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1.1 Problem statement 

There are many debates concerning the quality and quantity of natural resources required for 

sustaining human life (Pretty et al., 2010; Zhao and Running, 2010). In dry areas, water 

resources are limited and the share available to agriculture is decreasing at a time when more 

food is needed (Oweis, 1997). Furthermore, food security is one of the global concerns in the 

twenty-first century (Godfray et al., 2010). According to the 2010 revision of the official 

United Nations population estimates and projections, the world population is projected to 

reach 9.3 billion persons by 2050, that is, 2.3 billion more than in 2011, an increase close to 

the combined populations of China and India today. Most of this growth will be absorbed by 

developing countries (UN, 2010). 

The necessary increase in food production has to be supplied from higher yields through 

growing more crops and cultivating more land. At the same time, production increases from 

fertile lands are known to be declining, forcing people to use also marginal lands. Thus, both 

marginal and fertile lands are currently suffering from various forms of degradation, 

including nutrient depletion, soil erosion, soil and water pollution and reduced soil water 

retention. The shortage of soil water endangers both human life and natural environment. A 

century ago, this list would have been quite short, because human use of the planet's 

resources was much less, and not perceived as damaging (Rost et al., 2008; Lambin and 

Meyfroidt, 2011)  

Soils are particularly important natural resources in Syria. This appears from the fact that the 

national gross income depends on agricultural production, as more than 65% of the Syrian 

population relies on agriculture and land exploitation to earn their living (Al-Khaier, 2003). 

Earlier studies showed that while agricultural production, human use and industry require an 

increasing amount of water, water reserves that can be devoted to these do not increase 

sustainably (Ragab and Prudhomme, 2002). Due to its climatic regime, Syria faces a crisis of 

water resources scarcity. Moreover, the overgrowing population and the droughts in the 

country are putting water resources under pressure and compelling people to use poor-quality 

water resources for irrigation (Hazzouri and Khlosi, 1998; Möller et al., 2005). Until any 
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alternative solution is discovered, optimizing water-use efficiency - and thus using soil water 

as well - may be the tool to resolve the problem of the difference between needs and 

resources of water (Gregory et al., 2000; Oweis et al., 2004). To accomplish that, we need to 

have proper understanding of soil hydraulic properties and their incorporation in cropwater 

and hydrological models. Following are some examples that illustrate the complicated 

situation soil water management experts and farmers have to face in Syria during a growing 

season. 

Syria has a Mediterranean climate with rainy winters and hot rainless summers. Moving 

south-eastwards, the climate is becoming more arid (precipitation becomes less than 200 mm) 

and vegetation is becoming less abundant. However, even that amount of precipitation is not 

evenly distributed, neither spatially nor temporally. The country therefore has a high degree 

of aridity in large parts of its territories and is therefore highly vulnerable to drought (De 

Pauw et al., 2000). In the summer period, the amount of precipitation is mostly zero, which 

along with high temperatures and a high proportion of sunny days results in plants being 

stressed by drought. The irrigation potential is limited by many factors, among others the 

limited amount of suitable irrigation water (Hazzouri and Khlosi, 1998; Möller et al., 2005). 

Moreover, dry conditions, heat and the generally sparse vegetation cover may cause wind 

erosion in the marginal drylands. Results of four seasons of wind erosion research in 

Khanasser Valley indicated that wind erosion is a serious problem in sparsely covered 

dryland environments (Massri et al., 2002). Since there are few feasible options to manage 

this situation, the main focus should be on prevention and preparation for this situation. In 

early spring, the problem is the opposite. As winter precipitation is much higher, rainwater is 

collected and stored in and on top of the soil. In this case the amount of water that exceeds 

the infiltration rate and the water holding capacity of the soils is substantial which causes 

severe water erosion (Shinjo et al., 2000).  

Soils of a considerable part of Syria have a high carbonate content (>15%) in the surface 

and/or in deeper horizons due to low rainfall which does not allow leaching of carbonates 

where the parent material of soil is derived from calcareous sedimentary rocks such as 

limestone, dolomite and marl (Tavernier et al., 1981). Therefore, with calcareous parent 

material, calcification and movement of carbonate within the soil profile is the most 

important pedogenic process in arid and semi arid regions. Moreover, about 40% of all arable 

land is too saline to sustain plant growth (IAEA, 2003). The salinization processes have been 
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remarkably accelerated due to the introduction of rice cultivation. It has been estimated that 

in Syria, every year about 3,000 to 5,000 ha of irrigated lands became unsuitable for 

agricultural use due to extreme salinization (THF, 1994). The threat of recent salinization 

processes is of major concern and should be studied carefully to have a better understanding 

of environmental degradation and to avoid undesirable changes. 

Regarding environmental concerns, the shortage of water may also cause different hazards. 

Soil pollution of agricultural areas surrounding big cities (such as Damascus and Aleppo) is a 

major environmental problem. Based on the water shortage, remarkable parts of these areas 

are irrigated with treated but also untreated sewage effluents from big cities. Möller et al. 

(2005) assessed the present degree and spatial distribution of heavy metal concentrations in 

51 soil profiles and in 22 topsoil samples in the Damascus Ghouta. Direct ingestion of soil, 

e.g., by children and inhalation of dust may contribute largely to the accumulation of heavy 

metal in human bodies and livestock. 

Avoiding or preparing to any of the aforementioned situations requires among other things, 

the generation of a number of hydrological models that rely on numerical techniques to 

simulate heat, water, and solute fluxes in the vadose zone and which can be used to simulate 

situations ranging from field-scale water flow to global climate change. Dynamic simulation 

of soil physical, chemical and biological processes can be used to predict the soil-water 

regime for irrigation purposes, movement of chemicals for environmental monitoring and 

crop yield for agronomic management. A large number of transient flow and transport models 

have been developed to simulate integrated effects of climate, soil, and plants. The Food and 

Agriculture Organization of the United Nations (FAO) has developed AquaCrop, a field-

crop-water-productivity simulation model for use as a decision-support tool in planning and 

analysis (Steduto et al., 2009; Hsiao et al., 2009). This model simulates attainable yields of 

major herbaceous crops as a function of water consumption under rainfed, supplemental, 

deficit, and full irrigation conditions. Another model here is HYDRUS (Šimůnek et al., 2006) 

which is a physically based mechanistic model that solves the Richards equation for water 

flow and a convection–dispersion equation for solute transport (Šimůnek et al., 2008). This 

model has been successfully used during the last few years to simulate the transport of soil 

water, salts, nitrates, microorganisms, and organic contaminants in variably-saturated soil 

formations in a variety of soil geometries and irrigation systems. Such an understanding can 

aid the development of best management practices, e.g. for optimizing the design of water 
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harvesting techniques (Verbist et al., 2012). Developments in computer modelling of water 

and solute transport in soil are advancing rapidly, as speed of computation increases and 

complexity of models expands. However, the use of these models in low-income countries 

such as Syria is limited, because they need many soil property values as input. 

To formulate soil-water relationships, soil hydraulic properties are required as essential 

inputs. The most important properties are the soil-water retention curve (SWRC) and 

hydraulic conductivity characteristics. Measuring hydraulic properties in the soil is difficult, 

time-consuming and expensive. The cost-effectiveness of obtaining soil hydraulic properties 

can be improved by using indirect methods, which pertain to the prediction of hydraulic 

properties from more easily measured procedures. Furthermore, the use of data with zero 

error is not necessary because many problems do not require exact solutions. It is, however, 

better to use much data (spatially distributed) with a high degree of accuracy rather than have 

only data from a few points sources. Indirect methods for estimating soil hydraulic properties 

are based on deriving the hydraulic properties from more easily, widely available, routinely, 

or cheaply measured properties. This concept lies behind the development and use of 

pedotransfer functions (PTFs), a term which was first coined by Bouma (1989). Pedotransfer 

functions can serve as a useful means of parameterizing complex models, providing that the 

level of accuracy achieved is adequate in a functional sense, and that the range of 

applicability of the functional relationships is known and respected (Wösten et al., 1990; 

Mayr and Jarvis, 1999). Pedotransfer functions are particularly useful for catchment and 

regional scale applications of models since the availability of measured hydraulic properties 

is inevitably limited across large areas. However, the capability to derive pedotransfer 

functions requires the establishment and use of a comprehensive database of soil hydrological 

and pedological data. In dryland areas, such as Syria, the availability of reliable data for water 

retention in relation to soil type, texture, and soil carbonate content is low. It is therefore 

desirable to explore the interaction between soil hydraulic properties and other physical and 

chemical properties in order to estimate the soil-water retention curve (SWRC) from easily 

measured soil parameters. 

1.1.1 Soil water retention curve equations 

The SWRC describes the relationship between its matric potential  and its water content  

(i.e., it describes the soil's ability to store or release water). It is an important soil property 



General introduction 

 

7 

 

related to the distribution of pore space (sizes, inter connectedness), which is strongly 

affected by texture and structure, as well as related factors including organic matter content. 

Water content and the potential energy of soil water are not uniquely related because the 

amount of water present at a given matric potential is dependent on the pore-size distribution 

and the properties of air-water-solid interfaces. It further depends on whether a soil 

experiences a drying or a wetting process. This latter phenomenon is known as hysteresis, 

and is more evident in soils such as sands having a large proportion of larger pores.  

Discrete (, ) data sets can be either obtained from laboratory or field measurements, or 

predicted from other soil properties using pedotransfer functions, PTFs, or other approaches. 

Both methods yield discontinuous sets of - data pairs within the range of matric potentials 

used for the measurements. For modeling purposes a continuous and smooth representation 

of the SWRC is preferred, which can be obtained by fitting a closed-form analytical 

expression to a discrete data set. To date, a large number of functions have been developed to 

describe the SWRC. The most commonly employed classical retention models are the two 

unimodal functions presented by Brooks and Corey (1964) and by van Genuchten (1980). 

However, these models are successful in the wet part of the SWRC where water is mainly 

held by capillary forces and are known to give poor results at low water contents where 

isothermal liquid film flow induced by adsorption forces dominates (Tuller and Or, 2001). 

Several investigators have reported difficulty in describing the dry end of the SWRC using 

these models. The residual soil water content, being the water content when the matric 

potential goes to infinity, has been found to be an ill-defined parameter, with values often 

becoming negative during optimization unless special precautions are taken. The dry part of 

the SWRC, however, is equally important in a number of water-related processes affected by 

water contents well below the residual value, such as deflation of soil particles by wind, the 

infiltration process into a soil with initial water content below the water residual content 

value, the evaporation process with a dry layer of soil at the ground surface, the soil 

desiccation process with a heat source or dry gas flow, microbial activity and N 

mineralization in soils, methane oxidation in soils, and applications in colloid science. There 

is hence a pressing need to accurately represent the SWRC for all matric potentials. In the last 

years and decades, several attempts have been made to account for this fact (Ross et al., 

1991; Campbell and Shiozawa, 1992; Fredlund and Xing, 1994; Fayer and Simmons, 1995; 

Groenevelt and Grant, 2004; Lebeau and Konrad, 2010; Zhang, 2011; Peters, 2013). 
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1.1.2 Water retention PTFs 

Many attempts have been made to indirectly estimate the SWRC from more easily measured 

and readily available data such as soil texture and bulk density. These pedotransfer functions 

have been categorized by Botula (2013) as follows (Figure 1.1):  

(1) class PTFs (Wösten et al., 1999; Al Majou et al., 2008) and continuous PTFs (Rawls and 

Brakensiek, 1985; Schaap et al., 1998); 

(2) point-based PTFs (Gupta and Larson, 1979; Ghorbani Dashtaki et al., 2010), parameter-

based PTFs (Vereecken et al., 1989; Minasny et al., 1999), and pseudo-continuous PTFs 

(Haghverdi et al., 2012); 

(3) PTFs based on a specific approach such as semi-physical approach (Arya and Paris, 1981; 

Nasta et al., 2009) and empirical approach (Vereecken et al., 1989; Lamorski et al., 2008; 

Nemes et al., 2009); 

(4) equation-based PTFs and pattern-recognition PTFs (Twarakavi et al., 2009). 

 

 

Figure  1.1.  Four general categories of SWRC-PTFs 

 

SWRC-
PTFs 

 

 

1. Class PTFs predict 
SWRC for different texture 
classes 

2. Continuous PTFs 
predict SWRC without 
grouping the data 

 

 

1. Point-based PTFs 
predict SWRC at chosen  

2. Parameter-based PTFs 
predict the parameters of 
SWRC model 

3. Pseudo-continuous 
PTFs  use ln(-) as an 
input parameter 

 

1. Semi-physical approach 
shows quasi-physical 
relationships between 
SWRC and soil properties  

2. Empirical approach links 
the basic soil properties to 
SWRC by means of 
different numerical fitting 
methods  

 

1. Equation-based 

PTFs are directly related 
to a mathematical model 

2. Pattern-recognition 
PTFs use data-mining and 
machine learning 
techniques 
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In a number of countries, different sizes of databases on soil hydraulic properties have been 

established and their analysis has resulted in a number of different pedotransfer functions 

(PTFs). A database dependency was found, so the application of these functions was reliable 

only for the area that the data source database represents (Schaap and Leij, 1998). The above 

may recommend that each interested country or region has to establish its own database to be 

able to develop reliable PTFs. Comprehensive soil hydraulic properties databases have long 

been developed in the US (Holtan et al., 1968; Rawls et al., 1982). The European Union has 

established its own data base HYPRES (Wösten et al., 1999) which was revisited in 2013 

through the European Soil Hydropedological Data Inventory (EU-HYDI) project (Weynants 

et al., 2013). More general computerized databases such as the Unsaturated Soil Hydraulic 

Database (UNSODA) (Leij et al., 1996; Nemes et al., 1999) and Grenoble Catalogue of Soils 

(GRIZZLY) (Haverkamp et al., 1997) have been released publicly. Most of the UNSODA 

and GRIZZLY soils came either from Europe or from North America. The International Soil 

Reference and Information Centre (ISRIC) has also made available different versions of a 

global soil profile database that was developed in the framework of a project entitled “World 

Inventory of Soil Emission Potentials” (WISE, Batjes, 2002a; Batjes, 2002b; Batjes, 2009). 

Botula et al. (2013) utilized a selected subset (534 soil samples) of IGBP-DIS international 

database from ISRIC (Tempel et al., 1996) to predict the water retention of soils from the 

Lower Congo in Central Africa. Other examples of data collections of soil hydraulic 

properties in particular countries include the databases of Australia (McKenzie et al., 2008), 

Belgium (Vereecken et al., 1989; Cornelis et al., 2001), Brazil (Tomasella et al., 2000), 

Hungary (Nemes, 2002), the Netherlands (Wösten et al., 2001). The research group “Soil 

Physics” of the Department of Soil Management (Ghent University) is currently establishing 

a large dataset of soils with water retention data from almost 1000 soil horizons distributed 

over the tropics, including data from countries like Chile, Cuba, D.R. Congo, Ethiopia, 

Kenya, Tanzania and Vietnam (W. Cornelis, personal communication; see also Botula et al., 

2013; Phuong et al., 2014). 

In fact, many PTFs have been developed to estimate SWRC using data from soils of 

temperate regions. However, a few studies have developed PTFs for prediction of SWRC of 

humid tropical soils and particularly of calcareous soils, and this is probably due to the 

relatively small amount of published data for such soils. Schaap (2004) noticed that current 

international databases have a serious bias towards soils from temperate regions. Tomasella 
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and Hodnett (1998) showed that, in many cases, the textures of many tropical soils, 

particularly oxisols such as those of Brazilian Amazonia, are outside the range of validity of 

these PTFs. 

The traditional statistical techniques commonly used to develop PTFs are multiple linear 

regressions (MLR) and artificial neural network (ANN). Both methods are widely applied 

since their methodology has been established very well. Recently, support vector machines 

(SVMs) have gained popularity in many traditionally ANN-dominated fields due to their 

ability to tackle complex, highly nonlinear problems in a consistent, structured manner, while 

simultaneously avoiding problems of over-fitting on simpler problems (Lamorski et al., 2008; 

Twarakavi et al., 2009). 

 

1.2 Study objectives 

Presently in Syria, there are no published soil hydraulic data available and the collation of a 

national data base is not complete. The principal objective of this research was therefore to 

statistically explore the relationships of soil hydraulic properties to physical and chemical 

properties of dryland soils in order to identify which soil properties are most relevant for 

deriving pedotransfer functions for such areas. The primary focus was to understand how 

hydraulic properties of a large set of soils from a dryland area are related to the soil properties 

other than texture (such as organic matter content, particle density, CEC, pH, lime content, 

plasticity index, and specific surface area). Disturbed and undisturbed soil samples have been 

collected in Syria in 2005 from 18 profiles including 72 horizons. In selecting sampling sites, 

major emphasis was placed on covering all the agro-climatic zones of Syria (five zones). 

However, for logistical reasons, one zone was excluded in this study. 

The specific objectives can be summarized as follows: 

1. To develop a new model that describes the soil-water retention curve from saturation to 

oven-dryness, enabling to accurately describe the soil-water retention curve at very low 

saturations which are often encountered in dryland regions, and to represent a realistic fit 

in cases where data in the dry range are missing. 
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2. To investigate the influence of selected pretreatment procedures on soil texture and soil 

water retention curve of dryland soils. 

3. To introduce additional predictor variables which are easily and cheaply determined. 

4. To develop pedotransfer functions for predicting soil-water retention curve of dryland 

soils. 

1.3 Outline of the dissertation 

The dissertation is structured around the above described specific objectives. Chapters 2, 3 

and 4 are devoted to preliminary testing and developing of closed-form analytical expressions 

to describe the water retention curve. Because of practical reasons, this preliminary testing 

was performed using international datasets from Belgium and USA. Chapters 5, 6 and 7 go 

into the development of the PTFs for dryland soils using data collected in Syria. A schematic 

overview of the structure of the dissertation, with indication of the overall and specific 

research questions, which are addressed in the various chapters, is presented in Figure 1.2.  

Chapter 2 evaluates ten closed-form unimodal analytical expressions to describe the soil-

water retention curve, in terms of their accuracy, linearity, Aikake Information Criterion 

(AIC), parameter uniqueness and parameter identifiability. This preliminarily study was 

carried out on soil samples taken in duplicate from 48 horizons of 24 soil series in Flanders, 

Belgium. 

Chapter 3 presents an alternative closed-form analytical expression that describes the soil-

water retention curve over the complete range of soil-water contents (from saturation to oven 

dryness), which is of particular interest for dryland conditions. The model combines the best 

expression from Chapter 2 with the adsorption equation developed by Campbell & Shiozawa 

(1992). The model is tested against data taken from literature that cover the complete range of 

water contents, from saturation to almost oven-dryness. It was also tested to what extent the 

model represents a realistic fit in cases where data from the dry end of the water retention 

curve are not available. 

Chapter 4 compares the new developed model with seven other closed-form unimodal 

analytical expressions that describe the soil-water retention curve across the complete range 
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of soil water contents. Retention data for 137 undisturbed soils from the Unsaturated Soil 

Hydraulic Database (UNSODA) were used for the model comparison. The eight models were 

compared in terms of their accuracy, linearity and prediction potential. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.2.  Overview of the structure of this dissertation 

Chapter 5 investigates the influence of sample pre-treatment on sand, silt, and clay fractions 

(texture) and hence on the predictability of the soil-water retention curve of dryland soils. 72 

soil samples have been collected from Syria. Two procedures with different pre-treatment 
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were applied. In a first one, carbonates were removed by hydrochloric acid as is typically 

done in particle size analysis worldwide. In the alternative one, carbonates were not removed, 

a procedure more typical for calcareous soils. 

Chapter 6 discusses the interaction between soil hydraulic properties and other physical and 

chemical properties of selected dryland in Syria. The approach in this chapter is to 

investigate the possible use of new basic soil properties as predictors of soil hydraulic 

properties, which can be easily or cheaply measured. 

Chapter 7 utilizes the support vector machine technique to enhance the performance of 

pedotransfer functions for predicting the water retention properties. The accuracy of this 

technique is compared with artificial neural networks (ANN) and multiple linear regression 

(MLR) in predicting the soil water retention curve of dryland soils. 

Finally chapter 8 summarizes the main findings and major conclusions of the thesis and gives 

some recommendations for future research. 
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Chapter 2 Comparison of unimodal analytical 

expressions for the soil-water retention curve 
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(2005). Comparison of Unimodal Analytical Expressions for the Soil-Water Retention Curve. 

Soil Science Society of America Journal 69:1902–1911. 
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Abstract 

This study was conducted to evaluate ten closed-form unimodal analytical expressions to 

describe the soil-water retention curve, in terms of their accuracy, linearity, Akaike 

Information Criterion (AIC), and prediction potential. The latter was evaluated by correlating 

the model parameters to basic soil properties. Soil samples were taken in duplicate from 48 

horizons of 24 soil series in Flanders, Belgium. All sample locations were under forest and 

hence the samples had, besides their difference in texture, a high variety in bulk density (ρb) 

and organic matter content (OM). The van Genuchten model with m as a free parameter 

showed the highest overall performance in terms of goodness-of-fit. It had the highest 

accuracy, the highest degree of linearity, and the lowest AIC value. However, it had a low 

prediction potential. Imposing the constraint m = 1 − 1/n and hence reducing the number of 

model parameters by one, increased the prediction potential of the model significantly, 

without loosing much of the model's accuracy and linearity. A high degree of accuracy and 

linearity was also observed for the two Kosugi models tested. Restricting the bubbling 

pressure to be equal to zero resulted in a rather high prediction potential, which was not the 

case when keeping the bubbling pressure as a free parameter. A major drawback of van 

Genuchten and Kosugi type models is that they do not define the soil-water retention curve 

beyond the residual water content. We further demonstrated that the performance of all but 

one model in terms of their match to the data increased with increasing clay content and 

decreasing sand content, which is contradictory to the deterministic character of these 

models. Bulk density and OM did not have a significant effect on the accuracy of most 

models. 
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2.1 Introduction 

Water relations are among the most important physical phenomena that affect the use of soils 

for agricultural, ecological, environmental, and engineering purposes. To formulate soil-

water relationships, soil hydraulic properties are required as essential inputs. The most 

important hydraulic properties are the soil-water retention curve (SWRC) and the hydraulic 

conductivity. The SWRC describes the relationship between the soil's matric potential ψ and 

its water content θ.  

To be useful in modeling processes depending on soil-water relationships, a continuous 

representation of the SWRC is required and needs to be incorporated in predictive models. 

One of the most manifest examples is the use of the SWRC to indirectly determine the 

unsaturated hydraulic conductivity, using statistical pore-size distribution models (see 

e.g.,Mualem, 1986, for a review), which are well represented by the SWRC. Such SWRCs 

can be obtained by fitting closed-form analytical expressions containing several parameters to 

discrete (θ, ψ) data sets, which can be obtained through laboratory experiments or from 

pedotransfer functions (PTFs) that estimate distinct SWRC data pairs. The most widely 

adopted and best-performing PTFs enable, however, to directly predict the parameters of 

some closed-form analytical expressions (Cornelis et al., 2001). Applications of closed-form 

analytical expressions can also be attractive for other reasons, apart from their incorporation 

in predictive models. Van Genuchten et al. (1991) mention their applicability in more 

efficiently representing and comparing hydraulic properties of different soils and soil 

horizons, in scaling procedures for characterizing the spatial variability of soil hydraulic 

properties across the landscape and in interpolating and extrapolating to parts of the soil-

water retention or hydraulic conductivity curves for which little or no data are available. 

The objective of our study was to evaluate ten closed-form unimodal analytical expressions, 

including those reported by Brooks and Corey (1964) (BC), van Genuchten (1980) (VG1 and 

VG2), Tani (1982) (T), Russo (1988) (R), Rossi and Nimmo (1994) (RN), Kosugi 
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(1994)([K1], 1996, 1997 [K2]) and Assouline et al. (1998) (A1 and A2), in terms of their 

accuracy, linearity, AIC, and prediction potential. These models were retained in this study 

because they are widely adopted and cited, and because of their relative simplicity, which is 

needed to be easily incorporated into predictive pore-size distribution models for the 

hydraulic conductivity. 

2.2 Review of some soil-water retention curve approaches 

Many functions to represent the SWRC have been proposed for modeling purposes. In this 

section, we will try to give an overview of the different expressions for the SWRC that have 

been reported in literature, with special attention to the expressions that are evaluated in this 

study. However, this review does not pretend to be complete and focuses only on unimodal 

expressions. One of the first expressions for the SWRC was the still widely used four-

parameter power function presented by Brooks and Corey (1964) (BC model):   

s      for b  

 for b  [2.1] 

where s and θr are the soil-water content at saturation and the residual soil-water content 

respectively, b the bubbling pressure or air-entry value, and λ is a pore-size distribution 

factor affecting the slope of the curve. The residual water content has been generally defined 

as the water content at which water movement ceases (Nitao and Bear, 1996), as the air-dry 

water content (Shao, 2000), as the water content close to the permanent wilting point of most 

plants, that is, at  = -1.5 MPa (van Genuchten, 1980), or simply as a fitting parameter equal 

to the water content where the differential soil-water capacity d/d becomes zero (van 

Genuchten and Nielsen, 1985). The parameter b is assumed to be related to the maximum 

size of the pores forming a continuous network of flow channels within a soil. The 

discontinuous character of Eq. [2.1] is generally considered as a disadvantage, particularly in 

describing the SWRC near saturation (van Genuchten and Nielsen, 1985). Nevertheless, Eq. 

[2.1] is historically one of the most-widely used functions by soil scientists, hydrologists, and 

engineers. 
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Brutsaert (1966) evaluated several distribution functions to describe the soil's pore-size 

distribution, which can then be converted to a SWRC using the Young-Laplace equation. 

Ahuja and Swartzendruber (1972) inserted the power form of the hydraulic conductivity-soil-

water content function suggested by Brooks and Corey (1964) and Brutsaert (1967)(1968) 

into the basic form of the diffusivity function (Bruce and Klute, 1956) to obtain their SWRC. 

Campbell (1974) presented a SWRC similar to Eq. [2.1], but with r = 0. Clapp and 

Hornberger (1978) and Hutson and Cass (1987) suggested replacing the sharp corner of Eq. 

[2.1] with a parabolic curve, leading to a smoothly joined two-part SWRC. Other expressions 

that are often cited are those presented by Visser (1966), Laliberte (1969), Gardner et al. 

(1970), White et al. (1970), and Su and Brooks (1975). 

The most-widely adopted alternative for the BC model is the expression introduced by van 

Genuchten (1980). Originally, the model contained five parameters:  

 )
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m

nrsr 
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













1

1
 [2.2] 

where α, and n and m are parameters respectively related to 
-1

 and the curve’s slope at its 

inflection point. These parameters all depend on the pore-size distribution as was the case 

with the parameters b
 
and  in the BC model. Although van Genuchten and Nielsen (1985) 

found the five-parameter form of Eq. [2.2] superior to the four-parameter form with m = 1 − 

1/n, the latter form might be recommended when only a limited range of retention data 

(usually in the wet range) is available, since keeping both n and m independent may lead to 

uniqueness problems in the parameter estimation process and consequently a less accurate 

description of the SWRC in the dry range (van Genuchten et al., 1991). In our study, both the 

five-parameter form and the four-parameter form, with m = 1 − 1/n, of Eq. [2.2] will be 

evaluated and are denoted as VG1 and VG2, respectively. Compared with the BC model, the 

van Genuchten (1980) model has a continuous character due to its inflection point. Note that 

Eq. [2.2] with m = 1 was earlier used by Ahuja and Swartzendruber (1972), Endelman et al. 

(1974), and Varallyay and Mironenko (1979). 

Tani (1982) (T model) introduced a three-parameter expression: 
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 [2.3] 

where ip is the soil-water potential at the inflection point. Because of its simplicity, this 

model has been widely used for modeling water movement in soils (e.g., Suzuki, 1984). 

Russo (1988) proposed a four-parameter model (R model), which produces Gardner's (1958) 

exponential model for the water conductivity-capillary potential relationship when 

incorporated into Mualem's (1976) model for the relative hydraulic conductivity:   

 )  )  )   )2'/2
'5.0exp'5.01




m
rsr  [2.4] 

where m' is a parameter which accounts for the dependence of the tortuosity and the 

correlation factors on the water content, and α' is related to the width of the pore-size 

distribution. Note that m' corresponds to the shape factor in Mualem's expression for the 

relative hydraulic conductivity and α' to the slope of Gardner’s (1958) exponential equation. 

The reciprocal of α' can be interpreted as the air-entry value. Equation [2.4] is further similar 

to Tani’s (1982) expression where 2/(m’+2) = 1 and 0.5 ’ = 1/ip. 

Ross et al. (1991) modified Campbell's equation (1974) to force the SWRC to predict zero 

soil-water content at oven dryness. Combining the Ross et al. (1991) correction, which 

includes the Campbell model (1974) with the parabolic correction near saturation proposed 

by Hutson and Cass (1987), Rossi and Nimmo (1994) developed a four-parameter sum model 

and a three-parameter junction model that covers the entire range from saturation to oven-

dryness. Their sum model (RN model), which originally included seven parameters and 

showed a higher accuracy in their study compared to their junction model, was written as:   
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where i is the soil-matric potential at the junction point where the two curves join, o is the 

soil-matric potential at oven dryness, and  and  are shape parameters. The term θI 

represents the Hutson and Cass (1987) parabolic curve that joints the Campbell function 
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(1974) at the junction point ψi The Ross et al. (1991) correction is included in the expression 

for θII Further, using data sets from Schofield (1935) and Campbell and Shiozawa (1992), 

Rossi and Nimmo (1994) showed that at very low soil-water content, the latter becomes 

proportional to the logarithm of the soil-matric potential, as can be recognized as well in θII 

Equation [2.5] contains seven parameters. However, two of them can be determined by the 

conditions that ensure the continuity of both Eq. [2.5] and its first derivative to ψi Here we 

have chosen to explicitly determine β and γ as analytical functions of b , i, o and λ: 
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 [2.7] 

Since the measured water contents are usually based on oven drying, it is more appropriate to 

assign a finite matric potential, at which the water content becomes zero, to a value 

corresponding to oven dry conditions at 105
o
C. This yields a matric potential of  -10

6
 kPa 

depending on laboratory conditions. When setting o arbitrarily at -10
6
 kPa (Ross et al., 

1991; Rossi and Nimmo, 1994), and with Eqs. [2.6] and [2.7], the number of model 

parameters can be reduced to four. 

Kosugi (1994) proposed a five-parameter expression (K1 model) that resulted from applying 

three-parameter lognormal distribution laws to the pore-size distribution function and to the 

pore capillary pressure potential distribution function. The resulting expression for the SWRC 

is: 

s        for b  
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 for b  [2.8] 
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where “erfc” denotes the complementary error function defined by:  

 [2.9]   

in which “erf ” is given by: 
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In Eq. [2.8], md is the matric potential corresponding to the median pore radius, and  is the 

variance of the distribution of ln(r/rmax – r), in which r is the pore radius and rmax the 

maximum pore radius. Later, Kosugi (1996; 1997) modified Eq. [2.8] to have a relatively 

simpler functional form introducing the restriction that b = 0 (K2 model). The new 

expression hence becomes: 
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 [2.11] 

Assouline et al. (1998) proposed a conceptual model, which is based on the assumption that 

the soil structure results from an uniform random fragmentation process where the probability 

of fragmentation of an aggregate is proportional to its size, and that a power function relates 

the volume of the aggregates to the corresponding pore volume. The fragmentation process 

determines the particle-size distribution of the soil. The transformation of the particle 

volumes into pore volumes via a power function and the adoption of the capillarity equation 

leads to the following expression: 

 )  )1 1
L s L L1-exp


               

 [2.12] 

where L is the soil-matric potential limit of the domain of interest of the SWC under study 

corresponding to L, and ξ and η are parameters depending on the packing and shape of the 

particles and hence on the pore-size distribution. The parameter ξ further depends on the 

bubbling pressure potential b. Equation [2.12] contains five parameters and will be referred 

to as the A1 model. However, Assouline et al. (1998) suggested reducing the number of 

parameters to three by choosing the value of (L,L) according to the specific soil type under 

(x)erf-1erfc 
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consideration since “there is no need to consider the water retention curve beyond a capillary 

head, L, that corresponds to a very low water content, L, at which the hydraulic 

conductivity is negligible.” It should be noted that strictly speaking in case of the Assouline 

et al. (1998) model,  is the capillary potential and hence does not include adsorption forces. 

This means that Eq. [2.12] is not defined in the very low matric potential range where 

adsorption forces become dominant, although mathematically speaking, ψL can tend to 

−10
6
 kPa (or even −∞) at zero water content. Since choosing an exact value of (θL, ψL) is not 

evident, Assouline et al. (1998) proposed to truncate L at -1.5 MPa, as was suggested by van 

Genuchten (1980). The latter alternative was also evaluated here with, θL as a free parameter. 

The number of parameters in Eq. [2.12] hence reduces to four (A2 model). It should further 

be noted that when applying the A1 or A2 model as described above , Eq. [2.12] is not 

defined for soil-water contents below θL. 

The expressions described above were, although they are in fact simple curve-fitting 

equations, mainly based on pore-size distribution functions in combination with the bundle-

of-capillaries concept, in which the pores are represented by cylindrical capillary tubes 

obeying the Young-Laplace equation. Recently, new theories have been developed, including 

a pore-scale network theory (Reeves and Celia, 1996; Fischer and Celia, 1999; Held and 

Celia, 2001a, 2001b), and a theory first presented by Tuller et al. (1999) in which (1) a pore is 

represented as being composed of an angular pore cross-section connected to slit-shaped 

spaces, and (2) the soil-matric potential is related not only to capillary forces, but also to 

adsorptive forces (see e.g., also Or and Tuller, 1999, 2002; Tuller and Or, 2001). 

2.3 Materials and methods 

2.3.1 Evaluation of the data set and soil sample analysis 

The study was based on soil samples taken in duplicate from 48 horizons of 24 soil series in 

Flanders, Belgium. They were collected in the context of assessing the predictive quality and 

usefulness of the Belgian soil map and historical forest soil profile data for mapping 

purposes. All sample locations were under forest and at each location the samples were taken 

from Ah and E horizons down to a depth of 30 cm. The soils used in this study cover a wide 
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range of textures within Flanders (Figure 2.1). They were classified according to soil 

taxonomy (Soil Survey Staff, 2003) as Spodosols, Entisols (suborders Psamments, Fluvents, 

and Aquents), Alfisols, and Inceptisols. 

Undisturbed soil samples were taken using the core method. A Riverside auger was used to 

prepare a flat sampling platform at a predetermined depth within a specific horizon after 

which standard sharpened steel 100-cm
3
 Kopecky rings (height = 5 cm, diameter = 5.3 cm) 

were driven into the soil using a dedicated ring holder (Eijkelkamp Agrisearch Equipment, 

Giesbeek, the Netherlands). In hard layers, a percussion-free hammer was applied for 

hammering the ring holder with a minimum of vibration into the soil. The soil-filled cylinder 

was carefully removed from the ring holder and the oversized sample was trimmed flush 

using a sharp knife. Cylinders with stones, charcoal, or roots larger than 2 mm in diameter 

were rejected and resampled in the same horizon. The samples were then covered with plastic 

lids which prevented them from drying out and transported in special carrying cases to the 

laboratory to minimize disturbance (De Vos et al., 2005). 

The particle-size distributions were determined on disturbed samples using a Coulter LS200 

laser diffractometer (Beckman Coulter, Fullerton, CA). The results were then calibrated and 

validated using standard pipetting and sieving procedures (ISO 11277) after application of the 

same pretreatment. Organic matter content ranged from 2.3 to 130.0 g kg
−1

 and was 

determined by means of the Walkley and Black (1934) method. Bulk densities ρb varied from 

0.76 to 1.78 Mg m
−3

. They were measured by weighing the 100-cm
3
sized undisturbed soil 

samples at −10 kPa and substracting the corresponding mass of water measured on a 25-

cm
3
 sized subsample. The spread of both OM and ρb is illustrated in Figure 2.2. 

The samples' SWRC was constructed by measuring soil-water content at nine soil-matric 

potentials using the undisturbed soil samples. For the pressure potentials ranging from −1 to 

−10 kPa, the sand box apparatus (Eijkelkamp Agrisearch Equipment, Giesbeek, the 

Netherlands) was used. Each sample, which was covered with a nylon cloth at its cutting 

edge, was placed on the sandbox in 1 mm of water and gently pressed downward to create a 

good contact between the sample and the sand. To saturate the samples by capillary rise, the 

water level on top of the sand was raised until 2.5 cm (halfway the sample height). Once the 

samples were saturated, a suction was applied by adjusting the suction regulator of the 

sandbox apparatus. After having reached equilibrium between the applied pressure and the 
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quantity of water in the sample, the samples were removed from the sandbox, weighed, 

placed back on the sandbox, and the suction applied on the sample was increased. After 

having determined the sample weight at −10 kPa, a subsample was taken, it was weighed, 

placed in the oven at 105°C for 24 h, and weighed again to determine the water contents at 

pressures between −1 and −10 kPa. This also allowed calculating ρb. The sandbox was thus 

used to determine five (θ, ψ) data pairs on one single soil sample. This sample was further 

divided into two undisturbed subsamples using sharpened steel 20-cm
3
 cylinders and into two 

disturbed subsamples. The undisturbed subsamples were used to determine water content at 

−20 and −33 kPa and the disturbed subsamples for water content determination at −100 and 

−1500 kPa using pressure chambers (Soilmoisture Equipment, Santa Barbara, CA). After 

having obtained equilibrium between the applied pressure and the quantity of water in the 

sample, the samples were weighed and placed in the oven at 105°C for 24 h. Then they were 

weighed again and water content was calculated. 

 

 

Figure 2.1.  Variation of clay, silt and sand content in the dataset 
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Figure 2.2. Variation of bulk density and organic matter content in the dataset. 

2.3.2 Parameter estimation 

Seven different closed-form unimodal analytical equations containing three to five model 

parameters were compared in this study. Slightly modified versions of three of the seven 

models were evaluated as well, which brings the total number of expressions evaluated in this 

study to ten. The parameters of these models were obtained by fitting the models to the 

observed SWRCs. The nonlinear least-squares analysis was conducted using a quasi-Newton 

algorithm (Press et al., 1992). It is an iterative method implying an initial estimate of the 

parameters. The approach is based on the partitioning of the total sum of squares of the 

observed values into a part described by the fitted model and a residual part of observed 

values around those predicted with the model. The objective of the curve fitting process is to 

find an equation that maximizes the sum of squares associated with the model, while 

minimizing the residual sum of squares or sum of squared errors, SSE. The latter reflects the 

degree of bias and the contribution of random errors, and was computed as: 

 )
2N obs fit

j j
j 1

SSE (b)


    [2.13]              

where b is a parameter vector containing the p parameters that need to be estimated, j = 1, 2 

… N with N the number of soil-water retention data for each soil sample and equal to nine in 
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our study, θj is the soil-water content corresponding to the jth data pair for each soil, and obs 

and fit denote observed and fitted values, respectively. The quasi-Newton routine was 

performed employing the mathematical software program MathCad (Mathsoft, Cambridge, 

MA). It resulted in slightly better fits, that is, lower SSE values, compared with the 

conjugant-gradient method (Press et al., 1992) and Levenberg-Marquardt's maximum 

neighborhood method modified by More et al. (1980). In selecting values for the initial 

estimates of the model parameters in the iterative procedure, data of fitted parameter values 

for different soils reported in literature were, if available, considered. When not available, 

routinely rerunning the program with different initial parameter estimates was performed. 

This should have prevented convergence of SSE in local minima in the objective function. To 

avoid negative θr or θL values, we introduced the constraint θr or θL ≥ 0, except for the RN 

model. The constraint θs = θ−1kPa was used to keep the θs parameter close to the near 

saturation value at −1 kPa, which reduces the number of parameters of each expression with 

one. We did not use the porosity calculated from ρb and particle density for this purpose, 

since the latter was not determined in our study. Finally, we introduced the constraint ψL < 

−1500 kPa in case of the A1 model, which was the lower limit of our database. Otherwise 

unrealistic fits were produced for those data sets where ψL was calculated to be larger than 

−1500 kPa. Furthermore, it reduced the dependency of the model to initial estimates of its 

parameters considerably. 

2.3.3 Evaluation methods 

Several statistical indices can be applied to assess the ‘goodness-of-fit’ of a given model. In 

this study, the fitting accuracy of the different models was determined by using the root of the 

mean of squared errors, that is, RMSE, the coefficient of determination R
2
, and the AIC, 

which were calculated for each soil sample.  

The RMSE (m
3
 m

-3
) is an indication for the overall error of the evaluated function and should 

approach zero for best model performance. The R
2
 is a measure for the linearity between 

observed and fitted data. An R
2
 value that approaches unity, means that the measured and 

fitted data pairs are linearly located around the line of perfect agreement (or 1:1 line) or that 

the fitted curve is of comparable shape as the measured discrete curve. The mean square error 

and root mean square error were derived from the SSE using: 
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1
MSE SSE

N
   [2.14] 

RMSE MSE  [2.15] 

R
2
 reflects the proportion of the total sum of squares (SST) that is partitioned into the model 

sum of squares (SSM) since SST is equal to SSM plus SSE: 

2 SSM SST-SSE SSE
R = = =1-

SST SST SST
 [2.16] 

The AIC index, which is often used for model-discrimination tests (Akaike, 1974), was 

computed as 

SSE
AIC = log(2π)+log +1 +

-
N p

N p

  
  

  

 [2.17]              

where p is the number of model parameters. The “best” model is the one that minimizes AIC, 

or in other words, which combines the lowest SSE value with the lowest number of model 

parameters. Although computers can nowadays easily handle models with many parameters, 

overparameterization should be avoided as it results in a non-identifiable model, that is, a 

model leading to sample configuration probabilities identical to those of a simpler model with 

fewer parameters, in large variances of the estimated model parameters for similar soils, and 

in a high degree of correlation between the parameters (or low parameter uniqueness) if the 

number of observations is limited as is often the case with laboratory-determined SWRCs. 

Further, it is advantageous to minimize the number of model parameters when attempting to 

predict the SWRC in terms of parameters of closed-form analytical expressions from readily 

available data using PTFs. To facilitate the comparison between the different expressions, the 

mean of RMSE, of R
2
, and of AIC was calculated for each expression. 

We further computed the Pearson coefficient rsp of correlation between model parameters and 

soil properties, including b, OM, and sand, silt, and clay content. This index was used as a 

measure for the prediction potential of the model, in that the higher the correlation, the higher 

becomes the prediction potential of the parameters in the model. 
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2.4 Results and discussion 

2.4.1 Evaluation of the models 

Table 2.1 shows the values of the statistical indices, which were computed to evaluate the ten 

closed-form analytical expressions. When considering the mean of RMSE, the VG1 model 

showed the lowest values, meaning that the fitted curve produced the highest match with the 

measured SWRC. The VG1 model led to the best fit in 67% of the soil samples. Second best 

was the K1 model, followed by the K2 model, the VG2 model, the A1 model, and the A2 

model. The worst models were the RN model and the T model. Intermediate results were 

obtained with the R model and the BC model. As regards the mean of R
2
, a similar trend 

could be observed, with VG1 as the best model in terms of linearity, closely followed by K1, 

K2, VG2, A1, and A2. The mean of AIC again showed a similar trend. VG1 resulted in the 

lowest AIC value, but now followed by K2 and then K1, VG2, A2, and A1. In the case of for 

example, the VG1 model, the positive effect of a reduced SSE was higher than the negative 

effect associated with an increased number of model parameters. The fact that it has one 

parameter more compared with most other models did not counterbalance its high 

performance. Overall, the VG1 with five model parameters scored best, followed by the K1, 

K2, VG2, A1, and A2 model. Intermediate results were observed for the R and BC model. 

The least performing were the T and RN model. 
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Table 2.1. Statistical indices of the models.† 

model mean RMSE mean R2 mean AIC 

 m3 m-3 - - 

BC 0.0141 0.965 −13.60 

VG1 0.0072 0.990 −17.27 

VG2 0.0101 0.982 −16.17 

T 0.0211 0.915 −11.42 

R 0.0128 0.966 −14.18 

RN 0.0186 0.876 −11.16 

K1 0.0081 0.988 −16.42 

K2 0.0094 0.985 −16.83 

A1 0.0104 0.982 −14.38 

A2 0.0108 0.980 −15.73 

† RMSE, root of mean squared errors; AIC, Akaike Information Criterion; BC, Brooks and Corey (1964) model; 

A1, Assouline et al. (1998) with five free parameters; A2, Assouline et al. (1998) with four free parameters; 
K1, Kosugi (1994); K2, Kosugi (1996)(1997); R, Russo (1988); RN, Rossi and Nimmo (1994); T, Tani (1982); 

VG1, van Genuchten (1980) with five free parameters; VG2, van Genuchten (1980) with four free parameters. 

 

Table 2.2 summarizes the Pearson correlation coefficients rsp computed between all 

parameters on the one hand and the two most significant soil properties on the other hand. As 

could be expected, θs, which was constrained at θ−1 kPa, was highly correlated to ρb and to a 

lesser extent to clay content. This was also concluded by Vereecken et al. (1989) based on 

their principal component analysis. The variation in θr (or θL) was for all models to a 

relatively high extent explained by ρb and clay content as well. All models showed 

comparable prediction potential for θr (or θL), except the BC model, which showed significant 

lower rsp values. The other parameters, which mainly determine the specific shape of the 

SWRC, showed lower correlations. Highest r sp values were observed for the T model, which 

only has one additional parameter. Unfortunately, this model performed rather poorly in 

terms of goodness-of-fit to SWRC data. Relatively high values were also observed for the 

two additional parameters of the K2 and VG2 models. The A2 model, which also has two 

additional parameters, showed a relatively low correlation for its ξ parameter. The lowest 
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values were computed for the R and RN models. Further, the models with three additional 

parameters, such as VG1, K1 and A1, also showed an overall low correlation. In the case of 

the VG1 model, this was merely due to a low correlation with the parameter m. The K1 and 

A1 models showed a relatively high correlation with only one of the additional parameters. 

It should be noted that the above conclusions were drawn on a limited data set representing 

48 horizons of 24 soil series (from soils which were under forest) and covering eight soil 

textural classes. As an illustration for the variability of the data set, all original SWRC points 

are depicted in Figure 2.3. 

Table 2.2. Pearson correlation coefficient between model parameters and basic soil 

properties. 

model† 

 

s vs. 

b 

s vs. 

clay 

r/L vs. 

b 

r/L vs. 

clay 

a‡ vs. 

sand/clay¶ 

a‡ vs. 

silt/clay# 

b†† vs. 

sand/OM ‡‡ 

b†† vs. 

silt/clay/ρb§§ 

c¶¶ vs. 

sand 

c¶¶ vs. 

silt/clay## 

BC −0.94 0.65 −0.52 0.51 −0.23§ 0.34 0.65 −0.60 – – 

VG1 −0.94 0.65 −0.75 0.72 0.45 −0.50 0.50 −0.49 −0.18§ 0.29§ 

VG2 −0.94 0.65 −0.75 0.72 0.46 −0.51 0.54 −0.49 – – 

T −0.94 0.65 −0.72 0.83 −0.63 0.74 – – – – 

R −0.94 0.65 −0.72 0.82 0.10§ −0.09§ −0.49 0.57 – – 

RN −0.94 0.65 – – −0.17§ 0.19§ 0.30 −0.29 −0.22§ 0.46 

K1 −0.94 0.65 −0.74 0.81 0.31 −0.19§ −0.32 0.27§ 0.50 0.55 

K2 −0.94 0.65 −0.74 0.81 −0.47 0.55 −0.53 0.48 – – 

A1 −0.94 0.65 −0.69 0.78 0.27§ −0.25§ 0.56 0.52 0.21§ 0.39 

A2 −0.94 0.65 −0.70 0.82 0.26§ −0.24§ 0.54 −0.50 – – 

† BC, Brooks and Corey (1964) model; A1, Assouline et al. (1998) with five free parameters; A2, Assouline et al. (1998) with four free 

parameters; K1, Kosugi (1994); K2, Kosugi (1996)(1997); R, Russo (1988); RN, Rossi and Nimmo (1994); T, Tani (1982); VG1, van 

Genuchten (1980) with five free parameters; VG2, van Genuchten (1980) with four free parameters. 

‡ a corresponds to ψb, α, α, ψip, α′, ψb, ψmd, ψmd, ξ, and ξ in the BC, VG1, VG2, T, R, RN, K1, K2, A1 and A2 model, respectively. 

§ Not significant at the 0.05 level. 

¶ All a values are correlated to sand content, except for the value in italics, which is correlated to clay content. 

# All a values are correlated to silt content, except for the value in italics, which is correlated to clay content. 

†† b corresponds to λ, n, n, m′, λ, σ, σ, η and η in the BC, VG1, VG2, R, RN, K1, K2, A1 and A2 model, respectively. 

‡‡ All b values are correlated to sand content, except for the value underlined, which is correlated to OM. 

§§ All b values are correlated to silt content, except for the value in italics, which is correlated to clay content, and the value underlined, 

which is correlated to ρb 

¶¶ c corresponds to m, ψi, ψb and ψL in the VG1, RN, K1, and A1 model, respectively. 

## All c values are correlated to silt content, except for the values in italics, which is correlated to clay content. 
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2.4.2 Behaviour of the models 

To illustrate the behaviour of the ten closed-form analytical expressions compared in this 

study when fitted to soil-water retention data of a relative coarse-textured soil (sand, ρb = 

1.668 Mg m
−3

, OM = 37.98 g kg
−1

) and fine-textured soil (silt loam, ρb = 1.682 Mg m
−3

, OM 

= 2.71 g kg
−1

), observed and fitted data are compared in Figure 2.4. When considering the 

sand, all models gave relatively good and realistic fits, at least when the soil-matric potential 

remains higher than the lower limit of the data sets, that is, higher than −1500 kPa. The only 

model that showed a reliable behaviour beyond the driest measured point (i.e. accounting also 

for adsorptive water retention and reaching a value of zero water content) is the RN model, 

which is not surprisingly as it was developed for that purpose. All other models resulted in a 

SWRC that is undefined for soil-water contents below θr or θL. This is a serious drawback 

since many water related processes such as deflation of soil particles by wind (Cornelis et al., 

2004), microbial activity, and N mineralization in soils (De Neve and Hofman, 2002), 

methane oxidation in soils (De Visscher and Van Cleemput, 2003), and applications in for 

example, colloid science (Blunt, 2001) and food technology (Weerts et al., 2003) are affected 

by soil-water contents well below residual. On the other hand, the discontinuous character of 

the BC model and the K1 model did not seem to be problematic for sand, at least in 

comparison with our limited number of observations near saturation. 
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Figure 2.3. Observed soil-water retention curves grouped per soil textural class and VG1 model fitted to the pooled data sets. 
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Figure 2.4. Observed and fitted soil-water retention curves for sand and silt loam. The subscripts ‘S’ and ‘SiL’ denote sand and silt loam, 

respectively. 
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With respect to the silt loam example, the performance of the BC, T, R, and RN model 

seemed to be reduced compared with the sand example. The BC model produced a relatively 

poor match near saturation, due to its discontinuous character and its unrealistic high 

estimated bubbling pressure value. The T model and the R model seemed to be unrealistic 

over the whole data range. This is in the case of the T model due to the exponential term, 

which when indexed to the inflection point ψip, shows a typical sigmoid shape. When 

multiplying the exponential term with 1 + ψ/ψip, the sigmoid shape becomes even more 

pronounced, for the effect of this term is that it increases θ when ψ decreases. The R model 

even showed a discontinuity at the inflection point 0.5 α′ or 1/ψip, which occurs at relatively 

high m′ values. The higher the inflection point (which is the case as the soil texture becomes 

finer), the lower the α′ value, and hence the higher the m′ value should be to keep the curve 

straight near saturation. Compared with the T model, the 1 + ψ/ψip term is here augmented 

with a power 2/(2 + m′), and hence its effect becomes more pronounced as m′ decreases. The 

RN model showed a poor fit near saturation. This is because the inflection point ψi should be 

high enough to ensure an acceptable fit in the logarithmic part of the SWRC (including the 

point at oven dryness). It further performed rather poor in the dry range, due to its low 

flexibility in the shape of the curve. This is associated with a lower degree of freedom in the 

dry range compared with the other models where θr or θL are free parameters. Finally, both 

forms of the van Genuchten (1980) model, VG1 and VG2, and the Kosugi (1994, 

1996, 1997) models, K1 and K2, showed very good fits to the silt loam data, but have still the 

drawback of an undefined SWRC for soil-water contents below θr Also the two Assouline et 

al. (1998) functions, A1 and A2, described the SWRC rather well for the silty loam. As both 

are mathematically not defined at soil-water contents lower than θL, the curve was not drawn 

beyond that point (which is only apparent for A2 in Fig. 2.4). 

In Table 2.3, parameter values are given for the different models and for different soil 

textural classes. They were obtained by curve fitting the models to the whole data set for each 

soil textural class. These data can be useful to the reader as initial estimates when attempting 

to use one of the evaluated expressions. In the case of the BC model and the van Genuchten 

(1980) model, existing PTFs that are widely reported can also be used for that purpose. Table 

2.3 further illustrates that the parameter values of n of the VG2 model follows a more 
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pronounced trend compared with n calculated for the VG1 model, in that for example, the 

curves become steeper (lower n) as the soils become finer in texture. 

Table 2.3. Average model parameters for different soil textural classes. † 

model par S LS SL L SCL SiL SiC C 

BC θr 0.071 0.045 0.043 0.131 0.000 0.000 0.091 0.284 

 θs 0.400 0.366 0.390 0.540 0.342 0.450 0.610 0.551 

 ψb 2.098 1.538 2.386 2.607 3.917 4.031 2.240 1.742 

 λ 0.644 0.416 0.212 0.161 0.171 0.128 0.074 0.117 

VG1 θr 0.072 0.045 0.142 0.286 0.000 0.209 0.203 0.285 

 θs 0.390 0.366 0.390 0.540 0.342 0.450 0.610 0.551 

 α 0.447 0.650 0.013 0.030 0.075 0.002 0.373 0.573 

 n 7.073 9.304 0.921 1.063 0.969 0.877 2.299 8.283 

 m 0.092 0.045 2.504 1.203 0.256 6.230 0.045 0.014 

VG2 θr 0.083 0.059 0.120 0.267 0.000 0.161 0.371 0.355 

 θs 0.390 0.366 0.390 0.540 0.342 0.450 0.610 0.551 

 α 0.279 0.398 0.147 0.113 0.115 0.076 0.136 0.273 

 n 1.940 1.559 1.521 1.540 1.222 1.393 1.321 1.225 

T θr 0.113 0.119 0.166 0.314 0.156 0.234 0.444 0.434 

 θs 0.390 0.366 0.390 0.540 0.342 0.450 0.610 0.551 

 ψip 3.440 3.174 10.72 12.54 15.63 21.61 14.27 9.729 

R θr 0.104 0.100 0.155 0.302 0.117 0.214 0.437 0.423 

 θs 0.390 0.366 0.390 0.540 0.342 0.450 0.608 0.551 

 α' 3.740 43.65 14.71 14.64 14.66 14.61 0.536 14.71 

 m' 24.07 402.5 404.1 492.7 1013 955.4 12.57 424.6 

RN θs 0.390 0.366 0.390 0.540 0.342 0.450 0.610 0.551 

 ψb 1.715 0.855 0.362 2.978 6.093 2.758 0.107 0.107 

 ψo 3.934 2.590 4.577 2.980 6.093 5.796 9.726 15.623 

 λ 1.036 0.551 0.413 0.031 0.136 0.076 0.000 0.000 

K1 θr 0.074 0.062 0.139 0.286 0.060 0.202 0.411 0.392 

 θs 0.390 0.366 0.390 0.540 0.342 0.450 0.610 0.551 

 ψb 2.491 1.984 0.000 0.000 0.917 0.000 0.127 1.796 

 ψmd 2.520 2.002 1.981 2.692 1.049 3.343 1.341 1.811 

 σ 2.209 2.393 1.544 1.513 2.585 1.643 1.849 2.778 

K2 θr 0.090 0.071 0.139 0.286 0.074 0.202 0.412 0.401 

 θs 0.390 0.366 0.390 0.540 0.342 0.450 0.610 0.551 

 ψmd 6.560 7.963 21.47 26.54 86.79 49.69 37.16 30.27 

 σ 1.154 1.647 1.544 1.513 2.312 1.643 1.827 2.122 

A1 θr 0.083 0.066 0.123 0.286 0.102 0.167 0.386 0.382 

 θs 0.390 0.366 0.390 0.534 0.342 0.450 0.610 0.551 

 ξ 4.572 2.890 4.997 7.372 4.383 6.102 4.626 3.447 

 η 1.009 0.706 0.626 0.728 0.437 0.509 0.481 0.428 

 ψL‡ 1.519 2.443 840.464 1.616 1.519 330.563 107.621 2901.038 

A2 θr 0.083 0.068 0.136 0.283 0.102 0.206 0.414 0.406 

 θs 0.390 0.366 0.390 0.540 0.342 0.450 0.610 0.551 

 ξ 4.570 2.904 5.259 6.243 4.383 6.733 4.917 3.522 

 η 1.009 0.715 0.668 0.675 0.437 0.583 0.550 0.495 

† The units of the parameters are based on soil-water content θ expressed in m
3
 m

−3
 and ψ in kPa, except when otherwise 

mentioned; S = sand, LS = loamy sand, SL = sandy loam, L = loam, SCL = sandy clay loam, SiL = silt loam, SiC = silty clay, C = 

clay. BC, Brooks and Corey (1964) model; A1, Assouline et al. (1998) with five free parameters; A2, Assouline et al. (1998)with four 

free parameters; K1, Kosugi (1994); K2, Kosugi (1996, 1997); R, Russo (1988); RN, Rossi and Nimmo (1994); T, Tani (1982); 

VG1, van Genuchten (1980) with five free parameters; VG2, van Genuchten (1980) with four free parameters. 

‡ ψL in MPa. 

 

2.4.3 Effect of soil properties on the model performance 

To assess the dependency of the model performance on soil properties, the SSE computed per 

soil sample for each model was correlated to ρb, OM, and sand, silt and clay content (see 

Table 2.4) The Pearson correlation coefficient between SSE and ρb was not significant at the 

0.05 level for all models except the RN model. When correlating SSE and OM no 
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significance was found at the 0.05 level for all models. The performance of the models, 

except the RN model, was thus not affected by ρb and OM, which can vary substantially in 

forest soils. When relating the model's SSE values to soil texture, the performance of the 

models appeared to increase as the soils became finer in texture, that is, higher in clay and silt 

content (negative correlation), except for the RN model. The opposite was true when 

considering sand content. This demonstrates once more that it is simply the specific 

mathematical form of the models that determines their performance, rather than the physical 

meaning of their parameters or their conceptual background. Such deterministic models were 

derived by applying distribution laws to pore-size distribution functions, in combination with 

capillarity laws. The lower the dominance of the capillary forces over the adhesive and 

osmotic forces in retaining water to the soil matrix, as is the case when soils become higher in 

clay and OM, the lower the performance of such deterministic models is expected to be, 

whereas in our study, the opposite was observed. 

Table 2.4. Pearson correlation coefficient between SSE and basic soil properties for each 

model.  

 

model ρb O.M sand silt clay 

BC -0.14† 0.19† 0.13† -0.01† -0.31 

VG1 0.08† 0.02† 0.50 -0.45 -0.35 

VG2 0.05† 0.05† 0.46 -0.38 -0.40 

T -0.04† 0.09† 0.30 -0.27† -0.22† 

R 0.15† -0.02† 0.50 -0.49 -0.28† 

RN -0.58 0.11† -0.31 0.06† 0.66 

K1 -0.01† 0.08† 0.30 -0.22† -0.31 

K2 0.14† 0.01† 0.56 -0.49 -0.43 

A1 -0.01† 0.09† 0.38 -0.29 -0.39 

A2 -0.02† 0.09† 0.35 -0.26† -0.38 

† not significant at the 0.05 level. 
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The poor overall performance of the RN model can mainly be attributed to its poor fits when 

textures became relatively fine. So, the RN model is, although it has a more realistic shape 

than all the other models evaluated here and describes the SWRC over the complete range of 

soil-water contents (from saturation to oven dryness), not a reliable alternative for the 

superiorly performing VG1, VG2, K1, or K2 model, at least when using data sets with a 

limited number of data pairs, as is most often the case in practice. If more data are available, 

then the RN model could perhaps perform better as was demonstrated by Rossi and Nimmo 

(1994) for seven soils.  

2.5 Conclusions 

Using five a limited data set taken from 48 horizons of forest soils in Flanders, Belgium and 

representing eight soil-textural classes, we have evaluated ten closed-form unimodal 

analytical expressions for the SWRC. It was shown that the van Genuchten (1980) model 

with five model parameters had the highest performance in terms of the RMSE, R 
2
 and AIC. 

However, its prediction potential was rather poor, due to the low correlation between 

the m parameter and basic soil properties. Reducing the number of parameters to four, 

increased the prediction potential of the model significantly, without losing much of its 

performance. A high performance was also observed for the five-parameter and four-

parameter Kosugi models (1994, 1996, 1997) and for the five-parameter and four-

parameter Assouline et al. (1998) models. Yet, these models had, except for the four-

parameter Kosugi (1996, 1997) model, a low prediction potential.  

A major drawback of these models is that they do not define the soil-water content vs. soil-

matric potential relationship beyond the residual water content. The only model we evaluated 

that is able in doing so is the Rossi and Nimmo (1994) model. However, it showed the lowest 

performance in terms of goodness-of-fit, at least when using a limited number of nine data 

pairs as was the case in our study. It further showed a low prediction potential. Therefore, 

more recently developed expressions for the SWRC between saturation and oven dryness 

need to be evaluated or new expressions should be developed. 

Finally, it was shown that the performance of all models in terms of their match to the data, 

increased with increasing clay content and decreasing sand content, except for the Rossi and 
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Nimmo (1994) model, which is contradictory to the deterministic character of these models. 

Furthermore, it was shown that ρb and OM, at least within the range of our data set, did not 

have a significant effect on the accuracy of all models, except the least performing ones. 
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water retention curve between saturation and oven-
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Abstract 

Prediction of water and vapor flow in porous media requires an accurate estimation of the soil 

water retention curve describing the relation between matric potential and the respective soil 

water content from saturation to oven dryness. In this study, we modified the Kosugi (1999) 

function to represent soil water retention at all matric potentials. This modification retains the 

form of the original Kosugi function in the wet range and transforms to an adsorption 

equation in the dry range. Following a systems identification approach, the extended function 

was tested against observed data taken from literature that cover the complete range of water 

contents from saturation to almost oven dryness with textures ranging from sand to silty clay. 

The uncertainty of parameter estimates (confidence intervals) as well as the correlation 

between parameters was studied. The predictive capability of the extended model was 

evaluated under two reduced sets of data that do not contain observations below a matric 

potential of -1500 and -100 kPa. This evaluation showed that the extended model 

successfully predicted the water content with acceptable uncertainty. These results add 

confidence into the proposed modification and suggest that it can be used to better predict the 

soil water retention curve, particularly under reduced data sets. 
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3.1 Introduction 

Understanding the behaviour of water in unsaturated porous media is a challenge for 

scientists. However, an adequate description of water behaviour in the unsaturated soils relies 

mainly on accurate estimates of the soil water retention and the unsaturated soil hydraulic 

functions. The soil water retention curve (SWRC) describes the relationship between matric 

potential, ψ, and soil-water content, θ. Several analytical functions for describing the SWRC 

can be found in literature (e.g., Brooks and Corey, 1964; van Genuchten, 1980). Most of 

these retention models are successful in the wet region of the SWRC. Cornelis et al. (2005) 

compared ten closed-form unimodal analytical functions to describe the SWRC. In their 

study, the van Genuchten (1980) and Kosugi (1994) models showed good fits to the observed 

data, specifically at high and medium water content. In the dry region of the SWRC as water 

content goes to zero, however, these models often fail to describe the observed trend.  

During the last two decades, several attempts have been made to obtain the complete 

retention curve (Ross et al., 1991; Campbell and Shiozawa, 1992; Rossi and Nimmo, 1994; 

Fayer and Simmons, 1995; Morel-Seytoux and Nimmo, 1999; Webb, 2000; Tuller and Or, 

2002; Groenevelt and Grant, 2004). In this paper, an alternative closed-form analytical 

expression for the SWRC is proposed and evaluated following a systems identification 

approach. The model is tested against data taken from literature that cover the complete range 

of water contents, from saturation to almost oven-dryness. To evaluate the predictive 

capability of the model at the dry region of the SWRC, two reduced sets of data that do not 

contain observations beyond a matric potential of -1.5 × 10
3
 kPa and -100 kPa, respectively, 

will be used. Our motivation for using these reduced data sets is that (1) constructing the 

SWRC beyond -1.5 × 10
3
 kPa does not belong to the standard procedure in most labs. Some 

labs have even difficulties in maintaining a pressure of -1.5 × 10
3
 kPa. And (2), in lysimeter 

or field studies where water content and matric potential are measured simultaneously, which 

allows constructing an in situ SWRC, the range of matric potentials is limited to -10
3
 kPa 

when using the heat dissipation method or gypsum blocks, to -200 kPa when using the 

electrical moisture method, and to -85 kPa when using tensiometery. 
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3.2 Approach 

In recent years, considerable attention has been given towards extending classical retention 

models to oven-dryness. The most commonly employed classical retention models are the 

two unimodal functions presented by Brooks and Corey (1964) and by van Genuchten 

(1980). Recently, the Kosugi (1999) model has gained popularity. These functions are 

respectively written as: 

s       for b   
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where θs and θr  are the saturated and residual soil-water content, respectively, ψb  is the 

bubling pressure potential or air entry value, md is the matric potential corresponding to the 

median pore radius, λ, α and n  are curve-fitting parameters related to the pore-size 

distribution,  is a dimensionless parameter to characterize the width of the pore-size 

distribution, and “erfc” denotes the complementary error function. Since (3.1) and (3.2) are 

historically the most-widely used functions by soil scientists, hydrologists and engineers, 

various attempts have been conducted to extend these models for all matric potentials. 

Attempts to extent the Kosugi (1999) model have not been reported yet. 

The problem with (3.1), (3.2) and (3.3) is that they, mathematically, define the residual water 

content as the water content where dθ/d becomes zero, or at  = - MPa, which is 

physically not realistic. Further, θr often becomes negative in the curve-fitting procedure. As 

negative water content is undefined, θr is then forced to converge to zero, and this result as 
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well is an unrealistic path of the retention curve at low water contents (Cornelis et al., 2005). 

Moreover, as mentioned in Chapter 2, this region is critical in a number of water related 

processes which are affected by soil-water contents well below residual. 

Campbell and Shiozawa (1992) used a modified form of the van Genuchten (1980) equation 

for improving fits to dry data, in which adsorption of water on soil was described with a 

semi-logarithmic expression. Fayer and Simmons (1995) further modified the van Genuchten 

retention function by replacing the residual water content with the adsorption equation of 

Campbell and Shiozawa (1992) as:  
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where θa is a curve-fitting parameter representing the soil-water content at ψ = 1 kPa, and ψo 

is the matric potential at oven dryness. This expression is denoted here as FS model. Since 

Cornelis et al. (2005) demonstrated that the four-parameter Kosugi model performed slightly 

better than four-parameter van Genuchten (1980) model, we replace the residual water 

content in the Kosugi (1999) model by the adsorption equation of Campbell and Shiozawa 

(1992) (denoted here as KCGS model): 
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3.3 Materials and methods 

3.3.1 Experimental data 

Three soils having retention properties measured and reported by Campbell and Shiozawa 

(1992) are used to test the modified functions. These soils include  

L-soil, Salkum, Palouse B, and have textures of sand, silt loam, and silty clay (sandy, loamy 

and clayey soils) respectively. The data sets have been chosen based on their wide range of 

potentials, from -3 kPa to -3.2 × 10
5
 kPa, which is from nearly saturation to nearly oven-

dryness. This wide range, almost six orders of magnitude in potential and referred to as data 

set #1, enabled us to validate our proposed model (KCGS) and identify its parameters. The 

KCGS function was further tested against reduced data sets, i.e. containing matric potentials 

≥ -1.5 × 10
3
 kPa (data set #2) and matric potentials ≥ -100 kPa (data set #3), and was 

compared to the FS model. 

3.3.2 Model analysis 

The fitting procedure to all three data sets was performed as previously described in Chapter 

2 (see chapter 2, section 2.3.2). To gain a better insight into the proposed model structure and 

to better judge the credibility of the model on commonly agreed scientific grounds (Dekker et 

al., 2001, Dochain and Vanrolleghem, 2001), the identifiability of parameters (sensitivity 

analysis, confidence intervals, parameter correlation) and uncertainty analysis of model 

outputs were also studied. 

A local sensitivity analysis approach was used to study the quantitative relationship between 

the model parameters and the output (in this case y stands for ) (Saltelli et al., 2005): 






y
S  [3.6] 

where S is the output sensitivity function of the model output, y to the parameter, . The 

sensitivity functions were derived analytically using MathCad
®
. 

To evaluate the accuracy of the estimated parameters, the covariance matrix of the estimated 

parameters, COV(β) was approximated using the inverse of the Fisher Information Matrix 

(FIM) (see Dochain and Vanrolleghem, 2001; Omlin and Reichert, 1999): 
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where 
j

iy




 is the absolute sensitivity of the model output yi to model parameter j and Q is 

the matrix of the variance of measurement errors. SSE/(N-m) is equal to s
2
, which is an 

estimate of the variance of model fits 2̂ . SSE is the sum of squared errors corresponding to 

the minimum cost function. N is the total number of measurements and m is the total number 

of parameters estimated.  The confidence interval of parameter j,j, is: 

)ˆ;()(  mNtCOV jjj   [3.9] 

where t( ̂;mn  ) is the value of two-tailed student t-distribution at ̂1  the confidence 

level with n-m degrees of freedom. ̂  is typically taken as 0.05 (5%) which means that 95 

times of the cases the estimated value of the parameter will lie within the given confidence 

interval. The linear correlation between two parameters Rij is: 
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and can range between -1 and +1. Values of Rij close to zero imply zero or no correlation. 

The covariance matrix of the model output was approximated by first order, linear 

propagation of the uncertainty of parameter estimates through the model structure (Omlin and 

Reichert, 1999): 
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where yj indicates the uncertainty of the i
th
 model output at the confidence level ( ̂1 ). The 

term iiiyCOV )(  indicates the diagonal elements of the covariance matrix which is the 

variance of i
th

 model output. 

Finally, the prediction accuracy of the FS and KCGS models are quantified using mean error 

(ME) and root mean square error (RMSE) criteria: 
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where N is the number of θ(ψ) pairs in a SWRC, i


 and i  are estimated and measured water 

contents, respectively. The
 
value of i


 is computed by evaluating the appropriate retention

 

function at the observed matric potential with the estimated retention
 
parameters. ME 

measures the bias of the predicted variable and should be as small as possible. RMSE is a 

measure of the precision of the predicted variable and should be as small as possible for 

unbiased precise prediction. 

3.4 Results and discussion 

Table 3.1 summarizes the estimated parameters along with their 95% confidence intervals 

and the correlation coefficients between parameters as computed for the three soils using the 

KCGS model. For reliable and accurate parameter estimation, the confidence interval of the 

parameter should be as low as possible, which indicates low uncertainty on the estimated 

parameter value. When this low parameter uncertainty propagates properly to model-outputs, 

e.g. first order error propagation, the uncertainty band around the model output will also be 

small (see below). That said, it appears that confidence intervals of the parameter estimates of 

the KCGS are low (see Table 3.1). 
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Table 3.1. Optimized Parameters, Confidence Intervals, and Correlation Coefficient between 

Parameters for the KCGS Model. † 

 L-soil Salkum Palouse B 

 θa θs ψm σ θa θs ψm σ θa θs ψm σ 

Optimized 0.07 0.16 6.47 0.35 0.20 0.48 77.36 1.69 0.36 0.55 16.90 1.90 

δβj 0.00 0.01 0.47 0.09 0.01 0.01 9.71 0.15 0.01 0.04 7.62 0.42 

θa 1 -0.08 -0.17 -0.25 1 -0.28 -0.28 -0.59 1 -0.38 0.18 -0.63 

θs – 1 -0.68 0.57 – 1 -0.70 0.74 – 1 -0.92 0.84 

ψmd – – 1 -0.37 – – 1 -0.40 – – 1 -0.80 

σ – – – 1 – – – 1 – – – 1 

† The units of the parameters are based on soil-water content  expressed in m
3
 m

-3
 and   in kPa. 

 

Figure 3.1 shows the output sensitivity functions of water content to the parameters of the 

KCGS model as a function of matric potential. One observes that a significant correlation 

exists between model parameters. The degree of correlation appears to be dependent on the 

matric potential, e.g. the parameters a and s are inversely proportional between -10 and -10
3
 

kPa whereas the correlation breaks down beyond -10
3
 kPa (see Figure 3.2). Although the 

correlation coefficients are relatively low in the KCGS model, still they cannot be ignored. 

Therefore the parameter estimates should be interpreted with care considering the existing 

correlation. 
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Figure 3.1. Output sensitivities of water content to the parameters in the KCGS.  Note that 

S(ψmd) was multiplied by 10
3
 and σ by 10

6
 for clarity of representation on one single scale. 

In comparing the KCGS and FS models, they were first calibrated using a reduced number of 

data pairs, datasets #2 and #3 as explained above, and then used to predict the entire 

(original) data sets which were not used in the calibration. In Figure 3.2, the SWRCs and 

their uncertainty bands established by using both datasets of the Salkum soil, as explained 

above, are plotted for the KCGS and FS models. When considering dataset #2, both models 

were able to satisfactorily reproduce the data in the extrapolation region with very narrow 

95% uncertainty bands (i.e. those data not used in calibration) (see Figures 3.2a and 3.2b) 

although the fit of the KCGS model was relatively better: the ME and RMSE values 

associated with KCGS ranged from 0.0009 to 0.0008 and from 0.0040 to 0.0079 

respectively, whereas for the FS model,  they varied between 0.0007 and 0.0055, and 0.0036 

and 0.0105 respectively. 
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Figure 3.2. Comparison of measured and fitted soil-water retention curves using FS (a and c) 

and KCGS (b and d) models for Salkum with 95% uncertainty bands. The fits were obtained 

by calibrating the models using  two data sets of (θ, ψ): data #2, and #3 include ψ values up to 

1.5 × 10
3
 kPa (a and b), and -100 kPa (c and d), respectively. 
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The difference between the two models becomes pronounced when a more reduced dataset, 

i.e, #3, was used for calibration (see Figures 3.2c and 3.2d). The predictions of the FS model 

were accompanied with a large uncertainty band, and most important, the predictions 

deviated significantly from the data in the extrapolation region. The KCGS model, however, 

was still able to follow the observed measurements in the extrapolation region with 

acceptable uncertainty bands. This means that the KCGS model is able to describe the SWRC 

between saturation and oven-dryness, without having (θ, ψ) data beyond a matric potential of 

100 kPa. This would eliminate the need to experimentally determine the SWRC beyond 

1.5 × 10
3
 kPa or even beyond -100 kPa. This is an important improvement compared to e.g. 

the Rossi and Nimmo model (1994) for the SWRC between saturation and oven-dryness. 

Cornelis et al. (2005) have demonstrated that the latter model behaves rather poorly when 

using data sets with a limited number of data pairs (such as data set #2). The ME and RMSE 

associated with the KCGS model using dataset #3 are well below those of the FS model: the 

ME and RMSE values associated with KCGS ranged from 0.0054 to 0.0024 and from 

0.0049 to 0.0219 respectively, whereas for the FS model, they varied between 0.0447 and 

0.0015, and 0.0045 and 0.0511 respectively. 

Overall, these preliminary results are promising and suggest that the SWRC can be 

reproduced by KCGS model with acceptable accuracy under a limited range of (θ, ψ) data, 

such as in lysimeter and field studies, or when maintaining a pressure of 1.5 × 10
3
 kPa is 

cumbersome as is often observed in many under-developed labs. Nevertheless, additional 

research on testing the model performance under a wide range of data sets from diverse soils 

and textures will be needed to confirm these promising results. 

3.5 Conclusions 

In this paper we modified the Kosugi (1999) model to improve the description of water 

retention across the entire range of soil-water content from saturation to oven-dryness. We 

have replaced the residual water content in the four-parameter form of Kosugi (1999) model 

by the adsorption equation of Campbell and Shiozawa (1992). Tested on three different soils 

having retention properties measured and reported by Campbell and Shiozawa (1992), the 

new model reproduced well the observed data in the whole range of soil-water contents. The 
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model parameters could be identified uniquely using a limited matric potential range.  

However, the inherent correlation existing between model parameters could not be totally 

overcome in the new model.  

The major achievement of the model is its ability to predict the entire region of SWRC when 

calibrated using a limited dataset that includes only those measurements of water content 

beyond 100 kPa matric potential. These promising results suggesting that the model remains 

largely valid when calibrated with a limited data of SWRC need to be confirmed with a wider 

range of soils and texture data. 
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Chapter 4 Performance evaluation of models that 

describe the soil-water retention curve between 

saturation and oven dryness 
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Abstract 

The objective of this work was to evaluate eight closed-form unimodal analytical expressions 

that describe the soil-water retention curve over the complete range of soil-water contents. To 

meet
 
this objective, the eight models were compared in terms of their accuracy (root mean 

square error, RMSE), linearity (coefficient of determination R² and adjusted coefficient of 

determination R
2

adj), and prediction potential. The latter was evaluated by correlating the 

model parameters to basic soil properties. Retention data for 137 undisturbed soils from the 

Unsaturated Soil Hydraulic Database (UNSODA) were used for the model comparison. The 

samples showed considerable differences in texture, bulk density, and organic matter content. 

All functions were found to provide relatively realistic fits and anchored the curve at zero soil 

water content for the coarse-textured soils. The performance criteria were similar when 

averaged across all data sets. The criteria were found to be statistically different between the 

eight models only for the sandy clay loam soil textural class. An analysis of the individual 

data sets separately showed that the performance criteria were statistically different between 

the models for 17 data sets belonging to six different textural classes. We found that the 

Khlosi model with four parameters was the most consistent among different soils. Its 

prediction potential was also relatively good due to significant correlation between its 

parameters and basic soil properties. 
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4.1 Introduction 

The unsaturated soil hydraulic properties are key factors governing the partitioning of rainfall 

and irrigation into soil water storage, evapotranspiration and deep drainage. The hydraulic 

properties involve the soil-water retention curve (SWRC), which relates the matric potential 

 with the soil-water content , and the hydraulic conductivity function. Discrete (, ) data 

sets can be either obtained from laboratory or field measurements, or predicted from other 

soil properties using pedotransfer functions, PTFs, or other approaches. Both methods yield 

discontinuous sets of - data pairs within the range of matric potentials used for the 

measurements. For modeling purposes a continuous and smooth representation of the SWRC 

is preferred, which can be obtained by fitting a closed-form analytical expression to a discrete 

data set. To date various expressions appear in the literature to represent the SWRC (e.g., 

Brooks and Corey, 1964; van Genuchten, 1980; Kosugi, 1999). Most of the retention models 

are successful in the wet part of the SWRC. However, the dry part of the SWRC is equally 

important in different water related processes as mentioned earlier in Chapter 2. 

There is hence a pressing need to accurately represent the SWRC for all matric potentials. In 

the last few years and decades, several attempts have been made to represent the complete 

retention curve (Ross et al., 1991; Campbell and Shiozawa, 1992; Rossi and Nimmo, 1994; 

Fayer and Simmons, 1995; Morel-Seytoux and Nimmo, 1999; Webb, 2000; Groenevelt and 

Grant, 2004, Khlosi et al., 2006). All of these models, except the equation by Groenevelt and 

Grant (2004), were tested on data reported by Campbell and Shiozawa (1992) and Schofield 

(1935), who measured water contents far below -1500 kPa. All models performed relatively 

well. However, when testing the Rossi and Nimmo (1994) sum model against data sets in 

which  ranged between -1 and -1500 kPa, Cornelis et al. (2005) found that this model 

behaved rather poorly compared to the van Genuchten (1980) and Kosugi (1999) models, 

despite of its physically realistic shape. In this paper we therefore compare eight closed-form 

unimodal analytical expressions to describe the SWRC over the complete range of soil-water 

contents. The comparison includes expressions by Campbell and Shiozawa (1992), Rossi and 

Nimmo (1994), Fayer and Simmons (1995), Webb (2000), Groenevelt and Grant (2004) and 

Khlosi et al. (2006), which were tested using a limited number of data pairs (e.g., UNSODA), 

as is most often the case in practice. Three statistical criteria were considered to define the 
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best models: accuracy (RMSE), linearity (R² and R²adj), and prediction
 
potential (correlation 

between model parameters and basic soil properties). 

4.2 Available Soil Water Retention Models 

A large number of functions have been proposed over the years to describe the SWRC over 

the complete range of soil-water contents. Some of these functions are new while others are 

extensions of existing models. The extended functions are mostly modifications of the 

popularly used models by Brooks and Corey (1964), van Genuchten (1980) and Kosugi 

(1999). These functions, which will be referred to in this study as the BC, VG and KLN 

models, respectively, were given earlier in Chapter 3 (see chapter 3, Eqs. [3.1], [3.2] and 

[3.3]). 

Unfortunately, equations [3.1], [3.2] and [3.3] have considerable difficulty in representing the 

retention of water as the degree of saturation approaches zero, often giving an unrealistic path 

of the retention curve. To overcome this problem, various improvements have appeared in the 

literature. A first attempt to cover the complete retention curve was made by Ross et al. 

(1991). They modified Campbell's (1974) equation, which is identical to the power function 

of the BC model with the residual water content taken as zero, to extend the SWRC to oven 

dryness. Campbell and Shiozawa (1992) and Schofield (1935) measured water contents of 

soils ranging from sand to silty clay at matric potentials far below  = -1500 kPa. Inspection 

of their data suggests a log-linear relationship between the matric potential and the water 

content for matric potentials less than approximately -30 kPa and -1000 kPa for sand and silt 

loam respectively (the limiting values in their data set). Their silty clay soil showed an 

intermediate value. Based on these observations, Campbell and Shiozawa (1992) expressed 

the (,) relationship in the low potential range as: 


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or simply as: 
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where a is a curve-fitting parameter representing the soil-water content at  = -1 m and o is 

the matric potential at oven-dryness. Note that Campbell and Shiozawa (1992) expressed 

their matric potentials in units of m and consequently a in their equations corresponds to the 

soil-water content at -10 kPa or -1 m with a ln|ψa| value equal to zero. The matric potential at 

oven-dryness o depends on the temperature, pressure, and humidity at which the soil is 

dried. Assuming a logarithmic behaviour in the very dry range of the SWRC is consistent 

with the adsorption theory of Bradley (1936), which considers adsorbed molecules to build 

up in a layered film in which the net force of electrical attraction diminishes with increasing 

distance from the soil particle (Rossi and Nimmo, 1994). Incorporating [4.2] in a VG type 

model, Campbell and Shiozawa (1992) described the SWRC from saturation to oven-dryness 

as: 
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where A and m are curve-fitting parameters.  

Rossi and Nimmo (1994) created a four-parameter sum model (RN1 model) and a three-

parameter junction model (RN2 model) to represent the SWRC over the entire range from 

saturation to oven-dryness. Both models are based on the Campbell (1974) model with the 

residual water content taken as zero. Their four-parameter sum model (RN1), which consists 

of two functions joined at one point, was written as: 
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where i is the soil-matric potential at the junction point where the two curves join, and  and 

 are shape parameters. The term I represents the Hutson and Cass (1987) parabolic curve 

that joints the Campbell function (1974) at the junction point i. The Ross et al. (1991) 
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correction is included in the expression for II. Further, using data sets from Schofield (1935) 

and Campbell and Shiozawa (1992), Rossi and Nimmo (1994) showed that at very low soil-

water content, the latter becomes proportional to the logarithm of the soil-matric potential, as 

can be recognized as well in II. Equation [4.4] contains seven parameters. However, two of 

them can be determined from conditions that ensure continuity of both Eq. [4.4] and its first 

derivative with respect to i. Here we have chosen to explicitly determine  and  as 

analytical functions of b , i, o and λ (Cornelis et al., 2005): 
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When setting o arbitrarily at -10
6
 kPa (Ross et al., 1991; Rossi and Nimmo, 1994), and with 

Eqs. [4.5] and [4.6], the number of model parameters can be reduced to four. 

The three-parameter junction model of Rossi and Nimmo (1994) (RN2 model) consists of 

three functions, which are continuous at the two points where the functions are joined: 
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where i and j are the soil-matric potential at the two junction points, and ' and ' are shape 

parameters. To describe
 
the shape of the SWRC near saturation, Rossi and

 
Nimmo combined 
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the parabolic equation proposed by Hutson and Cass (1987)
 
with the BC model (as described

 

by II). The equation for θII is a power law for  smaller than the air entry value b. The 

simple power law overestimates
 
the water content at very low matric potentials. For this 

reason, a third
 
part, III, as proposed by Ross et al. (1991), was added to

 
obtain water content 

of zero at o. In this case there are six parameters other than s, as well as four conditions by 

imposing continuity of the global function and its first derivative at the two junction points. 

Four parameters (β', i, j, and γ') can be calculated from analytical functions of the 

remaining two fitted parameters b and λ: 
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The three free parameters of the RN2 model are then θs, b and λ'. However, Rossi and 

Nimmo (1994) obtained better accuracy with their four-parameter sum model compared to 

their three-parameter junction model. 

Fayer and Simmons (1995) further modified the Brooks-Corey and van Genuchten functions 

by replacing the residual water content with the adsorption equation of Campbell and 

Shiozawa (1992) to obtain:  

Brooks-Corey: 
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van Genuchten:  
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where θa is a curve-fitting parameter representing the soil-water content at  = -1 kPa, and o 

is the matric potential at oven dryness. Equations [4.12] and [4.13] are denoted here as FS1 

and FS2, respectively.  

Morel-Seytoux and Nimmo (1999) extended the BC model to oven-dryness using the three-

parameter junction model (RN2). They divided the matric potential values into three levels: a 

low-potential level (from oven dryness to near field capacity), a middle level (field capacity 

to about air-entry matric potential), and a high level (air-entry matric potential to zero 

suction). For the low-potential level a slightly modified form of the RN2 model (θIII) was 

selected. For the high-potential level the following algebraic relation was adopted: 
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where Se is effective saturation, Se = ( – r)/(s – r),  Sem is effective saturation at the 

matching point, m is the corresponding matric potential, M = 1/λ and aMS is defined as: 
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In this case there are certain conditions of continuity and smoothness to be satisfied to 

reattach Eq. [4.14] with the traditional BC model for the middle potential range. 

Webb (2000) proposed a new approach (W model) to combine the VG model with a dry 

region expression. This model does not necessitate refitting of experimental data and consists 

of two regions. Region 1 is an adsorption region described with a linear function on a semi-

log plot of log () vs. soil-water content (). Region 2 is a capillary flow region described 

with the VG model (or any other desired function) in which any previous fitting parameter is 

retained. The linear relation between  and  on a semi-log plot for the dry region was 

expressed by Webb (2000) as: 
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and m and m are, respectively, the matric potential and water content at the matching point, 

and μ is the slope of Eq. [4.16]. Different steps are required for determining the water content 

at matching point m. First, we rewrite Eq. [4.16] as: 
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Second, the VG model is formulated in terms of  and its slope is calculated. Third, the slope 

of the VG model is combined with Eq. [4.18] to give the intercept at o as: 
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Finally, the value of m is determined from Eq. [4.19] by iteration. Since the value of o in 

Eq. [4.19] should equal 10
6 

kPa one can give an initial estimate to m and adjust this 

estimate until the proper value of o is obtained. 

Recently, a new three-parameter model for the SWRC was developed by Groenevelt and 

Grant (2004) (GG model). This model anchors the curve at zero soil-water content using the 

log scale in a model for which the pF, defined as log (-) with  expressed in unit of cm 

(Schofield, 1935), is the independent variable. They found the equation for the model to be 

capable of fitting pF curves with remarkable success over the complete range from saturation 

to oven-dryness. The soil-water content hence would be a function of pF as: 
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where k0, k1 and  are the three dimensionless parameters, and 6.9 is the pF value at oven- 

dryness according to the Schofield equation (1935). 

Some of the functions described above utilize existing fitted curves. The Fayer and Simmons 

(1995) approach uses existing fitted curves to estimate the parameters in their modified 

SWRC expressions. Morel-Seytoux and Nimmo (1999) link up existing SWRCs with a dry 

region expression such that existing fitted curves can be directly employed. To utilize other 

existing fitted curves, Khlosi et al. (2006) used the adsorption equation of Campbell and 

Shiozawa (1992) to modify the Kosugi (1999) model. The new expression (KCGS model) 

hence combines the adsorption equation of the CS model with the KLN model as: 
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respectively, where md is the matric potential corresponding to the median pore radius,  is a 

dimensionless parameter to characterize the width of the pore-size distribution, and "erfc" 

denotes the complementary error function. 

4.3 Materials and methods 

4.3.1 Sources of SWRC data 

SWRC measurements for a selected set of undisturbed soils from different parts of the world 

for various soil types were used
 
in this study. The set consisted of 137 undisturbed

 
soils 

selected from the UNSODA database (Nemes et al., 2001). The 137 soils were
 
selected using 
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the following criteria: (i) SWRC
 
data were available from at least near saturation to, when 

possible, near oven dryness (some of the soils had measurements at matric potentials far 

below  = -1500 kPa), (ii) nearly all soil texture classes were represented (Figure 4.1), and 

(iii) their basic soil properties were known (notably clay, silt, sand, organic matter and bulk 

density). The organic matter content ranged from 0.7 to 214.0 g kg
-1

, while bulk densities 

varied from 0.59 to 1.76 Mg m
-3

 (Figure 4.2). 

 

 

 

Figure 4.1. Texture distribution of 137 soils from UNSODA (Nemes et al., 2001) used in 

model development: sandy (sand, loamy sand), loamy (sandy loam, loam, silt loam, and silt), 

and clayey (sandy clay loam, silty clay loam, clay loam, sandy clay, silty clay, and clay) soils.  
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Figure 4.2. Variation of bulk density and organic matter content in the dataset. 

4.3.2 Models for the data fit   

From available SWRC models, we selected eight models: those proposed by Campbell and 

Shiozawa (1992), Rossi and Nimmo (1994) (RN1 and RN2 models), Fayer and Simmons 

(1995) (FS1 and FS2), Webb (2000), Groenevelt and Grant (2004), and Khlosi et al. (2006).  

The parameters of the chosen models were obtained through the same procedures considered 

in Chapter 2 (see chapter 2, section 2.3.2). In order to avoid unrealistically large positive (or 

even negative) values for a, r,   b in the CS, RN1, FS1, FS2, W and KCGS models, we 

constrained their parameters to  > 0 for the CS model,  b >  i for the RN1 model, r ≥ 0 

for the W model, and a by the range of values found for the same texture class for the CS, 

FS2 and KCGS models. 

 

4.3.3 Comparison methods 

4.3.3.1 Goodness of fit statistics 

Various statistical measures can be employed to compare the fitting accuracy of the SWRC 

models. In this study, we used as measures the root of the mean of squared errors (RMSE, 
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Eq. [2.15]), the coefficient of determination (R
2
, Eq. [2.16]), and the adjusted coefficient of 

determination (R
2

adj), which were calculated for each soil sample.  

An additional measure of fit is the adjusted R-square, R
2

adj, (Neter et al., 1996), which is 

designed to take into account the number of parameters in the model. R
2

adj better reflects how 

the degree of correlation between observed and fitted data will change as additional 

parameters are added to or deleted from the model. R
2

adj is defined by: 

pN

pRN
Radj






)1()1( 2
2  [4.23]     

 

where p is the number of model parameters. The R
2

adj statistic can take on any value less than 

or equal to 1, with a value closer to 1 indicating a better fit.         

In general, a model with more parameters can fit the observational data better. Although R
2

adj 

is generally one of the best indicators of the quality of the fit when adding additional 

parameters to the SWRC model, overparameterization should be avoided since it results in a 

non-identifiable model (i.e. a model leading to sample configuration probabilities identical to 

those of a simpler model with fewer parameters), in large variances of the estimated model 

parameters for similar soils, or in a high degree of correlation between the parameters (or low 

parameter uniqueness) if the number of observations is limited as is often the case with 

laboratory-determined SWRCs (Cornelis et al., 2005). Moreover, it is advantageous to 

minimize the number of model parameters when attempting to predict the SWRC from 

readily available data using pedotransfer functions. 

In order to check if R², R²adj, and RMSE of the 8 models are similar or different, a statistical 

test of significance is needed. Regarding the coefficients of determination or, equivalently, 

their corresponding coefficients of correlation, the initial hypothesis is that all 8 correlation 

coefficients are equal (Steel and Torrie, 1980): 

8210 ...: rrrH   [4.24] 

with r being either R or R²adj, and 1 to 8 referring to the 8 models. The first step is then to 

transform the correlation coefficients into a new variable z such that: 
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with log e being the natural logarithm. Since we have the same number of θ(ψ) pairs for the 8 

models for a given data set (N ranging between 5 and 27), the variable obs
2  is next 

calculated as: 

 )  )



p

i

iobs zzN
1

22 3  [4.26] 

where z  is the arithmetic mean of zi, p is the number of models. This variable is subsequently 

compared to a theoretical value ( theor
2 ) at the 95 % confidence level having (p – 1) degrees 

of freedom. Hypothesis [4.24] is rejected, meaning that the 8 correlation coefficients and thus 

the coefficients of determination are statistically different, when: 

theorobs
22      [4.27] 

For RMSE, the test of significance is possible for variances. For this purpose we first square 

RMSE in order to calculate MSE, which represents variances. The hypothesis for 

homogeneity of variances, also called homoscedasticity (Hartley, 1950), is then: 

2

8

2

2

2

10 ...:  H  [4.28] 

where 2  is the MSEs, with 1 to 8 referring to the 8 models. The Hartley test is now applied 

by first computing the observed value: 

2

min

2

max




obsH    [4.29] 

in which 
2

max and 
2

min  are, respectively, the maximum and minimum values among the 8 

MSEs. This observed value is compared to a theoretical one ( theorH ) at the 95 % confidence 

level with p and (N – 1) degrees of freedom. Hypothesis [4.28] is rejected, meaning that the 8 

MSEs and thus the RMSEs are statistically different, when: 

theorobs HH     [4.30] 

To conveniently compare the
 
goodness of fit of the 8 models, RMSE, R

2
 and R

2
adj were 

calculated separately for each model and for each data set. Next we calculated mean values of 
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these performance criteria for each of the 11 soil textural classes, as well as mean values for 

the whole data sets for the same performance criteria. 

4.3.3.2 Comparing model parameters with basic soil properties 

To provide further insight, the rsp Pearson coefficient of correlation between the model 

parameters and several basic soil properties was computed for each soil sample. Mean values 

were calculated also for each model. The soil properties considered here were bulk density, 

ρb, organic matter content, OM, and sand, silt and clay content. The Pearson coefficient of 

correlation was used as a measure for the prediction potential of a model in that the closer rsp 

is to either 1 or -1, the higher the prediction potential of the parameters in the model. High 

correlations between model parameters and basic soil properties are useful keys in developing 

reliable pedotransfer functions for the model parameters. The statistical significance of the 

correlation coefficients was tested using the same procedure as for R and R
2

adj (equations 

[4.24] to [4.27]). Results are reported only for the mean correlation coefficients over the 

whole data sets. 

4.4 Results and discussion 

4.4.1 Evaluation of the models 

Parameter values for the different models and for different soil textural classes (Table 4.1) 

were obtained by curve fitting the models to the entire data set for each soil textural class. 

These values can serve as useful initial estimates when attempting to use one of the evaluated 

expressions. 
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Table 4.1. Average model parameter values for different soil textural classes. † 

† S, sand; LS, loamy sand; SL, sandy loam; SiL, silt loam; Si, silt; L, loam; SCL, sandy clay loam; SiCL, silty clay loam; CL; clay 

loam; SiC, silty clay; C, clay. 

‡ CS, Campbell and Shiozawa (1992) model; RN1, Rossi and Nimmo sum model (1994); RN2, Rossi and Nimmo junction model 

(1994); FS1, Fayer and Simmons (1995) modified Brooks-Corey model; Fayer and Simmons (1995) modified van Genuchten 

model; W, Webb (2000); GG, Groenevelt and Grant (2004); KCGS, Khlosi et al. (2006). 

§ Curve-fitting parameters: the units of the parameters are based on soil water content θ expressed in m
3
 m

−3
 and ψ in kPa. 

¶ Number of data set in each soil textural class. 

# Average number of -  data pairs in each soil textural class. 

 

Table 4.2 contains results of the statistical measures computed for each expression to 

compare their goodness of fit at three levels: each separate data set (137 values for each 

statistical measure), each soil textural class (11 values), and all of the data sets combined (1 

value).  

 

 

 

 

Model ‡ Par§ S LS SL SiL Si L SCL SiCL CL SiC C 

No. of samples¶ 18 11 19 41 3 23 4 1 5 2 10 

No. of data pairs#  9 10 11 11 25 12 10 27 9 10 9 

CS a 0.058 0.165 0.157 0.199 0.216 0.208 0.268 0.122 0.310 0.400 0.351 

 A 0.312 0.238 0.247 0.212 0.189 0.268 0.177 0.327 0.274 0.143 0.170 

 α 0.253 0.528 0.193 0.084 0.010 0.628 0.179 0.084 0.473 0.020 0.173 

 m 5.446 4.887 10.090 8.265 0.964 17.537 21.072 11.887 9.675 6.813 6.123 

RN1 s 0.377 0.423 0.414 0.427 0.402 0.501 0.458 0.447 0.639 0.521 0.548 

 ψb 3.718 1.741 7.734 11.552 27.977 0.433 0.609 0.245 0.886 1.272 0.739 

 ψi 5.403 3.455 17.612 16.318 33.337 2.636 3.167 21.399 2.460 19.389 32.616 

 λ 1.248 1.064 0.468 0.239 2.173 10.073 8.019 1.939 1.644 0.026 0.956 

RN2 s 0.378 0.426 0.415 0.425 0.403 0.498 0.454 0.447 0.639 0.521 0.552 

 ψb 3.100 1.672 9.004 9.442 15.279 3.636 2.150 12.991 0.537 11.980 19.479 

 λ 0.653 0.289 0.229 0.209 0.336 0.130 0.111 0.137 0.138 0.106 0.101 

FS1 a 0.041 0.127 0.118 0.160 0.040 0.290 0.283 0.189 0.123 0.470 0.304 

 s 0.373 0.419 0.417 0.430 0.401 0.499 0.471 0.456 0.638 0.527 0.569 

 ψb 3.266 2.095 4.439 4.988 13.741 0.723 0.553 2.802 0.497 2.642 0.163 

 λ 0.945 0.620 0.288 0.279 0.384 0.279 0.189 0.135 0.173 0.268 0.137 

FS2 a 0.066 0.137 0.169 0.145 0.078 0.300 0.213 0.347 0.376 0.328 0.390 

 s 0.377 0.428 0.421 0.429 0.403 0.506 0.473 0.460 0.647 0.528 0.586 

 α 0.227 1.564 0.350 0.414 0.039 11.053 1.707 1.968 2.690 0.183 503.170 

 n 2.534 1.863 1.484 1.372 2.835 1.394 1.170 1.406 1.815 1.208 1.450 

W θr 0.029 0.047 0.041 0.013 0.028 0.011 0.000 0.063 0.091 0.055 0.056 

 s 0.379 0.430 0.421 0.428 0.408 0.506 0.466 0.461 0.650 0.527 0.564 

 α 0.232 0.772 0.236 0.183 0.041 0.977 0.420 0.170 1.386 0.098 1.472 

 n 2.286 1.599 1.375 1.293 1.627 1.166 1.132 1.205 1.251 1.174 1.159 

 s 112.482 52.626 27.580 26.285 52.909 17.046 15.604 17.792 14.197 11.218 14.531 

GG k0 40.192 5.612 9.075 12.907 26.723 5.594 7.224 8.756 4.337 7.326 8.201 

 k1 0.385 9.684 0.834 9.269 0.434 22.130 104.901 41.471 56.121 2.742 126.554 

  4.202 1.872 1.771 1.805 3.147 0.760 0.497 0.962 0.497 0.808 0.390 

KCGS a 0.082 0.148 0.203 0.175 0.164 0.285 0.182 0.374 0.441 0.430 0.350 

 s 0.379 0.449 0.429 0.447 0.406 0.542 0.550 0.463 0.648 0.540 0.590 

 ψmd 10.386 7.045 54.609 108.626 59.118 47.248 54.908 177.609 2.503 187.658 947.421 

 σ 1.086 2.427 2.148 2.855 1.291 3.890 6.901 4.588 1.432 3.621 4.973 
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Table 4.2. Statistical measures of the models for 11 textural classes and all data sets.† 

† S, sand; LS, loamy sand; SL, sandy loam; SiL, silt loam; Si, silt; L, loam; SCL, sandy clay loam; SiCL, silty clay loam; CL; clay 

loam; SiC, silty clay; C, clay; TM, mean values across the whole data sets. 

‡ CS, Campbell and Shiozawa (1992) model; RN1, Rossi and Nimmo sum model (1994); RN2, Rossi and Nimmo junction model 

(1994); FS1, Fayer and Simmons (1995) modified Brooks-Corey model; Fayer and Simmons (1995) modified van Genuchten 

model; W, Webb (2000); GG, Groenevelt and Grant (2004); KCGS, Khlosi et al. (2006). 

§ SI, statistical indices (mean texture class values). 

¶ Test of the equality of the three performance criteria for the eight models: No, no statistical difference between the models; Yes, 

the performance criteria are statistically different for the eight models. 

 

Based on the mean value of the three performance criteria over all data sets, Table 4.2 (last 

column) and Figure 4.3 show that the mean RMSE values varied between 0.0105 and 0.0161. 

The statistical analysis shows that the 8 models do not differ between each other regarding 

their RMSEs. The same table and figure also show that relatively high values were found for 

the mean R
2
 (more than 0.97) and mean R²adj (more than 0.96) for all models, thus indicating 

that all equations can be considered valid. Indeed, the test of significance for both R² and R² 

adj further suggest that the 8 models do not differ. A more detailed analysis was done by 

considering each textural class separately (Table 4.2, columns 3 to 13). The test of 

significance shows that the 8 models do differ in terms RMSE only for the silty clay loam, 

but not for the remaining 10 textural classes.  

model‡ SI§ S LS SL SiL Si L SCL SiCL CL SiC C TM 

CS RMSE 0.0092 0.0095 0.0092 0.0099 0.0100 0.0100 0.0100 0.0039 0.0100 0.0101 0.0105 0.0105 

 R
2
 0.993 0.991 0.992 0.990 0.989 0.990 0.989 0.999 0.989 0.988 0.986 0.985 

 R
2

adj 0.989 0.986 0.987 0.984 0.984 0.985 0.984 0.998 0.983 0.982 0.978 0.977 

RN1 RMSE 0.0096 0.0097 0.0111 0.0139 0.0141 0.0140 0.0140 0.0043 0.0138 0.0138 0.0140 0.0140 

 R
2
 0.993 0.992 0.988 0.979 0.979 0.979 0.978 0.998 0.978 0.978 0.975 0.974 

 R
2

adj 0.989 0.987 0.981 0.968 0.968 0.968 0.966 0.998 0.967 0.967 0.962 0.961 

RN2 RMSE 0.0147 0.0150 0.0149 0.0165 0.0167 0.0162 0.0162 0.0041 0.0160 0.0159 0.0160 0.0161 

 R
2
 0.987 0.986 0.983 0.975 0.974 0.975 0.974 0.998 0.975 0.975 0.971 0.971 

 R
2

adj 0.983 0.981 0.978 0.968 0.967 0.968 0.967 0.998 0.968 0.968 0.963 0.963 

FS1 RMSE 0.0108 0.0108 0.0127 0.0156 0.0159 0.0154 0.0151 0.0050 0.0149 0.0148 0.0146 0.0146 

 R
2
 0.992 0.991 0.985 0.976 0.975 0.976 0.976 0.998 0.977 0.977 0.978 0.978 

 R
2

adj 0.987 0.986 0.976 0.963 0.963 0.964 0.965 0.997 0.966 0.966 0.966 0.966 

FS2 RMSE 0.0097 0.0097 0.0104 0.0126 0.0128 0.0125 0.0123 0.0039 0.0122 0.0121 0.0120 0.0120 

 R
2
 0.993 0.992 0.990 0.984 0.983 0.983 0.984 0.999 0.984 0.984 0.984 0.984 

 R
2

adj 0.988 0.988 0.983 0.975 0.975 0.975 0.976 0.998 0.976 0.976 0.976 0.976 

W RMSE 0.0104 0.0106 0.0109 0.0128 0.0130 0.0130 0.0130 0.0047 0.0129 0.0127 0.0127 0.0128 

 R
2
 0.992 0.991 0.989 0.983 0.983 0.982 0.982 0.998 0.983 0.983 0.983 0.982 

 R
2

adj 0.988 0.986 0.983 0.975 0.975 0.974 0.974 0.998 0.974 0.974 0.973 0.973 

GG RMSE 0.0146 0.0149 0.0143 0.0149 0.0152 0.0146 0.0144 0.0086 0.0144 0.0142 0.0143 0.0142 

 R
2
 0.988 0.986 0.985 0.981 0.980 0.981 0.981 0.993 0.981 0.982 0.980 0.980 

 R
2

adj 0.984 0.982 0.980 0.975 0.975 0.976 0.976 0.992 0.976 0.976 0.975 0.975 

KCGS RMSE 0.0105 0.0106 0.0105 0.0113 0.0115 0.0112 0.0111 0.0047 0.0110 0.0109 0.0109 0.0109 

 R
2
 0.992 0.992 0.990 0.988 0.988 0.988 0.988 0.998 0.988 0.988 0.988 0.988 

 R
2

adj 0.987 0.986 0.985 0.982 0.981 0.982 0.982 0.998 0.982 0.982 0.981 0.981 

Sig.¶ RMSE No No No No No No No Yes No No No No 

 R² No No No No No No Yes No No No No No 

 R²adj No No No No No No Yes No No No No No 
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Regarding R² and R²adj, the 8 models differ statistically for the class sandy clay loam, while 

they can be considered to give similar results for 10 remaining textural classes. Because of 

the differences in results between all data sets combined and those from each textural class, 

we further analyzed our data by considering each data set separately and focusing mainly on 

R²adj. The results show that for 17 out of the 137 data sets, the 8 models were statistically 

different, while they gave similar R²adj coefficients for the remaining 120 data sets classified 

as silty clay loam (1 data set), silty clay (2), silt (3), loamy sand (11), and clay loam (5). The 

17 data sets were classified as sand (3 data sets out of 18), sandy loam (1 from 19), silty loam 

(2 from 41), loam (5 from 23), sandy clay loam (3 from 4), and clay (3 from 10). These 

results reflect the fact that mean values sometimes will not reveal differences when individual 

data sets are used. To further examine the goodness of fit of the various models, we plotted 

the distributions of RMSE, R
2
 and R

2
adj for all soil samples in Figure 4.3. Each boxplot shows 

the median (solid
 
line), mean (dotted line), the 25 and 75% percentiles (top and bottom of the 

box), the 10 and 90% percentiles (whiskers), and the outliers (circles). Notice that the fitting
 

errors for FS2, W and KCGS models were smaller than those for the other models. This is 

because of the better representation of these models for all soil samples. Results suggest that 

the KCGS model is the most suitable for describing the observed data. 
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Figure 4.3. Boxplots of (a) RMSE, (b) R
2
, and (c) adjusted R

2
 (R²adj) values for different soil-

water retention curve models: Campbell and Shiozawa (CS); Rossi and Nimmo four-

parameter sum (RN1); Rossi and Nimmo three-parameter junction (RN2); Fayer and 

Simmons modified Brooks–Corey (FS1); Fayer and Simmons modified van Genuchten 

(FD2); Webb (W); Groenevelt and Grant (GG); and Khlosi et al. (KCGS). The box plots 

summarize the distribution of RMSE, R
2
, and R²adj. The horizontal full line in each box 

signifies the median value and the mean in a dotted line, whereas the bottom and top of the 

box represent the 25th and 75th percentile. The whiskers display the 10th and 90th percentile, 

while the points indicate the outliers. 
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Table 4.3 lists the Pearson correlation coefficients, rsp, between all parameters and the basic 

soil properties. The KCGS and FS2 models produced the highest correlation values between 

r (or a), and ρb and clay content, while most models showed high correlation between s, 

and ρb and clay content. Notice that s was highly correlated to ρb and to a lesser extent to 

clay content while the opposite was true for a. The other parameters, which mostly affect the 

shape of the SWRC, showed much lower correlations, except for the KCGS, W, FS1, RN2 

and GG models. This was to be expected for the RN2 and GG models since RN2 does not 

contain r (or a), while GG does not have r (or a) and s. Relatively high values were also 

obtained for the FS1 and W models. The KCGS model showed high correlations for its 

additional parameters, as well as for a and s. Other models such as CS, RN1, and FS2 

showed good correlation with at least one additional parameter. 

The results above indicate that the KCGS model performed best. This model performed as 

good as the other models in terms of the goodness-of-fit, and showed significant correlation 

between all of its parameters and the basic soil properties. Compared with the KCGS model, 

CS expression exhibited two main disadvantages. One is that the correlation between model 

parameters and basic soil properties was far less than that of the KCGS model for all 

parameters. A second disadvantage is related to the fact that the boxplot of the RMSE, R
2
 and 

R
2

adj values showed many outliers for CS as compared to KCGS. This suggests that CS is less 

consistent when applied to different soils. The FS2 model, which showed the same fitting 

performance as the KCGS and CS models, did not represent the dry range well, without 

having (, ) data below a matric potential of -100 kPa (Khlosi et al., 2006). Although the W 

model does not necessitate the refitting of observed data, this model does not require many 

iterations to find the matching point. 
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Table 4.3. Pearson correlation coefficient between model parameters and basic soil properties. § 

 

 model† r/a vs b r/a vs clay s/A vs b s/A vs clay a‡ sand/clay¶ a‡ silt/clay# b†† sand/OM ‡‡ b†† silt/clay/ρb§§ c¶¶ sand c¶¶ silt/clay## 

CS -0.28 0.64 -0.37 -0.24 0.12 -0.12 0.17 -0.33   

RN1 - - -0.79 0.50 -0.21 0.33 -0.04 0.07 -0.26 0.23 

RN2 - - -0.79 0.51 0.27 0.27 0.52 -0.48 - - 

FS1 -0.26 0.50 -0.79 0.56 -0.28 0.34 0.51 -0.42 - - 

FS2 -0.37 0.69 -0.78 0.55 -0.09 0.30 0.35 -0.29   

W 0.05 0.11 -0.79 0.52 0.24 -0.12 0.50 -0.42 0.60 -0.52 

GG - - - - 0.16 -0.15 0.27 0.43 0.45 -0.56 

KCGS -0.39 0.67 -0.73 0.49 -0.18 0.39 -0.31 0.41 - - 

† CS, Campbell and Shiozawa (1992) model; RN1, Rossi and Nimmo sum model (1994); RN2, Rossi and Nimmo junction model (1994); FS1, Fayer and Simmons (1995) modified Brooks-Corey 

model; Fayer and Simmons (1995) modified van Genuchten model; W, Webb (2000); GG, Groenevelt and Grant (2004); KCGS, Khlosi et al. (2006). 

‡ a corresponds to , b, b, b, , , k0 and b in the CS, RN1, RN2, FS1, FS2, W, GG and KCGS model, respectively. 

§ All values that are underlined indicate a significant correlation at the 0.05 level. 

¶ All a values are correlated to sand content, except for the value in italics, which is correlated to clay content. 

# All a values are correlated to silt content, except for the value in italics, which is correlated to clay content. 

†† b corresponds to m, , , , n, n, k1 and  in the CS, RN1, RN2, FS1, FS2, W, GG and KCGS model, respectively. 

‡‡ All b values are correlated to sand content, except for the value in italics, which is correlated to OM. 

§§ All b values are correlated to silt content, except for the value in italics, which is correlated to clay content, and the value in bold, which is correlated to ρb. 

¶¶ c corresponds to ψi, s and  in the RN1, W and GG model, respectively. 

## All c values are correlated to silt content, except for the values in italics, which is correlated to clay content.  
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4.4.2 Performance of the models 

The performance of the eight closed-form analytical expressions is further demonstrated 

below by fitting them to soil-water retention data of a relatively coarse-textured soil (loamy 

sand, ρb = 1.68 g m
-3

, O.M. = 3 g kg
-1

), a medium-textured soil (silt loam, ρb = 1.51 g m
-3

, 

O.M. = 5 g kg
-1

),  and a fine-textured soil (clay, ρb = 1.47 g m
-3

, O.M. = 6 g kg
-1

). Figure 4.4 

indicates that all models performed very well for the loamy sand in that they produced 

comparatively realistic fits and anchored the curves at zero soil-water content. We can notice 

that still, the KCGS model showed the best fit for all matric potentials. The correspondence 

between observed and fitted SWRCs for the silt loam exhibited deviations for the RN1, RN2, 

FS1, W and GG models. The RN1 and RN2 models showed a poor match near saturation. 

This is because both models use the Hutson and Cass expression (1987) at high matric 

potentials, which is less flexible because of its parabolic shape. The RN1 and RN2 models 

further performed rather poorly in the dry range since these functions require many data 

points to provide a smooth match at the junction points. The FS1 model mostly missed the 

shape of the data near saturation due to its discontinuous character, which is an inherent 

feature of the original BC model. Figure 4.4 additionally shows that the GG model did not 

accurately match several points near saturation not unlike some of the other models. This can 

be attributed to the discontinuity at ψ = 1 cm (pF = 0) which decreases the flexibility of the 

curve in that region. By contrast, CS, FS2, W and KCGS showed very good fits to the silt 

loam data although CS seems to have a less realistic shape (linear) in the wet region. Slightly 

different results were obtained for the clay soil.  
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Figure 4.4. Observed and fitted soil-water retention curves for a loamy sand, silt loam and clay. 
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The RN1, RN2 here again showed poor fits as explained earlier. By keeping the oven-dryness 

pressure () as a free parameter one can improve their fits but with the possibility of 

producing oven-dryness values lower than -10
6
 in fine-textured soils. The GG model now 

showed a better match to the data, because it is more flexible when less data are presented 

near saturation. For the same reason, the discontinuous character of the FS1 model did not 

seem to be problematic for the clay soil. On the other hand, the CS model showed a biased 

curve since s was not considered here. The FS2, W, and KCGS models showed excellent fits 

also for the clay example. 

4.5 Conclusions 

Using 137 soil samples from the UNSODA database, we compared eight closed-form 

unimodal analytical expressions for the soil-water retention curve. The expressions were 

evaluated in terms of their goodness-of-fit using different statistical indices. All eight models 

defined the soil-water content vs. soil-matric potential relationship below the residual water 

content. The performance of the models in terms of matching the data varied greatly 

depending upon with the degree of aggregation or desegregation of the data: individual 

SWRC data sets, averages over individual soil textural classes, or using the overall mean. Our 

results show that lumping of the data without considering their textural class provided similar 

results for the 8 models in terms of their ability to fit observed data. However, when the 

textural class was taken into account, the 8 models were found to perform differently for the 

sandy clay loam class, while being not statistically different for the remaining 10 textural 

classes. An analysis for each data set separately showed that the 8 models behaved differently 

for 17 of the individual 137 data sets, representing 6 different textural classes. The Khlosi et 

al. model with four parameters was found to be the most consistent for the different soils. 

Moreover, its prediction potential was relatively good because of significant correlation 

between its parameters and basic soil properties. We hence do recommend this analytical 

formula for reliable modeling of the whole range of soil-water contents of unsaturated soils, 

which can vary substantially in bulk density, soil texture, and organic matter content. 



 

Chapter 5 Impact of particle-size distribution 

changes associated with carbonates on the 

predicted soil-water retention curve 
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Combating desertification: assessment, adaptation and mitigation strategies. International 
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Abstract 

Particle-size distribution (PSD) is an essential soil property which correlates well with many 

other soil properties. Accurate determination of PSD is needed to predict more difficult-to-

measure soil hydraulic properties such as the soil-water retention curve and hydraulic 

conductivity. Differences in methodologies for PSD assessment include removal or non 

removal of cementing materials such as calcium carbonate. The objective of this study was to 

investigate the influence of sample pre-treatment on sand, silt, and clay fractions (texture) 

and hence on the predictability of the soil-water retention curve of dryland soils. 72 soil 

samples have been collected from most of the agro-climatic zones of Syria. The pipette 

method was used for determination of particle fractions. Two procedures with different pre-

treatment were applied. In a first one, carbonates were removed by hydrochloric acid as is 

typically done in particle size analysis worldwide. In the alternative one, carbonates were not 

removed, a procedure more typical for calcareous soils. Great variability between both 

procedures was found in the sand, silt, and clay fractions. Using the basic concept of shape 

similarity between the soil-water retention curve and the cumulative PSD function, we tested 

the prediction capability of two methods. The results indicate that for our soils only texture 

without removing carbonates can be translated into the soil-water retention curve. When 

carbonates were removed from the soil, contents of soil textural fractions showed no link to 

the soil-water retention curve. Reasonable results in terms of R
2
 and root mean square error 

of multiple regression equations for predicting water content at various matric potentials were 

only achieved when carbonates were not removed. The importance of not removing 

carbonates was further supported when applying the PTF of Vereecken and coworkers. Non 

removal of carbonates showed much better prediction accuracy of the soil-water retention 

curve than removing it. The advantages associated with non-removal of carbonates include 

decrease in time and work, and allowing accurate measurements of calcareous soil samples. 

Further, the derived point PTFs provided better accuracy than those reported by Ghorbani 

Dashtaki and coworkers. This study clearly shows the risks of removing carbonates when 

using or developing PTFs for calcareous soils. 
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5.1 Introduction 

Numerical models for simulating water flow and solute transport in unsaturated–saturated 

soil systems are enjoying considerable popularity as a tool for soil survey interpretations. 

Their success and reliability, however, are critically dependent on accurate information of 

soil hydraulic properties. The most important properties are the soil-water retention curve 

(SWRC) and hydraulic conductivity characteristics. Direct measurement of soil hydraulic 

properties is difficult, tedious to accomplish and expensive by currently available methods. 

When such data are not available, pedotransfer functions (PTFs) (Bouma, 1989) which utilize 

physical or empirical relations between soil hydraulic properties and other easily and cheaply 

measured properties can be used as alternative method. In this context, particle-size 

distribution (PSD) is the most important key predictor to most soil hydraulic PTFs. Other 

commonly used soil physical properties for PTFs prediction are organic carbon (OC) and 

bulk density (b). Precise and accurate determination of PSD is, therefore, needed and 

required to provide good representation of soil hydraulic properties. 

Several methods exist to determine PSD. Methods not only differ in how pretreated soil 

samples are analysed (e.g., sieve-pipette method, hydrometer method, laser diffraction 

method), but also in how samples are pretreated. An important difference in pretreating 

samples is the removal or non-removal of cementing materials such as calcium carbonate. 

Soil carbonates are a very common mineral in soils of dryland areas. The carbonates may 

have been present originally in the soil’s parent material; they may have formed in the upper 

horizons, or in the whole profile. Because of low rainfall, percolating water through the 

profile is not sufficient to remove the carbonates present in the parent material, or that is 

produced by reaction between carbonic acid and the calcium hydrolyzed from mineral 

material (Harper, 1957). The use of PSD as the first and most basic input parameter of PTFs 

raises the question of how different pre-treatments affect their prediction quality. Soil 

carbonates usually act as binding agent, and it has therefore been general practice to remove 

all carbonates by HCl treatment.  Francis and Aguilar (1995) recommended that calcareous 

rich soil should be pre-treated for CaCO3 removal prior to particle-size analysis. However, 

when carbonate content is substantial in soils of dryland areas (up to values of 60% of the 

total soil in our case) not all of it acts as cementing agent. Most of it is actually present in the 

soil as distinct non-clay minerals such as calcite, dolomite, magnesite, aragonite and vaterite 
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particles, possessing their own inherent PSD, ranging from very fine clay-like powder to 

coarser, fine silt-like deposit. 

For predicting SWRC using PTFs, a multitude of methods can be used, including Artificial 

Neural Networks (Pachepsky et al., 1996), Support Vector Machines (Lamorski et al., 2008), 

Nearest Neighbours (Nemes et al., 2009), Regression Trees (Pachepsky and Rawls, 2003) 

among others. At present, the most widely adopted method is, however, still Multiple Linear 

Regression (MLR) which has provided good predictive models for the SWRC formulations 

(Gupta and Larson, 1979; Rawls and Brakensiek, 1982; Vereecken et al., 1989; Scheinost et 

al., 1997; Wösten et al., 1999, 2001; Merdun et al., 2006; Ghorbani Dashtaki et al., 2010; 

Minasny and Hartemink, 2011; among others). It is worth mentioning here that PTFs which 

predict soil-water content at specific matric potential (point PTFs) are more accurate than 

parametric ones because the estimated water retention from single-point regression has less 

uncertainty compared with using parametric PTFs (McBratney et al., 2002). 

The objective of this study was to see whether soil texture with non-removal of carbonates 

may have some advantages in predicting the SWRC of calcareous soils. Our hypothesis was 

that non-removal of carbonates and thus considering them as inherent to the soil’s mineralogy 

improves the predictive power of PTFs. To test this hypothesis, we tried to develop point 

PTFs based on two PSD procedures (with and without removing carbonates) using MLR. We 

also used the PTF of Vereecken et al. (1989), which have shown to be applicable in 

environments other than those in which they were calibrated (Romano and Santini, 1997) to 

validate the two PSD procedures. The derived point PTFs were finally compared with those 

reported by Ghorbani Dashtaki et al. (2010). 

5.2 Materials and methods 

5.2.1 Study area and soils 

All soil samples have been collected in Syria, Western Asia, on the eastern shore of 

the Mediterranean Sea between latitudes 32-37° north and longitude lines 35-42° east. Syria 

has a characteristically Mediterranean climate with rainy winters and hot rainless summers. 

One of the major tasks in developing hydraulic PTFs is establishing a soil hydraulic database, 
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which is a collation of data that are obtained during soil survey such as soil texture, bulk 

density, organic matter, and soil-water retention curve. In Syria there are no published data 

available and the collation of a national database is not complete. Farmers on the other hand 

have developed over time their own methods of water use estimation. Their knowledge is 

based on experience, going back for ages. Because the farmers’ approach to soil and water 

management is an empirical one, there are no examples available to guide their decisions. 

Since it was impossible within the framework of this study to measure basic soil properties 

and soil hydraulic properties for all types and regions, a selection had to be made from the 

beginning. Two criteria have been emphasized to obtain a relevant set of soils. First, the 

selected sampling sites should cover most of the agro-climatic zones of Syria. Secondly, the 

selected set of soil types should contain as much as possible of the variance of the texture and 

profile developments. The study area was, therefore, located in the rural areas of northwest 

Syria between the parallels 35°28’ and 36°53’ North and meridians 36°19’ and 37°54’ East, 

covering a surface of 7126 km
2
 (Figure 5.1) (UTM coordinates: between 290,000 East and 

4,084,000 North UTM zone 37 and 402,000 East and 3,934,000 North). It includes the Kurd 

Dagh block mountains in the northwest, the gently undulating plains in the central part and 

alluvial-colluvial plains and basalt plateaux with the Salt Lake ‘Jabboul’ in the southeast. The 

climate of the study area is typical East-Mediterranean, exhibiting hot, dry summers
 
with an 

average temperature of 28.2°C in July, and cool, wet
 
winters with an average temperature of 

5.6°C in January. Zone 1 in Figure 5.1 has an annual rainfall greater than 350 mm. It is 

characterized by rolling landscape with shrubland, degraded forest, rock outcrops, and tree 

crops on the slopes and hilltops and cereal cultivation in the valleys. Olive is the main 

agricultural product of the region. Other perennials are apricot, almond, cherry and peach. 

Zone 2 has an annual rainfall between 250 and 350 mm. It is characterized by tree crops 

(olive, fig, pistachio and grapes) and rainfed field crops (wheat, chickpea and lentil) with 

irrigated crops (cucumber, potato, watermelon and eggplant). Soils in zones 1 and 2 were 

classified as Cambisols according to World Reference Base for Soil Resources (WRB) (FAO, 

1998) and/or Inceptisols according to U.S. Soil Taxonomy (Soil Survey Staff, 1999). 

Cambisols are developed in medium and fine-textured materials derived from a wide range of 

rocks, mostly in alluvial, colluvial and aeolian deposits. Zone 3 has an annual rainfall of 250 

mm. It is characterized by rainfed field crops (wheat and barley) with irrigated crops (tomato, 
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zucchini, and melon) and livestock. Zone 4 has an annual rainfall between 200 and 250 mm. 

It is characterized by rainfed field crops (mainly barley) and livestock.  

 

Figure. 5.1. Map of study area showing the distribution of sampling sites. Zone 1 is 

characterized by shrubland, degraded forest, rock outcrops and tree crops; zone 2 is 

characterized by tree crops and rainfed field crops with irrigated crops; zone 3 is 

characterized by rainfed field crops with irrigated crops and livestock; zone 4 is characterized 

by rainfed field crops and livestock. 

The dominant soil types in zone 3 and 4 are Calcisols and Gypsisols according to World 

Reference Base for Soil Resources (WRB) (FAO, 1998) and/or Aridisols according to U.S. 

Soil Taxonomy (Soil Survey Staff, 1999). Calcisols are developed in mostly alluvial, 
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colluvial and aeolian deposits of calcareous weathering material. Gypsisols are developed in 

mostly unconsolidated alluvial, colluvialand aeolian deposits of base-rich weathering 

material. Most profiles have free carbonates.  

5.2.2 Field and laboratory measurements 

A total of 72 undisturbed soil samples (Kopecky rings, 5 cm height, 5.3 cm diameter, 100 

cm
3
 volume) were collected from these four agro-climatic zones which cover a wide range of 

soil types (Figure 5.2). The Kopecky rings were pressed gradually, slowly and evenly into the 

soil. Special attention was paid to avoid soil compaction. The soil around the ring was then 

removed and the ring containing the soil sample was withdrawn. The end of the sample was 

not cut with a knife but was removed with gently brushing to conserve the natural structure of 

the soil. Soils were first examined immediately on site for texture using the texture-by-feel 

technique (Thien, 1979). Accordingly, soil texture ranged from sandy loam to clay, with 

loam, clay loam and clay as the most common textural classes. 

The undisturbed soil samples were used first to determine the SWRC and bulk density 

following the procedures outlined in Chapter 2. Bulk densities ρb varied from 1 to 1.8 Mg 

m
−3

. The samples’ SWRC was determined at eight matric potentials. To reduce possible 

unresolved variance, the other basic soil properties were determined directly on the same 

samples after the SWRC was established using disturbed samples. Organic matter content 

ranged from 0 to 3.5% and was determined by means of the Walkley and Black 

(1934) method. Soil carbonate content ranged from 2.3 to 64.5% with a mean value of 27.6% 

and was determined by back-titration approach (Nelson, 1982). Determination of the PSD 

was undertaken only on the fine earth fraction (< 2 mm) using the sieve-pipette method (Gee 

and Bauder, 1986) which is the standard analytical method (ISO 11277). As a first step, the 

soil samples were dispersed in an aqueous suspension. The organic matter was removed by 

oxidizing it with hydrogen peroxide, a strong oxidizing agent. Then two procedures with a 

different pre-treatment process were applied. In a first one, carbonates were removed by 

hydrochloric acid as is typically done in pretreating samples for PSD analysis (the PSD-C 

method). In an alternative one, carbonates were not removed (the PSD+C method). The results 

of these two methods were used to predict the SWRC. Bulk density and organic matter 

content of the real soil with carbonates are considered in this study (they were taken as 

independent variable). 
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5.2.3 Multiple linear regression analysis 

Multiple linear regression analysis was first introduced by Sir Francis Galton in the latter part 

of the 19th century. MLR is a method used to model the linear relationship between a 

dependent variable (or predictand) and one or more independent variables (or predictor). 

MLR is based on least squares: the model is fit such that the sum-of-squares of differences of 

observed and predicted values is minimized. Nowadays, the methodology is still widely used 

for developing PTFs to predict the SWRC from other soil properties. We selected the soil-

water content at different matric potentials () as the predictand and the basic soil property 

variables as predictors (i.e., sand, silt, clay content, organic carbon content and bulk density). 

The model is fit to a set of soils (the calibration set, n = 49) for which () and basic soil 

properties data overlap. In the process of fitting, or estimating, the model, statistics are 

computed that summarize the accuracy of the regression model for the calibration set. The 

performance of the model on data not used to fit the model is checked in some way by a 

validation process (n = 23). Basic soil properties data from the calibration set are substituted 

into the prediction equation to get a reconstruction of the predictand. The reconstruction is a 

“prediction” in the sense that the regression model is applied to generate estimates of the 

predictand variable outside the set used to fit the data. 

The model expresses the value of a predictand variable as a linear function of one or more 

predictor variables and an error term, and takes the form 

iKiKiii exbxbxbby  ,2,21,10 ...  [5.1] 

where yi is the predictand for soil i, xi,k is the value k
th
 of predictor in soil i, b0 is the regression 

constant, bk is the coefficient on the k
th
 predictor, K is the total number of predictors, and ei is 

the error term. The model (5.1) is estimated by least squares, which yields parameter 

estimates such that the sum of squares of errors is minimized. The resulting prediction 

equation is 

KiKiii xbxbxbby ,2,21,10
ˆ...ˆˆˆˆ   [5.2] 

where the variables are defined as in (5.1) except that “^” denotes estimated values. As few 

variables as possible should be chosen because of the risk of overfitting the data. Hence, 

stepwise multiple regression with maximum R
2
 improvement was invoked to select the 
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variables which correlated best with (). According to Muller and Fetterman (2002), using 

these criteria for a stepwise modeling strategy provides a better approximation to the all-

possible-regressions strategy, which requires fitting all possible models. The stepwise 

regression model starts without any independent variables and chooses the best predictors one 

by one, on the basis of statistical significance. For each coefficient, the T-ratio tests whether 

the value of the coefficient is zero, and if its p-value is less than 0.05, the calculated value is 

considered statistically significant. A large T-ratio implies small p-value. If the p-value was 

larger than 0.05 for the T-statistic, it was concluded that the independent variable was not 

statistically different from zero and the variable was excluded from the regression equation; 

variables with p-values less than or equal to 0.05 were kept. Similarly, the F-statistic was 

used to test whether the values of the coefficients for the entire equation are equal to zero, 

and if the p-value for the F-statistic is less than 0.05, the multiple regression equation is 

statistically significant. While T-statistic examines the significance of individual independent 

variables, the F-statistic examines the significance of all independent variables collectively. 

To assess statistical validity of the predictive equation, we also computed the root mean 

squared error (RMSE) and coefficient of multiple determination (R
2
). The latter provides the 

amount of variability in observations that is explained by the independent variables. The 

stepwise MLR was accomplished in MATLAB (Mathworks, 2007). 

5.2.4 Evaluation criteria 

Various pedotransfer functions appear in the literature to predict the SWRC (Saxton and 

Rawls, 2006). In an earlier study of Cornelis et al. (2001) in which nine PTFs to predict the 

soil-water retention curve were compared, it was shown that the PTF of Vereecken et al. 

(1989) was the most accurate one for arable soils in Belgium. It was shown in other studies to 

be rather accurate for other regions as well. Tietje and Tapkenhinrichs (1993) and Romano 

and Santini (1997) reported an overall satisfactorily behaviour of the pedotransfer published 

by Vereecken et al. (1989). Kern (1995) showed that it performed the best among six other 

PTFs for a large number of different types of soils sampled throughout the USA. Therefore, 

the Vereecken et al. PTF (1989) was used to test the hypothesis in that carbonates should not 

be removed. This PTF predicts parameters of the van Genuchten equation: residual (θr) and 

saturated soil-water content (θs), a scaling parameter (α) related to 


, a parameter related to 

the curve’s slope at its inflection point (n), and an empirical constant (m).  
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In order to quantify the prediction accuracy of the two methods for a given soil, the estimated 

SWRCs were compared with the experimental ones using three complementary indices: the 

mean difference MD (m
3
 m

-3
), the root of the mean squared difference RMSD (m

3
 m

-3
) 

between the measured and estimated SWRC, and the Pearson correlation coefficient r. 

Assume the measured moisture retention function to be  )
im

   for soil i (i.e., a continuous 

van Genuchten was fitted to the discrete set of measured ) values), and the predicted 

moisture retention function to be  )
ip

   for  soil i (i.e., a continuous van Genuchten curve as 

predicted by the Vereecken PTF), where i = 1, 2, …N, with N the total number of soils in the 

evaluation data set. Consequently, the MD and the RMSD (m
3
 m

-3
) for soil i were calculated 

by: 

    
 

   
               

 
 
       

 

 
 [5.3] 

       
 

   
               

 
 
       

 

 
 [5.4] 

where a and b are values defining the range of the experimental SWRC (in our case a = log 1 

kPa and b = log 1500 kPa corresponding to the lowest and highest || values applied in the 

experiment). In computing Eq. [5.3] and [5.4], log|| was preferred over || to avoid 

assigning too much weight to more negative soil water matric potentials (Tietje and 

Tapkenhinrichs, 1993). The use of the two indices is necessary because we are not comparing 

single values of water content but several values within a specific soil water matric potential 

range. MD indicates whether the PTFs overestimate or underestimate the measured data, 

while RMSD measures the absolute deviation from the measured data. The absolute value of 

MD should be as small as possible. Nevertheless, MD allows the overestimation (the positive 

difference) and the underestimation (the negative difference) to cancel out. Therefore, MD 

was used in our case (with range from 1 to 4.18) only to indicate whether a PTF 

overestimates (MD>0) or underestimates (MD<0) the water content, while RMSD, which is 

always positive, can be viewed as the continuous analogue of the standard deviation over the 

whole SWRC, providing therefore an absolute error index.  

The Pearson correlation coefficient r (dimensionless) for soil i was calculated by: 
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 [5.5] 

where im  is the mean moisture content of the measured SWRC for soil i, and ip  is the 

mean moisture content of the predicted SWRC for soil i. The index r is an expression of the 

linearity between the measurements and predictions. An r value approaching 1 indicates that 

measured and predicted data pairs are linearly located around the trend line with perfect 

agreement (or 1:1 line). The van Genuchten parameters in each of 
ip)(  were obtained in 

the same way as
im)( . Also here, log was used rather than   in calculating the 

moisture content. 

Using the validation data set, the new developed PTF was compared with that reported by 

Ghorbani Dashtaki et al. (2010). The main reason for choosing this PTF is because it has 

been also developed for dryland soils in Iran. Comparison was made by calculating means of 

mean error
 
(ME), root mean square error (RMSE), and the coefficient of determination (R

2
), 

which were calculated for each soil sample.  

5.3 Results and discussion 

Figure 5.2 shows the textural distribution of the soil samples according to the two methods of 

determining PSD. Great variability can be noticed in the sand, silt, and clay fractions. Clay 

fraction is the most affected after destroying carbonates with hydrochloric acid. The texture 

triangles clearly depict a strong decrease in clay content. It is clear that carbonates content 

seems to be the soil characteristic that highly influences the PSD of calcareous soils.  
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Figure. 5.2. Variation of clay, silt and sand content in the dataset for the two PSD methods. 

PSD-C is texture with destroying carbonates and PSD+C is texture without removing them 

(clay fraction is the most affected by the removal of carbonates). 
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5.3.1 Stepwise regression results 

5.3.1.1 PSD methods and developing new PTF  

We performed stepwise regression using two independent variable groups related to PSD-C 

and PSD+C methods. Both have the same values of bulk density and organic carbon, while 

they are different in the percent sand, silt and clay. When considering the first group (PSD-C), 

no regression equation could be established. Its variables did not show a significant 

correlation with the dependent variables (soil-water content at matric potential points). In a 

multivariable problem, the regression equation is arrived at in a sequence of multiple linear 

regression equations in a stepwise manner. At each step of the sequence, one variable is 

added to the regression equation. However, none of the five PSD-C predictors themselves
 
was 

significant at the 95 percent level and consequently no one could be featured in the regression 

equation. Table 5.1 shows the Pearson correlation coefficients (r) between clay, silt, and sand 

contents obtained by the two methods and soil-water content at different matric potentials. 

The correlations for the PSD-C and () were not significant at the 0.05 level and soil texture 

could in this case not be translated into a soil-water retention curve. Consequently, PTFs 

should not be developed from data sets that contain soils with large CaCO3 content mixed 

with others and in which carbonates were removed prior to PSD analysis. 

Table 5.1. Pearson correlation coefficients between soil-water content at different matric potentials 

and clay, silt and sand of the two PSD methods. PSD-C is texture with destroying carbonate and 

PSD+C is texture without removing it. § 

  (kPa) 

PSD-c PSD+c 

clay silt sand clay silt sand 

-1 0.14 -0.13 0.05 0.48 -0.41 -0.40 

-3 0.06 -0.07 0.05 0.50 -0.40 -0.44 

-5 0.03 -0.05 0.05 0.50 -0.37 -0.46 

-7 0.03 -0.06 0.06 0.55 -0.41 -0.50 

-10 0.01 -0.05 0.07 0.56 -0.42 -0.52 

-33 -0.02 0.00 0.02 0.64 -0.46 -0.60 

-100 -0.10 0.13 -0.10 0.71 -0.49 -0.68 

-1500 -0.14 0.12 -0.03 0.76 -0.51 -0.74 

§ All values that are underlined indicate a significant correlation at the 0.05 level. 
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We found a very different behaviour as regards the second group (PSD+C) of predictors. 

Looking at the correlation across the whole range of measured (), the soil texture here 

seemed to be translated into a soil-water retention curve as the correlation coefficients 

increased significantly. After running stepwise MLR, the predictors and their coefficients 

retained for each soil-water matric potential in the new PTF (denoted as PTF1) are tabulated 

in Table 5.2.  

Results show that clay content is a basic predictor of () at all matric potentials indicating a 

significant influence of the clay fraction on the physical and chemical state of water in soil. 

This is primarily because the small particles have such a large and reactive surface area (Jury 

and Horton, 2004). From Figure 5.3 it can be seen that  had a linearly increasing trend for 

the soil matric potential range from near saturation to wilting point with increasing clay 

content. Hall et al. (1977) explained that as matric potential decreases and pore size becomes 

finer, the proportion of water retained increases. The soil-water content at -1 kPa (near 

saturation) was not only predicted by clay but also by bulk density. Since bulk density (b) is 

directly related to soil porosity  by the relation  = 1 − b /ρs (where ρs is the density of the 

solid particles of the soil), it could be expected, as we observed, that the regression 

coefficient associated with bulk density will be negative (Scheinost et al., 1997; Weynants et 

al., 2009) as soils with high porosity tend to retain more water near saturation. The soil-water 

content at -1500 kPa (wilting point) was predicted with silt and clay. Table 5.1 shows that 

clay and silt contents were positively and negatively correlated with θ−1500 kPa, respectively, 

indicating that samples with more clay and less silt retained more water. One could speculate 

that the cause of this is related to soil water retention at low matric potential values being 

attributed to adsorption on soil particles, which is strongly dependent on soil surface area 

(Gardner, 1968).  
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Table 5.2. Pedotransfer function coefficients and their confidence interval, the t-statistic and 

its p-value. 

 Predictor Coefficient Value t- statistic p-value 

Confidence Interval   

Lower Bound Upper Bound 

-1 intercept a1 0.6193 10.0462 0.0000 0.4952 0.7434 

 bulk density b1 -0.1398 -3.4320 0.0013 -0.2218 -0.0578 

 clay c1 0.0014 3.9818 0.0002 0.0007 0.0022 

-3 intercept a2 0.3750 15.1374 0.0000 0.3251 0.4248 

 clay b2 0.0019 4.4247 0.0001 0.0011 0.0028 

-5 intercept a3 0.3522 13.8577 0.0000 0.3010 0.4033 

 clay b3 0.0020 4.5458 0.0000 0.0011 0.0029 

-7 intercept a4 0.3220 12.6246 0.0000 0.2707 0.3733 

 clay b4 0.0023 5.0898 0.0000 0.0014 0.0032 

-10 intercept a5 0.3048 11.8715 0.0000 0.2532 0.3565 

 clay b5 0.0024 5.2670 0.0000 0.0015 0.0033 

-33 intercept a6 0.2579 10.1044 0.0000 0.2066 0.3093 

 clay b6 0.0028 6.2589 0.0000 0.0019 0.0037 

-100 intercept a7 0.2015 8.0385 0.0000 0.1511 0.2519 

 clay b7 0.0032 7.1822 0.0000 0.0023 0.0041 

-1500 intercept a8 -0.0127 -0.1987 0.8434 -0.1409 0.1156 

 clay b8 0.0047 7.2514 0.0000 0.0034 0.0059 

 silt c8 0.0026 2.2725 0.0278 0.0003 0.0048 

 

  

Figure 5.3. Effect of clay content on soil-water content at -1 and -1500 kPa. Solid line 

represents a linear relationship between clay content and soil-water content at -1 and -1500 

kPa. 
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An interesting relationship can be made between the available water content (AWC) and clay 

content. The AWC is basically calculated as the difference between the soil-water contents at 

field capacity (-10 kPa for coarse-textured soils or -33 kPa for medium- to fine-textured soils) 

and at permanent wilting point (−1500 kPa) (Jury et al., 1991). Since our data set comprised 

mainly fine-textured soils we considered field capacity at -33 kPa. Figure 5.4 shows that the 

AWC decreased linearly with clay content. This finding reconfirms the previous observation 

of Jamison and Kroth (1958) who examined the interaction of AWC with texture and organic 

matter content. They concluded that increased AWC was due to the textural change 

associated with increased coarse silt and decreased clay. At low matric potential water 

adsorption is common and increases with clay content. The water, in this case, is strongly 

held in the fine pores by the London–van der Waals forces. In our case, the clay fractions are 

expected to contain chiefly carbonates with dolomite (CaMg(CO3)2), magnesite (MgCO3) and 

calcite (CaCO3) as non-clay minerals (Fares, 1991). This will lead to different behaviour in 

terms of water adsorption as compared to non-calcareous soils. Figure 5.5 indicates that the 

available water content is positively correlated with soil carbonates (p < 0.05). It is 

interesting to note that carbonates appear to increase the available water content, in contrast 

with findings of Khodaverdiloo and Homaee (2004). A number of reasons explain this result. 

First, very fine carbonate particles can coat clay particles and reduce their surface tension 

with water (McCauley et al., 2005). In this case the particles are larger and behave as silt 

particles from a water retention point of view. Secondly, the soil pores are filled by 

carbonates which appears to reduce the amount of water retained at wilting point and thereby 

increasing the AWC (Duniway et al., 2007). This means that minute silicate clay particles are 

accompanied by a tremendous number of adsorbed cations and water molecules, while 

CaCO3 particles of the same size are not. In non-calcareous soils, the high clay content 

increases the storage capacity of soils for water and minerals but decreases the aeration so 

essential for good root growth and functioning 
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Figure 5.4. Effect of clay content on available water content (AWC). Solid line represents a 

linear relationship between clay content and AWC. 

 

 

 

Figure 5.5. Effect of soil carbonates on available water content (AWC). Solid line represents 

a linear relationship between carbonates content and AWC. 
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Organic carbon (OC) is an important variable used in PTFs (Wösten et al., 1999), but the 

contribution of OC content in estimating  () was very low and it was not significantly 

different from zero (p > 0.05). This was not surprising, since in naturally low organic matter 

soils common in dryland areas, OC is of limited influence. The low organic matter content is 

a general problem met in dryland environments. Organic matter contributes to soil fertility in 

three ways. It accounts for a large portion of the cation exchange capacity, it supplies energy 

and body-building constituents for most of the micro-organisms and it is responsible for the 

stability of soil aggregates (Brady, 1990), although calcium carbonate, as discussed 

above, will also contribute to structure stability. 

5.3.1.2 PSD methods and the PTF of Vereecken et al. (1989)  

The importance of not removing carbonates was further supported by applying the Vereecken 

et al. PTF to compare the prediction accuracy when using two different PSD inputs. Table 5.3 

contains results of the different validation indices calculated for each PSD inputs. The PSD-C 

method showed higher values of the mean of the absolute values of MD and the mean of 

RMSD (Eq. [5.3] and [5.4]) values. When considering the mean of MDs, it can be noticed 

that the PSD-C tend to underestimate the SWRC (Table 5.3 and Figure 5.6). This 

underestimation occurs mainly at water content below -10 kPa. 

 

Table 5.3. Comparison of the validation indices of the predicted SWRC by the PTF of 

Vereecken et al. (1989) using two different PSD inputs. 

PSD methods mean MD mean abs. MD mean RMSD mean r SD RMSD 

 ——————— m
3
 m

-3
——————— - m

3
 m

-3
 

PSD-C -0.0778 0.0949 0.1073 0.9742 0.0494 

PSD+C -0.0400 0.0620 0.0698 0.9820 0.0574 
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° Measured data —  Predicted SWRC PSD-C – –  Predicted SWRC PSD+C 

Figure 5.6. Measured and predicted soil-water retention curves for a calcareous soil. 

The curves correspond to the same soil with OC = 0.02%, b = 1.21 Mg m
–3

 CaCO3 = 

28.60%, but with different PSD results. The solid line corresponds to the PSD-C with clay = 

15.18%, silt = 81.02%, sand = 3.80%, and the dashed line corresponds to the PSD+C with clay 

= 52.36%, silt = 37.37%, sand = 10.27. 

 

The above findings are also supported by Figure 5.7 in which measured water content values 

are plotted against predicted water content values at -1500 kPa matric potential. The PSD+C 

method particularly performs relatively well at the dry end of the SWRCs ( = -1500 kPa). 

Finally, it can be concluded from here that the PSD+C method (without removal of carbonate) 

is more adequate to classify soil texture. An additional advantage associated with this method 

is that it reduces time and work in determining PSD. 
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Figure 5.7. Measured vs. predicted soil-water contents at matric potential  of -1500 kPa for 

the two PSD methods. 

5.3.1.3 Comparing the new PTF with the Ghorbani Dashtaki et al. (2010) PTF 

The derived PTF was compared with the Ghorbani Dashtaki et al. (2010) PTF. The results of 

its performance for predicting θ using the validation data sets are summarized in Table 5.4. 

The Ghorbani Dashtaki et al. (2010) PTF shows a general underestimation of the soil-water 

content (Figure 5.8) with a considerable bias compared with the proposed PTF. As regards 

the RMSE, the proposed PTF has smaller values than those for the Ghorbani Dashtaki et al. 

(2010) PTF, which is mainly due to a low prediction error. As concerns the coefficient of 

determination (R
2
), again the same trend can be perceived: the proposed PTF performs better. 

Table 5.4 shows clearly that the performance of the proposed PTF was better than the 

Ghorbani Dashtaki et al. (2010) PTF in terms of the ME, RMSE, and R
2
. Ghorbani Dashtaki 

et al. (2010) have shown earlier that their PTF performed better than Rosetta package 

(Schaap et al., 2001). However, the ranges of validity of the latter PTF do not cover the 

whole range of calcareous texture commonly encountered in soils of the dryland area. 

Although the comparison of PTFs inside its range of validity is not questionable, the lack of a 

specific PTF for dryland soils has resulted in applying PTFs derived from temperate regions. 

Lacking hydraulic information, Ouessar et al. (2009) e.g. used the PTF of Saxton et al. (2005) 
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developed for USA soils in modifying the SWAT model for evaluating the hydraulic impact 

of water harvesting techniques in Southern Tunisia. The limitation of the Ghorbani Dashtaki 

et al. (2010) PTF when applied to Syrian soils was evident, even within the range of validity 

(textures) of our dryland dataset. 

The above findings are also supported by Figure 5.8 in which measured water content values 

are plotted against predicted water content values at matric potential of -10, -33, -100, and 

-1500 kPa. From Figure 5.8 it can be deduced again that the PSD+C soil texture resulted in a 

decrease in prediction error for different matric potentials. 

 

Table 5.4. Comparison of PTFs performance. 

 PTF presented in this study  

(Table 5.2) 

Ghorbani Dashtaki et al. (2010) PTF 

 ME RMSE R
2
 ME RMSE R

2
 

−10 0.0173 0.0683 0.9643 0.0270 0.0709 0.9615 

−33 0.0160 0.0653 0.9692 −0.0760 0.1022 0.9246 

−100 0.0188 0.0629 0.9729 −0.0992 0.1200 0.9015 

−1500 0.0199 0.0539 0.9796 −0.0594 0.0810 0.9538 
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Figure 5.8. Measured vs. predicted soil-water contents at matric potential  of -10, -33, -100, 

and -1500 kPa. 

5.4 Conclusions 

Pedotransfer functions are very useful tools for obtaining the soil hydraulic properties. All 

published studies to date use soil texture as essential key predictor to most soil hydraulic 
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PTFs. The majority of used information on texture was obtained from a methodology that 

considers removing calcium carbonates as a pretreatment. Our results show, however, that in 

case of calcareous soils which are abundant in dryland environments, non-removal of soil 

carbonates considerably affected sand, silt, and clay fractions to the extent that PTFs could 

not be established when carbonates were not removed. Only texture that forgoes the pre-

treatment of destroying carbonates can be translated into the soil-water retention curve. The 

PTF established in this study allows the prediction of the soil-water contents at different 

matric potentials using soil texture (based on PSD+C) and bulk density only. Further, the 

derived point PTFs provided better accuracy than those reported by Ghorbani Dashtaki et al. 

(2010) for dryland soils of Iran in terms of the ME, RMSE, and E. 

 

It can be concluded from this study that the PSD+C method (without removal of carbonate) is 

more adequate to classify soil texture and hence to predict the SWRC. Besides resulting in 

better predictions, the advantage of this method is a reduction in time and work when 

determining PSD. 
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Chapter 6 Exploration of interaction between 

hydraulic and physico-chemical properties of Syrian 

soils 

 

 

 

 

 
 

 

 

 

 

 

 

Based on: Khlosi, M., W.M. Cornelis, A. Douaik, A. Hazzouri, H. Habib, D. Gabriels (2013). 

Exploration of the interaction between hydraulic and physicochemical properties of Syrian 

soils Vadose Zone J. 2013. 12:–. doi:10.2136/vzj2012.0209. 
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Abstract 

In dryland areas, the availability of reliable data for water retention in relation to soil type, 

texture, and soil carbonate content is low. It is therefore desirable to explore the interaction 

between soil hydraulic properties and other physical and chemical properties in order to 

estimate the soil-water retention curve (SWRC) from easily measured soil parameters. In the 

present study, 72 soil samples were collected from rural areas throughout northwest Syria, 

covering most of its agro-climatic zones and soil types. Soil water content at different matric 

potentials and 11 chemical and physical soil properties were determined. Then, a Pearson 

correlation matrix was computed on which principal component analysis was applied to three 

soil-water contents, namely at –1, –33 and –1500 kPa, and the 11 soil properties. Four 

principal components (PC) explained 77% of the variation in the data set. The three soil-

water contents were highly linked to PC1 which is correlated to plastic limit, texture, soil 

carbonate, and specific surface area. In addition, soil-water content at –1 kPa was also linked 

to PC4 which is correlated to bulk density. Therefore, from the initial 11 soil properties, 

seven contribute to the three soil-water contents (plastic limit, texture, soil carbonate, specific 

surface area, and bulk density); the remaining four others (organic matter, gravel, CEC, and 

hygroscopic water content) have a negligible influence. Consequently, pedotransfer functions 

might be estimated using the original seven, from the initial 11, soil properties or their 

corresponding PCs in order to estimate the SWRC. 
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6.1 Introduction 

The unsaturated soil hydraulic properties are key factors for land management in dryland 

areas. The hydraulic properties involve the soil water retention curve (SWRC), which relates 

the matric potential (ψ) with the soil water content (θ) and the hydraulic conductivity 

function. Traditional methods to determine soil hydraulic properties are difficult, tedious to 

accomplish and expensive. Hence, pedotransfer functions (PTFs) (Bouma, 1989) are being 

increasingly applied as a cost-effective way to estimate unsaturated soil hydraulic properties 

from easily measurable or already available soil data. Subsequently, many PTFs appeared in 

the literature for estimating water retention properties.  

To date, numerous attempts have been made to relate soil physical and chemical properties to 

the SWRC. The most common predictors of SWRC are soil texture, bulk density and organic 

carbon. However, dryland soils have low organic carbon content. Other easily measured soil 

properties, such as plastic limit, require less time and are less demanding than organic carbon 

measurement. Furthermore, PTFs developed at one spatial extent are generally not suited for 

other spatial extent (Nemes et al., 2003). Pertinent to this, Bastet et al. (1997) found that 

performance of PTFs varies with the pedological origin of the soils on which they were 

developed. Consequently, the validity of any given PTF should be considered appropriately 

with caution before extrapolation beyond their geographical training area. Meanwhile, in 

Syria there is no published work available on using pedotransfer functions for predicting the 

SWRC. 

From the above, it is clear that there is a need to explore the interaction between soil 

hydraulic properties and other physical and chemical properties. The approach in this study is 

to investigate the possible use of new basic soil properties as predictors of soil hydraulic 

properties, which can be easily or cheaply measured. The main objective of this study is thus 

to explore the interaction between SWRC and other physical and chemical properties and to 

gain insight into the experience and views of SWRC-basic soil properties interaction in 

dryland soils. Another objective is to improve our knowledge on the hydraulic properties of 

typical soils from Syria. We utilized a multivariate approach, principal component analysis 

(PCA), to provide a comprehensive evaluation of all data and a holistic comparison between 
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soil properties. PCA was used to examine multivariate relationships between soil-water 

contents and other physical and chemical properties. 

6.2 Materials and methods 

6.2.1 Area description and soil sampling 

The same data sets considered in the previous chapter are used here (see chapter 5, section 

5.2.1). 

6.2.2 Soil analysis 

The undisturbed soil samples were used to determine the SWRC and bulk density following 

the procedure described in Cornelis et al. (2005). In brief, the undisturbed soil cores were 

saturated from the base upward with distilled water. The samples' SWRC was determined at 

eight matric potentials. This was done with a sand box apparatus (Eijkelkamp Agrisearch 

Equipment, Giesbeek, the Netherlands) for matric potentials between –1 and –10 kPa, and 

with pressure chambers (Soilmoisture Equipment, Santa Barbara, CA) for matric potentials 

between –20 kPa and –1500 kPa. Bulk density was determined before the samples were 

brought to the pressure plates. The samples were oven dried (105
o
C) until constant weight 

(>24 h). To reduce possible unresolved variance, the basic soil properties were determined 

directly on the same samples after the SWRC was established. All properties that have been 

analysed in this study are listed in 6.1. 

The cation-exchange capacity (CEC) was determined by the method of Polemio and Rhoades 

(1977) which is particularly suited to dryland soils, including those containing carbonates 

(Fares et al., 2005). It is a simple and much less laborious method compared to other methods 

(Misopolinos and Kalovoulos, 1984). Organic matter was determined by means of the 

Walkley and Black (1934) method. The specific surface area of oven-dry (105°C), 2-mm 

sieved soil was estimated using a Ströhlein Areameter II apparatus with N2 adsorbate in 

conjunction with the Brunauer, Emmett, and Teller (BET) equation. The particle fractions 

were determined using the sieve-pipette method without removal of carbonate (the PSD+C 

method) which is more adequate to classify soil texture and hence to predict the SWRC. The 

plastic limit was determined as the gravimetric water content at which a soil sample could be 
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rolled by hand into a thread of 3.2 mm diameter without breaking (ASTM, 1998). We further 

measured soil carbonates by back-titration (with 0.5 M NaOH) of an excess 0.25 M H2SO4 

added to 1 g of soil (Nelson, 1982), the gravel percentage (> 2 mm) by sieving, and the 

hygroscopic water content by weight differences after drying the samples at 105°C during 24 

hours. Dirksen and Dasberg (1993) defined the hygroscopic water content as the one 

corresponding to a matric potential of –10
5
 kPa. When soil is exposed to atmospheric air, it 

will dry or wet, until a thermalisation is established, according to the potentials on both sides 

of the liquid-vapor interface.  

Table 6.1. List of soil properties used in predictive procedures. 

Symbol Variable information 

θ(ψ) Soil water retention curve (SWRC). 

θ Soil-water content (m
3
 m

–3
) determined at eight matric potentials. 

ψ Matric potential (kPa). 

b Soil bulk density in weight per volume (Mg m
–3

). 

O.M. 

 

Organic matter content (g kg
–1

) determined by means of the Walkley and Black (1934) 

method. 

Clay 

 

Clay content (0–2 m), after dispersion with sodium hexametaphosphate (% [w/w] of 

the soil fraction<2 mm; Day, 1965). 

Silt Silt content (2–50 m), (% [w/w] of the soil fraction<2 mm; Day, 1965). 

Sand Sand content (50–2000 m), (% [w/w] of the soil fraction<2 mm; Day, 1965). 

CEC 

 

Cation-exchange capacity (cmol kg
−1

), measured by Polemio and Rhoades (1977) 

method. 

SC Soil carbonates content (%) determined by back-titration approach (Nelson, 1982). 

GRAVEL Fraction of the bulk soil >2 mm (% [w/w] of the bulk soil). 

SSA 

 

Specific surface area (m
2
 g

−1
), measured by nitrogen adsorption with BET 

determination. 

PL Plastic limit criterion (m
3
 m

–3
), a soil-water content equal to that of the plastic limit. 

θhy 

 

The hygroscopic water content was determined by weight differences after drying the 

samples at 105°C during 24 hours. 
  

 

6.2.3 Statistical analysis 

First of all, a matrix of Pearson correlation coefficients between any two variables was 

computed and the coefficients were tested for their statistical significance. Then, we used 

principal component analysis (PCA) (Joliffe, 2002); a multivariate analysis technique which 
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provides an excellent means for gaining useful information from data sets with many 

variables (Vereecken and Herbst, 2004). In particular, PCA can aid in the compression and 

classification of data. The purpose is to reduce the dimensionality of a data set by finding a 

new set of variables, smaller than the original set of variables, which nonetheless retains most 

of the sample's variance. Success relies upon the presence of correlations among at least some 

of the original variables; otherwise the number of new variables will be almost the same as 

the number of original variables. The new variables, called principal components, are 

uncorrelated, and are ordered by the fraction of the total variance each retains. The PCA 

technique generates interesting hypotheses for predicting the SWRC.  The PCA was carried 

out in this study with SPSS 15.0 (SPSS, 2006). 

6.3 Results and discussion 

6.3.1 Exploratory statistical analysis 

Descriptive statistics as minimum, maximum, mean, median, and standard deviation of the 

soil properties considered in this study are presented in Table 6.2. In addition, to get an idea 

about the distribution of the soil hydraulic properties and to assess the presence of eventually 

any outliers, a box plot is presented (Figure 6.1). The statistical parameters will be discussed 

in the next section. Regarding the boxplots, it is clear that most of the medians are in the 

middle of the different boxes corresponding to the three soil hydraulic properties from the 

four zones with the exception of θ–33kPa from the second and third zones. This indicates that 

most of the soil properties follow approximately a normal distribution. Moreover, there are 

clearly some outliers, which are unexpectedly very high or very low compared to the 

statistical distributions. The only case for which the value was abnormally high was θ–1kPa for 

sample 11 from zone 1. In all the other cases, values were unexpectedly low: it is the case of 

sample 18 from zone 2 for the three soil hydraulic properties, sample 19 again from zone 2 

for θ–33kPa and θ–1500kPa, and samples 60 and 72 from zone 4 for θ–33kPa. 
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Table 6.2. Descriptive statistics of soil properties used in predictive procedures. 

Variable N Min. Max. Mean Median SD 

Clay (%) 72 23.30 83.90 55.40 58.00 16.06 

Silt (%) 72 9.30 54.60 28.60 28.36 9.32 

Sand (%) 72 3.20 42.30 15.99 13.07 9.98 

OM (%) 72 0.00 3.50 1.24 1.02 0.78 

b(Mg m
–3) 72 0.98 1.80 1.33 1.33 0.16 

PL (kg kg
−1

) 72 0.23 0.55 0.39 0.38 0.08 

SC (%) 72 2.30 64.50 27.63 25.64 14.50 

Gravel (%) 72 0.10 45.60 7.14 3.37 9.15 

CEC (cmol(+) kg
–1

 soil) 72 2.00 58.90 16.97 16.01 10.11 

SSA (m
2
 g

−1
) 72 7.12 87.11 39.29 39.10 16.80 

θhy (m
3
 m

–3
) 72 0.03 0.09 0.07 58.00 0.01 
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Figure 6.1. Boxplot of soil hydraulic properties from the four zones. 

 

6.3.2 Relationships between soil-water content and other soil 

properties 

6.3.2.1 Soil texture 

Clay is dominant in our soils and its content had a mean value of 55.4% and ranged between 

23.3 and 83.9% while silt content varied from 9.3 to 54.6% and had a mean value of 28.6%. 

Sand content was the least with a mean value of 16% and ranged between 3.2 and 42.3%. 

Correlation matrix (Table 6.3) is a useful tool in bringing important predictor variables to 

light. When a significant correlation was searched, at the 0.05 level, many strong and positive 

correlations were revealed between clay content and soil-water content at different matric 
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potentials. The slopes of these correlations increase with decreasing matric potential. As 

matric potential decreases, the quantity of water attached to the negatively charged clay 

particles increases relative to that retained in the soil pores by capillary forces. McBride and 

Mackintosh (1984) described the soil-water content at –1500 kPa as function of clay content. 

Such an interesting correlation has been previously recognized (e.g., Nielsen and Shaw, 

1958). Van den Berg et al. (1997) and Botula et al. (2012) also provided a strong relationship 

between soil-water content at –1500 kPa and clay content for soils of the humid tropics. 

Minasny et al. (1999) found that soil-water content at –10, –33 and –1500 kPa had an 

exponentially increasing trend with clay content and linearly decreasing trend with silt and 

sand content.  

Our results showed also negative correlations between ) and silt and sand contents. This 

confirms why most PTFs available in the literature use soil texture as the main predictor. 

Hillel (1998) defines soil texture as the permanent, natural attribute of the soil and the one 

most often used to characterize its physical makeup. In this context, Arya and Paris (1981) 

translated particle-size distribution data into a soil-water retention curve. Their PTF is based 

upon and capitalizes on the notable similarity between the nonlinear shapes of particle size 

distribution data and soil-water retention data. However, their model converts particle-size 

distribution to pore-size distribution considering only the capillary effect of the SWRC. The 

good correlation with clay is mainly caused by adsorption effects. 

6.3.2.2 Organic matter 

Our results show that organic matter had a mean value of 1.2%, ranged between 0 and 3.5%, 

and was not a major factor related to variations in SWRC across the entire range of soils we 

studied, even though correlation coefficients were significant between organic matter and 

cation exchange capacity, specific surface area and the hygroscopic water content (Table 6.3). 

Soil organic matter is a source of food for soil fauna, and contributes to soil biodiversity by 

acting as a reservoir of soil nutrients such as nitrogen, phosphorus and sulphur; it is an 

important contributor to soil fertility. Organic matter absorbs water and causes soil particles 

to aggregate developing an open fabric that improves the physical environment for roots to 

penetrate through the soil. Soils containing organic matter have a better structure that 

improves soil hydraulic properties through bulk porosity, soil-water retention and hydraulic 

conductivity (Tisdale et al., 1993; Bossuyt et al., 2002). It supports water infiltration, and 
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reduces the soil’s susceptibility to compaction, erosion, desertification and landslides 

(Schiettecatte et al., 2008). On the other hand, organic matter contributes to soil fertility in 

three ways. It accounts for a large portion of the cation exchange capacity, it supplies energy 

and body-building constituents for most of the micro-organisms and it is responsible for the 

stability of soil aggregates (Brady, 1990). High organic matter in the mineral soil efficiently 

retains water. The WRC of peat (e.g. Weiss et al. 1998) resembles the curve of clay soil; in 

the wet range of the curve, the water content becomes only slowly smaller with decreasing 

matric potential. The amount of organic matter is therefore an important factor of the shape of 

the WRC in peat soils. However, in naturally low organic matter soils common in dryland 

areas, organic matter has less influence. 

6.3.2.3 Bulk density 

Bulk density is one of the most important soil characteristics which describes the relative 

proportions of solid and void in a soil. Basically, it is required for predicting the soil-water 

retention curve, and is a necessary input parameter for water, sediment, and nutrient transport 

models. Recently, bulk density is increasingly used as a valuable indicator of soil physical 

quality (Wilson et al., 2013). Bulk density for soils from our study ranged from 1 to 1.8 Mg 

m
–3

 with a mean value of 1.3 Mg m
–3

. Concerning the SWRC, negative correlation 

coefficients were found between bulk density and soil-water content near saturation ( and 

) Lower bulk densities increase the pore space and therefore, potentially, increase the 

conductive path for water. The bulk density was negatively correlated with plastic limit and 

positively correlated with soil carbonate indicating that bulk density increased while the 

plastic limit decreased with an increase in soil carbonate concentration (Table 6.3). 
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Table 6.3. Correlation matrix of predictor and response variables. § 
 

 Varible θ-1 θ-3 θ-5 θ-7 θ-10 θ-33 θ-100 θ-1500 Clay Silt Sand O.M. b PL SC Gravel CEC SSA θhy 

θ-1 1.00                   

θ-3 0.92 1.00                  

θ-5 0.84 0.98 1.00                 

θ-7 0.79 0.95 0.99 1.00                

θ-10 0.78 0.94 0.98 0.99 1.00               

θ-33 0.76 0.91 0.95 0.98 0.98 1.00              

θ-100 0.68 0.84 0.87 0.90 0.90 0.95 1.00             

θ-1500 0.59 0.75 0.80 0.85 0.86 0.91 0.94 1.00            

Clay 0.48 0.50 0.50 0.55 0.56 0.64 0.71 0.76 1.00           

Silt -0.41 -0.40 -0.37 -0.41 -0.42 -0.46 -0.49 -0.51 -0.82 1.00          

Sand -0.40 -0.44 -0.46 -0.50 -0.52 -0.60 -0.68 -0.74 -0.84 0.38 1.00         

OM -0.07 -0.07 -0.10 -0.12 -0.12 -0.08 -0.02 -0.02 -0.09 0.09 0.07 1.00        

b -0.44 -0.20 -0.07 -0.02 -0.02 -0.05 -0.10 -0.01 -0.27 0.27 0.17 -0.06 1.00       

PL 0.68 0.65 0.62 0.63 0.64 0.71 0.75 0.73 0.80 -0.71 -0.63 -0.10 -0.49 1.00      

SC -0.50 -0.47 -0.46 -0.47 -0.48 -0.54 -0.63 -0.64 -0.82 0.67 0.70 -0.09 0.39 -0.72 1.00     

Gravel -0.40 -0.44 -0.46 -0.43 -0.42 -0.42 -0.44 -0.39 -0.20 -0.10 0.42 -0.05 0.07 -0.22 0.18 1.00    

CEC 0.35 0.38 0.36 0.40 0.40 0.42 0.38 0.38 0.45 -0.47 -0.30 -0.21 -0.19 0.39 -0.36 0.19 1.00   

SSA 0.35 0.41 0.45 0.46 0.48 0.50 0.56 0.56 0.50 -0.26 -0.57 -0.29 -0.16 0.51 -0.47 -0.33 0.17 1.00  

θhy 0.03 0.05 0.05 0.07 0.08 0.13 0.24 0.25 0.24 -0.15 -0.25 0.36 -0.19 0.11 -0.35 -0.09 0.05 0.14 1.00 

§ Italic numbers are correlation coefficients without significant correlation at the 0.05 level. 
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6.3.2.4 Plastic limit 

The plastic limit, which is one of the so-called Atterberg limits, describes the soil-water 

content at which a soil begins to crumble when rolled into small threads, and divides the 

plastic and the semisolid states of a soil. In our study, the plastic limit had a mean value of 

0.4 m
3
 m

–3
 and varied from 0.2 to 0.6 m

3
 m

–3
. It was strongly correlated with soil-water 

contents for all matric potentials indicating a promising predictor that can be generated to be 

used when developing a new PTF (Figure 6.2). Moreover, many positive and negative 

correlations were observed between plastic limit and other soil properties. Table 6.3 shows 

strong negative correlations between plastic limit and silt, sand, bulk density, and soil 

carbonate (r = –0.49 to –0.72). There were also some strong positive correlations between 

plastic limit and clay, cation exchange capacity, and specific surface area (r = 0.39 to 0.80). 

Hence plastic limit seems to be a powerful predictor of SWRC because it integrates many 

other soil properties. Previously, an attempt to use plastic limit in the water retention PTFs 

has shown some improvement in the PTF accuracy (Rawls and Pachepsky, 2002). Only 

organic matter was not correlated with plastic limit because our soils are 

poor in organic matter content. Blanco-Canqui et al. (2006) found that the plastic limit 

increased linearly with increasing soil organic carbon. 

6.3.2.5 Soil carbonate and gravel content 

Calcareous materials such as calcium carbonate and limestone are very common in soils of 

dryland areas. Soil carbonate content for soils from our study sites ranged from 2.3 to 64.5% 

with a mean value of 27.6%, whereas gravel ranged from 0.1 to 45.6% with a mean value of 

7.1% (Table 6.2). These two variables showed similar behaviour from a hydraulic point of 

view. Negative correlation coefficients were found for soil carbonate and gravel with soil-

water content at all matric potentials. Generally, the presence of gravel will increase the 

macroporosity and therefore decrease the soil water retention (van Wesemael et al., 1996; 

Schneider et al. 2010). According to Baetens et al. (2009), the soil water retention usually 

decreases when the rock fragments content increases. On the other hand,  the negative 

correlation of soil carbonate with ) across all matric potentials suggests that very fine 

carbonate particles, in the clay size range < 2 µm diameter, can coat clay particles and reduce 

their surface tension with water (McCauley et al., 2005). In this context, Massoud (1972) 
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found when a large percentage of carbonate is present in the clay fraction (30% or higher), 

the soil’s water holding capacity can be reduced.  
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Figure 6.2. Effect of plastic limit on soil-water content at –1, –33, –100, and –1500 kPa. 

Solid line represents a linear relationship between plastic limit and soil-water content at –1, –

33, –100, and –1500 kPa (Significant at P < 0.001). 
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6.3.2.6 Cation exchange capacity, specific surface area and hygroscopic water 

content 

As cation exchange capacity, specific surface area and hygroscopic water content are 

dependent on texture as well as organic matter content of the soils, they might have a similar 

influence on the SWRC. The CEC ranged from 2 to 59 cmol kg
−1

 with a mean value of 17 

cmol kg
−1

 while SSA ranged from 7.1 to 87.1 m
2
 g

−1 
with a mean value of 39.3 m

2
 g

−1 
(Table 

6.2). Across all matric potentials, the CEC and SSA were positively correlated with the soil-

water content indicating that soils with high cation exchange capacities and specific surface 

areas have high water holding capacities and greater swell potentials. Similar results were 

found by Campbell and Shiozawa (1992) who correlated SSA of six soils with measurements 

of the slope of a SWRC and found good correlation. Regarding the cation exchange capacity, 

similar results were reported by Gupta et al. (1983). They showed that CEC was positively 

correlated with soil-water retention at –33 and –1500 kPa in soils from northwest India. 

The CEC and SSA were positively correlated to clay content and negatively correlated to silt 

and sand (Table 6.3). The smaller the particles, the greater the surface area per unit mass of 

soil and the higher the cation exchange capacity. In naturally low organic matter soils 

common in dryland areas, the CEC can be used as indicator of the clay mineralogy. Gaiser et 

al. (2000) investigated the influence of clay mineral composition on the SWRC and its 

contribution to the development of PTFs for soils from dryland regions. They demonstrated 

that PTFs for soils containing predominantly low activity clay (CEC<24 cmol/kg clay) 

differed considerably from those developed from non low activity clay (CEC>24 cmol/kg 

clay) soils. 

Concerning the hygroscopic water content, it ranged in our study from 0.03 to 0.09 m
3
 m

–3 

with a mean value of 0.07 m
3
 m

–3 
(Table 6.2). Dirksen and Dasberg (1993) showed that θhy 

varied between 0.02 m
3
 m

–3 
for sandy soils with low SSA and 0.12 m

3
 m

-3 
for a Vertisol with 

high SSA. Therefore, we found that the θhy was only correlated to the soil-water content in 

the dry part of the SWRC ( and ). At low matric potential water adsorption is 

common and increases with clay and organic matter contents. The water, in this case, is 

strongly held in the fine pores by the forces of cohesion and adhesion (Lal and Shukla, 2004). 

The latter explains the positive correlations (Table 6.3) between θhy, clay and organic matter. 
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6.3.3 Principal Component Analysis 

6.3.3.1 PC loadings and communalities 

As seen above, several correlations were found among the soil properties indicating that PCA 

can be carried out towards reducing the dimensionality of the original data set. Such 

correlations are useful because they numerically represented the similarity between the 

measures of two soil properties. We ran principal component analysis on 14 variables 

including soil-water contents at –1, –33, and –1500 kPa. The PCA was applied to the 

correlation matrix. Components with eigenvalue higher than one were retained (Kaiser and 

Rice, 1974). The Cattell (1978) scree plot (Figure 6.3) can be utilized as a visual tool to 

determine how many components are necessary to explain most of the original variation. 

Four principal components were selected; they explained 77% of the variation in the data set 

(Table 6.4). Loadings are the correlations between the PCs and the original variables: higher 

values mean closer relationship. The first component explained 46.2% of the data variability 

(an eigenvalue of 6.47 from a total of 14), and loadings were highest for θ–1kPa, θ–33kPa, θ–

1500kPa, clay, silt, sand, PL, SSA, and SC. This means that these soil properties have a 

common ground of variance or they are inter-correlated. The second component, describing 

11.4% of the total variance (an eigenvalue of 1.6 from a total of 14), was mainly correlated 

with gravel and CEC, whereas OM and θhy were highlighted in the third component (10.9%, 

an eigenvalue of 1.53 from a total of 14). The fourth component explained bulk density with 

data variability (8.1%, an eigenvalue of 1.13 from a total of 14). Communalities represent the 

proportion of the variance of each soil property that is accounted for by the principal 

component solution (the 4 PCs). They represent the total influence of the retained PCs on the 

original variables and are computed as the sum of the squares of the loadings. They can be 

interpreted as the coefficients of determination (the squares of the coefficients of correlation): 

the percentage of total variance in each soil propriety explained by the 4 PCs. The PCA 

should explain at least half of each characteristic’s variance. The 4 PCs explained most of the 

variability of clay content, θ–1500kPa, bulk density, and plastic limit (90.5, 89.2, 88.2, and 

85.7%, respectively) whereas they explained only around half of the variability of cation 

exchange capacity and specific surface area (57.5 and 52.4%, respectively). For the other soil 

properties, they explained between 66.9% (hygroscopic water content) and 82.2% (gravel) of 

their total variance. This means that the remaining percentage (to add to 100%), for each soil 
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property, is explained by the other 10 PCs not retained in the PCA following the eigenvalue 

higher than one criterion. 

 

Figure 6.3. The scree plot for the principal component analysis. Four principal components 

were extracted, because their eigenvalues > 1. 

Communalities consider the 4 PCs together; however, one may be interested in the 

contribution of each PC to each original soil property separately. This contribution is the 

percentage of variance in a given soil property explained by a given PC and is computed as 

the squares of the PC loadings (Table 6.5); the sum of the contributions of the PCs is equal to 

the communality for each soil property (Table 6.4). PC1 explains most of the variation in 

clay, plastic limit, θ–1500kPa, soil carbonate, and θ–33kPa (85, 79, 77, 71, and 69%) whereas it 

accounts for a very limited variation in organic matter, hygroscopic water content, gravel, and 

BD (1, 7, 12, and 13%, respectively). PC2 explains mainly gravel (62%) while PC3 explains 

OM and hygroscopic water content (64 and 52%, respectively) and PC4 explains BD (53%). 
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Regarding the soil water content, it is interesting to note that 52, 69, and 77% of variation at 

the –1kPa, –33kPa, and  –1500kPa matric potentials is explained by PC1 while PC4 explains 

almost one quarter (24%) of variation in soil water content at the –1kPa matric potential. PC2 

and PC3 explain a negligible amount of variation of soil water content (less than 6%). 

 

Table 6.4. Loadings of 14 variables on significant principal components. The highest values 

(>0.5 threshold) are in bolds. 

Variable ‡ 
Factor loadings and communality in PCA† 

PC 1 PC 2 PC 3 PC 4 Com.¶ 
θ-1kPa 0.72 0.07 -0.10 -0.49 0.779 

θ-33kPa 0.83 0.24 -0.21 0.04 0.797 

θ-1500kPa 0.88 0.24 -0.09 0.24 0.892 

Clay 0.92 -0.15 0.05 0.20 0.905 

Silt -0.71 0.50 -0.08 -0.13 0.783 

Sand -0.81 -0.23 -0.01 -0.20 0.748 

OM -0.09 0.22 0.80 0.05 0.698 

BD -0.36 0.30 -0.36 0.73 0.882 

PL 0.89 -0.15 -0.01 -0.19 0.857 

SC -0.84 0.12 -0.28 -0.07 0.802 

Gravel -0.35 -0.79 0.05 0.28 0.822 

CEC 0.50 -0.53 -0.17 0.11 0.575 

SSA 0.63 0.25 -0.25 0.04 0.524 

θhy 0.27 0.14 0.72 0.26 0.669 

Eigenvalue 6.47 1.60 1.53 1.13  

Variance explained 46.20 11.43 10.93 8.08  

Cumulative percentage 46.20 57.63 68.56 76.64  

† PC1, principal component 1; PC2, principal component 2; PC3, principal component 3; PC4, principal component 4.  

‡ See Table 1 for the abbreviation. 

¶ Communality. 

 

Table 6.5. Squares of loadings of 14 variables on significant PCs. The highest values  are in 

bolds. 

Variable ‡ 

Square of PC loadings (in %)† 

PC1 PC2 PC3 PC4 
θ–1kPa 51.80 0.50 1.10 24.00 

θ–33kPa 68.90 5.80 4.40 0.20 

θ–1500kPa 77.40 5.80 0.80 5.80 

Clay 84.60 2.30 0.30 4.00 

Silt 50.40 25.00 0.60 1.70 

Sand 65.60 5.30 0.00 4.00 

OM 0.80 5.80 64.00 0.30 

BD 13.00 9.00 13.00 53.30 

PL 79.20 2.30 0.00 3.60 

SC 70.60 1.40 7.80 0.50 

Gravel 12.30 62.40 0.30 7.80 

CEC 25.00 28.10 2.90 1.20 

SSA 39.70 6.30 6.30 0.20 

θhy 7.30 2.00 51.80 6.80 

† PC1, principal component 1; PC2, principal component 2; PC3, principal component 3; PC4, principal component 4. 

‡ See Table 1 for the abbreviation. 
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6.3.3.2 Loading plot: PCs – soil properties relationships 

Graphical representations are advocated for a better interpretation of PCA results. The 

loading plot presenting the original soil properties in the PC1-PC2 plan (Figure 6.4) confirms 

the results from Table 6.4 and indicate that θ–1kPa, θ–33kPa, θ–1500kPa are highly positively 

related to clay, plastic limit, and specific surface area whereas they are highly negatively 

linked to soil carbonate, sand, and silt on the PC1. The other soil properties are near the 

origin of the PC1 axis and have a negligible influence on the soil water contents. Regarding 

PC2, soil water contents and the different soil properties, except gravel and CEC to a lesser 

extent, are again near the origin of the PC2 axis and indicate that there is a very limited 

influence of the soil properties on soil water contents. A similar plot in the PC1-PC4 plan, not 

shown, confirmed the strong negative relation between θ–1kPa and bulk density. 

 

Figure 6.4. Loading Plot: soil properties in the PC1-PC2 plan. 
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6.3.3.3 Score plot: PCs – soil samples relationships 

Another graphical representation similar to the loading plot can be done representing this 

time the observations or the samples, instead of the original soil properties, in two PCs plan. 

Figure 6.5 is an example of a score plot using the PC1-PC2 plan with different symbols 

showing the belonging of the 72 samples to the four different zones. Its interpretation should 

keep in mind what PC1 and PC2 represent (Table 6.4 and Figure 6.4) in terms of soil 

properties and soil water contents at the three matric potentials. 

 

Figure 6.5. Score Plot: soil samples in the PC1-PC2 plan. 

 

In respect to PC1, only 3 of the 17 soil samples (numbers 70, 71, and 72) from the first zone 

have weak positive scores indicating that they are characterized by relatively higher soil 
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water and clay contents, plastic limit, and specific surface area whereas the other 14 samples 

have either weak (samples 63 and 66) or strong (samples 56 and 65) negative scores implying 

their low water contents and their high sand, silt, and carbonate contents. In contrast, almost 

all of the soil samples from zone 2 (18 from 20) have intermediate to strong (samples 50, 51, 

and 52) positive scores indicating that they have high to very high soil water and clay 

contents, plastic limit, and specific surface area. Indeed, the maximal values for soil water 

contents and plastic limit correspond to one of these 3 soil samples while their clay content is 

near the maximal level. The remaining two samples from zone 2 (samples 12 and 13) have a 

strong negative scores thus low soil water contents and very high carbonate, sand, and silt 

contents. In fact, the minimal values for θ–33kPa, θ–1500kPa, clay, and plastic limit correspond to 

one of these samples while θ–1kPa is not far from the minimal value. Concerning zone 3, 13 

from the 18 soil samples have weak (samples 29, 30, and 31) to strong (samples 7, 8, and 9) 

positive scores while the remaining 5 samples have weak (samples 3 and 4) to strong 

(samples 25 and 26) negative scores. Finally, 5 soil samples from 17 (samples 35 and 44 

among others) from zone 4 have weak positive scores; the 12 remaining soil samples have 

weak (samples 42 and 43) to strong (samples 46 and 48) negative scores. 

Dealing with PC2, most of the soil samples from the four zones have weak to intermediate 

either positive or negative scores. However, some samples have particularly high to very high 

scores: they are exclusively from zones 2 (samples 12, 54, and 55) and 3 (sample 3). These 

samples are characterized by their very high content of gravel. Indeed, the maximal value for 

this soil property corresponds to that from sample 54 and the second highest corresponds to 

that from sample 12. 

Regarding PC3, even though it is not correlated to soil water contents like PC2, it is 

informative about organic matter and hygroscopic water contents of soil samples since these 

two soil properties are linked to PC3. Soil samples 58, 62, and 66 (all from zone 1) had the 

highest positive scores and, consequently among the highest OM and hygroscopic water 

contents. In fact, the highest and the second highest OM contents correspond to samples 58 

and 62 while the third highest hygroscopic water content corresponds to sample 66. In 

opposition, samples 8 (zone 3), 47 (zone 4), 55 (zone 2), and 65 (zone 1) had the highest 

negative scores and, consequently among the lowest OM and hygroscopic water contents. 

Indeed, sample 55 had the second lowest OM content while sample 65 had the third lowest 

hygroscopic water content. 
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An interesting feature may be inferred from PC4 since it explains 24% of the variance of θ–

1kPa. From a graph with PC1-PC4 plan not shown here, soil samples 45 (zone 4), 54 (zone 1), 

and 71 (zone 2) showed the highest positive scores implying that they have among the 

highest bulk density and, as PC4 is negatively correlated with bulk density, lower θ–1kPa 

values. In contrast, soil samples 38, 39, 40 (zone 4), and 13 (zone 2) had the highest negative 

scores indicating they have the lowest bulk density and higher θ–1kPa values. 

As mentioned earlier, the main idea behind PCA is to reduce the dimensionality of the data, 

so that their manipulation becomes easier. So far, we derived only few (new) variables (four 

components) which are uncorrelated and are still able to explain most of the information from 

the original data (14 soil properties). 

6.4 Conclusions 

This study was performed to explore the interaction between the SWRC and other physical 

and chemical properties of selected dryland soils in Syria. Specifically, we explored the 

usefulness of some attributes, like the plastic limit and SSA in addition to the common soil 

physical and chemical attributes that come from soil survey, in developing and improving 

PTFs. The correlation results indicate that soil water contents at −33 and −1500 kPa were 

strongly linked to 11 soil properties, all the properties investigated except organic matter, hy, 

and bulk density; however, soil water content at the −1 kPa matric potential was also highly 

correlated with bulk density in addition to the same eight soil attributes found to be correlated 

with soil water contents at −33 and −1500 kPa. In fact, there is a distinct influence of plastic 

limit, texture, soil carbonate, and SSA on soil water retention. Neither plastic limit nor 

surface area measurements are routinely collected by soil surveys. The plastic limit is very 

easily measured as described above and integrates many other soil properties; however, the 

importance of including the plastic limit needs to be checked in a second step during the 

building of the PTFs. 

Principal component analysis summarized the relationships between the soil characteristics 

and water retention. It identified four components that explained 77% of the total variance in 

the data. The water content at the three matric potentials (−1, −33, and −1500 kPa) 

corresponds to the first PC, which is correlated with texture (clay, silt, and sand), the plastic 
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limit, soil carbonates, and, to a lesser extent, SSA. In addition, a nonnegligible percentage 

(24%) of the variance in water content at the first matric potential (−1 kPa) is explained by 

PC4, which is highly negatively correlated with soil bulk density. Consequently, these seven 

soil properties have a strong (either positive or negative) impact on soil water content at the 

three matric potentials, whereas the remaining four soil properties (organic matter, gravel, 

CEC, and hy) have a negligible influence on soil water contents: they explain only 0.8 to 

5.8% of the variance in soil water contents. Therefore, PTFs can be estimated using either the 

four PCs or the original seven variables linked to the PCs and different statistical methods 

like multiple regression, artificial neural networks, etc 



 

Chapter 7 Support vector machines to enhance the 

performance of pedotransfer functions for 

predicting the water retention properties of 

calcareous soils 

 

 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

Based on: Khlosi M., Cornelis W.M., Hazzouri A., Alhamdoosh M., and Gabriels D. Support 

vector machines to enhance the performance of pedotransfer functions for predicting the 

water retention properties of calcareous soils. Submitted in 2014 for publication. 
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Abstract 

Knowledge of soil hydraulic properties is indispensable for land management in dryland 

areas. The most important properties are the soil-water retention curve (SWRC) and 

hydraulic conductivity characteristics. Direct measurement of the SWRC is time and cost 

prohibitive. Pedotransfer functions (PTFs) utilize data mining tools to predict SWRC. 

Nowadays, modern data mining techniques have become crucial in enabling high accuracy 

and good generalization to novel data. In this study we explore the use of Support Vector 

Machines (SVMs), a novel type of learning algorithm based on statistical theory, for 

predicting SWRC from more easily and cheaply measured properties. 72 undisturbed soil 

samples have been collected from different agro-climatic zones of Syria. The soil water 

contents at eight matric potentials were determined and selected as output variables. A brief 

overview of the theoretical background of this fairly new technique and the use of specific 

kernel functions are presented. Then, the model parameters were optimized with cross-

validation and grid-search method. The performance of the SVM-based PTFs was analyzed 

using the coefficient of determination, root mean square error (RMSE) and mean error (ME). 

This study shows that SVMs have the potential to be a useful and practical tool for predicting 

the SWRC of calcareous soils of dryland areas. They support previous findings in that they 

perform better than ANN and MLR. 
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7.1 Introduction 

Knowledge of the soil hydraulic properties, namely the soil water retention curve (SWRC) 

and hydraulic conductivity function, is essential for many agricultural, environmental and 

engineering applications. This knowledge is needed, for example, to describe and predict 

water and solute transport,
 
as well as to model heat and mass transport in the unsaturated 

(vadose) zone between the soil surface and the groundwater table. The SWRC, which defines 

the relationship between the matric potential () and soil water content () can be 

determined in the laboratory or in the field. However, current methods and experimental 

techniques are expensive, tedious and time-consuming to accomplish, especially for fine-

textured soils. Therefore, indirect methods are based on translating the SWRC from more 

easily measurable and more readily available soil properties. Bouma (1989) introduced the 

name pedotransfer functions (PTFs) for such predictive functions. Enormous advances have 

been made during recent decades in developing different PTFs.  

Support vector machines (SVMs), which are one of the modern data mining techniques, have 

gained much attention as a result of their strong theoretical background. SVMs are a class of 

machine learning algorithms that can perform pattern recognition and regression based on the 

theory of statistical learning and the principle of structural risk minimization (Vapnik, 1995; 

Müller et al., 2001). SVMs try to model the input variables by finding the separating 

boundary, called hyperplane, to reach classification of the input variables: if no separation is 

possible within a high number of input variables, the SVMs algorithm still finds a separation 

boundary for classification by mathematically transforming the input variables by increasing 

the dimensionality of the input variable space. SVMs are one of the most promising and 

powerful machine learning techniques that have been proved to be very successful in many 

applications. However, only few attempts have been made to utilize this technique to predict 

the SWRC (Lamorski et al., 2008; Twarakavi et al., 2009; Lamorski et al., 2013).  

On the other hand, soil texture (sand, silt, and clay percentages) is one of the most frequently 

utilized soil properties for predicting the SWRC. The main assumption underlying most 

PTFs, especially in earlier studies, is that textural properties dominate the hydraulic behavior 

of soils (Lilly and Lin, 2004; Weynants et al., 2009). Other commonly used soil physical 

properties for PTFs prediction are organic carbon (OC), and bulk density. Additional readily 
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available soil properties were rarely used in developing PTFs (Wösten et al., 2001). Recently, 

Pachepsky et al. (2001), Leij et al. (2004), and Sharma et al. (2006) included certain available 

topographical and remotely sensed vegetation attributes, in addition to soil physical 

parameters, for developing PTFs. Zacharias and Wessolek (2007) developed a new PTF that 

forgoes the use of OC as a predictor.  

The Atterberg limits, which describe steps of soil consistency such as the plastic limit (PL), 

can also be cheaply and easily determined. The PL is the minimum gravimetric water content 

at which the soil can be deformed without rupture (Dexter and Bird, 2001). As previously 

mentioned in Chapter 6, PL might be a good additional predictor. Odell et al. (1960) found a 

high correlation between Atterberg limits and three soil properties (percent of organic carbon, 

percent of clay, and percent of 2 : 1 clay minerals in the clay). Since 2 : 1 clay minerals are 

dominant in dryland areas (Jordán et al., 2003), the Atterberg limits can also be sensitive 

indicators of the type of clay. A novel feature
 
of this study is to utilize additional readily 

available soil properties in predicting the SWRC at eight matric potentials using the SVMs 

technique.  

The primary objective of the present study is to explore the accuracy of Support Vector 

Machines (SVMs) compared with artificial neural networks (ANN) and multiple linear 

regression (MLR) in predicting the soil water retention curve of calcareous soils. Secondary 

objective is to compare the performance of SVMs, ANN and MLR using different groups of 

readily available soil properties. 

7.2 Materials and methods 

7.2.1 Data description 

The same data sets considered in chapter 5 are used here (see chapter 5, section 5.2.1). In 

determining the sand, silt and clay fraction, soil carbonates were not removed for reasons 

outlined in Chapter 5.  
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7.2.2 Support vector regression 

The SVM algorithm is a powerful machine learning tool based on firm statistical and 

mathematical foundations concerning generalization and optimization theory. SVM was first 

introduced by Vapnik (1995) but soon it began to enjoy strong theoretical foundations and 

excellent empirical successes in many pattern-recognition applications. Because of its 

outstanding empirical performance, SVM has been well accepted by many scientific 

communities. Compared to artificial neural network, SVM has some advantages such as: it 

does not suffer from the local minima problem, it has fewer learning parameters to select, and 

it produces stable and reproducible results. The basic idea of SVM is to transform the 

samples into a high-dimensional feature space and construct an optimal separating 

hyperplane that maximizes its distance from the closest training samples. 

SVMs were developed to solve the classification problem and later they have been extended 

to the domain of regression problems (Vapnik, 1998; Smola, 1998). In literature, the 

terminology for SVM is sometimes confusing. Gunn (1997) used the term SVM to refer to 

both classification and regression methods, and the terms support vector classification (SVC) 

and support vector regression (SVR) to the specific problems of classification and regression 

respectively. SVR is a novel machine-learning
 
method that is receiving more and more 

attention and has been
 
successfully applied in the prediction tasks of soil-water content (Wu 

et al. 2008), SWRC (Lamorski et al., 2008; Twarakavi et al., 2009), soil organic carbon 

normalized sorption coefficient (Wang et al., 2009), soil texture and pH (Kovačević et al., 

2010). 

The purpose of the regression model is to estimate an unknown
 
continuous-valued function  

y = f(x), which is based on a finite
 
number of samples. In the present study, we want to 

investigate the
 
relationship function between certain soil properties and soil-water content at 

given matric potentials. In order to achieve this, we apply ε-insensitive
 
support vector 

regression (ε-SVR) (Vapnik, 2000). In an ordinary learning problem, a set of training data (xi, 

yi),
 
i = 1, ..., N is given and is used to generate a dependency between the input x and output 

y. Hence, the expected form of support vector regression can be formulated as 

                 
    [7.1] 
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where w is a weight vector defining the solution
 
of the primal formulation, (xi) is the point in 

feature space that is nonlinearly mapped from the input space x, and b is a scalar representing 

the bias. To estimate the function f(x), the SVR framework can be adopted based on the ε-

insensitive loss function (Vapnik, 1995). The objective is to find an f(x) that has the most ε 

deviation from the observed soil-water content yi for all the training data and at the same time 

is as flat as possible. Introducing slack variables      
  quantifying estimation errors greater 

than ε, the SWRC estimation task can be formulated as a constrained optimization problem: 

we search for w and b that minimize the regularized loss. Hence, the SVR problem can be 

formulated as: 

         
 

 
            

  
 

   
 [7.2] 

            

                  
                  

 

     
           

  

where C is the regularization parameter that determines the trade-off between model 

complexity (flatness) and the degree to which deviations larger than ε are tolerated in the 

optimization formulation. 

To solve this optimization problem, which is a convex quadratic program, two Lagrange 

multipliers were introduced for every constraint, and hence the final regression function can 

be formulated as: 

            
           

 

   
 [7.3] 

where     and   
  are Lagrange multipliers for the first two constraints, and the kernel 

function         which is in our case a radial basis function (RBF kernel). The support 

vectors are those with corresponding non-zero values of the Lagrange multipliers. The RBF 

kernel was used to train and construct our SVR classifiers. Here we utilized the following 

RBF kernel: 

                       [7.4] 
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where   is a positive free parameter defining the kernel width. In order to get a “good” 

model, the regularization parameter C and the kernel parameter   need to be selected 

properly. 

7.2.3 Artificial neural networks 

ANN has been used extensively for predicting the SWRC. For process modeling, the 

commonly used network type is the feed-forward back-propagation network which usually 

consists of three layers. The layers are described as input, hidden, and output layers (Figure 

7.1). Each neuron of the hidden layer performs a weighted sum on its input signals xi and a 

bias term w0, and passes the result,        
 
      , through a nonlinear activation 

function     . A commonly used activation function to introduce nonlinearity is the 

hyperbolic tangent function. A bias term (w0) was added, serving as a constant added to the 

weight. Initially, the weights are chosen randomly. The same procedure is repeated in the 

output layer transforming the output from the hidden layer to the final output (Figure 7.1). 

The feed-forward process will stop once the output is predicted. Back propagation algorithms 

attempt to minimize the error of the mathematical system represented by neural network's 

weights and hence walk downhill to the optimum values for weights. Error is estimated as 

difference between actual and computed outputs. The error is back-propagated from the 

output nodes to the hidden and from the hidden nodes to the input nodes and the weights are 

altered according to the generalized delta rule. With several iterations, called training, the 

network outputs will eventually converge towards the desired outputs. 

It is worthy to mention that SVMs have been developed in the reverse order to the 

development of neural networks (Wang, 2005). The development of ANNs followed a 

heuristic path, with applications and extensive experimentation preceding theory. In contrast, 

the development of SVMs involved sound theory first, then implementation and 

experimental. 
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Figure 7.1.  Architecture of artificial neural network. 

 

7.2.4 Evaluation criteria 

Various statistical criteria have been proposed in the literature for evaluating model 

predictions. We consider two criteria to compare the predictive performance of the MLR, 

ANN and SVR models: (1) root mean square error (RMSE); and (2) and the coefficient of 

determination (R
2
). 

Leave-one-out cross-validation was used to validate the MLR, ANN and SVR models. One 

soil-water content observation was set aside at a time, and the remaining N-1 soil-water 

contents were used to build a model. The resulting model was then used to predict the 

outcome of the sample that was held out. This procedure was repeated N times, with each 

sample being held out exactly once. In this study, the ANN analysis was performed using the 

Neural Network Toolbox of MATLAB environment (The MathWorks, Natick,MA) and the 

SVR was performed under the Python environment.  

 1 
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7.3 Results and discussion 

7.3.1 Performance comparison of MLR, ANN and SVR 

Table 7.1 gives an overview of the prediction performance of MLR, ANN and SVR models 

determined by means of leave-one-out cross-validation using 72 training examples and five 

predictors (sand, silt, clay, OC, and bulk density) for predicting the SWRC at eight matric 

potentials. The RMSE values of MLR and ANN models varied from 0.052 to 0.074 m
3
 m

-3
 

and from 0.042 to 0.054 m
3
 m

-3
, respectively, which were larger than those of SVR models, 

ranging from 0.039 to 0.051 m
3
 m

-3
. The R

2
 of MLR and ANN models ranged from 0.06 to 

0.54 and from 0.17 to 0.57, but the SVR models showed the best results (0.29 to 0.62). In 

terms of t-statistic (P < 0.05), the differences in performance of the three techniques were 

significant at matric potentials of -5, -7, -10, -100, and -1500 kPa. Hence, the predictions by 

the SVR-based PTFs showed considerable improvement over the MLR and ANN. Applying 

the same statistics, the accuracy of existing PTFs varies to a noticeable degree. When the 

same input predictors were used, the RMSE values for our SVM PTF are lower than those 

obtained by Twarakavi et al. (2009) when applying support vector machines (RMSE = 0.053) 

and ANN (using Rosetta) (RMSE = 0.068) for predicting soil-water content using the 

database from Schaap and Leij (1998) and Schaap et al. (2001). Typical values of RMSE 

achieved with PTFs to predict soil water retention range from 0.02 to 0.07 m
3 

m
-3

 (Pachepsky 

et al., 1999). Therefore, the SVM PTF developed in this study can be considered as having a 

moderate accuracy. Similarly, in comparing the ANN and SVR methods, Lamorski et al. 

(2008) found that SVR performed better at some matric potentials.  

Table 7.1. Prediction performance comparison of MLR, ANN and SVR (PTF1). 

 MLR ANN SVR 

 RMSE R
2
 RMSE R

2
 RMSE R

2
 

-1 0.052 0.210 0.042 0.334 0.039 0.415 

-3 0.066 0.065 0.053 0.175 0.049 0.278 

-5 0.070 0.177 0.054 0.205 0.051 0.294 

-7 0.072 0.223 0.055 0.231 0.051 0.324 

-10 0.074 0.233 0.054 0.252 0.050 0.352 

-33 0.072 0.335 0.052 0.384 0.050 0.424 

-100 0.065 0.463 0.051 0.476 0.047 0.558 

-1500 0.059 0.544 0.047 0.576 0.044 0.624 
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7.3.2 Including additional soil properties for improving PTFs 

accuracy 

Improving the accuracy and reliability of PTFs is not only influenced by applying data 

mining techniques but also by searching for additional soil properties as inputs in PTFs. As 

we found in Chapter 6, other easily determinable basic soil properties that might affect 

SWRC include soil carbonate content, specific surface area and plastic limit. To test their 

potential as prediction variables, they were additionally included on top of those properties 

that were selected in 7.3.1.. Water retention of soils with low organic matter, such as in our 

case, are not likely to be affected by organic matter. Then, OC as a predictor can be replaced 

by one of these variables. It can be deduced from Chapter 6 that the plastic limit seems the 

best choice. It is very easily measured and moreover was strongly correlated with soil water 

contents for all matric potentials as previously described in Chapter 6. To support this 

finding, a stepwise MLR was performed using a new independent variable group including 

clay, silt, sand, bulk density, soil carbonate, specific surface area and plastic limit. The new 

predictors and their coefficients retained for each soil-water matric potential in the new PTF 

(denoted as PTF2) are tabulated in Table 7.2. 

  

Table 7.2. Pedotransfer function coefficients and their confidence interval, the t-statistic and 

its p-value. 

 Predictor Coefficient Value t- statistic p-value 

Confidence Interval   

Lower Bound Upper Bound 

-1 intercept a1 0.3164 12.9799 0.0000 0.2673 0.3654 

 plastic limit b1 0.5086 8.1656 0.0000 0.3833 0.6339 

-3 intercept a2 0.2644 9.5070 0.0000 0.2085 0.3204 

 plastic limit b2 0.5620 7.9077 0.0000 0.4191 0.7050 

-5 intercept a3 0.2474 8.2460 0.0000 0.1870 0.3077 

 plastic limit b3 0.5618 7.3289 0.0000 0.4076 0.7160 

-7 intercept a4 0.0166 0.2092 0.8352 -0.1429 0.1760 

 plastic limit b4 0.6969 8.4316 0.0000 0.5305 0.8632 

 bulk density c4 0.1221 2.7389 0.0087 0.0324 0.2118 

-10 intercept a5 -0.0068 -0.0857 0.9321 -0.1665 0.1529 

 plastic limit b5 0.7177 8.6696 0.0000 0.5511 0.8843 

 bulk density c5 0.1246 2.7918 0.0076 0.0348 0.2145 

-33 intercept a6 0.0134 0.1561 0.8766 -0.1590 0.1858 

 plastic limit b6 0.6850 7.1216 0.0000 0.4912 0.8787 

 bulk density c6 0.1187 2.8194 0.0071 0.0339 0.2036 

 sand d6 -0.0013 -2.1061 0.0408 -0.0026 -0.0001 

-100 intercept a7 0.0498 0.6134 0.5427 -0.1137 0.2133 

 plastic limit b7 0.6572 7.2041 0.0000 0.4735 0.8410 

 bulk density c7 -0.0021 -3.4160 0.0014 -0.0033 -0.0008 

 sand d7 0.0809 2.0263 0.0487 0.0005 0.1614 

-1500 intercept a8 -0.0511 -0.6858 0.4964 -0.2012 0.0990 

 plastic limit b8 0.6306 7.5310 0.0000 0.4620 0.7993 

 bulk density c8 -0.0028 -4.9670 0.0000 -0.0039 -0.0016 

 sand d8 0.1276 3.4804 0.0011 0.0538 0.2015 
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Results indicate, firstly, that soil carbonate and specific surface area were not significantly 

different from zero (p > 0.05). Secondly, the plastic limit once again appears to be a valuable 

predictor especially for a matric potential equal or higher than -10 kPa. This is because the 

matric potential at the plastic limit is the main cohesive stress and ranges between -63 and -

200 kPa. The latter finding is also supported by Figure 7.2 in which, as an example, measured 

soil-water content values are plotted against fitted water content values at eight different 

matric potentials for a silt loam soil. The Khlosi et al. (2006) model was selected to be fitted 

to both the lab-measured and PTF-predicted SWRC. As shown in Figure 7.2, we can see that 

the SWRC of PTF1 (see Chapter 5, Table 5.2) deviates more from the real points compared 

to the PTF2. 

Now we will compare the MLR, ANN and SVR methods using a new independent variable 

group including clay, silt, sand, bulk density and plastic limit. Table 7.3 shows the values of 

the statistical indices, which were computed to evaluate the prediction accuracy of these three 

techniques. When considering RMSE, the SVR showed again the lowest values, meaning that 

the curve produced the highest match with the measured SWRC. As regards the mean of R
2
, a 

similar trend could be observed, with SVR as the best prediction in terms of linearity 

followed by the ANN PTF. Including the plastic limit as a predictor provided better 

predictions of the SWRCs for the three statistical techniques as compared to section 7.3.1. 

Table 7.3 shows that plastic limit lowers the RMSE values of MLR, ANN and SVR. In the 

particular case of the SVR-based PTF, all RMSE values are now below 0.04 m
3
 m

-3
. In 

comparison with typical RMSE values found in literature, this PTF performs very well. There 

is good evidence here that the plastic limit is a powerful predictor of SWRC. As described 

earlier in Chapter 6, the plastic limit was strongly correlated with soil water contents for all 

matric potentials. There were also many positive and negative correlations between the 

plastic limit and other soil properties. Only organic matter was not correlated with the plastic 

limit because our soils are poor in organic matter. Keller and Dexter (2012) found a positive 

correlation between the plastic limit and soil organic matter. They predicted that the clay 

content must be at least 10% for soils without organic matter to be plastic; however, soils 

with <10% clay can be plastic if organic matter is present. Rawls and Pachepsky (2002) 

stated that the soil structure and consistence properties, such as Atterberg limits, can serve as 

predictors of soil hydraulics properties. In their study, plasticity class, grade class, and dry 

consistency class were leading predictors of soil-water retention at both -33 kPa and -1500 
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kPa matric potentials. Thus, we conclude here that including PL with other basic soil 

properties in predicting the SWRC leads to better accuracy as it integrates many other soil 

properties. 
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           — —  PTF1 (fitted by KCGS model) 

▬▬    Fitted SWRC by KCGS model 
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— • ―    PTF2 (fitted by KCGS model) 

Figure 7.2. Measured and predicted soil-water retention curves for a silt loam calcareous soil.  
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Table 7.3. Comparison of the prediction performance of MLR, ANN and SVR (PTF2). 

 MLR ANN SVR 

 RMSE R
2
 RMSE R

2
 RMSE R

2
 

-1 0.0465 0.2497 0.0334 0.5726 0.0318 0.6119 

-3 0.0569 0.2101 0.0364 0.6052 0.0353 0.6304 

-5 0.0613 0.1625 0.0404 0.5548 0.0366 0.6357 

-7 0.0556 0.3244 0.0383 0.6189 0.0362 0.6602 

-10 0.0541 0.3459 0.0394 0.6002 0.0356 0.6733 

-33 0.0520 0.4690 0.0363 0.6958 0.0359 0.7032 

-100 0.0511 0.5705 0.0411 0.6638 0.0394 0.6909 

-1500 0.0428 0.6838 0.0358 0.7502 0.0346 0.7670 

 

 

7.4 Conclusions 

This study was carried out to compare support vector machines regression performance with 

the one of artificial neural networks and multiple linear regression techniques. Using a data 

set taken from 72 horizons of different soils in Syria and representing eight soil-textural 

classes, results showed that the performance of support vector machines was the best in terms 

of RMSE and R
2
. On the other hand, improvements (of different statistical significance) were 

found for the SWRC by replacing OC with plastic limit which is easier and cheaper to 

measure. Our investigations show that plastic limit can be a suitable parameter to successfully 

represent the integrated effect of several soil properties on water retention. However, more 

research is needed to better quantify the effects of plastic limit on the SWRC for different 

regions and soils. We therefore recommend the use of support vector machines and plastic 

limit to further improve and develop PTFs.  
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8.1 Introduction 

Modeling water flow and solute transport in soils are an essential means to address many 

problems in applied soil science, such as water, nutrient, and salinity management research. 

The research presented in this dissertation had four objectives: 1) to provide an alternative 

model to describe the soil-water retention curve over a range of water contents from 

saturation to oven dryness; 2) to investigate the effect soil carbonates on the predicted soil 

water retention curve of dryland soils; 3) to introduce additional predictor variables which are 

easily and cheaply determined; and 4) to develop pedotransfer functions for predicting soil-

water retention curve of Syrian soils. 

In this chapter, we briefly summarize our major findings and the contributions of this 

research work to the accomplishment of these objectives. Then, some recommendations for 

further research are mentioned. 

8.2 General conclusions 

8.2.1 Soil water retention curve equations 

In Chapter 2, the commonly used retention models only account for capillary water retention. 

Adsorptive water retention is neglected. This leads to erroneous description of hydraulic 

properties in the dry range. In a first application (Chapter 2), we compared 10 SWRC models 

using data set taken from 48 horizons of forest soils in Flanders, Belgium. The van 

Genuchten (1980) and Kosugi (1994) models showed best fits to the observed data, 

specifically at high and medium water content. A high performance was also observed for the 

Kosugi (1999) model, which is a relatively simpler functional form of Kosugi (1994) model. 

Most of the compared models do not define the soil-water content vs. soil-matric potential 

relationship beyond the residual water content. The only model we evaluated that is able in 

doing so is the Rossi and Nimmo (1994) model. However, it showed the lowest performance 
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in terms of goodness-of-fit. It seems that more recently developed expressions for the SWRC 

between saturation and oven dryness need to be evaluated or new expressions should be 

developed. Therefore, in Chapter 3, we modified the Kosugi (1999) model to describe the 

SWRC between saturation and oven dryness. Our modification retains the form of the 

original Kosugi function in the wet range and transforms to an adsorption equation in the dry 

range. The predictive capability of our extended model was further evaluated under reduced 

sets of data that do not contain observations below a matric potential of -100 kPa. This 

evaluation showed that our model successfully predicted the water content with acceptable 

uncertainty, even when using the limited data set. In comparison with other models (Chapter 

4), our expression was most consistent for different soils. Moreover, its prediction potential 

was relatively good as demonstrated by the significant correlation between its parameters and 

basic soil properties, which is promising for developing pedotransfer functions. Retention 

data were taken for 137 soils covering nearly all USDA textures from the UNSODA data 

base. 

A major achievement of our model is its ability to predict the entire SWRC when calibrated 

using a limited data set that includes only those measurements of water content at matric 

potentials greater than -100 kPa. This was also confirmed by Lu et al. (2008) who compared 

our model with other models using a data set from saturation to oven dryness. They found 

that our model produced the best results when reduced data sets greater than -300 kPa were 

used for model establishment. Hence, our model is a continuous function from saturation to 

oven dryness and suitable for the different soils (Chapter 3 and 4). 

8.2.2 Pedotransfer functions for predicting SWRC of Syrian soils 

All published PTFs to date use soil texture as essential key predictor to most soil hydraulic 

PTFs. The majority of used information on texture was analyzed by a methodology that 

considers removing soil carbonates as a pretreatment. In our study (Chapter 5) we 

investigated the influence of pre-treatment on sand, silt, and clay fractions and compare their 

capability to predict the SWRC for calcareous soils. 72 soil samples were collected from rural 

areas throughout northwest Syria, covering most of its agro-climatic zones and soil types. 

Two procedures differing in the pre-treatment process were used. In the most widely used 

technique, carbonates were removed by hydrochloric acid, while in the alternative one, 

carbonates were not removed. Our results showed great variability in the sand, silt, and clay 
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fractions for both methods. Only texture that forgoes the pre-treatment can be translated into 

the soil-water retention curve. Also, it can be concluded from this study that the PSD+C 

method (without removal of carbonate) is more adequate to classify soil texture and hence to 

predict the SWRC. The advantages associated with this method include decreasing the time 

and work and allowing accurate measurements of calcareous soils. 

In our study on the other hand (Chapter 6), we investigated the interaction between SWRC 

and other physical and chemical properties of dryland soils. Specifically, we explored the 

usefulness of some attributes in addition to soil physical attributes that come from soil survey 

in developing and improving PTFs. We found a distinct influence of plastic limit and other 

attributes (such as specific surface area) on soil water retention. Neither plastic limit nor 

surface area measurements are routinely collected by soil surveys. Plastic limit is very easily 

measured as described previously and integrated many other soil properties. These results 

suggested including plastic limit in regular soil surveys. Principal component analysis 

summarized the relationships between the soil characteristics and water retention. It identified 

four components that explained 77% of the total variance in the data. The water content at the 

three matric potentials (−1, −33, and −1500 kPa) corresponds to the first PC, which is 

correlated with texture (clay, silt, and sand), the plastic limit, soil carbonates, and, to a lesser 

extent, SSA. In addition, a nonnegligible percentage (24%) of the variance in water content at 

the first matric potential (−1 kPa) is explained by PC4, which is highly negatively correlated 

with soil bulk density. 

Finally (Chapter 7), three different techniques including support vector machines regression 

(SVR), artificial neural networks (ANN) and multiple linear regression (MLR) were used to 

predict the SWRC of dryland areas. It was determined that the SVR technique provided more 

accurate results than the other techniques that were tested. A comparison of results from the 

statistical performance demonstrates that the SVR technique predicts the SWRC more 

accurately than ANN and MLR techniques. This was evident from a lower RMSE and a 

higher R
2 

value. On the other hand, improvements (of different statistical significance) were 

found for the SWRC by replacing OC with plastic limit which is easier and cheaper to 

measure. Our investigations confirm that plastic limit can be a suitable parameter to 

successfully represent the effects of the OC on water retention. By suggesting plastic limit as 
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a new predictor, the universality of the PTF has shown to be improved as it integrates other 

soil properties. 

8.3 Future research 

8.3.1 Soil water retention curve equations 

Unsaturated flow is usually described with the Richards' equation. An accurate knowledge of 

the soil hydraulic functions is required to solve this equation, i.e., the soil water retention 

function and the hydraulic conductivity function. Conductivity measurements are indeed 

highly scale dependent and sensitive to the measurement technique used, especially close to 

saturation (Weynants et al., 2009). It remains extremely difficult to get reliable measured 

saturated hydraulic conductivity values given their extreme spatial variability (Verbist et al., 

2013). In many cases, hence, measurements of unsaturated hydraulic conductivity are 

unavailable. As an alternative to direct measurements, models have been proposed to estimate 

hydraulic conductivity from water retention data, which is more easily measured. The 

selection of the correct model combination is of crucial importance. The well-established 

retention functions of Brooks and Corey (1964), van Genuchten (1980), or more recently 

Kosugi (1996) in combination with the capillary bundle models of Mualem (1976) or Burdine 

(1953) for conductivity prediction have opened new possibilities to extend the () relation 

to the oven-dry condition. Matthews et al. (2010) have proposed a simple model for saturated 

hydraulic conductivity using the van Genuchten function for the SWRC (van Genuchten, 

1980). Nasta et al. (2013) used the water retention parameters of Brooks and Corey (1964) to 

predict the saturated hydraulic conductivity. The way forward is to extend the capillary 

models to account for film flow and hence improve hydraulic conductivity prediction. The 

SWRC equation presented in this dissertation consistently showed a good choice which can 

be incorporated in Mualem’s equation.  

8.3.2 Pedotransfer functions for predicting SWRC 

This research showed that improvements in the prediction of SWRC were not only associated 

with applying data mining techniques but also with two additional effects. First, evaluation of 

available methods for soil texture measurement and selecting the most suitable one. Our 
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results show that in case of calcareous soils which are abundant in dryland environments, 

only texture that forgoes the pre-treatment of destroying carbonates can be translated into the 

soil-water retention curve. More studies should be dedicated in the mineralogy of soil 

carbonates to investigate the influence of their composition on the SWRC and their 

contribution to the development of PTFs for soils from dryland regions. Second, searching 

for additional soil properties as inputs in PTFs. Our results in this dissertation showed that 

plastic limit can be a suitable parameter to successfully represent the integrated effect of 

several soil properties on water retention. However, more research is needed to better 

quantify the effects of plastic limit on the SWRC for different regions and soils. We therefore 

recommend considering the use of support vector machines and plastic limit to further 

improve and develop PTFs. 
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Summary 

 

Soil and water are scarce commodities in any part of the world, more being in dry regions 

where the amount of rainfall is quite small, the distribution is variable and the frequency is 

unpredictable. It happens with an erratic nature. All plants need water to grow and they take 

their water from the soil, which typically is a porous medium. The storage of water in the soil 

is therefore of crucial importance to plants. In dryland areas, such as Syria, 

evapotranspiration is often much greater than precipitation and the soil water storage 

decreases. The soil water flow processes for most months are dominated by the unsaturated 

hydraulic conductivity properties of the soil. The most important factors in this respect are 

the soil water retention and the hydraulic conductivity. 

However, traditional methods to determine soil hydraulic properties are still difficult, time-

consuming and expensive. When such data are not available, pedotransfer functions (PTFs) 

which utilize physical or empirical relations between soil hydraulic properties and other 

easily and cheaply measured properties can be used as alternative method. To date, various 

pedotransfer functions appear in the literature to predict the SWRC and only few PTFs have 

been developed for soils of the dryland areas. Meanwhile, in Syria published soil hydraulic 

data is lacking and the collection of a national database is not complete. It is therefore 

valuable to explore in this thesis the interaction between soil hydraulic properties and other 

physical and chemical properties in order to estimate the soil-water retention curve from 

easily measured soil parameters. 

In this dissertation some possible improvements in modeling soil water retention were 

investigated with the goal of developing a practical model that can represent with the 

minimum possible number of parameters the SWRC over the entire range of saturation. 

Subsequently, the interaction between soil hydraulic properties and other physical and 
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chemical properties was studied to estimate the soil water retention curve from easily 

measured soil parameters. 

In Chapter 2, ten closed-form unimodal analytical expressions were evaluated to describing 

the soil-water retention curve, in terms of their accuracy, linearity, Aikake Information 

Criterion (AIC), parameter uniqueness and parameter identifiability. Soil samples were taken 

in duplicate from 48 horizons of 24 soil series in Flanders, Belgium. 

In Chapter 3, the Kosugi (1999) model was modified to describe the SWRC between 

saturation and oven dryness. Our modification retains the form of the original Kosugi 

function in the wet range and transforms to an adsorption equation in the dry range. The 

predictive capability of our extended model was further evaluated under reduced sets of data 

that do not contain observations below a matric potential of -100 kPa. It would be concluded 

that our model successfully predicted the water content with acceptable uncertainty, even 

when using the limited data set. 

Chapter 4 showed that the proposed model was most consistent for different soils as 

compared with other models. Moreover, its prediction potential was good as demonstrated by 

the significant correlation between its parameters and basic soil properties, which is a basis 

for developing pedotransfer functions. Retention data were taken for 137 soils covering 

nearly all USDA textures from the UNSODA data base. 

In Chapter 5, the influence of pre-treatment on sand, silt, and clay fractions was investigated 

and compared their capability to predict the SWRC for calcareous soils. 72 soil samples were 

collected from rural areas throughout northwest Syria, covering most of its agro-climatic 

zones and soil types. Two procedures differing in the pre-treatment process were used. In the 

most widely used technique, carbonates were removed by hydrochloric acid, while in the 

alternative one, carbonates were not removed. Our results showed great variability in the 

sand, silt, and clay fractions for both methods. Only texture that forgoes the pre-treatment can 

be translated into the soil-water retention curve. It is concluded in this study that the PSD 

without removal of carbonate is more adequate to classify soil texture and hence to predict 

the SWRC.  

In Chapter 6, the interaction between SWRC and other physical and chemical properties of 

dryland soils was investigated. Specifically, this study explored the usefulness of some 

attributes in addition to soil physical attributes that come from soil survey in developing and 
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improving PTFs. a distinct influence of plastic limit and other attributes (such as specific 

surface area) on soil water retention was found. Neither plastic limit nor surface area 

measurements are routinely collected by soil surveys. Plastic limit is very easily measured as 

described previously and integrated many other soil properties. Principal component analysis 

summarized the relationships between soil characteristics influenced by water retention. It 

identified four factors which are uncorrelated and are ordered by the fraction of the total 

information each retains. 

In Chapter 7, three different techniques including support vector machines regression (SVR), 

artificial neural networks (ANN) and multiple linear regression (MLR) were used to predict 

the SWRC of dryland areas. The SVR methodology was successfully applied and showed the 

best performance in terms of RMSE and R
2
. On the other hand, improvements (of different 

statistical significance) were found for the SWRC by replacing OC with plastic limit which is 

easier and cheaper to measure. Our investigations confirm that plastic limit can be a suitable 

parameter to successfully represent the effects of the OC on water retention. By suggesting 

the plastic limit as a new predictor, the universality of the PTF has shown to be improved as 

it integrates other soil properties. 

Future research should incorporate the presented soil-water retention model in the hydraulic 

conductivity functions such as Mualem’s equation (Mualem 1976). The use of support vector 

machines and plastic limit to further improve and develop PTFs that predict the SWRC for 

different regions and soils should be considered. 
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Samenvatting 

 

In grote delen van de wereld zijn vruchtbare gronden schaars geworden. Dit fenomeen is nog 

meer uitgesproken in droge streken met een geringe en onregelmatig verdeelde neerslag. 

Daarenboven is ook de neerslag daar zeer moeilijk te voorspellen! Niettegenstaande dit alles 

hebben planten water nodig die ze via het wortelstelsel uit de poreuze bodem dienen te halen. 

Stockeren van voldoende water in de bodem is aldus noodzakelijk. 

Evenwel is in ariede en semi-ariede gebieden, zoals in Syrië,  de hoeveelheid 

evapotranspiratie hoger dan de neerslag. Daardoor wordt de hoeveelheid gestockeerd water 

sterk verminderd en ontstaat er een deficiet aan water voor de plantengroei. 

In die poreuze onverzadigde bodem is de stroom van het water afhankelijk van een aantal 

bodemfysische parameters zoals de ‘onverzadigde’ hydraulische geleidbaarheid 

(permeabiliteit) en het waterhoudend vermogen (waterretentie). De bepaling of het begroten 

van de hydraulische bodemeigenschappen is niet alleen moeilijk en ook duur maar vraagt 

tevens veel uitvoeringstijd. 

Wanneer nu die data en gegevens niet beschikbaar zijn dan kan worden gezocht naar 

alternatieve methodes zoals het opmaken van pedotranferfuncties (PTFs) die gebruik maken 

van fysische of empirische verbanden tussen de te bepalen hydraulische parameter en andere 

gemakkelijker te meten eigenschappen. Er bestaan reeds verschillende van die PTFs maar 

slechts enkele werden ontwikkeld voor bodems van ariede en semi-ariede gebieden zoals 

Syrië. Er zijn in Syrië ook geen hydraulische bodemeigenschappen gepubliceerd en 

beschikbaar en daarenboven is het nationale databestand niet compleet. Daarom wordt in 

deze thesis aandacht besteed aan de relaties tussen hydraulische parameters en andere 

gemakkelijk te bepalen bodemchemische en bodemfysische karakteristieken. Zo werden 

enkele verbeteringen aangebracht bij het modelleren van de bodem-water-retentie curve 

(SWRC) of pF-curve. Het doel was een praktisch model te ontwikkelen dat, met een 
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minimum aantal parameters, de SWRC over het ‘verzadigd’ gedeelte kan bepalen. Daarvoor 

dienden uiteraard verbanden te worden gezocht tussen de hydraulische parameter en andere 

eenvoudig te bepalen fysische en chemische karakteristieken. 

In hoofdstuk 2 werden tien ‘gesloten-vorm’ unimodale analytische vergelijkingen van de pF-

curve geëvalueerd. De modellen vergeleken op hun nauwkeurigheid, lineariteit, Aikake 

Information Criterion (AIC), parameter eigenheid en identificatie. Om dit te verwezenlijken 

werden op 24 plaatsen in Vlaanderen (België) telkens 2 bodemstalen  genomen.  

In hoofdstuk 3 werd het Kosugi (1999) model gewijzigd om de pF curve tussen 

‘bodemverzadiging’ en ‘ovendroogte’ te kunnen beschrijven. Evenwel behoudt het nieuwe 

model de vorm van de originele Kosugi functie in het ‘natte’ gedeelte en wordt 

getransformeerd naar een adsorptievergelijking in het ‘droge’ gedeelte. De graad van 

nauwkeurigheid van het voorspellen van het nieuwe model werd verder geëvalueerd door de 

data-set te verminderen door het niet-gebruiken van de data overeenkomstig een matrix 

potentiaal lager dan -100kPa. 

In hoofdstuk 4 werd aangetoond dat het nieuwe model het best overeenkomt met de 

geobserveerde waarden. De nauwkeurigheid om de data te voorspellen was eveneens goed, 

hetgeen weerspiegeld wordt in de hoge correlatie tussen zijn parameters en de 

bodemkarakteristieken. Daarvoor werden de gegevens van de bodem-water-retentie van 137 

bodems gehaald uit het UNSODA (Internationale Unsaturated Soil hydraulic DAta base). 

In hoofdstuk 5 werd de invloed onderzocht van de ‘voorbehandeling’ van de bodemstalen op 

de hoeveelheid zand, leem en kleifractie en dit om de pF-curve van kalkrijke gronden te 

kunnen opmaken. Daarvoor werden 72 bodemmonsters verzameld uit verschillend velden in 

noordwest Syrië. Ofwel werd de klak niet vernietigd ofwel met zoutzuur vernietigd. Beide 

methoden toonden een grote variatie in zand, leem en klei aan. Enkel wanneer kalk niet werd 

verwijderd kon de pF-curve op basis van de textuur worden voorspeld. 

In hoofstuk 6 werd de interactie tussen de pF-curve en fysische, mechanische en chemische 

karateristieken van ariede en semi-ariede bodems onderzocht.  Er was een duidelijke invloed 

waar te nemen tussen de plasticiteitsgrens en eveneens ook het specifiek oppervlak op de 

bodem-water-retentie. Beide eigenschappen worden in een routine bodemonderzoek meestal 

niet bepaald. Een ‘Principal Component Analysis’ (PCA) geeft een overzicht van de 

bodemeigenschappen die gerelateerd zijn aan de waterretentie. 
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In hoofdstuk 7 werd de SWRC van ariede en semi-ariede voorspeld aan de hand van drie 

verschillende methodes namelijk de ‘support vector machines regression’ (SVR), de 

‘artificial neural networks’ (ANN), en ‘multiple linear regression’ (MLR). De SVR methode 

voorspelde het best de SWRC weerspiegeld in RMSE en R². Een statistische verbetering 

werd bekomen wanneer de ‘organische koolstof’ (OC) werd vervangen door de 

plasticiteitsgrens, gemakkelijker en goedkoper te bepalen. Met de introductie van de 

plasticiteitsgrens als nieuwe indicator of voorspeller wordt duidelijk het universele karakter 

van de PTF aangetoond. Verder onderzoek kan uitgevoerd worden om bijvoorbeeld het 

water-retentie-model in een hydraulische geleidbaarheidsfunctie zoals de Mualem 

vergelijking (Mualem, 1976) in te voeren.  
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