

For internal mass calibration, the ions from a reference solution
provide each MID cycle with a specific lock and calibration mass
(Table 3.2). In each MID cycle, the instrument automatically
carries out an electric mass calibration by using these two reference
masses as calibration points. In the positive ion mode, the reference
solution was a 3mgl™' mixture of polyethylene glycol with average
mass of 200, 300 and 400gmol™* (Acros Organics, Belgium) in
methanol with 0.1% formic acid (Table 3.3). In the negative ion
mode, a mixture of polyethylene glycol (PEG) with average mass
of 200gmol™! (150mgl™?), ketoprofen (8mgl™), and 4-hydroxy-2,3-
dimethoxybenzoic acid (8 mgl™') in 1:1 acetonitrile/water with 25 mM

ammonium acetate was used as a reference solution (Table 3.3).
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The presented HPLC-HRMS method providing a resolving power
of 10000 (10% valley definition, equivalent to about 20000 FWHM)
allows identification of analytes based on accurate mass (i.e. MID
measurement) and retention time. Since no fragments and their
ion ratios are monitored, unequivocal identification according to the
Commission Decision 2002/657/EC (European Union, 2002) was not

obtained.
3.2.4.3 Response normalization and instrumental validation

In order to account for the inter- and intraday variability of the response
of the MS detector, the obtained peak areas (PAs) of the analytes in each
analytical run were normalized for the response of the detector. For each
of the 4 MID methods, the response factor (RF) of the instrument was
determined in each analytical run from the average signal intensity of a
selected ion from the reference solution (Table 3.2). For each compound,

the normalized peak area (NPA) was then calculated from Equation 3.1.

PA
NPA=—— 3.1
RE (3.1)

The linearity and stability of the detector was investigated by a four-
points calibration curve (20-100-500-2000 pg1~!). Intraday precision was
determined by acquiring three calibration curves at the same day and by
calculating the relative standard deviation (RSD) on each concentration
level (n = 3). Interday repeatability was determined as the RSD from
injections of analytical standards (100pugl™) on 5 different days in a
time frame of 14 days (n = 5). Weighted regression analysis (1/z2

weighting) using a statistical F-test for lack of fit (European Union,
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Table 3.2 Target pharmaceuticals and monitored ions for mass calibration with molecular formula, retention time,
monitored ions, and used MID window for MID method 1 to 3 (ESI positive) and 4 (ESI negative).

Compound Molecular formula  tg (min) [M=H]*  [M(}3C/37C)+H]* MID window  Lock and
(min) calibration ions

MID method 1 (ESI positive)

Lamivudine CgH 1 N;0,48 2.87 230.0594 - 0.00-5.45 195-239
Acyclovir CgH, {N;O4 4.67 226.0935 - 0.00-5.45 195-239
Metronidazole CgHgN;O4 8.53 172.0717 - 5.45-10.05 151-195
Paracetamol Omm@ZOm 8.96 152.0706  153.0740 5.45-10.05 151-195
Tetracycline CyoH,yy N, Oy 11.31 445.1605 - 10.05-12.35 415-459
Oxytetracycline CyHyy N, Oy 11.62 461.1555 - 10.05-12.35 415-459
Sarafloxacin CyoH,,Fy N304 13.08 386.1311 - 12.35-14.75 371-415
Gatifloxacin C,H,,FN,O 13.81 376.1667 - 12.35-14.75 371-415
Moxifloxacin CyHyyFN,O, 15.68 402.1824 - 14.75-16.80 371-415
Risperidone CysHy,FN, O, 15.74 411.2191 - 14.75-16.80  371-415
Rimantadine OHNEMHZ 17.55 180.1747  181.1780 16.80-18.80 151-195
Oseltamivir ethylester ~ C, HygN,O, 19.60 3132122 314.2155 18.80-22.24  283-327%
Paroxetine C,gH, FNO, 23.37 330.1500  331.1534 22.24-25.00 327-371
Fluoxetine O:E&szo 25.72 310.1413  311.1447 25.00-29.14 283-327
Alprazolam C,,H,;CIN, 31.52 309.0902 311.0872 29.14-35.00 283-327
Diclofenac c,,H,,CL,NO, 39.65 296.0240  298.0210 35.00-45.00 283-327
MID method 2 (ESI positive)

Amoxicillin Ci6H1gN;0:8 5.98 366.1118  367.1152 0.00-8.54 327-371
Levofloxacin C gHy FN,O 10.34 362.1511 - 8.54-12.90 327-371
Ciprofloxacin C,,H,¢FN,0O, 11.25 332.1405 - 8.54-12.90 327-371
Enrofloxacin C,gH,,FN, O, 11.62 360.1718 - 8.54-12.90 327-371
Zidovudine C,0H3N;0, 14.17 268.1040 - 12.90-19.84 239-2832
Sulfamethoxazole C,oH1N;048 15.39 254.0594 - 12.90-19.84 239-2832
Venlafaxine C,,H,;N, 0, 16.86 278.2115 - 12.90-19.84 239-283%
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Chapter 3

Table 3.3 Monitored ions for mass calibration with molecular formula and
exact mass.

Compound Molecular formula [M+H]*

Monitored ions for mass calibration (ESI positive)

PEG HO(C,H,0),H 151.0965
PEG HO(C,H,0)H 195.1227
PEG HO(C,H,0):H 239.1489
PEG HO(C,H,0),H 283.1751
PEG HO(C,H,0)H 327.2013
PEG HO(C,H,0),H 371.2276
PEG HO(C,H,0),,H 415.2538
PEG HO(C,H,0),, H 459.2800
PEG HO(C,H,0),,H 503.3062
Monitored ions for mass calibration (ESI negative)

4-hydroxy-2.3-dimethoxybenzoic acid =~ CyH,,04 197.0456
Ketoprofen Ci6H1404 253.0870
Acetic acid - PEG cluster C,H,0, + HO(C,H,0),H 195.1227
Acetic acid - PEG cluster C,H,0, + HO(C,H,0);H  239.1489

2002, Commission Decisiosn 2002/657/EC) were used to verify the
linearity of the detector response. The instrumental detection limits
(IDLs) were defined on the basis of a S/N ratio of 3 and were estimated

from the analysis of standard solutions.

3.2.4.4 Method validation and determination of the SPE
recovery and matrix effects

Influent and effluent water spiked with standards before (pre) and after
(post) SPE extraction (standard addition method) as well as non-spiked
samples were analyzed as schematically represented in Figure 3.2. For
the pre-spiked samples, the validation range was 40 to 5000 ng1~* or 200
to 25000 ng1~! for influent, and 20 to 2500 ng1™* or 100 to 12500 ng1™*
for effluent water, depending on the instrumental detection limit for the

considered compound. The procedure was repeated on three different
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days and matrix-matched calibration curves were constructed from the

pre-spiked samples (n = 4 concentration levels x 3 repetitions).

‘ 100 ml effluent / 50 mL influent WWTP sample (non-spiked: C; i) ‘

|
Pre spike (Cy, ,e) Standard
Influent: 40-200-1000- 5000-25000 ng L* 2-10-50-100-500-
Effluent: 20-100-500-2500-12500 ng L* 1250 pg L?

‘ Solid-phase extraction ‘

l l l

‘ Evaporation step under N, stream ‘

I
Post spike (Cy, ,ost)
Influent: 250-1250* pg L*
Effluent: 10-50* pg Lt

| ¥ )

HPLC — ESI (+/-) — magnetic sector HRMS

l | | |

[ NPAe | [ wea,, | NPA | | NPA |
| | !
External
v v v calibration
[ Copsumpe | [ Coppe | [« |

exp,post

Figure 3.2 Comprehensive scheme representing the procedure for method
validation using pre-, post- and non-spiked WWTP influent and effluent
samples, and for differentiation between matrix effects and SPE recoveries. *
The post-spiking levels were chosen depending on the instrumental detection
limit for each compound.

The method interday repeatability (RSD, %) was determined from
the triplicate SPE extraction and analysis of the pre-spiked samples,
and method detection limits (MDLs) and method quantification limits
(MQLSs) were estimated from an average (n = 3) S/N ratio of 3 and 10,

respectively.

The methodology proposed by Matuszewski et al. (2003) was

applied for the determination of the recovery (RE), matrix effect
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(ME), and the overall 'process efficiency (PE)’. Recovery refers to
the extraction efficiency of the SPE procedure (SPE extraction, drying
and reconstitution) and has theoretically a value between 0 and 100 %.
A ME of 1 (ie. 100%) is obtained when no matrix effects are
present; and ME > 100% and < 100% represent signal enhancement
and suppression, respectively. The overall ‘process efficiency’ refers
to the combined effect of the recovery and matrix effects. For the
determination of PE, the experimentally determined concentrations of
the pre-spiked samples (Ceyp pre), calculated using external calibration,
were plotted as a function of the theoretical pre-spiked concentrations
(Cinpre). The slope of this curve, determined by 1/z* weighted least
squares regression, equals the PE (Equation 3.2a). ME and RE were
determined using Equations 3.2b and 3.2¢ (Cezp sample and Cezp post
represent the measured concentrations in the non-spiked and post-
spiked samples, respectively). Finally, Equation 3.2d shows how
the concentration present in non-spiked (or new) samples (Csampie)
is calculated from Cezp sample by applying the PE after external

calibration.

Cezppre = PE - Cippre + Ceap,sample (3.2a)
Ceappre = ME - Cypy post + Ceap,sample (3.2b)
PE=RE-ME (3.20)
Cexp,sample = PE - Csampie (3.2d)

The standard deviation on the PE (opg) was determined by the
R 2.14.1 software (www.r-project.org) using Equation 3.3a, and the

94



Quality assessment and quantification in wastewater

standard deviation on the ME (opg) was calculated applying the
propagation of variance theory (Equation 3.3b).

OPE=\| — i - W; (3.3a)
n-23
1

2 2
\/JCGIP,Post * O-Cewp,sampl,e (33b)

OME =
Cth,post

where w; is the applied weight and equals to /22, with z; the i*"
concentration, and e; is the difference between the calibration curve

and the " Cezp,pre-

3.2.5 First tier environmental risk assessment

The effluent of WWTP2 is discharged into a creek and subsequently
into the river Dender, Belgium, for which flow data are available.
The environmental risk posed by the discharged pharmaceuticals was
assessed by means of the risk quotient (RQ), being the ratio between
the measured environmental concentration (MEC) and the predicted
no-effect concentration (PNEC). Since no river water was analyzed,
quasi-MECs of the compounds quantified in the effluent were estimated
according to Grung et al. (2008) by considering a dilution factor of
41, calculated from the average effluent flow of WWTP2 (Table 3.1)
and the dry weather flow of the river Dender of about 10m®s7!
(Waterbouwkundig Laburatorium Belgium, 2013). PNEC values were

based on ecotoxicity data and calculated according to the European

Medicine Agency (2005, EMEA/CHMP/SWP /4447/00 guideline).
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3.3 Results and discussion

3.3.1 Method development and optimization

3.3.1.1 Instrumental analysis

First, the chromatographic conditions for both the ESI positive and
negative ion mode were optimized using 2mgl~! analytical standards
and operating the MS in unit-resolution full-spectrum mode. Methanol
and acetonitrile were tested as organic modifier with formic acid (0.1 %)
initially only in the aqueous phase. In ESI positive ion mode, methanol
showed clearly improved peak areas (factor 1.3 to 6.5) for most of the
compounds, except for acyclovir (factor 0.4). When using acetonitrile
as organic modifier, intense acetonitrile clusters were found in the
spectra especially for the quinolone antibiotics, which may explain at
least partially the reduced peak areas under this condition. Moreover,
addition of 0.1 % formic acid in both phases improved the peak areas for
most of the compounds (up to a factor 4.4) except for the quinolones,
which showed reduced peak areas (ranging from a factor 0.27 to
0.96). Therefore, addition of 0.1% formic acid showed to be a good
compromise. In ESI negative ion mode, acetonitrile without additives
was the organic modifier of choice because both methanol and additives
such as formic acid caused corona discharge at the ESI spray tip.
The optimal gradients showed satisfactory peak separation allowing the

development of the retention time windows for the MID methods.

Finally, for the compounds measurable in both ESI positive and
negative ion mode, the most sensitive mode was chosen, and MID

windows were constructed as presented in Table 3.2. The linearity and
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stability of the detector were investigated and the results for the RSDs
are given in Table 3.4. Weighted regression analysis (1/z*> weighting)
using a statistical F-test for lack of fit pointed out that a quadratic
calibration curve fitted significantly better the calibration data for 14
out of the 43 compounds (p < 0.05). Therefore, quadratic calibration
curves were used for all the compounds. Intraday precision of the NPA
was better than 20 and 10 % for 90 % of the compounds at the lowest and
the highest tested concentration level (20 and 2000 pgl™!), respectively.
Interday repeatability (100 pgl™!) of the NPA was better than 30 %
RSD for 90 % of the compounds, showing the need for daily external

calibration.
3.3.1.2 Optimization of the solid-phase extraction procedure

For the optimization of the SPE, a total of 6 parameters of the
SPE extraction protocol were varied and the optimal conditions (bold,
Table 3.5) were selected. The SPE optimization experiments were
performed on WWTP effluent samples pre-spiked (standard addition)

at an environmental relevant concentration level of 100ngl™.

The effects of the different conditions on the process efficiency (PE)
and the precision (RSD on NPA,,., n = 3) were assessed for the 16
compounds measured with the MID 1 method (the effect of the loading
volume was investigated for all 43 compounds). The most remarkable
effects are discussed, taking into consideration that a compromise on
the final conditions has to be reached because often no condition was
optimal for all analytes. Washing the SPE cartridge after sample loading
with 24 ml of water enhanced the PE for 12 out of the 16 compounds. On
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the other hand, washing the cartridge with 12ml of 2.5 % of methanol
in water increased clearly the RSD of the measurements, indicating a

decreased precision of the SPE extraction.

Silanized glass tubes for the evaporation of the extract showed
increased PEs for 12 of the 16 compounds whereas the use of polystyrene
tubes clearly reduced the precision: the RSDs increased from on average
1449% to 69+16%. For the elution step, ethyl acetate resulted in
lower PEs and increased RSDs for the 16 compounds. Elution with
5ml instead of 10 ml methanol resulted in a small decrease of the PE
(maximal 20 %) for 12 of the 16 compounds, however the precision
improved with RSDs decreasing from 19+7 % to 9+8 %. No important
trends were seen for the pH of the sample and for the effect of
temperature during the extract evaporation. Increasing the loading
volume from 50ml to 250 ml and 500 ml reduced the PE for almost
all the compounds. A loading volume of 100 ml resulted in a reduction
of the PE with a median value of 5%. For influent samples, in order to
protect the HPLC column for a too high load (precipitates were present
in the extract when 100 ml influent was loaded onto the cartridge), 50 ml

sample volume was selected.

Thus, in the final SPE procedure 100 and 50 ml of influent and
effluent samples, respectively, at pH 7 are loaded onto Oasis HLB
cartridges, subsequently washed with 24 ml of water, and finally eluted
in 5ml of methanol. The evaporation of the extract is performed in

silanized glass tubes at 25°C.
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3.3.2 Method validation and quality assessment

MDLs were lower than 100ngl™! for 27 and 34 out of the 43 target
pharmaceuticals for influent and effluent, respectively. Even at the
lowest detectable concentration, the RSD on the peak area was better
than 20 % for 90 % of the compounds in both types of wastewater (Tables
3.6 and 3.7). The PE for most of the compounds ranged from 60 to
140 % (European Union, 2009, SANCO/10684,/2009 guideline), except
for acyclovir, amoxicillin, chloramphenicol, fluoxetine, lamivudine,
oxytetracycline, paracetamol, paroxetine, pleconaril, temazepam and

triclosan in one of both matrices.

3.3.2.1 The process efficiency unravelled: extraction recovery
and matrix effects

The decomposition of PE into RE and ME (Equations 3.2a to 3.2d
and Figure 3.3) allows to differentiate whether PE values differing
from 100% result from low SPE recovery and/or matrix signal
suppression/enhancement. For influent and effluent water, the recovery
was higher than 80% for 37 and 34 out of the 43 compounds,
respectively.  Figure 3.4 shows that low recoveries can occur for
very polar or hydrophilic compounds such as acyclovir, amoxicillin
and lamivudine (log Ko, from -1.59 to 0.06) and for very lipophilic
compounds such as pleconaril (log K,, > 5). On the other hand,
tetracycline, oxytetracycline, zidovudine and metronidazole have log
Ky, < 0 but SPE recoveries > 95% indicating that also other
parameters than K,,, such as charge or other specific interactions,

can affect the analyte behaviour during Oasis HLB SPE. For example,
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Table 3.4 Instrumental precision: intraday repeatability (n
= 3) and interday repeatability (n = 5) as % RSD at different
concentration levels (pgl™).

Analyte Intraday RSD Interday RSD

20 100 500 2000 100 pg 1t
Acyclovir 19 10 1 16 23
Alprazolam 8 2 1 2 23
Amantadine 9 6 7 7 18
Amitriptyline 39 5 3 10 25
Amoxicillin 14 8 9 12 19
Besifloxacin 13 4 2 2 29
Carbamazepine 3 9 3 2 19
Chloramphenicol 18 2 2 2 49
Ciprofloxacin 11 3 8 2 21
Diazepam 10 11 1 2 19
Diclofenac 12 2 1 1 20
Efavirenz 5 4 4 6 15
Enrofloxacin 15 7 6 8 24
Flumequine 6 4 3 6 28
Fluoxetine 10 4 5 4 21
Gatifloxacin 13 14 9 10 13
Ibuprofen 5 5 7 6 17
Indomethacin 4 3 5 3 20
Lamivudine 9 3 2 1 23
Levofloxacin 20 13 6 9 23
Metronidazole 4 9 11 10 35
Moxifloxacin 3 10 2 7 15
Nalidixic acid 16 6 2 3 15
Naproxen 6 8 4 2 3
Nevirapine 42 23 5 2 22
Oseltamivir acid 8 6 2 5 14
Oseltamivir ethylester 5 4 2 4 21
Oxytetracycline 3 14 7 4 28
Paracetamol 5 4 6 6 24
Paroxetine 6 10 11 8 22
Pleconaril 6 1 2 3 22
Rimantadine 9 10 5 7 26
Risperidone 11 6 10 4 52
Sarafloxacin 6 14 5 2 14
Sulfadoxin 9 1 4 6 26
Sulfamethazine 26 17 2 6 19
Sulfamethoxazole 10 0 3 5 26
Temazepam 23 13 3 6 31
Tetracycline 8 11 6 8 18
Triclosan 4 8 6 8 14
Trimethoprim 15 8 3 5 23
Venlafaxine 13 1 2 1 18
Zidovudine 10 5 11 8 23
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Table 3.6 Parameters of the method validation indicating the performance of the analytical method for
the analysis of the 43 pharmaceuticals in WWTP influent.

Analyte (quality label) % RSD (n = 3) at different spiking MDL MQL % PExo  Csample
levels (ngl™1) (ngl~1. (ngl71. (ngl™t.
n = 3) n = 3) n = 3)
40 200 1000 5000 25000
Acyclovir (B) n.a. nd. n.d. n.d. nd. >25000 > 25000 0.4£0.1 n.d.
Alprazolam (A) 4 16 17 3 n.a. 18 60 84+3 n.d.
Amandatine (A) 12 17 26 5 n.a. 0.5 1.8 97+5 1.3+0.3
Amitriptyline (A) 6 13 7 4 n.a. 10 35 93+3 40+2
Amoxicillin (B) na. nd. nd = nd nd. >25000 > 25000 13+10 n.d.
Besifloxacin (A) n.a. 5 15 13 6 60 201 99+4 n.d.
Carbamazepine (A) 4 6 15 2 n.a. 39 129 994 305+41
Chloramphenicol (A) 11 11 9 6 n.a. 13 44 62+2 n.d.
Ciprofloxacin (A) n.a. 6 5 7 5 75 250 90+3 34212
Diazepam (A) 10 8 11 3 n.a. 5.7 19 97+3 n.d.
Diclofenac (A) 5 12 11 8 n.a. 35 118 87+4 316+16
Efavirenz (A) n.a. 5 7 6 10 126 419 81+4 n.d.
Enrofloxacin (A) n.a. 4 6 10 3 76 252 96+4 n.d.
Flumequine (A) n.a. 23 14 4 8 159 529  108+7 n.d.
Fluoxetine (A) n.a. 6 13 23 11 8.6 29 69+4 17+2
Gatifloxacin (A) n.a. 8 9 9 4 52 175 98+4 n.d.
Ibuprofen (A) n.a. 16 9 5 5 312 1051 90+6 1039+399
Indomethacin (A) n.a. 14 12 8 10 81 269 87+5 n.d.
Lamivudine (B) n.a. 15 28 27 10 58 192 48+4 n.d.
Levofloxacin (A) n.a. 5 11 9 3 57 189  100+4 413441
Metronidazole (A) n.a. 18 20 28 6 25 84 8216 24+4
Moxifloxacin (A) n.a. 18 10 20 2 35 118 8315 317441
Nalidixic acid (A) n.a. 19 14 14 11 198 661  109+7 n.d.
Naproxen (A) n.a. 13 14 5 4 689 2295 85+4 1555+285
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Table 3.7 Parameters of the method validation indicating the performance of the analytical method for
the analysis of the 43 pharmaceuticals in WWTP effluent.

Analyte (quality label) % RSD (n = 3) at different spiking MDL MQL % PExo  Csample
levels (ng1™1) (ngl71. (ngl~1. (ngl™t.
n = 3) n = 3) n = 3)
20 100 500 2500 12500
Acyclovir (B) n.a. nd. nd n.d. 43 9572 31906  0.22+0.04 n.d.
Alprazolam (A) 3 4 2 1 n.a. 6.6 22 84+1 12+3
Amandatine (A) 2 2 8 1 n.a. 2.4 8.1 87+1 n.d.
Amitriptyline (A) 5 16 7 4 n.a. 8.1 27 81+4 31+2
Amoxicillin (B) na. nd. nd.  nd 17 9023 30076 51 n.d.
Besifloxacin (A) n.a. 29 22 8 3 38 128 806 n.d.
Carbamazepine (B) 2 7 6 2 n.a. 97 323 66+21 3208+1085
Chloramphenicol (B) 6 12 1 7 n.a. 11 36 38+1 n.d.
Ciprofloxacin (A) n.a. 24 21 4 2 31 102 847 45+8
Diazepam (A) 9 9 5 3 n.a. 3.1 10 92+2 6.1+0.4
Diclofenac (A) 3 11 9 4 n.a. 17 57 72+4 1011+64
Efavirenz (A) n.a. 2 13 8 6 40 132 70+3 n.d.
Enrofloxacin (A) n.a. 13 18 4 4 50 166 84+6 n.d.
Flumequine (A) n.a. 7 11 8 3 59 195  102+3 n.d.
Fluoxetine (B) n.a. 8 34 6 5 11 37 57+4 n.d.
Gatifloxacin (A) n.a. 9 6 5 3 23 76 88+5 n.d.
Ibuprofen (A) n.a. nd. 6 8 7 140 466 973 n.d.
Indomethacin (A) n.a. 12 7 7 8 80 267 7242 n.d.
Lamivudine (B) n.a. 5 7 3 16 55 184 23+2 n.d.
Levofloxacin (A) n.a. 10 15 3 3 20 68 88+5 45+9
Metronidazole (A) n.a. 5 4 3 4 12 40 93+3 n.d.
Moxifloxacin (A) n.a. 15 7 4 4 11 35 T7+8 28171
Nalidixic acid (A) n.a. 17 26 12 16 86 287 73+5 n.d.
Naproxen (A) n.a. nd. 11 4 4 345 1149 90+3 n.d.
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Prasse et al. (2010) obtained recoveries between 76% and 116 %
for acyclovir and lamivudine when using a hydroxylated polystyrene-
divinylbenzene polymer at pH 8 (Isolute ENV+). Matrix effects were
< 80% and > 120 %, respectively, for 20 and 3 compounds in effluent,
and for 11 and 2 compounds in influent, showing their importance in

PE for ESI analysis of complex waters.
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Figure 3.3 Decomposition of the process efficiency (PE) in matrix effects (ME) and SPE recovery (RE) for (A) WWTP influent and (B)

effluent water. The error bars represent 1 standard deviation. The compounds are ordered by increasing PE.
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It should be denoted that the precision on the estimated RE and
ME for 18 and 6 compounds, respectively, was higher than 20 % RSD in
effluent, whereas this was only the case for 1 compound in influent. The
reason can mainly be accounted to the lower post-spiking concentration
applied for the validation of the effluent. A more in-depth variability

analysis is performed in Section 3.3.2.2.
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Figure 3.4 SPE recoveries (RE) in the 80-120 % range were obtained for all
the analytes for (e) influent and (o) effluent water, except for some polar (log
Kow < 0) and apolar (log Ko > 5) analytes. Only RE values with standard
deviation< 20 % are plotted.
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3.3.2.2 Variability analysis

Validating an analytical method for compounds being ubiquitously
present in environmental matrices such as wastewater can be

problematic regarding at least two aspects.

The first aspect is related to the determination of the MDL/MQL
values. Some compounds were clearly present (S/N ratios > 10) in the
non-spiked validation samples at elevated concentrations (e.g. > 1pgl™!
for ibuprofen, naproxen, paracetamol and tetracycline in influent).
Validating the method for such compounds at lower concentrations is
not possible using the standard addition (pre-spiking) technique because
truly blank matrix samples are hard to find. As such, extrapolation to
a S/N level of 3 and 10 is required for the estimation of the MDL
and MQL, respectively, and therefore the uncertainty on these values is

expected to be high.

The second aspect is related to the precise determination of PE. The
concentration of the spiking level must be high enough (Section 3.3.2.1)
to obtain a PE with precision better than 20% RSD. For example,
although the method was repeatable for paracetamol in influent and
for carbamazepine in effluent water (precision on peak area < 14 %
and 7% RSD, respectively), very elevated RSDs were obtained for the
determination of the PE (105% and 36 % RSD, respectively) due to
their high concentration in the non-spiked validation sample, being
much higher than the highest spiking level. This RSD propagates
and results in high SDs for the calculated concentration in the sample

(e.g. 386+409pgl™! for paracetamol in influent and 3+1pgl™t for

109



Chapter 3

carbamazepine in effluent). Considering the observed RSDs, the highest
spiking concentration should at least be 3 to 5 times higher than the
concentration in the non-spiked sample — which is, however, not a
priori known — to enable a precise (RSD < 20%) PE determination.
For example, the PE of venlafaxine in effluent was precisely (98(4) %)
determined and the highest spiking level (2.5 ug1™!) was 3.6 times higher
than the concentration in the non-spiked sample (0.7+0.1pgl™; RSD <
15%).

These bottlenecks in method validation have to be taken into account
when interpreting data and their variability. When applying the
validated method to measure and calculate concentrations in influent
and effluent samples (Section 3.3.3), three sources of variability have
to be considered: (i) the HPLC-MS instrumental variability, (ii) the
variability during SPE and (iii) the variability on the PE. The HPLC-
MS and SPE variability are included and documented by the interday
repeatability (% RSD on peak area) as presented in Tables 3.6 and
3.7. When calculating concentrations from the obtained peak areas by
external calibration, the PE values are used as correction factor and
therefore, also their variability is important for data interpretation.
To account for this, we propose the use of a quality labeling system.
Compounds having a RSD < 20% on a PE value ranging between
60 and 140 % (European Union, 2009, SANCO,/10684,/2009 guideline)
are labelled as class A, being referred to as ‘quantitative compounds’.
Other compounds, whose results have larger variability and should be

interpreted as ‘indicative’, are labelled as class B. A total of 37 (6) and
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33 (10) of the 43 compounds were labelled as class A (B) for influent

and effluent water, respectively.

3.3.3 Application in 2 WWTPs

3.3.3.1 Concentrations and potential associated environmen-
tal risks

A total of 22 pharmaceuticals, belonging to the anti-inflammatory drugs,
antiviral drugs, psychoactive drugs (antidepressants, tranquilizers, anti-
epileptics), and antibiotics were detected (identification based on
MID measurement and retention time) at least once in the influent
or effluent of one of both WWTPs. Measured concentrations and
detection/quantification frequencies in both matrices are presented as
boxplots in Figure 3.5. Average concentrations are presented in Table
3.8 and 3.9. The discussion is mainly based on the 17 detected class A

compounds.

Four anti-inflammatory drugs were detected in all influent samples
and occurred at the highest concentrations (500ngl™ to > 50pngl™t)
amongst all measured pharmaceuticals. On the other hand, their
effluent concentrations were in most of the cases below MDL (except
for diclofenac). Four antiviral drugs were detected at least once.
Amantadine was quantified in all influent and effluent samples and
measured concentrations ranged from 50ngl™! to 1pugl™!. Ghosh et al.
(2010) reported comparable influent concentrations (200-600ngl™?)
for amantadine in WWTPs in Japan. A total of 3 antidepressants
(venlafaxine, risperidone, and amitriptyline) and 2 tranquilizers

(alprazolam and temazepam) were found at concentrations varying
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Table 3.8 Average influent and efluent concentrations (ngl™"), mass balance and removal efficiencies for the

pharmaceuticals detected in WWTP1.

Substance Influent Effluent Effluent Effluent Mass % %
CAS+MBR?* CAS? MBRa TOT* balance? removal  removal
(n=4) (n=4) (n=4) (n=4) CAS® MBR*®
Amantadine 44+8(4) 54+5(4) 53+4(4) 55+6(4) 1.0:0.1(4)  -22 -20
Anmitriptyline b.l.q. n.d. b.lq. n.d.
Carbamazepine (B) 462+72(4) 460+32(4)  468+42(4)  481+40(4)  1.0:0.1(4) 2 -1
Ciprofloxacin 278x(1) 120+(1) 121+19(3)  107+4(3) 0.8+(1)
Diclofenac 507+82(4) 623+50(4)  559+78(4)  542+73(4)  0.9:0.1(4)  —24 -10
Ibuprofen 5711+513(4) b.l.q. n.d. n.d. >98 >98
Levofloxacin n.d. b.lq. b.l.q. b.lq.
Metronidazole b.l.q. b.lq. b.l.g. b.l.q.
Moxifloxacin 149+17(3) 62+26(4) 66+29(4) 62+39(4) 1.0+0.4(4) 62 56
Naproxen 4110+(1) b.lq. n.d. n.d.
Paracetamol (B) 67107+8026(4) n.d. n.d. b.lq. >99.9 >99.9
Paroxetine (B) n.d. b.lq. n.d. b.l.q.
Rimantadine b.lgq. b.lq. 2+(1) b.lgq.
Sulfamethoxazole 245+15(4) 133£5(3)  124:16(4)  121+2(3) 1.0:0.1(3) 50 49
Trimethoprim 158+17(4) n.d. n.d. n.d. >62 >62
Venlafaxine 219+22(4) 208+22(4)  213+21(4) 205+17(4) 1.0+0.1(4) 5 3
 Concentration (ngl™') + standard deviation (number of quantifications).
b The mass balance over the effluent loads is calculated for each day, and the average of the ‘HQH ratios and its
MBR+CAS

standard deviation (number of data points) are given.

¢ Removal efficiencies are only calculated if the quantification frequency for the influent is > 50 %.

n.d. = not detected (< MDL)

b.l.q. = below limit of quantification (between MDL and MQL).
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Table 3.9 Average influent and efluent concentrations (ngl™) and
removal efficiencies for the pharmaceuticals detected in WWTP2.

Substance Influent® (n=6) Effluent® (n=6) % removalP®
Alprazolam n.d. 23+1(2)
Amantadine 326+394(6) 592+325(6) -109
Amitriptyline 83+59(4) n.d. >90
Carbamazepine (B) 708+69(6) 741+83(6) -17
Ciprofloxacin 978+380(6) 104+(1) ~97
Diclofenac 1450£366(6)  1391+163(6) -2
Ibuprofen 7847+1239(6) b.lq. ~98
Lamivudine (B) 507+80(5) n.d. >89
Levofloxacin 335+112(6) 70+(1) >04
Metronidazole 86+1(2) b.lq.
Moxifloxacin 688+197(6) 1253+1628(6) 75(day1-3);
-161(day4-6)
Naproxen 2374+76(2) n.d.
Oseltamivir ethylester b.l.q. n.d.
Paracetamol (B) 56 172+9430(6) n.d. >99.9
Risperidone 364+28(6) 154+12(3) 64
Sulfamethoxazole 429+39(6) 250+90(6) 32
Temazepam (B) b.lq. 104+16(6)
Tetracycline 1658+807(6) n.d. >90
Trimethoprim 228+32(6) n.d. >79
Venlafaxine 403+38(6) 365+58(6) -3

2 Concentration (ngl™') + standard deviation (number of quantifications).

b Removal efficiencies are only calculated if the quantification frequency for the
influent is > 50 %.

n.d. = not detected (< MDL)

b.l.q. = below limit of quantification (between MDL and MQL).
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Anti-inflammatory Antiviral Psychoactive Antibiotic
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Figure 3.5 Boxplots of the measured influent (I) and effluent (E)
concentrations and the detection (gray) / quantification (black) frequencies
based on all measured data for both WWTPs. The compounds are ordered
by therapeutic class and the MQL values are indicated (-) in the box plots.

from 40 to 450ngl™! in influent and from 20 to 420ngl™! in effluent.
According to the authors’ knowledge, no other studies quantified
risperidone in WWTPs. Paroxetine was detected in effluent below MQL.
Carbamazepine, an anti-epileptic drug, was found at concentrations
between 430 and 820ngl~! in both influent and effluent. Finally, seven
antibiotics were measured at concentrations (37-4200ngl™!) similar as

recently reviewed by Verlicchi et al. (2012).
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Reported PNEC values and calculated environmental RQs of the
compounds quantified in the WWTP2 effluent are presented in Table
3.10. No ecotoxicological data were found in open literature for
alprazolam, amantadine and risperidone. According to the frequently
applied risk classification (Hernando et al., 2006), diclofenac and
venlafaxine showed ‘high’ risk (RQ > 1) to the environment, while
the fluoroquinolone antibiotics ciprofloxacin and moxifloxacin indicated
medium environmental risk (0.1 < RQ < 1). Comparable ‘high’ risk

was concluded in other studies for diclofenac (Hernando et al., 2006).

3.3.3.2 Loads and elimination

The measured concentrations (Tables 3.8 and 3.9) and the wastewater
flows (Table 3.1) are multiplied to calculate pharmaceutical loads
(gd™!) and removal efficiencies. Comparing both WWTPs and the
CAS versus MBR processes in WWTP1 only marginal differences are
noticed. Regardless the technology (MBR or CAS), removal efficiencies
better than 98 % were observed for the most prevalent compounds
belonging to the anti-inflammatory drugs (ibuprofen and paracetamol).
In WWTP2, removal efficiencies were also > 90% for amitriptyline,
ciprofloxacin, lamivudine, levofloxacin and tetracycline. On the other
hand, compounds such as carbamazepine, diclofenac and venlafaxine
were clearly persistent (< 5% removal). Moxifloxacin, risperidone
and sulfamethoxazole were removed with efficiencies between 32 and
75%. Amantadine had a total effluent load higher than the influent
load (‘negative’ removal) in both WWTPs, which was possibly due

to desorption from suspended solids present in the influent (log Koy
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Table 3.10 PNECs (literature data), quasi-MECs and RQs (mean and maximal values) for the quantified

pharmaceuticals discharged from WWTP2 into the river Dender, Belgium.

Substance Most sensitive taxon (acute/ PNEC (ngl™) Quasi-MEC (ngl™!) RQ Risk
chronic ecotoxicity data) level
Mean Max Mean Max

Carbamazepine (B)  crustacean (chronic) 250 (Ferrari et al., 18 20 7.1072 8.1072 low
2004)

Ciprofloxacin algae (acute) 5 (Grung et al., -d 3 -d 5.10"! medium
2008)

Diclofenac fish (subchronic) 5 (Hoeger et al., 34 37 7 7 high
2005)

Levofloxacin bacteria (acute) 60 (Kiimmerer & -d 2 4 3.1072 low
Henninger, 2003)

Moxifloxacin algae (acute) 780* (Van Doorslaer 31 102 4.1072 1.107! medium
et al., 2014b)

Sulfamethoxazole algae (chronic) 18 (Grung et al., 6 9 5.1072 8.1072 low
2008)

Temazepam (B) not reported 4300 (van der Aa 3 3 6.1074 7.107% low
et al., 2013)

Venlafaxine mollusc 0.313° (Fong & Hoy, 9 10 28 33 high

2012)

2 The concentration resulting in 50 % effect (ECsg) for the green micro-alga P. subcapitata, taking into account an assessment

factor of 1000 according to the EMEA guidelines.
b PNEC value of oxazepam is used because both are benzodiazepines having similar metabolic pathways.

¢ PNEC replaced by the lowest observed effect concentration (LOEC) for freshwater snails.
4 Only one data point available (n = 1).
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2.44 (Ghosh et al., 2010)) rather than deconjugation (< 3.6 % human
excretion as acetylamantadine (Bras et al., 1998)). Similarly, for
moxifloxacin (log Koy, 2.49 (Dorival-Garcia et al., 2012)) higher effluent
concentrations were measured in WWTP2 after rainfall events (day 4-6,
Table 3.1) resulting in ‘negative’ removal (—160 %). Since moxifloxacin
had removal efficiencies of 56-62% (WWTP1) and 75% (day 1-3,
WWTP2) during dry weather conditions, desorption from the higher
input of suspended solids after rainfall events probably caused the high

eflluent concentrations.

A mass balance was made over the loads of the combined and
individual MBR and CAS effluents of WWTP1 (Table 3.8). No
treatment processes occurred between these sampling points and

TOT
therefore ——————— is expected to be 1. This verification was
CAS+ MBR
possible for 7 compounds and the ratios were in the range of 0.8 to
1.2 for all the compounds on the different days, except for moxifloxacin
(0.6 to 1.5). These results support the quality and applicability of the

analytical method.

3.4 Conclusions

A novel method using SPE and HPLC coupled to magnetic
sector HRMS, which has been applied here for the first time in
quantitative water analysis, has been developed for the analysis of 43
pharmaceuticals in WWTP influent and effluent. Apart from prioritized
pharmaceuticals, also drugs like antivirals are included, which have

been considered only in a very limited number of environmental
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studies. Method quality assessment and variability analysis showed
some scarcely reported bottlenecks in validating a multi-residue method
for compounds present at relatively high levels in non-spiked validation
samples. True blank samples are hard to find for some pharmaceuticals,
and the highest spiking concentration should be at least 3 to 5 times
higher than that in the non-spiked sample for a precise determination
of the process efficiency. In order to consider these bottlenecks when
interpreting data obtained with the validated method, a quality labeling
system is proposed taking into account both the process efficiency and

its variability.

The method application revealed — to the author’s knowledge — one
of the first data on the occurrence, loads and removal efficiencies of 22
pharmaceuticals in a parallel CAS-MBR and a CAS WWTP in Belgium.
The presence of scarcely measured antiviral drugs, such as amantadine
(50ngl™! to 1pgl™!) and lamivudine (400 to 600ngl~!), and the
antidepressant risperidone (150 to 400ng1™!) has been shown, and a first
tier environmental risk assessment of the discharged pharmaceuticals
indicated that the anti-inflammatory drug diclofenac (450ngl™ to
1.81gl™) and the antidepressant venlafaxine (180 to 460ngl™') posed
a potential ‘high’ risk to the receiving river Dender, Belgium. No
ecotoxicological data were found in open literature for alprazolam,
amantadine and risperidone, which established the need for more
research in order to better assess the risk of pharmaceutical residues

in the environment.
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4.1 Introduction

Uniform guidelines for the data processing and validation of qualitative
and quantitative multi-residue analysis using full-spectrum HRMS are
scarce. Moreover, recent applications of HRMS instruments showed
that a proper post-acquisition data processing and validation might be
challenging in multi-residue screening and quantification (Kaufmann,
2009; Kaufmann & Butcher, 2006). Three points of interest with
respect to accurate mass measurement, selective quantification and
the determination of detection limits need specific attention and are

investigated in this chapter.

A first challenge is the determination of the accurate mass of a
detected trace. Different methodologies using either profile or centroid
data can be followed to determine accurate masses. So far, the

performance of the different methodologies has not been compared.

Proper quantification is a second challenge. For peak integration,
extracted ion chromatograms (XICs) are constructed out of the total
ion chromatogram (TIC) by defining a mass tolerance around the
exact ion mass of the analytes (i.e. mass window width). Different
researchers applied different mass window widths and tend to apply
narrower mass windows to increase selectivity (Kaufmann & Butcher,
2006) thereby also affecting the methods sensitivity (Kaufmann et al.,
2007; Kellmann et al., 2009). Although selectivity will benefit from
increased resolving power of both the chromatographic separation and

the mass spectrometry (Kaufmann et al., 2007; Kellmann et al., 2009),
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it is not fully understood to what extent selectivity and sensitivity vary

in function of the mass window width.

Validation of analytical methods using high-resolution mass
spectrometers (HRMSs) is a third challenge, especially regarding the
determination of detection and quantification limits (Van Loco et al.,
2007; Antignac et al., 2003). The widespread concepts for their
determination, such as those based on the determination of signal-to-
noise (S/N) ratios, have shown in some cases not to be applicable for
HRMS data (Kaufmann, 2009). Using narrow mass windows can lead
to the situation where no or almost no noise can be detected anymore

leading to questionable S/N ratios.

These three issues are investigated based on results obtained from
a Time-of-Flight (TOF) HRMS for full-spectrum analysis on a set
of 17 pharmaceuticals with masses in the wide m/z range (152-
916 Da). The major bottlenecks and possible solutions are discussed.
In particular, the mass accuracy and its variability as a function of
ion signal intensity of different algorithms for the determination of
accurate mass are investigated. Second, the effect of the mass window
width on the sensitivity and selectivity is assessed for quantitative
analysis in order to conclude an optimal mass window width. Third,
a widely applicable strategy for the determination of decision limits
and detection capabilities was developed, and the decision limits and
detection capabilities for the 17 pharmaceuticals in surface water were

determined as a proof of concept.
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4.2 Experimental section

4.2.1 Chemicals

The set of 17 pharmaceutical standards and their respective suppliers
are listed in Table A.2. Methanol, acetonitrile and formic acid were
purchased from Biosolve (Valkenswaard, the Netherlands) and NaOH
from Merck (Damstadt, Germany). Deionized water was produced using

Q-Gard2 cartridges in a MilliQ-water system (Millipore, USA).

Individual stock solutions (storage at 4°C in the dark) of the
pharmaceuticals were prepared on weight basis and dissolved in 10 ml of
solvent (used solvents are listed in Table A.2) to a final concentration of
I1mgml™'. Daily, a standard mix of the pharmaceuticals was prepared
at a concentration of 10 pgl™! in deionized water and subsequent serial
diluted to a final concentration of 5, 1, 0.5, 0.1, 0.05 and 0.01 pgl™! in

deionized and surface water.

Spiked deionized water samples are used for the first and the second
research question on accurate mass determination and the width of the
mass windows. Spiked surface water samples are used for the proof
of concept of the developed strategy for the determination of decision

limits and detection capabilities.

4.2.2 Sampling and sample pretreatment

Surface water was collected in prerinsed amber glass bottles on the
Maas (Naméche, Belgium) and stored at 4°C in the dark. Prior to

standard addition, the surface water was filtered through 1.5 um glass
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microfiber filters (934-AH, Whatman). Subsequently, 0.1 % and 0.02 %
(v/v) formic acid was added for analysis in electrospray ionization
(ESI) positive and negative ion mode, respectively, which improved the

chromatographic peak shapes.

4.2.3 Instrumentation

The analysis were performed using the Waters Acquity ultra-high
performance liquid chromatography (UHPLC) system (Waters, Milford,
USA) equipped with autosampler (CT2777 Sample Manager, Waters,
Milford, USA) with 250pl loop for large-volume injection (LVI)
and coupled to a Xevo G2 QTOF mass spectrometer (MS) with
an orthogonal ESI probe (Waters Corporation, Manchester, U.K.).
Chromatographic separation was achieved with an Acquity UHPLC HSS
T3 150x2.1mm column with 1.8 pm particle size supplied by Waters
(Milford, USA) operated at 50 °C.

For analysis in ESI positive ion mode, the mobile phase used was (A)
water/acetonitrile 98:2 (v/v) with 0.1 % formic acid and (B) acetonitrile
with 0.1 % formic acid. In ESI negative ion mode, the mobile phase used
was (A) water/acetonitrile 98:2 (v/v) with 0.01 % formic acid and (B)
acetonitrile. The elution gradient for both modes started with 1 min
isocratic at 3 % B at a flow rate of 450 pl min~!, then increased linearly to
98 % B in 11 min. Then the flow rate was increased to 600 plmin~! and
the gradient was kept isocratic at 98 % B for 2 min and subsequently
decreased to 3% B in 2 min and finally, back to initial conditions in
3min. The total time for the chromatographic analysis was 19 min. The

first 1.6 min of the eluent was diverted to the waste to prevent clogging
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of capillaries by organic or inorganic compounds present in the injected
samples or build up of salts on the optics in the mass spectrometer. The
sample injection volume of the autosampler was set at 400 pl. Since the
injection loop had a volume of 250 pl, the effective sample injection

volume was 250 pl.

The QTOF-MS was equipped with two orthogonal ESI probes for
the eluent and lock mass solution ionization, respectively, a linear
quadrupole and a T-wave collision cell. Nitrogen from a nitrogen
generator (Nitroflow, Parker, Cleveland, USA) was used as drying and
nebulizing gas in the ESI source. The quadrupole was turned off letting
through all m/z values without fragmentation. The mass spectrometer
was operated at a resolving power of 20000 at full width at half
maximum (FWHM) (defined at m/z 400) acquiring profile data over
an m/z range of 50-1200 Da. The ESI parameters were optimized for
both positive and negative ion mode by injection of analytical standard
mixtures (Table 4.1). The used ESI mode for each pharmaceutical
compound as well as the respective exact ion mass are listed in Table

A2.

Leucine enkephalin (2mg/]1 in water/acetonitrile 50:50 with 0.1%
(v/v) formic acid) was used as lock mass and was continuously infused

via the lock mass probe at a flow rate of 50 plmin~*.

The optimized
parameter values specific for the lock mass ESI source and the collision
cell are also included in Table 4.1. Each 10 seconds, a lock mass scan was
performed for automated mass calibration by following up the leucine

enkephalin ion and its most abundant fragment ion at the respective m/z

values of 556.2761 Da and 278.1142 Da in ESI positive ion mode, and at
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Table 4.1 Optimized ESI source parameters®.

ESI source parameter

ESI positive
mode

ESI negative
mode

Sample probe specific parameters

Capillary voltage (kV) 2.5 2.5

Sample cone voltage (V) 25 20

Collision energy: low energy acquisition 6 3
function (eV)

Collision energy: ramped energy acquisition 10-30 5-25
function (eV)

Lock mass probe specific parameter

Capillary voltage (kV) 3.5 3.5

Sample cone voltage (V) 20 30

Collision energy (eV) 20 30

General parameters

Extraction cone voltage (V) 4 4

Source temperature (°C) 120 80

Desolvation gas temperature (°C) 550 550

Cone gas flow (1h™1) 20 20

Desolvation gas flow (1h™1) 1100 1100

a2 The ESI parameters were optimized by injection of 10 pgl™' analytical standard
mixtures containing each 5 to 10 pharmaceuticals.

554.2616 Da and 236.1047 Da in ESI negative mode. The mass used for
calibration is the averaged mass of the lock mass ions over 4 subsequent
scans. Daily, the calibration of the mass axis was performed over a mass
range of 100-1200 Da by infusion of a sodium formate solution (0.1% v/v
formic acid and 0.5 mM NaOH in acetonitrile/water 80:20).

4.2.4 Centroiding algorithms, accurate mass deter-
mination and measuring the full width at half
maximum

Raw high-resolution data are profile data on which no post-processing

is performed and where each scan in the chromatogram consists of a
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profile mass spectrum. The simplest methodology for the accurate mass
determination reads the accurate mass directly from the raw profile
data without any post-processing and takes the mass at the maximum
intensity as the accurate mass (mpay). On the other hand, on post-
processing the profile data by a centroiding algorithm, sticks replace
the peaks of the profile mass spectrum and the mass attributed to each
stick is the centroid. The result is thus a spectrum with sticks where
the resolution of the spectrum peaks is eliminated. The automated
peak detection (APD) algorithm in the Masslynx software version 4.1

was used for centroiding the spectra.

First, the correctness of the accurate mass extracted from the profile
data is compared to that obtained after centroiding the spectra using
the APD algorithm. Second, to evaluate the performance of this APD
algorithm, the mass accuracy and variability of the APD algorithm was
compared with that of 6 self-defined centroiding algorithms. Therefore,
spectra extracted from an assay with deionized water spiked with a set
of 17 compounds with masses ranging between 152 and 916 Da (Table
A.2) at a concentration of 5 ng 17! are used. For each compound, 5 scans
were selected between the chromatographic peak apex and the peak tail
in order to cover a wide range of signal intensities. Figure 4.1 presents
a graphical interpretation of the self-defined centroiding algorithms on
a spectrum of paracetamol. The 1,4, and 6 self-defined algorithms
can be ordered from low to higher complexity including an increasing

number of data points of the spectrum peak:
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® M. The centroid is calculated as the mass for which the
signal intensity is maximal i.e. at the spectrum peak apex

(corresponding to the accurate mass extracted for profile data).

e myn: The centroid is the mass at the center of the spectrum
peak width, determined at half of the maximum intensity of the
spectrum peak. First, the method locates the two nearest data
points at half of the maximum intensity at both the right and left
side of the spectrum peak. Then, for each side an interpolated
mass is calculated at half of the maximum intensity. The centroid

is then equal to the mean of the interpolated masses.

® Msgo, Masy, Migy and mgy: The centroid is calculated as the
arithmetic mean of the data points of a spectrum peak with
a signal intensity larger than a certain percentile f (5, 10, 25

and 50 %) of the maximum spectrum peak height. my is then
> hixm;

> hy

m; is the mass of the data points in the spectrum peak.

calculated as for h; > f where h; is the intensity and

® Mgauss: Lhe centroid is calculated by least squares fitting of a
Gaussian curve with mean mgq.,ss and variance o2 to the spectrum

peak.

The FWHM equals the difference between the interpolated masses at
the left and the right side of the spectrum peak resulting from the mgy
algorithm and the resolving power is the exact ion mass divided by the

FWHM.
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Figure 4.1

Graphical interpretation of the centroiding algorithms (A:

Mmaz, B: muwm, C: Mgy, D: Mgauss) applied on a spectrum of paracetamol
(exact ion mass: m/z 152.0705Da).

4.2.5 Software and statistical analyses

The data station operating software provided with the MS was Masslynx

version 4.1 (Waters). Statistical tests were performed using the

SPSS Statistics 20 and R 2.14.1(R Development Core Team, 2008)

software. The correlations were investigated by calculating correlation
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coefficients (r) and their associated p-values (Student’s t-test). For
analysis of variance (ANOVA), assumptions of homogeneity of variances
and normality were evaluated on the residuals. Statistical tests were

performed at the 5% level of significance.

4.3 Results and discussion
4.3.1 Accurate mass determination

To compare and evaluate the performance of the my,., and APD
algorithm, their obtained mass accuracy and variability were compared
to those of the 6 self-defined algorithms. For each centroiding algorithm,
the mean mass error (ppm) was calculated for the 17 compounds with
5 scans considered per compound (n = 85) and the variability was
expressed as the standard deviation (SD) on the 85 mass errors. Table
4.2 presents the mean mass error and variability for each centroiding
algorithm with the respective number of data points of the spectrum
peaks that are included for the calculation of the centroids. Remark
that the number of data points making up a spectrum peak increased
with the ion’s exact mass; therefore the whole range of number of data
points over the 85 spectra is given in Table 4.2. The mean mass error
for the different algorithms showed to be significantly different (two-
way mixed model ANOVA, p < 0.001) and varied between —1.18 and
0.55 ppm. Pairwise comparison using a Scheffé test revealed that only
the mass error of the M, algorithm differed significantly from all the
other algorithms (p < 0.001). The variability on the mass accuracy

clearly improved with increasing number of data points included in the
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centroiding algorithm. The SDs on the mass error of the m,q, and
my algorithms are significantly different from the APD algorithm
(two-sided F-test, p < 0.001 and < 0.01, respectively). When increasing
the complexity from the M40 to the myqyss algorithm, only 1 and all
the data points, respectively, of a spectrum peak are included for the
calculation of the centroid. This explains the decline of the SD from

10.15 (Mimaz) to 4.09 (Mgquss) PpM.

Table 4.2 The mean mass error and variability (SD) obtained for each
centroiding algorithm and the respective number of data points of the
spectrum peaks included®.

Centroiding algorithm  Number of Mean mass SD on mass
data points error (ppm) error (ppm)

Centroid mode

APD not specified -0.66 4.33
Mgauss 8-37 -0.60 4.09
msy, 6-22 0.55 3.94
M10% 6-18 0.01 3.96
Mose, 4-16 -0.39 4.31
My 2-10 -0.98 5.28
M H M 4 -0.45 5.77

Profile mode
Mmax 1 -1.18 10.15

2 An assay with deionized water spiked at a concentration of 51gl~! was used for
the comparison and evaluation of the different algorithms.

As an answer to the first research question, these results demonstrate
that the conversion of raw profile data to centroid data using the APD
algorithm for the determination of accurate masses is necessary. If no
centroiding would be applied, the Masslynx software would use, similar
to the my,q, algorithm, the mass of the spectrum peak for which the
signal intensity is maximal. Table 4.2 clearly shows that the M4z

algorithm is less precise than the APD algorithm. Indeed, the APD
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algorithm was shown as good as the best self-defined algorithm (mgqy.ss)
and its variability increased by a factor of 2.3 compared to that of the

Minaz algorithm.

Next, the correlation between the mass error and the ion’s exact mass
and intensity was investigated. The mass error of the centroids (APD
algorithm) for the 17 compounds considering the 5 selected scans per
compound showed to be uncorrelated with the exact mass (Figure 4.2A,
r =-0.10, p > 0.1, n = 85). However, larger deviations were observed at
lower signal intensities (Figure 4.2B). Although the average mass error
showed to be uncorrelated with the signal intensity (r = —0.03, p > 0.5,
n = 85) of the spectrum peaks, the variability on the mass accuracy
clearly rose for lower signal intensities. The variability showed a steep
increase with mass errors up to 8 ppm for signal intensities lower than
1000 absolute units (a.u.). The standard deviation on the mass error
was 6.31 and 1.67 ppm for signal intensities lower (n = 37) and higher
(n = 48) than 1000 a.u., respectively. Possible reasons for the increased
variability at lower signal intensities are the presence of noise or isobaric
compounds and not-perfect spectrum peak shapes. Such low-intensity
peaks result from a lower number of ions (i.e. low concentration). When
interpreting the ion counts as repetitions of the same measurement, it
is obvious that the variability will decrease with the ion intensity. We
suggest taking this increased variability at low signal intensities into
account in accurate mass based screening applications thereby reducing
the number of false negative and/or false positive findings. An overall
mass error tolerance of for example +5 ppm is not stringent enough at

high signal intensities leading to false positives, whereas at low signal
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intensities false negative findings will occur. A more in-depth study on

this subject is presented in Chapter 5.

4.3.2 Optimizing the mass window width

In literature, different authors using TOF and Orbitrap mass
spectrometers providing a resolving power between 10000 and
50000 FWHM (Table 4.3), applied different mass window widths for the
construction of XICs for quantitative purposes. In general, wider XICs
are applied for instruments providing less resolving power. In order to
fairly compare these mass window widths independent of the provided
resolving power, their corresponding values expressed in relative units
(ppm) for a mid-range m/z value of 400 Da and a resolving power of
20000 FWHM were calculated (Table 4.3). The corresponding mass
window widths reported in literature varied over a relative wide range:

from 12.5 to 187.5 ppm.

The use of HRMS such as TOF permits narrowing the mass window
width for the construction of XICs, which results in an increased
selectivity (Kaufmann et al., 2007). However, a too narrow mass window
could result in loss of signal intensity when profile data are used for
the construction of XICs or interruption of the signal when centroid
data are used. This effect is illustrated in Figure 4.3 with our data
for carbamazepine spiked at a concentration of 100ngl™ in surface
water. In the case of profile data, the signal intensity decreases when
narrowing the mass window width from 80 to 20 ppm (Figure 4.3A). This
is because an increasing fraction of the spectrum peak is cut off when

narrowing the mass window. Theoretically, it can be calculated that the
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Table 4.3 Reported and corresponding mass window widths applied by different authors for the construction of XICs.

Reported mass Mass range  Corresponding mass Corresponding mass window width ~ Reference

window width (Da) window width at at 20000 FWHM for m/z 400 Da

(mDa) 20000 FWHM (mDa)? (ppm)®

TOF-MS (10000 FWHM)

60¢ 192 30 75 Kaufmann & Butcher (2006)
10-304 192 5-15 12.5-37.5 Kaufmann & Butcher (2006)
10-20° 142-918 5-10 12.5-25 Kaufmann et al. (2007)

20¢ 150-749 10 25 Petrovi¢ et al. (2006)

20¢ 150-749 10 25 Farré et al. (2008)

TOF-MS (30000 FWHM)

504 56-916 75 187.5 Ferrer & Thurman (2012)
Orbitrap-MS (50000 FWHM)

10¢ 202-897 25 62.5 Kaufmann et al. (2011)

10¢ 192-716 25 62.5 Chitescu et al. (2012)

2 Corresponding mass window width in mDa scaled to a resolving power of 20000 FWHM.
P Corresponding mass window width in ppm. First, the corresponding mass window widths in mDa (Am) were calculated taking into
account that the width of the mass window is inversely proportional to the resolving power, as stated by Kaufmann (2009): Am (mDa) ~

1 A D
3 Subsequently, the corresponding mass window width was expressed in ppm: Am (ppm) ~ % -1000.
a

¢ Raw profile data were transformed to centroid data prior to processing.
d Raw profile data were processed.
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remaining fraction of the signal is 100, 98, 94, 76 and 36 % for a mass
window width of 150, 100, 80, 50 and 20 ppm, respectively, assuming
a Gaussian spectrum peak and a resolving power of 20000 FWHM. In
the case of centroid data, there is no signal intensity loss when the mass
window width decreases from 80 to 50 ppm (Figure 4.3B). However,
when a too narrow mass window (Figure 4.3B, 20 ppm) is applied, it
can happen that the centroid of a spectrum peak falls out of the defined
mass window and that the signal is interrupted. This is the case when
the mass attributed to the centroid of a spectrum peak is deviating too

much from the true value so that it falls out of the defined mass window.

4.3.2.1 Centroid or profile data and relative (ppm) or
absolute (mDa) units for the construction of XICs?

As shown in Figure 4.3, the use of centroid data can lead to signal
interruption. Furthermore, Kaufmann (2009) observed that erroneous
centroiding due to the presence of isobaric species in combination with
small mass windows could result in false negative findings. They found
that better quantitative results were obtained when profile data were
processed, even with small mass windows. In order to avoid these
unwanted effects of centroid data, the use of profile data is preferred

for quantitative analysis.

Within the scope of the second sub-question, it was investigated
whether the relative or absolute FWHM of a spectrum peak, expressed
in ppm and mDa, respectively, was more constant over the entire
investigated m/z range for TOF HRMS. The FWHM of the 17
compounds (Table A.2) ranged from 26 to 104ppm and from 8 to

135



Chapter /

Profile mode, XIC 80 ppm

2500
|

Signal intensity (a.u.)
1000
]

o -
T T T T T T
6.4 6.6 6.8 7.0 7.2 7.4

~ o Profile mode, XIC 50 ppm

3 B

S N

I~ ]

= |

s 8 _

g 2

E —

=

2 o

n T T T T T T
6.4 6.6 6.8 7.0 7.2 7.4

-~ o Profile mode, XIC 20 ppm

3 B

\(3 N

o .

= i

g 38 ]

g °

a —

5 o A .

(7] T T T T T T
6.4 6.6 6.8 7.0 7.2 7.4

A Time (min)

Figure 4.3

B

2500 0 1000 2500

1000

0

2500

1000

0

Centroid mode, XIC 80 ppm

6.4 6.6 6.8 7.0 7.2 74
Centroid mode, XIC 50 ppm
T T T T T T
6.4 6.6 6.8 7.0 7.2 7.4
Centroid mode, XIC 20 ppm
T T T T T T
6.4 6.6 6.8 7.0 7.2 74
Time (min)

Effect of narrowing the mass window from 80 to 20 ppm: the signal intensity of carbamazepine (100 ng !

in surface water) decreases when profile data are used (A); the centroid of a spectrum peak falls out of the defined mass

window (20 ppm) when centroid data are used causing interruption of the signal (B).
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Figure 4.4 Variability of the FWHM of a spectrum peak in ppm (o, r =
—0.40) and mDa (e, 7 = 0.89) as a function of the exact mass.

55mDa within the 152-916m/z range (Figure 4.4). The associated
correlation coefficients (r) were —0.40 (p < 0.001, n = 85) and 0.89 (p <
0.001, n = 85), respectively, indicating that the relative FWHM (ppm)
varied less over the whole mass range than the absolute FHWM (mDa).
Therefore, defining the mass window width in relative units (ppm) is
preferable in order to integrate ion’s peaks over the whole mass range

in a similar way.
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4.3.2.2 Sensitivity versus selectivity

The optimal width of the mass window must reflect an optimal
sensitivity and selectivity. Yet, it is not known how much both
parameters change in function of the mass window width. Here, a way
of assessing both parameters is presented. Sensitivity is defined here
as the ability to detect lower concentration levels, and selectivity is the
ability to distinguish the signal from a compound of interest from that
from other compounds (European Union, 2002, Commission Decision

2002/657/EC).

The sensitivity of an analytical method can be assessed by the t-value
of a two-sided t-test comparing the integrated area of 5 unspiked and
5 spiked samples. An increasing t-value expresses a stronger statistical
difference between the response of the unspiked and spiked samples and
is therefore a reliable measure for the sensitivity. An analogue concept
was also applied for the calculation of the decision limit (Section 3.3).
Therefore, 5 series consisting of an unspiked and 6 spiked deionized
water assays (0.01, 0.05, 0.1, 0.5, 1 and 5pg1_1) analyzed on one day
were processed using different mass window widths for the construction
of XICs for 17 compounds (Table A.2). In profile mode 20, 50, 80,
100 and 150 ppm wide mass windows were utilized and additionally
— for comprehension purposes — XICs were also constructed from the
centroid data utilizing 20, 50 and 80 ppm wide mass windows. For each
compound, a concentration close to the instrumental detection limit

(10-500ng17!) was selected for the comparison.
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For each of the 17 compounds, the t-value at the selected
concentration level was calculated and the results are presented in
Figure 4.5A. In both centroid and profile mode, the t-values increases
with increasing mass window width from on average 4.8 to 14.4 and
from 6.6 to 11.4, respectively, meaning that also the sensitivity of the
method increases. Additionally, the relative standard deviation (RSD)
on the integrated area of the 17 compounds (n = 5 per compound) at the
selected concentration level was calculated. A wider mass window had
a positive effect on the RSD (Figure 4.5B). The RSD decreased from on
average 51 to 17 % in centroid mode and 46 to 19 % in profile mode. The
effect of the mass window width was significant for both the t-value and
the RSD (two-way mixed model ANOVA, p < 0.001). Although some
compounds obtained a stronger increase in sensitivity, i.e. t-value, using
the centroid mode for XICs of 80 ppm, the profile mode is preferred
because of the reasons given in Section 3.2. Furthermore, comparable
results were obtained for the profile and centroid mode applying XICs
of 20 and 50 ppm.

The selectivity is, in contrast to the sensitivity, difficult to measure
because the presence of isobaric co-eluting matrix compounds is only
sporadic (Kaufmann, 2009). Therefore, the selectivity is assessed
theoretically as the effect that a matrix ion induces on the integrated
peak area of an ion of interest. To quantify this matrix effect given a
certain mass window width (profile mode), two ions (i.e. a matrix ion
and the ion of interest), which are only partially resolved are considered.
It can be calculated that at a resolving power of 20000 FWHM two ions

with equal intensity that are partially resolved by a valley of 50 % have a
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mass difference of 71 ppm supposing their spectrum peaks fit a Gaussian
curve. This mass difference of 71 ppm is independent of the m/z value of
the ion. The matrix effect can then be assessed as the theoretical ratio of
the individual integrated areas in the spectrum within the defined mass
window around the ion of interest (Figure 4.6). Maximal selectivity
is reached at 0% matrix effect meaning that there is no effect of the
matrix compound. The matrix effect amounts 0.6 and 2.1 % at 20 and
50 ppm and increases strongly to 8, 17 and 58 % at 80, 100 and 150 ppm,

respectively.

100
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Figure 4.6 Graphical representation of a spectrum to illustrate the

calculation of the matrix effect A—Q -100% due to the presence of a matrix
1
compound that is partially resolved with a valley of 50 % and thus 71 ppm

apart from an ion of interest (R = 20000 FWHM).
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The measured sensitivity (average t-value) is plotted as a function of
the calculated selectivity (matrix effect) for the different mass window
widths (20, 50, 80, 100 and 150 ppm) in profile mode in Figure 4.7.
For narrow mass windows (20-50 ppm), the slope of the curve is steep
meaning that the sensitivity increases substantially for only a small loss
in selectivity. For wider mass windows (50-150 ppm), the sensitivity
levels off, whereas the matrix effect increases substantially from 2.1 %
to a maximum value of 58 %. From this figure, it can be concluded that
an optimal trade-off between sensitivity and selectivity is reached for a

mass window width of 50 ppm.

As an answer to the second research question, it is demonstrated
that an optimal trade-off is obtained when profile data were processed
with a mass window width of 50 ppm utilizing a TOF-MS providing
a resolving power of 20000 FWHM. Complementary to our results,
Kaufmann & Butcher (2006) concluded from experiments with an
artificially reduced resolving power that the mass window width
should be inversely proportional to the resolving power. Therefore,
for quantitative purposes, it is advised to utilize the following mass
window widths for the construction of XICs from the profile spectra:
10000 FWHM: 100ppm; 20000 FWHM: 50ppm; 50000 FWHM:
20 ppm; and 100000 FWHM: 10 ppm.

4.3.3 Calculation of the decision limit and detection
capability

It has been stated in Section 4.1 that the S/N ratio concept for the

determination of the detection and quantification limits is in some cases
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not applicable for HRMS data. Using narrow mass windows in HRMS
can lead to the situation where almost no noise can be detected anymore.
This effect is illustrated in Figure 4.8. In particular for ions in the higher
mass region, such as spiramycin (Figure 4.8A), almost no noise can be
detected leading to questionable S/N ratios. Moreover, this effect will be
enhanced when cleaner matrices (Figure 4.8B versus C) are analyzed or
when even smaller mass windows are applied for instruments providing
an increased resolving power (Kaufmann, 2009). Although determining

the S/N ratio from the chromatograms in Figure 4.8 is still possible,

143



Chapter 4

the formulated issue will be of even more importance when using mass
spectrometers with an enhanced resolving power (e.g. > 100000 FWHM
in modern HRMS).
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Figure 4.8 Almost no noise can be detected anymore in XICs for ions in
the higher mass region such as spiramycin (surface water, A). For fluoxetine,
less noise is found when deionized water (B) is analyzed than in surface water
(C). Spiramycin and fluoxetine were spiked at 500 and 50 ng 17!, respectively.

Therefore, new validation concepts for the determination of
performance limits are needed in order to anticipate the named issue.

Taking the Commission Decision 2002/657/EC (European Union, 2002)
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as a guideline, an equivalent measures for the detection (S/N = 3) limit
is the decision limit (CCa). The CCa represents the concentration at
and above which it can be concluded with an error probability of «
(5%) that a sample contains the analyte of interest. This means that
a detected peak corresponding to a concentration level of at least the
CCa differs significantly from noise and background peaks. Next, the
detection capability (CCpS) is the lowest concentration at which the
response exceeds the decision limit with a statistical certainty of 1 — 8
(8 = 5%) meaning that in 95% of the cases a positive conclusion (>
CCa) will result from the analysis of a sample containing the analyte

of interest at a concentration equal to the CCgS.

In practice, the CCa should be calculated as the mean response of
20 unspiked samples that are considered to be blank plus 2.33 times
the standard deviation from the integration of noise or background
peaks (Antignac et al., 2003). However, this methodology requests the
labor-intensive analysis of a large amount of truly blank matrix samples
that are sometimes hard to find for the validation of ng to pgl™ trace
analytical methods due to the ubiquitous presence of trace quantities of
some compounds. Furthermore, it can occur that no noise at all can be
found in truly blank samples leading to a CCa equal to zero. Kaufmann
(2009) addressed this issue by estimating the standard deviation from
a limited number (n = 5) of samples spiked to concentrations close to
CCa and CCpB. This strategy is extended by taking into account also

the number of analyzed spiked samples in a reliable statistical approach.

An unspiked and 6 spiked surface water samples (0.01, 0.05, 0.1,

0.5, 1 and 5pgl™!) were analyzed under reproducibility conditions on
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5 days within two weeks. After daily external calibration, the mean
concentration and variance for each of the spiking levels are calculated.
The CCa is calculated by a one-sided one-sample t-test assuming

normality in which the expression
71'_702 tl—a,ni—l c 0 (41)

is tested at the 5% («) level of significance (t-value = 2.132). Xj is the
mean calculated concentration of the unspiked assays (ng = 5) and X;
and o2 are the mean calculated concentration and variance of the i"
spiking level (n; = 5). The CCa is the lowest calculated concentration
for which this expression holds. Remark that the obtained CCa can
be an overestimation of the true CCa because Equation 4.1 is only
evaluated for a limited number of spiking levels (i.e. 0.01, 0.05, 0.1, 0.5,
1 and 5pgl™!) and the value of the true CCa can be between two spiking
levels. Subsequently, the CCf is calculated by a one-sided one-sample

t-test assuming normality in which the expression
Yi -CCa > tl—ﬁ,ni—l e (42)

is tested at the 5% () level of significance (t-value = 2.132). In order
to correct for the possible overestimation of the true CCea, the CCa
used in Equation 4.2 is the value calculated by estimating the term X;

assuming equality in Equation 4.1.

The proposed methodology has been applied for the 17
pharmaceuticals in surface water. For reasons of comparison, also the
average S/N ratio has been calculated over the five repeated analysis at
the determined CCa level. The CCa can be considered as an equivalent

measure for the detection limit, which is commonly calculated at S/N
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= 3. It appears that the calculated CCas tend to exceed the S/N based
detection limit, since for 10 out of 17 compounds S/N ratios at the
determined CCa levels range between 10 and 50 (Table 4.4). This could
be related to the presence of trace quantities of the substances of interest
in the unspiked surface water, resulting in a possible overestimation of
the true CCa. CCas calculated from Equation 4.1 are by definition
at least the concentration level present in the unspiked matrix sample
(Xo). In order to overcome this overestimation, blank deionized water
samples replaced the unspiked surface water samples for the calculation
of CCa: Xj in Equation 4.1 (adjusted decision limit (CCqdjusted)
in Table 4.4). For 8 compounds (marked in bold), the CCaqgjusted
clearly decreased in comparison with the initial CCa without having
a S/N < 3. Visual inspection of the chromatograms showed that the
compounds were still clearly present at their CCaggjusted- Therefore,
the CCaqgjusted is considered to be a more realistic methodology to
calculate decision limits. The CCpfs presented in Table 4.4 are calculated
based on the obtained CCoqgjusted- It should be denoted that the
calculated CCaugjusteqa values cannot be lower than the concentration
present in the unspiked samples, since X; in equation 4.1 represents
the sum of the concentration in the unspiked sample and the spiked
concentration. As a consequence, unspiked matrix samples having as
low as possible trace concentrations remain necessary for the validation

of analytical methods.

As an answer to the third research question, an extension of the
methodology presented by Kaufmann (2009) for the determination of

CCa and CCg is developed taking into account also the number of
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spiked matrix samples. The methodology was successfully applied and
was shown to minimize the overestimation of the true CCa due to the
presence of trace amounts of compounds of interest in matrix samples.
This methodology is a reliable and practical alternative in the case the
widespread S/N ratio concept is questionable or not applicable anymore

for the validation of HRMS instruments.

Table 4.4 Overview of obtained CCa and CCayqgjustea With
the corresponding S/N and CCS (ngl™)*. CCB is calculated
starting from CCoadjusted-

Compound CCa (S/N)  CCaggjusted (S/N) CCB
Bisoprolol 10 (6) 10 (6) 10
Caffeine 500 (52) 10 (14) 500
Carbamazepine 100 (21) 10 (9) 100
Ciprofloxacin 50 (6) 50 (6) 100
Doxycycline 500 (14) 500 (14) 500
Enrofloxacin 50 (7) 10 (3) 50
Erythromycin-Ho O 50 (20) 10 (16) 50
Furazolidone 10 (2) 10 (2) 50
Iopanoic acid 500 (14) 500 (14) 500
Metronidazole 50 (6) 50 (6) 100
Paracetamol 500 (12) 500 (12) 500
Roxithromycin 100 (49) 50 (15) 100
Sotalol 100 (9) 10 (4) 100
Spiramycin 500 (15) 500 (15) 5000
Sulfamethoxazole 50 (16) 10 (6) 100
Tetracycline 50 (4) 50 (4) 100
Tylosin 100 (17) 50 (14) 50

2 The reported concentration levels represent the spiked concentra-
tion level.

4.4 Conclusions

In HRMS, a better performance can be obtained for qualitative and
quantitative purposes by refining the data processing. Transforming the

raw profile spectra to centroid is recommended for the determination of
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accurate masses in qualitative analysis, resulting in a 2.3 fold improved
precision on the accurate mass. However, XIC peak integration
should be performed on the raw profile data. An optimal mass
window width, being a trade-off between sensitivity and selectivity, of
50 ppm was determined for a TOF instrument providing a resolving
power of 20000 FWHM. The optimal mass window width can be
easily calculated for instruments providing a lower or higher resolving
power taking into account that it is inversely proportional to the
resolving power: 10000 FWHM: 100 ppm; 20000 FWHM: 50 ppm;
50000 FWHM: 20 ppm; and 100000 FWHM: 10 ppm. As an alternative
for the widely applied S/N ratio, the methodology for the calculation of
the CCa and CCf developed by Kaufmann (2009) has been extended
by taking into account also the number of analyzed spiked samples in a
reliable statistical approach. The methodology resulted in comparable
decision limits as obtained from a S/N ratio of 3. It can be concluded
that this methodology is a reliable and practical alternative for the
widespread S/N ratio concept, which will be of utmost importance in

most modern HRMS.
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5.1 Introduction

Recently, different accurate mass based screening strategies were
developed and applied for suspect screening towards pharmaceuticals
and other micropollutants in surface waters (Section 2.5). Avoiding
numerous false negative findings and reducing the number of false
positive findings is a main challenge, and the performance and
optimization of such screening strategies is not yet systematically

investigated.

Apart from multi-residue screening, achieving quantification of trace
amounts is a second challenge in environmental analysis. Usually,
samples are preconcentrated using an enrichment step such as solid-
phase extraction (SPE) (which is investigated in Chapter 3) and a clean-
up of interfering matrix compounds is necessary to enhance the method’s
performance limits. However, a recent review discussed the applicability
of large-volume injection (LVI) as an alternative for the widely applied
but labor-intensive SPE techniques for trace analysis of environmental
matrices thereby speeding up the analytical procedure (Busetti et al.,

2012).

Hence, the aim in this chapter is to investigate and improve
the potential of LVI - ultra-high performance liquid chromatography
(UHPLC) in combination with QTOF high-resolution mass spectrome-
try (HRMS) for both fast screening and target quantification of traces of
pharmaceuticals. An optimized and validated novel analytical method

for a broad variety of multi-class pharmaceuticals is presented, hereby
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aiming to screen and quantify traces of pharmaceuticals in drinking and

surface water.

In a first part, a suspect screening strategy was developed applying
a novel signal intensity-dependent mass error tolerance, which contrasts
with the currently applied fixed mass error tolerance (Table 2.2). The
aim is a suspect screening towards 69 pharmaceuticals without the a
priori availability of standards, hereby keeping the false negative rate
at 5% and simultaneously minimizing the number of false positive
findings (Section 5.3.2). In a second part, both not-spiked and spiked
drinking and surface water samples were analyzed and the results of
a full validation for target quantification of the 69 pharmaceuticals
are presented (Section 5.3.3). Finally, the results of both the suspect
screening and target quantification study on a drinking water and five
Belgian surface water samples are presented (Section 5.3.4). These
results are to be interpreted as a first application of the new method
and a proof of concept without aiming to set up an extended monitoring
campaign.  The applicability and advantages of LVI-UHPLC in
combination with full-spectrum HRMS for rapid screening are discussed
in Section 5.3.5. A comprehensive scheme representing the workflow for

this chapter is presented in Figure 5.1.

5.2 Experimental section

5.2.1 Chemicals

The 69 pharmaceutical standards and their respective suppliers are

listed in Table A.2. The masses of the pharmaceuticals cover the whole
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mass range (151 to 1240Da) and have a wide range of octanol-water
partition coefficient (K,,) values (e.g. log K,, -2.8 for iohexol; 4.2
for diclofenac; 4.7 for fluoxetine). Chemicals and procedure for the
preparation of standard and matrix-matched calibration curves (0.01,
0.05, 0.1, 0.5, 1 and 511g 17! in deionized, and drinking and surface water)

are specified in Section 4.2.

5.2.2 Sampling and sample pretreatment

Drinking water was taken from a drinking water production center
(Antwerpse Waterwerken) in Rumst, Belgium. Five surface water
samples were collected in prerinsed amber glass bottles on five different
locations along the river Maas and the Albert channel, Belgium, and
stored at 4 °C in the dark for no longer than 24 hours prior to analysis.
For the method validation, a drinking water sample and a surface
water sample from the Albert channel, Belgium, were stored for a one-
month period (at 4°C in the dark) and used for all the validation
experiments. Prior to standard addition, surface water samples were
filtered through 1.5pm glass microfiber filters (934-AH, Whatman)
and subsequently 0.1% and 0.02% (v/v) formic acid was added to
all samples for analysis in electrospray ionization (ESI) positive and

negative ion mode, respectively.

5.2.3 Instrumental analysis

A detailed overview of the chromatographic and mass spectrometric

conditions is given in Section 4.2.

155



Chapter 5

Briefly, the analysis were performed using an UHPLC system
equipped with an autosampler with 250pl loop for large-volume
injection and coupled to a Xevo G2 QTOF mass spectrometer with

an orthogonal ESI probe.

For analysis in EST positive ion mode, the mobile phase used was (A)
water/acetonitrile 98:2 (v/v) with 0.1 % formic acid and (B) acetonitrile
with 0.1% formic acid. In ESI negative ion mode, the mobile phase
used was (A) water/acetonitrile 98:2 (v/v) with 0.01 % formic acid and
(B) acetonitrile. The total time for the chromatographic analysis was
19min. The sample injection volume was 250 ul. Even without SPE,
avoiding highly polar organic and inorganic (salts) compounds in the MS
can be achieved by starting the chromatographic gradient with aqueous
eluent, which can be diverted to the waste by installing a post-column
valve. This ‘wash step’ is highly recommended in LVI-LC (Busetti et al.,
2012). The chromatographic gradient used in our method started by 1
min isocratic with a mixture of aqueous solvent with 4.94 % acetonitrile.
The 69 analytes that were targeted in this study eluted within 1.94 and
11.49 min. Therefore, the first 1.6 min of the eluent could be diverted to
the waste without compromising the screening capability of our method
even for the most polar compounds (e.g. iohexol: log K, -2.8) of our

suspect set.

The QTOF mass spectrometer was operated at a resolving power of
20000 full width at half maximum (FWHM) acquiring profile data over
an m/z range of 50-1200 Da. Data were acquired in MS® mode in
which two acquisition functions with a low collision energy (LE) and

a high collision energy (HE) (i.e. ramped from low to high) acquire
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alternating parent and fragment ions, respectively. The data station

operating software was Masslynx version 4.1 (Waters).

5.2.4 Development of the suspect screening
methodology

5.2.4.1 Investigation of the relation between the accurate
mass error and the ion’s signal intensity

For screening and accurate mass determination, the chromatograms
were converted to centroid data by the automated peak detection (APD)
algorithm provided with the Masslynx software version 4.1 (Waters) in
agreement with the recommendation in Section 4.3.2. Extracted ion
chromatograms (XICs) were constructed utilizing an optimized mass
window width of 50 ppm (exact mass +25 ppm) around the exact masses
of the [M+H]* and [M-H]|™ ion for the positive and negative ion mode,
respectively, and the accurate mass attributed to a chromatographic
peak is determined as the averaged mass over 7 consecutive centroid

scans around the chromatographic peak apex.

To develop the screening strategy, a model describing the relation
between the accurate mass error and the ion’s signal intensity has been
defined and calibrated. Therefore, a surface water sample spiked with
analytical standards (0.01, 0.05, 0.1, 0.5, 1 and 5ug17!) of a subselection
of 44 pharmaceuticals (Table A.2) was analyzed and used as training
dataset. The model calibration was performed using the R 2.14.1 (R

Development Core Team, 2008) software.
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5.2.4.2 Retention time and fragments for confirmation

Analytical standard mixtures of 5 to 10 pharmaceuticals with a
concentration of 10 ug1™! in deionized water were injected and analyzed
in ESI positive and negative mode for the determination of the retention
time (tr) and for the identification of the most abundant fragment ion
for confirmation. The pharmaceuticals in the standard mixtures were
selected so that their peaks were well separated in the chromatogram.
A mass difference of at least 18 Da was preferred for the selection of a
fragment ion to avoid the non-specific loss of water or ammonia. The
retention time and most representative fragment ion are presented in
Table A.2. The selected ionization mode for each pharmaceutical was
the ionization mode for which the lowest instrumental decision limit

(Section 5.2.5.1 and 5.3.3.1) was obtained.

5.2.5 Validation strategy for target quantification

For quantification purposes, the extracted ion chromatograms were
generated and manually integrated from the raw profile data utilizing
an optimized mass window width of 50ppm (Section 4.3.2). The
validation was performed taking the Commission Decision 2002/657/EC
(European Union, 2002) as a guideline. The method validation was
performed for drinking and surface water, and deionized water was
used for the instrumental validation. Only peaks deviating not more
than 2.5% from the retention time listed in Table A.2 are considered

(European Union, 2002).
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5.2.5.1 Instrumental validation

For the intraday and interday instrumental validation, 5 repetitions of
a standard calibration curve (blank, 0.01, 0.05, 0.1, 0.5, 1 and 5pgl™!
in deionized water) were performed on one day and on 5 days in a time
period of two weeks, respectively. Instrumental intraday and interday
repeatability are expressed as the relative standard deviation (RSD) of
the integrated peak areas of 5 repeated injections of analytical standards
on one and 5 days, respectively. The instrumental decision limit
(CCa) and instrumental detection capability (CCfB) are determined
from the repeatability following the methodology recently proposed in
Section 4.3.3. Linearity is tested based on the F-test for lack of fit
(Kutner et al., 1996) in the regression for the standard calibration
curve under repeatability conditions (n = 5 for each concentration
level). This F-test calculates the significance of the reduction in the
sum of squares of the relative errors (SSRE) in progression from a
linear to a quadratic calibration curve. In other words, this F-test takes
into account the applied weighting and evaluates whether a quadratic
model j with 3 parameters (p;) describes significantly better the data

than a linear model ¢ with 2 parameters (p;). The test statistic
SSRE; - SSRE; [},

- SSRE; [ _ p.
data points) at the 5 % level of significance. If non-linearity is concluded,

—Di

is compared to Fp, _p, n—p, (n is the number of

linearity is tested again after contracting the working range by omitting

the highest concentration level.
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5.2.5.2 Calibration and quantification

Daily external calibration was performed to account for the interday
variability of the analytical sequence. The parameters of the standard
calibration curve are estimated by weighted least squares with the
weights for the squared residuals estimated as the reciprocal of the

squared concentration (1/z?).

For quantification in both drinking and surface water samples,
matrix effects have to be determined. Therefore, the calculated
concentrations of a matrix-matched calibration curve were plotted as a
function of the theoretical concentration (n = 5 per concentration level,
interday repeatability conditions). The slope of this curve equals the
extent of the matrix effects. A slope = 1 (expressed as 100 %) is obtained
when no matrix effects are present; and slopes > 1 and < 1 represent
signal enhancement and suppression, respectively. When quantifying
pharmaceuticals in drinking and surface water (Section 5.3.4.3) the
calculated concentrations were corrected for the matrix effects, which

were calculated on samples sampled at the same locations.
5.2.5.3 Method validation

The method validation for both the drinking and surface water consisted
of a matrix-matched calibration curve (not-spiked, 0.01, 0.05, 0.1, 0.5, 1
and 5pgl™t), which was repeated on 5 days within two weeks. Daily, a
standard calibration curve (blank, 0.01, 0.05, 0.1, 0.5, 1 and 5ugl™ in
deionized water) was analyzed for external calibration. Each series was

followed by a blank assay to prevent cross-contamination. The method
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interday repeatability expresses the precision over 5 days as the RSD of

the calculated concentrations after calibration.

The method CCa and method CCS were determined as explained
in section 2.5.1, considering that here, the peak areas are replaced
by calculated concentrations in the matrix sample. The mass error
was determined for all the compounds in deionized, drinking and
surface water at the concentration level corresponding to the respective
CCas and CCpfs, and at 5pgl™t. The mass error was determined
under interday repeatability conditions (n = 5) and its precision
was determined by calculating the 95% confidence limit (£1.96 x

standard deviation).

5.3 Results and discussion

5.3.1 Large-volume injection wultra-high perfor-
mance liquid chromatography

The applied gradient allowed sufficient retention and separation of the
targeted analytes on a UHPLC column. The 69 analytes elute within a
retention time ranging from 1.94 to 11.49 min. A chromatogram of an
analytical standard is presented in Figure 5.2. During the optimization
process, particular efforts were made to improve the chromatography
of early eluting analytes, which can be affected by the LVI. The length
of the initial isocratic gradient was increased to 1min, which allowed
better column focusing and improved the peak shape of fast eluting
compounds. The injected solvent water, which has an elution strength

lower than the starting gradient, enabled sufficient retention and good-
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quality peak shapes. Addition of formic acid (0.1% and 0.02% in
ESI positive and negative mode, respectively) to the samples improved
the peak shapes (reduced double peaks, sharper peaks, less tailing)
for early eluting (tg < 6min) compounds (sulfadiazine, sulfamerazine,

sulfamethoxazole and salicylic acid).

5.3.2 Development of the signal intensity-
dependent suspect screening model

In a first stage, in order to create the training dataset, the obtained
chromatograms of the spiked surface water samples were searched for
the exact masses of a sub-selection of 44 pharmaceuticals (Table A.2).
The mass error tolerance was initially set at +25ppm as such that
all the peaks present in the constructed extracted ion chromatograms
(XICs) are found; and a reasonably low minimal signal intensity (i.e.
chromatographic peak height) of 100 absolute units (a.u.) was chosen
avoiding the detection of numerous noise peaks. For the given set of
pharmaceuticals, the lowest concentration corresponding to a signal
intensity of at least 100 a.u. in surface water is given in Table A.2. The
aim was to investigate to which extent the mass error tolerance could be
narrowed assuring a false negative rate of 5% and avoiding numerous
false positive findings. To label a peak as confirmed, its retention time
can not deviate more than 1.96 x standard deviation, i.e. within the
95% confidence interval, from the retention time listed in Table A.2
(deviation tg < 1.96 - 0¢;). The sub-selection of 44 pharmaceuticals
provided enough data for the model development and the resulting
training dataset consisted of a total of 208 observations (208 traces

with a signal intensity > 100a.u.).
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The variability of the accurate mass error obtained with the applied
TOF-MS showed to strongly decrease with increasing signal intensity,
being in agreement with the observations in Figure 4.2 and of Wolff et al.

(2003). The variability on the mass error (e,.) and the log-transformed
1

log (i)
(Figure 5.3). Hence, the distribution of the mass error can be described

signal intensities (i) are inversely related: variability e, . ~

as: €y, - log(i) ~ N(0,0%) and a value of 10.96 was obtained for
the standard deviation (o) after fitting the distribution to the training
dataset. The modeled variability showed good normality as evaluated
from a Q-Q plot (Figure 5.4) from which a good fit within the two first

quantiles can be concluded.

This model permitted to draw the 95 % confidence limits of the mass
error as a function of the signal intensity for which holds that |e,, .| <
1.96- 0

log(4)
in the training dataset, 8 observations fell out of the 95% confidence

with ¢ = 10.96 ppm. From the 208 confirmed observations

limits resulting in an effective false negative rate of 4 %. As an important
outcome of the newly developed screening model, a mass error tolerance
of 10.7, 7.2 and 5.4ppm will be applied for the positive conclusion of
peaks with signal intensities of 100, 1000 and 10000 a.u., respectively or,
in other words, the observations should fall within the 95 % confidence

limits in Figure 5.3 to be retained.
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Figure 5.3 The variability of the mass error (line: 95% confidence limits
of the training dataset (o) described in Section 5.3.2) decreases inversely with
the log-transformed signal intensity. Screening results of one drinking water
and five surface water samples of the confirmed (+) and non-confirmed (o)
suspects based on the retention time are also presented (Section 5.3.4.1).
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Figure 5.4 e,/ log(i) shows good normality as evaluated from a Q-Q plot
from which a good fit within the first two quantiles of a theoretical normal
distribution can be concluded.

5.3.3 Validation for target quantification

5.3.3.1 Instrumental validation

The results of the instrumental validation are given in Table 5.1

(intraday repeatability, interday repeatability, instrumental CCa and

CCpB, and linear range). For a majority of the compounds, the
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instrumental intraday repeatability and interday repeatability are in
general more or less constant in the upper concentration range and
increase for concentrations close to the instrumental CCa. This
is illustrated in Figure 5.5 for diclofenac. The standard deviation
increases linearly with the concentration whereas the RSD increases
at lower concentrations, i.e. close to CCa and CCf, and leveled off for
higher concentrations. These findings are in agreement with CMA /6/A
(2012) and confirm the validity of the applied weighted least squares
methodology (1/z* weighting) for the linear calibration (Section 5.2.5.2).
For more information on the weighted least square theory, the reader is
referred to Kutner et al. (1996). The intraday variability was better than
20 % for most of the analytes over the whole concentration range. Higher
interday RSDs are noticed with some values > 40 % for concentrations
at or close to the instrumental CCa occur when no trace was found
for at least one out of the 5 repeated injections (e.g. clenbuterol,
cyclophosphamide, fluoxetin, furazolindone and ketoprofen). Daily
external calibration is performed in order to take interday instrumental

variations into account.
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Table 5.1 Parameters of the instrumental validation indicating the performance of the analytical method for
analytical standards (Concentrations in pgl™).

Pharmaceutical compound Intraday repeatability as Interday repeatability as CCa CCB  Highest Number
RSD (%, n = 5) for each  RSD (%, n = 5) for each concen- of levels
spiking level spiking level tration® @

0.01 0.05 0.10 0.50 1.00 5.00 0.01 0.05 0.10 0.50 1.00 5.00 (pg1™') (pg) (ngl™)

4-(dimethylamino)antipyrine 30 25 27 24 32 22 36 26 32 27 30 30 0.01 2.5 0.05 5.00 6
Atenolol 18 6 4 3 5 2 19 29 31 29 26 28 0.01 2.5 0.01 5.00 6
Betaxolol 9 5 5 3 5 2 22 25 34 29 31 27 0.01 2.5 0.01 5.00 6
Bezafibrate 8§ 18 9 6 7 5 3 20 20 19 17 14 0.01 2.5 0.01 5.00 6
Bisoprolol 7T 5 5 3 8 2 23 23 33 24 24 23 0.01 2.5 0.01 5.00 6
Caffeine ¢ 17 8 8 12 9 ¢ 19 31 25 26 31 0.05 12.5 0.05 5.00 5
Carbamazepine 14 6 5 4 7 6 31 23 34 35 36 32 0.01 2.5 0.01 0.50 6
Chlorotetracycline ¢ © 3 12 10 7 ¢ € 69 50 54 59 0.10 25 0.50 1.00 3
Ciprofloxacin ¢ 4 15 9 2 3 ¢ 33 38 25 32 31 0.05 12.5 0.10 5.00 5
Clenbuterol 19 10 8 6 2 5 48 27 38 35 33 35 0.01 2.5 0.01 0.50 4
Cloxacillin bbb b b b e 70 5 72 65 68 0.05° 12.5P b a
Cyclophosphamide 26 7 4 6 11 10 94 41 42 42 40 36 0.01 2.5 0.05 1.00 5
Dapsone 17 13 4 10 18 17 16 28 30 26 23 28 0.01 2.5 0.01 0.50 4
Diatrizoic acid ¢ © ¢ 14 5 3 € © ¢ 59 28 32 0.50 125 0.50 5.00 2
Diclofenac 29 18 10 10 7 7 31 31 22 15 14 17 0.01 2.5 0.05 5.00 6
Doxycycline ¢ € ¢ 20 15 12 ¢ © ¢ 35 25 34 0.50 125 0.50 1.00 2
Enoxacin ¢ € 12 8 5 9 ¢ € 45 30 35 29 0.10 25 0.50 1.00 2
Enrofloxacin ¢ € 9 8 7 5 ¢ € 46 29 36 27 0.10 25 0.50 1.00 2
Erythromycin-HoO ¢ 10 13 6 4 8 ¢ 43 46 32 38 35 0.05 12.5 0.05 1.00 3
Fenofibrate ¢ 10 20 12 18 19 °© 146 65 52 48 57 0.05 12.5 0.05 5.00 5
Fenoprofen ¢ 13 10 14 13 13 ¢ 34 30 27 19 22 0.05 12.5 0.05 5.00 5
Fluoxetin 19 5 12 2 7 7 94 29 44 34 42 33 0.01 2.5 0.01 5.00 6
Furazolidone 22 9 18 14 26 19 142 45 61 49 42 40 0.01 2.5 0.01 5.00 6
Gemlfibrozil © 217 5 8 11 ° 21 10 16 16 21 0.05 12.5 0.05 1.00 4
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Table 5.1 (continued)

Pharmaceutical compound Intraday repeatability as Interday repeatability as CCa CCB  Highest Number
RSD (%, n = 5) for each  RSD (%, n = 5) for each concen- of levels
spiking level spiking level tration® #

0.01 0.05 0.10 0.50 1.00 5.00 0.01 0.05 0.10 0.50 1.00 5.00 (pgl™t) (pg) (ngl™t)

Phenazone 1 3 5 2 1 2 33 24 28 25 24 28 0.01 2.5 0.01 1.00 5

Pindolol 6 6 3 3 5 2 3 31 33 35 27 30 0.01 2.5 0.01 0.10 3

Primidon € ¢ 17 10 11 11 ¢ ¢ 33 35 34 37 0.10 25 0.10 5.00 4

Propranolol 7 5 5 4 4 2 22 26 29 30 30 25 0.01 2.5 0.01 1.00 5

Propyphenazone 8§ 4 2 1 2 3 12 22 24 26 27 25 0.01 2.5 0.01 5.00 6

Ronidazole ¢ ¢ 23 15 16 12 ¢ ¢ 74 45 66 42 0.10 25 0.10 5.00 4

Roxithromycin ¢ 9 4 8 8 9 ¢ 32 51 23 30 22 0.05 12.5 0.05 1.00 4

Salbutamol 19 14 7 2 3 4 116 43 45 42 41 36 0.01 2.5 0.01 0.10 3

Salicylic acid © 13 12 13 13 6 € 16 26 24 19 22 0.05 12.5 0.10 5.00 5

Sotalol ¢ 13 17 5 5 2 ¢ 49 49 46 38 39 0.05 12.5 0.05 5.00 5

Spiramycin ¢ ¢ ¢ 30 12 9 ¢ ¢ ¢ 47 25 66 0.50 125 1.00 1.00 2

Sulfadiazine 31 16 6 7 13 12 224 34 31 24 30 25 0.01 2.5 0.05 5.00 6

Sulfamerazine 36 5 11 4 12 6 64 24 27 22 23 24 0.01 2.5 0.05 5.00 6

Sulfamethoxazole € 9 9 9 8 8 ¢ 23 22 24 26 29 0.05 12.5 0.05 5.00 5

Terbutaline ¢ 10 15 8 5 3 © 37 40 42 43 33 0.05 12.5 0.05 1.00 4

Tetracycline ¢ ¢ 29 12 7 9 ¢ ¢ 44 28 28 34 0.10 25 0.50 1.00 2

Tolfenaminic acid 239 7 5 8 7 19 14 18 19 20 17 0.01 2.5 0.05 5.00 6

Trimethoprim 7 7 7 4 4 1 47 32 37 28 25 26 0.01 2.5 0.01 0.50 4

Tylosin © 9 9 8 13 19 ¢ 18 38 22 34 17 0.05 12.5 0.05 1.00 4

Venlafaxine 9 4 3 4 2 4 24 31 31 28 28 27 0.01 2.5 0.01 5.00 6

2 Highest concentration and number of concentration levels in linear range. b Values not determined. ¢ Values was not

calculated because calculated concentration (i.e. result of the concentration present in the not-spiked sample and the spiking

level) is below CCa. 4 No trace found at the concentration level. € CCa estimated from reproducibility data.
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Figure 5.5 The standard deviation (e) on the integrated peak area
measured under interday repeatability conditions increases proportionally
with the concentration of diclofenac in deionized water. The relative standard
deviation (o) shows a steep decrease at low concentrations (< 0.5pgl™") and
subsequently levels off.

The instrumental decision limits ranged from 2.5 to 125 pg injected
for all compounds. For some compounds, the peak intensity indicates
that even CCas lower than 2.5 pg (0.01 pgl™!) could be reached with the
TOF-MS used in this study, but this could not be confirmed because
the lowest tested concentration level was 0.01pgl™'. Comparable
(i.e. between 10-fold higher and 10-fold lower) instrumental detection

limits (IDLs) were found in literature for multi-residue methods for the
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analysis of the same pharmaceuticals using TOF and triple quadrupole
mass spectrometers (Figure 5.6) (Baker & Kasprzyk-Hordern, 2011;
Farré et al., 2008; Gros et al., 2006, 2009; Ibafnez et al., 2009; Petrovié
et al., 2006; Nurmi & Pellinen, 2011; Ferrer et al., 2010). On the other
hand, up to 100-fold lower instrumental detection limits were found
for quadrupole linear-ion trap tandem mass spectrometers (Gros et al.,

2012).

For a majority of the compounds, linearity was demonstrated for a
range of at least 2 orders of magnitude (i.e. up to 1 or 5pgl™t). However,
for 9 compounds a significant deviation from linearity was observed and
limited up to 0.1 or 0.5gl !, These results suggest that linear ranges
of 2 orders of magnitude for most compounds are to be expected for the
utilized TOF-MS, which is in general at least one order of magnitude less
than the linearity of triple quadrupole and quadrupole linear-ion trap
tandem mass spectrometers. These findings are in agreement with the
findings of other authors (Nurmi & Pellinen, 2011; Ferrer & Thurman,
2012; Petrovi¢ et al., 2006; Farré et al., 2008) using TOF-MS.

5.3.3.2 Method validation

The results for the method validation for surface and drinking water
are given in Table 5.2 and Table 5.3, respectively. Retention time
deviations between the analytes in matrix and analytical standards
were < 2.5% for all analytes. The interday repeatability for drinking
and surface water barely increased compared to the RSDs of the
instrumental intraday repeatability (Table 5.1) indicating that the

daily external calibration was effective to reduce the day-to-day
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Figure 5.6 Comparison of the instrumental (pg on column) and method
detection limits (MDL, concentration in matrix) of multi-residue methods for
pharmaceuticals in drinking and surface water using SPE and online-SPE
combined with different MS instruments. Only the pharmaceuticals being
the same as those used in this research are considered, and the number of
corresponding compounds is given (n). The boxplots show the minimal and
maximal values, and the 25, 50 and 75 % percentile. The references [c-r| are
given in Table 5.4.
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variability. At a concentration of 0.5pugl™!, the average RSDs of the
interday repeatability are 14 and 15 % for surface and drinking water,
respectively, which is only a small increase compared to the instrumental

intraday repeatability of on average 9 %.

The method CCa and CCJ3 ranged from 0.01 pg1~! to concentrations
higher than 5pgl™ for drinking and surface water. CCas lower than
0.1 and 0.5 gl twere obtained for 35 (50 %) and 51 (74 %) out of the
69 compounds in surface water, and for 30 (43%) and 52 (75 %) out
of the 69 compounds in drinking water. For some chemically related
pharmaceuticals, such as the iodated X-ray contrast media, typically
less good performance limits were obtained. Their short retention time
(e.g. iohexol in Figure 5.2) and therefore the quite aqueous composition
of their elution solvent, which negatively influences the ESI efficiency,
may explain these poorer performance limits. Less good performance
limits for some outlying compounds such as the iodated X-ray contrast
media are, however, to be expected in multi-residue methods for a broad
variety of compounds.

Other authors (Gros et al., 2012; Chitescu et al., 2012; Farré et al., 2008;
Gros et al., 2006; Garcia-Ac et al., 2009; Gomez et al., 2010; Wode et al.,
2012; Idder et al., 2013; Garcia-Galan et al., 2010a; Pozo et al., 2006)
reported 10 to 100 times lower method detection limits (MDLs) for the
same compounds using triple quadrupole, quadrupole linear-ion trap
tandem MS, and orbitrap and TOF-HRMS (Figure 5.6). These authors
all applied (online) SPE as enrichment step to increase the method
performance limits and reached 100- to 1000-fold preconcentration

factors (Table 5.4). By applying SPE and online SPE, the equivalent
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Table 5.2 (continued)

Pharmaceutical compound CCa CCp Interday repeatability as RSD (%, n = 5) at Matrix
different spiking levels (ng1™1) effect
(ngl™")  (pgl™') 0.01  0.05 0.1 0.5 1 5 (%)
Indometacin >5.00 >5.00 a a a a a & a
Todipamide 0.41 0.83 a a a 20 12 28 110
Tohexol 1.49 1.49 a a @ @ 20 31 48
Tomeprol 1.24 1.24 a a a a 18 24 61
Topamidol 3.66 >5.00 a @ @ @ 24 52 15
Topanoic acid 0.73 0.73 a a a 14 15 9 78
Iopromide 0.34 0.77 a a 28 15 12 20 48
Totalamic acid 0.87 4.87 a a a a 30 27 79
Ketoprofen 0.06 0.06 a 17 16 11 9 6 86
Lincomycin 0.50 0.50 a a @ 18 19 5 120
Metoprolol 0.15 0.55 a a 29 13 8 4 93
Metronidazole 0.06 0.11 a 35 22 9 15 7 89
Nalfcillin 0.41 0.41 a a a 17 15 13 183
Naproxen 0.55 0.55 a @ @ 10 11 11 85
Norfloxacin 0.09 0.50 a 31 24 12 13 12 86
Ofloxacin 0.07 0.12 a 19 12 7 11 9 86
Oleandromycin 0.05 0.09 a 36 17 12 10 8 103
Oxacillin 0.14 0.55 a a 16 31 20 17 104
Oxytetracycline 0.57 0.57 a a a 21 18 19 99
Paracetamol 0.59 0.59 a a a 6 13 10 73
Penicillin G 0.56 0.56 a a @ 18 28 40 61
Penicillin V 0.53 1.02 a a a 28 25 18 97
Pentoxyfylline 0.03 0.07 38 13 13 6 8 5 90
Phenazone 0.02 0.06 42 16 11 3 3 6 83
Pindolol 0.02 0.06 39 20 12 10 8 5 68
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Table 5.3 Parameters of the method validation indicating the performance of the analytical method

for drinking water.

Pharmaceutical compound CCa CCp Interday repeatability as RSD (%, n = 5) at Matrix
different spiking levels (ngl™') effect
(ngl™"  (pgl™Y) 0.01 005 0.1 0.5 1 5 (%)
4-(dimethylamino)antipyrine  0.05 0.05 a 9 6 9 3 7 85
Atenolol 0.13 0.13 a a a 12 10 3 95
Betaxolol 0.1 0.1 a a 27 8 3 7 109
Bezafibrate 0.05 0.05 a 13 12 6 6 5 98
Bisoprolol 0.01 0.01 33 11 12 5 7 7 96
Caffeine 0.49 0.49 a a a 20 15 3 97
Carbamazepine 0.07 0.07 a a 21 9 8 3 101
Chlorotetracycline 0.55 0.55 a a a 29 24 10 93
Ciprofloxacin 0.07 0.07 a 21 17 8 11 1 90
Clenbuterol 0.05 0.05 a 43 21 17 13 4 81
Cloxacillin 1.02 1.02 a a a a 40 39 69
Cyclophosphamide 0.08 0.08 @ a 13 10 10 4 93
Dapsone 0.04 0.04 a 16 12 11 11 4 92
Diatrizoic acid 1.05 1.05 a a a a 32 23 72
Diclofenac 0.48 0.48 a a a 11 9 5 107
Doxycycline 0.49 0.49 a a a 18 22 23 7
Enoxacin 0.13 0.13 a a 18 11 11 18 97
Enrofloxacin 0.09 0.09 & a 12 13 10 22 115
Erythromycin-H20 0.06 0.06 @ 29 20 11 15 15 99
Fenofibrate 0.13 0.13 a a 35 11 8 25 99
Fenoprofen 0.49 0.49 a a a 10 3 4 103
Fluoxetin 0.05 0.05 a 13 4 25 14 33 120
Furazolidone 0.06 0.06 a 15 16 24 19 16 99
Gemfibrozil 0.07 0.07 a 29 11 6 5 8 93
Ibuprofen 0.17 0.17 a a a 9 13 7 98
Ifosfamide 0.15 0.15 a a a 10 7 8 96
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Table 5.3 (continued)

Pharmaceutical compound CCa CCp Interday repeatability as RSD (%, n = 5) at Matrix
different spiking levels (ngl™1) effect
(ngl™")  (pgl™') 0.01  0.05 0.1 0.5 1 5 (%)
Primidon 0.53 0.53 a a @ 11 8 5 88
Propranolol 0.45 0.45 a a a 14 6 6 109
Propyphenazone 0.01 0.01 a 5 11 5 4 2 84
Ronidazole 0.51 0.51 a a a 34 33 25 104
Roxithromycin 0.38 0.38 a a @ a 16 40 172
Salbutamol 0.13 0.13 a a 36 7 8 11 102
Salicylic acid 0.05 0.05 a 30 27 10 11 11 89
Sotalol 0.58 0.58 a a a 17 8 7 95
Spiramycin 1.02 1.02 a a a a 34 54 310
Sulfadiazine 0.11 0.11 a a 20 10 12 15 114
Sulfamerazine 0.05 0.05 a 23 16 18 22 2 134
Sulfamethoxazole 0.11 0.11 a a 25 5 5 4 97
Terbutaline 0.06 0.06 a 27 10 10 8 10 108
Tetracycline 0.12 0.12 a a 33 36 37 16 94
Tolfenaminic acid 0.01 0.01 a 10 11 2 2 10 99
Trimethoprim 0.01 0.01 46 10 12 10 9 6 97
Tylosin 0.11 0.11 a a 22 17 15 27 108
Venlafaxine 0.06 0.06 a 27 17 4 3 6 97

2 Value was not calculated because calculated concentration (i.e. result of the concentration present in the not-
spiked sample and the spiking level) is below CCa.
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sample volume (ESIV = preconcentration factor x volume injected,
assuming 100 % recovery) was a factor of 2 to 80 larger compared to
a 250-ul large-volume injection without SPE enrichment, which may,

explain the lower obtained performance limits in this study.

Matrix effects are a known drawback related to the use of ESI sources
in LC-MS. Co-eluting organic and inorganic matrix compounds can
induce signal suppression or, less frequently, enhancement and therefore
affect the sensitivity of the analytical method, lead to decreased
reproducibility or affect linearity (Demeestere et al., 2010). Calculated
matrix effects ranged from 58 to 310% for drinking water and from
15 to 242% for surface water for all compounds. Similar values for
signal suppression and signal enhancement were found in literature even
when applying a SPE clean-up step (Ferrer et al., 2010; Gomez et al.,
2010; Chitescu et al., 2012). These results confirm that, as stated by
(Busetti et al., 2012), widespread applied clean-up strategies such as
SPE are less effective in removing interfering matrix compounds than
commonly thought in multi-residue analysis of water samples, where

washing protocols are rather simple.

The mean mass error (Table 5.5) was independent of both the matrix
of the sample and the concentration level and between —0.5 and 0.5 ppm.
However, the variability clearly rose at low concentrations: the 95%
confidence limits doubled at CCa and CCf compared to 5pugl™t. At
5pgl~! the 95 % confidence limit of the mass error was about 5 ppm for
all matrices, which is a typical value that can be found in literature for

TOF mass spectrometers.
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Table 5.4 Comparison of the injection volume and the preconcentration factor applied by various authors for the analysis
of pharmaceuticals in drinking (dw) and surface (sw) water using different MS instruments.

Analytical technique Number of Injection volume Preconcentration Reference

corresponding (ul) factor

compounds
SPE-HPLC-QqQ 19 10 500 (sw) (Gros et al., 2006)°
SPE-HPLC-QqQ 23 15 a (Ferrer et al., 2010)9
SPE-UHPLC-QqQ 3 20 1000 (sw) (Baker & Kasprzyk-Hordern,

2011)°

SPE-HPLC-QqLit 37 20 500 (sw) (Gros et al., 2009)f
SPE-UHPLC-QqLit 28 5 500 (dw), 100 (sw) (Gros et al., 2012)8
SPE-UHPLC-TOF 19 10 500 (dw) (Farré et al., 2008)"
SPE-UHPLC-TOF 19 10 100 (sw) (Petrovié et i , 2006)!
SPE-UHPLC-TOF 12 5 a (Nurmi & T@Ebmd 2011)]
SPE-UHPLC-TOF 7 10 200 (sw) (Ibafiez et al. woowvw
SPE-HPLC-TOF 32 20 400 (sw) (Gomez et al., 2010)!
SPE-UHPLC-Orbitrap 6 & 400 (sw) (Chitescu et & ,2012)™
online SPE-HPLC-TOF 4 10000 (dw, sw) - (Garcia-Ac et QN , 2009)"
online SPE-HPLC-QqQ 5 9800 (sw) - (Pozo et al. woomv
online SPE-HPLC-QqQ 21 1000 (sw) - (Idder et QN , 2013)P
online SPE-HPLC-QqLit 2 15000 (sw) - (Garcia- Qm_ms et al., 2010a)4
online SPE-UHPLC-Orbitrap 10 1000 (sw) sample 1:2 diluted (Wode et al. onwva
LVI-UHPLC-TOF b 250 - This research

2 Data not available.

b This research is the reference.
T The labels refer to the references in Figure 5.6.
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Table 5.5 Mean mass error and mass precision (n = 5
observations x 69 pharmaceuticals) of the TOF-MS at the
CCa and CCB (for each of the individual compounds), and
at 5ugl™* for deionized, drinking and surface water.

Concentration level ~ Mean mass 95 % confidence
error (ppm) limit (ppm)

Deionized water

CCa 0.3 +11.0

CCp 0.3 +11.0

5pgl-t 0.5 +4.0

Drinking water

CCa 0.2 +9.1

CCp 0.5 +8.0

5pgl-t 0.1 +4.6

Surface water

CCa 0.5 +9.3

CCp -0.3 +7.0

5pgl-t -0.5 +5.6

5.3.4 Application in surface and drinking water

5.3.4.1 Application of the suspect screening methodology

The developed suspect screening strategy was applied on one drinking

water sample and five surface water samples. First, the obtained

chromatograms were screened for the presence of peaks having a

minimal signal intensity (¢) of 100 a.u. and a mass error for which holds
1.96-0

— with 0 = 10.96 ppm. Second, the resulting retained
log(i)

peaks were tentatively confirmed when their retention time deviates not

that |e,,/.| <

more than 1.96 x standard deviation, i.e. within the 95 % confidence

interval, from the retention time listed in Table A.2.

In the drinking water sample, 4 pharmaceutical compounds

(bisoprolol, enoxacin, propranolol and propyphenazone) were retained
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by the signal intensity-dependent suspect screening and subsequently
confirmed based on the retention time. In the 5 surface water samples,
30 pharmaceuticals (105 hits) were retained by the screening strategy
in at least one sample and confirmed based on the retention time (Table
5.6). As an additional confirmation, the signal intensity-dependent

screening strategy (minimal signal intensity of 100a.u. and |em/z| <
1.96 -0

log(i)
chromatograms for the presence of fragment ions of the respective parent

with ¢ = 10.96 ppm) was also applied for searching the HE

ions. A fragment ion was confirmed when its retention time was within
a window of 0.05min around the retention time of its found parent
ion’s peak. For 14 compounds in the 5 surface water samples, also the
fragment ions were retained. However, the sensitivity of the instrument
in the MS® approach (HE function with ramped collision energy) seems
to be not sufficient enough to obtain signal intensity i > 100a.u.
for fragment ions of a wide range of analytes at real environmental
concentrations. Confirmation based on fragments was only possible for
32 of the 105 hits. In Figure 5.7, LE and HE chromatograms for atenolol
and metoprolol are presented illustrating cases were confirmation based

on fragments was successful and not successful, respectively.
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Table 5.6 Results from the suspect screening and target quantification for
the five surface water samples.

Pharmaceutical compound Screening: Number of Quantification:
retained and confirmed  Concentration range

parent (fragment) ions  in ngl™! (Number of

detected and/or
quantified peaks)

Adrenergics

Salbutamol 2(2) > 942 (1)
Analgesics

4-(dimethylamino)antipyrine 5 (4) < CCa
Phenazone 4 (0) > 19* (1)
Propyphenazone 5 (1) < CCux
Salicylic acid 5 (2) < CCux
Antibiotics

Enrofloxacin 1(1) < CCux
Erythromycin-Ho O 3 (1) > 80® (3)
Lincomycin 2 (1) < CCa
Metronidazole 1 (0) < CCa
Nafcillin 1 (0) < CCa
Norfloxacin 1(0) < CCux
Roxithromycin 3 (1) > 56% - 155 (3)
Sulfamethoxazole 3 (0) > 49* (2)
Trimethoprim 3 (0) < CCa
Antidepressant

Venlafaxine 5 (3) >34 (4)
Antiepileptic

Carbamazepine 5 (5) > 582 (5)
Antiinfective

Furazolidone 0 (0) > 1la - 62 (2)
Alkylating agents

Cyclophosphamide 2 (0) < CCa
Ifosfamide 5 (0) > 106* (2)
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Table 5.6 (continued)

Pharmaceutical compound

Screening: Number of

retained and confirmed
parent (fragment) ions

Quantification:
Concentration range
in ngl™! (Number of
detected and/or
quantified peaks)

B-blockers
Atenolol
Betaxolol
Bisoprolol
Metoprolol
Pindolol
Propranolol
Sotalol

Anti-inflammatory drugs
Diclofenac
Ibuprofen

Peripheral vasodilators
Pentoxifylline
Terbutaline

Psychoanaleptic
Caffeine

5 (5)

> 733 - 425 (4)
> 20* (2)

17 - 23 (4)

< CCa

< CCa

< CCa

240 - 280 (5)

> 382 - 76 (5)
> 175% - 1391 (4)

> 30* (1)
< CCa

> 227% - 3109 (4)

2 Value > CCa and < CCp, i.e. detected but not quantified.
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Figure 5.7 LE and HE chromatograms for atenolol (A, C) and metoprolol
(B, D) illustrating cases were confirmation based on fragments was successful
and not successful, respectively.

5.3.4.2 Evaluation of the screening performance

In order to evaluate the performance of the applied suspect screening
strategy, all found peaks in the surface water samples within a wider
mass error tolerance of +25ppm are considered. For these peaks, the

confirmed (+) and non-confirmed (o) peaks based on the retention time
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are presented in Figure 5.3. The retained peaks (157 hits related to 37
different suspect compounds) by the suspect screening fall within the
95 % confidence limits. The signal intensity based screening showed a
good performance with a false negative rate (i.e. peaks not-retained by
the suspect screening but confirmed by retention time) of 4.6 %. Out of
the 157 retained hits, 52 hits could not be confirmed by retention time
and thus labeled as false positive hits. Taking into account that these
52 hits were retained in 5 samples analyzed towards 69 pharmaceuticals,

the false positive rate is about 15% (z2%5). On the other hand, the false

discovery rate, which is the number of false positives (52 hits) divided
by the total number of positives (157 hits), is about 33 %. The latter is
specific for a certain sample and depends on the number of contaminants
truly present in the measured samples (in this case 157 - 52 = 105
hits). Consequently, the false positive rate (15 %) is preferred instead of
the false discovery rate (33 %) because this value is independent of the
contamination level of the sample and will allow an unbiased comparing

of future (improved) screening methods.

The importance of the signal-intensity based mass error is
emphasized when a more general and often applied mass error tolerance
of £5 ppm is applied. In that case, the false negative rate would account
for 19% of the compounds confirmed by retention time. These false
negatives had signal intensities below 800 a.u.; which is in the lower
intensity range of Figure 5.3. The use of a signal-intensity based mass
error is therefore of utmost importance in multi-residue screening at

trace levels.
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5.3.4.3 Target quantification

Target quantification was performed on one drinking water sample and
five surface water samples following the validated analytical method. In
the drinking water sample, no traces exceeding the decision limit were
measured. The presence of the 4 pharmaceutical compounds retained
and confirmed by the suspect screening could not be validated because
their concentrations were below the decision limit. In order to be able
to quantify drinking water relevant concentrations, at about 100-fold

lower decision limits are required (Farré et al., 2008; Gros et al., 2012).

In the five surface water samples, detection and/or quantification
was achieved for 17 pharmaceutical compounds in at least one out of the
five samples at concentrations ranging from 17ng1™! to 3.1ugl™ (Table
5.6). For 5 compounds (atenolol, caffeine, ibuprofen, roxithromycin and
sotalol) the concentration range exceeded the level of 100ngl~! at least

once.

All the detected and/or quantified observations in the five surface
water samples were also found by the suspect screening except for 3
hits. Furazolidone, which was detected twice at a concentration above
the decision limit, was not retained once by the suspect screening
strategy due to its low signal intensity (< 100a.u.) indicating that the
signal intensity limit of 100 a.u. might be too stringent in some cases
resulting in not-retained truly present compounds. Only one quantified
observation of sulfamethoxazole was not retained by the screening due

to its too erroneous accurate mass.
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Only limited studies reported concentrations of pharmaceuticals
in Belgian surface waters. Loos et al. (2009) conducted an EU-
wide survey (including the river Scheldt, Belgium) of pharmaceuticals.
Wille et al. (2010, 2011b) detected and quantified 8 pharmaceuticals
in seawater (1-855ngl™!) and marine organisms from the Belgian
coastal zone from which 5 pharmaceuticals were also identified in
this study (atenolol, carbamazepine, propranolol, salicylic acid and
sulfamethoxazole). Although for most pharmaceuticals concentration
levels found in surface waters in this study are similar to those found
in other European countries (Zuccato et al., 2010; Morasch et al.,
2010; Gros et al., 2012), only limited studies revealed the occurrence of
alkylating agents (cyclophosphamide and ifosfamide) in surface waters

(Kosjek & Heath, 2011).

5.3.5 Evaluation of large-volume injection UHPLC
and HRMS for rapid screening and quantifi-
cation: pros and cons

Large-volume injection showed to be an important advantage of the
presented rapid analytical screening and quantification technique. Good
and stable (deviation tg < 1.96 - 0¢,) chromatography was obtained
in a 19min UHPLC separation and the analytical method requires
no sample pretreatment (except for filtering the sample). This is in
contrast with most published analytical methods for the analysis of
micropollutants in surface water applying laborious and time-consuming
SPE enrichment steps. Besides, sample enrichment techniques such
as SPE preconcentrate compounds selectively and, as highlighted by

Busetti et al. (2012), achieving acceptable recoveries for all compounds
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is unlikely in multi-residue applications. On the other hand, SPE
enables a clean-up of the sample which can be important to prevent
contamination of the LC system and to reduce matrix effects for heavily
polluted or salty samples. However, the drinking and surface water
samples analyzed in this research did not affect the LC system and
acceptable matrix effects were calculated. It still needs investigation,
however, to point out what will be the potential of LVI-based analysis

for a broader variety of environmental (waste)water samples.

Omitting selectivity through sample preparation for multi-residue
screening is very relevant to assure a more reliable suspect screening.
However, it should be denoted that, as shown in Figure 5.6, less good
method performance limits are obtained compared to other analytical
methods using HRMS mass spectrometers due to the lower amount
of analyte injected as a result of both the injection volume and the
SPE preconcentration factor. By consequence, validation of LVI-
based screening methods is necessary to assure that sufficiently low
performance limits are obtained for a broad variety of contaminants.
Chitescu et al. (2012) recently discussed how low method performance
limits should be for multi-residue monitoring of surface waters towards
micropollutants, ensuring sufficient protection to the environment.
Although the environmental impact of pharmaceuticals is still far from
fully understood, a general limit of 100ngl™!, derived from ecotoxicity
data, is mentioned for pharmaceuticals in surface water (Chitescu et al.,
2012), which is similar to the 100ngl1~! limit for pesticides in drinking
water, as regulated by the EU Council Directive 98/83/E. Besides,

100ngl! is also the proposed maximum annual average concentration
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for diclofenac in surface waters as found in the revision of the list of
priority substances for the EU Water Framework Directive 2000/60,/EC.
The method development in this study showed the potential to detect
35 (50 %) pharmaceuticals at a concentration of 100ng1™! or lower, and
for 51 (74 %) pharmaceuticals a decision limit of 500ngl™' and lower
is reached. Although this is a promising result, more work is needed
to further improve the sensitivity in order to be able to screen at a
general level of 100ngl~! or lower for a broad range of contaminants.
Additionally, an improved sensitivity is also needed for unequivocal
confirmation based on fragments and their ion ratio (European Union,
2002, Commission Decision 2002/657/EC) at environmental relevant
concentrations, because in this study only for 32 out of the 105 hits

fragment ions were found in the HE chromatogram.

A second important advantage of the developed suspect screening
strategy is that there is no a priori need for analytical standards.
For confirmation of the suspect screening results, only analytical
standards of the retained compounds are necessary and if the aim is
also quantification, the validation of only the retained and confirmed
compounds will be sufficient for a reliable quantification. Considering
the 5 surface water samples, mass traces related to 37 different suspect
compounds were retained in the chromatograms (Section 5.3.4.2).
Analyzing only these 37 compounds as analytical standards would allow
the confirmation based on the retention time. Finally, 30 out of the 37
compounds were confirmed by retention time. This means that for 10 %
of the suspect compounds, false positive hits occurred. The application

of the developed screening approach prior to target analysis has thus the
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advantage that less analytical standards (37 instead of 69) are needed
and that the workload for the validation can be reduced (30 instead of
69).

5.4 Conclusions

A methodology for suspect screening towards a broad variety of 69
multi-class pharmaceuticals in drinking and surface water based on
an innovative analytical method combining 250-ul LVI-UHPLC and
QTOF-HRMS has been investigated. The signal intensity-dependent
accurate mass error in TOF-MS was taken into account in a novel
screening model. The results show that a false positive rate not
higher than 15% was obtained for surface water. Suspect screening
in five Belgian surface water samples revealed the occurrence of 30
pharmaceuticals. The validated target quantification enabled the
detection of 17 pharmaceuticals in a concentration range of 17ngl™!

up to 3.1pgl™! in five Belgian river water samples.

LVI-UHPLC combined with full-spectrum HRMS is a rapid
and promising complement for the widely applied SPE combined
with MS/MS for screening and quantification of micropollutants in
environmental waters. Therefore, further research and application of
LVI in combination with the newest-generation and more sensitive full-

spectrum HRMS are encouraged.
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6.1 Introduction

In the suspect screening strategy presented in Chapter 5, chro-
matograms are searched for the presence of the exact masses of the
mono isotopic ions of a list of suspect compounds for which only the
molecular formulae are a priori known. This workflow diverges from
the traditional target analysis where analytical standards are a priori

available.

Preventing false negatives relies in a powerful screening algorithm,
which is able to automatically detect peaks (Miiller et al., 2011; Moschet
et al., 2013) and for which the acceptance thresholds, such as the
maximal allowed mass error, are set not too stringent (Chapter 5;
Mol et al., 2012). On the other hand, in order to avoid numerous
false positives, the maximal allowed mass error should be stringent
enough and additional confirmation parameters, such as the accurate
mass of the isotopes and isotope ratios (Kaufmann & Walker, 2012b;
Moschet et al., 2013), retention time (Kern et al., 2010; Ulrich et al.,
2011; Nurmi et al., 2012) and fragmentation prediction (Wolf et al.,
2010), could improve the confidence of the identification. In addition,
incorporating a peak/noise filter has shown to reduce the number of
false positives (Mol et al., 2012; Moschet et al., 2013; Hug et al., 2014).
With this purpose, different peak parameters such as the signal-to-noise
ratio (Moschet et al., 2013), peak area (Moschet et al., 2013, Chapter
5;), peak area-to-height ratio (Hug et al., 2014) and peak symmetry
(Moschet et al., 2013) have been applied to distinguish noise from ‘true’
peaks. However, in each of these studies, an increased false negative

rate (FNR) was reported upon choosing the mass error, peak/noise or
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other thresholds more stringent, and an acceptable balance between the

false positive and negative rate must be found.

In recently published suspect screening studies (K’oreje et al., 2012;
Moschet et al., 2013; Hug et al., 2014; Schymanski & Singer, 2014)
the results are typically evaluated through a decision tree considering
successively different decision criteria including the mass error, isotope
fit and a peak/noise filter. Even when the tolerance on the mass error,
isotope ratio error and peak/noise filter are well chosen, controlling
the FNR is not obvious because a detected analyte has to pass for
each of the criteria successively. As such, the FNR accumulates upon
advancing through the decision tree and the overall FNR will amount to
approximately 1 -[](1-q;) , with a; the FNR of the i*" criterion. For
example, the overall FNR can theoretically increase to 30 % supposing
a decision tree with 7 criteria having each a 5% FNR. In addition,
methodologies to appropriately choose the optimal tolerance for each
of the decision criteria are still lacking, potentially resulting in a not
well-balanced screening, which can be more stringent for some of the

criteria than for others.

In this chapter, the aim is to develop a balanced screening for
UHPLC-Orbitrap HRMS chromatograms towards a list of 77 suspects
based on accurate mass, and taking into account isotope accurate masses
and ratios in a holistic approach. Hereby, the goal is to control the
overall FNR of the screening algorithm to a challenging level of only
5%. Investigated is to which extent information retrieved from the
full-spectrum (without MS/MS), such as the isotope fit, can improve

the indicative identification of compounds and how noise peaks can
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be omitted in order to reduce the number of false positives, without
compromising the false negative rate. In first instance, standards were a
priori available for 40 target pharmaceuticals (set A), which were spiked
in wastewater treatment plant (WWTP) effluent to construct a training
dataset for the suspect screening method development. Subsequently,
the same 40 pharmaceuticals (set A) were treated as artificial suspects
to perform a hypothetical suspect screening in order to evaluate the
screening performance and to estimate the false positive rate (FPR).
As proof of concept, 7 WWTP effluents were screened for the whole set
of 77 (set A + B) suspect pharmaceuticals.

6.2 Material and methods
6.2.1 Chemicals

The analyzed pharmaceuticals in Chapters 3 and 5, which are
amendable to electrospray ionization (ESI) positive, are selected as
suspect compounds in this chapter. For the set A and the retained set
B pharmaceuticals, individual stock solutions were prepared on weight
basis to a concentration of about 1mgl™' (suppliers and solvents in
Table A.1). A standard mix of the pharmaceuticals was prepared at
a concentration of 2mgl™!. Standard and matrix-matched solutions
were prepared by diluting a standard mix in (i) 10:90 methanol/water
with 0.1% (v/v) formic acid and 0.1gl™' Na,EDTA - 2H,0 (0.01-
1000g1™), and (ii) in WWTP effluent (0.2-20000ng1™!), respectively.

Other chemicals are specified in Section 3.2.1.
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6.2.2 Sampling, sample pretreatment and solid-
phase extraction

Automatic samplers (50 ml sample each 20min, Sigma 900 or ISCO
4700, Elscolab, Belgium) collected 24 h time integrated effluent samples
from 7 WWTPs in Aalst, Destelbergen, Gent, Geraardsbergen,
Harelbeke, Leuven and Tessenderlo (Belgium) in February 2014. Briefly,
according to the slightly modified protocol for solid-phase extraction
(SPE) described in Section 3.2.3, 50ml of sample was filtered and
enriched through Oasis HLB cartridges. After washing the SPE
cartridge with 6 ml, the compounds were eluted with 5ml methanol,
the eluent evaporated and reconstituted in 1 ml of 10:90 methanol /water

with 0.1% (v/v) formic acid and 0.1gl™* Na,EDTA -2 H,O.

6.2.3 Instrumental analysis

Ten pl of the extract were injected and separated on a UHPLC reversed
phase column (Hypersil Gold column, 1.9 um particle diameter, 2.1 x
50mm, Thermo Scientific). The following gradient of (A) water, (B)
methanol, both acidified with 0.1 % formic acid, and (C) a mixture of
equal amounts of water, methanol, acetonitrile and isopropanol acidified
with 0.5% formic acid at a flow rate of 350ulmin~' (Accela 1250
pump, Thermo Scientific) was used: 0-1.5min10:,% B, 1.5-15 min linear
gradient to 100 % B, 15-16 min 100 % B, 16-21 min 100 % C, 21-26 min
10% B.

Mass spectrometric analysis was performed on an Orbitrap HRMS

(Q-Exactive, Thermo Scientific) equipped with a heated ESI (HESI-II,
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positive ion mode) source and operated in full scan (150-500m/z) at a
resolving power of 70000 at full width at half maximum (FWHM) at
200 Da. Online mass calibration using diisooctyl phthalate (C,,H430,)
as a lock mass was enabled. The optimized HESI-II parameters were:
spray voltage: 3.5kV; sheath gas flow rate: 45au; auxiliary gas flow
rate: 10au; capillary temperature: 350 °C; heater temperature: 375 °C;
S-lens RF-level: 60%. The automatic gain control (AGC) target was
set at 3000000 with a maximal injection time of 200 ms. No MS/MS

scans were performed.

6.2.4 Suspect screening

6.2.4.1 Suspect library

The R-package enviPat was used to model the isotopic fine structure of
all the suspect compounds in order to determine for each compound the
exact mass of the mono isotopic ion [M+H]| ", the theoretical mass of the
first three (by intensity) isotopes and their isotope ratios. The actual

1
Vm/z

(Zubarev & Makarov, 2013) (Figure 6.1), was taken into account and

resolving power of the Orbitrap MS, which is proportional to

pointed out that not all isotopes are sufficiently resolved, especially with
respect to the N and 3C isotopes in some height molecular weight
compounds. It was proposed that two isotopes should be resolved by
a valley of at least 50 % in order to be considered. This is illustrated
in Figure 6.2 for zidovudine (m/z 268.10403). Its N and '3C isotopes
are only partially resolved. The valley between the isotopes is < 50 %

of the abundance of the 3C isotope, however, > 50 % of the abundance
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Figure 6.1 Least squares regression for the measured resolving power (R)
1125975

Vm/z

versus m/z, R = , for 13 compounds over a mass range of 150 to 450

Da.

of the 1°N isotope. Thus, only the 3C isotope is added to the suspect
library.

The first three (by intensity) isotopes are used. As such, for
chlorinated compounds, the 37Cl-isotope is the first isotope and for
all other compounds (containing N, O, F, I or S heteroatoms) the
13C-isotope is the first isotope. The selected second and third isotope
depend on the number of C- and heteroatoms in each compound and are
specified in Table A.3. A selected isotope of the modeled isotopic fine
structure must be partially resolved from a nearby isotope by a valley

of at least 50%. For compounds with N-atoms, an actual resolving
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Figure 6.2 Modelled isotopic fine structure of zidovudine (268.10403 m/z,
68766 FWHM). The mono isotopic ion (left), N and *3C (middle), and *3C,
(right) isotopes are annotated.

power of at least 70000 FWHM showed to be necessary for a well-
resolved "N isotope. The suspect library (Table A.3) holds the following
information: the compound names, the exact mass of the protonated
mono isotopic ion [M+H| " (m/z,0), the theoretical masses of the three
selected isotopes (m/z¢p,1, m/z4, 2 and m/zy, 3), and their theoretical

isotopic ratios (i1, iren,2 and iry, 3).
6.2.4.2 Non-target peak picking

A non-target peak picking algorithm designed for Orbitrap HRMS is
applied on each MS data file and lists up all peaks that are found in
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the chromatograms. Therefore, the raw profile MS data files (.raw
format) were converted to centroid MS data files (.mzxml format)
using ProteoWizard (the Thermo centroiding algorithm was selected)
(Chambers et al., 2012). Subsequently, the centWave feature detection
algorithm (Tautenhahn et al., 2008) incorporated in the R-package xcms
was applied for non-targeted peak picking. Basically, first, region of
interests (ROIs) are detected after which the centWave algorithm is
applied to the ROIs for peak detection resulting in the detected features.
A ROI is a m/z and retention time domain in which at least k = 5
centroids are found with a signal intensity of at least I = 1000 having
a maximal mass deviation of +3ppm around the mean mass of all
centroids in the ROI. Subsequently, for each ROI an extracted ion
chromatogram is constructed. For the subsequent peak detection, the
continuous wavelet transform (CWT) is used, which reliably detects
peaks assuming a Gaussian peak shape. The CWT needs as parameters
a minimal and maximal expected peak width (5 and 155, respectively)
and a minimal signal-to-noise (S/N) ratio (S/N > 3). The peak
picking process is slow (1-2h per 15 min LC-MS data file) and therefore,
the method was parallelized using the R-package doMC. The Ghent
University Supercomputer Infrastructure was used to perform this task

in parallel.

The algorithm calculates for each picked peak a set of parameters
including accurate mass (m/z), retention time (tg), baseline corrected
peak area (PA), the fit of the chromatographic peak to a Gaussian
curve (root-mean-square error of Gaussian fit: €gq4s5), and the width of

the Gaussian curve (sigma-parameter). The accurate mass (m/z) and
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retention time (tg) are calculated as the intensity weighted average mass
and retention time of the centroids in the feature, respectively. For each
processed chromatogram, the calculated parameters of the picked peaks
are stored in a peak list in which each peak gets a unique ID number.
Even in suspect screening - when the molecular formulae and thus the
exact masses are a priori known - such a non-target peak picking is
advantageous because the 2-dimentional chromatograms (retention time
- m/z) are reduced to an easily searchable list of peaks, facilitating the

subsequent data processing.

6.2.4.3 Method development based on a training dataset

The development of the suspect screening methodology relies on the 40
target compounds (set A) spiked in WWTP effluent samples. The aim is
to assemble a training dataset containing the measured accurate mass of
the mono isotopic ion and its isotopes, isotope ratios, together with the
Gaussian fit (egquss,i) and width (sigma;) of each ion. Therefore, non-
spiked and spiked (0.2, 2, 20, 200, 2000, 20000ng1™!) 24h composite
samples collected at the effluent of the WWTP of Aalst (Belgium) were
analyzed in triplicate on 3 different days and the data for the 40 target
analytes were manually processed using ExactFinder V1.4 (Thermo
Scientific) using a mass extraction window of +5 ppm around the mono
isotopic ion. The retention time was compared with a reference standard

(maximum retention time deviation of 65s).

The same chromatograms were in parallel processed through the
non-target peak picking algorithm. Then, first, the peak lists were

manually searched for the peaks corresponding to the 40 target

204



Balancing the false negative and positive rates for suspect screening in wastewater

compounds. All peaks that were manually processed were also found
by the non-target peak picking. Second, the peaks being part of the
isotopic pattern of the target compounds were grouped as a component
(i.e. manual componentization). Third, for each component (mono
isotopic ion and its attributed isotopes), the number of isotopes was
count. A total of 708 mono isotopic ions were obtained of which 573,
440 and 310 had at least 1, 2 and 3 isotopes, respectively. Finally, the
mass error of the mono isotopic ion for each component is calculated
(Am/zg = /o —m/zo.in -10% ppm) with m/zy the accurate mass of
m/zo,th
the mono isotopic ion as calculated by the non-target peak picking
algorithm. For the isotopes (i = 1, 2, 3) in each component, the accurate
mass (m/z;), retention time (tg,;) and the measured isotope ratio based
on the peak area (ir; = PAi) are used to calculate the mass error

PA
m/z —m|z;
(Am/z; = M - 10% ppm), the isotopic retention time shift
m/zi th
taking the mono isotopic ion as reference (Atg; = tr; — trg), and the
z'n— - .’I"O .
), respectively.

relative difference of the isotope ratio (Air; = —
1Tth,i

6.2.4.4 Multivariate discrimination of noise and peaks

To discriminate ’true’ peaks from noise, the peak parameters which
are best fit-for-purpose are selected using multivariate discrimination.
The spiked WWTP effluent samples (Section 6.2.4.3) are used for the
optimization of a peak/noise filter. In first instance, a dataset was
generated containing sufficiently noise and ‘true’ peaks. Therefore, after
non-target peak picking of the MS data files, a mass error filter of +5 ppm
is applied on the peak lists for the mono isotopic masses of the 40 target

(set A) compounds resulting in a data set containing a total of 1264
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peaks. Subsequently, the peaks were visually inspected and 466 peaks
were evaluated as being well shaped. These peaks include the peaks of
the 40 target compounds but also other peaks of unknown compounds.
A well-shaped peak should be a quasi-symmetrical Gaussian shaped
and stand out above the surrounding noise. The other 798 peaks were
labelled as noise. For the 1264 peaks a total of 12 peak parameters were

calculated.

FEight parameters calculated by the centWave feature detection

algorithm were used:

e Peak width at base (PW B = maximal — minimal ¢ of a peak),
as log(PW B)

e Base line corrected peak area, as log(PA’)

e Peak area, as log(PA)

e Signal intensity of the peak, as log([])

e Signal-to-noise ratio, as log(S/N)

e Goodness-of-fit of a peak to a Gaussian curve, as log(€gquss)
o Width of the fitted Gaussian curve, as log(sigma)

e Height of the fitted Gaussian curve, as log(h)
Four additional parameters were calculated:

e Inter-scan mass variability, calculated as the intensity weighted

standard deviation on the masses of the centroids in a feature, as

log(sd(m/z))
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e Area-to-height ratio, as log(%)

e Peak symmetry calculated as the weighted skewness according to

Rimoldini (2014), as log(skewness?)

e Peak sharpness calculated as the weighted kurtosis according to

Rimoldini (2014), as log(kurtosis?)

Subsequently, quadratic discriminant analysis (as provided by the
MASS packing in R) was amended to evaluate which combination of
peak parameters amongst the 12 defined peak parameters resulted in
an optimal classification of noise and ‘true’ peaks. A variable selection
algorithm adapted from Raftery & Dean (2006) was applied to search
for the peak parameter combination having a minimal misclassification
error (sum of misclassified peaks/ total number of peaks). The
misclassification error was calculated by leave-one-out cross-validation.

The selection algorithm consists of the following steps:

1. The peak parameter having the minimal misclassification error is

selected.

2. Propose a next peak parameter, which results in the lowest

misclassification error.

3. Determine if any selected peak parameters can be dropped without

increasing the misclassification error.

4. Repeat step 2 and 3 until no improvement of the misclassification

error is possible.
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6.2.4.5 Applied computational techniques

All computations were performed using the R software (R Development
Core Team, 2008). The enviPat, xcms and doMC, QRM, and
MASS R-packages provided the required functions for the exact mass
and theoretical isotope ratio calculations (Section 6.2.4.1), the non-
target peak picking (Section 6.2.4.2), calibration of the parameters of
the multivariate t-distribution (Sections 6.3.2.2 and 6.3.2.3), and the

discriminant analysis (Section 6.2.4.4), respectively.

6.3 Results and discussion

6.3.1 Qualitative evaluation of the analytical
method (set A)

The average mass error and precision (as standard deviation) of the
mono isotopic ion and the three isotopes in the training dataset were
0.50+1.18, -0.93+2.57, —0.07+2.36 and —0.92 + 3.04 ppm with n = 708,
573, 440 and 310, respectively. The boxplots in Figure 6.3A show that
larger mass errors are related to outliers and that the median values
are very close to zero (0.48, —-0.25, —-0.14 and -0.44 ppm, respectively),
showing that no bias is present on the mass accuracy. The accuracy and
precision of the isotope ratios is evaluated as the relative difference of
the isotope ratio based on the baseline corrected peak area (Air), data
from the training dataset). On average, Air; amounted to —0.02 £ 0.15,
—0.10 £ 0.14 and —0.16 + 0.18 for the ‘", respectively. From these data,
and also from the boxplot in Figure 6.3B, it can be seen that the isotope

ratios are slightly underestimated in at least 75 % of the cases, especially
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Figure 6.3 The mass error (Am/z) and isotope ratio error (Air) for the
mono isotopic ion and the first three isotopes for the 40 target (set A)
compounds (n = 708, 573, 440 and 310, respectively), represented as boxplots
(the whiskers extend to the most extreme data point within 1.5 times the
interquartile range from the box).

for lower intensity isotopes. Other authors observed the same bias and
concluded that Orbitrap technology discriminates low (isotopes) against
high (mono isotopic ion) intensity ions (Erve et al., 2009; Kaufmann &

Walker, 2012a).

6.3.2 Development of the suspect screening

The suspect screening workflow is schematically presented in Figure
6.4: suspect library building (Section 6.2.4.1), non-target peak
picking (Section 6.2.4.2), automated componentization (Section 6.3.2.1)
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followed by multivariate hypothesis testing (Section 6.3.2.2 and 6.3.2.3)

after which the retained analytes are confirmed based on retention time.

6.3.2.1 Componentization: automated grouping of mono
isotopic ions and their isotopes

In order to develop an efficient screening method, the grouping of the
mono isotopic ions and their isotopes into components, which has been
done manually for the construction of the training dataset, is automated.
First, the picked peaks in the peak list are filtered with a wide mass
error tolerance filter (+10 ppm) for the mono isotopic exact mass of the
suspect compounds (|[Am/zg| < 10ppm). In this step, a wide mass
error tolerance filter of +10ppm is applied to assure that no peaks,
being potentially of interest, are omitted. Note that multiple peaks
are possible per suspect compound. Second, for each retained mono
isotopic ion, the best matching isotope peak i is extracted from the
peak list. Therefore, the peak list is searched for the peak having a
minimal normalized squared error (NSE). This is repeated for 2 more
isotopes. NSF; is calculated as the sum of the normalized squared
mass error and the normalized squared isotopic retention time shift:
NsE = A AQLR?

2
UAm/z UAtR

OAm /. and UZtR are the average standard deviations of the observed

where ¢ refers to isotope 1 to 3 in Table A.3.

mass error and isotopic retention time shift of the three isotopes in the
training dataset (n = 573 + 440 + 310) and amounted to 2.66 ppm
and 0.30s, respectively. The grouped mono isotopic ion and isotope
peaks are combined in a component list, in which 1Dy and ID; refer to
the peak ID of the mono isotopic ion and its i*" isotope, respectively.

Finally, Am/zy and Am/z;, Atg; and Air; for the mono isotopic ion

210



Balancing the false negative and positive rates for suspect screening in wastewater

Suspect library Non-target peak picking
Modelled isotopic fine structure Detect all peaks
g s . N .y LC-HRMS chromatogram Picked peaks
Z 2 g,
2 s B =
s ¥
2000 0028 R 0005 00020
= Suspect list = Peak list
Compound | m/z,, | mlzy, | iry, mlz | tx | PA| e, | sigma
Diclofenac
Bezafibrate | ... B . v
Componentization
Automated isotope grouping
100 D1 D2 D3
1 = Component list
] Component Compound
ﬁ ] 1
A A 2 Bezaflbrabe
8 i ol
W e me T ™
Multivariate hypothesis testing
Single p-value per detected analyte
Amizo | 1 cri- = Multivariate statistics

terion

1¥A/
. d

2 criteria

.'*’ | ARy
1 4‘ i l n criteria
P o > Airq
ik S ? L
p20.05 p<0.05
4 r ek = retain = reject
. "" .9" 1k § ’-‘. =>indicative identification

Confirmation
Purchase reference standard and confirm retention time

Figure 6.4 In suspect screening, a suspect library is build; non-target peak
picking is performed on the LC-HRMS chromatograms; and componentization
aims to automatically group peaks belonging to the same analyte. The
identification decision is based on multivariate hypothesis testing after which
the retained analytes must be confirmed.
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and its i*" isotope, respectively, are calculated using the equations given

in Section 6.2.4.3.

6.3.2.2 Multivariate hypothesis testing for a holistic screen-
ing approach

Milman & Konopelko (2000) discussed how statistical hypothesis testing
can be applied for the identification of analytes for which the null
hypothesis is Hy: detected analyte = suspect compound of interest.
Hypothesis testing is in many screening methods the underlying idea
of checking if the mass error of the mono isotopic ion (Am/zp) of a
detected analyte is within a predefined mass error tolerance. The mass
error tolerance should be based on the expected variability of the mass
accuracy of the MS (such as in Chapter 5). When taking additional
ions into account, such as the isotopes, multiple hypotheses could be
tested simultaneously (e.g. both the mono isotopic mass error and the
isotope mass error). In this case, in order to test the whole at a global
level of significance « (e.g. 5 %), multivariate hypothesis testing will
be more efficient in identification than the univariate tests (Milman &
Konopelko, 2000). When supposing 2 ions, i.e. the mono isotopic ion
and the first isotope, a total of 4 variates can be tested simultaneously:
Am/zy, Am/z1, Atg; and Airy. Subsequently, incorporating additional
isotopes adds on the variates Am/z;, Atg; and Air; for the it isotope
(i = 1, 2, 3 in this study). As such, the number of variates (d) is 1, and
4, 7 or 10 when only the mono isotopic ion is considered, and when 1,

2 or 3 isotopes are added, respectively.
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The multivariate distribution of the named variates is investigated
from the training dataset, and showed to fit well a multivariate Student
t-distribution with heavier tails than expected from the multivariate
normal distribution. The multivariate Student t-distribution is
described by 3 parameters (Roth, 2013): the vector of means p of
the d variates; a symmetric matrix ¥ (dimension d x d), and the
degrees of freedom v. In the case of the multivariate Student t-
distribution, the suitable multivariate hypothesis can be tested by use
of the F-distribution (Roth, 2013). For a multivariate Student t random
variable with d variates X ~ t(u, 3, ) the quadratic form (or squared
Mahalanobis distance) A? = (X —u)T 271 (X —p) admits a F-distribution:
1A? ~ F(d,v). Figure 6.5 presents QQ-plots for the F-distributions
of the different hypothesis tests showing that the data fit well the

multivariate Student t distributions.

As such, for each of the detected analytes, Hy is rejected (i.e. no
identification) when the p-value, calculated as pF(%AQ7 d,v), turns out
to be less than the desired significance level . If not (p > «), the

identification is accepted and the peak is retained.

The 3 parameters p, % and v of the Student t-distribution were
estimated from the training dataset for the case where only the mono
isotopic ion is used, and for the case where 1, 2 and 3 isotopes are added,
respectively. Hi1, Ho4, H37 and Hy 19 are introduced as notations
for the respective hypothesis tests: only the mono isotopic ion taking
into account 1 variate, the mono isotopic ion + 1 isotope taking into
account a total of 4 variates, etc. (Table 6.1). The actual FNR at

significance levels a of 5% (FNR = fraction of the analytes in the
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training dataset with p-value < 0.05) are 5.5, 3.7, 4.8 and 4.2% for
Hiy1, Ho 4, H37 and Hy 19, respectively, showing the overall good fit of
the applied multivariate Student t-distributions.
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Figure 6.5 The logarithmic observed quantiles showed to fit well the
logarithmic theoretical quantiles of the F-distribution in a QQ-plot (A: Hi 1,
B: Hz.4, C: Hs7, D: Ha10).
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6.3.2.3 Including a peak/noise filter in the holistic screening
approach

A new peak /noise filter concept is included in the multivariate screening.
Therefore, in a first step, the multivariate discrimination is applied
to select the peak parameters performing the best to discriminate
noise from ‘true’ peaks. The results of the variable selection process
are given in Figure 6.6. In step 1, the misclassification error was
minimal (17.8 %) for log(egquss) and decreased to 12.8 % by inclusion of
log(sigma) in step 2a. In step 2b, log(sd(m/z)) was added, reducing the
misclassification error to 11.1%. In subsequent steps, no improvement
was obtained anymore. Finally, it was decided that an optimal
discrimination (minimal classification error versus model complexity)
was obtained for the combination of log(egquss) and log(sigma) because
addition of log(sd(m/z)) only marginally reduced the misclassification
error.

The goodness of fit of a peak to a Gaussian curve, as log(egauss),
together with the width of the fitted Gaussian curve, as log(sigma),
had thus the best discriminating power amongst a set of 12 parameters.
‘True’ peaks showed overall to be better Gaussian shaped (95 % egquss
< 0.13) with a Gaussian sigma parameter between 3.7s and 15.7s (95 %

interval).

In a second step, the two selected variates log(egquss) and
log(sigma) are added on to the multivariate screening. Thus, the
screening hypothesis tests Hi1, Haog4, Hs7 and Hy 1o are extended
with the selected parameter combination log(egquss) and log(sigma)

per ion. As such, Hy 1 becomes Hy 3 and includes Am/zy, log(egauss,0)
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Figure 6.6 Misclassification error of the peak parameter combinations
for the peak/noise discrimination evaluated during the variable selection
procedure (from left to right: step 1, 2a and 2b).

and log(sigmay), similarly Hs 4, Hs7 and Hy 1o are extended to Ha g,
Hs 13 and Hy s, respectively, taking into account egqyss,; and sigma;
for each i*" ion (Table 6.1). The distributions of H; 3, Hyg, Hs13 and
H, 15 showed to fit well the multivariate Student t-distribution (Figures
6.7) and their parameter values u, ¥ and v were estimated from the
training dataset. The actual FNRs at a significance level « of 5% are
5.3, 6.9, 5.0 and 6.7% for Hy 3, Hog, H313 and Hy g, respectively,
showing that the overall false negative rate was not compromised by

inclusion of the peak/noise filter.
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Figure 6.7 The logarithmic observed quantiles showed to fit well the
logarithmic theoretical quantiles of the F-distribution in a QQ-plot (A: Hi 3,
B: Hz.s, C: H3.13, D: Ha1s).

Additionally, in order to be able to evaluate the effectiveness of the
isotope ratios for identification, reduced models were calculated for Hs g,
Hj 13 and Hy 15, which leave out the isotope ratios Air;. As such, Ho 7,

Hs 1, and Hy 15 were obtained, respectively (Table 6.1).
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Table 6.1 Variates used for the different screening hypothesis and false positive rates for the 40 artificial suspect
compounds (set A).

H Variates® FPR Isotope specific FPR (%)P
DE&\Nh Dﬂms. Air; €gauss,i Aﬁvv wﬂo_\ Hwo\wﬂO_HwO HwO\Hwa\ HwO\ Hwow\ HwQ\w»M\ HwO\HmZ\
& sigma; |(n=40) | & 37C1/13C/37Cl, (n=8) 13C, (n=20) N (n=5) °N (n=5) 13C, (n=2)
Hii |0 - - - 202
His 0 - - 0 131
Hay |0,1 1 1 - 28
Ha7 |01 1 - 0,1 24
Hsos |0,1 1 1 0,1 22 <1.4 (n=8) 24 (13C, n=32)
Hs7 (012 12 12 - 4.7
Hzip |0,1,2 1,2 - 0,1,2 3.9
Hzi3 |0,1,2 1,2 1,2 0,1,2 2.8 <1.4 (n=8) 3.6 (13C/13C,, n=25) 4.4 (n=5) <5.6 (n=2)
Hyio [0,1,2,3 1,23 1,2,3 - <0.3
Hyis [0,1,2,3 1,2,3 - 0,1,2,3 <0.3
Hyis 0,1,2,3 1,2,3 1,2,3 0,1,2,3 <0.3 <1.4 (n=8) <0.6 (n=20) <2.2 (n=5) <2.2 (n=5) <5.6 (n=2)

a4 =0 for the mono isotopic ion and i = 1, 2 or 3 for the 15t, 274 or 3" isotope, respectively.
b FPR split up for the different isotope combinations (number of compounds).
- Not applicable.
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6.3.3 Evaluation of the suspect screening perfor-
mance based on artificial suspects (set A)

6.3.3.1 Screening limits of identification

The screening limit of identification (LOI) is defined as the lowest
spiking level at which at least two out of the triplicates were retained
by the suspect screening algorithm. The LOIs are evaluated for the
suspect screening hypothesis Hi 3, Ho.g, H3.13 and Hy4 18, which include
the peak/noise filter; and the LOIs for H; 3 (including only the mono
isotopic ion) are compared to the decision limits (CCas). In Table 6.2,
both the reported LOI and CCa levels refer to the spiking levels in
the samples and represent Cspire + Csampie: the spiked concentration
(0.2, 2, 20, 200, 2000 or 20000ngl™) plus the eventually measured
concentration in the non-spiked sample. Thus, the reported LOI and
CCa values are equal to at least the measured concentration in the non-
spiked sample and can therefore be an overestimation of the true LOI
and CCaq, respectively. To estimate the concentration in the non-spiked
sample, on each day, an external calibration curve (0.01, 0.03, 0.1, 0.3,
1, 3, 10, 30, 100, 300, 1000 pg1~!) was performed to convert the obtained
peak areas to concentrations and to correct for the recovery and matrix

effects.

The LOI for H; 3 and the CCa had both median values of 42ng1~*.
It was observed that all the peaks having a signal intensity of at
least the CCa were found by the non-target peak picking algorithm.
Moreover, the LOI was equal to or lower than the CCa for 24 and
8 out of the 40 compounds, respectively. However, for 8 other

compounds, the LOI was higher than the CCa. These compounds

219



Chapter 6

Table 6.2 Concentration in the non-spiked sample (efluent WWTP Aalst),
CCa, and the screening LOI for the 40 artificial suspect compounds (Set A).
Concentrations in ngl™.

Compound Csampte CCa® Hi3 Hzg  Hsis Hy1s
Acyclovir 312 312 312 312 2312 20312
Alprazolam 6 6 7 206 206 206
Amantadine 42 42 42 42 2042 2042
Anmitriptyline 26 26 2026 2026 2026 2026
Amoxicillin 63 63 63 263 2063 2063
Besifloxacin n.d. 2000 2000 20000 20000 20000
Carbamazepine 405 405 405 405 405 405
Chlortetracycline n.d. 200 2000 200 2000 2000
Ciprofloxacin 82 82 82 2082 2082 20082
Diazepam 2 2 2 4 4 22
Diclofenac 583 583 583 583 583 583
Efavirenz n.d. 20 20 200 200 200
Enrofloxacin n.d. 20 20 200 2000 20000
Flumequine n.d. 20 0.2 2000 2000 2000
Fluoxetine 22 22 22 2022 2022 20022
Gatifloxacin n.d. 20 20 200 200 20000
Indomethacin n.d. 20 0.2 200 200 2000
Lamivudine n.d. 2 0.2 200 200 2000
Levofloxacin 42 42 42 242 242 20042
Metronidazole 39 40 40 40 2039 20000
Moxifloxacin n.d. 200 20000 2000 20000 >20000
Nalidixic acid 4 4 4 24 2004 2004
Nevirapine 21 21 21 21 221 2021
Oseltamivir acid n.d. 200 200 200 2000 20000
Oseltamivir ethylester n.d. 20 20 200 2000 20000
Oxytetracycline n.d. 2 2 200 2000 2000
Paracetamol 23 43 43 43 2023 20023
Paroxetine n.d. 2000 2000 20000 20000 >20000
Pleconaril n.d. 200 200 2000 20000 20000
Rimantadine n.d. 20 20 20 2000 20000
Risperidone n.d. 2000 2000 2000 20000 20000
Sarafloxacin n.d. 20 20 2000 2000 20000
Sulfadoxin n.d. 0.2 0.2 200 200 200
Sulfamethazine n.d. 2 0.2 20 20 2000
Sulfamethoxazole 100 100 100 100 100 100
Temazepam 17 17 17 17 17 17
Tetracycline 160 160 160 160 2160 2160
Trimethoprim 61 61 61 61 261 2061
Venlaflaxine 332 332 332 332 332 2332
Zidovudine n.d. 20 200 20000 20000 20000

2 CCa values are calculated from the interday repeatability (as standard deviation of
the concentrations obtained after external calibration) using the method elaborated
in Chapter 4.

n.d. Not detected.
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(e.g. amitriptyline, chlortetracycline, moxifloxacin and risperidone)
showed typically relatively wide tailed chromatographic peaks and were
therefore excluded by the peak/moise filter of Hy 3. Upon including
the most intense isotope (Hszg), the median LOI was 200 ng 1! and
increased drastically to 2000ngl™! and 2062 ngl™* for a second (Hs13)
and third (Hy.1g), respectively. The LOIs were lower than 2.5 pgl™! for
98, 93, 85 and 55 % of the compounds for the H; 3, Hag, Hs 13 and

H, 18 screening hypothesis, respectively.
6.3.3.2 False positive versus false negative rate

A hypothetical suspect screening (as schematically presented in Figure
6.4) was conducted on seven non-spiked WWTP effluent samples for the
40 set A compounds treated as artificial suspects in order to evaluate
the false positive rate. A false positive is a peak retained by the
screening algorithm (thus with p-value > 0.05, i.e. the accepted false
negative rate a)) but having a retention time deviating more than 6s
from the retention time of an analytical standard. This maximal allowed
retention time error was also used for the construction of the training
dataset. Subsequently, the FPR was calculated as the false positive
count divided by the number (40) of screened suspects, with this ratio
averaged over the seven WWTP effluent samples, being in agreement

with Ellison & Fearn (2005) and Chapter 5.

There was one exception. For amoxicillin (tg = 1.60min), analytes
having the same accurate mass and isotopic pattern were retained at tr
4.98 and 5.67 min by all screening hypothesis (confirming thereby the 34S

and !N isotope). However, these ions also occurred at low abundance
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in the chromatograms of the 1000pgl™! analytical standards. These
analytes might be rearrangements products having the same chemical
formula as amoxicillin such as amoxicillin-diketopiperazine-2’,5’ being
identified as both an analytical impurity (US Medicines Compendium)
and a major degradation product in wastewater (Lamm et al., 2009).
Although the exact nature of these ions could not be confirmed (MS/MS

experiments would be required), they were not counted as false positives.

The FPRs for the different screening hypothesis are presented in
Table 6.1. Decreased FPRs were observed when adding the peak/noise
filter (e.g. His vs. Hi1), when adding the isotope ratios (e.g. Hag
vs. Hs 7 and Hj 13 vs. Hs11), and when taking into account additional
isotopes (Hy.3 vs. Hag vs. Hs13 vs. Hy1s). A FPR of about 131 %
was calculated for Hy 3. Such elevated FPRs, higher than 100 %, were
observed when multiple false positive hits are found per compound in a
chromatogram. In addition, when screening towards only the accurate
mass of the mono isotopic ion, also isotopes, having in general lower
abundance, can be seen as mono isotopic ions. This is exemplified in
Figure 6.8A. From high to low peak area, the number of false positives
for H; 3 increased clearly to a maximum for ions with peak areas of
about 100000 - 500000. However, the FPR decreased sharply for even
lower abundance ions because the LOI is reached at peak areas of about

50 000.

The FPR strongly reduced to 22, 2.8 and < 0.3% (i.e. less than
1 false positive) for Hag, Hs13 and Hy s, respectively, upon taking
into account isotopes, which can be explained by two reasons. First,

the LOI increased when progressing from Hi 3 to Hog, H3 13 and Hy 15
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due to the relatively low abundance of isotopes as compared to their
mono isotopic ion. When progressing from H; 3 to Hsg, the FPR is
reduced from 131 to 22%. This reduction, illustrated in Figure 6.8A,
is clearly stronger for low abundance ions (PAy < 1000000) than for
higher abundance ions (PAg > 1000000). The reason why almost no
false positives occurred for Hy g having PAg < 1000000 is thus related
to the LOI (2.5 % FPR with PAj < 1000000 versus overall 21.7 % FPR
for Hyg). Second, progressing from Hsg to Hsz 13 and Hy g clearly
further reduced the FPR, showing that additional isotopes improved
the identification effectiveness of the screening. This reduced FPR is
obtained at the cost of increasing LOI values due to the lower abundance
(and thus signal intensity) of higher isotopes. Figure 6.8B presents the
FPR as a function of the FNR (p > «) for H; 35, Ho g, Hs313 and Hy 1s.
If the goal is to obtain a FPR of 5%, a (= FNR) can be set to 2% and
0.01 % for Hs.13 and Hy 1, respectively, which is the intersection of the
curves in Figure 6.8B and the horizontal at FPR = 5 %. Upon accepting
an increased FNR (increasing «), the FPR reduces. At a FNR of 5 %,
i.e. the aim in this research, the FPR was lower than 5% for Hs i3
(FPR = 2.8,%) and H4.18 (FPR < 0.3 %), which are thus the preferred

screening hypothesis for application in this study.

6.3.3.3 Specificity of carbon and heteroatom isotopes

The presence of 37Cl isotopes has been used in different studies for
confirmation (Pico et al., 2007; Ibanez et al., 2008; Kern et al., 2009;
Nurmi et al., 2012; Li et al., 2013). However, it is of particular interest

to evaluate their specificity and to value also the use of other isotopes
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Figure 6.8 The false positive rate decreases (A) upon taking into account additional isotopes (white: H; 3, light gray:

H, s, gray: Hs.13) and (B) upon allowing an increased false negative rate.
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such as '3C, PN and 3S. In this study, up to three isotopes -
ordered from high to low abundance - were considered. As a result,
the following isotope combinations were present among the 40 artificial
suspect compounds (set A): 20 x 3C/13C,/13C,, 5 x 13C/13C, /1PN,
2 x 13C/BN/130,, 5 x 130/348/1N, 7 x 37C1/18C/37CIBC, 1 x
37C1/13C/37Cl,. Table 6.1 presents the FPRs for the individual isotope
combinations evaluated for Hsg, Hs 13 and Hy1s. As such, the
specificity of different isotope combinations can be opposed. For the
8 chlorinated compounds, no false positives (FPR for Ho g < 1.4 %, i.e.
less than 1 false positive) were observed in the seven WWTP effluent
samples when taking into account at least the 37Cl isotope. For the
other 32 compounds, a 24 % FPR was calculated for Hs g when taking
into account only the '3C isotope, showing that this isotope is less
specific. The FPR reduced to 3.6 % (Hz 13) considering the 3C/!3C,
isotope combination for 25 compounds. For 5 compounds for which
the 13C/31S isotope combination was considered, the FPR at H3 13 was
4.4%. When taking into account the 3C/!N isotope combination for 2
compounds, no false positives occurred (FPR for Hs 13 < 5.6 %, i.e. less
then 1 false positive). Thus, the isotope combinations *C/31S, 13C/1°N
and '3C/'3C, resulted in similar FPRs, and more research is required
to investigate the specificity of heteroatoms such as S and N isotopes

versus C isotopes.

The 20 compounds (set A) for which only the 3C/3C,/13C,
isotopes were evaluated also consist N atoms.  However, these
compounds had masses of at least about 260 Da, at which the actual

resolving power is lower than 70000 FWHM (the resolving power is
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proportional to for Orbitrap MS (Zubarev & Makarov, 2013)).

m/z
As a result, the '°N isotope would be insufficiently resolved from the

13C isotope and was therefore not selected for the suspect library. In
contrast, the 12 compounds (set A), for which the °N isotope was taken
into account, had masses ranging from 152 to 237 Da, for which the
resolving power was at least 70000 FWHM. Thus, a resolving power of
at least 70000 FWHM over the whole mass range would allow screening

for the '°N isotope for much more suspect compounds.

6.3.4 Application of the suspect screening (set A +
B)

As proof of concept, the seven WWTP effluent samples were screened
for the whole set of 77 suspect compounds (set A + B) using the
screening hypothesis H3 13 and Hy 5. For chlorinated compounds also
H, 5 was used because the 37Cl isotope showed to be specific with no
observed false positives. No a priori knowledge about the retention
time was available for set B suspects, whereas for the set A compounds
the retention time is supposed to be unknown. The suspect screening
results are presented in Table 6.3. For the three screening hypothesis
together, a total of 25 suspect pharmaceuticals could be indicatively
identified in the 7 effluent samples. Finally, for confirmation, the missing
reference standards for the retained compounds of set B were purchased,
their standards prepared and analyzed. As such, confirmation based on
accurate mass of the mono isotopic ion and 1, 2 or 3 isotopes (depending
on the screening hypothesis) and retention time was reached for 19

pharmaceuticals (i.e. true positives).
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Table 6.3 True positive and false positive screening results for the 77
suspect pharmaceuticals in 7 WWTP effluents.

Compound tr (min)  Nature of isotopes Detection frequency®
Hsis  Hsiz  Has
True positives: confirmed analytes (Atg < 65s)
Amoxicillin® 5.67 13C/348/15N 1 4 -
AmoxicillinP 4.98 13C/345/15N 5 7 -
Atenolol 142 13g/i3c,/13C 5 9 -
Bezafibrate 10.83  37C1/13C/37 cilsc 0 0 5
Bisoprolol 752 13¢/13¢c,/13C, 6 9 -
Caffeine 4.17 13C/15N/13C 0 7 -
Carbamazepine 8.98 13c/13¢, /15N 6 8 -
Diazepam 10.50  37Cl/ 130/37 C113¢ 0 0 1
Diclofenac 12.03 37Cl/13¢/37Cl, 9 9 9
Ifosfamide 6.62 37C1/37Cly/ 1302 1 1 2
(Cyclophosfamide®)
Ketoprofen 10.35  13c/13¢, /13, 0 2 -
Levofloxacin 4.95 13C/ISC /ISC 0 1 -
Lincomycin 3.83 13¢/34g/ 130 0 1 -
Metoprolol 6.03 13c/13¢C, /13C 2 9 -
Oxytetracycline 4.83 13(3/1302/130 0 1 -
Propanolol 8.17 13¢/13¢,/13C, 0 3 -
Sotalol 1.15  13¢/34g/ 130 9 9 -
Sulfamethoxazole 5.05 13C/34s/ 15N 1 4 -
Temazepam 10.10  37Cl/13C/37C13C 5 8 9
Venlafaxine 7.63  13C/13C,/13C, 0 9 -
False positives: not-confirmed analytes (Atg > 6s)
Amoxicillin 4.00 13C/34s5/15N 0 2 -
Atenolol 3.79 13¢/13¢,/13C, 2 9 -
Bisoprolol 873 ¢/ 130 o/ 130 0 2 -
Cloxacillin 8.65 37C1/13C /37013130 0 2 5
Flumequine 10.12  13¢/13¢, /13, 0 1 -
Moxifloxacin 9.92 13C/ISC /13C 0 6 -
Simvastatine 14.18  13¢/ 1302 / 13¢7 1 3 -
Tolfenamic acid 3.67 3701/130/3701?130 0 0 8
Tolfenamic acid 8.00 37C1/13¢C/37C13C 3 8 9
Venlafaxine 6.35 13C/13C,/13C, 0 1 -

2 Number of retained analytes for Hs.18 and Hs.13 (and also Hs g for chlorinated
compounds); n = 1 per WWTP, except for the sample of WWTP Aalst, which

was analyzed in triplicate, making a total of 9 samples analyzed.

b These detected compounds are probably rearrangements products of amoxicillin

with the same chemical formula.

¢ Because there is no possibility that the structural isomers ifosfamide and
cyclophosphamide are differentiated using the presented screening algorithm,

cyclophosphamide was not counted as a false positive.
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For the chlorinated compounds, false positives occurred for
cloxacillin and tolfenamic acid showing that Cl isotopes are not always
sufficiently specific for confirmation. For a total of 16 chlorinated
compounds in set A + B, the recalculated FPR was 15%, 6.9 % and

2.1 % for H2.87 H3_13 and ijng7 respectively.

More in general for Hs3 13 and Hj4 g, a total of 9 and 3 falsely
identified compounds were obtained resulting in an overall recalculated
false positive rate of 4.9 % and 0.9 %, respectively, for the total set of 77
suspect compounds (set A + B). The reduction in FPR of Hy 15 versus
Hj3 13 has as consequence that fewer compounds are correctly identified:
18 for H3 13 versus 11 for Hy 15. This is clearly related to the lower LOI

of H3.13 versus H4.18.

For amoxicillin, atenolol, bisoprolol and venlafaxine both true
positives and false positives were retained in the same samples at
different retention times. For example, for atenolol true positives were

found at 1.42 min and false positives at 3.79 min (Table 6.3).

The structural isomers ifosfamide and cyclophosphamide were both
retained at a retention time of 6.6 min (Table 6.3). Ifosfamide could
finally be confirmed by an analytical standard. There is no possibility
that the presented screening would be able to differentiate isomers
because the exact masses and isotopic pattern of isomers are the same,

therefore, cyclophosphamide was not counted as a false positive.
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6.4 Conclusions

A novel suspect screening strategy using ultra-high performance liquid
chromatography (UHPLC) Orbitrap HRMS is presented. For the first
time, the false negative rate of the screening algorithm can be controlled
to a desired level (5% in this study) and a well-balanced identification
decision (i.e. all criteria are equally stringent) is guaranteed taking the
mass error, isotope fit and peak/noise filter in a holistic approach. The
aim of this study was achieved through a multivariate statistical model,
which was estimated from a training dataset and reflects the expected
analytical variability. As such, for each detected analyte, the decision
(retain or reject) is based on a hypothesis test resulting in a single p-

value.

In this study, three distinct mechanisms have shown to reduce the
number of false positive findings. First, incorporating a peak/noise filter
can reduce the finding of noise peaks and should be included in order
to prevent that noise is used to identify analytes. Second, at least one
isotope should be taken into account in order to better distinguish mono
isotopic ions from isotopes. Third, taking into account both the accurate
mass and isotope ratio of additional isotopes has shown to reduce the
FPR. With this respect, both carbon (**C) and heteroatom (1°N, 34S
or 37Cl) isotopes showed to be valuable to improve the identification

confidence and reduce the FPR.

A false positive rate of 4.9 % and 0.9 % was obtained when taking into
account 2 and 3 isotopes, respectively. If a FPR of 5 % is acceptable, the
screening using 2 isotopes yields the lowest LOIs with a median value of

2000ng 1! and resulted in 19 confirmed compounds out of 23 retained
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suspects when screening towards 77 pharmaceuticals. The effectiveness
of the screening can be even improved when considering three isotopes,
but this implies a lower number of retained (13) and confirmed (11)
pharmaceuticals because of the method sensitivity in terms of lowest

measurable concentration.
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General discussion, conclusions and
perspectives

The achievements in this work are twofold. First, different analytical
aspects as steppingstones of the screening-to-quantification approach
were investigated for multi-residue high-resolution mass spectrometry
(HRMS) of pharmaceuticals in the aquatic environment. The methods
were developed for 4 different matrices, namely drinking water, surface
water, wastewater and biologically treated wastewater using 3 different
HRMS technologies, namely double-focussing sector, Time-of-Flight
(TOF) and Orbitrap HRMS. Second, the developed methods were
applied on the named matrices resulting in one of the first occurrence
and concentration data of pharmaceuticals in the Belgian aquatic
environment.
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In Section 7.1, the entire procedure for multi-residue analysis
is overviewed in the context of screening-to-quantification HRMS
and in the light of current scientific progress. The overall idea is
that full-spectrum HRMS has the potential to identify and quantify
a virtually unlimited number of analytes based on accurate mass.
With this, the whole analytical train from sampling, over sample
storage and pretreatment till chromatographic separation and mass
spectrometric detection must adopt this multi-residue challenge. In this
Chapter, 4 topics related with these current challenges are discussed:
(i) sample collection and storage procedures, (ii) the performance
of a solid-phase extraction (SPE) method as sample pretreatment
for analysis of (treated) wastewater versus a large-volume injection
(LVI)-based method for drinking and surface water analysis, (iii) the
selectivity in quantitative full-spectrum HRMS and qualitative aspects
of suspect screening using full-spectrum HRMS, and (iv) quantitative
and qualitative validation and measurement variability in the context

of multi-residue analysis.

In Section 7.2, the main outcomes of the application of the
developed methods on wastewater (wastewater treatment plant
(WWTP) influent), biologically treated wastewater (WWTP effluent),
surface water and drinking water are summarized and the results of the
occurrence and concentration profiles of pharmaceuticals in the Belgian

aquatic environment are discussed.

In Section 7.3, future perspectives for screening-to-quantification
of environmentally relevant contaminants and its potential to answer

current research questions about micropollutants are highlighted.
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7.1 Multi-residue analysis of pharmaceu-
ticals in aquatic environments

Analytical methods are often developed for a particular group of
compounds with typical chemical characteristics like antidepressants
(Demeestere et al., 2010), B-blockers (Galera et al., 2011), cytostatic
drugs (Kovalova et al., 2009), sulfonamide antibiotics (Garcia-Galan
et al., 2010b), quinolone antibiotics (Xiao et al., 2008), and tetracycline
antiobiotics (Skraskova et al., 2013). However, developing methods
for a wide range of compounds from different classes (i.e. multi-
residue) with diverse chemical characteristics is a more recent goal
in environmental chemistry and makes sense for two reasons. First,
analyses are expensive, and labor and time intensive. Combining
different analytical methods in a single multi-residue method can thus
reduce the costs. Second, many contaminants occur as a mixture in
the environment. Using a targeted approach, such as MS/MS, has
as disadvantage that only a selected group of contaminants can be
studied. With the screening-to-quantification approach, this focus can,
in first instance, be widened to much more contaminants by multi-
residue screening with full-spectrum HRMS. In second instance, a
more targeted approach (using analytical standards) can be applied to

quantify the most relevant compounds.

However, multi-residue analysis is challenging because throughout
the whole analytical procedure, losses of analytes can occur due to
compound instability, biodegradation and sorptive effects. With this
respect, pharmaceuticals are a good case study because they have a

wide range of chemical characteristics: from hydrophilic to lipophilic
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and from neutral, cationic, anionic to zwitterionic speciation depending

on the solution pH (Section 1.1).

7.1.1 Sample collection and storage

A first step in the analytical sequence is sample collection and storage.
Mompelat et al. (2013) reviewed the stability of pharmaceuticals
during sample collection and storage and categorized losses of analytes
into sorptive effects, degradation (photo- and biodegradation and
hydrolysis), and other abiotic transformations (e.g. complexation
with cations). They observed that in multi-residue analysis, the
best conditions were not always complementary for the different
pharmaceuticals and thus a compromise must be reached. Overall, glass
bottles and darkness for transport and storage are recommended. In
addition, for antibiotics, sorptive losses may be reduced by silanization
of glassware to inactivate silanol groups, and addition of chelating
agents such as ethylenediaminetetraacetic acid (EDTA) may prevent
their complexation with metal cations. Filtration of the samples should
be performed as soon as possible to remove particulate matter to
minimize sorptive effects and biodegradation. Different filter materials
such as glass fibre or membranes showed no considerable sorption of
pharmaceuticals. With respect to temperature, they concluded that
it was not possible to universally preserve all analytes at the same
temperature. As well by freezing (—20°C), cooling (4 °C) or at ambient
temperatures some pharmaceuticals showed to be stable and others
unstable. Limited data is available on the effect of addition of chemical

preservation agents such as sodium azide, formaldehyde or acidification.
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These conditions could at the same time enhance the stability of some
compounds due to inactivation of microorganisms or be detrimental for

other compounds (e.g. tetracyclines hydrolyze at pH < 2).

In this study, in order to prevent losses of the analytes during sample
collection and storage, different precautions were taken, which in general
correspond well with the given recommendations. Drinking and surface
water samples were collected in prerinsed amber glass bottles and stored
at 4 °C in the dark for no longer than 24 hours. Wastewater samples were
automatically sampled at the WWTP influent and effluent to obtain 24 h
composite samples. Formic acid was subsequently added to the samples
(pH 3) to prevent microbial activity during sample storage at 4 °C in the
dark for < 4 days. The effectiveness of acidification of the wastewater
samples to prevent microbial degradation should be investigated in
future research. In addition, adding EDTA to the sampling bottles,
which showed to prevent potential cation complexation of antibiotics
when added prior to SPE extraction, merits investigation. Prior to
analysis, the drinking and surface water samples were filtered through
1.5pm glass microfiber filters and wastewater samples were filtered
through subsequently a 1.0 pum glass fiber filter and a 0.45pm nylon
membrane. Taking into account the recommendations of Mompelat
et al. (2013), samples should be filtered as soon as possible after sample
collection to remove particulate matter and minimize sorptive effects

and biodegradation.

For the validation of quantitative methods and evaluation of
screening methods, stability issues should be investigated. On the

one hand, the stability of analytical standards, which are used for the
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calibration curve or for spiking, should be investigated. In Chapters
4 and 5, the working solutions for the calibration curves and for
spiking experiments were prepared daily and thus stability issues are
expected to be less relevant. In contrast, in Chapters 3 and 6,
working solutions were stored for about 2 months at 4°C in the
dark. Compounds undergoing hydrolysis, such as amoxicillin, might
be unstable under these conditions. If analytical standards undergo
abiotic transformations, erroneous process efficiencies and matrix effects
might be calculated and the quantitative results could be biased.
Although instability issues have fewer consequences for the development
of suspect screening techniques, the limit of identifications (LOISs) might
be overestimated. On the other hand, the stability of investigated
compounds during sample storage should be investigated. For target
quantification, spiking experiments before and after sample storage
should therefore be performed. With respect to screening, data about
stability of certain compounds (or groups of compounds) could allow

marking out the applicability contours of analytical screening methods.

7.1.2 Sample pretreatment by solid-phase extrac-
tion versus large-volume injection

After sample collection and storage, the sample must be pretreated
for instrumental analysis.  This includes sample enrichment and

purification.

In Chapter 3, a SPE method was optimized and validated for the
analysis of 43 pharmaceuticals in WWTP influent and effluent. As an
alternative for SPE, in Chapter 5, LVI has been investigated for the
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analysis of 69 pharmaceuticals in drinking and surface water. Although
SPE and LVI are very different, the aim of both techniques is to finally
inject sufficient amounts of analyte into the liquid chromatography (LC)
column in order to reach low detection limits. In SPE, this is achieved
by sample enrichment, while a larger volume of sample is injected in

LVI. Both techniques have advantages and disadvantages.

First, recovery is clearly no issue for LVI and can be assumed 100 %
for all compounds. On the other hand, in SPE most compounds had
recoveries > 80 %, however, for some very hydrophilic or lipophilic
compounds, recoveries < 30% were obtained, even after a thorough
method optimisation. For hydrophilic compounds (e.g. acyclovir,
amoxicillin and lamivudine, log K, from -1.59 to 0.06), breakthrough
might occur and loading lower sample volumes might increase the
recovery values. Very lipophilic compounds (e.g. pleconaril, log K.,
> 5), on the other hand, might not be eluted from the cartridge or
might sorb onto the glass tube and vial used for evaporation and
reconstitution. Using less polar solvents or larger elution volumes might
result in better recoveries for lypophilic compounds. However, still a
compromise on the final method must be reached in order to obtain

acceptable results for a broad range of compounds.

Second, matrix effect, which are an important drawback of
electrospray ionization (ESI) in LC, were in general less pronounced
for the LVI method for drinking and surface water than for the SPE
method for wastewater. Matrix suppression (matrix effect (ME) <
80%) or enhancement (ME > 120%) was obtained for 23 and 13

out of 43 compounds in effluent and influent water, respectively, and
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for 12 and 15 out of 69 compounds for drinking water and surface
water. Although for the latter cleaner matrices, less matrix effects were
obtained, they remain an important drawback in both methods. These
results illustrate that clean-up, to reduce matrix effect, by performing
SPE in multi-residue analysis is difficult to achieve when the mechanism
of extraction in SPE and separation in LC are the same: reversed
phase. This can be explained by the observation of Bonfiglio et al.
(1999) and Stahnke et al. (2009) that matrix effects are rather retention
time dependent with regions in the chromatogram with strong or weak
matrix effects. Clean-up of interfering matrix compounds when the same
revered phase mechanism for both extraction and separation is applied,
is thus limited because interfering matrix compounds and analytes
having similar retention times will behave similar during SPE.

However, purification of the extract such as removing salts can be
necessary to prevent clogging of capillaries or build-up of salts or
non-volatile compounds on optics in the mass spectrometer, whereas
very lipophilic compounds might accumulate on the LC column
(Busetti et al., 2012). These matrix constituents could deteriorate the
instrumental performance on the long term. In this research, clean-
up of very hydrophilic compounds or salts was achieved by washing
the SPE cartridges with water. In addition, elution of very lipophilic
compounds (log ko, > 5) was avoided by choosing 5 ml of methanol as
optimal elution solvent and volume, as such, they will probably not
or only partially elute from the cartridge. For the LVI-based method,
the first 1.6 min of the LC eluent was diverted to the waste to prevent
salts or very hydrophilic compounds to reach the MS. However, very

lipophilic compounds were not removed.
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Third, the LVI method is less expensive (no SPE cartridges), and
less time and labor intensive both with respect to method development
and for method application. The cost for only the Oasis HLB SPE
cartridges is 5€ per piece and it takes about 4 hours to extract 10
samples simultaneously, not taking into account the filtration steps
before SPE. Whereas in this PhD study the method development,
optimisation and validation took about 1 year for the SPE method, this
could be achieved in about 4 months for the LVI method. During the
LVI method development, only small adjustments of the LC conditions,
such as adding an initial isocratic phase of 1 min and the addition of
small amounts (< 0.1 % v/v) of formic acid to the sample were necessary

and enabled good peak shapes and stable chromatography.

Fourth, a drawback of the presented LVI method was that 10 to
100 times higher method detection limits were obtained as compared
to other techniques published in literature using (online-)SPE (Figure
5.6). The method showed the potential to detect 50 and 74 % of
the pharmaceuticals at a concentration of 100 and 500ngl™! or lower,
respectively. These detection limits are close the the 100ngl™!, which
has been suggested as a lower performance limit for multi-residue
screening by Chitescu et al. (2012). The lower sensitivity of the LVI
method could be related to the lower equivalent sample injection volume
(ESIV) (i.e. the enrichment factor x injection volume) or thus the
lower amount of substance that is directly (LVI) or indirectly (SPE)
injected onto the LC column. The ESIV amounts to 250 ul for the LVI
method for drinking and surface water versus 500 ul and 1000 pl for the

SPE method for influent and effluent water, respectively. Taking into
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consideration that less polluted samples allow in general larger ESIVs
(Chapter 2), the ESIV of drinking and surface water is relatively small

as compared to the ESIVs of effluent and influent water.

Overall, both methods have merits in an analytical multi-residue
analysis. On the one hand, LVI allows a faster analysis and almost
no losses occur during sample pretreatment and therefore fits well for
fast screening. On the other hand, SPE allows to enrich the sample
and reach as such lower detection limits but always introduces some
selectivity. The most important challenge for future developments for
LVIis thus to be able to measure lower concentration levels, whereas for
SPE, an optimal recovery for a wide range of hydrophilic and lipophilic

compounds must be reached.

7.1.3 Quantitative and qualitative analysis with full-
spectrum HRMS

HRMS (TOF and Orbitrap) is a relatively new mass spectrometric
technique and became suitable for trace analysis in environmental
science thanks to its gains in sensitivity since the early 2000’s. With its
ability to measure a wide range of masses at once (i.e. full-spectrum),
this technique fits well in the screening-to-quantification multi-residue
analytical goals. However, uniform guidelines for data processing in
quantitative and qualitative multi-residue analysis using full-spectrum
HRMS are scarce and obtaining both a low number of false negatives
and false positives in screening is challenging.

In this research, advances are made on both issues. In this Section,

guidelines (i) for the construction of extracted ion chromatograms
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(XICs) for proper quantitative data processing, and (ii) for accurate
mass determination and the development and evaluation of screening

procedures are formulated.
7.1.3.1 Selective quantification

For selective peak integration and quantification in HRMS, XICs are
constructed from the total ion chromatogram (TIC) by defining a
mass tolerance around the exact ion mass of interest (i.e. mass
window width). In Chapter 4, the relationship between selectivity and
sensitivity as a function of the mass window width is investigated and

specific guidelines are formulated.

First, peak integration should be performed on the raw profile data.
It was shown that especially the use of centroid data can lead to signal
interruption of the signal when the accurate mass of an ion is shifted
out of the XIC mass window. These findings correspond with those of
Kaufmann & Butcher (2006), which have also been discussed in Section

2.6.

Second, when constructing XICs from profile data, the signal
intensity of a chromatographic peak will decrease upon narrowing the
mass window because an increasing fraction of the mass peak is cut
off. As such, the sensitivity might reduce. An optimal value for the
XIC width using profile data, being a trade-off between sensitivity
and selectivity, has shown to be about the FWHM, thus 100, 50,
20 and 10ppm for a resolving power of 10000, 20000, 50000 and
100000 FWHM, respectively. In other words, the recommended mass

10°
window width (in ppm) can be calculated as R with R the provided
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resolving power.

With respect to 27 validated HRMS methods summarized in Table 2.1,
narrower mass windows were often applied: about half of the authors
applied a mass window of 2 to 5 times narrower than the recommended
value in this PhD research (for this comparison, corresponding mass
windows for m/z 400 Da were calculated, as explained in Table 4.3).
Although such narrow mass windows assure more selective XICs and
are thus not per se problematic, HRMS users should take in mind that
false negative results might occur when multiple signals fall out of the
defined mass window in the case centroid data is integrated or that, in

the case of profile data, the method sensitivity will decrease.

However, recent research has shown that signal interruption in
XICs from centroid data can be avoided using an algorithm which
automatically choses the optimal mass window width for peak
integration (Wei et al., 2014). As such, centroid data can be used,
and the decreased signal intensity when integrating profile data with
too narrow mass windows can be avoided. Using centroid data can be
advantageous because it requires less storage capacity and centroiding
is a necessary step for qualitative analysis. This approach merits thus

further investigation and application.

7.1.3.2 Qualitative analysis and suspect screening

An inherent first step in qualitative analysis with HRMS is to determine
the accurate mass from the spectrum peaks. In Chapter 4, transforming
the profile spectra to centroid was recommended for the determination

of accurate masses for qualitative analysis. Taking into account all the
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data points of a mass peak instead of only the data point at the top

resulted in a 2.3 fold improved precision on the accurate mass.

Two novel suspect screening strategies are presented in this PhD
study. In Chapter 5, suspect screening was performed for a set of 69
pharmaceuticals in surface water using LVI-UHPLC and TOF-HRMS.
The novelty in this suspect screening technique is that a statistical model
takes into account the signal intensity-dependent accurate mass error
of the mono isotopic ion, which is typical for TOF-MS. This allowed
to control the false negative rate (FNR) at 5%, with a false positive
rate (FPR) not higher than 15 %.

In Chapter 6, an extended suspect screening method for 77
pharmaceuticals in WWTP effluent using SPE-UHPLC and Orbitrap
HRMS was presented. In order to further improve the screening
performance and reduce the FPR, the accurate mass error of the
mono isotopic ion and up to three isotopes, isotope ratios and a
peak/noise filter were taken into account. However, when setting
up a conventional screening identification train based on successively
different identification criteria, the FNR typically accumulates upon
advancing through the decision tree. The challenge to elaborate a
well-balanced screening was accomplished by introducing a multivariate
statistical model. As such, the different criteria are equally stringent and
the overall FNR could be controlled to 5%. This resulted in a strongly
improved identification success with FPRs decreasing from 131, 22, 2.8
to < 0.3 % upon taking into account only the mono isotopic ion and 1,
2 or 3 isotopes, respectively. Whereas the FPR reduced with additional
isotopes, the LOI increased with median values of 42, 200, 2000 and
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2062ng1~! upon taking into account only the mono isotopic ion, and
1, 2, or 3 isotopes, respectively. In future research, incorporating
also retention time prediction and fragmentation pattern verification
in the suspect screening concept should be investigated as complement

to reduce the FPR with less increasing LOI values.

In both strategies, for the first time, controlling the overall FNR to
a desired level (5%) is achieved by using statistical models. As such,
for each detected analyte, the identification decision (retain or reject) is

based on a hypothesis test resulting in a single p-value.

When taking into account only the mono isotopic ion and a
peak/noise filter for screening, the FPR was clearly higher for Hj 3
in Chapter 6 (131 %) than in Chapter 5 (15%). Although the peak
picking algorithm and peak/noise filter were different for both screening
methods, the higher FPR in effluent water is most probably due to the
generally higher contamination level of effluent water. More complex
water matrices seem thus to require most advanced screening algorithms

in order to maintain a feasible FPR.

In this research, an effective screening method development,
evaluation and application workflow was followed for both screening
methods, which is recommended for future research. The generalized
workflow is schematized in Figure 7.1. First, a training dataset was
constructed based on samples spiked at different concentrations with
target compounds having a wide range of chemical characteristics (e.g.
with masses over the whole mass range). This training data set contains
information such as accurate mass, retention time, peak area and signal

intensity of the ions of interest (e.g. mono isotopic ion, isotopes, adducts
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and fragments) related to the spiked analytes. To confirm the identity
of the peaks in the training dataset, their a priori determined retention
time was used. This dataset was used to develop and optimize the
statistical screening methods based on different identification refinement
techniques. Mass error, peak/noise filter and isotopic pattern have
been considered in this research, but other researchers have applied
other complementary techniques including retention time prediction
and fragmentation pattern matching (Section 2.5). The novelty in
Chapter 6 is that a well-balanced identification decision is guaranteed
taking the mass error, isotope fit and peak/noise filter in a holistic
multivariate approach. This contrasts with the currently applied
screening approaches using decision trees, which are potentially not-
well balanced, leading to an increasing number of false negatives when

advancing through the decision tree.

Second, the performance of the developed suspect screening
methodology must be evaluated. Therefore, 3 particular parameters
can be assessed for qualitative suspect screening: (i) screening LOI, (ii)
FNR, and (iii) FPR. (i) The LOI is the concentration level at which
a predefined fraction (2/3 in Chapter 6) is correctly retained (Ellison &
Fearn, 2005) and (ii) the FNR is the fraction of analytes not retained
by the screening algorithm, but present in the training dataset. These
parameters should be evaluated from the training dataset. (iii) A false
positive is a peak retained by the screening but having a non-matching
retention time with an analytical standard. The FPR is calculated
as the false positive count divided by the number of screened suspects,

with this ratio averaged over the considered samples, being in agreement
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Figure 7.1 General workflow applied in Chapters 5 and 6 and suggested for
the development, evaluation and application of suspect screening strategies.
Between brackets: these parameters were not considered in this research but
could be valuable for future improvement.

with Ellison & Fearn (2005). This parameter should be evaluated from
non-spiked samples. The latter to avoid overestimating the FPR due
to the presence of double peaks of some compounds (e.g. tetracycline
antibiotics) or impurities in the spiked standards with the same chemical
formula (e.g. amoxicillin, Chapter 6), which could all be retained by the
screening but classified as false positives. Although such false positives
can also be present in non-spiked samples, in spiked samples they can

be much more abundant. The FPR should not be confused with the
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false discovery rate (FDR), which is the false positive count divided
by the total number of (false + true) positive findings. The FPR is
preferred instead of the FDR because the former value is independent
of the number of true positive findings or, in other words, independent
of the contamination level of a sample. This is an important distinction

and allows a more unbiased comparison of screening methods.

Application of the suspect screening typically leads to indicatively
identified compounds. For these suspects, no standards are a priori
available and the retention time and eventually also fragmentation
pattern must be experimentally confirmed. Therefore, analytical
standards must be obtained for confirmation and, in the light of the
screening-to-quantification approach, the analytical method can be

validated for quantification of the confirmed and relevant compounds.

7.1.4 Quantitative and qualitative validation of
multi-residue methods

Reliable quantification requires a thorough method wvalidation.
Therefore, different instrumental and method validation parameters
such as linearity, detection and quantification limits, repeatability
and reproducibility, and mass accuracy have been investigated in this
research. Validation of multi-residue methods showed to be challenging
and four particular issues have been investigated over the different

chapters of this work. Guidelines are formulated for each issue.
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7.1.4.1 Precise determination of the analytical process
efficiency

A precise determination of the process efficiency (PE) value of an
analytical method is crucial because this value is used as a correction
factor, as elaborated in Chapter 3. However, this can be problematic for
compounds being ubiquitously present in environmental matrices such
as wastewater. Very elevated RSDs were obtained for the determination
of the PE for compounds which were present in the non-spiked sample
at concentrations close to or higher than the spiking level. Therefore,
the concentration of the spiking level must be high enough to allow a
precise determination of the PE value (e.g. < 20% relative standard
deviation). To enable this, the highest spiking concentration should be
at least 3 to 5 times higher than the concentration in the non-spiked

sample.

In this work, PE (Chapter 3) or ME (Chapter 5) values were always
calculated from a representative sample used for method validation.
Subsequently, this PE/ME value was used as correction factor for new
samples. However, sample-to-sample variability of the PE/ME due to,
for example, sample-dependent matrix effects, has not been considered.
Future research should thus also investigate to what extent the PE/ME
values change from sample to sample. Alternatively, internal standard
calibration or standard addition can be applied to correct for recovery
and matrix effects for each individual sample. However, internal
standard calibration requires the availability of isotopically labeled

standards, which are in general more expensive or sometimes hard to
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find, and the standard addition method requires to analyze the sample

twice; once with and once without standard addition.

7.1.4.2 Determination of decision/detection limits

For the validation of HRMS analytical methods, widespread concepts
such as the signal-to-noise (S/N) ratios for the determination of
detection and quantification limits have shown to be not always
applicable because in some cases almost no noise can be detected
anymore, as illustrated in Chapter 4. As an alternative for the widely
applied S/N ratio, the methodology for the calculation of the decision
limit (CCa) developed by Kaufmann (2009) has been extended by
taking into account also the number of analyzed spiked samples into
a statistical approach. The instrumental characteristics of the TOF
instrument used in this research enabled comparison of both approaches
because noise could still be observed for different compounds. The
methodology resulted in comparable decision limits as obtained from
a S/N ratio of 3. It can be concluded that this methodology is a reliable
and practical alternative for the widespread S/N ratio concept, which

will be of utmost importance in most modern HRMS.

However, the ubiquitous presence of some micropollutants in
environmental matrices can be problematic for the determination of
method detection limits (MDLs) (S/N = 3) or CCas. In both (treated)
wastewater (Chapter 3) and surface water (Chapter 5) some compounds
were clearly present in the non-spiked validation samples. Validating
the method for such compounds at lower concentrations is not possible

using the standard addition (spiking) technique because truly blank
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matrix samples are hard to find. As a consequence, also the correct
determination of the MDL or CCa, which should be performed by
analysing samples at concentrations close to the MDL or CCa, is not
possible. As a result, the reported CCa values are equal to at least
the measured concentration in the non-spiked sample, which can be
an overestimation of the true CCa. Although for the S/N technique,
extrapolation to a S/N level of 3 is possible for the estimation of the

MDL, the uncertainty on these values is expected to be high.

7.1.4.3 Response linearity

The relevant — to be validated — concentration range in the environment
is very wide. This is illustrated in Chapter 1: concentrations of
pharmaceuticals range from the ngl™! for drinking water and ground
water over pgl~! for surface water and treated wastewater to the low
mgl~! for wastewater. This requires wide linear working ranges. The
lowest concentration of the linear working range is normally the method
quantification limit (MQL). The upper quantification limit (UQL) is the

highest concentration level within the instrumental linear range.

For the determination of the linear regression equation, a first
aspect is that the assumption of homoscedasticity of variance must be
fulfilled. However, in analytical chemistry the variance of the residuals
are normally unequal, i.e. heteroscedastic. This has been illustrated
in Figure 5.5 for diclofenac: the standard deviation (o) increased with
the concentration level. However, the precision expressed as relative
standard deviation (RSD) is in general more or less constant in the

upper concentration range and increases only for concentrations close
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to the quantification limit. Therefore, weighted least squares regression
should be applied with the reciprocal of the variances as weights: 1/2.
Considering that o linearly increases with the concentration level x, the

weights are proportional to 1/z? (Kutner et al., 1996).

A second aspect is the evaluation of the linearity of the detector
response. In most publications, and for the majority of the validated
methods in Table 2.1, the coefficient of determination, R? > 0.99, was
used as the criterion for linearity. As R? is calculated from the sum of
squares of the non-weighted residuals, large residuals have the strongest
impact on R?. The increasing standard deviation with concentration
of analytical data has as a consequence that in particular non-linearity
at the highest concentration levels will contribute to the R?, whereas
the contribution of even strong non-linearity in the lower concentration
range will be marginal. The R? is therefore not a good measure to
evaluate the linearity over the whole concentration range (Peters et al.,
2007). An appropriate statistical test for linearity is the F-test for lack
of fit as described in Section 5.2.5.1. If non-linearity was concluded in
this research, linearity can be tested again after contracting the working
range by omitting the highest concentration level (Chapter 3) or a non-

linear calibration curve can be used (Chapter 5).

7.1.4.4 Mass measurement uncertainty

Taking into account the variety of sources of mass error discussed in
Section 2.4.1, a thorough HRMS method validation should include a
characterization of the mass measurement uncertainty. Similar to the

concept of uncertainty in quantitative analysis (2002/657/EC, European
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Union, 2002), the mass measurement accuracy can be statistically
described by the average mass error (Am/z, Equation 2.1b) and
the standard deviation on the mass error (0,,/.), as demonstrated
by Brenton & Godfrey (2010). Experimental data, acquired under
reproducibility conditions (over time and per matrices of interest) on
a set of analytes covering the molecular mass and concentration range
of interest, should be the basis for a qualitative validation. The
mass measurement accuracy can be expressed as W/z £1.96 - 04,
or +2.58 - 0,/ which are approximately the 95% or 99% confidence
limits, respectively (Brenton & Godfrey, 2010).

The bias on the mass accuracy (i.e. W/z) was less than 0.5 ppm
for both the TOF and Orbitrap HRMS. The mass precision (95%
confidence interval) was about +5 ppm at 5 1g1™! and increased to about
+10ppm close to the CCa level independent of the analyzed matrix
(deionized, drinking or surface water) for the TOF HRMS (Chapter 5).
For the Orbitrap HRMS (Chapter 6), the mass precision was about
+2.3ppm for the mono isotopic ions in effluent water. Although a
more complex matrix was analyzed with the latter, the mass precision
doubled, which can be related to its improved resolving power of

70000 FWHM versus 20000 FWHM for the TOF HRMS.

Moreover, this mass accuracy data can be used to set the mass error
tolerance for confirmation of the identity of target analytes. Although
a mass error tolerance of 5 ppm has been widely applied (Ibanez et al.,
2008; Kern et al., 2009; Gerssen et al., 2011; Nurmi & Pellinen, 2011;
Martinez Bueno et al., 2012), it can be of importance to reconsider

(widen or narrow) this value in order not to omit truly present analytes
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(i.e. false negatives) and, at the same time, be stringent enough to
avoid false positives. As such, setting the mass error tolerance to the
experimentally determined mass measurement accuracy (i.e. +1.96-0,,,.
or £2.58 - 0, /., SUpposing W ~ 0) will result in approximately only

5% or 1% false negatives, respectively.

7.2 Occurrence of pharmaceuticals in waste-
water and surface water

One of the first data on the occurrence, concentrations and removal
efficiencies of pharmaceuticals in the Belgian aquatic environment has

been reported in this research.

WWTPs are seen as one of the major pathways of pharmaceutical
residues to the environment. In Chapter 3, the occurrence and fate of 43
pharmaceuticals has been studied in a conventional active sludge (CAS)
system (Aalst, Belgium) and in a parallel CAS and membrane bioreactor
(MBR) (Schilde, Belgium) WWTP. In the influent, concentrations
ranging from the MQL (50-500ngl™ for most of the compounds) to
about 50 pg1~! were measured. For the most concentrated compounds,
i.e. paracetamol and ibuprofen in the influent (5-50g1™'), loads in the
effluent were at least 50 times lower than in the influent for both CAS
and MBR. For all the other compounds with concentrations up to about
1pgl™! in the influent, the removal strongly varied with effluent loads
from 17 times lower to 2 times higher than the influent load. These
concentrations and reduction factors have a similar wide range as those

reported by Verlicchi et al. (2012) in a recent review. However, although
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they concluded that even for the same compounds reduction factors
can strongly vary for different WWTPs, in this research, comparable
reduction factors were obtained for the three studied systems (e.g.
almost no reduction for venlafaxine, factor 1.5-2 for sulfamethoxazole,
> 50 for ibuprofen and > 1000 for paracetamol). Also for moxifloxacin
comparable reduction (factor 2.3-4) was observed under dry weather
condition, whereas effluent loads were 2.6 times higher as compared to
the influent during a rainfall event, which could be due to desorption

from solids in the influent.

Although the concentrations of the most concentrated compounds
reduced drastically in the effluent as compared to the influent,
comparable influent and effluent concentrations (up to pgl™') were
observed for many pharmaceuticals. As a consequence, pharmaceutical
residues enter the environment. In the river Maas and the Albert
Channel (Belgium), concentrations ranging from about 10ngl™! to
about 11gl™ were measured (Chapter 5). A first tier environmental
risk assessment for the river Dender (Belgium) impacted by the
WWTP of Aalst indicated that the anti-inflammatory drug diclofenac
and the antidepressant venlafaxine posed a potential ‘high’ risk (risk
quotient > 1). For these compounds, a more intensive second tier
risk investigation is required. No ecotoxicological data were found
in open literature for alprazolam, amantadine and risperidone, which
established the need for more research in order to better assess the risk
of pharmaceutical residues in the environment. In the analyzed drinking
water, concentrations of all pharmaceuticals were below the MDL (i.e.

< 500ng1~* for 75 % of the compounds).
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7.3 Perspectives for screening-to-
quantification of environmentally
relevant contaminants

The screening-to-quantification workflow elaborated in this work is a
piece of the large puzzle of microcontamination of the environment

which scientist are dealing with nowadays.

On the short term, suspect screening can facilitate the analytical
workflow and lead to the identification of an increasing number of
contaminants. With HRMS, a rather untargeted analysis can be
performed and no (often expensive) analytical standards are a priori
required in order to screen the acquired full-spectrum chromatograms
for the presence of large lists of suspects. Analytical standards are only
required in a second phase for confirmation of the indicatively identified
compounds. In a third phase, the laborious method validation for target
quantification can be restricted to the most relevant contaminants. As

such, a cost and work reduction can be achieved.

A full non-targeted analysis and compound screening is still very
challenging and requires an integrated approach. This is because, in first
instance, the whole analytical procedure must reflect the multi-residue
non-target idea, starting from sampling, over sample storage, sample
pretreatment and purification, chromatographic separation and finally
HRMS analysis. The challenge is that the entire analytical procedure
must suit a variety of substances having a broad range of chemical
characteristics. Therefore, it is crucial that once the different steps

of the analytical procedure are optimized for a well-thought selection
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of target compounds having a broad range of chemical characteristics,
the applicability contours of the chemical-analytical method must be
defined. Data from literature together with well-designed experimental
approaches must as such allow defining the suitable domain of
chemical characteristics where a certain analytical method meets the
requested performance criteria. These chemical characteristics include
the polarity, charge and stability of the compounds, and whether
the compounds are amendable for the applied chromatographic and
ionization technique. At the same time, the developed methods need to
be sufficiently sensitive assuring that relevant concentrations, typically
in the ngl™ to pgl™' range, are measurable with the non-target

analytical screening method.

The selection of relevant pharmaceuticals in this research was not
based on screening but on the available scientific knowledge. In addition,
some compounds of scarcely measured pharmaceutical classes such
as antiviral drugs and antidepressants were also selected as target
compounds. This resulted in the measurement of relatively elevated
concentrations of the antiviral drugs amantadine (50ngl™ to 1pgl™)
and lamivudine (400 to 600ng17!), and of the antidepressant risperidone
(150 to 400ngl™) in WWTP effluent. These results suggest that
screening in aquatic environments might reveal the presence of even
more and yet unknown contaminants. For example, the presence of
the drug amantadine has been observed for the first time in treated
wastewater by Ghosh et al. (2010) and was detected by non-target
screening in treated wastewater by Hug et al. (2014) and in drinking

water by Miiller et al. (2011). The list of known target compounds
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nowadays might thus change drastically in the near future when HRMS-
based screening techniques are used more frequently.

To exemplify the potential of suspect screening for the identification
of 'new’ contaminants, the effluent of 7 Belgian WW'TPs was screened
for the presence of 77 pharmaceuticals (Chapter 6). When taking into
account 2 or 3 isotopes for identification, the presence of a total of 19
out of 25 retained compounds could be confirmed. The concentration
of these compounds was probably relatively high because the LOI of
the screening method was >500ngl™ for 62 (2 isotopes) and 82% (3
isotopes) of the compounds. Suspect screening can thus lead to the

detection of environmentally relevant contaminants.

One step further is non-target screening, which has been discussed
and illustrated in Section 2.5 and Figure 2.8. In this screening concept,
one of the main challenges is to prioritize the most relevant peaks for
identification and propose chemical formulae and structures. From that
point, similar identification refinement procedures can be performed
as in suspect screening. The difficulty is that one or more chemical

formulae and structures might be proposed for a given group of peaks.

In all cases of suspect and non-target screening, the challenge is to
minimize the number of false negative and false positive detections. In
this dissertation, it is shown that controlling the false negative rate to a
desired level is possible by applying multivariate statistics (Chapter 6).
Future research should focus on reducing the number of false positives
by taking into account also other identification refinement criteria such
as retention time prediction and fragmentation pattern matching in

similar statistical approaches. This requires a systematic optimization
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and evaluation of the screening methods. For this task, the general
workflow as proposed in Figure 7.1 was applied in Chapters 5 and 6 and
has shown to be effective. Future screening techniques could adopt this
approach in order to be able to improve and compare their perfomance

on a scientific basis.

On the longer term, screening has the potential to initiate a new way
of looking to the challenges related to emerging micropollutants such as
linking their presence with (eco)toxicological effects, smart design of
advanced water purification technologies, and effective water quality

policy establishment.

An important but unanswered question is which chemicals amongst
the variety of micropollutants can be linked with ecological effects.
Nowadays, researchers have been able to assess the effects of some
selected contaminants. However, this rather targeted approach does not
allow to assess which chemicals are actually causing effects in a complex
environment. The combined use of analytical screening techniques and
ecotoxicological assessment has an interesting potential to reveal these

links.

Current biological wastewater treatment technology is insufficient
to eliminate micropollutants from wastewater and to prevent their
release in the environment. Therefore, advanced water purification
technologies need to be developed and implemented. Switzerland
has a leading position in this and decided recently to implement a
combination of ozonation, biofiltration and powdered activated carbon
as post-treatment on 100 out of its 700 WWTPs over the next 20
years (Eggen et al., 2014). The aim is to reduce the load of indicator

258



General discussion, conclusions and perspectives

substances such as benzatriazole, carbamazepine, diclofenac, mecoprop
and sulfamethoxazole by 80% and to reduce the effluent toxicity.
Although these selected indicator substances have shown to pose an
ecological threat (e.g. Table 1.1), their selection is based on the
current knowledge acquired by target analysis and many other ecotoxic
or recalcitrant chemicals, including transformation products formed
during ozonation, might be overseen. Therefore, for a smart design,
optimization and control of advanced treatment technologies, analytical
screening techniques will be a valuable tool to study the technology and
to identify the most relevant indicator substances and transformation

products.

Finally, policy must come to action and develop a legislative
framework in order to ensure a good ecological status of waterbodies
and healthy drinking water. = Whereas currently some emerging
micropollutants are incorporated in watch lists and legislation of
Switzerland, the EU and the US EPA (Section 1.5), the most priority
contaminants should be incorporated in future legislation. Hence, in
addition to targeted analytical approaches, screening approaches should
become more mainstream. Screening can be a valuable tool for example
to monitor water quality, to identify accidental chemical water pollution,

or to warn for unexpected contamination of drinking water resources.
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An increasing number of anthropogenic emerging organic contaminants
has been discovered over the last decades in the aquatic environment.
Pharmaceuticals are a particular group of emerging micropollutants.
These chemicals are designed with the intention of performing a curing
effect. Paradoxically, they are now seen as pollutants which might
have toxic effects in our environment. Intermediate barriers such
as wastewater treatment plants (WWTPs) intended for purification
of anthropogenic waste streams seem to be insufficient to eliminate
these micropollutants. As a result, pharmaceuticals are continuously
discharged in the environment leading to concentrations in the ngl™! to
ngl™! range. The occurrence, fate and (eco)toxicity of pharmaceuticals

in the environment is concisely overviewed in Chapter 1.

To assure a good chemical status of water, increasing efforts should
go to measuring as prerequisite for studying the occurrence, fate and
risks of these organic micropollutants passing between wastewater,

surface water, groundwater and drinking water.

The state-of-the-art for target analysis of polar water contaminants

such as pharmaceuticals, is tandem mass spectrometry (MS/MS),
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coupled to liquid chromatography and solid-phase extraction (SPE).
However, since the early 2000’s, new and advanced high-resolution mass
spectrometry (HRMS) technologies became a viable alternative. With
these instruments, wide MS spectra are continuously acquired over the
entire chromatogram allowing a quasi untargeted analysis, without the
requirement to define a priori which compounds should be measured.
The full-spectrum HRMS approach has therefore the potential to both
identify and quantify a virtually unlimited number of analytes based on
accurate mass measurement and offers the ability for screening towards
new (un)known contaminants. The basic principles of HRMS and the
achievements of full spectrum HRMS for screening and quantification
of emerging organic micropollutants in the aquatic environment are

reviewed in Chapter 2.

Developing innovative HRMS-based analytical methods as stepping-
stones of an innovative screening-to-quantification workflow is the
general aim throughout this PhD dissertation. Different techniques
using double focussing magnetic sector, Time-of-Flight (TOF) and
Orbitrap HRMS are developed and their applicability is investigated
for the analysis of pharmaceuticals in drinking water, surface water and

(biologically treated) wastewater.

In Chapter 3, a novel analytical method using SPE and
liquid chromatography magnetic sector HRMS is presented for the
measurement of 43 pharmaceuticals in (biologically treated) wastewater.
A thorough method validation quantified the contribution of both
the extraction recovery and matrix effects in the overall method

process efficiency, and a detailed variability analysis was performed to
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elaborate a quality labelling strategy to be used in data interpretation.
Compounds for which a precise (relative standard deviation <20 %)
process efficiency between 60 % and 140 % was determined, were labelled
as ‘quantitative’ whereas the results for other compounds should be
interpreted as ‘indicative’. Method application on influent and effluent
samples of (i) a conventional active sludge system and (ii) a parallel
membrane bioreactor/conventional active sludge wastewater treatment
plant in Belgium revealed the occurrence of 22 pharmaceuticals. The
anti-inflammatory drug diclofenac and the antidepressant venlafaxine
were measured in the effluents at concentrations ranging from 0.5 to
1.8 pgl™ and 0.2 to 0.5 pg 17!, respectively, which indicated to be of high

potential environmental risk for the receiving river Dender, Belgium.

Uniform guidelines for the data processing and validation of
qualitative and quantitative multi-residue analysis using full-spectrum
HRMS are scarce. In Chapter 4, it is investigated how optimal
mass accuracy and sensitivity can be obtained after refining the post-
processing of the HRMS data. For qualitative analysis, transforming the
raw profile spectra to centroid spectra is recommended resulting in a 2.3
fold improved precision on the accurate mass determination of spectrum
peaks. However, processing centroid data for quantitative purposes
could lead to signal interruption when too narrow mass windows are
applied for the construction of extracted ion chromatograms. Therefore,
peak integration on the raw profile data is recommended. An optimal
width of the mass window of 50 ppm, which is a trade-off between
sensitivity and selectivity, was obtained for a TOF instrument providing

a resolving power of 20000 at full width at half maximum (FWHM). For
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the validation of HRMS analytical methods, widespread concepts such
as the signal-to-noise ratios for the determination of decision limits and
detection capabilities have shown to be not always applicable because
in some cases almost no noise can be detected anymore. A statistical

methodology providing a reliable alternative is extended and applied.

The ever-growing number of emerging micropollutants such as
pharmaceuticals requests rapid and sensitive full-spectrum analytical
techniques. In Chapter 5, a suspect screening strategy is presented,
which minimizes the false negative rate (FNR) without retaining
numerous false positives. At the same time, omitting laborious
sample enrichment through large-volume injection (LVI) ultra-
high performance liquid chromatography (UHPLC) avoids selective
preconcentration. A suspect screening strategy was developed using
TOF-MS aiming the detection of 69 pharmaceuticals in surface water
without the a priori availability of analytical standards. As a
novel approach, the screening takes into account the signal-intensity-
dependent accurate mass error of TOF-MS, hereby retaining 95 %
of the measured suspect pharmaceuticals present in surface water.
Application on five Belgian river water samples showed the potential
of the suspect screening approach, as exemplified by a false positive
rate (FPR) not higher than 15 % and given that 30 out of 37 restrained
suspect compounds were confirmed by the retention time of analytical
standards. Subsequently, the validation and applicability of the LVI-
UHPLC full-spectrum HRMS method for target quantification of the 69

pharmaceuticals in surface water is discussed. Analysis of five Belgian
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river water samples revealed the occurrence of 17 pharmaceuticals in a

concentration range of 17ngl™! up to 3.1 pgl™t.

In Chapter 6, the suspect screening concept is extended. When
setting up a conventional screening identification train based on
successively different identification criteria including mass error and
isotope fit, the FNR typically accumulates upon advancing through
the decision tree. The challenge is thus to elaborate a well-balanced
screening, in which the different criteria are equally stringent, leading
to a controllable number of false negatives. Presented is a novel
suspect screening approach using UHPLC Orbitrap HRMS. Based on
a multivariate statistical model, the screening takes into account the
accurate mass error of the mono isotopic ion and up to three isotopes,
isotope ratios and a peak/noise filter. As such, for the first time,
controlling the overall false negative rate of the screening algorithm
to a desired level (5% in this study) is achieved. Simultaneously, a
well-balanced identification decision is guaranteed taking the different
identification criteria as a whole in a holistic statistical approach.
Taking into account 1, 2 and 3 isotopes decreased the false positive
rates from 22, 2.8 to < 0.3 % at the cost of increasing the median limits
of identification from 200, 2000 to 2062ngl™t, respectively. As proof
of concept, 7 biologically treated waste waters were screened towards
77 suspect pharmaceuticals resulting in the indicative identification
of 25 suspects. Subsequently obtained reference standards allowed

confirmation for 19 out of these 25 pharmaceutical contaminants.
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An overall discussion focusing on the scientific results and
perspectives with respect to the screening-to-quantification workflow

using HRMS is given in Chapter 7.
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Samenvatting

Gedurende de laatste tientaljaren werd een toenemend aantal
antropogene organische contaminanten waargenomen in het aquatische
milieu. Geneesmiddelen zijn hierbij een bijzondere groep van
micropolluenten die recent in de belangstelling kwamen. Hoewel deze
stoffen ontwikkeld zijn omwille van hun geneeskrachtige werking, is
de paradox dat ze nu gezien worden als potentieel schadelijke stoffen
voor ons milieu. Barriéres zoals waterzuiveringsinstallaties blijken
onvoldoende om hun residu’s te verwijderen waardoor ze continu in the
milieu geloosd worden. Het voorkomen van lage concentraties (in de
grootte orde van ngl™! tot pgl™!), het gedrag en de (eco)toxiciteit van

geneesmiddelen in het milieu wordt bondig samengevat in Hoofdstuk 1.

Om een goede chemische waterkwaliteit te garanderen, zijn
inspanningen nodig om de diversiteit aan organische micropolluenten
nauwgezet te analyseren. Analyse is onmisbaar voor de studie naar
het voorkomen, het gedrag en de risico’s van deze micropolluenten
die getransporteerd worden tussen afvalwater, oppervlaktewater,

grondwater en uiteindelijk ook drinkwater.
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De state-of-the-art voor de doelgerichte analyse van polaire water-
contaminanten zoals geneesmiddelen is tandem massa spectrometrie
gekoppeld aan vloeistofchromatografie en vaste fase extractie. Echter,
sinds de jaren 2000 werden nieuwe en geavanceerde technologieén
voor hoge-resolutie massa spectrometrie (HRMS) een interessant
alternatief. Met deze instrumenten kan een wijd massabereik continue
geanalyseerd worden gedurende de chromatografische scheiding. Dit
laat een niet-gerichte analyse toe waarbij het a priori vastleggen van
doelverbindingen overbodig wordt. Daardoor heeft deze breedspectrum
HRMS benadering het potentieel om een quasi ongelimiteerd aantal
componenten te identificeren en te kwantificeren. Tegelijkertijd laat
dit toe om te screenen naar nieuwe (on)bekende contaminanten. De
basisbeginselen en de mogelijkheden van breedspectrum HRMS voor het
screenen en kwantificeren van micropolluenten in het aquatisch milieu

worden behandeld in Hoofstuk 2.

De algemene doelstelling doorheen deze doctoraatsverhandeling is
het ontwikkelen van innovatieve analytische methoden gebaseerd op
HRMS als stapstenen voor een innovatief screenen-tot-kwantificatie
concept. Verschillende technieken op basis van dubbel-focusserende
magnetische sector, Time-Of-Flight (TOF) en Orbitrap HRMS worden
ontwikkeld, en hun toepasbaarheid wordt onderzocht voor de analyse
van geneesmiddelen in drinkwater, oppervlaktewater, en (biologisch

gezuiverd) afvalwater.

In Hoofdstuk 3 wordt een nieuwe analytische methode voor het
meten van 43 geneesmiddelen in (biologisch gezuiverd) afvalwater

gepresenteerd. Deze methode is gebaseerd op vaste fase extractie,
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vloeistofchromatografie en magnetische sector HRMS. De bijdrage van
de extractie-efficiéntie en de matrix effecten, die samen de globale
procesefficiéntie bepalen, wordt grondig onderzocht aan de hand van
een methodevalidatie. Vervolgens worden kwaliteitslabels toegekend
op basis van een een gedetailleerde onzekerheidsanalyse om de data-
interpretatie te vereenvoudigen. Componenten met een nauwkeurig
bepaalde (relatieve standaard afwijking < 20 %) procesefficiéntie tussen
60 % en 140 % worden gelabeld als kwantitatief. De resultaten van de
andere componenten moeten eerder als indicatief beschouwd worden.
Een totaal van 22 geneesmiddelen werd gemeten in het influent en
effluent van (i) een conventioneel actiefslib systeem en (ii) een parallel
systeem bestaande uit een membraanbioreactor en een conventioneel
actiefslib systeem. De effluent concentraties van de ontstekingsremmer
diclofenac en het antidepressivum venlafaxine varieerden respectievelijk
van 0.5 tot 1.8 1g1™! en van 0.2 tot 0.5 pgl™t. Het lozen van dit effluent
in de rivier De Dender zorgt mogelijks voor een verhoogd milieurisico

omwille van de relatief hoge concentraties van sommige geneesmiddelen.

Uniforme richtlijnen voor de dataverwerking en voor de kwalitatieve
en kwantitatieve validatie van breedspectrum HRMS zijn schaars. In
Hoofdstuk 4 wordt onderzocht hoe een optimale massa-accuraatheid
en gevoeligheid bekomen kan worden door het optimaliseren van de
dataverwerking. Voor kwalitatieve analyse wordt het omzetten van
de gemeten spectra naar staafspectra aangeraden. Op die manier
kan de massaprecisie met een factor 2.3 verbeterd worden. Echter,
voor kwantitatieve doeleinden kan het gebruik van staafspectra leiden

tot signaalonderbreking indien ionenchromatogrammen geéxtraheerd
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worden met te smalle massavensters. Daarom wordt aangeraden om de
piekintegratie uit te voeren op de oorspronkelijk gemeten spectra. Op
basis van een nauwkeurige afweging tussen gevoeligheid en selectiviteit
werd een optimaal massavenster van 50 ppm aangeraden voor een TOF
instrument met een massa-onderscheidend vermogen van 20 000.

Wijdverspreide concepten voor het bepalen van detectielimieten op basis
van de signaal-ruisverhouding blijken niet altijd toepasbaar meer bij
HRMS omdat soms geen ruis meer gedetecteerd wordt. As alternatief

werd een statistische methode verbeterd en toegepast.

Het steeds toenemend aantal micropolluenten zoals geneesmiddelen
vergt snelle en gevoelige breedspectrum HRMS technieken. In
Hoofdstuk 5 wordt een gerichte screeningstrategie gepresenteerd
die in staat is om het aantal valse negatieven te minimaliseren
zonder al te veel vals positieve waarnemingen te weerhouden. De
gebruikte analytische methode vermijdt het gebruik van de traditionele
staalopzuiveringstechnieken door een groot volume te injecteren in
een ultrahoog performante vloeistofchromatograaf. De gerichte
screeningstrategie is ontwikkeld voor een TOF-HRMS voor de detectie
van 69 geneesmiddelen in oppervlaktewater. De screening houdt
rekening met de signaal-afhankelijkheid van de accurate massafout door
middel van een vernieuwende statistische benadering. Op die manier
kan gegarandeerd worden dat 95% van de gemeten geneesmiddelen
ook weerhouden wordt. De methode is toegepast op 5 waterstalen van
Belgische rivieren. Minder dan 15 % vals positieve werden weerhouden,
wat de toepasbaarheid van de methode illustreert.  Uiteindelijk

konden 30 van de 37 weerhouden componenten bevestigd worden
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door het experimenteel verifiéren van de retentietijd met analytische
standaarden. De kwantitatieve validatieresultaten en toepasbaarheid
van de ontwikkelde methode die gebruik maakt van groot-volume
injectie wordt bediscussieerd. Concentraties variérend van 17ngl™! tot

3.1pgl™t werden gekwantificeerd in de 5 rivierwaterstalen.

In Hoofdstuk 6 wordt het concept van gerichte screening
uitgebreid. In conventionele screeningprocedures worden verschillende
identificatiecriteria, zoals de massafout en het isotopenpatroon, één
na één afgelopen. Hierbij loopt het aantal vals negatieven typische
op. De uitdaging is om een goed uitgebalanceerde screening te
bedenken waarbij de verschillende criteria even streng zijn, zodat
het globaal aantal vals negatieven controleerbaar is. Daarom wordt
een innovatieve gerichte screening voorgesteld die gebruik maakt van
ultrahoog performante vloeistofchromatografie en Orbitrap HRMS. Op
basis van een multivariaat statistisch model is het mogelijk om zowel
de accurate massafout van het mono-isotopisch ion, 3 isotopen en
hun isotoopabundantie, en een piek/ruis filter in rekening te brengen.
Op die manier kon voor de eerste keer het aantal vals negatieven
beperkt worden tot het gewenste niveau van 5%. Tegelijkertijd
wordt een uitgebalanceerde identificatiebeslissing gegarandeerd door de
verschillende identificatiecriteria op een holistische manier te evalueren.
Indien 1, 2 en 3 isotopen in rekening gebracht worden, daalt het aantal
vals positieven van 22, 2.8 tot < 0.3% terwijl de mediane identificatie
limiet toeneemt van 200, 2000 tot 2062ngl™!, respectievelijk. Om de
effectiviteit van dit concept aan te tonen werden 7 biologisch gezuiverde

afvalwaters gescreend naar het voorkomen van 77 geneesmiddelen. Dit
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resulteerde in de indicatieve identificatie van 25 componenten waarvan,
na het aankopen van analytische standaarden om hun retentietijd te

verifiéren, 19 componenten geconfirmeerd werden.

De wetenschappelijke vooruitgang en perspectieven voor screenen-

tot-kwantificatie met HRMS worden bediscussieerd in Hoofdstuk 7.

272



Addenda

273



Table A.1 Specifications of the analytical standards of the pharmaceutical compounds used in Chapters 3 and 6
(therapeutic group, chemical formula, solvent en concentration of analytical stock solution).

Addenda

Substance (salt) Therapeutic group Formula Solvent Concentration (g171)
Acyclovir® Antiviral CgH,; N,O4 Dimethyl sulfoxide 1.06
AlprazolamP Tranquilizer C,,H,3CIN, Water 1.05
Amantadine (HCl)? Antiviral. antiparkinson 10H7N Water 1.03
Amitriptyline (HC1)* Antidepressant 20Ho3 Ny Water 1.06
Amoxicillin (3H20)¢ Antibiotic: peniclline 16H19N3058 Water 1.14
Atenolol® B-blocker 14H55 N5 Oy Methanol 0.70
Besifloxacind Antibiotic: quinolone 19Hy; CLEN;O5  Water 1.16
Bezafibrate?® Lipid regulator 19H5( CINO,, Methanol 1.00
Bisoprolol (fumarate)® Bblocker 15H3,NO, Acetonitril 0.0085
Caffeine® Psychoanaleptic sH1oN4O, Methanol 1.00
Carbamazepine® Anti-epilepticum 15H5N,0 Methanol 1.01
Chloramphenicol® Desinfectant 11 H5CLN,Of Acetonitril 1.06
Chlorotetracycline (HC1)®  Antibiotic: tetracycline 2o Hy3CIN, Oy Water 0.90
Ciprofloxacin (HCI)® Antibiotic: quinolone 17H,gFN;O4 Water 1.04
Cloxacillin (NaOH)?* Antibiotic: penicillin 19H;gCINg Methanol 1.00
Cyclophosphamide® Alkylating agent Methanol 1.00
Diazepam® Tranquilizer Methanol 1.03
Diclofenac® Anti-inflammatory drug Methanol 1.22
Efavirenz? Antiviral Methanol 1.14
Enrofloxacin® Antibiotic: quinolone 9 Acetonitril 1.04
Flumequine® Antibiotic: quinolone 1 Acetonitril 0.96
Fluoxetine (HCI)¢ Antidepressant Methanol 0.85
Gatifloxacind Antibiotic: quinolone 10 mM NaOH in water 1.02
Ibuprofen® Anti-inflammatory drug 1 Methanol 1.04
Ifosfamide® Alkylating agent 5 Methanol 1.00
Indomethacin® Anti-inflammatory drug Acetonitril 0.98
Ketoprofen® Anti-inflammatory drug Methanol 1.30
Lamivudine® Antiviral Dimethyl sulfoxide 0.74
Levofloxacin® Antibiotic: quinolone Acetonitril 1.05
Lincomycin (HCI-H,0)"  Antibiotic Methanol 0.80
Metoprolol™ [B-blocker Methanol 1.30

274



Addenda

Auweuwrroy) ‘Hquiy) 1fI0jsuLIyy "I :worddng
wnidfeg ‘exn( :rorddng

‘OY.L :Ierddng P

Aueurrar) ‘1efey :rorddng g
Aueurror) ‘gquur) pawodr :eriddng a

wnispeyg ‘orgdiy szamsmm
wnideg ‘Youpry-ewsdig :morddng ,

epeue))

780 [oueyjoy "oNETH D [eaIATIUY <OUIPNAOPIZ
€40 [oueyjey c0'N“H*"D juessordopryuy «(IDH) eurxeye[uop
vTT [131U03e0Y Eo'NF'H"D ooy purdoyjetiyy,
er'1 [131U0300Y ofp*H "D UrRIORFUISa] <UBSOIIIT,
01’1 [ouRYIRIN CONID'HYYD  Snip Aroyewrwregur-rpuy <proe orureusyog,
G0'T  TYem Ul JOBN NWOT SOEN"EH D eurpAoejey poIqUUY -(IDH) euPAdenR],
10°T oueyeiN  Co°NIDTHYYD Iezimbuely, quredezeuay,
or'T nymojoy  gfOiN'THC'D  eprureuogms onorquuy Lo[ozexOYjeuIeNg
€11 mmoedy  §°O'N"THCTD  eprureuojms uorquuy LPUIZB2UIRNG
2o’ nymojeoy  §FOIN"'THC!D  eprureuogms onjorquuy SUIXOpRJNg
08°0 puemeN  sFOCN"H D 1030014~ +(I0H) 1or=308
01’1 [H}1U0300Y f0%nH uryesg £OUIYRISATIIG
TO'T  1eyem wr HOBN WwWOT  QfN°a*'H%D ouofoumb :onorquuy  ,(0H € [DH) uwexoyeres
¥6°0 [ouRYIRIN (e MINE Ria = ide) juessordopryuy LouopLadsry
06°0 RGN N™HCTD  uosupiredpue ‘eiAnUyY <(IDH) eurpejuRwny
00T [oueyI2 ‘oN"H""D 130019~/ «(IDH) [ooueidorq
160 foweysoly  F0ENEASTHED [eIIATIUY pl11BU00D]
zL'0 pouwepely  foN'a%H®"o juessoxdopiyny  ,(OH G- [DH) eurexored
G60 [ouryI_N CoN®H®D  Snip Lroyewrwregur-rpuy JjourejaorIe
LU0 Ioyesm ul JOBN NUWOT S0°NTeH %D ourpforriey onoqnUyY >(IDH) 2uIP4e13034X0
190 RENLIVY "o [eIAUY pIOISOAYI0 TIATUIRYOSO)
V0 YR YO°N"*H"TD [enAnuy pPIO® JIATUIRY[350)
06°0 [ourRT3RY o'N"'H "o [eIATIUY peutderraeN
02T [oueyIaI €07 TH"Ty  Snip Arojewwrepyur-iyuy JuexoideN
z0'T [1131U0300Y EOEN“H "D auofournb :poIqIUY POV OIXIPIeN
66°0 oM TofNaTTH D ouooumb :d130IqIIUY ;(I0H) uwexogrxoy
€1 [LIYTU0300Y f0*N°H"D orjorqrUY ,POZEPIIOTAIN
(1-18) uorreruedUOy) JUOA[OS R[NULIO] dnoa3 osrynaderay g, (21e8) P0oURISqNG

(ponurjuoo) 1Y O[qeEL

275



Addenda

Table A.2 Overview of the 69 pharmaceutical compounds and their therapeutic groups, suppliers of the analytical standards, solvent used
for the individual stock solutions, chemical formula, EST mode, exact ion mass, accurate mass of fragment ion, retention time and the lowest
concentration > 100 a.u. in surface water.

Compounds® Therapeutic group Formula Solvent of Exact mass Average Fragment ion: Retention  Lowest
standard  (Da), ESI mass error accurate mass time + SD  concentra-
mode + SD (Da) + SD (min) tion >
(ppm) over (mDa) [MzH[* (n=5) 100 a.u.
5 days® (n=5) (ngl™t)e
%-?:EMHT%_mamﬁovumbiﬁ%lsm Analgesics Ci3H, N0 MeOH 231.13721  -0.6+2.2 113.1072+0.6 3.59+0.03  0.01
(S44)
Atenolol (S44)° B-blockers C,,H,,N,04 MeOH 266.1630"  0.4+2.8 145.0651+1.0  3.21+0.05  0.01
Betaxolol (S44)f B-blockers CigHygNO4 MeOH 307.2147T  0.4%1.5 116.1070£0.9  6.08+0.01  0.01
Bezafibrate (S44)°¢ Lipid regulators CgHyyCINO,  MeOH 361.1081 0.1+0.9 274.0642+0.2 8.06+£0.01  0.01
Bisoprolol (S44, S17)¢ B-blockers C,gH3,NO, MeOH 325.22537  1.5+0.7 116.1075+0.3  5.67+0.01  0.01
Caffeine (S17)# Psychoanaleptics CgH,,N,O, MeOH 194.08047  1.2+3.1 138.0666+0.5 4.07+0.02  0.01
Carbamazepine (S44, S17)8 Antiepileptics C,;H,,N,0 MeOH 236.0950"  2.4+2.3 194.0969+0.6 6.91+0.01  0.01
Chlorotetracycline (S44)¢ Tetracycline Cy,H,5CIN, Oy MeOH 478.11437  0.3x2.1 462.0952+0.8  4.79+0.01 0.5
antibiotics
Ciprofloxacin (S44)" Quinolone antibiotics C,,H,;FN;O; MeOH 331.13327  1.8+2.3 288.1512+0.7  4.34+0.01  0.05
Clenbuterol (S44)? Adrenergics C,,H,;;CI,N,O MeOH 276.0796T  0.6+2.0 203.0140+0.7  4.90+0.01  0.05
Cloxacillin (S44)° Penicillin antibiotics ~ C,4H,;CIN;O,S MeOH 435.0656~  0.5+1.8 293.0154+1.4 7.70£0.01  0.05
Cyclophosphamide (S44)¢ Alkylating agents C.H,;CL,N,0,P MeOH 260.02481  1.3+0.4 140.0031+0.2 5.86+0.01  0.05
Dapsone (S44)" Other antibiotics C,,H,,N,0,8 MeOH 248.06197  0.4+1.8 156.0117+0.5  5.04+0.02  0.05
Diatrizoic acid® Todated X-ray contrast C,;HyI;N,0,  H,0/ 613.7696 " -3.4+1.8 360.9687+3.7  2.62+0.19 5
media MeOH
20:80
Diclofenac (S44)& Anti-inflammatory ¢,,H,,Cl,NO, MeOH 295.0167 -0.1+0.5 250.0196+0.2  9.07+0.01  0.01
drugs
Doxycycline (S44, S17)¢ Tetracycline CyHy N, Of MeOH 444.15331 -0.1+1.5 428.1336+0.8  5.47+0.01 0.5

antibiotics
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Table A.2 (continued)
Compounds® Therapeutic group Formula Solvent of Exact mass Average Fragment ion: Retention Lowest
standard  (Da), ESI mass error accurate mass time + SD  concentra-
mode + SD (Da) + SD (min) tion >
(ppm) over (mDa) [M+H]* (n=5) 100 a.u.
5 daysP (n=5) (ngl™1)e
Iopamidol® Todated X-ray contrast C,;,H,,I;N;Og H,O/ 776.8541F7 -1.74mn=1  558.8899+3.3 1.94+0.18 5
media MeOH
20:80
Topanoic acid (S44, S17)° Todated X-ray contrast C,,H,,I;NO, H,O/ 570.8002~  0.1+1.7 126.9053+0.1 10.03+0.02 0.5
media MeOH
20:80
Iopromide (S44)¢ Todated X-ray contrast C;oH,,I;N;O4 H,O/ 790.8697"  1.8+1.8 126.9054+0.7 3.47+£0.03 0.5
media MeOH
20:80
Iotalamic acid® Todated X-ray contrast C,;HgI;N,0, H,0/ 613.7696~ -3.4+£1.8 360.9687+3.7 2.62+0.19 5
media MeOH
20:80
Ketoprofen® Anti-inflammatory Ci6Hy,04 MeOH 254.09437  0.6+2.3 209.0963+0.6 7.92+0.01 0.1
drugs
Lincomycin® Other antibiotics C,gH3,N,048 MeOH 406.2138" -0.3x1.1 126.1278+0.8 3.91+0.02 0.01
Metoprolol (S44)¢ B-blockers C;Hy;;NO,;  MeOH 267.18347  1.7+2.3 116.1073+0.5 4.90+0.01 0.01
Metronidazole (S17)" Other antibiotics CeHgN;O4 MeOH 171.0644"  0.5%5.9 128.0455+1.0 3.29+0.05 0.1
Nafcillin (S44)¢ Penicillin antibiotics ~ C,;H,,N,0,S MeOH 414.1249-  0.7+0.9 272.0754+0.3 7.93+0.01 0.5
Naproxen (S44)° Anti-inflammatory C,,H,,04 MeOH 230.0943"  0.2+1.7 170.0733+0.2 7.94+0.01 0.5
drugs
Norfloxacin® Quinolone antibiotics C,gH,;FN;O0, MeOH 319.1332%7  1.4x1.5 276.1510+0.5 4.24+0.01 0.1
Ofloxacin® Quinolone antibiotics C;¢H, FN;0, H,0/ 361.1438"  0.6+1.6 318.1616+0.5 4.28+0.01 0.05
MeOH
20:80
Oleandomycin® Macrolide antibiotics Cy Hg,NO;, MeOH 687.4194%  -0.6+2.0 158.1174+1.0 6.17+0.01 0.5
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Table A.2 (continued)

Compounds® Therapeutic group Formula Solvent of Exact mass Average Fragment ion: Retention Lowest
standard ~ (Da), ESI mass error accurate mass time + SD concentra-
mode + SD (Da) £ SD (min) tion >
(ppm) over (mDa) [M+H|* (n=5) 100 a.u.
5days®  (n=5) (ngl™h)°
Sulfamerazine (S44)° Sulfonamide C,;H;,N,0,5 MeOH 264.0681"7 2.0+2.9 156.0119+0.6 4.32+0.02 0.05
antibiotics
Sulfamethoxazole (S44, S17)¢ Sulfonamide C,oH;;N5048 MeOH 253.0521" 1.6+1.5 156.0118+0.4 5.42+0.01 0.01
antibiotics
Terbutaline Adrenergics C,H;(NO; MeOH 225.13651  2.9+2.2 152.0713+0.4 2.90+0.16 0.05
Tetracycline (S44, S17)0 Tetracycline Cy,Hyy N, O MeOH 444.15337  0.2+1.1 410.1235+1.0 4.56+0.01 0.05
antibiotics
Tolfenamic acid (S44)? Anti-inflammatory C,4H,5,CINO, MeOH 261.0557 0.2+1.8 216.0585+0.4 10.00+0.01  0.01
drugs
Trimethoprim” Other antibiotics C4H,sN,O0; MeOH 290.1379"  1.4+1.7 230.1164+0.5 4.18+0.02 0.01
Tylosin (S44, S17)" Macrolide antibiotics C,4H,,NO,, MeOH 91551927 0.8+3.9 174.1133+0.7 6.69+0.01 0.1
Venlafaxine (S44)! Antidepressants C,,H,,NO, MeOH 277.2042F 2.2+0.8 260.2012+0.3 5.59+0.01 0.01

#544: subselection of 44 compounds for calibration of suspect screening model in Chapter 5; S17: subselection of 17 compounds used in Chapter 4.
b 5ugl~! in deionized water.

¢ Lowest concentration having a signal intensity > 100 a.u. in surface water (pg _Lv.

d Supplier: Alfa Aesar, USA.

¢ Supplier: Dr. Ehrenstorfer GmbH, Germany.

f Supplier: US pharmacopeial, USA.

& Supplier: Dr. Ehrenstorfer GmbH, Germany.

b Standards were kindly provided by Fytolab (Zwijnaarde, Belgium).

I Supplier: Molekula GmbH, Germany.

I No fragments found.
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Table A.3 (continued)

Compound tr (min) Nature of selected Screening library®

isotopes mfzino  M[zin1 M[zth2  M[2th 3 TeR1 TeR,2 TTeR,3
Paracetamol 1.49 3c/13C, /1PN 152.07061 153.07398 154.07484 153.06764 0.087 0.004 0.004
Paroxetine 9.63 ao\ao /13C,  330.15000 331.15328 332.15605 333.15881 0.208 0.024 0.002
Pleconaril 13.91 ;o\ao \;o 382.13730 383.14036 384.14300 385.14564 0.198 0.023 0.002
Rimantadine 7.94 Hwo\ao \az 180.17468 181.17809 182.18151 181.17171 0.130 0.008 0.004
Risperidone 6.95 ao\ao /13C,  411.21908 412.22213 413.22499 414.22772 0.254 0.034 0.003
Sarafloxacin 5.99 ;o\ao \ao 386.13107 387.13416 388.13687 389.13954 0.220 0.028 0.003
Sulfadoxin 5.36 ao\ﬁm\zz 311.08085 312.08345 313.07678 313.08629 0.133 0.045 0.014
Sulfamethazine 3.89 13C/345/14N 279.09102 280.09362 281.08694 281.09665 0.132 0.045 0.010
Sulfamethoxazole 5.06 13C/34S /14N 254.05939 255.06261 256.05524 256.06455 0.110 0.045 0.009
Temazepam 10.11 37C1/13C/37C1'3C 301.07383 303.07092 302.07696 304.07406 0.320 0.174 0.056
Tetracycline 4.68 13C/13C,/13C,  445.16054 446.16376 447.16620 448.16867 0.244 0.043 0.006
Trimethoprim 4.34 ;o\ao \ao 291.14517 292.14802 293.15044 294.15311 0.153 0.014 0.001
Venlafaxine 7.62 Hwo\ao \ao 278.21146 279.21474 280.21758 281.22037 0.185 0.018 0.001
Zidovudine 4.38 ;o\aow\aow 268.10403 269.10740 270.10870 271.11195 0.110 0.011 0.001
Set B: Suspect compounds®
4-(dimethylamino)antipyrine - 13¢/13C, /15N 232.14444 233.14783 234.15076 233.14138 0.141 0.010 0.011
Atenolol 1.41 ao\ao /13C,  267.17032 268.17369 269.17590 270.17873 0.153 0.013 0.001
Betaxolol ;o\ao \;o 308.22202 309.22532 310.22805 311.23076 0.197 0.022 0.002
Bezafibrate 10.85 %Q\ao\%omao 362.11536 364.11317 363.11865 365.11604 0.321 0.208 0.067
Bisoprolol 7.52 130/13C, /13C,  326.23258 327.23589 328.23849 329.24115 0.198 0.024 0.002
Caffeine 4.14 ao\;z\;o 195.08765 196.09106 196.08468 197.09475 0.087 0.015 0.004
Clenbuterol - ,ﬁQ\ao\,ﬁQ 277.08690 279.08396 278.09024 281.08103 0.640 0.131 0.102
Clofibrate - %Q\;o\%omwo 243.07825 245.07530 244.08165 246.07870 0.320 0.131 0.042
Cloxacillin 9.93 37C1/13C/37C13C 436.07285 438.07049 437.07580 439.07306 0.365 0.215 0.078
Cyclophosphamide 7.05 37C1/37CL,/13C  261.03210 263.02916 265.02622 262.03550 0.640 0.102 0.077
Ifosfamide 6.63 37C1/37CL,/13C  261.03210 263.02916 265.02622 262.03550 0.640 0.102 0.077
Dapsone - ;o\&m\w 249.06922 250.07209 251.06507 251.07479 0.131 0.045 0.009
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