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OUTLINE OF THE THESIS 

 

In PART I the background of the thesis and the main objectives of the present study are described. 

PART II consists of a comprehensive literature study on bacterial beer spoilage and the present 

applications of Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry 

(MALDI-TOF MS). CHAPTER 1 gives an elaborate description of the frequently encountered beer 

spoilage bacteria and their presence in the brewing process and in the brewery environment. The 

microbiological stability of beer products and the phenomenon of hop resistance are discussed as 

well. CHAPTER 2 summarises the currently available culture-dependent and culture-independent 

techniques for the detection and/or identification of beer spoilage bacteria. Finally, CHAPTER 3 

presents the main principles of MALDI-TOF MS and provides an overview of its applications in 

microbiology.  

PART III encompasses the experimental work performed during the study. CHAPTER 4 describes the 

effect of the growth medium on the generated mass spectra and its consequences for species and 

strain level differentiation. CHAPTER 5 presents the development of the MALDI-TOF MS 

identification database and the subsequent evaluation and validation of the taxonomical 

classification of the reference strains included. Moreover, the performance of MALDI-TOF MS as an 

accurate, rapid and high-throughput identification tool was determined using isolates from different 

spoiled beer and brewery samples. These studies also resulted in the reclassification of Pediococcus 

lolii strains DSM 19927T and JCM 15055T as Pediococcus acidilactici (CHAPTER 5.2) and in the 

description of a novel acetic acid bacterium, Gluconobacter cerevisiae sp. nov., isolated from a 

spoiled brewer’s yeast starter culture (CHAPTER 5.3). CHAPTER 6 describes the direct detection and 

identification of bacteria in enrichment cultures of spoiled beer and brewery samples. Finally, 

CHAPTER 7 evaluated MALDI-TOF MS as a tool to differentiate between brewer’s yeasts and 

unwanted brewing yeast strains contaminating the brewing process. 

In PART IV the results of this study are re-evaluated and presented in a general conclusion and future 

perspectives section. 

PART V comprises a summary of the results presented in this thesis. 
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BACKGROUND 

 

Bacterial spoilage of beer and of intermediates of the brewing process is a common threat in the 

brewing industry as these bacteria typically cause visible turbidity, acidity and off-flavours. Spoilage 

incidents instigate not only vast economic damages in terms of product recalls, but also irreversible 

loss of consumer confidence, leading to problems for corporate brands. Moreover, the increasing 

popularity of non-pasteurised, low- and non-alcoholic beers imparted that beer spoilage is of serious 

concern to the brewing industry worldwide. Multiple culture-dependent and culture-independent 

methods have been employed for the detection and sometimes species level identification of 

spoilage bacteria. These include growth on selective media, the use of species-specific 

oligonucleotide probes, PCR-based (fingerprinting) methods and the use of monoclonal antibodies. 

However, these methods are time-consuming and therefore lack high-throughput capacity and do 

not facilitate real-time interventions. Consequently, microbiological quality control requires lengthy 

storage of beer, which increases brewing costs and demands for more storage capacity. 

Furthermore, beer spoilage bacteria are taxonomically diverse while most of these methods 

specifically target only a narrow range of spoilage organisms. Matrix-Assisted Laser 

Desorption/Ionisation Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) has recently been 

introduced as a rapid, high-throughput and low-cost tool for species level identification in medical, 

environmental and food-related studies. MALDI-TOF MS is a soft ionisation technique allowing 

desorption and ionisation of biomolecules, such as proteins and peptides, in a non-destructive 

manner and couples high sensitivity with accuracy. The generated ions provide a peptide fingerprint 

that can be used to characterise and identify bacteria at species and infraspecific levels. 
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OBJECTIVES 

 

The main objective of the present study was to investigate (i) the potential of Matrix-Assisted Laser 

Desorption/Ionisation Time-of-Flight Mass Spectrometry (MALDI-TOF MS) as a rapid, low-cost and 

high-throughput identification tool for spoilage bacteria isolated from beer and brewery samples. 

Therefore an in-house MALDI-TOF MS identification database was designed containing well-

characterised reference strains originating from spoiled beer and brewery samples but also from 

other niches where the same species occur. Moreover, all reference strains were grown onto 

multiple selective and non-selective growth media to include and anticipate growth medium 

induced variations.  

This first objective was subdivided into three specific aims.  

 The investigation of the influence of the growth medium on the mass spectra generated 

from the reference strains; and its consequence for species and infraspecific level 

identification.  

 The validation of the taxonomical classification of the reference strains present in the 

MALDI-TOF MS identification database, allowing for an accurate species level identification 

of unknowns. 

 The application of MALDI-TOF MS for the species level identification of potential spoilage 

bacteria isolated from different beer and brewery samples.  

Furthermore, (ii) the potential of MALDI-TOF MS was investigated for the detection and 

identification of spoilage bacteria in enrichment cultures obtained from beer and brewery samples. 

Finally, (iii) MALDI-TOF MS was also explored as a tool to differentiate among brewing and non-

brewing yeast strains. 
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1 The brewing process and beer spoilage bacteria 

1.1 Microbiological threats during the brewing process 

The brewing process consists of multiple consecutive steps in which raw substrates are converted 

into a final beer product (FIG 1.1). The main substrate used for the production of beer is malted 

barley, but also other cereal grains, such as wheat, rye, oats, millet or sorghum can be used [1, 2]. 

The three-step-malting process starting from the raw cereal grains is necessary to modify the 

structure of the grains and to produce and/or activate the mashing enzymes [1-4]. In the first step, 

cereal grains are excessively steeped in water, aerated and drained during which the germination of 

the grains is stimulated [1, 3]. This natural, yet controlled germination process permits the 

accumulation of mashing enzymes, sugars and other soluble materials inside the grains [1, 5]. During 

the steeping process, various indigenous cereal microorganisms (i.e., fungi, yeasts and bacteria) are 

able to proliferate and to produce certain off-flavours which can persist, even into the final beer 

product [4, 6-8] (FIG 1.1). Some fungal species (e.g., Fusarium spp., Alternaria spp.) are able to 

produce secondary metabolites such as mycotoxins and these are neither removed nor degraded 

during the brewing process and may cause serious health problems [7, 9]. The inoculation of lactic 

acid bacteria (LAB) in steeping water will not only reduce microbiological contaminations, but will 

also improve the quality of the malt resulting in a better mash and wort filterability, a lower viscosity 

and less turbidity [9, 10]. Once grain germination and the concomitant intracellular modifications 

are completed, the grains are kilned [1, 3] during which the moisture content of the grain is 

decreased so that preservation and microbiological stability are enhanced [1, 5].  

In the brewhouse, the malt is consecutively grinded (i.e., the grist), mixed with water, mashed and 

filtered to remove spent grains from sweet unhopped wort [2, 3] (FIG 1.1). During mashing, the 

temperature is gradually increased and held constant for a pre-determined time to allow enzyme-

catalyzed hydrolytic conversion of starch into fermentable sugars and to partially breakdown 

proteins [1, 3, 5, 11]. At the end of mashing, the sweet wort is separated from solids (the spent grains) 

via the lautering process [1, 2, 11] (FIG 1.1). Biological acidification of wort and mash is frequently 

applied in the brewing industry, especially in German breweries that operate according to the 

Bavarian purity law (i.e., only malted barley, hops, yeasts, and water may be used for the production 

of beer) [3, 8, 9, 12]. Thereby, the inclusion of biologically acidified malt to the grist and/or the 

addition of biologically acidified unhopped wort at the start of mashing or during wort boiling are 

the only technological possibilities to correct the acidity of mash and wort [9, 10]. The pH reduction 
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will not only reduce microbiological contamination, but is also beneficial for the activity of mash 

enzymes, increasing the bioavailability of zinc ions, decreasing the viscosity, enhancing filterability 

and reducing haze and turbidity formation [1, 4, 9, 10]. The particular LAB strain(s) used for 

biological acidifications are often isolated from malt and should be carefully selected and under full 

control [1, 8, 10] (FIG 1.1). Usually moderately thermophilic, homofermentative, non-beer spoiling 

and hop-sensitive lactobacilli are selected [8]. 

Sweet wort represents an optimal substrate for a large group of microorganisms due to its high 

nutritional content, and is therefore boiled with hop [8, 12, 13] (FIG 1.1). During this step, the hop α-

acids are extracted and subsequently isomerised into the more soluble iso-α-acids. The latter anti-

bacterial compounds will also provide bitterness to the final beer [1, 14]. The same boiling step also 

concentrates -at least partly- the wort, removes volatile compounds and reduces the potential 

bacterial load [1, 3]. Moreover, the precipitation of proteins (also called the ‘hot break’), the 

inactivation of mash enzymes, the removal of unpleasant grainy characteristics and the 

augmentation of wort colour and flavour complexes which all occur during this step, improve the 

quality of the final product [1, 3]. To avoid downstream microbiological contaminations, it should be 

noted, that from this critical point on, all process equipment (i.e., vessels, piping structures, surfaces, 

air, control equipment) should comply with high hygienic standards [11, 15, 16]. 

The spent hops and precipitated protein-polyphenol complexes (i.e., hot trub) are separated from 

the wort, which is cooled and aerated prior to pitching it with the brewer’s yeast culture [1, 3, 17] 

(FIG 1.1). The wort should be cooled to 6 to 22°C depending on the type of fermentation foreseen, 

i.e., traditionally 6 to 12°C for lager and 15 to 22°C for ales type beers [5]. These temperatures and 

the presence of nutrients, growth factors and dissolved oxygen (6 to 8 ppm) will favour the growth 

of multiple bacteria [8]. Although, cooled and aerated wort is sterile prior to pitching, the risk of 

microbiological contamination increases when wort is not immediately pitched [12]. Depending on 

the type of beer produced, yeast cultures with different fermentation characteristics can be pitched, 

for example bottom fermenting yeasts for lager beers and top fermenting ones for ale beers [1, 3], 

but in both cases the sugars are mainly fermented into ethanol and carbon dioxide [1, 2]. Intriguingly, 

the pitching yeast culture itself is one of the major sources of microbiological contamination during 

the brewing process, as these cultures are often recycled from previous fermentations [11, 16] (FIG 

1.1). Hence, pitching yeast cultures contaminated with spoilage bacteria or wild-type yeast may 

induce spoilage in later batches of beer [6, 18, 19]. Therefore, stringent hygienic standards should be 

applied at all times to prevent microbiological contamination of the pitching yeast cultures [20]. 

After the main fermentation, the immature or green beer is matured (i.e., the lagering) at low 

temperatures for a period of time [3] (FIG 1.1). During this extended maturation process the so 
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called cold break occurs, during which yeast cells and other precipitates settle down to the bottom 

of the lagering vessel [1, 2]. Subsequently, most beers are chilled and filtered [5, 11]. After a final 

microbiological stabilization step (e.g., pasteurization, filtering), the beer is suited to be filled in 

bottles, cans or kegs [1, 11] (FIG 1.1). In the production of non-pasteurised beers, more stringent 

hygienic standards must be applied to prevent bacterial spoilage [21]. The use of filtration to remove 

contaminants in non-pasteurised beers is not always successful, as certain beer-adapted bacteria 

could pass through the filter membranes and consequently potentially spoil the final product [22, 23].  

The filling and packaging systems have also been improved over the years resulting in lower levels of 

oxygen in the packaged product [10, 24]. Hence, strict aerobic microorganisms are hampered in 

growth; yet strict anaerobes advance in such conditions [16]. Again, hygienic standards should be 

outstanding in the filling and packaging hall of the brewery to avoid contamination [24, 25]; 

especially as the sequential growth of different types of bacteria in the form of biofilms can lead to 

persistent contaminations in the filling hall [8, 18, 26, 27] (FIG 1.1). Additional care must be taken as 

airborne bacteria can enter the final product prior to sealing resulting in detrimental effects to the 

product if no in-package pasteurization is applied [1, 8]. 

In general, two types of microbiological contaminations exist: primary and secondary 

contaminations according to the presence of the microorganisms within the brewing process [1, 12]. 

Primary contaminations include bacterial growth in wort, in the pitching yeast, during fermentation, 

in bright beer tanks and in rest beer [8, 26]. Bacterial growth on equipment, instruments, gas pipes, 

system dead ends, worn floor surfaces, wort aeration and cooling equipment are indications of 

insufficient cleaning, but are also included as primary contaminations [26]. Secondary 

contaminations occur in the filling and packaging hall and are introduced to the beer during bottling, 

canning or kegging [8, 28] (FIG 1.1).  

  



 

 

 

FIG 1.1. Overview of the brewing process displaying the stages during which the main beer spoilage bacteria are introduced and prevail. 
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1.2 Microbiological stability of beer  

In general, beer is a beverage with a good microbiological stability because it contains almost no 

oxygen (< 0.1 ppm) or nutrients to sustain bacterial growth, because these nutritive substances 

(sugars and amino acids) are mostly depleted by the brewer’s pitching yeast during fermentation [14, 

29]. In addition, the low pH (3.8 to 4.7), high carbon dioxide content (usually higher than 0.5% w/v), 

the presence of ethanol (0.5 to 14% v/v) and antibacterial hop compounds (approx. 17 to 55 ppm of 

iso-α-acids) ensure a microbiological stability [3, 14, 18, 29-33]. The inhibitory effects of molecular 

SO2, the content of free amino nitrogen (FAN), the total soluble nitrogen content, and of individual 

amino acids and phenolic compounds on bacterial growth have been investigated and 

acknowledged as well [26, 30, 34-36]. And finally, the use of a final filtration step and/or 

pasteurization step in combination with the storage of beer at low temperatures decreases bacterial 

beer spoilage [8, 13, 14, 26]. 

Nevertheless, the brewing process itself is prone to bacterial growth because of the nutrient-rich 

environment of wort (presence of fermentable sugars and amino acids) and additional growth 

factors (vitamins, etc.) produced by the pitching yeast during fermentation [8, 12, 13]. The 

production time from wort boiling to the final beer packaging can take up to several weeks and gives 

the bacteria present in the brewery sufficient time to proliferate and subsequently spoil the beer [26]. 

In some cases beer spoilage bacteria survive the pasteurization processes rendering them viable but 

non-culturable; yet these cells might cause spoilage in a later stage [37]. Beers with elevated pH, low 

ethanol and carbon dioxide content and added sugars, the so-called “weak beers”, are more 

susceptible to bacterial spoilage [8]. The increased popularity of non-pasteurised, low-alcoholic and 

non-alcoholic beers imparted that bacterial beer spoilage is of serious concern to the brewing 

industry worldwide [38, 39] as these bacteria typically cause visible turbidity, acidity and off-flavours 

[11, 14, 30, 40]. Such bacterial incidents instigate not only vast economic damage in terms of product 

recalls, but also to an irreversible loss of consumer confidence, leading to the destruction of 

corporate brands [21, 32, 41]. 
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1.3 Hop resistance 

Hop bells and related products, derived from the plant Humulus lupulus L., are added during wort 

boiling conferring bitterness, but also anti-bacterial properties to the beer [1, 14, 40, 42]. For 

centuries, it was believed that the addition of hops protected the beer from bacterial contamination. 

However, hop compounds only inhibit growth of most Gram-stain positive bacteria [43], but certain 

lactic acid bacteria (LAB) are tolerant towards hop compounds and thus grow in hopped beer [44]. A 

broad diversity in beer spoilage ability has been recognised among strains within the same species, 

for which some strains are hop-resistant while others are hop-sensitive [45-47]. Hop-resistant 

lactobacilli and pediococci do not differ in their phenotypic characteristics (i.e., carbohydrate 

utilization pattern, manganese requirement, sensitivity to superoxide radicals, resistance to 

antibacterial agents, expression of cellular proteins or in products of metabolism) compared to the 

hop-sensitive strains [30, 35]. Yet, differences were found in the transmembrane pH gradient and in 

the intracellular ATP pool [48]. 

Several studies attempted to elucidate the mechanisms of hop-resistance in LAB [14, 44, 45, 49-54]. 

Most studies focussed on the anti-bacterial effect of iso-α-acids since these hop compounds are 

mainly present in beer [14]. The iso-α-acids are weak acids whose undissociated forms are 

responsible for the inhibition of bacterial growth. Moreover, their anti-bacterial activity increases at 

lower pH values [42, 46]. Buggey et al. [55] demonstrated that the more hydrophobic and reduced 

iso-α-acids have a greater anti-bacterial activity than their iso-α-acids analogues. 

Iso-α-acids function as ionophores by dissipating the pH gradient across the cytoplasmic membrane 

and reducing the proton motive force (PMF) [40, 42, 49-51, 53] (FIG 1.2). Consequently, the hop-

induced decrease in intracellular pH leads to the inhibition of PMF-dependent nutrient uptake, 

nutrient transport, essential enzyme reactions and synthesis of proteins, DNA and RNA, which all 

combined, finally lead to the cell death of hop-sensitive strains [14, 35, 50, 51]. The ability to resist 

these hop compounds appears to be multi-factorial and these mechanisms are not necessarily used 

at the same time [50, 56] (FIG 1.2). It is assumed that the resistance activation depends on several 

selective pressures (e.g., nutrient availability, presence of ethanol and pH) and on the particular beer 

spoiling strain investigated [31, 46].  

Studies revealed that several genetic markers correlated with hop resistance; and that each of these 

markers were extraordinarily homologous among different strains of different species suggesting 

that these markers were acquired via horizontal gene transfer [35, 45, 49, 57-59]. Consequently, such 

species-independent genetic markers allowed the detection of beer spoilage lactobacilli and 

pediococci [33, 57, 60].  
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FIG 1.2. Overview of the main mechanisms of hop toxicity (left side cell) and hop resistance (right side cell) in Gram-stain positive 
bacteria. Green loops indicate plasmids carrying the hop resistance genes horA and ORF5. The hop-inducible HitA pump 
accumulates intracellular Mn+ in response to oxidative stress, decreasing efflux of Mn+ (red line). (retrieved from [6]). 

 

The species-independent marker gene horA was originally identified on pRH45I, a plasmid of 15.1 kb 

present in the hop resistant Lactobacillus brevis strain ABBC45 and whose copy number multiplied 

with increasing hop resistance [40]. The HorA acts as an ATP-binding cassette (ABC) multidrug 

resistance (MDR) transporter that excretes hop compounds into the outer medium upon ATP 

hydrolysis and consequently maintaining the PMF and the internal pH at viable levels [44, 45] (FIG 

1.2). Some horA-negative beer spoilage LAB have been reported, suggesting that these strains 

possessed other, horA-independent hop-resistance mechanisms [33, 59, 60]. Besides horA, other 

species-independent genetic markers were retrieved and correlated with hop resistance (e.g., bsrA, 

bsrB, ORF5 and hitA) [31, 33, 59, 61] (FIG 1.2). Another possible marker gene is horC which 

presumably encodes a transporter of the resistance-nodulation-cell divisions (RND) superfamily and 

confers hop resistance by potentially acting as a PMF-dependent MDR transporter [33, 49, 62] with 

horB as putative regulator of horC [19]. Differentiation between beer spoiling and non-spoiling 

pediococci for example, was accomplished via bsrA and bsrB, which are two beer spoilage-related 

ABC MDR transporter genes [31].  

Previous studies mainly focused on the role of PMF dissipation, but the role of divalent manganese 

in the mechanism of hop-resistance should not be neglected [51] (FIG 1.2). Hop compounds also 

inhibit the bacterial metabolism by decreasing the intracellular manganese concentrations [51]. It is 
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thought that hop bitter acids exchange protons for cellular divalent cations, such as Mn2+ [49] (FIG 

1.2). The hop-inducible PMF-dependent divalent cation transporter HitA accumulates intracellular 

divalent ions in response to oxidative stress [35, 50]. Alteration of the teichoic acids in the cell wall, 

which provide a constant reservoir of bound divalent cations [50, 56], was observed by Yasui et al. 

[63] as well. Furthermore, overexpressed proton-translocating ATPase increases the pumping of 

protons released from the hop compounds [53] and maintains the intracellular pH [50] (FIG 1.2). Hop 

stress in hop-resistant Lb. brevis strains also induces the expression of a broad range of proteins 

involved in redox homeostasis, DNA- and protein repair, and facilitates a shift towards energy 

balance and metabolic regulation to cope with the low pH condition and oxidative stress [6, 51]. 

It is clear that the hop resistance mechanisms act at various molecular levels including changes in 

metabolism, membrane physiology and cell wall composition [50]. Additionally, it should be noted 

that hop resistance is not a stable characteristic and multiple studies revealed that a decrease in hop 

resistance could occur after the subculturing of hop-resistant strains in the absence of hop 

compounds [33, 46, 49, 57]. 
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1.4 Thriving beer spoilage bacteria – a current overview 

A beer spoilage bacterium can be defined as any organism which is not deliberately introduced and 

is able to survive and proliferate during the brewing process (i.e., wort, fermenting wort, beer after 

filtration or in packaged beer) [64]. Bacterial contamination could render the final beer product unfit 

for consumption due to visible and perceptible defects accompanied with spoilage. In general, 

bacterial growth and the spoilage ability is strain-dependent, but also depends on the beer type [30]. 

For example, beer types characterised by an elevated pH, low ethanol and hop content, the so-called 

“weak beers” are more prone to bacterial spoilage compared to strongly hopped beers [28]. Based 

on their spoilage ability, the beer spoilage bacteria are classified into five categories, namely 

obligate, potential and indirect beer spoilage bacteria, the less harmful indicator and latent bacteria 

[1, 12] (TABLE 1.1). Traditionally, these bacteria are further divided into two groups based upon 

their reaction to Gram-staining (FIG 1.3). In the next section, the main characteristics and their 

presence throughout the entire brewing process of the taxonomic heterogeneous group of beer 

spoilage bacteria are elaborately discussed (FIG 1.1, FIG 1.4). 

 

 

FIG 1.3. Classification of the most important beer spoilage bacteria based on their Gram-stain result and cell morphology. 
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TABLE 1.1. The classification of the most important beer spoilage bacteria into five categories based on their beer spoilage ability [12, 26, 29, 64-67]. 

Obligate beer spoilage bacteria   

Growth without extended adaptation time in strong beer types (i.e., pH < 4.3, hop content of > 30 IBU, low 
oxygen and nutritional content and high alcohol) resulting in profound off-flavours, precipitates and turbidity. 

Lb. brevis, Lb. lindneri, Lb. buchneri, Lb. coryniformis, Lb. curvatus, Lb. casei, Lb. paracollinoides, 
Lb. plantarum, Lb. rossiae, Lb. backii, Lb. casei, P. damnosus, Pe. cerevisiiphilus, Pe. frisingensis, 
M. cerevisiae, S. lacticifex  

Occur throughout the entire brewing process. 

Potential beer spoilage bacteria   

Growth occurs after extended adaptation time in beer characterised by high pH and oxygen content, low IBU 
and alcohol content, low degree of fermentation (i.e., high residual fermentable extract). Lb. acetotolerans, Lb. amylolyticus, Lb. collinoides, Lb. harbinensis, Lb. malefermentans, 

Lb. parabuchneri, Lb. paracasei, Lb. paucivorans, K. kristinae, P. inopinatus, P. claussenii, 
 P. acidilactici, Z. raffinosivorans, Zm. mobilis Their adaptation to the beer environment and consequent proliferation in beer will transfer them to the obligate 

beer spoilage bacteria. 

Indirect beer spoilage bacteria   

Do not grow in the final beer, but may proliferate at certain stages of the brewing process (e.g., in pitching yeast 
cultures, early fermentation stage, etc.) resulting in off-flavours eventually carried to the final product. O. proteus, R. aquatilis, other Enterobacteriaceae (i.e., Klebsiella spp., Citrobacter spp., 

Enterobacter spp., Pantoea spp., Serratia spp., Escherichia spp., etc.), Clostridium spp., 
Z. paucivorans Beer intermediates characterised with a low CO2 content high pH and residual fermentable extract; especially 

primed beer types. 

Indicator bacteria   

Do not grow in beer, appear as a consequence of insufficient cleaning or errors in the brewing process  
(e.g., leakage, biofilm formation in piping system). A. pasteurianus, A. cerevisiae, G. oxydans, Pantoea spp., Klebsiella spp. 

Presence is often accompanied with obligate and potential beer spoilage bacteria. 

Latent bacteria   

Sporadically encountered (for example contaminated process water or construction work) and may survive 
certain stages in the brewing process. 

Spore forming bacteria (i.e., Clostridium spp. and Bacillus spp.), Enterobacteriaceae 

If they are more frequently encountered, they should be categorised as indicator bacteria. 

IBU = International Bitterness Units; Lactobacillus (Lb.), Pediococcus (P.), Pectinatus (Pe.), Megasphaera (M.), Selenomonas (S.), 
Kocuria (K.), Zymophilus (Z.), Zymomonas (Zm.), Obesumbacterium (O.), Rahnella (R.), Acetobacter (A.), Gluconobacter (G.) 
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1.4.1 Gram-stain positive beer spoilage bacteria 

The most important Gram-stain positive beer spoilage bacteria are the lactic acid bacteria (LAB). 

Beer spoilage by these microorganisms leads to enhanced turbidity and ropiness due to increased 

production of hazes and extracellular polysaccharides [3, 68]. Moreover, spoilage by LAB causes 

unpleasant changes to the final beer product such as increasing sourness (production of lactic and 

acetic acid) and the formation of atypical off-flavour compounds, such as diacetyl (2,3-butanedione) 

and acetoin (3-hydroxbutanone) [14, 69]. The production of diacetyl is a serious problem as its 

threshold in beer is low (~ 0.15 ppm) and has, compared to lactic acid (threshold of 300 ppm in beer), 

a bigger impact on the lighter flavoured beers in which this characteristic aroma and taste is highly 

undesirable [14, 70]. Most LAB species are intrinsically resistant to ethanol, especially at ethanol 

levels found in finished beers (0.5 to 14% v/v ethanol). Furthermore, these species are mostly 

acidophilic and prefer environments with higher CO2 and lower O2 levels [18]. Some LAB strains 

resist temperatures above 70°C for quite a long time and are thus able to survive the mashing 

process [12], and other stages of the brewing process [8, 11] (FIG 1.1). The none-spore-forming, non-

motile and catalase-negative genera Lactobacillus and Pediococcus are recognised as the most 

hazardous beer spoilage bacteria, since these bacteria are responsible for approximately 60 to 70% 

of microbiological incidents [24, 28, 49].  

The obligate heterofermentative Lactobacillus brevis is the most encountered obligate beer spoiling 

LAB through the entire brewing process and is even found in air and water supplies of the brewery 

[12, 28, 71, 72] (TABLE 1.1). Lb. brevis grows optimally at 30°C and pH 4-6 [29] and causes super-

attenuation due to its ability to ferment starch and dextrines [64, 70]. This species is physiologically 

versatile and well-studied within the brewing microbiology. It served for instance as a model 

organism to study the mechanisms of hop resistance [14, 44, 45, 50, 51, 53]. Cell morphologies 

among Lb. brevis strains can differ significantly, but the tendency to form long rods (up to 50 µm) 

seems to be a shared characteristic [12].  

Lactobacillus lindneri is the second major obligate beer spoiling LAB [28, 73, 74]. It grows in high hop 

concentrations (25-45 EBC bitter units), at lower temperatures (19-23°C) [14, 73, 74], survives 

thermal treatment (up to 17 pasteurisation units), low pH (around 3.8), high ethanol concentrations 

(up to 7-9% v/v), and is even highly tolerant against acid disinfection agents [12, 70, 73, 74]. Lb. 

lindneri is hard to culture in defined media, but grows more rapidly in lager beer, in which increasing 

cell lengths (up to 20 µm) are observed [22, 70, 73, 75, 76]. Yet, Lb. lindneri strains are known to pass 

through final filtration [28]. Strains of this species are mostly primary contaminants; and have also 

been isolated from different areas in the brewing environment (i.e., yeast propagators, fermentation 
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rooms, storage cellars, bright beer tanks, filtration area, filling lines) [73, 74]. In contrast with other 

LAB, all Lb. lindneri strains are capable of spoiling beer [14]. However, Suzuki et al. [33] generated 

the first hop-sensitive, non-spoiling variant of Lb. lindneri via serial subculturing in MRS broth. 

Three facultative heterofermentative, weak beer spoiling isolates were collected from a Japanese 

brewery by Funahashi et al. [67]. At that time, none of these isolates (LA-6 as representative strain) 

showed any significant homology to the other established Lactobacillus spp. [67]. Back et al. [77] 

found however a high similarity with isolates previously collected from spoiled lemonades and 

consequently described them as the novel species, Lactobacillus perolens. In 2005, research by 

Miyamoto et al. [78] revealed that the former isolates should be assigned to Lactobacillus harbinensis. 

Additional experiments could, unfortunately, not be performed as none of the isolates were initially 

deposited in international culture collections. 

In the study of Funahashi et al. [67], a second strain set comprising three obligate 

heterofermentative isolates (LA-2 as representative strain) was recovered. They seemed closely 

related to Lactobacillus collinoides, which is generally not regarded as a beer spoilage bacterium [54]. 

However, the isolates collected by Funahasi et al. [67] possessed a strong beer spoilage capacity. In 

2004, these isolates were taxonomically revised and assigned to the novel described species 

Lactobacillus paracollinoides [76]. Lb. paracollinoides (formerly known as “Lb. pastorianus” in the 

brewing industry [70]) strains exhibit a strong beer spoilage ability [33] and are hard-to-culture upon 

primary isolation from brewery environments due to their profound adaptation to beer [37, 75, 79]. 

Other obligate beer spoiling lactobacilli, Lactobacillus casei and Lactobacillus coryniformis, are 

facultative heterofermentative LAB which occur especially in weakly hopped beers (e.g., wheat 

beers) [12] and sweet wort [80]. These secondary contaminants spoil beer by haze and sediment 

formation, and by the production of copious amounts of diacetyl. In 2006, a novel 

homofermentative, obligate beer spoilage species “Lactobacillus backi”, closely related to Lb. 

coryniformis, was described based on three isolates retrieved from different types of spoiled beer 

(i.e., lager, pilsner and wheat beer) [81]. These strains are capable to grow at 15°C and are highly 

resistant to hop compounds (up to 32 EBC bitter units) [81]. “Lb. backi” remained taxonomically 

invalid until it was included in the Approved List of Bacterial Names as Lactobacillus backii in 2013, 

when the species was validated by Tohno et al. [82]. Over the last couple of years, this spoilage 

bacterium has been increasingly reported from the brewing environment [28, 80, 83]. Furthermore, 

it was more recently recovered from beer bottles found in a 170 year old shipwreck discovered in the 

Baltic Sea off the Åland Isles, together with Lactobacillus malefermentans [84]. The latter has also 

been isolated from a top fermented beer [85].  
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Several other Lactobacillus spp. were recently correlated with beer spoilage. In 2010, the novel 

species Lactobacillus paucivorans was collected from a beer storage tank, but classified as a potential 

beer spoiler only because of its inability to grow in high iso-α-acids concentration (> 5 ppm) [66]. The 

acetic acid tolerant Lactobacillus acetotolerans was isolated from Chinese beer, characterised by low 

hop and alcohol content, but also from a German non-alcoholic beer and from conventional wheat 

beers [71]. Lactobacillus rossiae was recovered from a German yeast culture containing wheat beer 

and has been isolated from biofilms in the filling hall [83].  

Strains of other LAB species such as Lactobacillus amylolyticus, Lactobacillus buchneri, Lactobacillus 

curvatus, Lactobacillus fermentum, Lactobacillus fructivorans, Lactobacillus parabuchneri, 

Lactobacillus paracasei, Lactobacillus paraplantarum and Lactobacillus rhamnosus have also been 

reported to have comparatively weak to strong beer spoilage ability [14, 21, 29, 64, 80, 86-92] 

(TABLE 1.1).  

The thermo-tolerant, malt-associated Lactobacillus delbrueckii can survive flash and bottle-

pasteurization temperatures and results in a weak growth and disturbing haze formation in hopped 

beers [12, 29]. Lb. delbrueckii has been encountered as a contaminant of sweet wort [29], but was 

also applied in the biological acidification of malt, mash or wort [4, 9]. The potential as an obligate 

beer spoilage bacterium is for Lactobacillus plantarum less common than the species described 

above. Yet, in weakly hopped beers (e.g., wheat beers) Lb. plantarum can cause distinct off-flavours 

(i.e., diacetyl) [12, 80], but nevertheless, Lb. plantarum has been applied as a starter culture in 

steeping water during malting to enhance malt quality [4, 9, 93].  

The homofermentative beer spoilage species belonging to Pediococcus are micro-aerophilic and 

have an optimal growth temperature of 22 to 25°C. Pediococcus spp. are, as compared to 

Lactobacillus spp., more common contaminants at the end of the fermentation or during the storage 

of the final beers and are particularly present in beers fermented at lower temperatures [13]. They 

are capable of proliferating very well in beer and spoil the beer by the concomitant production of 

lactic acid, ropiness and copious amounts of diacetyl [64, 94].  

Pediococcus damnosus is the most encountered obligate beer spoiling Pediococcus species [8, 12], 

prevailing in late fermentation stages, in pitching yeast cultures and final beer products [12, 14, 94] 

(TABLE 1.1). Haze formation is less common, as the cells tend to settle down rather quickly and 

consequently form sediment deposits at the bottom [28]. Strains of this species were recently 

recovered together with Lactobacillus spp. from beer bottles found in a 170 year old shipwreck 

discovered in the Baltic Sea off the Åland Isles [84]. 
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The potential beer spoiling Pediococcus inopinatus grows in beer characterised by a high pH and low 

ethanol and hop contents [58] (TABLE 1.1). Strains of this species frequently contaminate the 

pitching yeast, and are rarely encountered in other stages of fermentation [29, 95]. Contaminations 

by either P. damnosus or P. inopinatus extend the time needed for fermentation and the produced 

beers contain high diacetyl concentrations [8]. Ropiness in beers has been attributed to pediococci 

but also depends on the presence of particular fermentable sugars [96]. Slime production has been 

associated with P. damnosus, but also with Pediococcus acidilactici and Pediococcus claussenii [92, 97]. 

Pediococcus pentosaceus and P. acidilactici have never been reported to cause any defects in finished 

beer [14], but have been isolated from malts and are used in the biological acidification of mash 

and/or wort [4, 9, 64, 71, 90]. Compared to P. pentosaceus (able to ferment maltose at temperatures 

up to 44°C), P. acidilactici grows at temperatures above 50°C, but is unable to ferment maltose 

resulting in a weaker growth in wort [98, 99]. P. claussenii has also been isolated from the brewing 

environment [100]. Pittet et al. [92] sequenced the complete genome of a slime-producing P. 

claussenii persisting in the brewing environment probably due to its capability in biofilm formation. 

Next to the LAB, the potential beer spoiling Kocuria kristinae (formerly known as Micrococcus 

kristinae) is also a Gram-stain positive beer spoilage bacterium, growing in beer characterised by low 

ethanol and hop content and a pH above 4.5 [8] (TABLE 1.1). Its spoilage capacity is characterised 

by a slight haze formation and the production of an atypical fruity estery off-flavour [12]. 

Other Gram-stain positive non-LAB beer spoilage species are Clostridium spp. and Bacillus spp. 

(TABLE 1.1). Their heat resistant spores can enter the brewery and subsequently survive the 

mashing and boiling steps in the brewing process [101]. Generally, these bacteria are hop-sensitive 

and are unable to grow in low pH environments, but growth can occur in improperly treated wort 

and results in unwanted proteolytic activity and a range of detrimental metabolites (i.e., butyric acid, 

caproic acid, propionic acid and valeric acid and sulphur compounds) [65]. Certain Bacillus spp. were 

isolated from two types of home-brewed beers and were capable of growing in commercially 

available beer [60]. Further research revealed that these isolates carried horA, a marker gene 

correlated with hop resistance [14]. Spoilage by Bacillus spp. may lead to an excessive acidification 

and N-nitrosamine production, as these strains are able to reduce nitrate to nitrite [6]. Subsequently, 

the nitrite reacts with the amines and amides present in the wort to form N-nitrosamines [13, 95, 102] 

which are of serious concern when their legal levels (20 µg/L) are exceeded [8, 26, 103]. Bacillus 

coagulens has been reported to produce copious amounts of lactic acid in sweet wort kept at 55 to 

70°C for more than two hours [8]. Clostridium spp. have been isolated from wort as well and also 

from other brewery intermediates [26]. 
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1.4.2 Gram-stain negative beer spoilage bacteria 

1.4.2.1 Enterobacteriaceae 

Enterobacteriaceae are indirect beer spoilage bacteria prevailing mostly in pitching yeast, cold wort 

and early stages of fermentation [6, 102] (TABLE 1.1, FIG 1.1). Although they do not thrive well in 

the adverse conditions during fermentations (i.e., low pH and high alcohol concentration), they 

persist in dormant state and revive in the recycled pitching yeast and subsequently cause spoilage in 

the next fermentation batch [6, 80]. Therefore, microbiological quality screening of the pitching 

yeast cultures is of utmost importance and acid washing of the contaminated yeast culture prior to 

pitching is traditionally advised to remove the spoiling bacteria [13, 20, 95]. Enterobacteriaceae have 

not only been isolated from pitching yeast, but also from the brewing environment such as the plate 

of mash and lauter vessels [26]. Both examples bare an inadequate cleaning management [13, 80].  

Growth and spoilage by Enterobacteriaceae are facilitated by the presence of high oxygen levels and 

relatively high pH (5.0 to 5.5; growth stops at pH < 4.3) [29]. They decrease the rate of fermentation 

by directly competing with the brewer’s yeast for nutrients, resulting in a lower fermentation degree 

[104]. Certain metabolites produced by these bacteria will negatively affect the final flavour and 

aroma profile of the beer, resulting in a parsnip-like or fruity flavour [103], and sulphuric (dimethyl 

sulphide and dimethyl disulphide) or phenolic (guaiacol) off-flavours [13, 29]. These bacteria do not 

produce any turbidity or ropiness, but they can produce diacetyl, acetaldehyde, fusel alcohols and 

acetic acid [12, 29]. Unacceptable levels of nitrite are accumulated under anaerobic conditions, as 

these facultative anaerobes are able to reduce nitrate to nitrite [29]. Subsequently, N-nitrosamines 

can be formed [13, 95, 102] which are of serious concern when their legal levels are exceeded [8, 26, 

103]. The presence of biogenic amines in beer is also linked to contaminations by Enterobacteriaceae 

during the early stage fermentations as a result of the decarboxylation of free amino acids [8]. 

Moreover, certain Enterobacteriaceae are known to harbour strains that are pathogenic for humans 

[105]. 

Obesumbacterium proteus is a noted contaminant of pitching yeast slurries at a level of 1 cell per 100 

yeast cells [13, 20, 103, 104] (FIG 1.1). During early fermentation O. proteus grows rapidly causing a 

drop in the fermentation rate which leads to an inferior product of high specific gravity and pH [102, 

103]. O. proteus tolerates ethanol concentrations up to 6% v/v and is responsible for increased levels 

of organo-sulphur compounds, various alcohols and diacetyl which are thought to contribute to the 

parsnip-like smell of O. proteus contaminated beer [103]. Rahnella aquatilis also grows well in wort 

and produces an excessive amount of vicinal diketones (i.e., diacetyl) in beer [8]. Other genera 

belonging to the Enterobacteriaceae have been frequently encountered in the brewery as well, e.g., 
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Citrobacter, Enterobacter, Pantoea, Serratia, Klebsiella and Escherichia [6, 13, 65, 80, 106]. However, 

hygienic standards and equipment have dramatically changed over the past 40 years, and 

Enterobacteriaceae are now less prevalent [6, 80].  

1.4.2.2 Acetic acid bacteria 

Acetic acid bacteria (AAB) have been isolated from the brewing environment, as these bacteria are 

resistant to hop compounds and to high levels of ethanol (up to 13% v/v) [8, 10, 43]. These bacteria 

are strict aerobic and normally do not persists in wort or beer once anaerobic conditions arise during 

fermentation and after packaging [6, 107] (FIG 1.1). Nevertheless, they may contaminate packaged 

beer when air is present in the headspace of bottles as a result of faulty packaging [8]. Growth of 

beer spoiling AAB under micro-aerophilic conditions has been reported [89, 108]. Moreover, AAB are 

frequently encountered in and around beer dispensing systems [10, 26]. 

Beer spoilage by AAB is characterised by the production of acetic acid (converted from ethanol), off-

flavours (e.g., oxidation of glycerol to dihydroxyacetone), turbidity and ropiness [107]. Optimal 

growth is achieved at 25-30°C and at pH 5-6, but some strains can develop at pH values as low as 3.6-

3.8 [101]. Slime forming AAB are considered to be primary colonisers in brewery plant’s biofilms, 

contributing to the favourable conditions for other beer spoilage bacteria as they reduce oxygen 

levels and provide an acidic environment [1, 25, 27].  

Both Acetobacter spp. and Gluconobacter spp. are AAB which are ubiquitously present in the brewing 

environment (i.e., in the mash, wort, brewing liquors and adjuncts, in the pitching yeast and in 

packaged beer) [8, 10]. Acetobacter spp. thrive in alcohol rich niches whereas Gluconobacter spp. 

prefer sugars as carbon source [8]. Acetobacter spp. oxidize ethanol to acetic acid and subsequently 

acetic acid to CO2 and H2O, while Gluconobacter spp. are not able to perform this latter oxidation 

step [107, 109-111]. The most frequently encountered AAB in beer and the brewery environment are 

Acetobacter aceti, Acetobacter cerevisiae, Acetobacter pasteurianus and Gluconobacter oxydans [6, 64]. 

However, improved brewing technology reduced the oxygen levels in packaged beer, resulting in a 

decreased threat of these aerobic beer spoilage bacteria for the brewing industry. Instead, the 

Gram-stain negative strict anaerobic bacteria have emerged [8]. 

1.4.2.3 Strict anaerobic beer spoilage bacteria  

Together with the increased production of non-pasteurised beer and with the improved bottling 

technology, which results in a reduced oxygen content in packaged beers, the strict anaerobic beer 

spoilage bacteria have surfaced over the past few years [14, 38, 64, 112-114]. Compared to other 

frequently encountered beer spoilage bacteria (e.g., Pediococcus and Lactobacillus), contamination 
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with these strict anaerobes is much more serious as they produce offensive odours and excessive 

turbidity in packaged beers [1, 24]. The following strict anaerobic genera have been associated with 

beer and brewery environment, i.e., Megasphaera, Pectinatus, Selenomonas and Zymophilus.  

Both Megasphaera spp. and Pectinatus spp. are common spoilers of finished beers characterised by 

pH 4.1-4.3 and ethanol concentration lower than 5.2% v/v [28, 114]. They grow between 15 to 40°C, 

with a growth optimum of 30°C and are typical secondary contaminants that prevail in the filling and 

packaging hall [28, 39]. Both species are tolerant to hop compounds and can grow in beer with 

bitterness ranging between 33 to 38 EBC bitter units [24]. 

Pectinatus spp. have been correlated to 20-30% of the bacterial spoilage incidents, and spoil beer by 

producing considerable amounts of H2S (rotten egg smell), acetoin, methyl mercaptan, acetic acid 

and propionic acid [8, 28, 29, 112, 115]. Hence, beer contaminated with Pectinatus spp. does not only 

show massive sedimentation and turbidity, but also unpleasant flaws in odours and taste [28, 114]. 

The true biological origin of this species is not known, but they have been isolated from wort, from 

lubrication oil mixed with beer and water, in drainage and water pipe systems, in the air and on the 

floor of the filling hall, in steeping water of malt before milling, etc. Altogether it is suggested that 

water is most likely the source of contamination and that some of these species are rather oxygen 

tolerant [24, 112, 116]. Helander et al. [117] found high similarities between the lipopolysaccharide 

structure of Pectinatus and that of plant-associated bacteria, suggesting that Pectinatus entered the 

brewing environment via the various plant materials utilised (e.g., cereals, hops, rice). Pectinatus 

cerevisiiphilus grows faster than Pectinatus frisingensis strains, yet the latter is more resistant to 

ethanol [29, 118, 119]. Pectinatus haikarae which has so far only been associated with low-alcohol 

beer has also been isolated from brewery bottling plants [120]. The latter species has a preference 

for lower temperatures; and produces, unlike Pe. cerevisiiphilus, catalase which may enhance survival 

in oxygenic niches in the brewery [16].  

Megasphaera spp. spoil beer less frequently compared to Pectinatus spp. [12] and spoilage leads to 

turbidity and production of H2S, CO2, H2 and smaller amounts of acetoin [8]. Megasphaera spp. will 

also produce acetic acid, butyric acid, propionic acid, caproic acid and valeric acid [112, 120-122]. 

Megasphaera cerevisiae is less acid and alcohol-tolerant compared to Pectinatus spp. as it is already 

restricted in growth with pH < 4.5 and ethanol concentration above 2.8% v/v [112]. Other 

Megasphaera spp., such as Megasphaera paucivorans and Megasphaera sueciensis are also correlated 

with beer spoilage as they were originally isolated from spoiled Italian and Swedish beer, 

respectively [120]. 
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Spoilage induced by Zymophilus spp. results in turbidity and production of acetic acid and propionic 

acid [13, 112]. The potential beer spoilage bacterium Zymophilus raffinosivorans spoils only beer 

characterised by high pH values (> 5) and low ethanol concentrations (< 5% v/v) and has also been 

isolated from pitching yeast [8, 64] (TABLE 1.1). Zymophilus paucivorans, on the other hand, is not 

regarded as a beer spoiling species due to its inability to grow below pH 6 [112]. Selenomonas 

lacticifex is also considered to be a potential beer spoilage bacterium, as it has been recovered from 

brewer’s pitching yeast but so far never from beer directly [29] (FIG 1.1, TABLE 1.1). However, 

artificial “forcing tests” prove that S. lacticifex purified from contaminated pitching yeast culture was 

able to grow in beer [8] causing turbidity and producing acetic acid, lactic acid and propionic acid 

[112].  

1.4.2.4 Zymomonas 

The facultative anaerobic species Zymomonas mobilis subsp. mobilis has been recovered frequently 

from ales and primed beers [6]. The increased occurrence of this species in ale breweries is thought 

to arise from the use of invert sugars or glucose syrups as priming agent in beer [8]. The potential 

beer spoiling Zm. mobilis subsp. mobilis is unable to ferment maltose and maltotriose, but ferments 

glucose, fructose and sucrose [10, 123] (TABLE 1.1). The species spoils beer by increasing turbidity 

and producing high levels of acetaldehyde, hydrogen sulphide and trace amounts of dimethyl 

sulphide, acetoin, glycerol, acetic acid and lactic acid [3, 13, 26, 123]. This species is not only acid 

tolerant [13], but survives ethanol concentrations up to 13% v/v (produced in high gravity brewing) 

and is proven to be metabolically active even up to 15% v/v ethanol [121, 124]. This high ethanol 

tolerance emphasises the importance of the species in the brewing environment. In the UK, 

contaminations with Zymomonas sp. have been associated with an inadequate cleaning of kegs and 

casks in ale breweries [13]. Zm. mobilis subsp. mobilis has never been recovered from lager breweries, 

probably due to lower fermentation temperatures (8-12°C) and their stringent carbohydrate 

requirements [64]. 

 



 

 

 

 

FIG 1.4. The taxonomic classification of the main beer spoilage bacteria. 
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2 Current approaches for the detection and/or identification of beer spoilage 

bacteria 

Beer has been generally considered as a beverage with a relatively high microbiological stability 

(CHAPTER 1). Nevertheless, bacteria can prevail and spoil not only brewery intermediates (e.g., wort, 

brewery additives, pitching yeast) but also packaged beer products. Therefore, quality control is 

necessary. This control step has however some drawbacks, such as the lengthy storage of the final 

products, resulting in increasing brewing costs and demands for more storage capacity [118]. 

Another disadvantage is that beer products are sometimes already released to the market before 

microbiological test results become available [8]. So should bacterial spoilage be detected after 

release, the products have to be recalled from the market resulting in serious financial and 

commercial damage for the respective brand [26, 49].  

Beer spoilage bacteria adversely affect the brewing process and final beer quality [8]. Hence rapid, 

simple, sensitive and reliable detection methods are needed to control and minimise bacterial 

spoilage in the brewery [58]. Besides early detection, species level identifications are necessary to 

assist the determination of spoilage capability, to track the source of contamination and finally, to 

prevent future spoilage [1, 45, 125, 126]. Currently, beer spoilage bacteria are primarily detected 

using selective isolation media, an approach that is time-consuming and neither sufficiently 

sensitive nor specific enough [23, 28]. Furthermore, subsequent characterization and identification 

of spoilage bacteria is mostly carried out via phenotypic tests, but these tests are again time-

consuming and lack specificity [12]. Therefore, a range of different culture-dependent and culture-

independent detection and/or identification techniques have been developed and applied in the 

brewing industry (TABLE 2.1). These include ATP bioluminescence, the use of monoclonal 

antibodies, the application of species-specific oligonucleotide probes, ribotyping, PCR-based 

detection and fingerprinting methods and sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) analysis of whole-cell proteins. All these different methods are 

elaborately discussed in this chapter, but their main characteristics and major benefits and 

drawbacks are listed in TABLE 2.1. 
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2.1 Detection of beer spoilage bacteria via growth on selective and non-selective 

media 

The most common detection method is the traditional incubation of beer and brewery samples onto 

selective and non-selective culture media [26, 64, 79, 127-129]. Different types of culture media have 

been developed, yet not a single medium can be used to detect all potential beer spoilage bacteria 

at the same time [64, 65, 121, 127-134]. This detection approach is rather time-consuming as it 

usually takes more than a week to observe visible colonies on agar plates or turbidity in enrichment 

broths [14, 28, 135]. Fastidious beer spoiling bacteria are often reluctant to grow at laboratory 

conditions due to their extensive lag phase, caused by low cell concentration, sub-lethal damages 

and/or extensive growth requirements [79, 128, 129]. Moreover, some bacterial cells are too 

excessively adapted to their stressful environment (i.e., starvation, environmental compounds, and 

extreme temperatures), rendering them sometimes viable but nonculturable [26, 79]. With this 

time-consuming approach, most beer products are already released for sale before the 

microbiological test results become available.  

New detection and/or identification methods have been developed and are discussed below. 

However, these techniques need an enrichment step (approximately 24-72 hours) in order to 

overcome the cell detection limit [129]. Hence, the search for the optimal liquid cultivation medium 

that allows a more efficient enrichment and thereby a decrease in time of analysis is ongoing [16, 

128, 129].  

Strains isolated from contaminated beer or brewery samples are often reinoculated and 

subsequently incubated in different types of beer in order to determine their beer spoilage capability 

[14]. Growth during these so-called ‘forcing tests’ can take up to one month or even longer [56]. 

Alternatively, hop-gradient agar plates with additional ethanol mimicking the beer environment, 

allow a more comprehensive and accurate culture-dependent determination of the beer spoilage 

capability of the obtained isolates [136]. 

 

2.2 Phenotypic features for identification of isolated spoilage bacteria 

Characterization and identification of spoilage bacteria can be carried out via phenotypic tests (e.g., 

Gram-staining, cell morphology, carbohydrate assimilation or fermentation pattern analysis). Yet, 

such tests are again time-consuming, lack specificity and the interpretation is often difficult and 

inconclusive [12, 74, 87, 94, 95, 122, 137]. In practice, most of the beer spoilage bacteria grow very 

weakly and slowly, making the test results based on growth response unreliable [74]. Moreover, 
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plasmid loss due to environmental changes may cause alteration to the phenotypes, as many 

plasmids code for carbohydrate utilization pathways [95].  

Another method to identify beer spoilage bacteria is the extraction and analysis of species-specific 

metabolic end-products, including volatile and non-volatile organic acids, from a liquid enrichment 

culture [138]. As such, Suihko and Haikara [122] detected strict anaerobic strains based on their 

production of short-chain fatty acids (e.g., propionic acid, butyric acid, valeric acid) using gas 

chromatography (GC) analysis. The production of diagnostic fatty acid methyl ester (FAME)-profiles 

have also permitted the identification of certain beer spoiling LAB species [139]. This technique 

requires 107 to 1010 CFU/mL sample in order to extract enough fatty acid for analysis, making this 

technique more suitable for bacterial identification instead of early detection [139].  

 

2.3 ATP bioluminescence  

The detection of ATP, the direct energy source of living cells, is a common tool for hygienic 

monitoring (i.e., hygienic surface swabbing of process machinery, pipelines, water analysis) and in a 

lesser extent for product quality control in the brewing industry [140, 141]. The emission of light via 

the luciferin/luciferase assay is directly correlated to the amount of ATP present in the sample [140, 

142]. ATP is released upon cell death which makes its detection in a sample indicative for the 

presence of viable cells at the time of analysis [13, 142]. However, false-positive ATP signals derived 

from beer matrix, culture medium and/or other background compounds interfere with the analyses 

[24, 36, 143, 144]. Nevertheless, the measurement of ATP bioluminescence has been 

commercialised and is frequently applied in the brewing industry worldwide for the detection of all 

brewery contaminants [36, 65, 140, 143]. For example, the detection of bacterial ATP-yielding 

abilities in beer can be used as a rapid pre-screening method to detect potential beer spoilage 

bacteria isolated from the brewing environment [91]. 

 

2.4 Immuno-based approaches 

The use of monoclonal antibodies (MAbs) has been investigated as an alternative detection and/or 

identification tool for beer spoilage bacteria [68, 145]. Interaction between group- or species-specific 

MAbs and targeted antigens is rapidly detected using a membrane-based fluoroimmunoassay, a 

chemiluminescence enzyme immunoassay (CLEI) or an enzyme-linked immune sorbent assay 

(ELISA) [143, 145-150]. For example, Whiting et al. [148] reported a drastic decrease in detection 
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limit compared to conventional methods when a membrane-based fluoroimmunoassay was applied 

for the detection of Pediococcus spp. in pitching yeast slurries. March et al. [145], on the other hand, 

reported that CLEI (using MAb LA-4) successfully detected 18 out of 19 LAB isolates (obtained from 

six different and distant Spanish breweries) after an enrichment step of 48 h. The application of 

specific MAbs was also successful in the determination of the spoilage capacity of isolated 

contaminants, as their targeted antigens were proven to be related to beer spoilage capability [143, 

147, 149]. 

These immunological approaches struggle with false-positive background signals due to non-

specific binding of MAbs and cross-reactions with closely related species [150, 151]. This method is 

therefore ill-suited for high-throughput analysis and is mostly limited to a single or small group of 

species. Moreover the development of group- and/or species-specific MAbs is rather complicated, 

very expensive and time-consuming [151]. 

 

2.5 Genotypic detection and/or identification methods 

2.5.1 Oligonucleotide probe-based approaches 

The use of group- and species-specific oligonucleotide probes based on a genomic target site allows 

detection and/or identification of beer spoilage bacteria [24, 73, 118, 152-154]. Beimfohr and Snaidr 

[118] designed over 440 different oligonucleotide probes for the detection of beer spoiling 

Lactobacillus spp., Pediococcus spp., Megasphaera spp. and Pectinatus spp. using fluorescence in situ 

hybridization (FISH) analysis. The main advantage of this technique is that the probes interact 

directly with the target nucleotide sequences inside the cell without the need of a prior extraction 

and PCR step [49, 151, 155]. Different nucleotide sites can be targeted, but RNA sequences are 

preferred due to their ubiquitous distribution and abundant presence in viable cells [118, 151, 156]. 

This early-stage-detection significantly decreases the time of analysis even when a primary 

enrichment step is used [75, 151]. The FISH analysis approach was also used in microbial diversity 

studies of biofilms formed on conveyors in a brewery’s filling and packaging hall [25]. Asano et al. [75] 

coupled the microcolony (small colonies that consist of at least eight closely associated cells) 

method with FISH allowing the detection of ‘true’ beer spoilage bacteria. Bacterial cells are 

entrapped on membrane filters and subsequently incubated onto advanced beer spoiler detection 

(ABD) medium prior to FISH analysis. As such, specific detection of beer spoiling LAB has been 

obtained [75, 79]. This approach also leads to a more accurate depiction of CFU present compared to 

conventional culturing methods [37, 157].  
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The RNA-based sandwich hybridization assay (SHA) permits detection of a large group of beer 

spoilage Lactobacillus spp. and Pediococcus spp. present in yeast slurries using only four group-

specific probes [152]. The VIT® (Vermicon identification technology)-Bier plus Lactobacillus brevis-kit 

(Vermicon®) allows the detection of all known beer spoiling LAB and simultaneously allows the 

identification of Lactobacillus brevis and Pediococcus damnosus. The VIT®-Bier 

Megasphaera/Pectinatus kit (Vermicon®) on the other hand detects both Megasphaera cerevisiae and 

Pectinatus species. Lastly, the commercialised HybriScanTM detection kit (Fluka Analytical, [158]) is 

capable to detect 25 beer spoilage species starting from an enriched sample. This kit is based on 

colorimetric SHA, using only two different group-specific probes targeting the 16S rRNA gene [129, 

158]. This approach is however ill-suited for species-level differentiation and only a limited group of 

beer spoilage bacteria is targeted [158]. Finally it should be noted that all methods mentioned above 

require specific imaging systems to confirm and/or to visualise hybridization results [118, 156].  

 

2.5.2 PCR-based detection and/or identification methods 

Numerous PCR-based methods were introduced for the detection and/or identification of beer 

spoilage bacteria [33, 75, 125, 159]. Group- or species-specific primer pairs were developed to 

amplify certain targets of interest, mostly the 16S rRNA gene or the 16S – 23S rRNA gene internal 

transcribed spacer (ITS) region [54, 56, 63, 125, 160, 161]. However, the distinction between beer 

spoiling and non-spoiling strains is impossible using these types of targets [33]. The detection of 

genes involved in hop resistance (e.g., horA, horC, hitA, ORF5) has proven to be successful in the 

determination of the beer spoiling capability of LAB strains [33, 35, 45, 49, 59, 60]. Such species-

independent detection allows the discovery of new and true beer spoilage species that emerge 

occasionally in the brewing industry [33, 45, 60]. It is noted that these plasmid-bound genes may get 

lost after serial subculturing in hop-deprived enrichment medium, eventually leading to 

misinterpretations of the obtained results [61]. Moreover, it remains difficult to discriminate based 

on a single marker gene [35, 162]. Multiplex PCR enables simultaneous detection of different marker 

genes within a single PCR reaction using multiple primer pairs, and thereby also detecting multiple 

beer spoilage species [24, 125, 163, 164].  

Quantitative PCR (q-PCR) analysis will not only amplify, but also quantify the DNA target in ‘real-

time’ [57]. Juvonen et al. [113] designed the first group-specific primer pair which targeted the 16S 

rRNA gene of all established strict anaerobic beer spoiling species in a single q-PCR reaction. 

Moreover, the determination of melting point curves (Tm) allows discrimination between the 

obligate (i.e., Megasphaera spp. and Pectinatus spp.) and potential (i.e., Zymophilus spp. and 
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Selenomonas lacticifex) beer spoilage bacteria [113]. The use of different probe markers enables q-

multiplex PCR, allowing group- or species-level differentiation among beer spoilage bacteria [57, 113, 

159]. Multiple commercially available detection and/or identification kits adopted the q-PCR 

principle. For example, the PIKA WeihenstephanTM (Life TechnologiesTM) screening kit detects a 

broad range of spoiling bacteria in a single test. Another illustration is the foodproof® Beer 

Screening Kit (BIOTECON Diagnotics) which detects and mostly identifies about 30 species 

belonging to the genera Lactobacillus, Pectinatus, Megasphaera and Pediococcus within a 24-72 h 

experiment that includes a pre-enrichment step [71, 83]. Similarly, the GeneDisc® Cycler (Pall 

Corporation) detects and identifies about 20 relevant beer spoilage bacteria belonging to the genera 

Lactobacillus, Pediococcus, Megasphaera and Pectinatus using the q-PCR approach [126]. This system 

uses the patented GeneDisc®-plates pre-loaded with specific primers and probes, and the kit is 

supplied together with the ready-to-use PCR master mixture for an easy and simple sample 

preparation [126]. However, a pre-enrichment step of about 24 to 72 hours is necessary for samples 

with a low bacterial load. [71, 126].  

The PCR-based methods are extremely sensitive. Unfortunately, the elimination of several PCR 

inhibitors present in the beer matrix (e.g., polyphenols, proteins, cell debris) is necessary during 

sample preparation (e.g., membrane filtration, centrifugation, washing steps) to prevent false-

negative results [63, 129, 161]. Also, the presence of yeast cells increases the cell detection limit [102] 

so that the adequate removal of yeast cells is advised [152, 165]. Prior to PCR-based analyses, DNA 

must be extracted from the bacterial cells present in sample material [160]. During DNA extraction 

no distinction will be made between viable and dead cells or naked DNA (for example derived from 

LAB used during bioacidification), resulting in inevitable false-positive results [23, 160]. Even after an 

enrichment step, the high load of naked DNA and dead cells present may still lead to false-positive 

results [23]. Therefore, the detection of only viable cells was investigated using RNA-targets in 

reverse transcriptase PCR, but the results were not satisfying (i.e., labour-intensive, high detection 

limit, false-positive results) [23]. Particularly in the brewery quality control, the use of PCR-based 

analysis is limited due to its high costs, complexity, pre- and post-PCR operations, the risk of false-

negative and false-positive results, the need for enrichment, etc. [165, 166]. Moreover, when novel 

beer spoilage bacteria emerge, former detection kits have to be updated (i.e., novel primer pairs and 

probes have to be designed) in order to include these novel species as well [163].  
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2.5.3 Fingerprinting techniques 

Ribotyping is a DNA fingerprinting technique analysing the relative numbers and positions of the 

rRNA genes within the bacterial genomic DNA [74]. Restriction endonuclease digestion of extracted 

genomic DNA is performed, followed by Southern hybridization with probes targeting the rRNA 

genes [97]. Different restriction enzymes (e.g., EcoRI, HindIII, BamHI) generate different sets of DNA 

fragments resulting in various fingerprints [102]. Besides species level identification, this method 

enables strain level differentiation, given the restriction enzymes used [102, 122, 167]. Ribotyping 

has proven its applicability in the characterization of beer spoiling Megasphaera spp., Lactobacillus 

spp., Obesumbacterium spp., Pectinatus spp., Pediococcus spp. and Zymophilus spp. [74, 94, 97, 102, 

122, 137, 167, 168]. A major advantage of such strain level differentiations is that they permit source 

tracking of the respective bacterial contaminants throughout the brewing process and in the 

brewery environment [97, 102, 137].  

Ribotyping is laborious and time-consuming, yet an automated analytical system developed by 

Qualicon (DuPont) facilitated a wider adoption of the technology in brewing microbiology [74]. The 

Qualicon RiboPrinterTM performs all actions automatically starting from DNA extraction to final 

Southern blot data-analysis [97]. The initial investment and running costs are high compared to 

alternative identification methods and it does not allow high-throughput analysis (8 samples in 8 h) 

[137]. The identification of unknowns can be hampered due to an incomplete profile database [74, 97, 

122, 137].  

Other DNA-fingerprinting methods, such as restriction fragment length polymorphism (RFLP) [113] 

and random amplified polymorphic DNA (RAPD) PCR [32, 35, 169] have been successfully applied as 

brewery’s quality control methodologies and serve as an identification and typing tool allowing 

differentiation among beer spoiling and non-spoiling strains. For example, Hayashi et al. [35] were 

able to classify multiple Lactobacillus brevis strains according to their beer spoiling capability using 

RAPD PCR fingerprinting. In total 440 random primers were tested and one primer finally enabled 

distinctions among beer spoiling and non-spoiling strains. The one specific amplified fragment 

included the hitA gene, which is associated with the hop resistance mechanism [35]. Similarly, Fujii 

et al. [56] reported a novel locus that is highly specific for the differentiation of beer spoiling strains 

belonging to Lactobacillus brevis, Lactobacillus collinoides, Lactobacillus coryniformis and Pediococcus 

damnosus based on RAPD PCR fingerprinting analysis. The specific locus is thought to be related to 

the production of the beer spoiling strain specific teichoic acids [56].  

Protein profiling using SDS-PAGE on total protein extracts has also been successfully used to 

identify multiple beer spoilage isolates [26, 74, 94, 170]. Generated SDS-PAGE profiles represent 
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strain-specific gene expression patterns which can be compared with a reference database 

comprising SDS-PAGE profiles to identify at species level or even at infraspecific level [26, 170]. 

Although final profile analyses are straightforward, the sample preparation protocol is rather 

extensive and should be performed very standardised (e.g., preparation of polyacrylamide gels, 

protein extraction of intact cells, electrophoretic separation, staining).   

 

2.6 The ongoing search for improved, alternative methods 

Most of the above-mentioned methods specifically target one or a narrow range of beer spoiling 

species, while others are time-consuming, lack high-throughput capacity and do not facilitate real-

time interventions. Moreover, aspecific interaction may occur between designed primer pairs, 

probes or MAbs resulting in false-negative outcome. Numerous rapid and specific detection 

methods have been investigated; however, none of these methods enables the identification of the 

heterogeneous group of beer spoilage bacteria simultaneously, except for ribotyping and SDS-PAGE 

analysis. At present, rapid, more sensitive and simple detection and/or identification tools with more 

throughput potential and preferably, tackling a broader range of beer spoilage bacteria are still 

being developed. Culture-independent methods, such as metagenome and amplicon sequencing 

analyses, have emerged and enabled the in depth analysis of the microbial diversity, possibly 

including low abundant members and viable but non-culturable bacteria present in complex (food) 

samples [106, 171, 172]. Even though metagenome and amplicon sequencing analyses are becoming 

less expensive, the turnaround time to obtain raw sequences and further processing of the data 

remains low and often requires highly skilled staff [171, 173]. At present, this technique is not yet 

suited for the day-to-day microbiological quality control in brewing industry. 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has 

already been introduced as a high-throughput tool for species level identification in medical, 

environmental and food-related studies [109, 174-181]. The presented study aimed to validate this 

technique as a suitable identification tool for beer spoilage bacteria present in spoiled beer samples 

and brewery intermediates. MALDI-TOF MS and how it serves bacterial identifications will be 

discussed in more detail in the following chapter. 

 



 

 

 

TABLE 2.1. Overview of characteristics, major benefits and drawbacks of currently established methods used for the detection and/or identification of beer spoilage bacteria (BSB). 

  

Method D/I/T Target Sensitivity 
Time of 
analysis 

Benefits Drawbacks References 

G
R

O
W

T
H

 

Culturing on selective and non-
selective growth media

¥
 

D All BSB 
1-5 culturable 
cells/sample 

days - weeks 

Sensitive (when appropriate 
culture condition are applied); 
detection of culturable cells; 
easy-to-perform 

Time-consuming (days up to weeks); often unreliable 
results; viable but nonculturable cells are not detected 

[49, 64, 120, 
126-132, 134] 

A
T

P
 Detection of bacterial ATP 

using the enzyme coupled 
luciferin/luciferase assay 

D All BSB 50 cells/sample <1 h (48 h*)  
Rapid tool for hygienic 
monitoring 

Interference with chemicals (false-negative results); 
expensive read-out system; false-positive results; 
variable sensitivity; poor reproducibility 

[13, 91,  
140, 142] 

IM
M

U
N

O
 

Immuno-based assays using 
MAbs 

D / I 
Species- or 

group-
specific 

3-40 cells/100 
mL sample 

<1 h (48 h*)  
Rapid and sensitive; 
quantification possible 

Expensive and tedious design of MAbs; cross-
reactions & background interferences; expensive 
read-out system; no distinction between viable and 
dead cells 

[36, 143, 145, 
146, 149, 150] 

[179, 180] 

P
R

O
B

E
 

Hybridization of oligonucleotide 
probes onto specific target 
sequences

¥
 

D / I 
Species- or 

group-
specific 

10
2
-10

5
 CFU/mL 

sample; 1-5 CFU 
/ membrane 
(microcolony 

approach) 

3 h (48 h*)  
Without DNA extraction; 
quantification possible; 
detection of viable cells 

Investment costs; enrichment step preferred 
(microcolonies); design of probes; different 
probemarkers for multiplex detection 

[24, 73, 75, 
117, 151-153, 

157] 

P
C

R
 

End-point amplification of target 
DNA sequences 

D / I  
Species- or 

group-
specific 

10
3
-10

8
 cells/100 

mL sample 
3-6 h (48 h*)  

Easy-to-use; detection of 
spoilage capabilities 

Enrichment and/or pre-filtration step needed; DNA-
extraction; PCR-inhibition from beer matrix (false-
negative results); unable to distinguish between viable 
or dead cells; presence of naked DNA (false-positive 
results); post-PCR processing (only for end-time 
PCR); primer development; high investment costs 

[124, 160, 161] 

Real-time amplification and 
quantification of target DNA 
sequences

¥
 

D / I 
Species- or 

group-
specific 

10
4
-10

5
 cells/100 

mL sample 
2-3 h; (24-72 h*) 

Less post-PCR manipulations; 
real-time follow-up; better 
cost/benefit ratio 

[83, 112,  
125, 159]  

F
IN

G
E

R
P

R
IN

T
IN

G
 

Ribotyping, restriction enzyme-
pattern analysis of genomic 
DNA using Southern blot 
analysis

¥
 

I / T All BSB Pure cultures 8 h 

Automation possible; easy-to-
perform; standardised; 
objective identification; typing 
possible 

High investment and running costs; time-consuming; 
pure cultures are required; cumbersome sample 
preparations; identification database-dependent; 
selection of restriction enzymes (ribotyping); no high-
throughput analyses 

[67, 88, 94, 97, 
121, 137, 167, 

168] 

SDS-PAGE protein-profiling I / T All BSB Pure cultures 1-2 days 
Objective identification; gene 
expression-based protein 
patterns 

[26, 94] 

                  
  ¥

commercialised;    

  *time of pre-enrichment of sample;   

  Abbreviations: D, Detection; I, Identification; T, Strain level differentiation possible; MAbs: Monoclonal antibodies   
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3 The application of matrix-assisted laser desorption/ionisation time-of-

flight mass spectrometry in microbiology 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a 

soft mass spectrometric technique which allows the ionization of biomolecules, such as proteins and 

peptides, in a non-destructive manner [90, 184]. MALDI-TOF MS couples sensitivity with accuracy 

and is thus well-suited for the detection of high and low molecular weight proteins that comprise a 

significant portion of the microbial cell [185]. Most microbial proteins detected by MALDI-TOF MS 

are highly abundant in the cytosol, have a high basicity and are of medium hydrophobicity [186]. 

Moreover, this technique has a number of advantages over other mass spectral methods especially if 

used for the analysis of intact microbial cells, such as its ability to detect proteins in a broad m/z 

(molecular weight to charge ratio) range and its remarkable tolerance for impurities (e.g., salts) 

which eliminates time-consuming sample purification steps [187, 188].  

 

 

FIG 3.1. The laser irradiates the sample spot enabling desorption/ionisation of the biomolecules. During this 
process, a plume containing gas phase ions from the biomolecules and the matrix compounds is formed 
above the target plate. The ions generated are subsequently accelerated by a high electrical potential and 
separated in the mass analyser. 
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Microbial intact cells or crude extractions thereof are deposited onto a metal target plate and 

subsequently overlaid or pre-mixed with an appropriate organic matrix solution (FIG 3.1) [90, 184, 

189]. After loading the target plate in the vacuum of the mass spectrometer’s ion source, a laser 

irradiates the sample spot with nanosecond pulses enabling its high energetic desorption and 

subsequent ionization of the biomolecules [90, 189]. The matrix molecules adsorb the laser energy 

resulting in the transfer of solid phase biomolecules into gas phase ions with minimal fragmentation 

(FIG 3.1) [90, 176]. To date, the exact mechanisms of this desorption/ionization process are not well 

understood [176, 190]. The generated ions are subsequently accelerated by a high electric potential 

and separated in the mass analyser (i.e., the TOF tube) according to their m/z ratio (FIG 3.2) [90, 187]. 

The ions, which are mostly single charged, accelerated in the same electric field have the same 

kinetic energy, but have different velocities depending on their molecular weight which enables 

their separation in the field-free, vacuum TOF tube (FIG 3.2) [90, 191, 192]. The generated MALDI-

TOF mass spectrum represents the intensity (i.e., the quantity of the ionised molecules) in function 

of the m/z value, and are typically unique for a certain microorganism, allowing for an accurate 

identification of unknown strains (FIG 3.3) [175, 176, 193]. 

Different data analysis approaches have been employed to analyse MALDI-TOF mass spectra 

generated for the species level differentiation of microorganisms, such as the library-based and 

proteomic-based analysis methods. The library-based approach is most commonly used and 

correlates the generated mass spectra (i.e., full-spectrum or extracted peak tables) from unknowns 

with a collection of mass spectra derived from well-characterised reference strains using different 

pattern matching algorithms [194-198]. When comparing entire mass spectra one must consider 

that all peaks are used during analysis even if these are not directly linked to the studied 

microorganism (e.g., medium associated peaks, peaks linked to instrumental variations or to sample 

treatment) [189, 192, 196], and that this method depends on a solid and reproducible identification 

database comprising mass spectra generated from well-characterised reference strains of interest 

[191]. Robustness of the library-based identification approach increases when only a limited number 

of genus-, species- or strain-specific biomarker peaks are selected for further analysis [192, 199].  

In the proteomics-based approach, extracted m/z peak tables can also be compared to in silico 

generated protein spectra predicted from available genome data of microorganisms present in 

publicly available protein databases [184, 191, 197, 200, 201]. This approach relies strongly on the 

availability of the genome data, the mass accuracy of the mass spectrometer, the proteome 

database completeness and fidelity (e.g., post-translational modifications) [189, 191, 202].  
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The next chapter mainly focuses on the application of MALDI-TOF MS for the identification of 

bacteria. However, multiple research groups investigated and proved its applicability for the 

identification of fungi, viruses, protozoa, algae etc. as well [191, 203-208]. 

 

 

 

FIG 3.2. After the matrix-assisted laser desorption/ionisation process, ions are accelerated via an electric potential and subsequently 
separated in the time-of-flight (TOF) tube. The ions accelerated in the same electric field have the same kinetic energy, but differ in 
velocities depending on their respective molecular weights. Lower molecular weight ions (green dot) will travel faster than the high 
molecular weight ions (blue dot) through the field-free, vacuum TOF-tube and hence hit the detector first. m, molecular weight; z, 
charge; E, energy and v, velocity. 

 

 

 

FIG 3.3. MALDI-TOF mass spectrum generated from Gluconobacter oxydans strain LMG 1406. The mass spectrum represents the 
individual intensities of all detected ions in function of their m/z value in the 2- to 15-kDa range. The green and blue rectangles 
represent the peak signal from the low and high molecular weight ion highlighted in FIG 3.2, respectively. r. int., relative intensity. 
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3.1 From culture to mass spectrum 

Reproducibility is the major factor to consider when characterizing intact microorganisms using 

MALDI-TOF MS, especially when using the library-based identification approach [175, 202, 209]. 

Experimental factors (e.g., growth condition, cell concentration, sample treatment, data acquisition) 

contribute to mass spectral variation and hence alter mass spectral reproducibility [191, 194, 210-

215]. 

Studies revealed that the mass spectra generated from bacteria consist of signals derived mostly 

from ribosomal and other abundant proteins [90, 186, 202, 216-221]. For proteins that are of 

ribosomal origin [220], the effect of growth medium on the mass spectra and thus on the 

identification result is expected to be minimal [202, 222]. However, growth medium can influence 

the expression pattern of other proteins [191, 202, 223] and hence alter the mass spectrum [217, 

224]. Additionally, medium compounds can interfere with the ionization of the bacterial 

biomolecules [191, 212, 217], especially when bacterial cells have the tendency to adhere onto the 

culture medium surface when grown onto solid medium [217, 218]. Nevertheless, several studies 

found that variations related to the growth medium had no impact on species level identification of 

unknowns [177, 217, 225-230]. Not only growth medium, but the age of the cell culture also induces 

variations to the mass spectra, as cells adapt to changes in the growth medium (i.e., nutrient 

depletion and build-up of waste products) [220, 231-234], but again not to an extent that species 

level identification was affected [229, 234].  

Two principal sample treatment protocols [the intact cell method (ICM) and the cell extraction 

method (CEM)] have been employed to generate MALDI-TOF mass spectra from bacteria [201]. 

During ICM, intact cells are directly smeared onto the MALDI-TOF MS target plate and coated with 

the selected matrix [191, 201, 235]. This method is less expensive, easier and faster compared to the 

CEM [210]. However, the term ‘intact cell’ is not strictly accurate, as the integrity of the cell wall can 

be disrupted by the matrix solution prior to MALDI-TOF MS analysis [202]. Some research groups 

even mixed intact cells with 0.1% trifluoroacetic acid solution [201, 236] or employed an on target 

extraction using for example 70% formic acid [201, 228, 232] to enhance cell lysis prior to analysis. 

Instead of picking cells from solid medium, cells can also be harvested from liquid culture and 

subsequent deposited (with or without additional washing steps) onto the target plate [209, 215, 237, 

238]. The CEM approach on the other hand assists the disruption of the microbial cell wall and 

removes compounds (e.g., salts, cell debris, medium derivates) that may interfere with co-

crystallisation of sample and matrix [197, 201, 239]. This results in a more homogeneous disposition 

on the target plate and hence improves the reproducibility of the desorption/ionization process 
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[240]. Goldstein et al. [215] favoured the CEM for profiling different Staphylococcus aureus strains, as 

this method yielded mass spectra with increased data richness (i.e., more peaks and broader mass 

ranges) and reproducibility.  

A pre-treatment using lysozyme prior to ICM or CEM enhanced the reproducibility and quality of the 

generated mass spectra without influencing data analysis [191, 241, 242]. Other chemical or physical 

adaptations enhancing extraction efficiency were reported as well, such as the use of corona plasma 

discharge, ethanol, heat treatment, freeze-thawing, micro-beads, surfactants and sonication [201, 

203, 211, 224, 243-247].  

Other factors affecting mass spectral quality and reproducibility are the used matrix compound [e.g., 

sinapinic acid, α-cyano-4-hydroxycinnamic acid (α-CHCA), ferulic acid, 2,5-dihydroxybenzoate 

(DHB)] and matrix solvent composition [191, 201, 210, 239]. Different types of matrix compounds 

enable the analysis of different types of biomolecules. For instance, sinapinic and ferulic acid which 

favour high molecular weight ions and α-CHCA which favours low molecular weight ions are mostly 

used for the detection of proteins, while DHB is more suitable in detecting glycopeptides and lipids 

[191, 197]. The matrix solvent selection is equally important and affects spot deposition, protein 

solubility, extraction efficiency, crystallisation, shot-to-shot reproducibility, peak intensity and data 

richness [191, 201, 210, 214]. Finally, it was demonstrated that the manner of deposition of the 

sample/matrix (e.g., dried-droplet method, sandwich method) can induce variation to the generated 

mass spectra as well [197, 201, 213].  

Instrument hardware and settings [210], the selected mass range [184, 202], the ion mode (i.e., 

positive or negative) [219, 243], the use of automated or manual spot targeting [191, 202, 248], etc. 

should be carefully selected and optimised to generate reproducible and high quality mass spectra. 

The reproducibility can also differ within individual laboratories (intra) and especially across multiple 

laboratories (inter) and depends on the robustness of the procedure used to generate a mass 

spectrum starting from a cell culture [191, 201]. 

 

3.2 Commercially available MALDI-TOF MS identification databases 

When using the library-based approach, multiple well-characterised reference strains should be 

included to sufficiently cover the intra species diversity and to obtain accurate and reliable 

identifications [184, 202, 228, 249-252]. Some commercially available and user-friendly MALDI-TOF 

MS identification systems supported with appropriate data analysis software package and a built-in 

mass spectral database are discussed below [202, 239].  
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The Bruker Daltonics MALDI BioTyper is the most commonly used MALDI-TOF MS identification 

system [198]. The accompanying identification database consists of numerous main spectral 

projections (MSPs) of the most relevant clinical microorganisms, and such MSPs can be easily 

created and added to personal in-house identification databases [185, 242]. Unknowns are identified 

based on three scores: (i) counting matching signals of their generated mass spectra with in-house 

MSPs and (ii) vice versa and (iii) correlating consistency of signal intensities of these matched signals 

[202, 222, 229, 253]. The three obtained scores are then multiplied and normalised to a value of 1000 

and finally log-transformed [202, 240]. Identification log scores above 2 and between 1.7 and 2 are 

considered to be reliable at the species and genus levels, respectively [192, 236, 251, 254]. 

The VITEK MS RUO (Research Use Only, bioMérieux) [formerly the Axima Assurance system with 

SARAMISTM (Spectra ARchiving And Microbial Identification System), Shimadzu], the VITEK MS IVD 

(in vitro diagnostic, bioMérieux), and Andromas (Andromas SAS) are other commercially available 

MALDI-TOF MS identification systems [176]. Such systems also allow an user-friendly approach to 

process raw data (i.e., perform smoothing, normalization and baseline subtraction) and then 

compare generated mass spectra with a built-in identification database that again mainly comprises 

mass spectra of clinically relevant microorganisms [191, 202, 221, 255]. For instance, the VITEK MS 

IVD database consists of reference mass spectra generated from ten different strains (i.e., different 

isolation source, year and origin) per species grown at different cultivation conditions (i.e., 

incubation time, growth medium, growth medium supplier) and several mass spectrometers [255]. 

Comparisons between two or more commercially available systems for the identification of clinical 

microorganisms revealed that differences in identifications were mainly based on the discriminatory 

potential of closely related species, the completeness of the database and the incorporated intra-

species diversity [204, 222, 236, 252, 256-258]. 

 

3.3 Current applications of MALDI-TOF MS in microbiology 

Numerous applications of MALDI-TOF MS are related to public health and food safety. Rapid and 

accurate identification and classification of microorganisms, especially food-borne and human 

pathogens, is crucial for timely infection control, initiating appropriate treatment and defining 

associated risks that affect the patient and health-care personnel [184, 215, 251]. In the clinical 

diagnostic laboratories, the biochemical identification systems that dominated for decades are 

partially replaced with rapid, cost-effective and high-throughput MALDI-TOF MS identification 

systems [202, 251].  
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Multiple studies reported the successful application of MALDI-TOF MS as identification tool for 

clinically relevant species [174, 249, 250], such as Arcobacter spp.[218], Bacteroides spp. [259], 

Brucella spp. [231], Burkholderia cepaciae complex [236, 260], Campylobacter spp. [218], Helicobacter 

spp. [218], Legionella spp. [235], Listeria spp. [221], Mycobacterium spp. [212, 261], Salmonella spp. 

[217], Stenotrophomonas spp. [253], Streptococcus spp. [193, 209, 238], Pantoea spp. [230], and Vibrio 

spp. [237]. MALDI-TOF MS has also been employed in the battle against bioterrorism [191, 229]. For 

example, discrimination of Bacillus anthracis spores from spores produced by closely related Bacillus 

spp. was facilitated using small acid-soluble proteins as biomarker peaks [211, 262]. 

In general, MALDI-TOF MS has been extensively investigated in the field of clinical microbiology. 

However, fewer investigations have been conducted in the field of environmental [184, 263-266] or 

food microbiology [187, 192, 267, 268] where most studies so far concentrated on potential human- 

or plant-pathogens. Angelakis et al. [269] reported MALDI-TOF MS as a rapid and accurate tool for 

species level identification and authenticity check of probiotic strains isolated from probiotic food 

products. Other research groups also examined the potential of MALDI-TOF MS to differentiate 

among lactic acid bacteria present in the fermentation industry [179, 181, 242, 270, 271]. MALDI-TOF 

MS also enabled differentiation between acetic acid bacteria belonging to the genera Acetobacter, 

Gluconacetobacter and Gluconobacter involved in the industrial production of vinegar [109]. Kern et 

al. [272] also demonstrated the potential of MALDI-TOF MS as a species level identification tool for 

spoilage isolates obtained from the beverage industry. 

 

3.4 Beyond species level identification 

3.4.1 Infraspecific level discrimination 

Multiple studies have demonstrated the successful application of MALDI-TOF MS for the species 

level discrimination of bacteria. However, infraspecific level discrimination is even more important in 

certain applications such as epidemiological studies, source-tracking, antibiotic resistance 

investigations, etc. Closely related strains yield similar mass spectra, yet in some cases subtle 

reproducible discrepancies enabled discrimination among mass spectra of different strains 

belonging to the same species [198, 248, 265, 266]. The mass spectral reproducibility and quality are 

equally important to enable accurate and reliable infraspecific level discrimination [215]. Therefore, 

standardised growth conditions (e.g., culture medium, incubation time) and optimised data 

acquisition for the generation of mass spectra are advised [210, 214, 229, 237, 266]. 
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MALDI-TOF MS has been successfully applied in infraspecific level discrimination of biological 

warfare agents, food-borne pathogens, clinical infections (e.g., antibiotic resistance, serotyping, 

pathogenicity), source tracking, manufacturing of probiotic starter cultures in the fermentation and 

pharmaceutical industry [177, 198, 229, 237, 242, 245, 265, 266, 273, 274]. 

Siegrist et al. [266] addressed the problem of faecal contaminations of surface waters and employed 

MALDI-TOF MS to categorise strains of the indicator organism Escherichia coli according to their 

source (i.e., avian, bovine, canine or human). Similarly, Giebel et al. [265] reported the potential of 

MALDI-TOF MS as source tracking tool for environmental Enterococcus strains in recreational waters. 

Discrimination among nitrogen-fixation Frankia strains based on their specific host infection groups 

was reported by Hahn et al. [275]. Seibold et al. [229] classified Francisella tularensis strains, the 

causative agent of tularaemia, with respect to their membership in one of the four subspecies 

showing significant differences in virulence regarding animal and human infections. Sato et al. [245] 

enabled discrimination between two out of three subspecies of Bifidobacterium longum based on 

ribosomal protein profiling using a proteomics-based approach, and thereby supported the proposal 

of reclassification of the species into two subspecies (i.e., subsp. longum and subsp. infantis) instead 

of three (including subsp. suis). In contrast, Zeller-Péronnet et al. [242] were not able to discriminate 

among the subspecies of Leuconostoc mesenteroides, and thus could not reproduce the study of De 

Bruyne et al. [177]. Furthermore, both studies differed in the used sample treatment protocol, data 

acquisition and data analysis approach, which clearly affected infraspecific level discrimination [198, 

276].  

 

3.4.2 Direct MALDI-TOF MS detection and identification of bacteria from specimen  

Research groups have explored the potential of MALDI-TOF MS for the direct detection and 

identification of bacteria present in biological specimens without the need for time-consuming 

cultivation procedures to isolate the bacteria of interest [194, 204, 239, 277-286]. 

Different sample treatment protocols have been optimised in order to separate the bacterial cells of 

interest from interfering background compounds such as blood cells, commensal bacteria, 

degradation products, salts, proteins, lipids, etc. [184, 239, 263]. These protocols include washing 

steps, differential centrifugation, gel-based separation, filtration and affinity-based methods (e.g., 

immuno magnetic beads) [197, 201, 205, 219, 239, 263, 278-281, 285-291]. In clinical laboratories, 

the commercially available Sepsityper kit (Bruker Daltonics) contains reagents required for the 

preprocessing of blood specimens that tested positive for bloodstream infections after enrichment 

in liquid medium [239, 277, 283, 284, 290, 292]. The Sepsityper kit includes a lysis solution which 
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disrupts only blood cells rendering bacterial cells intact, and a washing solution that eliminates 

interfering background compounds [277, 281, 282, 292]. Taken together, such separation methods 

enabled the generation of reproducible, good quality mass spectra that are well-suited for MALDI-

TOF MS identification. Furthermore, such separation methods can effectively increase the 

enrichment factor and hence detection sensitivity [201, 263]. However, multiple research groups 

were unable to circumvent an initial enrichment step as initial bacterial load was too low (lower than 

106 CFU/mL in positive blood cultures), resulting in mass spectra where bacterial peaks were 

indistinguishable from background peaks [277, 279]. Wang et al. [286] reported that at least 105 

CFU/mL were required to allow accurate and reliable species level identification directly from 

positive urine samples [278]. Li et al. [263] combined membrane filtration and vancomycin-

conjugated magnetite nanoparticles to selectively separate and concentrate Gram-stain positive 

bacteria in tap water and reservoir water, thereby achieving a detection limit of 5 × 102 CFU/mL (2 L 

sample was required). Increasing sample volume could assist in a more accurate identification [263, 

284], but this is not always achievable, especially for clinical specimens [293].  

 

3.4.3 MALDI-TOF MS analysis of specimen-containing mixed populations 

To date, the analysis of bacterial mixtures by MALDI-TOF MS remains challenging, and multiple 

studies have investigated and evaluated its potential to accurately identify the individual 

compounds [184, 239, 243, 263, 294, 295]. The differentiation among members of a mixture 

depends on the sample treatment, data acquisition, data analysis algorithms, etc. [176, 240, 280, 

294-296]. In general, biomolecules derived from the most abundant microorganism present in the 

mixture suppress those generated from less abundant microorganisms during the 

desorption/ionization process. The limited dynamic range of MALDI-TOF MS makes it complex to 

discriminate between the individual microorganisms, especially when their relative concentration 

varies a lot [200, 239, 279, 282, 286, 296, 297]. As described above, the direct identification of 

positive clinical samples was successful using MALDI-TOF MS, at least with some minimal sample 

preparation. However, identifications were often hampered when co-infections were present. Such 

analysis result in the identification of the most abundant microorganism present only, or in no 

identification at all [204, 205, 239, 277, 281-283, 285, 298]. Furthermore, such positive identification 

did not exclude the presence of additional microorganism, and conventional slower screening 

methods should always be combined with MALDI-TOF MS [176, 298].  
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PREAMBLE 

 

Beer is a beverage with normally good microbiological stability because it contains almost no 

oxygen and nutrients for bacterial growth. In addition, low pH, high CO2-content and the presence 

of ethanol and antibacterial hop compounds ensure microbiological stability. Nevertheless, beer 

spoilage due to bacteria is a common problem in the brewing industry and causes important 

economic losses worldwide. The taxonomically diverse group of beer spoilage bacteria are currently 

detected and/or identified using a range of culture-dependent or culture-independent methods. It is 

clear that these methods are time-consuming and often lack high-throughput capacity and do not 

facilitate real-time interventions. Furthermore, these methods mostly target only a narrow range of 

beer spoilage bacteria. Therefore, MALDI-TOF MS was investigated as an alternative, rapid, low-

cost and high-throughput identification tool for the most prevalent beer spoilage acetic acid 

bacteria (AAB) and lactic acid bacteria (LAB) by constructing an identification database and 

evaluating its applicability for the identification of novel spoilage bacteria, and subsequently 

validated by state-of-the-art taxonomic standards. Therefore, different studies were set up, of which 

the results will be presented in the following chapters. 

CHAPTER 4 describes the effect of the growth medium on the generated mass spectra and its 

consequences for species and strain level differentiation. CHAPTER 5 presents the development of 

the MALDI-TOF MS identification database and the subsequent evaluation and validation of the 

taxonomical classification of the reference strains included. Moreover, the performance of MALDI-

TOF MS as an accurate, rapid and high-throughput identification tool was established via isolates 

obtained from different spoiled beer and brewery samples. These studies also resulted in the 

reclassification of Pediococcus lolii strains DSM 19927T and JCM 15055T as Pediococcus acidilactici 

(CHAPTER 5.2) and in the description of a novel acetic acid bacterium, Gluconobacter cerevisiae sp. 

nov., isolated from a spoiled brewer’s pitching yeast culture (CHAPTER 5.3). CHAPTER 6 describes the 

direct detection and identification of bacteria in enrichment cultures of spoiled beer and brewery 

samples. Finally, CHAPTER 7 evaluated MALDI-TOF MS as a tool to differentiate between brewer’s 

yeasts and unwanted brewing yeast strains contaminating the brewing process. 
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4 The effects of the growth medium on matrix-assisted laser 

desorption/ionisation time-of-flight mass spectra: a case study of acetic 

acid bacteria 
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SUMMARY 

The effect of the growth medium used on the matrix-assisted laser desorption/ionisation time-of-

flight (MALDI-TOF) mass spectra generated and its consequences for species and strain level 

differentiation of acetic acid bacteria (AAB) were determined by using a set of 25 strains. The strains 

were grown on five different culture media that yielded a total of more than 600 mass spectra, 

including technical and biological replicates. The results demonstrate that the culture medium can 

have a profound effect on the mass spectra of AAB as observed in the presence and varying signal 

intensity of peak classes, in particular when culture media do not sustain optimal growth. The 

observed growth medium effects do not disturb species level differentiation but strongly affect the 

potential for strain level differentiation. The data proved that a well-constructed and robust MALDI-

TOF MS identification database should comprise mass spectra of multiple reference strains per 

species grown on different culture media to facilitate species and strain level differentiation. 
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4.1 Introduction 

Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has 

been applied in medical [1], environmental [2-4] and food [5-8] related studies as an excellent cost- 

and time-effective tool for the identification of microorganisms. Different types of identification 

approaches were recently reviewed [9]. These include linking of protein biomarkers derived from the 

mass spectra to a corresponding experimental database or comparing mass spectra with in silico-

generated spectra predicted by whole-genome sequence analyses [10, 11]. Yet, the most frequently 

used approach is the comparison of mass spectra of unknowns with those of well-characterised 

reference strains stored in a profile database. These comparisons are conducted using either a peak- 

or curve-based algorithm [9, 12]. With a peak-based algorithm, the presence of specific biomarker 

peaks in the unknown isolate’s mass spectrum is verified [6, 13]. A curve-based method considers 

the complete spectrum, i.e., not only the presence of certain peaks but also the variation in peak 

signal intensity. The major drawback of these pattern recognition approaches is that they can be 

prone to experimental variations [14]. 

Previous studies revealed that MALDI-TOF mass spectra of bacteria consist of signals derived mostly 

from ribosomal and other abundant proteins [15-18]. For proteins that are of ribosomal origin [19], 

the effect of growth conditions on the mass spectra and thus on the identification result is expected 

to be minimal [20]. However, growth conditions can influence the expression pattern of other 

proteins [21] and hence alter the mass spectrum [16, 22]. Additionally, growth medium compounds 

can interfere with the ionisation of the bacterial biomolecules, especially when the bacterial cells 

have a tendency to adhere to the culture medium surface [15]. Nevertheless, several studies found 

that variations related to the growth medium had no impact on species level identification of 

unknowns [16, 23-26]. 

We are investigating the use of MALDI-TOF MS as an identification tool for bacterial isolates 

originating from spoiled beer and brewery samples and are constructing an identification database 

including spectra of strains originating from spoiled beer and brewery samples but also from other 

niches where the same species occur in order to encompass the species’ phenotypic diversity 

wherever possible. Beer spoilage bacteria are taxonomically diverse and include several acetic acid 

bacteria (AAB) which can be grown on different culture media. 

The present study investigated the effect of the growth medium on the generated mass spectra 

using a set of 25 AAB grown on five different culture media and its consequences for species and 

strain level differentiation. 
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4.2 Material and Methods 

4.2.1 Strains and growth media 

Twenty-five strains of AAB (see TABLE S 4.1 in the supplementary material) were obtained from the BCCM/LMG 

bacteria collection (Ghent University, Ghent, Belgium) (http://www.belspo.be/bccm/) and cultured according to the 

provider’s instructions and on additional selective and nonselective growth media. Acetobacter strains were grown on 

acetic acid medium (AAM) [1.0% (w/v) D-glucose, 1.5% (w/v) bacteriological peptone, 0.8% (w/v) yeast extract, 0.3% 

(v/v) acetic acid, 0.5% (v/v) ethanol and 1.5% (w/v) agar, adjusted to pH 3.5] [27]; deoxycholate-mannitol-sorbitol 

(DMS) agar [0.1% (w/v) D-glucose, 0.1% (w/v) D-mannitol, 0.1% (w/v) sorbitol, 1.0% (w/v) bacteriological peptone, 0.3% 

(w/v) yeast extract, 1.5% (w/v) calcium lactate, 0.1% (w/v) potassium phosphate, 0.01% (w/v) sodium deoxycholate, 

0.002% (w/v) magnesium sulphate, 0.003% (w/v) bromocresol, 1.5% (w/v) agar, pH 4.5] [28]; GY agar [5% (w/v) D-

glucose, 1% (w/v) yeast extract and 1.5% (w/v) agar]; GYAE agar [GY agar supplemented with 1% (v/v) acetic acid and 

2% (v/v) ethanol] and YPM agar [0.5% (w/v) yeast extract, 0.3% (w/v) bacteriological peptone, 2.5% (w/v) D-mannitol, 

and 1.5% (w/v) agar]. Gluconacetobacter and Gluconobacter strains were cultured on the same growth media, with the 

exception of GYAE agar which was replaced by Reinforced AE (RAE) agar [4% (w/v) D-glucose, 1% (w/v) yeast extract, 

1% (w/v) bacteriological peptone, 0.338% (w/v) Na2HPO4.2H2O, 0.15% (w/v) citric acid, 1% (v/v) acetic acid and 2% 

(v/v) ethanol, a layer of this medium containing 1% (w/v) agar is topped with a layer containing 2% (w/v) agar] [29]. 

AAB are strictly aerobic bacteria, and cultures were always incubated at 28°C. The incubation time on each medium 

was kept constant per strain but varied between 24 and 72h among strains in order to obtain sufficient growth; yet 

some strains grew so poorly on, at most, one growth medium that mass spectra of acceptable quality (see below) 

could not be obtained. 

4.2.2 MALDI-TOF MS sample preparation and data acquisition  

Resuscitated lyophilised cultures were subcultured twice on each culture medium and cell extracts were prepared 

from the subsequent third, fourth and the fifth generation. Hence, variation induced by resuscitation and adaptation 

to the growth medium was excluded and three generations, i.e., three biological replicates, were included. Five mg of 

wet cells taken from single colonies was suspended into 300 µL Milli-Q water, after which 900 µL pure ethanol was 

added. After centrifugation (3 min, 20817 × g, 4°C), 50 µL 70% formic acid and 50 µL acetonitrile were added to the 

bacterial cell pellet. After vigorous shaking and centrifugation (3 min, 20817 × g, 4°C), 1 µL of the supernatant (= the 

cell extract) was spotted in duplicate onto a MALDI-TOF MS stainless steel target plate to obtain two technical 

replicates. Immediately after drying, the spots were overlaid with 1 µL matrix solution, which consisted of 5 mg α-

cyano-4-hydroxycinnamic acid dissolved in 1 mL acetonitrile/trifluoroacetic acid/Milli-Q water solvent (50:2:48). Prior 

to analysis, the mass spectrometer was externally calibrated with a peptide mixture of adrenocorticotropic hormone 

(fragment 18-39; Sigma-Aldrich), insulin (Sigma-Aldrich), ubiquitin (Sigma-Aldrich), cytochrome c (Sigma-Aldrich) 

and myoglobin (Sigma-Aldrich). A 4800 Plus MALDI TOF/TOFTM Analyzer (AB Sciex, USA) was used in the linear 

mode and covered a mass range from 2 to 20 kDa. The mass spectrometer used a 200 Hz frequency tripled Nd:YAG 

laser operating at a wavelength of 355 nm. Generated ions were accelerated at 20 kV through a grid at 19.2 kV into a 

1.5 m, linear, field-free drift region towards the detector. For each spot, 40 subspectra resulting from 50 laser shots 

from randomised positions within the spot were collected and presented as one spectrum (a total of 2000 laser shots). 

http://www.belspo.be/bccm/
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The laser intensity was set between 4200 and 5700 procedure defined units. With every set of measurements 

comprising 384 spots, the Bacterial Test Standard (Bruker Daltonics) was included as positive control. 

4.2.3 MALDI-TOF MS data analysis 

The mass spectra were retrieved as t2d files from the 4800 Plus MALDI TOF/TOFTM Analyzer via the 4000 Series 

Explorer software (AB Sciex). Data Explorer 4.0-software (AB Sciex) was used to convert the t2d files into text files 

that were subsequently used as input files for the BioNumerics 7.1 software package (Applied Maths, Belgium). A 

spectrum was considered to be of acceptable quality if the absolute signal intensity of the highest peak was > 500 

counts, if more than 5 peaks with a signal-to-noise (S/N) ratio of > 20 were detected in the 3-20 kDa range and if there 

were no repetitive signals in the 2.1-3 kDa range. The spectral data were imported by using an optimised 

preprocessing template in the BioNumerics 7.1 software package [30]. After the data were imported, the 

preprocessing involved consecutive continuous wavelet transform (CWT) noise estimation, a Savitsky-Golay filter 

smoothing and baseline subtraction with the rolling disk algorithm. Each peak with a S/N ratio of at least 5 and an 

absolute intensity of at least 6 counts was annotated. For each strain grown on each culture medium, both technical 

and biological replicates were combined into a single summary spectral profile (SSP). A peak-matching analysis was 

conducted with constant and linearly varying tolerance values of 1 m/z and 800 ppm, respectively [30]. The minimum 

peak detection rate was set at 100%, meaning that each summary peak occurred in each individual spectrum of the 

technical and biological replicates. The use of the 100% peak detection rate during this summarizing procedure 

excluded any technical and biological variation from the analysis. The signal intensity for each data point in the SSP 

was calculated by averaging the respective signal intensities in the technical and biological replicates. 

The peak-based data analysis matches all of the peaks in the SSP to a peak class using constant and linearly varying 

tolerance values of 2 m/z and 800 ppm, respectively [30]. The dataset obtained was converted into a binary character 

set. The latter dataset was then used to compare the SSPs using the binary Dice coefficient. The curve-based data 

analysis of SSPs was conducted by using the Pearson product-moment correlation coefficient. In order to visualise 

the variation between the SSPs, multidimensional scaling (MDS) plots were created as described by De Bruyne et al. 

[24]. In brief, the MDS algorithm starts with the similarity matrix generated after either peak- or curve-based analysis 

and then assigns a location to each data point in the n-dimensional space using a nonlinear least squares fit, 

minimizing the distances between the data points [24]. The resulting data positions can be displayed by three-

dimensional visualization. The degree of variation among the five SSPs of each strain was described by the minimal 

similarity value (MSV) which was defined as the lowest average similarity level among the five SSPs. 

 

4.3 Results and Discussion 

4.3.1 Media that do not sustain optimal growth can influence the SSP strongly 

A total of 17 AAB could be cultured on all five media as described above (see TABLE S 4.1 in the 

supplementary material). The MDS plots obtained after peak-based numerical analysis of the five 
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SSPs of each of these strains revealed that the diversity among the SSPs was variable, suggesting a 

strain-dependent effect of the growth medium on the mass spectra (FIG 4.1).  

The MSVs among SSPs of the 11 Acetobacter strains ranged from 50.5% (Acetobacter fabarum LMG 

24630) to 81.0% (A. fabarum LMG 1701) with an average of 66.1% ± 9.4% (FIG 4.1). The SSPs of 

strain LMG 1701 shared 31 (52%) out of 60 peak classes. In contrast, only 12 (23%) out of 53 peak 

classes were common to the SSPs of strain LMG 24630. Nine additional shared peak classes could be 

detected in the SSPs obtained from the latter strain grown on four culture media but not YPM agar. 

Strain LMG 24630 did not grow well on the latter medium, and longer incubation times were 

required to obtain sufficient cell material for MALDI-TOF MS analysis. It is unclear what caused the 

aberrant SSP, but these slow growing subcultures may have been sampled in a different 

physiological state, which may affect MALDI-TOF mass spectra [31]. A similar decrease in the 

number of shared peak classes and concomitantly in the MSV was observed for Acetobacter aceti 

strain LMG 1504T when it was grown on this culture medium. A total of 52 peak classes were 

detected for this particular strain, 19 of which were common to all five SSPs, and again 7 additional 

peak classes were present in the SSPs generated after growth on four media but not on YPM agar 

(FIG 4.2). This was again associated with poor growth on YPM agar. Other strains like A. aceti LMG 5 

(MSV of 66.9%) or A. fabarum LMG 1701 (MSV of 81.0%) grew well on YPM agar, which resulted in 

SSPs that were more comparable to the strain-specific SSPs generated from growth on the other 

four culture media (FIG 4.1).  

 

 

FIG 4.1. MDS plots obtained after peak-based numerical analysis of the SSPs of 11 Acetobacter strains (A) and 1 Gluconacetobacter 
(Ga.) and 5 Gluconobacter (G.) strains (B) grown on five culture media. For each strain, single-coloured dots represent the SSPs 
derived from the five different culture media. The boxes display the MSVs among the respective strain-specific SSPs. The higher the 
level of similarity between two SSPs, the more closely located the dots are to each other. 
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FIG 4.2. Mass spectra derived from A. aceti strain LMG 1504
T
 grown on the five culture media indicated in the black boxes on the 

right. All of the shared peak classes (19 out of 52) of the five SSPs are indicated by asterisks, and the corresponding m/z values are 
represented in the black boxes at the top. The seven additional peak classes after omission of the YPM-derived SSP are indicated by 
squares within the spectra, and the corresponding m/z values are shown in the grey boxes at the top. r. int., relative intensity. 

 

The five SSPs of strain Acetobacter pasteurianus LMG 1590 had 10 (19%) out of 53 peak classes in 

common, yet the signal intensities of these common peak classes varied with the growth medium 

used (FIG 4.3). The most intense peak observed after cultivation of LMG 1590 on GY, GYAE and 

AAM agar was detected in the peak class at m/z 5268.97 ± 6.22; each of these growth media 

comprises D-glucose as the sole carbon source. On the other hand, peak class m/z 6790.66 ± 7.43 had 

the highest signal intensity in the SSPs generated after growth on the other two culture media, 

which comprised D-glucose (DMS agar), D-mannitol (YPM and DMS agar), and sorbitol (DMS agar) 

as carbon sources. Similar results were obtained for three other Acetobacter strains grown on 
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multiple media, suggesting a link between certain medium compounds, i.e., the carbon source, and 

peptides detected. Remarkably, seven peak classes were unique for the DMS agar-derived SSP (FIG 

4.3). These seven peak classes were not present in SSPs of other strains grown on DMS agar, 

indicating that these are strain-specific rather than DMS agar-specific peak classes. A detailed 

comparison of SSPs generated on each of the five growth media revealed similar observations for 

the other Acetobacter strains where no growth medium-specific peak classes were found. This 

contrasts with results obtained by Dieckmann et al. [16] who detected two medium-related peak 

classes in the mass spectra of isolates grown on a blood-containing culture medium. However, they 

smeared the bacterial cells directly onto the MALDI-TOF MS target plate, an approach that 

increases the potential for contamination with medium-derived peaks [32]. 

The MSVs among SSPs of the Gluconacetobacter and Gluconobacter strains ranged from 58.9 to 78.5% 

with an average of 70.5% ± 8.7% (FIG 4.1). The lowest MSVs were observed for strains Gluconobacter 

cerinus LMG 1678 (58.9%, 15 out of 52 peak classes were shared) and Gluconacetobacter liquefaciens 

LMG 1381T (61.6%, 19 out of 53 peak classes were shared), and for both strains, this was related to 

the RAE agar-derived SSPs, as both strains grew poorly on this culture medium. Omission of the 

RAE agar data improved the MSVs to 80.5 and 83.4% for strains LMG 1678 and LMG 1381T, 

respectively. The highest MSV (78.5%) was observed for strain Gluconobacter oxydans LMG 1406, 

which grew well on all media, including the RAE agar, and whose SSPs had 25 (48%) out of 52 peak 

classes in common (see FIG S 4.1 in the supplementary material). 
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FIG 4.3. Mass spectra derived from A. pasteurianus strain LMG 1590 grown on five different culture media. The shared peak classes 
(10 out of 53) are indicated by asterisks, and their m/z values are shown in the black boxes at the top. The seven unique peak classes 
detected after culturing on DMS agar are indicated by grey squares, and the corresponding m/z values are shown in the grey boxes 
at the top. The two most abundant peak classes of these seven DMS specific peak classes are inside the rectangle. r. int., relative 
intensity. 
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4.3.2 The culture medium used affects strain level differentiation 

The SSPs of eight G. oxydans strains (see TABLE S 4.1 in the supplementary material) grown on 

AAM were compared using the binary Dice coefficient, as strain level differentiation is best 

accomplished by the presence-or-absence analysis of specific peak classes [13, 26, 33, 34]. An MSV 

of 54.1% was obtained and only 11 (13%) out of 85 peak classes were shared (FIG 4.4). Although 

these 11 shared peak classes had the same m/z value, a strain-dependent variation in peak signal 

intensity was observed (FIG 4.4). When the same eight strains were grown on YPM and GY agar only 

8/88 (9%, MSV of 59.5%) and 12/79 (15%, MSV of 49.3%) peak classes, respectively, were shared 

(TABLE 4.1). An analysis of all of the SSPs showed that only 7 (7%) out of 105 peak classes were 

consistently present in these G. oxydans SSPs, irrespective of the growth medium used (TABLE 4.1). 

However, the same analysis also revealed many strain-specific peak classes in SSPs obtained after 

growth on each of the three culture media (TABLE 4.2) (to identify strain-specific peak classes, the 

SSPs of all of the strains obtained after growth on the same culture medium were considered). The 

number of strain-specific peak classes varied with the growth medium used (TABLE 4.2). For 

instance, the LMG 1674 SSPs were characterised by four and two strain-specific peak classes when 

that strain was grown on AAM and GY agar, respectively; however, no strain-specific peak classes 

were found when LMG 1674 was grown on YPM agar. Similarly, the LMG 1683 SSPs were 

characterised by 3, 4 and 0 strain-specific peak classes when that strain was grown on AAM, YPM, 

and GY agar, respectively. It should also be noted that some of these strain-specific peak classes are 

present in SSPs obtained after growth on multiple culture media. For example, the peak class 

characterised by an m/z value of about 5591 was present in each of the strain LMG 1676 SSPs, while 

for strains LMG 1683 and LMG 1398, each strain-specific peak class was observed after growth on a 

single growth medium only (TABLE 4.2). 

Likewise, five Acetobacter cerevisiae strains (see TABLE S 4.1 in the supplementary material) were 

cultured on AAM, DMS, YPM, and GY agar and their SSPs were compared by using the binary Dice 

coefficient. Eight (6%) out of 142 peak classes were common to all of the SSPs generated after 

growth on all four culture media (see TABLE S 4.2 in the supplementary material). The same 

analysis also revealed strain-specific peak classes (see TABLE S 4.3 in the supplementary material), 

and again the number of strain-specific peak classes varied with the growth medium used. For 

example, the LMG 1545 SSPs were characterised by two, eight, five and five strain-specific peak 

classes when that strain was grown on AAM, DMS, YPM, and GY agar, respectively. Moreover, some 

of these strain-specific peak classes were common to SSPs obtained after growth on multiple media. 

For instance, eight strain-specific peak classes (m/z values of about 4300, 5335, 6366, 6399, 6574, 

7889, 10676, 12737) were present in each SSP of strain LMG 1699 grown on the four different culture 
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media. Similarly, two strain-specific peak classes characterised by m/z values of about 6560 and 7126 

were shared in all of the LMG 1599 SSPs. In contrast, the four SSPs of strain LMG 1545 had no strain-

specific peak classes that were present in each of the SSPs, but still several peak classes were 

present in two or three SSPs (see TABLE S 4.3 in the supplementary material).  

These results confirm that the number of strain-specific peak classes is culture medium-dependent 

and demonstrate that the selected culture medium affects the potential for strain level 

differentiation. 

 

TABLE 4.1. Peak classes common to SSPs derived from eight G. oxydans strains 
grown on AAM, YPM and GY agar

a
. 

  Peak class 

m/z value AAM
b
 YPM

c
 GY

d
 

2460.83 ± 3.97 X     

3090.78 ± 4.55     X 

3188.40 ± 4.55 X   X 

4178.58 ± 5.34 X X X 

4514.83 ± 5.61     X 

4926.60 ± 5.94 X X X 

4968.53 ± 5.97 X X X 

5211.47 ± 6.17   X   

5627.75 ± 6.50 X   X 

6186.62 ± 6.95 X X X 

6382.37 ± 7.11 X X X 

7431.76 ± 7.95 X   X 

8362.86 ± 8.69 X X X 

9942.86 ± 9.95 X X X 
a
 Only the peak classses marked with an X are present in the respective medium, and the m/z 

values of the peak classes common to all of the SSPs are in bold (7/105 [7%]). 

b
 Eleven (13%) of 85 peak classes shared 

c
 Eight (9%) of 88 peak classes shared 

d
 Twelve (15%) of 79 peak classes shared 
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TABLE 4.2. Strain-specific peak classes found in SSPs derived from eight G. oxydans 
strains cultured on three growth media

a
. 

 

Strain AAM YPM GY

3867.46 ± 5.09

4616.35 ± 5.69

5318.36 ± 6.25

10644.00 ± 10.52

3728.15 ± 4.98

4616.79 ± 5.69

5036.67 ± 6.09

5406.82 ± 6.33

6341.08 ± 7.07

7158.83 ± 7.73

7224.86 ± 7.78

9971.87 ± 9.98

10822.60 ± 10.66 10821.40 ± 10.66

2627.62 ± 4 .10 2627.42 ± 4 .10 2627.51 ± 4 .10

3910.06 ± 5 .13 3910.36 ± 5 .13

3944.98 ± 5.16

4356.70 ± 5.49

5318.39 ± 6.25

6819.21 ± 7.46

7852.49 ± 8 .28 7852.91 ± 8 .28

7922.93 ± 8.34

8719.65 ± 8.98

10643.90 ± 10.52

4895.25 ± 5 .92 4894.64 ± 5 .92

5035.04 ± 6.03

5395.70 ± 6.32

5934.74 ± 6.75

9795.83 ± 9.84

5267.04 ± 6.21

6608.63 ± 7.29

7254.69 ± 7.80

7369.34 ± 7.90

7741.57 ± 8.19

7829.83 ± 9.86

9827.70 ± 9 .86 9828.18 ± 9 .86

10770.50 ± 10.62 10770.30 ± 10.62

2911.32 ± 4.33

5394.77 ± 6.32

7676.08 ± 8 .14 7675.78 ± 8 .14

9967.32 ± 9.97

10797.20 ± 10.64

3681.46 ± 4.95

3728.02 ± 4.98

3894.66 ± 5.12

4082.31 ± 5.27

5591.13 ± 5 .47 5591.62 ± 6 .47 5591.79 ± 6 .47

5954.07 ± 6.76 5954.59 ± 6.76

6239.26 ± 6.99 6239.71 ± 6.99 6239.69 ± 6.99

6652.23 ± 7.32

6904.59 ± 7.52

7255.28 ± 7.80

7395.64 ± 7.92

7796.98 ± 8 .24 7796.61 ± 8 .24 7796.76 ± 8 .24

7867.55 ± 8 .29 7867.55 ± 8 .29 7867.43 ± 8 .29

7938.71 ± 8.35

8170.35 ± 8.54

9812.64 ± 9.85

12487.6 ± 11.99 12488.40 ± 11.99

3309.27 ± 4.65

3970.36 ± 5.18

5334.88 ± 6.27

6679.51 ± 7.34

6956.09 ± 7.56

7905.84 ± 8.32

14902.00 ± 13.92

m/z value for indicated peak class

a The strain-specific peak classes common to  the strain-specific SSPs of bacteria 

grown on two or three different culture media are in bo ld.

LM G 1676

LM G 1683

LM G 1398

LM G 1406

LM G 1408T

LM G 1519

LM G 1581

LM G 1674
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FIG 4.4. Mass spectra generated for eight G. oxydans strains grown on AAM agar. The shared and strain-specific peak classes are 
indicated by asterisks and squares, respectively. Annotations of the peak classes are shown in black or grey boxes for, respectively, 
the common or strain-specific peaks. r. int., relative intensity. 
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4.3.3 A growth medium-dependent core set of peak classes decreases with increasing number 

of strains 

During the analysis of strain-specific peak classes the number of shared peak classes appeared to 

decrease when more strains were examined. To investigate this in more detail, the SSPs of the eight 

G. oxydans strains grown on GY, AAM, and YPM agar were re-analysed. Per growth medium, the 

effect of a sequential inclusion of an SSP of an additional strain was analysed in all possible 

combinations. Subsequently, the number of shared peak classes was determined for all of the 

possible combinations and plotted as a function of the number of strain SSPs sequentially added to 

the data set. The plots represented in FIG 4.5 visualise this decrease in shared peak classes with 

increasing numbers of strain SSPs. The lowest set of shared peak classes [8 (9%) out of 88] was 

found when the eight strains were grown on YPM agar, rather than on AAM [11 (13%) out of 85], or 

GY agar [12 (15%) out of 79] (TABLE 4.1). Seven out of 105 peak classes were common to the SSPs 

of the strains grown on the three media (TABLE 4.1). The same study was performed for the five A. 

cerevisiae strains grown on four culture media. Although only five strains were examined, a similar 

decrease in shared peak classes was observed after growth on AAM, DMS, YPM, and GY agar (see 

FIG S 4.2 in the supplementary material). 

 

 

 

FIG 4.5. The decrease in shared peak classes among SSPs of eight G. oxydans strains grown on GY (A), AAM (B), and YPM agar (C). 
The number of shared peak classes is plotted as a function of the number of strain-specific SSPs sequentially added. Squares 
represent the average of shared peak classes per sequential addition of a strain-specific SSP. 
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These data suggest that there is a core set of peak classes that is consistently present when multiple 

strains of a species are examined and that this core is culture medium-dependent. The data confirm 

that multiple reference strains grown on multiple growth media should always be analysed to cover 

the intraspecies diversity when constructing a MALDI-TOF MS identification database [35]. It also 

demonstrates that the decrease in shared peak classes can be used as a measure of taxonomic 

intraspecies diversity. 

 

4.3.4 Species level differentiation is growth medium-independent and is not biased by 

similarity coefficient used 

The MDS plots derived from the peak-based numerical analysis as visualised in FIG 4.1 

demonstrated that most of the AAB species were clearly distinguishable, irrespective of the growth 

medium used. One exception, however, is A. malorum strain LMG 1746T, which could not be 

distinguished from the A. cerevisiae strains (FIG 4.1). Similar results were obtained in the study by 

Andrés-Barrao et al. [5]. It is well known that these two species are very closely related and can only 

be distinguished by minimal differences revealed primarily by sequence analysis of the 16S-23S 

rRNA gene internal transcribed spacer region [36, 37]. In addition, two strains, i.e., A. pasteurianus 

LMG 1590 and G. cerinus strain LMG 1678, did not group with the other strains of these respective 

species (FIG 4.1). Gluconobacter cerinus LMG 1678 had only 2 out of 96 peak classes in common with 

other G. cerinus strain SSPs, suggesting that it may be erroneously assigned to this species. The 

latter was confirmed by sequence analysis of the housekeeping genes rpoB and dnaK as described by 

Cleenwerck et al. [38], and strain LMG 1678 should therefore be considered as misclassified (A.D. 

Wieme, CHAPTER 5.1). Similarly, A. pasteurianus strain LMG 1590 also grouped separately and had 

only 5 out of 109 A. pasteurianus SSP peak classes in common, which confirms the established 

taxonomic diversity of this species [39]. 

In addition to the peak-based analysis using the binary Dice coefficient, the same data set was also 

analysed using the Pearson product-moment correlation coefficient, taking into account the 

complete molecular mass range (2-20 kDa) and the averaged signal intensities. In general, the MDS 

plots were similar to those based on the comparison of SSPs by means of the binary Dice coefficient 

and thus facilitate species differentiation with the same exceptions discussed above (FIG 4.6). The 

MSVs obtained through the curve-based numerical analysis of the 11 Acetobacter strain SSPs ranged 

from 44.7 to 92.0% with an average of 68.4% ± 13.6%. For the SSPs of the Gluconacetobacter and 

the Gluconobacter strains the MSVs ranged from 65.0 to 94.4% with an average of 81.9% ± 11.3%. 
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FIG 4.6. MDS plots obtained after curve-based numerical analysis of the generated SSPs of 11 Acetobacter strains (A) and 1 
Gluconacetobacter (Ga.) and 5 Gluconobacter (G.) strains (B) grown on five different culture media. For each strain, single-coloured 
dots represent the SSPs derived from growth on five different culture media. The MSVs among each specific strain’s SSPs are 
shown within the respective boxes. 

In general, the curve-based analysis yielded more variability between strain-specific SSPs obtained 

after growth on different culture media than did peak-based analysis. However, curve-based 

analysis of some strains like A. pasteurianus LMG 1262T, yielded MSV values among SSPs that were 

higher than those obtained by peak-based analysis (MSV of 89.3% compared to 65.2%), and this was 

related to errors or problems during the peak class assignment. For instance, in A. pasteurianus LMG 

1262T SSPs the peak characterised by m/z 7211.49 ± 7.77, which was present in the YPM-derived SSP, 

was not assigned to the m/z 7197.90 ± 7.76 peak class (FIG 4.7; see FIG S 4.3 in the supplementary 

material). Also, a double peak that was present in the G. oxydans strain LMG 1406 SSPs (see FIG S 

4.1 in the supplementary material) was not consistently annotated during preprocessing because of 

the limited resolution achieved by MALDI-TOF MS analysis. This double peak was therefore not 

detected during summarization and had no influence on the peak-based numerical analysis (MSV of 

78.5%), while it was accounted for in the curve-based analysis (MSV of 94.4%).  

In conclusion, the present study demonstrates that the culture medium can have a profound effect 

on the mass spectra of AAB, as observed in the presence and varying signal intensity of peak classes. 

Growth media that do not sustain optimal growth can influence the SSP strongly. The growth 

medium effects do not disturb species level differentiation but strongly affect the potential for strain 

level differentiation. A decrease in the number of shared peak classes was observed with an 

increasing number of strains examined and may be indicative of the degree of intraspecies diversity. 

Altogether, our data demonstrate that a well-constructed and robust MALDI-TOF MS identification 

database ideally comprises mass spectra of multiple reference strains per species grown on different 

culture media. 
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FIG 4.7. Mass spectra of A. pasteurianus strain LMG 1262
T
 grown on five different culture media. The shared peak classes are 

indicated by asterisks and annotated in the black boxes at the top. The rectangle highlights the peak that shifted in the mass 
spectrum derived from the YPM SSP and that was erroneously missed by the peak detection algorithm. r. int., relative intensity. 
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SUPPLEMENTARY MATERIAL 

TABLE S 4.1. List of 25 acetic acid bacteria examined in the present study. 

 

 

TABLE S 4.2. Peak classes common to SSPs derived from five A. cerevisiae strains 
grown on AAM, DMS, YPM and GY agar

a
. 

 

Species Strain Isolation source (geographical origin)

LMG 5 Beer (Belgium)

LMG 1504T Beech-w ood shavings of vinegar plant

LMG 1545a Film in a rice vinegar fermentor (Japan, Aichi)

LMG 1599 Brew ing yeast (United Kingdom) 

LMG 1625Ta Ale beer in storage (Canada, Toronto)

LMG 1682 Beer (Ireland) 

LMG 1699 Brew ery (United Kingdom) 

LMG 1701 Beerw ort (South Africa, Alberton)

LMG 24630 Kefir grains (Belgium, Gembloux)

Acetobacter malorum LMG 1746T Rotting apple (Belgium, Ghent)

LMG 1262T Beer (The Netherlands)

LMG 1590 Not know n

LMG 1639 Beer (The Netherlands)

Gluconacetobacter liquefaciens LMG 1381T Diospyro  sp., dried fruit (Japan)

LMG 1415 Beer (The Netherlands)

LMG 1678 Amstel beer (The Netherlands, Leiden)

LMG 1679 Amstel beer (The Netherlands, Leiden)

LMG 1398a Beer (United Kingdom)

LMG 1406 Ropy beer

LMG 1408Ta Beer

LMG 1519a Ropy sample of top fermented beer (United Kingdom)

LMG 1581a Beer (The Netherlands, Delft)

LMG 1674a Beer (The Netherlands, Delft)

LMG 1676a Amstel Beer (Belgium, Leuven)

LMG 1683 Beer (Ireland) 

LM G: BCCM /LM G Belgian Co-ordinated Collections of M icroorganisms/Laboratory of M icrobio logy Ghent University, Ghent (Belgium); 

other culture collection number can be retrieved from http://www.straininfo.net/.

a Strains that failed to grown on one culture medium (A. cerevisiae ) and on two or more culture media (G. oxydans ).

Gluconobacter oxydans

Acetobacter fabarum

Acetobacter aceti

Acetobacter pasteurianus

Gluconobacter cerinus

Acetobacter cerevisiae

m/z values AAM
b

DMS
c

YPM
d

GY
e

2079.40 ± 3.66 X

2453.48 ± 3.96 X X X X

2610.03 ± 4.09 X X X

3122.41 ± 4.50 X X X X

3625.49 ± 4.90 X X X

3703.30 ± 4.96 X X X

3885.30 ± 5.11 X X

4162.94 ± 5.33 X

4565.33 ± 5.65 X

4855.27 ± 5.88 X

4912.30 ± 5.93 X X X X

4952.00 ± 5.96 X X X

5090.62 ± 6.07 X X

5225.61 ± 6.18 X X X

5469.87 ± 6.38 X X X

6250.41 ± 7.00 X X X X

6293.57 ± 7.03 X X X

6825.92 ± 7.46 X

7062.08 ± 7.65 X X X X

7256.65 ± 7.81 X X X X

7412.25 ± 7.93 X X X X

8330.88 ± 8.66 X X X

9317.74 ± 9.45 X

9716.15 ± 9.77 X

9908.97 ± 9.93 X X X X

10188.10 ± 10.15 X

b 23 (22%) out o f 103 peak classes shared

c 16 (18%) out o f 91 peak classes shared

d 11 (10%) out o f 106 peak classes shared

e 18 (17%) out o f 104 peak classes shared

Peak class

a Only the peak classes marked with an X are present in the respective medium, and the m/z values of the peak classes common to all o f the SSPs 

are in bold (8/142 [6%])
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FIG S 4.1. Mass spectra generated from G. oxydans strain LMG 1406 grown on five different culture media. The common peak 
classes (25 [48%] out of 52) are indicated by asterisks and their corresponding m/z values are shown in black boxes at the top. The 
rectangle highlights the ambiguous double peak observed in all mass spectra as is further discussed within the manuscript (see FIG 
S 4.3 in the supplementary material). r. int., relative intensity. 
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TABLE S 4.3. Strain-specific peak classes found in SSPs derived from five A. cerevisiae strains cultured on 
four growth media

a
. 

 

Strain AAM DM S YPM GY

3390.86 ± 4.71

3545.56 ± 4.84

3987.20 ± 5.19 3987.26 ± 5.19 3987.39 ± 5.19

4684.11 ± 5.75

4740.66 ± 5.79 4741.76 ± 5.79

5638.46 ± 6.51

6895.26 ± 7.52

7168.12 ± 7.73

7980.43 ± 8.38 7981.74 ± 8.39 7980.67 ± 8.38

8498.17 ± 8.80

9486.38 ± 9.59 9486.92 ± 9.59

9678.32 ± 9.74 9678.02 ± 9.74

11282.10 ± 11.03

2372.27 ± 3.90

3277.53 ± 4.62 3277.27 ± 4.62 3277.80 ± 4.62

6479.92 ± 7.18

6560.23 ± 7.25 6559.38 ± 7.25 6559.68 ± 7.25 6561.02 ± 7.25

7127.58 ± 7.70 7125.88 ± 7.70 7126.46 ± 7.70 7128.02 ± 7.70

8412.28 ± 8.73

2138.37 ± 3.71

5446.19 ± 6.36 5446.26 ± 6.36 5446.28 ± 6.36 5448.23 ± 6.36

6926.59 ± 7.54

10899.40 ± 10.72 10899.50 ± 10.72 10900.40 ± 10.72 10902.30 ± 10.72

3041.47 ± 4.43

4748.45 ± 5.80

5277.20 ± 6.22 5276.76 ± 6.22

5345.28 ± 6.28 5345.71 ± 6.28 5346.98 ± 6.28 5345.99 ± 6.28

5800.40 ± 6.64

5826.21 ± 6.66 5826.41 ± 6.66 5827.02 ± 6.66 5826.21 ± 6.66

6441.78 ± 7.15

8152.66 ± 8.52

9693.86 ± 9.76

10077.30 ± 10.06

10696.60 ± 10.56 10697.90 ± 10.56 10700.10 ± 10.56 10699.10 ± 10.56

10727.70 ± 10.58

2250.10 ± 3.80 2250.34 ± 3.80

2849.32 ± 4.28

2864.11 ± 4.29

3196.58 ± 4.56 3196.52 ± 4.56 3196.67 ± 4.56

3941.24 ± 5.15

4229.34 ± 5.38

4300.51 ± 5.44 4300.25 ± 5.44 4300.90 ± 5.44 4300.62 ± 5.44

5335.27 ± 6.27 5335.03 ± 6.27 5335.19 ± 6.27 5335.56 ± 6.27

5906.59 ± 6.73 5906.81 ± 6.73

5712.78 ± 6.57

6210.96 ± 6.97

6365.91 ± 7.09 6366.61 ± 7.09 6368.73 ± 7.09 6366.66 ± 7.09

6396.83 ± 7.12 6398.98 ± 7.12 6398.55 ± 7.12 6399.63 ± 7.12

6573.83 ± 7.26 6573.77 ± 7.26 6573.55 ± 7.26 6575.52 ± 7.26

6945.09 ± 7.56 6946.15 ± 7.56

7890.27 ± 8.31 7890.00 ± 8.31 7888.95 ± 8.31 7890.39 ± 8.31

7916.58 ± 8.33

8461.93 ± 8.77

8511.24 ± 8.81

8660.28 ± 8.93

10503.50 ± 10.40

10675.40 ± 10.54 10675.10 ± 10.54 10675.80 ± 10.54 10677.30 ± 10.54

11366.80 ± 11.09

12737.00 ± 12.19 12737.40 ± 12.19 12738.80 ± 12.19 12738.30 ± 12.19

12870.20 ± 12.30 12870.80 ± 12.30 12872.60 ± 12.30

m/z value for indicated peak class

a The strain-specific peak classes common to the strain-specific SSPs of bacteria grown on two or three 

different culture media are in bold

LM G 1599

LM G 1682

LM G 1545

LM G 1625T

LM G 1699
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FIG S 4.2. The decrease in shared peak classes among SSPs of five A. cerevisiae strains grown on AAM (A), DMS (B), YPM (C), and 
GY agar (D). The number of shared peak classes is plotted as a function of the number of strain-specific SSPs sequentially added. 
Squares represent the average of shared peak classes per sequential addition of a strain-specific SSP. 

 

 

FIG S 4.3. A detailed representation of the spectrum shown in FIG 4.7 in the manuscript focusing on the peak classes with m/z 
values of 7197.90 ± 7.76 and 7211.49 ± 7.77. Peak class m/z 7211.49 ± 7.77 is only present in the SSP derived from A. pasteurianus 
strain LMG 1262

T
 grown on YPM agar (red mass spectrum). A mass difference of approximately 14 Da ensured the incorrect 

assignment of that peak to the additional peak class (m/z 7197.90 ± 7.76, black box) present in the SSPs derived from the strain 
grown on the other four culture media (black mass spectra). r. int., relative intensity.  
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5 Identification of beer spoilage bacteria using MALDI-TOF MS 

5.1 Identification of bacteria isolated from spoiled beer and brewery samples 

using MALDI-TOF MS 

 

Redrafted from: Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P. Identification of 

beer spoilage bacteria using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. 

International Journal of Food Microbiology (accepted). 
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reviewed the manuscript: FS, MA, KDB, AVL and PV. 

 

SUMMARY 

Applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF MS) for identification of beer-spoilage bacteria was examined. To achieve this, an 

extensive identification database was constructed comprising more than 4200 mass spectra, 

including biological and technical replicates derived from 273 acetic acid bacteria (AAB) and lactic 

acid bacteria (LAB), covering a total of 52 species, grown on at least three growth media. Sequence 

analysis of protein coding genes was used to verify aberrant MALDI-TOF MS identification results 

and confirmed the earlier misidentification of 34 AAB and LAB strains. In total, 348 isolates were 

collected from culture media inoculated with 14 spoiled beer and brewery samples. Peak-based 

numerical analysis of MALDI-TOF MS spectra allowed a straightforward species identification of 327 

(94.0%) isolates. The remaining isolates clustered separately and were assigned through sequence 

analysis of protein coding genes either to species not known as beer-spoilage bacteria, and thus not 

present in the database, or to novel AAB species. An alternative, classifier-based approach for the 

identification of spoilage bacteria was evaluated by combining the identification results obtained 

through peak-based cluster analysis and sequence analysis of protein coding genes as a standard. In 

total, 263 out of 348 isolates (75.6%) were correctly identified at species level and 24 isolates (6.9%) 

were misidentified. In addition, the identification results of 50 isolates (14.4%) were considered 

unreliable, and 11 isolates (3.2%) could not be identified. The present study demonstrated that 

MALDI-TOF MS is well-suited for the rapid, high-throughput and accurate identification of bacteria 

isolated from spoiled beer and brewery samples, which makes the technique appropriate for routine 

microbial quality control in the brewing industry.  
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5.1.1 Introduction 

Beer is a beverage with good microbiological stability because it contains almost no oxygen and 

nutrients for bacterial growth. In addition, low pH, high CO2-content and the presence of ethanol 

and antibacterial hop compounds ensure microbiological stability [1-5]. Nevertheless, beer spoilage 

due to bacteria is a common problem in the brewing industry and causes important economic losses 

worldwide [6, 7]. The most problematic organisms are lactic acid bacteria (LAB) and acetic acid 

bacteria (AAB) which are the focus of the present study. The brewing process itself is prone to 

bacterial growth because of the nutrient-rich environment of wort which comprises fermentable 

sugars and amino acids, and vitamins produced by the pitching yeast during fermentation [8]. Low 

cell numbers (i.e., 1 to 50 CFU per 100 to 250 mL sample) of a spoilage bacterium can cause visible 

turbidity [9], acidity and off-flavours [7]. At present, the hop-resistant lactic acid bacteria 

Lactobacillus backii, Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus coryniformis, 

Lactobacillus lindneri, Lactobacillus malefermentans, Lactobacillus parabuchneri, Lactobacillus 

plantarum, Pediococcus claussenii, Pediococcus damnosus and Pediococcus inopinatus are generally 

regarded as the most problematic beer-spoilage microorganisms [10, 11]. The prevalence of strictly 

aerobic spoilage bacteria has decreased because of improved process technology resulting in lower 

oxygen levels during filling [8]. However, in aerobic environments, acetic acid bacteria, such as 

Acetobacter spp. and Gluconobacter spp., can prevail and form biofilms in which other spoilage 

bacteria are protected [12, 13]. During the last two decades, anaerobic Gram negative bacteria like 

Pectinatus, Megasphaera and Zymophilus species have gained importance as spoilage bacteria in the 

brewing industry [7, 8, 14, 15]. 

In order to anticipate or to prevent further spoilage, it is necessary to detect and identify detrimental 

bacteria in a fast and easy manner. Currently, beer-spoilage bacteria are primarily detected by 

plating on selective isolation media [16-20], an approach that is time-consuming and neither 

sensitive nor specific [21, 22]. Also, subsequent characterization and identification of spoilage 

bacteria is commonly carried out via phenotypic tests (Gram staining, cell morphology and sugar 

metabolism), but these tests are again time-consuming and lack specificity [21]. Consequently, 

quality control requires lengthy storage of beer, which increases brewing costs and demand for 

storage capacity [23].  

Many culture-dependent and culture-independent detection and/or identification techniques for 

beer-spoilage bacteria have been developed. These include species-specific oligonucleotide probes 

[23-25], PCR-based methods [26-32], random amplified polymorphic DNA (RAPD) fingerprinting [33, 

34], ribotyping [35-38], sodium dodecyl sulphate-polyacrylamide gel electrophoresis of whole-cell 
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proteins [39-41] and the use of monoclonal antibodies [42-44]. However, beer-spoilage bacteria are 

taxonomically diverse while most of these methods specifically target one or a narrow range of beer-

spoilage species; furthermore other methods are time-consuming and therefore lack throughput 

capacity and do not facilitate real-time interventions. 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has 

already been introduced as a high-throughput tool for species level identification in medical, 

environmental and food-related studies [45-50]. The present study aimed to evaluate MALDI-TOF 

MS as an alternative identification tool for the most prevalent beer-spoilage bacteria, by 

constructing an identification database and evaluating its applicability for the identification of novel 

spoilage bacteria. The accuracy of the identification results was verified using sequence analysis of 

protein coding genes. The latter approach has a superior taxonomic resolution to distinguish 

between closely related species [51, 52]. 

 

5.1.2 Materials and Methods 

5.1.2.1 Bacterial strains 

A total of 273 strains representing 52 species belonging to the groups of AAB (n = 50) and LAB (n = 223) (see ANNEX 

1) which represent established or potential beer-spoilage bacteria were included in the database. These 273 strains 

included strains originating from spoiled beer or other brewery samples, but also from other niches where these 

same species occur in order to encompass the intraspecies phenotypic diversity wherever possible. The strains were 

obtained from the BCCM/LMG Bacteria Collection (http://www.belspo.be/bccm/; Ghent, Belgium), and from our own 

research collection and were cultured according to the providers’ instructions, and on additional selective and non-

selective growth media. Many of the strains were type and other taxonomically well-characterised reference strains; 

others were minimally characterised in previous studies. Some of the strains examined proved to be misclassified; 

therefore, the names of such misidentified strains will be written in square brackets below. In order to construct the 

identification database Acetobacter strains were grown on five different media: acetic acid medium (AAM) agar [53]; 

deoxycholate-mannitol-sorbitol (DMS) medium [54]; GY medium (5.0% (w/v) D-glucose, 1.0% (w/v) yeast extract and 

1.5% (w/v) agar); GYAE medium (GY medium supplemented with 1.0% (v/v) acetic acid and 2.0% (v/v) ethanol) and 

YPM medium (0.5% (w/v) yeast extract, 0.3% (w/v) bacteriological peptone, 2.5% (w/v) D-mannitol, and 1.5% (w/v) 

agar). Gluconobacter, Gluconacetobacter and Komagataeibacter strains were cultured on the same media, with the 

exception of GYAE medium which was replaced by reinforced AE (RAE) medium (4.0% (w/v) D-glucose, 1.0% (w/v) 

yeast extract, 1.0% (v/v) acetic acid, 2.0% (v/v) ethanol, 1.0% (w/v) bacteriological peptone, 0.34% (w/v) 

Na2HPO4.2H2O and 0.15% (w/v) citric acid, a layer of 1.0% (w/v) agar is topped with a layer of medium containing 

2.0% (w/v) agar) [55]. Lactobacillus and Pediococcus strains were cultured on three different media: de Man, Rogosa 

and Sharpe (MRS) medium (Oxoid), Nachweismedium für bierschädliche Bakterien (NBB) (1:1 lager pilsner 

beer:water) medium (Conda Pronadisa) and Raka-Ray medium (Oxoid). 

http://www.belspo.be/bccm/
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5.1.2.2 Sample preparation and MALDI-TOF MS data acquisition 

After resuscitating lyophilised and cryopreserved cultures, strains were subcultured twice on each growth medium 

and cell extracts were prepared from the subsequent 3rd, 4th and the 5th generation. Hence, variation induced during 

the adaptation to the growth medium was excluded and three biological replicates (i.e., three generations) were 

included. Five mg of wet cells taken from one to ten single colonies were suspended into 300 µL Milli-Q water after 

which 900 µL pure ethanol was added. After centrifugation (3 minutes, 20817 × g, 4°C), 50 µL 70% formic acid and 50 

µL acetonitrile were added to the bacterial cell pellet. After shaking vigorously and centrifugation (3 minutes, 20817 × 

g, 4°C), 1 µL of the supernatant (= the cell extract) was spotted in duplicate onto a MALDI-TOF MS stainless steel 

target plate to obtain two technical replicates. Immediately after drying, the spots were overlaid with 1 µL matrix 

solution, which consisted of 5 mg α-cyano-4-hydroxycinnamic acid dissolved in 1 mL acetonitrile/trifluoroacetic 

acid/Milli-Q water solvent (50:2:48). Prior to analysis the mass spectrometer was externally calibrated using a peptide 

mixture of adrenocorticotropic hormone (fragment 18-39) (Sigma-Aldrich), insulin (Sigma-Aldrich), ubiquitin (Sigma-

Aldrich), cytochrome C (Sigma-Aldrich) and myoglobin (Sigma-Aldrich). A 4800 Plus MALDI TOF/TOFTM Analyzer 

(AB Sciex) was used in the linear mode and covered a mass range from 2 to 20 kDa. The mass spectrometer used a 

200 Hz frequency tripled Nd:YAG laser, operating at a wavelength of 355 nm. Generated ions were accelerated at 20 

kV through a grid at 19.2 kV into a 1.5 m, linear, field-free drift region towards the detector. For each spot, 40 sub-

spectra each consisting of 50 laser shots, and from randomised positions within the spot were collected and 

presented as one spectrum (2000 laser shots in total), which will further be referred to as the spectral profile. The 

laser intensity was set between 4200 and 5700 procedure defined units. With every set of measurements, Bacterial 

Test Standard (Bruker Daltonics) was included as positive control. 

5.1.2.3 MALDI-TOF MS data analysis 

The mass spectra were retrieved as t2d files from the 4800 Plus MALDI TOF/TOFTM Analyzer via the 4000 Series 

Explorer software. Data Explorer 4.0-software (AB Sciex) was used to convert the t2d files into text files that were 

subsequently used as input files for the BioNumerics 7.1 software package (Applied Maths). A spectral profile was 

considered of acceptable quality if the absolute signal intensity of the highest peak was > 500 counts, if more than 5 

peaks with a signal/noise ratio (S/N) > 20 were detected in the 3-20 kDa range and if there were no repetitive signals 

in the 2.1-3 kDa range. The import of the spectral data in BioNumerics 7.1 was conducted using an optimised 

preprocessing template including consecutive Continuous Wavelet Transform (CWT) noise estimation, a Savitsky-

Golay filter smoothing and a baseline subtraction using the rolling disk algorithm [56]. After pre-processing, each 

peak with a S/N ratio ≥ 5 and an absolute intensity of at least 6 counts was annotated.  

The peak-based data analysis matches all peaks in the mass spectra to a peak class using constant and linearly 

varying tolerance values of 2 m/z and 800 ppm, respectively [56]. The obtained dataset was converted into a binary 

character set and analyzed using the Dice coefficient and the UPGMA (Unweighted Pair Group Method with 

Arithmetic Mean) cluster algorithm. As a second approach, curve-based data analysis of mass spectra was performed 

using the Pearson product-moment correlation coefficient and the UPGMA cluster algorithm. The stability of the 

obtained cluster(s) was determined via re-sampling of the dataset with an automated Jackknife test [56]. This test 

uses the ‘leave one out’ principle, where one entry is removed from the dataset and is re-identified by calculating the 

average similarity towards each of the species-specific cluster(s). The percentage of true positive hits, i.e., the 
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percentage of entries that were re-identified to the group they were originally assigned to, is a measure for the 

stability (consistency) of the species-specific cluster(s) [56] and for the identification potential of the method. 

5.1.2.4 Isolation of beer spoilage bacteria 

Fourteen spoiled beer or brewery samples were retrieved from Belgian breweries: nine samples from finished beer 

(eight bottles and one kegged), 4 samples collected from pitching yeast cultures and one wort sample (TABLE 5.1). 

Prior to isolation, all samples were checked microscopically for the presence of yeast cells and filtered. When yeast 

cells were present, the filtration was conducted over a set of three consecutive filters: 5 µm, 8 µm and 0.45 µm 

(cellulose nitrate, Whatman). Yeast cells were primarily retained on the first two filters, bacterial cells on the last. If 

no yeast cells were present, only the 0.45 µm filter was used to concentrate the bacterial cells. After filtration, the 

0.45 µm filter was cut in three pieces which were submerged in three enrichment media: AAM broth to enrich AAB, 

MRS broth (Oxoid) to enrich LAB [20] and Nachweismedium für bierschädliche Bakterien (NBB) broth (1:1 lager 

pilsner beer/water) (Conda Pronadisa) to enrich both AAB and LAB. If yeast cells were initially present, cycloheximide 

and amphotericin B were added after sterilization to each enrichment broth in concentrations of 200 ppm and 5 ppm, 

respectively. After growth, enrichment broths were serially diluted to 10-6 in saline and plated onto the corresponding 

agar plates. All three media were incubated at 30°C, aerobically and anaerobically, with the exception of AAM agar 

plates which were only incubated aerobically. From the 14 spoiled beer and brewery samples, a total of 348 isolates 

including all different morphotypes were picked and analysed (FIG 5.1). 

TABLE 5.1. Overview of the 14 spoiled beer and brewery samples (BS) examined. 

 

5.1.2.5 Identification of beer spoilage bacteria 

For each isolate, one cell extract was prepared from the third generation culture only and mass spectra were 

generated as described above. Mass spectra of two technical replicates per isolate were combined into a summary 

spectral profile (SSP). To obtain this SSP, a peak matching analysis was conducted with constant and linearly varying 

tolerance values of 1 m/z and 800 ppm, respectively [56]. The minimum peak detection rate was set at 100%, 

implying that each summary peak occurred in both profiles of the technical replicates, thus minimizing the impact of 

technically induced variations [56]. Subsequently, the signal intensity for each data point in the SSP was calculated 

by averaging the respective signal intensities from the technical replicates. 

Belgian 

brew ery

Year of 

isolation

BS4 Final kegged pils beer A 2010

BS5 Bottled dinner beer (alcohol content of 1.8% v/v) B 2010

BS6 Bottled sw eetened dinner beer (alcohol content of 2.25% v/v) B 2010

BS7 Fruity w heat beer (alcohol content of 4.3% v/v) A 2010

BS9 Spoiled pitching yeast culture B 2012

BS10 Spoiled pitching yeast culture B 2012

BS11 Spoiled pitching yeast culture B 2012

BS12 Bottled dinner beer (alcohol content of 1.5% v/v) A 2012

BS13 Spoiled w ort C 2012

BS14 Bottled beer (alcohol content of 6.6% v/v) A 2012

BS15 Bottled beer (alcohol content of 7.5% v/v) A 2012

BS16 Bottled beer (alcohol content of 7.5% v/v) A 2012

BS36 Spoiled pitching yeast culture A 2013

BS37 Bottled dinner beer (alcohol content of 1.5% v/v) A 2013

Spoiled beer and/or brew ery sample
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The identification of the 348 novel isolates was first achieved through comparison of their SSPs with the 4200 

reference mass spectra from 273 strains belonging to 52 AAB and LAB species present in the identification database 

using the binary peak-based cluster analysis. Isolates were assigned to species based on their position in the obtained 

UPGMA cluster analysis. Alternatively, three classifiers were created based on the pairwise similarity values obtained 

after peak-based analysis of all reference mass spectra (i.e., the 4200 mass spectra described above), each with an 

own scoring method (i.e., basic similarity, balanced similarity and weighted average similarity). The species-specific 

groups defined by peak-based cluster analysis and evaluated using the Jackknife test will be referred to below as 

classes. The classifier based on basic similarity searches the maximum similarity value between an isolate’s SSP and 

all mass spectra in the database, and then assigns the isolate to the class containing the mass spectrum with this 

maximum pairwise similarity value. The balanced similarity classifier scores the match between an isolate‘s SSP and 

the class it is compared to by determining a weighted sum of the maximum (Smax) and average (Savg) similarities to all 

mass spectra within that class [56] as defined by 

 

 

in which the maximum similarity weight parameter (w) was set at 0.75. 

The weighted average similarity classifier determines the weighted sum of the similarity values (Si) between an 

isolate‘s SSP and each of the class member spectra as defined by 

 

The weight factor F was set at 50 [56]. 

5.1.2.6 Sequence analysis of protein coding genes 

MALDI-TOF MS identifications of AAB and LAB strains were verified using protein coding gene sequence analysis. To 

this end, DNA was prepared using the protocol described by Niemann, et al. [57]. For the identification of LAB, 

amplification and sequencing of the gene encoding for phenylalanyl-tRNA synthase alpha subunit (pheS) was 

performed as described by Naser, et al. [52] but with optimised annealing temperatures between 52-55°C to avoid 

aspecific amplicons. AAB were identified via amplification and sequencing of rpoB (the β-subunit of the RNA 

polymerase), dnaK (encoding the heat-shock protein DnaK) and/or groEL (encoding a 60 kDa chaperonin protein) [51]. 

All sequencing reactions were purified using the BigDye® XTerminatorTM Purification Kit according to the standard 

protocol (AB Sciex). Electrophoresis of sequence reaction products was performed using an ABI Prism 3100 Genetic 

Analyzer (AB Sciex). The generated sequences were analyzed using BLAST analyses [58]. The list of reference strains 

and isolates analyzed as such can be found in TABLE 5.2 and TABLE 5.3, respectively.  
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5.1.3 Results and Discussion 

5.1.3.1 Construction of the MALDI-TOF MS identification database 

A total of 4248 good quality mass spectra generated for 273 reference strains representing 52 AAB 

and LAB species were included in the MALDI-TOF MS identification database (see ANNEX 1). To 

encompass intraspecies phenotypic diversity, strains isolated from different niches were included 

wherever possible [59, 60]. Furthermore, although we previously demonstrated that growth 

medium-induced effects did not influence differentiation at species level ([60]; CHAPTER 4), we 

preferred to grow all reference strains on multiple culture media to include and anticipate medium-

induced variation in the MALDI-TOF MS identification database as this may affect the bacterial 

protein expression pattern [60-62] and hence alter the generated MALDI-TOF mass spectra [60, 63, 

64] (CHAPTER 4). 

 

 

FIG 5.1. Overview of the isolates collected from 14 spoiled beer and brewery samples, and their identification result. BS, Beer 
Sample; values shown on the x-axis represent the number of isolates collected from MRS, NBB and AAM agar. 

 

The performance of a MALDI-TOF MS identification database largely depends on the correct 

classification of the reference strains examined. The mass spectra generated from the AAB and LAB 

strains were analysed separately using a curve- and a peak-based algorithm in order to evaluate the 
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taxonomic classifications of all reference strains. When using the curve-based algorithm, species 

were not nicely differentiated in distinct clusters as spectra of eleven species were split into multiple 

clusters. In addition, twelve clusters comprised mass spectra of two or more species (data not 

shown). In contrast, a much clearer species level differentiation was obtained using the peak-based 

algorithm which was therefore used to verify the classification of each of the examined reference 

strains. In total, 34 reference strains did not cluster with the other strains of their respective species 

(see ANNEX 1) and their classification was verified using sequence analyses of protein encoding 

genes (TABLE 5.2). In bacterial taxonomy and identification it is well known that the resolution of 

16S rRNA sequence analysis is insufficient to discriminate between closely related AAB and LAB 

species [51, 52], although this approach has been commonly used for tentative identification of 

novel AAB and LAB isolates [65-67]. Protein encoding genes however have a higher taxonomic 

resolution and different genes were reported useful for the accurate species level identification of 

different groups of AAB and LAB species [51, 52, 65-67] In the present study we used the pheS gene 

sequence for the identification of LAB species [52, 67], and dnaK, rpoB and/or groEL gene sequences 

for AAB species [51, 66], as taxonomic studies demonstrated their valid use for this purpose. 

 

TABLE 5.2. Results of the rpoB, dnaK and pheS sequence analyses of the reclassified reference strains. 

          
Type strain with highest pairwise sequence 

similarity to query sequence 

  
Query 
strain 

Partially 
sequenced 

gene 

Accession 
number 

Former species 
name 

Corrected 
species name 

Percentage 
sequence 
similarity 

Accession 
number  

AAB 

LMG 1698 rpoB KF910100 A. pasteurianus A. malorum 97.8% KF537504 

LMG 1743 rpoB KF910106 G. cerinus G. thailandicus 98.3% FN391803 

LMG 1678 rpoB KF910111 G. cerinus G. japonicus 99.4% HG329610 

LMG 1678 dnaK KF910094 G. cerinus G. japonicus 99.1% HG329573 

LMG 1701 dnaK KF910095 A. pasteurianus A. fabarum 98.8% HG329536 

LAB 

LMG 11771 pheS KF910135 Lb. parabuchneri Lb. brevis 99.0% AM087680 

LMG 11974 pheS KF910134 Lb. buchneri Lb. brevis 98.9% AM087680 

LMG 18940 pheS KF910115 Lb. perolens Lb. brevis 99.1% AM087680 

LMG 12000 pheS KF910137 Lactobacillus sp.  Lb. buchneri 100.0% AM087681 

LAB 285 pheS KF910130 Lb. brevis Lb. collinoides 99.5% AM087730 

LAB 1446 pheS KF910136 Lb. perolens Lb. harbinensis 99.0% HQ419067 

LMG 18938 pheS KF910131 Lb. perolens Lb. harbinensis 99.2% HQ419067 

LMG 7934 pheS KF910114 Lb. brevis Lb. hilgardii 99.8% AM087698 

LMG 7935 pheS KF910113 Lb. brevis Lb. hilgardii 99.3% AM087698 

R-21110 pheS KG910141 Lb. parabuchneri Lb. paracasei 99.5% AM087710 

LAB 352 pheS KF910127 Lb. plantarum Lb. pentosus 97.8% AM087713 

LAB 1159 pheS KF910125 Lb. buchneri Lb. plantarum 99.6% FR775943 

LMG 22108 pheS KF910148 Lb. brevis Lb. plantarum 99.6% FR775943 

LAB 1192 pheS KF910124 Lb. perolens Lb. rossiae 90.0% AM087768 

LAB 1193 pheS KF910128 Lb. perolens Lb. rossiae 89.3% AM087768 

LMG 26011 pheS KF910126 P. damnosus P. acidilactici 99.2% AM749814 
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The peak-based cluster analysis of 1361 mass spectra generated from 50 AAB reference strains 

revealed that mass spectra of 16 out of 18 AAB species examined were grouping in species-specific 

clusters (FIG 5.2). Mass spectra of Acetobacter cerevisiae and Acetobacter malorum strains were 

grouped in a single cluster (FIG 5.2). These two species are very closely related and that they can 

only be differentiated by sequence analysis of the 16S-23S rRNA gene internal transcribed spacer 

region [68]. In addition, some AAB reference strains clustered aberrantly (FIG 5.2). [Gluconobacter 

cerinus] strains LMG 1678 (a beer isolate) and LMG 1743 (a rotting pear isolate) grouped separately 

from the other AAB reference strains comprised in our identification database (FIG 5.2). The former 

was identified as Gluconobacter japonicus, a species not regarded as a beer spoilage bacterium, and 

the latter as Gluconobacter thailandicus (TABLE 5.2). Similarly, [Acetobacter pasteurianus] strains 

LMG 1549, LMG 1587, LMG 1597, LMG 1604 and LMG 1698 were reassigned to the A. cerevisiae/A. 

malorum group according to MALDI-TOF MS and this was confirmed through sequence analysis of 

strain LMG 1698 (FIG 5.2; TABLE 5.2). Furthermore, [A. pasteurianus] LMG 1701 (beer wort) and 

[Acetobacter lovaniensis] LMG 24630 (kefir grains) were reassigned to Acetobacter fabarum (FIG 5.2; 

TABLE 5.2), a species also isolated from an industrial spontaneously fermented lambic beer (West 

Flanders, Belgium) (FS and PV, unpublished data) and from American coolship ale (USA) [69]. Finally, 

the mass spectra generated from [Komagataeibacter xylinus] LMG 25 did not cluster with any of the 

AAB reference strains included in this study (FIG 5.2). Similar results were recently obtained in the 

study of Andrés-Barrao et al. [45] who reported that LMG 25 belongs to Komagataeibacter swingsii. 

The peak-based analysis of 2887 mass spectra generated from 223 LAB reference strains generally 

revealed that mass spectra of most species examined were grouping in species-specific clusters; 

except for the mass spectra of the closely related Lb. plantarum and Lactobacillus paraplantarum 

which grouped together in a single, intermixed cluster (FIG 5.3). Mass spectra of Lactobacillus 

collinoides/Lactobacillus paracollinoides (data not shown) and Lb. buchneri/Lb. parabuchneri (FIG 5.3) 

grouped in dispersed, but species-specific clusters. The growth medium used may have contributed 

to this dispersion effect, but a similar result was obtained when only spectra generated after growth 

on a single growth medium were compared (data not shown). Some reference strains again 

clustered aberrantly (see ANNEX 1; FIG 5.3). Lb. brevis, a major beer spoilage bacterium, was 

represented by 60 strains and most mass spectra grouped together in a single cluster. However, [Lb. 

brevis] strains LAB 285 and LMG 22108 grouped with Lb. collinoides and Lb. plantarum/Lb. 

paraplantarum strains, respectively (FIG 5.3), and these identification results were confirmed by 

pheS sequence analysis (TABLE 5.2). Strains known as “Lb. brevis subsp. gravesensis” (LMG 7934) 

and “Lb. brevis subsp. otakiensis” (LMG 7935) [68] were also grouping separately from all other LAB 

reference strains (FIG 5.3) and were assigned to Lactobacillus hilgardii by pheS sequence analysis 
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(TABLE 5.2). [Lb. parabuchneri] LMG 11771, [Lb. buchneri] LMG 11974 and [Lactobacillus perolens] 

LMG 18940 grouped within the Lb. brevis cluster and this identification was confirmed by pheS 

sequence analysis (FIG 5.3; TABLE 5.2). Similarly, Lactobacillus sp. strain LMG 12000 was identified 

as Lb. buchneri, [Lb. parabuchneri] strains R-21110 and R-21121 were reassigned to Lactobacillus 

paracasei, [Lb. perolens] strains LAB 1446 and LMG 18938 were identified as Lb. harbinensis, [Lb. 

plantarum] strains LAB 351 and LAB 352 were identified as Lactobacillus pentosus, and both [Lb. 

buchneri] strain LAB 1159 and [Lb. paracasei] strain LAB 541 were reassigned to Lb. plantarum (Fig. 2; 

Table 2). Interestingly, [Lb. perolens] strains LAB 1192 and LAB 1193 (both soft drink isolates) were 

reassigned to Lactobacillus rossiae (FIG 5.3; TABLE 5.2), a strongly slime forming bacterium 

recovered previously from a German yeast culture containing wheat beer and isolated from biofilms 

in a brewery’s filling hall [10].  

Also some Pediococcus reference strains proved to be classified incorrectly. [P. damnosus] strain 

LMG 26011 and [P. inopinatus] strain LMG 26012 were reclassified to Pediococcus acidilactici (FIG 5.3; 

TABLE 5.2), an organism encountered less frequently in the brewing environment compared to P. 

damnosus and P. inopinatus [3, 9]. [P. damnosus] strains LAB 1330, LAB 1331 and LAB 1453 were 

reassigned to P. claussenii (FIG 5.3), a potential beer spoilage bacterium which causes ropiness when 

present in packaged beer due to excessive production of exopolysaccharides [71, 72]. Finally, as 

described earlier [Pediococcus lolii] LMG 25667T was identified as P. acidilactici ([73]; CHAPTER 5.2). 

 

5.1.3.1 Application of the MALDI-TOF MS identification database to identify unknown bacteria 

Species level identification of microbial contaminants in beer and brewery samples is of utmost 

importance in the brewing industry and a broad diversity in hop resistance and spoilage potential 

has been observed among strains within the same species [74-76]. However, hop resistance is not a 

stable characteristic and a decrease in resistance can occur after passaging hop-resistant strains in a 

hop-deprived environment [5, 28, 77]. Furthermore, this characteristic can be easily transmitted 

among strains via horizontal gene transfer [77]. Therefore, species level identification of potential 

spoilage bacteria is an important first step in microbial quality control regardless of the spoilage 

capabilities of the microorganism isolated. 
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FIG 5.2. Peak-based cluster analysis using the binary Dice coefficient and UPGMA cluster algorithm of a 
selection of mass spectra of 50 AAB reference strains and of cluster representatives of novel spoilage isolates 
examined in the present study (isolate numbers are highlighted in bold character type). Strain numbers of 
reclassified reference strains are shown in red.  
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FIG 5.3. Peak-based cluster analysis using the binary Dice coefficient and UPGMA cluster algorithm of a selection of mass 
spectra generated from 223 LAB reference strains and of cluster representatives of novel spoilage isolates from the present 
study (isolate numbers are highlighted in bold character type). Strain numbers of reclassified reference strains are shown in 
red.  
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TABLE 5.3. Identification results of 32 isolates representing 15 cluster of 348 novel beer spoilage isolates from the present 
study. The type strain which had the highest sequence similarity with respect to the query sequence is annotated in the 
designated column. 

 

 

A total of 348 isolates were retrieved from 14 spoiled beer and brewery samples (TABLE 5.1; FIG 5.1). 

The SSPs generated from these 348 isolates were compared using the curve-based algorithm and 

UPGMA cluster analysis (data not shown). This approach allowed a rapid assessment of the diversity 

among the isolates. Fifteen distinct profiles corresponding with different clusters (referred to as 

clusters 1 through 15) were present and for each of the clusters one or six representative isolates 

were chosen based on the cluster heterogeneity observed (TABLE 5.3) for confirmation of their 

identification through sequence analysis (see below). The 348 isolates’ SSPs were subsequently 

Strain BS Gene *
Accession no¥ Strain identified as Accession no

Cluster 1 74 isolates

R-49601 10 rpoB KF910097 A. cerevisiae 98.3% KF537492

R-49602 11 rpoB KF910098 A. cerevisiae 98.3% KF537492

Cluster 2 7 isolates

R-50650 37 dnaK KF910092 A. fabarum 98.5% HG329542

Cluster 3 11 isolates

R-50362 37 rpoB KF910108 A. indonesiensis 97.4% KF537503

R-50645 37 rpoB KF910109 A. indonesiensis 97.4% KF537503

Cluster 4 8 isolates

R-49862 14 rpoB KF910101 A. orleanensis 99.4% KF537507

Cluster 5 1 isolates

R-50064 14 rpoB KF910096 A. persicus 98.7% KF537531

Cluster 6 7 isolates

36 dnaK KF910090 G. kondonii 98.4% HG329571

36 groEL HG329605 G. kanchanaburiensis 97.2% HG329598

36 rpoB KF910104 G. kondonii 89.0% HG329607

Cluster 7 2 isolates

37 dnaK KF910093 G. uchimurae 97.9% HG329581

37 rpoB KF910110 G. roseus 95.2% HG329613

Cluster 8 7 isolates

R-50416 36 rpoB KF910102 G. cerinus 98.2% FN391790

R-50417 36 dnaK KF910091 G. cerinus 98.0% FN391644

R-50417 36 rpoB KF910103 G. cerinus 98.1% FN391790

Cluster 9 19 isolates

R-50363 37 rpoB KF910105 G. japonicus 98.9% HG329615

R-50643 37 rpoB KF910107 G. japonicus 99.0% HG329615

Cluster 10 5 isolates

R-49860 6 rpoB KF910112 G. oxydans 99.9% FN391799

R-49861 6 rpoB KF910110 G. oxydans 99.9% FN391799

Cluster 11 21 isolates

R-49483 4 pheS KF910133 Lb. backii 99.6% AB769496

R-49484 4 pheS KF910132 Lb. backii 99.7% AB769496

R-50069 4 pheS KF910147 Lb. backii 99.5% AB769496

Cluster 12 100 isolates

R-49531 11 pheS KF910129 Lb. brevis 89.9% AM087680

R-49856 15 pheS KF910143 Lb. brevis 99.0% AM087680

R-49857 15 pheS KF910144 Lb. brevis 99.0% AM087680

R-49864 10 pheS KF910155 Lb. brevis 98.9% AM087680

R-49877 16 pheS KF910146 Lb. brevis 98.9% AM087680

R-49879 13 pheS KF910156 Lb. brevis 98.9% AM087680

Cluster 13 59 isolates

R-49868 12 pheS KF910142 Lb. malefermentans 99.8% AM263505

R-50644 37 pheS KF910149 Lb. malefermentans 99.7% AM263505

R-50646 37 pheS KF910150 Lb. malefermentans 99.7% AM263505

R-50647 37 pheS KF910151 Lb. malefermentans 99.7% AM263505

R-50649 37 pheS KF910152 Lb. malefermentans 99.7% AM263505

Cluster 14 5 isolates

R-49863 7 pheS KF910145 P. claussenii 100.0% AM899832

Cluster 15 22 isolates

R-50648 37 pheS KF910153 P. inopinatus 100.0% AM899821

R-50651 37 pheS KF910154 P. inopinatus 100.0% AM899821

1 also retrieved from BS5, BS6, BS9 and BS36

2 also retrieved from BS4 and BS14

* Partially sequenced

¥ Query sequence

Type strain w ith highest pairw ise % sequence 

similarity to query sequence

BS = Beer Sample (see T A B LE 5.1)

Pediococcus inopinatus

Lactobacillus malefermentans

Pediococcus claussenii

Cluster representatives

R-50361

R-50419Gluconobacter cerevisiae

Acetobacter orleanensis

Acetobacter persici

Lactobacillus brevis 2

Gluconobacter japonicus

Gluconobacter oxydans

Lactobacillus backii

Acetobacter cerevisiae /             

Acetobacter malorum 1

Gluconobacter cerinus

Gluconobacter sp.

Acetobacter fabarum

Acetobacter indonesiensis
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added to the AAB and LAB reference strains peak-based cluster analyses and the spectral dataset 

was re-analysed. Isolates were assigned to species based on their position in the obtained UPGMA 

cluster analysis (FIG 5.2; FIG 5.3) and these identifications were consistently verified through pheS, 

rpoB or dnaK sequence analysis (TABLE 5.3). 

The 74 isolates comprised in cluster 1 were identified as A. cerevisiae/A. malorum (TABLE 5.3; FIG 5.2) 

and were collected in two breweries from four spoiled brewer’s pitching yeast cultures and from two 

different types of bottled dinner beers with respective alcohol contents of 1.8% v/v and 2.25% v/v 

(TABLE 5.1; TABLE 5.3). Besides A. cerevisiae/A. malorum, Gluconobacter oxydans (cluster 10, 5 

isolates) was also isolated from the latter dinner beer which was artificially sweetened whereas the 

former was not (TABLE 5.1; TABLE 5.3; FIG 5.2). A. fabarum (cluster 2, 7 isolates) was also isolated 

from a spoiled bottled dinner beer together with other AAB and LAB species (see below; TABLE 5.3). 

Several other AAB species, i.e., Acetobacter orleanensis (cluster 4, 8 isolates), G. cerinus (cluster 8, 7 

isolates) and G. japonicus (cluster 9, 19 isolates) were identified as well (TABLE 5.3; FIG 5.2). In 

contrast, the SSPs of 21 Gram negative isolates comprised in clusters 3, 5, 6 and 7 formed separate 

clusters not matching with any of the reference strains and therefore, their identification was 

inconclusive based on MALDI-TOF MS (FIG 5.2). rpoB or dnaK sequence analyses identified cluster 3 

(11 isolates) and cluster 5 (1 isolate) isolates as Acetobacter indonesiensis and Acetobacter persici, 

respectively (Table 3), which are AAB species previously not regarded as beer spoilage bacteria. 

More remarkably, rpoB or dnaK sequence analyses failed to identify cluster 6 (7 isolates) and cluster 7 

(2 isolates) isolates and extensive polyphasic taxonomic analyses demonstrated that isolates from 

both clusters represent potentially novel Gluconobacter species ([65] and AW and PV, unpublished 

data). The name Gluconobacter cerevisiae was recently proposed for the former taxon which was also 

isolated from two lambic breweries ([72]; CHAPTER 5.3).  

AAB prevail in aerobic environments in the brewery environment (e.g., dispensing system, yeast 

propagation tanks) producing biofilms [13] and causing spoilage [7]. More recently, their prevalence 

decreased and they are often not considered a genuine threat in modern brewery industry [11]. This 

clearly contrasts with the isolation of ten AAB species from eight different samples [i.e., four spoiled 

brewer’s pitching yeast cultures, three spoiled bottled dinner beers and one bottled beer with an 

alcohol content of 6.6% v/v, all collected from two out of three breweries examined (TABLE 5.1; 

TABLE 5.3)]. Some of these AAB species have not been reported as potential beer spoilage species 

and were therefore initially not included in the MALDI-TOF MS identification database. These 

include A. indonesiensis and G. japonicus which were both isolated together with other AAB and LAB 

species from a spoiled bottled dinner beer (alcohol content of 1.5% v/v) (FIG 5.1; TABLE 5.3), and A. 

persici which was isolated together with A. orleanensis from a spoiled blond ale type beer with 
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refermentation in the bottle (alcohol content of 6.6% v/v) (FIG 5.1; TABLE 5.3). Such bacteria will be 

missed by detection and identification kits currently used in the brewery industry which focus 

primarily on beer spoiling LAB and some strict anaerobic genera, i.e., Megasphaera and Pectinatus. 

Our present data suggest that these species should not be neglected as potential beer spoilage 

bacteria, as these may cause off-flavours, turbidity and ropiness [11, 73, 74].  

The largest cluster of spoilage isolates (cluster 12, 100 isolates) was identified as Lb. brevis (TABLE 

5.3), the most common beer spoilage bacterium [80]. Similar to A. cerevisiae/A. malorum, Lb. brevis 

was well-represented in 7 out of 14 spoiled beer and brewery samples examined (FIG 5.1; TABLE 

5.3). Other LAB species were identified as well, i.e., Lb. backii (cluster 11, 21 isolates), Lb. 

malefermentans (cluster 13, 59 isolates), P. claussenii (cluster 14, 5 isolates) and P. inopinatus (cluster 

15, 22 isolates) (FIG 5.1; FIG 5.3; TABLE 5.3). The latter two species are regarded to be potential 

beer spoilage bacteria as growth of these species occurs mostly in weak beers (i.e., beers with low 

alcohol content, higher pH, low bitter units) [30]. P. inopinatus was isolated from a spoiled bottled 

dinner beer with a final alcohol content of 1.5% v/v as is in correspondence with literature (TABLE 

5.1; TABLE 5.3). Similarly, P. claussenii was retrieved from a spoiled fruity wheat beer with an 

alcohol content of 4.3% v/v (TABLE 5.1; TABLE 5.3). Lb. backii recently emerged as an obligate beer 

spoilage bacterium in the brewing environment [80-82] which was confirmed in the present study by 

the isolation of Lb. backii along with Lb. brevis from spoiled kegged beer (FIG 5.1; TABLE 5.1; TABLE 

5.3). Lb. malefermentans has been isolated from a top fermented beer [83] and was more recently 

recovered from beer bottles found in a 170-year-old shipwreck discovered in the Baltic Sea off the 

Åland Isles [84]. In the present study, Lb. malefermentans was isolated from two different batches of 

contaminated bottled dinner beer obtained from the same brewery with a one year interval (FIG 5.1; 

TABLE 5.1; TABLE 5.3). Isolates from both samples had indistinguishable DNA fingerprints as 

determined through RAPD analysis (data not shown) suggesting that Lb. malefermentans is a 

resident spoilage bacterium of this brewery.  

In conclusion, 327 out of 348 isolates (94.0%) from 14 spoiled beer and brewery samples were 

identified using the peak-based cluster analysis approach. The remaining isolates clustered 

separately and could either be assigned to species that were not recognised as (potential) beer 

spoilage bacteria before or to novel AAB species altogether. The inclusion of reference strains of 

each of these missing reference species in the MALDI-TOF MS identification database allowed a 

straightforward identification of these isolates (data not shown). 
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5.1.3.2 Alternative identification approach based on classifiers 

A peak-based classifier-based approach was investigated as an alternative, high-throughput 

identification approach. The SSPs of the 348 isolates were matched against all (> 4200) AAB and 

LAB reference mass spectra using three different scoring approaches referred to as, classifiers [56]. 

Per classifier, scores were generated between isolates and the best matching reference strains. The 

identification results for all 348 isolates obtained through peak-based cluster analyses and sequence 

analyses of protein coding genes allowed the determination and delineation of a score cut-off. The 

highest number of correct identifications was obtained when the first hit of each classifier had a 

score of more than 60% and the difference between the highest score and the runner-up was more 

than 6.5%. If this difference was lower than 6.5% the result was considered unreliable. In total 263 

out of 348 isolates (75.6%) were correctly identified this way. In contrast, 24 isolates (6.9%) were 

misidentified although the first hit of each classifier was identical and higher than 60% and the 

difference between the highest two scores of each classifier was more than 6.5%. The identification 

results of 50 isolates (14.4%) were considered unreliable, and 11 isolates (3.2%) had scores lower 

than 60% and were thus not assigned to a species present in the MALDI-TOF MS identification 

database. For example, the seven isolates of cluster 6 representing the novel species G. cerevisiae 

were erroneously assigned to Gluconobacter sphaericus (although their identification scores 

were >75%). Similarly, fourteen Lb. malefermentans isolates were erroneously identified as Lb. 

paracasei. Previous studies demonstrated that in order to obtain reliable identification results 

several reference strains per species, preferentially isolated from different niches, should be included 

to sufficiently cover the intraspecies diversity [59, 60, 80-82]. In our MALDI-TOF MS identification 

database, Lb. malefermentans was represented by two strains only, compared to 15 for Lb. paracasei. 

Including additional Lb. malefermentans reference strains might therefore result in an increase of 

reliable and correct classifier-based identifications. 

The classifier-based approach is a far more rapid tool for the identification of unknowns, but in the 

present study about 7% of the isolates was misidentified and about 18% of the strains were not or 

not conclusively identified. We therefore prefer to use the peak-based cluster analysis for future 

analysis of unknown bacteria, due to its accurate performance. Nevertheless, the classifier-based 

approach could initially be used as a rapid screening tool for a large number of isolates. 
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5.1.4 Conclusion 

The present study demonstrated that MALDI-TOF MS is a well-suited identification tool for bacteria 

isolated from spoiled beer and brewery samples. Its capacity for rapid, high-throughput analysis 

(about 200 isolates can be easily analysed in a working day starting from the extract preparation), its 

low consumable cost (less than € 3 per isolate) and the reliable identifications make this technique 

appropriate for routine quality control in the brewing industry. Moreover, novel beer-spoilage 

species or other established beer-spoilage bacteria can easily be added to the identification 

database without adjusting the sample preparation or data acquisition methods and the 

identification database can easily be extended to include other established beer-spoilage bacteria, 

like strict anaerobes. Yet, the initial investment cost and subsequent maintenance costs of the 

apparatus are high, which render its purchase and use in small and medium-sized brewery 

companies problematic. It seems therefore more appropriate to adopt MALDI-TOF MS in food-

related reference laboratories and to provide these low-cost identification services to the brewing 

industry. 

Species level identification of potential spoilage microorganisms is of utmost importance for the 

brewery industry although not all strains share similar beer spoiling capabilities [88, 89]. 

Nevertheless, species level identification enables the estimation of the potential impact of spoilage 

and the prevention of further product deterioration and future spoilage. Unfortunately, enrichment 

and isolation of the spoilage bacteria are required prior to MALDI-TOF MS analysis [61], as too few 

bacterial cells are present in the spoiled beer and brewery samples to allow direct detection (and 

identification) through MALDI-TOF MS [90-92]. Moreover, the beer matrix and the presence of 

multiple species in a single sample could hamper direct detection as well. At present, this technique 

seems therefore more suitable for identification of isolates rather than early detection of beer-

spoilage bacteria. 
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5.2 Pediococcus lolii DSM 19927T and JCM 15055T represent a Pediococcus 

acidilactici strain 

 

Redrafted from Wieme AD, Cleenwerck I, Van Landschoot A, Vandamme P. (2012) Pediococcus lolii DSM 19927T and 

JCM 15055T represent a Pediococcus acidilactici strain. International Journal of Systematic and Evolutionary 

Microbilogy 62: 3105-3108 

Author Contributions: conceived and designed experiments: ADW and PV; performed experiments and data 

analyses: ADW; data analysis of the FAFLP fingerprinting patterns executed by IC; wrote the manuscript: ADW; 

critically reviewed the manuscript: IC, AVL and PV. 

 

SUMMARY 

Strain NGRI 0510QT, isolated from ryegrass silage, was recently classified as a representative of a 

novel Pediococcus species, Pediococcus lolii Doi et al. (2009). It was deposited in the DSMZ and JCM 

culture collections as DSM 19927T and JCM 15055T, respectively. A polyphasic taxonomic study, 

including matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, pheS and 

16S rRNA gene sequence analysis, fluorescent amplified fragment length polymorphism and DNA-

DNA hybridization, was used to prove that both subcultures of the type, and only, strain of this 

species represent are strains of Pediococcus acidilactici.  
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In 2009, Doi and colleagues reported on a novel strain belonging to the genus Pediococcus, NGRI 

0510QT, for which they proposed the name Pediococcus lolii [1]. The description was based on a 

single strain isolated from ryegrass silage that was deposited in the DSMZ and JCM culture 

collections as DSM 19927T and JCM 15055T, respectively. Their study revealed that the strain 

exhibited distinct phenotypic characteristics, divergent sequences of the 16S rRNA gene and the 

16S-23S rRNA intergenic spacer region, and low rates of DNA-DNA hybridization in comparison with 

the type strains of Pediococcus acidilactici DSM 20284T (= LMG 11384T) and Pediococcus pentosaceus 

DSM 20336T (= LMG 11488T).  

The present study was initiated upon analysis of the P. lolii type strain accessioned from the JCM 

culture collection, JCM 15055T (= LMG 25667T), by matrix-assisted laser desorption/ionisation time-

of-flight mass spectrometry (MALDI-TOF MS) which failed to discriminate P. lolii LMG 25667T from P. 

acidilactici strains. Subsequently DSM 19927T (= LMG 27029T) was accessioned from the DSMZ 

culture collection and the polyphasic taxonomic study described below was performed. 

All strains were grown on MRS agar (Oxoid) at 28°C in anaerobic atmosphere, except strain P. 

acidilactici LMG 11384T which was cultured in an aerobic atmosphere. Prior to MALDI-TOF MS 

analysis, strains were subcultured twice. Five to ten mg of wet cells were suspended into Milli-Q 

water comprising 75% pure ethanol. Subsequently, formic acid and acetonitrile were added in a 1:1 

(v/v) ratio to the bacterial cell pellet. After shaking vigorously, 1 µL of the supernatant (= the cell 

extract) was spotted onto a MALDI-TOF MS stainless steel target plate. Spots were overlaid with 1 

µL matrix, which consisted of 5 mg α-cyano-4-hydroxycinnamic acid (α-CHCA) dissolved in 1 mL 

acetonitrile/trifluoroacetic acid/Milli-Q water solvent (50:2:48). Prior to analysis, the mass 

spectrometer was externally calibrated using a peptide mixture of adrenocorticotropic hormone 

(fragment 18-39) (Sigma-Aldrich), insulin (Sigma-Aldrich), ubiquitin (Sigma-Aldrich), cytochrome C 

(Sigma-Aldrich) and myoglobin (Sigma-Aldrich). A 4800 Plus MALDI TOF/TOFTM Analyzer (AB Sciex, 

USA) was used in linear mode and covered a mass range of 2-20 kDa. The mass spectrometer used a 

200 Hz frequency tripled Nd:YAG laser, operating at a wavelength of 355 nm. Generated ions were 

accelerated at 20 kV through a grid at 19.2 kV into a short, linear, field-free drift region onto the 

detector. For each spot, 50 subspectra for each of 40 randomized positions within the spot were 

collected and presented as one main spectrum. The laser intensity was set between 4300 and 5100 

procedure defined units. Spectral profiles were retrieved via the 4000 Series Explorer software (AB 

Sciex, USA) and objectively scored for several parameters (signal quality, intensity and the number 

of peaks). Data Explorer 4.0-software (AB Sciex, USA) was used to convert the profiles into .txt files 

to import them into a BioNumerics 5.1 database (Applied Maths, Belgium). Spectral profiles were 

compared using the Pearson product-moment correlation coefficient and a dendrogram was built 
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using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA)-cluster algorithm (data 

not shown). Both subcultures, LMG 25667T and LMG 27029T, clustered together with the P. 

acidilactici reference strains present in the database. The database used included a set of 36 

Pediococcus reference strains representing all established species, examined previously by means of 

multilocus sequence analysis (MLSA) [2]. The MALDI-TOF MS profiles of both LMG 25667T and LMG 

27029T were indistinguishable from those of 13 P. acidilactici reference strains (data not shown). FIG 

5.4 was generated using the mMass 5.1.0-software [3] and shows the high similarity between the 

MALDI-TOF MS profiles of both P. lolii subcultures and those of P. acidilactici LMG 11384T, in 

contrast with that of P. pentosaceus LMG 11488T. 

 

FIG 5.4. Comparison of the MALDI-TOF mass spectra of both P. lolii subcultures LMG 25667
T
 and LMG 27029

T
, P. acidilactici LMG 

11384
T
 and P. pentosaceus LMG 11488

T
 using the mMass 5.1.0 software [3]. a.i., absolute intensity. 

 

Reliable identification of Pediococcus strains and many other lactic acid bacteria is complicated by 

their ambiguous response in traditional physiological tests and methods. Also the sequence 

divergence of the 16S rRNA gene fails to discriminate between closely related species and therefore, 

the use of protein-coding gene sequence data for the determination of genomic relatedness at the 

species and genus levels is more appropriate [4, 5]. MLSA data of the genes encoding the alpha 

subunit of phenylalanyl-tRNA synthase (pheS), RNA polymerase (rpoA) and ATP synthase (atpA) 

were generated by De Bruyne et al. [2] as a superior approach for species level identification of 

pediococci. In that scheme, the pheS gene is the most variable gene. Therefore, the pheS gene was 

amplified and sequenced as described previously [2]. The MEGA package version 5.05 [6] was used to 

align and analyse the pheS sequences of LMG 25667T, LMG 27029T and all sequences of the type 

strains of all established Pediococcus species. The neighbor-joining, maximum-parsimony and 

maximum-likelihood methods were used to analyse the sequences. The statistical reliability of the 

tree topologies was established by bootstrapping analysis based on 1000 tree replicates. The 

neighbor-joining tree and maximum-parsimony tree revealed topologies similar to those obtained in 

a phylogenetic tree based on the maximum-likelihood method (FIG 5.5). The pairwise similarity 

LMG 11384T

LMG 27029T

LMG 25667T

LMG 11488T
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matrix revealed that the strain P. lolii LMG 25667T has 100.0, 97.7 and 82.0% sequence similarity with 

P. lolii LMG 27029T, P. acidilactici LMG 11384T and P. pentosaceus LMG 11484T, respectively. The high 

degree of similarity between the P. lolii and P. acidilactici strains indicates that these strains 

represent the same species. 

 

FIG 5.5. Maximum-likelihood tree based on pheS gene sequences showing the phylogenetic relationships of the two subcultures of 
P. lolii. Bootstrap percentage values (>50), based on 1000 replications, are shown at branch points. The substitution model used is 
the Tamura 3-parameter model and the aligned sequences have a length of 344 bp. The bar indicates 10% sequence divergence. 

 

Similarly, fluorescent amplified fragment length polymorphism (FAFLP) profiles of P. lolii LMG 

25667T and LMG 27029T were generated as described previously and compared with FAFLP profiles 

of Pediococcus reference strains generated previously [2, 7, 8]. The resulting electrophoretic patterns 

were tracked and normalized using the Gene Mapper 4.0 software package (Applera Co.) and 

normalized tables of peaks were transferred into the BioNumerics software package, version 5.1 

(Applied Maths, Belgium). The FAFLP fingerprints of LMG 25667T and LMG 27029T proved to be 

similar to those from P. acidilactici strains (FIG 5.6). 

Genomic DNAs of strain P. lolii LMG 25667T, P. acidilactici LMG 11384T and P. pentosaceus LMG 

11488T were extracted and purified as described by Marmur et al. [9] and modified by Stackebrandt 

and Kandler [10]. DNA-DNA hybridizations were performed using the microplate method, with 

photobiotin for labeling the DNA [11], as modified by Goris et al. [12]. The mean DNA-DNA 

hybridization value of strain LMG 25667T with P. acidilactici LMG 11384T and P. pentosaceus LMG 

11488T were 87% (reciprocal values were 82% and 92%) and 19% (reciprocal values were 18% and 

19%), respectively, confirming that strain P. lolii LMG 25667T is a strain of P. acidilactici.  
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FIG 5.6. FAFLP patterns and dendrogram based on the UPGMA linkage of Dice coefficients (Dice tolerance: 0.15%, range: 40-580bp) 
(expressed as percentages for convenience) of P. lolii LMG 25667

T
 and LMG 27029

T
 and the reference strains of all established 

species of the genus Pediococcus. 

 

Finally, complete 16S rRNA gene sequence analysis was performed as described previously [13] for 

both P. lolii subcultures LMG 25667T and LMG 27029T to check their authenticity. The 16S rRNA 

gene sequence of LMG 25667T and LMG 27029T were identical and differed only in 6 nt (99.3% 

sequence similarity) from the sequence deposited by Doi et al. [1]. Furthermore they were 99.5% 

and 98.3% similar to those of P. acidilactici DSM 20284T (AJ305320) and P. pentosaceus DSM 20336T 

(AJ305321), respectively.  

On the basis of the evidence presented, we conclude that the two P. lolii NGRI 0510QT subcultures 

deposited in the DSMZ and JCM culture collections as DSM 19927T (= LMG 27029T) and JCM 15055T 

(= LMG 25667T) belong to P. acidilactici. Whether P. lolii should be considered a junior heterotypic 

synonym of P. acidilactici depends on the availability of biological material corresponding with the 

original description of P. lolii by Doi et al. (2009). 
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5.3 Gluconobacter cerevisiae sp. nov. isolated from the brewery environment 

 

Redrafted from: Wieme AD¥, Spitaels F¥, Balzarini T, Cleenwerck I, Van Landschoot A, De Vuyst L, Vandamme P. 

(2014) Gluconobacter cerevisiae sp. nov. isolated from the brewery environment. International Journal of Systematic 

and Evolutionary Microbilogy 64, 1134-1141. ¥These authors contributed equally to this work, and are therefore 

considered joint first authors. 
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and FS; determination of the production of keto-D-gluconic acids: TB and FS; analysed the data: ADW and FS; wrote 

the manuscript: ADW and FS; critically reviewed the manuscript: IC, AVL, LDV and PV. 

 

SUMMARY 

Three strains, LMG 27748T, LMG 27749 and LMG 27882 with identical MALDI-TOF mass spectra 

were isolated from samples from the brewery environment. Analysis of the 16S rRNA gene sequence 

of strain LMG 27748T revealed that the taxon it represents was closely related to the type strains of 

Gluconobacter albidus (100% sequence similarity), Gluconobacter kondonii (99.9%), Gluconobacter 

sphaericus (99.9%) and Gluconobacter kanchanaburiensis (99.5%). DNA-DNA hybridization 

experiments towards the type strains of these species revealed moderate DNA relatedness values 

(39-65%). The three strains used D-fructose, D-sorbitol, meso-erythritol, glycerol, L-sorbose, ethanol 

(weakly), sucrose and raffinose as the sole carbon source for growth (weak growth on the latter two 

carbon sources was obtained for strains LMG 27748T and LMG 27882). The strains were unable to 

grow on glucose-yeast extract medium at 37°C. They produced acid from meso-erythritol and 

sucrose, but not from raffinose. D-Gluconic acid, 2-keto-D-gluconic acid and 5-keto-D-gluconic acid 

were produced from D-glucose, but not 2,5-diketo-D-gluconic acid. These genotypic and phenotypic 

characteristics distinguish strains LMG 27748T, LMG 27749 and LMG 27882 from species of the genus 

Gluconobacter with validly published names and, therefore, we propose to classify them formally as 

representatives of a novel species, Gluconobacter cerevisiae sp. nov., with LMG 27748T (=DSM 27644T) 

as the type strain.  
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The genus Gluconobacter belongs to the family Acetobacteraceae within the class α-Proteobacteria 

and currently comprises 13 validly named species. Gluconobacter strains oxidize glucose to gluconic 

acid [1, 2] rather than ethanol to acetic acid, differentiating them from most acetic acid bacteria 

(AAB) [2, 3]. They are unable to oxidize acetate to carbon dioxide and water [4]. Strains of the 

species of the genus Gluconobacter thus prefer carbohydrates as carbon sources, whereas other 

AABs such as members of the genus Acetobacter thrive in alcohol-rich environments [5]. Strains of 

the species of the genus Gluconobacter are able to grow in highly concentrated sugar solutions and 

at low pH values [6]. This capacity for growth can be detrimental, for instance when it leads to 

spoilage of lager or ale beers, soft drinks, wines and ciders, but beneficial to the production of 

vinegar, red sour ales and lambic beers [1, 3, 5, 7-10]. 

Strain LMG 27748T was isolated during a study of the fermentation process of acidic lambic beers. 

The latter beers are the product of a spontaneous fermentation, which progresses for at least two 

years in wooden casks. Strain LMG 27748T was isolated on acetic acid medium (AAM), an AAB 

enrichment medium that consists of 1.0% (w/v) D-glucose, 0.5% (v/v) ethanol, 1.5% (w/v) peptone, 

1.5% (w/v) agar, 0.8% (w/v) yeast extract and 0.3% (v/v) acetic acid [11]. The medium was adjusted to 

a pH of 3.5 and supplemented with 5 ppm amphotericin B and 200 ppm cycloheximide to prevent 

fungal growth. Isolates grown on AAM were subjected to matrix-assisted laser desorption/ionisation 

time-of-flight mass spectrometry (MALDI-TOF MS) as described previously [12]. MALDI-TOF MS 

was shown useful for the identification of AAB involved in the production of vinegar [3] and was used 

as a dereplication tool in the present study. A total of 14 AAB isolates obtained from two different 

lambic breweries (an industrial and a traditional type located 74 km apart in Belgium) and a spoiled 

brewer’s yeast starter culture of a third brewery displayed identical mass spectra that differed from 

those of established AAB species, which suggested a unique taxonomic position (data not shown). 

Random amplified polymorphic DNA (RAPD) analysis of a selection of six AAB isolates representing 

the three breweries was performed as described by Williams et al. [13], using primers RAPD-270 and 

RAPD-272 [14]. The results revealed three RAPD patterns, corresponding with the three breweries 

(FIG 5.7) and thus indicated the presence of three genetically distinct strains. Subsequently, one 

isolate from each brewery was chosen for further analyses: strain LMG 27748T representing isolates 

of the industrial lambic brewery, strain LMG 27749 originating from the spoiled brewer’s yeast 

starter culture and strain LMG 27882 isolated in a traditional lambic brewery. 

The 16S rRNA gene sequence of strain LMG 27748T was determined as described previously [15]. 

EzBioCloud analysis [16] of this 16S rRNA gene sequence revealed similarity to those of 

Gluconobacter albidus NBRC 3250T (100%), Gluconobacter kondonii NBRC 3266T (99.9%), 
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Gluconobacter sphaericus NBRC 12467T (99.9%) and Gluconobacter kanchanaburiensis BCC 15889T 

(99.5%) (pairwise similarity values in parentheses). All 16S rRNA gene sequences were aligned using 

the SILVA Incremental Aligner (SINA v1.2.11) (http://www.arb-silva.de/aligner/) [17], with the 

corresponding SILVA SSURef 115 database [18], and phylogenetic trees were reconstructed using the 

MEGA 5.2 software package [19]. Tree topologies were analysed statistically using 1000 

bootstrapping replications. The maximum-likelihood and maximum-parsimony method trees (data 

not shown) showed the same topology as the neighbour-joining method tree (FIG 5.8). 

 

FIG 5.7. Patterns of the RAPD analysis of six representative AAB isolates using primers RAPD-270 (1-6) 
and RAPD-272 (7-12). Lanes: 1/7, LMG 27748

T
; 2/8, LMG 27882; 3/9, LMG 27749; 4/5/10/11, two additional 

isolates from an industrial lambic brewery; 6/12, additional isolate from a spoiled brewer’s yeast starter 
culture. M denotes the size marker and P represents a positive control sample. 

 

Because of the limited taxonomic resolution of the 16S rRNA gene in the AAB group of bacteria, the 

16S-23S rRNA gene internal transcribed spacer (ITS) sequence of strain LMG 27748T was determined 

using the same protocol as used for the 16S rRNA gene sequence [15]. The 16S-23S rRNA gene ITS 

primers 16S-23S-ITS-1F 5’-TGCGGCTGGATCACCTCCT-3’ (positions 1522–1540 on the 16S rRNA 

gene, Escherichia coli numbering) and 16S-23S-ITS-2R 5’-GTGCCAAGGCATCCACCG-3’ (positions 

38–22 on the 23S rRNA gene, E. coli numbering) were used. BLAST analysis [20] of the 16S-23S rRNA 

gene ITS sequence revealed that the LMG 27748T ITS sequence was similar to that of Gluconobacter 

kondonii NBRC 3266T (96.0%) and Gluconobacter albidus NBRC 3250T (94.0%) (pairwise similarity 

values in parentheses). Phylogenetic trees were reconstructed using the MEGA 5.2 software package 

[19]. Tree topologies were analysed statistically using 1000 bootstrapping replications. The 

maximum-likelihood and maximum-parsimony trees (data not shown) showed the same topology as 

the neighbour-joining method tree (see FIG S 5.1 in the supplementary material). 

http://www.arb-silva.de/aligner/
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FIG 5.8. Neighbour-joining tree based on nearly full-length 16S rRNA gene sequences (1363 bp) showing the phylogenetic 
relationship of isolates LMG 27748

T
, LMG 27749 and LMG 27882 and of the type strains of all species of the genus Gluconobacter 

with validly published names. Acetobacter aceti NBRC 14818
T
 (= LMG 1504

T
) was used as an outgroup. Evolutionary distances were 

computed using the maximum composite likelihood method [40]. Sequence accession numbers are given in parentheses. Bootstrap 
percentages (≥ 50%) are shown next to the branch points. Bar, 1% sequence divergence. 

 

Additionally, the phylogenetic position of the taxon represented by strains LMG 27748T, LMG 27749 

and LMG 27882 was analysed using partial sequences of the housekeeping genes dnaK (encoding 

the chaperone protein DnaK), groEL (encoding a 60-kDa chaperonin) and rpoB (encoding the DNA-

directed RNA polymerase beta subunit) [21]. Sequences of type and additional taxonomic reference 

strains of the genus Gluconobacter were determined to make a comprehensive multilocus sequence 

analysis MLSA dataset for the entire genus. Sequences of at least 654, 534 and 510 nt were 

generated for dnaK, groEL and rpoB, respectively. All gene sequences were aligned at the amino acid 

level using the MEGA 5.2 software [19]. Trees were reconstructed using the maximum-likelihood 

model. A discrete gamma distribution was used to model evolutionarily rate differences among sites 

and the rate variation model allowed for some sites to be evolutionarily invariable. Tree topologies 

were analysed statistically using 1000 bootstrapping replications. Numerical analysis of the 

individual (see FIG S 5.2, FIG S 5.3 and FIG S 5.4 in the supplementary material) and concatenated 

(FIG 5.9) gene sequences revealed that strains LMG 27748T, LMG 27749 and LMG 27882 could be 

clearly differentiated from their nearest neighbours, G. kondonii LMG 1367T t1 and G. albidus LMG 

1356T. The concatenated MLSA data revealed that most species of the genus Gluconobacter were 
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well separated, with the exception of G. nephelii LMG 26773T that grouped with G. japonicus strains. 

A pairwise comparison of the 16S rRNA gene sequence of G. nephelii LMG 26773T with that of G. 

nephelii RBY-1T (AB540148) revealed a sequence similarity value of 99.8%, i.e., a difference of 3 out 

of 1410 nt. With G. japonicus NBRC 3271T (AB178410) a sequence similarity value of 99.9% was found, 

i.e., a difference of 1 out of 1406 nt. G. nephelii strain RBY-1T was originally deposited as NBRC 

106061T in the NITE Biological Resource Center (NBRC, Japan) and G. nephelii strain LMG 26773T is a 

direct subculture of the G. nephelii strain NBRC 106061T culture. The 16S rRNA gene sequences of 

the subcultures LMG 26773T and NBRC 106061T (16S rRNA gene sequence retrieved from the NBRC 

website, 

http://www.nbrc.nite.go.jp/NBRC2/NBRCCatalogueDetailServlet?ID=NBRC&CAT=00106061) are 

fully identical, suggesting that LMG 26773T and NBRC 106061T represent the same strain. Therefore, 

it is likely that the sequence of RBY-1T with accession number AB540148 contains sequencing errors 

or that the biological material that was deposited in the NBRC culture collection does not 

correspond to strain RBY-1T [22] (FIG 5.8). 

 

FIG 5.9. Maximum-likelihood tree based on concatenated dnaK, groEL and rpoB gene sequences (a total of 1698 bp) showing the 
phylogenetic relationship of isolates LMG 27748

T
, LMG 27749 and LMG 27882 and all species of the genus Gluconobacter with validly 

published names. Acetobacter aceti LMG 1504
T
 (= NBRC 14818

T
) was used as an outgroup. The substitution model used was the 

General Time Reversible model [41]. Sequence accession numbers for dnaK, groEL and rpoB gene sequences are given in 
parentheses in that order. Bootstrap percentages (≥ 50%) are shown next to the branch points. Bar, 10% sequence divergence. 
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DNA-DNA hybridizations were performed between strains LMG 27748T and LMG 27749 and the type 

strains of their nearest phylogenetic neighbours as described previously [23]. DNA-DNA 

hybridization values are presented as means of reciprocal reactions (A×B and B×A, values are 

indicated between parentheses), where each reciprocal reaction was performed at least in three-fold. 

Strains LMG 27748T and LMG 27749 showed 80% (81% and 80%) DNA-DNA relatedness. The DNA-

DNA relatedness between strain LMG 27748T and the type strains of its nearest phylogenetic 

neighbours was 65% (66% and 64%) towards G. kondonii LMG 1367T t1, 54% (60% and 49%) towards 

G. albidus LMG 1356T, 45% (56% and 36%) towards G. sphaericus LMG 1414T and 41% (52% and 30%) 

towards G. kanchanaburiensis LMG 26774T. The DNA G+C content of strains LMG 27748T and LMG 

27749 were determined as described previously [23] and were 58.0 mol% and 57.7 mol% respectively. 

The phenotypic characteristics of strains LMG 27748T, LMG 27749 and LMG 27882 were determined 

as described previously [24]. Type strains of closely related AAB (G. albidus LMG 1356T, G. kondonii 

LMG 1367T t1, G. sphaericus LMG 1414T and G. kanchanaburiensis LMG 26774T) were included as 

positive or negative controls. For microscopy and morphological examination of colonies, strains 

were grown aerobically on AAM agar at 28°C for 48 h. The biochemical characteristics tested 

included a Gram-stain reaction, analysis of catalase and oxidase activities, growth on 0.3% D-

fructose, D-sorbitol, meso-erythritol, glycerol, sucrose, raffinose, L-sorbose or ethanol as the sole 

carbon sources, growth at 37°C on GY agar (5% D-glucose, 1% yeast extract and 1.5% agar). In 

addition, acid production from 1% meso-erythritol, sucrose and raffinose was determined as 

described previously [25], results are shown in the species description.  

For testing the production of 2-keto-D-gluconic acid and 5-keto-D-gluconic acid, cells were grown as 

described by Gosselé et al. [26] and the presence of both keto-D-gluconic acids was determined as 

described by Spitaels et al. [27]. All three strains produced D-gluconic acid, 2-keto-D-gluconic acid 

and 5-keto-D-gluconic acid, but not 2,5-diketo-D-gluconic acid (data not shown).  

Strains LMG 27748T, LMG 27749 and LMG 27882 could be differentiated from G. kondonii, G. albidus, 

G. sphaericus and G. kanchanaburiensis by means of multiple biochemical characteristics, such as 

acid production from sucrose and raffinose and growth on ethanol as sole carbon source (TABLE 

5.4). The biochemical test results did not always correspond to published data. The utilization of L-

sorbose and raffinose by G. kondonii LMG 1367T t1 was as reported by Yukphan et al. [28] (positive 

for L-sorbose and negative for raffinose) and differed from results reported by Malimas et al. [29, 30]. 

Similarly, acid production from maltose (absent) and growth on D-arabitol (present) by G. cerinus 

NBRC 3267T as reported by Malimas et al. [29], Tanasupawat et al. [31] and Yukphan et al. [28] 

contradicted results reported by Tanasupawat et al. [32]. In addition, Kommanee et al. [22] reported 
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both characteristics as present in G. cerinus strains. These discrepant test results were obtained 

using the same test procedures [25, 33-38]. Therefore, these biochemical tests appear to reproduce 

poorly as observed previously by Yukphan et al. [39] and the inclusion of sufficient and appropriate 

control strains is warranted when performing them. 

Numerical comparison of the MALDI-TOF mass spectra of strains LMG 27748T, LMG 27749 and LMG 

27882, and those of reference strains of their nearest phylogenetic neighbours by means of the 

Pearson product-moment correlation coefficient allowed a very straightforward separation of these 

taxa. As described above, the three strains displayed indistinguishable spectra that could be 

differentiated from those of species of the genus Gluconobacter with validly published names by the 

consistent presence of five biomarker peaks characterised by m/z values of 3253.41 ± 4.60, 4912.38 ± 

5.93, 6371.16 ± 7.10, 6506.29 ± 7.21 and 9171.97 ± 9.34 (FIG 5.10); some of these peaks were present 

in the mass spectra of strains of other species of the genus Gluconobacter, but never all five 

simultaneously. 

In conclusion, the present polyphasic study provides taxonomic data demonstrating that the taxon 

represented by strains LMG 27748T, LMG 27749 and LMG 27882 could be differentiated, by means of 

multiple genotypic [i.e., 16S-23S rRNA gene ITS sequence analysis (see FIG S 5.1 in the 

supplementary material), MLSA (FIG 5.9) and DDH] and phenotypic characteristics [i.e., MALDI-TOF 

MS analysis (FIG 5.10), acid production and growth on several carbon sources (TABLE 5.4)] using 

various methodologies, from its nearest phylogenetic neighbours. We, therefore, propose to assign 

these strains to a novel species, Gluconobacter cerevisiae sp. nov., with LMG 27748T (=DSM 27644T) 

as the type strain. 
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TABLE 5.4. Differential characteristics for Gluconobacter cerevisiae and the type strains of the validly named Gluconobacter species. Taxa: 1, LMG 27748
T
; 2, LMG 27749; 3, LMG 27882; 4, G. 

albidus (LMG 1356
T
); 5, G. kondonii (LMG 1367

T
); 6, G. sphaericus (LMG 1414

T
); 7, G. kanchanaburiensis (LMG 26774

T
); 8, G. uchimurae (ZW 160-2

T
); 9, G. oxydans (NBRC 14819

T
); 10, G. roseus 

(NBRC 3990
T
); 11, G. wancherniae (BCC 15775

T
); 12, G. cerinus (NBRC 3267

T
); 13, G. japonicus (NBRC 3271

T
); 14, G. frateurii (NBRC 3264

T
); 15, G. thailandicus (BCC 14116

T
); 16, G. nephelii (NBRC 

106061
T
). Data for taxa 1-3 were generated in this study. +, positive; -, negative; w, weakly positive; vw, very weakly positive; ND, not determined. Data taken from: 

a
Tanasupawat et al. [32]; 

b
this study; 

c
Malimas et al. [43]; 

d
the original species description; 

e
Malimas et al.[30]; 

f
Kommanee et al. [22]. 

Characteristic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Water-soluble brown pigment
a*

 - - - - - + + + - - + - - - - - 

2,5-Diketo- D-gluconic acid production
a
 - - - - - + + + - - + - - - - - 

Growth at 37°C
a
 - - - - - - - + + - - - - - w - 

                                  

Acid production from:                                 

Sucrose
a
 + + + + -

b
 + -

b
 - - + w + w - - w 

Raffinose
c
 - - - + + + w -

a
 w + vw

d
 w + + w +

f
 

meso-erythritol
e
 + + + +

b
 + -

b
 w ND + - - + + w + + 

                                  

Growth on:                                 

D-Fructose
f
 + + + +

b
 + +

b
 w

d
 ND + +

d
 +

d
 + +

c
 + + + 

D-Sorbitol
f
 + + + +

b
 +

b
 +

b
 +

d
 ND + vw

d
 +

d
 + +

c
 + - + 

Glycerol
f
 + + + +

b
 + -

b
 +

d
 ND + vw

d
 +

d
 + +

c
 + + + 

Sucrose
f
 w + w +

b
 -

b
 vw

d
 +

d
 ND - +

d
 -

d
 w +

c
 + + + 

Meso-erythritol
e
 + + + +

b
 + -

b
 +

d
 +

a
 w -

d
 w + + - w w 

Raffinose
c
 w + w + -

b
 - w

d
 ND - +

d
 -

d
 - w + w +

f
 

L-Sorbose
c
 + + + - +

b
 - + ND - - +

d
 - + - - +

f
 

Ethanol w w w -
d
 -

e
 -

d
 w

d
 -

a
 ND -

d
 vw

d
 +

d
 -

c
 ND ND -

f
 

                                  

G+C (%)
a
 58 57.7 ND 60 59.8 59.5 59.5 60.5 60.3 60.5 56.6 55.9 56.4 55.1 55.8 57.2 
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FIG 5.10. MALDI-TOF mass spectra of Gluconobacter cerevisiae sp. nov. and its close phylogenetic neighbours. Asterisks indicate the 
set of five peaks (m/z 3253.41 ± 4.60, 4912.38 ± 5.93, 6371.16 ± 7.10, 6506.29 ± 7.21 and 9171.97 ± 9.34) by which the strains could be 
differentiated from the species of the genus Gluconobacter with validly published names. The profiles are visualised using mMass 
5.5.0 [42]. 
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DESCRIPTION OF GLUCONOBACTER CEREVISIAE SP. NOV. 

Gluconobacter cerevisiae (ce.re.vi’si.a.e. L. fem. gen. n. cerevisiae of beer, referring to the source from 

which the three cultures have been isolated) 

Cells are Gram-stain negative, non-motile rods and are approximately 1 µm × 2-3 µm long. Cells 

occur separately or in pairs. Catalase activity is exhibited, but no oxidase activity. After 48 h of 

incubation on AAM agar at 28°C colonies are round, rough, brownish beige and slightly raised, with 

a diameter of approximately 1-2 mm. D-Gluconic acid is produced from D-glucose as well as 2-keto-

D-gluconic acid and 5-keto-D-gluconic acid. Able to grow on D-fructose, D-sorbitol, meso-erythritol, 

glycerol, L-sorbose and ethanol (weakly) as the sole carbon source. Growth on sucrose and raffinose 

as the sole carbon source is variable, ranging from weak (LMG 27748T and LMG 27882) to strong 

(LMG 27749). Unable to grow on glucose-yeast extract medium at 37°C. Acid is produced from meso-

erythritol and sucrose, but not from raffinose. 

The type strain is strain LMG 27748T (=DSM 27644T), which was isolated from fermenting lambic 

beer. The DNA G+C content of strain LMG 27748T is 58.0 mol%. 
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SUPPLEMENTARY MATERIAL 

 

 

FIG S 5.1. Neighbour-joining tree based on 16S–23S rRNA gene ITS sequences (627 bp) showing the phylogenetic relationship of 
strains LMG 27748

T
, LMG 27749 and LMG 27882 and of their closest phylogenetic neighbours. Acetobacter aceti NBRC 14818

T
 (= 

LMG 1504
T
) was used as an outgroup. Evolutionary distances were computed using the maximum composite likelihood method [40] 

and are expressed as the number of base substitutions per site. Sequence accession numbers are given between brackets. Bootstrap 
percentages (≥ 50%) are shown next to the branch points. Bar, 2% sequence divergence. 

 

 

FIG S 5.2. Maximum-likelihood tree based on dnaK gene sequences (654 bp) showing the phylogenetic relationships of strains LMG 
27748

T
, LMG 27749 and LMG 27882 and all species of the genus Gluconobacter with validly published names. Acetobacter aceti LMG 

1504
T
 (= NBRC 14818

T
) was used as an outgroup. The substitution model used was the General Time Reversible model [41]. 

Sequence accession numbers for the dnaK gene sequences are given between brackets. Bootstrap percentages (≥ 50%) are shown 
next to the branch points. Bar, 10% sequence divergence. 
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FIG S 5.3. Maximum-likelihood tree based on groEL gene sequences (534 bp) showing the phylogenetic relationships of strains LMG 
27748

T
, LMG 27749 and LMG 27882 and all species of the genus Gluconobacter with validly published names. Acetobacter aceti LMG 

1504
T
 (= NBRC 14818

T
) was used as an outgroup. The substitution model used was the General Time Reversible model [41]. 

Sequence accession numbers for the groEL gene sequences are given between brackets. Bootstrap percentages (≥ 50%) are shown 
next to the branch points. Bar, 10% sequence divergence. 

 

FIG S 5.4. Maximum-likelihood tree based on rpoB gene sequences (510 bp) showing the phylogenetic relationships of strains LMG 
27748

T
, LMG 27749 and LMG 27882 and all species of the genus Gluconobacter with validly published names. Acetobacter aceti LMG 

1504
T
 (= NBRC 14818

T
) was used as an outgroup. The substitution model used was the General Time Reversible model [41]. 

Sequence accession numbers for the rpoB gene sequences are given between brackets. Bootstrap percentages (≥ 50%) are shown 
next to the branch points. Bar, 10% sequence divergence.  
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SUMMARY 

The present study investigated the applicability of matrix-assisted laser desorption/ionisation time-

of-flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria directly in 

enrichment cultures of spoiled beer and brewery samples. The bacteria present in such samples 

were collected using a filtration procedure and were subsequently inoculated in enrichment broth. 

Mass spectra generated from these enrichment cultures enabled a tentative identification of the 

spoilage bacteria. However, beer spoilage commonly involves multiple contaminating strains and/or 

species, and the identification of spoilage bacteria in mixtures may be extremely challenging 

because of peak suppression effects that are further confounded by the identity and ratio of the 

microorganisms present. Therefore, the preliminary identification requires confirmation through 

cultivation and MALDI-TOF MS based dereplication and identification of the bacteria present in the 

enrichment cultures.  
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6.1 Introduction 

Species level identification of spoilage microorganisms is of utmost importance for the brewing 

industry even though not all strains of the same species share similar beer spoiling capabilities [1-3]. 

Nevertheless, species level identification enables the estimation of the impact of bacterial spoilage 

and subsequently the prevention of further product deterioration and future spoilage. It is 

demonstrated that matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry 

(MALDI-TOF MS) can be applied as a rapid and high-throughput tool for the identification of beer 

spoilage bacteria (CHAPTER 5.1). However, microorganisms in spoiled beer and brewery samples 

must first be enriched before potential contaminants can be isolated and subsequently identified by 

MALDI-TOF MS, as the numbers of bacterial cells that are initially present in such samples are too 

low [4-7]. The MALDI-TOF MS cell detection limit is in the range of 103 to 108 CFU/mL and depends 

on the type of sample, the sample preparation procedure, the data analysis method and the type of 

instrumentation [4, 5, 7-12].  

Sample preparation procedures have been optimised permitting the direct identification of 

microorganisms in clinical specimens like blood and urine through MALDI-TOF MS [13, 14]. 

Interfering matrix compounds are mostly removed by incorporating washing, centrifugation or 

filtration steps into the sample preparation protocol prior to cell extraction [11, 13-15]. Here too, the 

MALDI-TOF MS cell detection limit proved to be a major hurdle and enrichment procedures of 

microorganisms in clinical specimens remain a necessity [15]. Also the co-occurrence of multiple 

microorganisms in samples where a specific microorganism’s presence is examined, challenges its 

direct identification [13, 14, 16, 17].  

The use of species-specific oligonucleotide probes [18-20], PCR-based methods [21-27] or of 

monoclonal antibodies [28-30], may allow simultaneous detection and identification of multiple 

species present in a spoiled beer or brewery sample. However, these methods are rather expensive 

and time-consuming, lack throughput capacity and target a narrow range of beer spoilage species 

only. The present study investigated the effect of the (beer) matrix on the mass spectra generated, 

determined the lowest cell concentration required to obtain good quality mass spectra and 

examined the applicability of MALDI-TOF MS to detect and identify bacteria directly in enrichment 

cultures of spoiled beer and brewery samples with or without yeast cells present. Moreover, the 

suitability of MALDI-TOF MS for the analysis of polymicrobial spoiled beer samples was assessed by 

means of mixed axenic cultures.  
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6.2 Materials and Methods 

6.2.1 Bacterial strains 

Four strains of well-known beer spoilage microorganisms were selected, i.e., Lactobacillus brevis strains LMG 11401 

and LMG 16322, Lactobacillus lindneri strain LMG 11404 and Pediococcus claussenii strain LMG 21948T. Each of these 

strains was originally isolated from spoiled beer samples ([31]; http://www.belspo.be/bccm/). The strains used were 

obtained from the BCCM/LMG Bacteria Collection (http://www.belspo.be/bccm/; Ghent, Belgium) and were cultured 

aerobically according to the provider‘s instructions onto de Man, Rogosa and Sharpe (MRS) medium (Oxoid). After 

resuscitating lyophilised cells, strains were subcultured twice prior to further analysis.  

6.2.2 Sample preparation and MALDI-TOF MS data acquisition and analysis 

The cell extract preparation procedure described previously [32] for the analysis of axenic cultures was initially used. 

In brief, five mg of wet cells was suspended in 300 µL Milli-Q water, after which 900 µL pure ethanol was added [33]. 

After centrifugation (3 min, 20817 × g, at 4°C), 50 µL 70% formic acid and 50 µL acetonitrile were added to the 

bacterial cell pellet. After shaking vigorously and centrifugation (3 min, 20817 × g, at 4°C), 1 µL of the supernatant 

was spotted in duplicate onto a MALDI-TOF MS stainless steel target plate to obtain two technical replicates. 

Immediately after drying, the spots were overlaid with 1 µL matrix solution, which consisted of 5 mg α-cyano-4-

hydroxycinnamic acid (α-CHCA) dissolved in 1 mL acetonitrile/trifluoroacetic acid/Milli-Q water solvent (50:2:48). 

Subsequently, MALDI-TOF MS data acquisition, data import in the BioNumerics 7.1 software (Applied Maths N.V., 

Belgium) and mass spectral quality control was performed as described previously [32]. 

Data were analysed using a curve-based and peak-based approach as described in CHAPTER 5.1. In brief, the peak-

based data analysis matched all peaks in the mass spectra to a peak class using constant and linearly varying 

tolerance values of 2 m/z and 800 ppm, respectively [34]. The obtained dataset was subsequently converted into a 

binary character set and analysed using the Dice coefficient and the UPGMA (Unweighted Pair Group Method with 

Arithmetic Mean) cluster algorithm. The curve-based data analysis of mass spectra was performed using the Pearson 

product-moment correlation coefficient and the UPGMA cluster algorithm. 

6.2.3 The influence of the beer matrix on MALDI-TOF mass spectra 

Strains Lb. brevis LMG 16322 and LMG 11401 were used to determine the influence of the beer matrix on the mass 

spectra generated. In the standard procedure, an amount of five mg of wet bacterial cells was suspended in 300 µL 

lager pilsner beer prior to extraction. The effect of different amounts of cells suspended in beer on the mass spectra 

generated was subsequently examined by suspending 600 mg of wet cells into 3 mL lager pilsner beer (= twelve times 

more than in the standard procedure) after which a dilution series was prepared corresponding with 12× to 0.2× the 

standard cell amount (TABLE 6.1). Cell extracts were prepared from each of these dilutions. Also, the cell extraction 

protocol described above was modified by incorporating two consecutive washing steps in Milli-Q water prior to cell 

extraction to remove beer matrix compounds: after centrifugation for 3 min at 20817 × g at 4°C, the bacterial cell 

pellet was resuspended in 300 µL Milli-Q water, and this was repeated after another centrifugation for 3 minutes at 

5000 × g (at 4°C). This altered protocol was used for the further study unless specifically mentioned. Blank extracts 

were also prepared from Milli-Q water or lager pilsner beer without bacterial cells. 

http://www.belspo.be/bccm/
http://www.belspo.be/bccm/
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TABLE 6.1. The dilution series prepared to assess the influence of the beer matrix in 
correlation with the cell amount present on the mass spectra generated. The master 
suspension was prepared by suspending 600 mg of wet cells into 3 mL of lager 
pilsner beer (i.e., 12× the standard cell amount for MALDI-TOF MS analysis). 

 

6.2.4 Determination of the lowest cell concentration required 

The sensitivity of MALDI-TOF MS was determined using 2 mL suspensions of P. claussenii strain LMG 21948T and Lb. 

brevis strain LMG 16322 (TABLE 6.2). Cell suspensions with an optical density of 1 at 590 nm (OD590) were prepared 

for both strains and cell numbers were determined by plating 50 µL of each dilution (i.e., 10
0
 to 10

-7
) of a tenfold 

dilution series in saline in triplicate onto MRS agar. Colonies on plates comprising 25 to 250 CFU were counted after 

five days of aerobic incubation at 30°C and the CFU/mL was calculated. 

TABLE 6.2. Suspensions containing different cell numbers were prepared from a 
suspension with an OD590 of 1 in order to determine the lowest cell concentration 
required for MALDI-TOF MS identifications. 

 

6.2.5 Analysis of monomicrobial spoiled brewery samples with or without yeast cells present 

Four beer and brewery samples (A to D) were examined. Sample A was a spoiled dinner beer with an alcohol content 

of 1.5% v/v. Sample B was collected from spoiled wort. Both samples C and D were spoiled top fermented beers with 

an alcohol content of 7.5% v/v and contained yeast cells due to refermentation in the bottle. Microscopic analysis 

revealed the presence of bacteria in each of these samples. An enrichment step was performed by incubating the 

spoiled sample in double concentrated Nachweismedium für bierschädliche Bakterien (NBB) broth medium (Conda 

Pronadisa) in a 1:1 ratio. The spoilage bacteria of each of these samples were isolated and identified during a previous 

study using MALDI-TOF MS and state of the art taxonomic methods (CHAPTER 5.1). A monoculture of Lactobacillus 

malefermentans was isolated from sample A while monocultures of Lb. brevis were isolated from the three remaining 

samples. The mass spectra of the axenic cultures were thus available for comparison in the present study. 

Dilution Master suspension (µL) Lager pilsner beer (µL)

12× 300 0

10× 250 50

8× 200 100

6× 150 150

4× 100 200

2× 50 250

1× 25 275

0.4× 10 290

0.2× 5 295

Dilution OD590 1 suspension (µL) Saline (µL)

2× 2000 0

1.8× 1800 200

1.6× 1600 400

1.4× 1400 600

1.2× 1200 800

1× 1000 1000

0.8× 800 1200

0.6× 600 1400

0.4× 400 1600

0.2× 200 1800
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Fifty mL of a 3 days old enrichment culture of samples A and B were used for the preparation of cell extracts. In order 

to separate the yeast fraction from the bacterial fraction several procedures were tested using 7 days old enrichment 

cultures of samples C and D (FIG 6.1). In procedure 1 yeast cells in 100 mL enrichment culture were allowed to settle 

down at low temperature (3 h at 4°C) after which a maximum of enrichment culture was collected without disturbing 

or collecting the yeast cells. This fraction of the enrichment culture was centrifuged (3 min, 20817 × g, at 4°C), and the 

cell pellet was used for the cell extract preparation. Procedure 2 consisted of three subsequent centrifugation steps at 

a low speed [35] (20 min, 10 × g, at 4°C) starting with 50 mL enrichment culture. After each centrifugation step, the 

supernatant was collected and the cell pellet was re-suspended in 25 mL saline. The supernatants were combined and 

then centrifugated at high speed (3 min, 5000 × g, at 4°C) to spin down the bacterial cells. The final cell pellet was 

used for extract preparation. In procedure 3, three cellulose nitrate filters (5 µm, 8 µm and 0.45 µm [Whatman]) were 

stacked and 100 mL of enrichment culture was filtered through this series of three filters under negative pressure. 

The yeast cells were primarily captured on the 5 µm and to some extent on the 8 µm filters while the bacterial cells 

were collected on the 0.45 µm filter. The 0.45 µm filter was submerged in saline and gently vortexed to release the 

bacterial cells. The filter was subsequently removed and the cell pellet was collected after centrifugation (3 min, 5000 

× g, at 4°C). Similarly, in procedure 4 the same filtration steps were applied to collect the bacterial cell fraction from 

100 ml of the original spoiled sample. However, the 0.45 µm filter with the bacterial cells was submerged in NBB 

broth and incubated at 30°C for 3 days. Cells present in 2 mL of the enrichment culture were subsequently collected 

by centrifugation (3 min, 20817 × g, at 4°C) for extract preparation. 

 

 

 

FIG 6.1. Scheme of the four procedures tested to separate the yeast fraction from the bacterial fraction. 
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6.2.6 Analysis of mixtures of suspensions of axenic cultures 

The effect of mixed cultures on the mass spectra generated was determined using P. claussenii strain LMG 21948T, Lb. 

brevis strain LMG 16322 and Lb. lindneri strain LMG 11404. Per strain, a suspension with an OD590 of 1 was prepared 

and cell counts were determined as described above. Two mL mixtures of different amounts of two strains were 

prepared as outlined in TABLE 6.3. 

 

TABLE 6.3. Mixed cultures were prepared by mixing the 
suspensions of two strains with an OD590 of 1 in different 
proportions. 

 

 

6.3 Results and Discussion 

6.3.1 The beer matrix strongly influences the mass spectra generated 

The beer matrix comprises several compounds like proteins, carbohydrates, and ions that can 

interfere during MALDI-TOF MS desorption and ionisation, and consequently suppress ionisation of 

bacterial proteins [12, 14, 36]. To investigate this, mass spectra were generated from bacterial 

suspensions prepared in lager pilsner beer. The mass spectrum generated from 5 mg of wet cells 

suspended in 300 µL lager pilsner beer was highly similar to that of the lager pilsner beer without 

bacterial cells (FIG 6.2) and did not share peaks with the mass spectrum of bacterial cells suspended 

in Milli-Q water (FIG 6.2). A set of repetitive peaks in the mass range of m/z 9000 to 12000 was 

observed in both the mass spectra of lager pilsner beer and in that of Lb. brevis cells suspended in 

300 µL lager pilsner beer (FIG 6.2). However, the (bacterial) peak suppression effect decreased with 

increasing bacterial cell amounts (FIG 6.3) and the mass spectra of the suspensions with the highest 

cell amount resembled best that of the cells suspended in Milli-Q water. The extraction protocol was 

modified by incorporating two washing steps using Milli-Q water prior to cell extraction. The mass 

spectra then better resembled those generated from reference strains present in the MALDI-TOF 

Mixture Strain A Strain B

10|0 2000 0

9|1 1800 200

8|2 1600 400

7|3 1400 600

6|4 1200 800

5|5 1000 1000

4|6 800 1200

3|7 600 1400

2|8 400 1600

1|9 200 1800

0|10 0 2000

OD590 1 suspension (µL)
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MS identification database (FIG 6.4; FIG 6.5); the same effect was also noticed at lower bacterial cell 

amounts (FIG 6.6). Therefore the two additional washing steps using Milli-Q water were used in the 

remainder of the present study unless mentioned specifically. 

 

 

 

FIG 6.2. Mass spectra derived from 5 mg of wet cells of Lb. brevis strain LMG 16322 suspended in 
300 µL Milli-Q water (1) and in 300 µL lager pilsner beer (2), of lager pilsner beer (3) and of Milli-Q 
water (4). A set of repetitive peaks in the mass range of m/z 9000-12000 is indicated inside the 
rectangle. r. int., relative intensity. 

1

2

3

4



EXPERIMENTAL WORK | PART III 

CHAPTER 6 | 145 

 

 

FIG 6.3. Mass spectra derived from a dilution series of Lb. brevis strain LMG 16322 cells in lager 
pilsner beer, ranging from 12× to 0.2× a standard cell amount 5 mg/300 µL. Mass spectra generated 
from 5 mg of wet cells of Lb. brevis strain LMG 16322 suspended in Milli-Q water and from the lager 
pilsner beer are shown as well. A set of repetitive peaks in the mass range of m/z 9000-12000 is 
indicated inside the rectangle. r. int., relative intensity.  
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FIG 6.4. Mass spectra generated from 5 mg wet cells of Lb. brevis strain LMG 16322 cells suspended in 300 µL Milli-Q water 
(1 and 2) and 300 µL lager pilsner beer (3 and 4) without (1 and 3) and with (2 and 4) two additional washing steps in Milli-Q 
water. r. int., relative intensity. 

 

 

FIG 6.5. Mass spectra generated from the 4× dilution of Lb. brevis strain LMG 16322 cells in Milli-Q water (1) and lager 
pilsner beer (2 and 3) without (1 and 2) and with (3) two additional washing steps in Milli-Q water. r. int., relative intensity. 
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FIG 6.6. Mass spectra generated from the 0.4× dilution of Lb. brevis strain LMG 11401 cells in lager pilsner beer (1 and 2) 
and Milli-Q water (3); and of 5 mg cells suspended in 300 µL Milli-Q water (4) without (1, 3 and 4) and with (2) two 
additional washing steps in Milli-Q water. r. int., relative intensity. 

 

 

6.3.2 Direct detection of spoilage bacteria requires a sufficiently high cell concentration for 

MALDI-TOF MS analysis and necessitates an enrichment of microorganisms present in 

spoiled beer and brewery samples 

Spoiled beer and brewery samples mostly contain limited numbers of bacterial cells. Therefore, the 

effect of increasing cell concentrations on the mass spectra generated was determined using P. 

claussenii strain LMG 21948T and Lb. brevis strain LMG 16322. The quality of the mass spectra 

generated from P. claussenii LMG 21948T was strongly affected at cell concentrations below 

approximately 2 × 107 CFU/mL (i.e., 0.05×), due to an increase of repetitive background signals and 

decrease of data richness (i.e., number of peaks detected) (FIG 6.7).  
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FIG 6.7. Mass spectra generated from a dilution series of P. claussenii strain LMG 21948
T
 with two additional washing steps 

in Milli-Q water. The dilution and the corresponding CFU/mL values are shown for each spectrum. A decrease in mass 
spectral quality was visually observed starting from the 0.05 × dilution (corresponding to 2 × 10

7
 CFU/mL), as background 

peaks became more prominent. r. int., relative intensity. 
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0.2 x – 9 x 107 CFU/mL

0.15 x – 7 x 107 CFU/mL

0.1 x – 4.5 x 107 CFU/mL

0.05 x – 2 x 107 CFU/mL

0.025 x – 1 x 107 CFU/mL

0.01 x – 4.5 x 106 CFU/mL
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The peak-based cluster analysis revealed that mass spectra generated from the 0.15× to 2× 

suspensions (of about 2 × 107 to 9 × 108 CFU/mL) grouped together, and were separated from those 

of dilutions with a lower cell number (0.01× to 0.1×) (FIG 6.8A). In contrast, the lowest cell 

concentration required of Lb. brevis LMG 16322 was higher compared to that of P. claussenii LMG 

21948T, as the mass spectral quality visually decreased below a cell concentration lower than 

approximately 7 × 107 CFU/mL (data not shown). Moreover, the peak-based cluster analysis grouped 

the mass spectra generated from the 0.15× to 2× suspensions (i.e., 1 × 108 to 1.4 × 109 CFU/mL) 

separately from mass spectra generated from the 0.01× to 0.1× suspensions (FIG 6.8B). The number 

of peaks detected in the mass spectra decreased with lowering cell numbers. No peaks were 

detected in the mass spectra derived from the 0.01× suspension (about 4.5 × 106 CFU/mL) or from 

the 0.05× (about 3.5 × 107 CFU/mL) suspensions of strains P. claussenii LMG 21948T and Lb. brevis 

LMG 16322, respectively (FIG 6.8). Based on a visual inspection and peak-based cluster analysis, the 

minimal cell concentration required to generate mass spectra that were still useful for species level 

MALDI-TOF MS identification was determined at approximately 5 × 107 to 1 × 108 CFU/mL, which 

corresponds with previous reports [5, 7, 9-12]. The number of cells of spoilage microorganisms in 

most spoiled beer and brewery samples is very low (i.e., 1 to 50 CFU/100 to 250 mL sample) [37-40]; 

hence an enrichment step will be required to obtain mass spectra suitable for MALDI-TOF MS based 

identification. 

 

 

FIG 6.8. Peak-based cluster analysis using the binary Dice coefficient and UPGMA cluster algorithm of mass 
spectra generated from a dilution series of (A) P. claussenii strain LMG 21948

T
 and (B) Lb. brevis strain LMG 

16322. The mass spectrum generated from 5 mg of wet cells per 300 µL Milli-Q water for both strains was 
included in the cluster analysis (and was labelled as ‘standard’). The number of peak classes detected in each 
mass spectrum is shown. 
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6.3.3 MALDI-TOF MS is well-suited for the detection and identification of a bacterium 

present in enrichment cultures of monomicrobially spoiled beer and brewery samples 

with or without yeast cells present 

Microscopic analysis of sample A revealed the presence of bacterial cells only. The mass spectrum 

generated from a 50 mL enrichment culture of sample A was similar to that of strain R-49868, the 

spoilage bacterium previously isolated from sample A, and to that of Lb. malefermentans strains 

LMG 11455T, a reference strain present in our MALDI-TOF MS identification database (FIG 6.9). 

Curve-based cluster analysis revealed that mass spectra generated from the enrichment culture and 

R-49868 grouped together with a high similarity (FIG 6.10). 

 

 

FIG 6.9. Mass spectra generated from 50 mL of enrichment culture of sample A (1); from Lb. malefermentans strain R-
49868, the isolate previously obtained from sample A (2); and from Lb. malefermentans strain LMG 11455

T 
(3), a reference 

strains present in the MALDI-TOF MS identification database. r. int., relative intensity. 

 

 

FIG 6.10. The curve-based cluster analysis using the Pearson product-moment correlation coefficient and UPGMA cluster 
algorithm of mass spectra of technical replicates derived from enrichment culture of sample A and Lb. malefermentans 
strain R-49868, an isolate obtained from sample A. 
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Microscopic analyses of samples B to D revealed besides bacterial cells also the presence of mould 

(sample B) and yeast cells (sample C and D) which are known to interfere during desorption and 

ionization, and consequently suppress ionization of bacterial proteins [12, 14]. Hence, different 

sample treatment procedures were tested to retain the bacterial fraction for further analysis. The 

mass spectra generated directly from a 50 mL enrichment culture of sample B were clearly ill-suited 

for further analysis due to a decrease in the mass spectral quality (i.e., increase in repetitive 

background signals and poor data richness) (FIG 6.11). Procedure 1 and 2 were however ill-suited to 

separate the threadlike structure of the fungal mycelium from the bacterial cells. The use of 

procedure 3 to remove the mould cells improved the mass spectrum generated (FIG 6.11); however, 

the mass spectral quality was best when procedure 4 was used which yielded mass spectra highly 

similar to those obtained from Lb. brevis strain R-49879, the spoilage strain isolated from sample B, 

and from Lb. brevis strain LMG 16322 (a reference strain) (FIG 6.11). 

The mass spectra generated from a 2 mL enrichment culture of sample C did not resemble that 

obtained from the isolate collected from sample C (strain awI16_9, FIG 6.12). Therefore, procedures 

1 through 4 were applied to retain the bacterial fraction. The mass spectrum generated from the 

supernatant recovered using procedure 1 resembled that obtained from the Lb. brevis isolate 

awI16_9 (FIG 6.12). Procedure 2 failed to properly separate the yeast and bacterial fractions in the 

enrichment culture as microscopic analysis of the combined supernatants revealed the presence of 

numerous young buds of yeast cells. Not unexpectedly the mass spectrum obtained using this 

cumbersome procedure was not comparable with that generated from the axenic culture of strain 

awI16_9 (FIG 6.12). Procedure 3 proved even more ill-suited as the yeast cells fouled the pores of the 

filters and the amount of bacterial cells entrapped on the 0.45 µm filter was insufficient to generate 

mass spectra of good quality (data not shown). The mass spectrum generated using procedure 4 was 

of high quality and most comparable with that of the Lb. brevis isolate awI16_9 (FIG 6.12) which was 

confirmed by curve-based cluster analysis (FIG 6.13). Similarly, mass spectra generated using the 

latter procedure generated a mass spectrum of sample D that was highly similar to that obtained 

from Lb. brevis strain R-49856, which was previously isolated from sample D (FIG 6.14). 

These results demonstrated that procedure 4 (based on a filtration procedure coupled to an 

enrichment step) is well-suited for the detection and identification of bacteria present in the 

enrichment cultures of spoiled beer and brewery samples containing yeast cells. 
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FIG 6.11. Mass spectra generated from cells extracted from 50 mL of the enrichment culture sample B (1). The presence of 
moulds resulted in mass spectra with poor quality. Therefore, mass spectra of the enrichment culture were generated 
using procedure 3 (2) and 4 (3) to enable separation of the mould fraction from the bacterial fraction of the enrichment 
culture. Mass spectra generated from Lb. brevis strain R-49879 (4), and from Lb. brevis strain LMG 16322 (5) are shown. r. 
int., relative intensity. 
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FIG 6.12. Mass spectra generated from 2 mL of the enrichment culture of sample C (1). The abundantly present yeast cells 
resulted in mass spectra that did not resemble that generated from Lb. brevis strain awI16_9, an isolate previously obtained 
from sample C (6). Similarly, mass spectra generated from the resulting supernatant (2) and the cell pellet (3) when 
procedure 2 was applied did not resemble that of the isolate’s mass spectrum. The mass spectra generated when procedure 1 
(4) and procedure 4 (5) were applied were similar to the isolate’s mass spectrum (6). r. int., relative intensity. 
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FIG 6.13. The curve-based cluster analysis using the Pearson product-moment correlation coefficient and UPGMA cluster 
algorithm of mass spectra derived from 2 mL of the enrichment culture of sample C (1). This mass spectrum grouped closely 
together with those obtained when cell extracts were prepared from the cell pellet (3) and the supernatant (2) obtained when 
procedure 2 was applied. The mass spectrum obtained from Lb. brevis strain awI16_9, an isolate previously obtained from 
sample C (6), grouped together with high similarity with that obtained when procedure 4 (5) was used. The mass spectrum 
generated when procedure 3 (7) was used had a poor mass spectral quality en clustered separately from the isolate’s mass 
spectrum. Also, the mass spectrum obtained from the supernatant when procedure 1 (4) was applied clustered separately 
from that generated from Lb. brevis strain awI16_9 (6). 

 

 

 

FIG 6.14. Mass spectra generated from 2 mL of the enrichment culture of sample D (1). The abundantly present yeast cells 
resulted in mass spectra that did not resemble that generated from Lb. brevis strain R-49856, an isolate previously obtained 
from sample D (3). The mass spectrum obtained when procedure 4 (2) was used was similar to that generated from the 
isolate (3). r. int., relative intensity. 

 

Pearson correlation [0.0%-100.0%]

1
0

0

5
0

90

65.2

45.3

87.6

69.2

34.7

5

6

4

7

3

1

2

3

1

2



EXPERIMENTAL WORK | PART III 

CHAPTER 6 | 155 

 

6.3.4 The analysis of mixtures of spoilage bacteria  

The MALDI-TOF MS technique has been successfully applied for the direct identification of 

contaminants present in enrichment cultures of clinical specimens like blood and urine, but such 

identifications were challenged when specimens were contaminated with more than one 

microorganism [12, 15, 41]. In the brewery industry, it is common that multiple strains belonging to 

different species simultaneously cause beer spoilage [42] (CHAPTER 5.1). We therefore investigated 

the MALDI-TOF mass spectra of mixtures of several pairs of spoilage bacteria as outlined in TABLE 

6.3. 

Analysis of the mass spectra of mixtures of P. claussenii LMG 21948T and Lb. brevis LMG 16322 

revealed that the most abundant peak classes (e.g., m/z 4806.06 ± 4.97, 5553.01 ± 6.44, 7423.33 ± 

7.94 and 9609.87 ± 9.69) present in the mass spectrum derived from the axenic culture of LMG 

21948T persisted in the mass spectra generated of each of the mixtures (FIG 6.15). An expected 

decrease in peak signal intensity with a decreasing proportion of LMG 21948T cells was observed 

(FIG 6.15). Some of the less abundant peaks present in the mass spectrum of the axenic suspension 

of LMG 21948T persisted also in the mass spectra generated for each of the mixtures (e.g.¸ m/z 

2777.24 ± 4.22, 3712.61 ± 4.97, 5751.41 ± 6.60 and 6089.95 ± 6.87), while others were increasingly 

masked with a decreasing proportion of LMG 21948T cells (e.g., m/z 5435.80 ± 6.35, 5463.58 ± 6.37, 

7519.84 ± 8.02 and 9044.69 ± 9.24). The most abundant peak classes present in the mass spectrum 

of the axenic culture of LMG 16322 (e.g., m/z 6134.36 ± 6.91, 6886.01 ± 7.51, 7584.96 ± 8.07 and 

9439.46 ± 9.55) persisted in the mass spectra generated from the mixtures with P. claussenii LMG 

21948T and a similar decrease in peak signal intensity with a decreasing proportion of LMG 16322 

cells was observed (FIG 6.15). The abundant peak class with m/z 4520.62 ± 5.62 was dominantly 

present in the mass spectra obtained from all cell mixtures but this peak was also present in the 

spectra of each of the axenic cultures (FIG 6.15; data not shown). 

The most abundant peak classes present in the mass spectrum generated from the axenic culture of 

Lb. brevis LMG 16322 persisted in all mass spectra generated of mixtures with Lb. lindneri LMG 11404 

(FIG 6.16). However, a decrease in peak signal intensity with an increasing proportion of LMG 11404 

was less apparent (FIG 6.16) indicating that the most abundant peak classes of axenic cultures may 

not always persist in mass spectra of such mixed cultures. For instance, the abundant peak class m/z 

5334.42 ± 6.27 which is present in the mass spectrum of the axenic culture of LMG 11404 was 

masked in the spectrum generated upon mixing with LMG 16322 (FIG 6.16). Other abundant peak 

classes (e.g., m/z 4806.71 ± 5.85 and 9611.20 ± 9.69) that were able to persist in the mass spectra of 

certain mixtures were gradually masked with an increasing proportion of other cells (FIG 6.16). 
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Similarly, the most abundant peak classes present in the mass spectrum generated from the axenic 

culture of LMG 11404 were suppressed in mass spectra of mixtures with an increasing cell 

concentration of LMG 21948T (data not shown). Colony counts of the axenic suspensions with an 

OD590 of 1 revealed that approximately 5 times and 3.5 times more CFU/mL were detected in the 

suspensions of Lb. brevis LMG 16322 (6.9 × 108 CFU/mL) and P. claussenii LMG 21948T (4.5 × 108 

CFU/mL), respectively, compared to that of Lb. lindneri LMG 11404 (1.3 × 108 CFU/mL) which likely 

contributed to the suppression effect observed in mass spectra of mixed suspensions with the latter 

[14, 43, 44].  

The identification of microbes in mixtures may therefore be extremely challenging, considering 

these peak suppression effects which are confounded by the identity and proportions of the 

individual microorganisms present in the mixture. We subsequently compared the mass spectra 

generated from the mixed cell suspensions with those of axenic well-characterised reference strains 

present in the MALDI-TOF MS identification database (CHAPTER 5.1) using the peak-based cluster 

analysis approach. Some spectra of mixed cell suspensions simply clustered separately in the 

numerical analysis; others grouped in species-specific clusters among spectra from axenic cultures 

revealing species level identification of, probably, the most abundant microorganism present. For 

example, the mixtures containing cells of P. claussenii LMG 21948T and Lb. brevis LMG 16322 in a 

ratio of 9:1 and 1:9 grouped together with P. claussenii and Lb. brevis, respectively, and it could 

therefore be assumed that this contaminant was present in the mixed suspension.  

The analysis of the mass spectra obtained from the enrichment cultures of samples A through D 

revealed similar results, i.e., the spectra of these monocultures grouped in the respective Lb. 

malefermentans and Lb. brevis species-specific clusters. A comparison of peak classes present in the 

540 mass spectra of 60 Lb. brevis reference strains with those in the spectrum generated from the 

enrichment culture of sample B showed that each of the peak classes observed in the latter 

spectrum also occurred in those of the Lb. brevis reference strains. A similar comparison of peak 

classes in the spectra of the enrichment cultures of samples C and D revealed six and eight peak 

classes, respectively, that were not present in those of Lb. brevis reference strains. These peak 

classes were also not observed in other spoilage or non-spoilage bacteria in our database suggesting 

they represent strain-specific markers, or possibly growth medium components. In contrast, a 

comparison of peak classes in the spectrum of the enrichment culture of sample A revealed that 39 

out of 77 peak classes detected could not be linked to a peak present in the mass spectra generated 

from the two Lb. malefermentans reference strains that are included in our database, and that 20 out 

of these 39 peak classes were present in mass spectra generated from multiple LAB reference strains. 

Comparison of the mass spectra of (axenic cultures of) Lb. malefermentans reference strains with 
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those of Lb. malefermentans strains isolated previously from a spoiled sample (CHAPTER 5.1), and 

that of the enrichment culture revealed that only seven peak classes present in the mass spectrum of 

the enrichment culture of sample A were not present in those of the four Lb. malefermentans strains 

and none of the seven peak classes occurred in spectra of other LAB reference strains present in the 

database. These results demonstrated that the inclusion of multiple Lb. malefermentans reference 

strains increased the number of species- and strain-specific peak classes present for numerical 

analysis, and consequently decreased the number of uncorrelated peak classes present in the mass 

spectrum generated from the enrichment culture of sample A. 

Hence, when numerical analysis of the spectrum of an enrichment culture assigns it to a certain 

species, a comparison of peak classes may or may not suggest the presence of additional species 

taking into account peak suppression effects, identity and ratios of contaminating strains as 

described above. For example, peak class analysis of mass spectra generated from the mixtures 

containing cells of P. claussenii LMG 21948T and Lb. brevis LMG 16322 in a ratio of 9:1 and 1:9 (see 

above) revealed ten and six peak classes, respectively, that were not present in the mass spectra 

generated from reference strains of respectively P. claussenii or Lb. brevis. A comparison of peak 

classes in the spectrum of the 9:1 mixture with those generated from all reference strains correlated 

eight out of ten peak classes with Lb. brevis. In contrast, analysis of the mass spectrum of the 1:9 

mixture with those of the reference strains associated the six peak classes with numerous 

Pediococcus reference strains. Yet, the mass spectrum generated of the mixture containing cells of 

both strains in a 5:5 ratio clustered together with spectra obtained from Lb. brevis reference strains. 

A comparison of peaks in the spectrum of this mixture with those of Lb. brevis reference strains 

revealed 8 peak classes that were not present in more than 540 mass spectra generated for 60 Lb. 

brevis reference strains. Interestingly, five of these eight peak classes were present in mass spectra 

of P. claussenii reference strains, which was indicative of a co-contamination with P. claussenii. 

Remarkably, not a single mass spectrum generated from the mixtures of Lb. lindneri LMG 11404 with 

either Lb. brevis LMG 16322 or P. claussenii LMG 21948T grouped together with mass spectra of Lb. 

lindneri reference strains in a numerical analysis. For example, mass spectra generated from most of 

the mixtures containing cells of P. claussenii LMG 21948T and Lb. lindneri LMG 11404 clustered 

together with those of P. claussenii reference strains; the one exception was the mass spectrum 

obtained from the 1:9 mixture. Numerical analysis of the latter spectrum revealed ten peak classes 

that were not present in the mass spectra of P. claussenii reference strains; however nine out of ten 

peak classes could be correlated unambiguously with Lb. lindneri reference strains. 
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FIG 6.15. Mass spectra generated from mixed suspensions of P. claussenii strain LMG 21948
T
 and Lb. 

brevis strain LMG 16322 (the ratio of cells of both strains is shown at the right hand side of each mass 
spectrum). A selection of the most abundant peak classes present in the mass spectra is highlighted and 
annotated in red (LMG 21948

T
) and in blue (LMG 16322) coloured asterisks. The abundant peak class m/z 

4520.62 ± 5.62 which is present in each of the mass spectra is highlighted with a green arrow in both mass 
spectra generated from the axenic cultures. r. int., relative intensity. 
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FIG 6.16. Mass spectra generated from mixed suspensions from Lb. brevis strain LMG 16322 and Lb. 
lindneri strain LMG 11404 (the ratio of cells of both strains is shown at the right hand side of each mass 
spectrum). A selection of the most abundant peak classes present in the mass spectra is highlighted and 
annotated in red (LMG 16322) and in blue (LMG 11404) coloured asterisks. r. int., relative intensity. 
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6.4 Conclusions 

Species level identification of spoilage microorganisms is of utmost importance for the brewing 

industry even though not all strains of the same species share similar beer spoiling capabilities [1, 3]. 

Nevertheless, species level identification enables the estimation of the impact of bacterial spoilage 

and subsequently the prevention of further product deterioration and future spoilage. The present 

study demonstrated that the beer matrix has a strong impact on the mass spectra generated. A 

simple modification to the sample preparation protocol by incorporating two additional Milli-Q 

water washing steps prior to cell extraction facilitated the removal of the matrix compounds. 

Moreover, an optimised sample preparation based on a filtration procedure coupled to an 

enrichment step enabled detection and identification of bacteria directly from enrichment cultures 

of spoiled beer and brewery samples, even in the presence of other yeast or mould cells (FIG 6.17). 

Although this preliminary identification result may provide the brewery’s quality manager with 

pivotal information to prevent further product deterioration or future spoilage, our data 

demonstrate that it is highly recommended to plate these enrichment cultures and use MALDI-TOF 

MS as a superior tool to dereplicate and identity the isolates obtained [15, 16] (CHAPTER 5.1) to 

confirm or complement the preliminary identification result. 

 

FIG 6.17. Scheme of the general workflow for the detection and identification of beer spoilage bacteria directly from enrichment 
cultures of beer and brewery samples using MALDI-TOF MS. 
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7 Application of matrix-assisted laser desorption/ionisation time-of-flight 

mass spectrometry as monitoring tool for in-house brewer’s yeast 

contamination: a proof of concept 
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SUMMARY 

Contamination of brewer’s pitching yeast cultures with wild-type yeasts or bacteria is unwanted as it 

can corrupt the fermentation outcome and causes huge economic losses for the brewing industry. 

The applicability of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry 

(MALDI-TOF MS) as a fast tool to monitor the purity of brewer’s yeast cultures was investigated. 

This proof of concept was examined for a brewer’s yeast strain contaminated with wild-type yeast 

and for bottled beer produced by fermentation with that particular contaminated brewer’s yeast 

strain. The data demonstrated that MALDI-TOF MS is very suitable to discriminate between brewing 

and non-brewing yeast strains.  
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7.1 Introduction  

A starter culture consists of one or more microorganisms that are added to the raw material (e.g., 

milk, minced meat, wort, vegetable) to produce a fermented food product (e.g., yoghurt, cheese, 

sausage, beer, sourdough, pickles). During fermentation, starter cultures metabolise several 

compounds to speed up and steer this process in the desired direction [1, 2]. This way, added starter 

cultures contribute to the microbial safety, the improvement of the organoleptic properties, 

extending shelf life of the fermented product and sometimes even providing health beneficial 

compounds [3]. It is extremely important for the fermentation industry that these starter cultures 

are strictly monitored in order to conserve the process, to guarantee safety of the final product and 

to limit economical losses. Indeed, contamination of starter cultures with foreign, wild-type 

microorganisms often is detrimental for the end product. 

In the brewery, the starter culture used to ferment wort comprises mostly one axenic yeast strain 

which is well-chosen and characterised for the production of specific beer types. Spoilage by wild-

type yeast strains can lead to severe economic losses in processing, preservation and storage. These 

wild-type yeasts are generally defined as foreign yeasts that are not deliberately used and not under 

full control, including accidental contamination with in-house production brewer’s yeasts [4, 5]. 

Contamination of the brewer’s pitching yeast with either bacteria or wild-type yeasts must be 

avoided, as these contaminants will cause undesirable flavours and effects in the beer [6]. Acid 

washing of brewer’s yeast cultures between serial repitching is usually effective to eliminate 

bacterial contaminations, yet has no influence on wild yeast strains [7, 8].  

Wild-type yeasts are classified as Saccharomyces and non-Saccharomyces strains [9]. The 

Saccharomyces wild-type strains pose the greatest threat in the brewing industry because of their 

high similarity with the in-house production brewer’s yeast culture and their frequent occurrence [10, 

11]. Certain wild-type yeasts are strictly aerobic and cannot ferment sugars under anaerobic 

conditions, i.e., Debaryomyces spp., Pichia spp. and Williopsis spp. [4]. The acetic acid-forming 

Dekkera/Brettanomyces spp., although fermentative, usually do not represent a serious threat in the 

brewing process because they do not flourish under anaerobic conditions [12, 13]. The fermentative 

yeasts such as Kluyveromyces¸ Saccharomyces, Torulaspora and Zygosaccharomyces, on the other 

hand, can cause serious problems during fermentation [13].  

Wild-type yeasts mostly neither flocculate well nor interact with finings [5, 13]. Generally, they pass 

into conditioning where they can have deleterious organoleptic effects on post-fermentation beers, 

as well as causing bitter off-flavours, haze and turbidity [4]. Many strains are able to decarboxylate 

substituted cinnamic acids derived from the barley cell wall. For example, p-coumaric and ferulic 
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acids are decarboxylated into 4-vinylphenol and 4-vinylguaiacol, respectively [14]. These phenolic 

compounds, which contribute to the characteristic fruity flavour of Belgian white beers, should be 

avoided in ale and lager beer types [13, 15]. Other wild-type yeasts are able to utilise 

maltooligosaccharides and dextrins which subsequently lead to super-attenuation of beer [9]. 

Furthermore, the contamination of bottled beers with diastatic wild-type yeast (e.g., S. cerevisiae var. 

diastaticus) is potentially hazardous as abnormally high concentrations of CO2 can develop and 

consequently increase the risk of bottle explosion [5]. Generally, wild-type yeasts are competing 

with the brewer’s pitching yeast for nutrients and some yeast strains can even produce certain killer 

proteins (i.e., zymocins) that are lethal to sensitive yeast strains [16-18].  

Contaminating yeasts may not only represent species other than the brewer’s yeast species but also 

wild-type strains of the latter species. Therefore, the analysis of contaminating microbiota requires 

both species level identification as well as strain differentiation. Currently, differentiation among 

yeast strains is based on their morphological and biochemical characteristics (i.e., the ability to 

ferment different carbohydrates, sensitivity to certain antibiotics, etc.) [4, 9, 10, 19]; yet these 

techniques are time-consuming, laborious and are neither sensitive nor sufficiently specific. Faster 

and more reliable molecular methods, i.e., random amplified polymorphic DNA-PCR analysis, 

amplification of certain genes, pulsed field gel electrophoresis of macro-restriction fragments of 

DNA, contour clamped homogenous electric field gel electrophoresis of chromosomal DNA, 

restriction fragment length polymorphism analysis of ribosomal, mitochondrial or chromosomal 

DNA, and sodium dodecyl sulphate polyacrylamide gel electrophoresis of whole cell protein extracts 

have been used for strain level differentiation of yeast cultures [11, 20-26]. However, these 

techniques are again time-consuming, laborious and do not facilitate real-time interventions. 

Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) has been 

applied as a rapid, inexpensive and easy-to-use method for the identification [27-35] and typing [33, 

36] of clinically relevant yeast strains. Recently, Moothoo-Padayachie et al. [37] described the 

potential of MALDI-TOF MS for the differentiation between important industrial S. cerevisiae strains 

in comparison with molecular-based methods. The present study investigated a proof of concept 

that MALDI-TOF MS enables to easily differentiate between brewing and non-brewing yeast strains 

and that this tool is well-suited to monitor the purity of brewer’s pitching yeasts throughout the 

brewing process. 
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7.2 Materials & Methods 

7.2.1 Yeast isolates 

Two contaminated samples were collected from a Belgian brewery, i.e., a brewer’s pitching yeast culture and bottled 

top fermented beer with refermentation in the bottle produced with that particular brewer’s pitching yeast culture. 

Both contaminated samples were first analysed microscopically. The samples were then serially diluted in saline and 

plated onto DYPA medium (2% (w/v) D-glucose, 0.5% (w/v) yeast extract, 1% (w/v) peptone and 1.5% (w/v) agar). The 

agar plates were subsequently incubated aerobically at 30°C for 48h. After growth, six isolates representing two 

different colony types were picked and purified using the same conditions as described above. An overview of the 

different yeast isolates is given in TABLE 7.1. An axenic culture of the brewer’s yeast strain (strain no. T9, see Table 1) 

was also obtained from the brewery and was grown onto DYPA medium as described above. All yeast strains were 

stored at -20°C in MicroBankTM vials (Pro-Lab Diagnostic) until further analysis. 

7.2.2 Sample preparation and MALDI-TOF MS data acquisition 

After resuscitation, the six yeast isolates and the brewer’s yeast axenic culture were subcultivated twice on the 

isolation medium. About five mg of wet cells taken from single colonies were suspended into 300 µL Milli-Q water 

after which 900 µL pure ethanol was added. After centrifugation (3 min, 20817 × g, 4°C), 50 µL 70% formic acid and 50 

µL acetonitrile were added to the bacterial cell pellet. After shaking vigorously and centrifugation (3 min, 20817 × g, 

4°C), 1 µL of the supernatant (= the cell extract) was spotted in duplicate onto a MALDI-TOF MS stainless steel target 

plate to obtain two technical replicates. Immediately after drying, the spots were overlaid with 1 µL matrix solution, 

which consisted of 5 mg α-cyano-4-hydroxycinnamic acid dissolved in 1 mL acetonitrile/trifluoroacetic acid/Milli-Q 

water solvent (50:2:48). Prior to analysis the mass spectrometer was externally calibrated using a peptide mixture of 

adrenocorticotropic hormone (fragment 18-39; Sigma-Aldrich), insulin (Sigma-Aldrich), ubiquitin (Sigma-Aldrich), 

cytochrome c (Sigma-Aldrich) and myoglobin (Sigma-Aldrich). A 4800 Plus MALDI TOF/TOFTM Analyzer (AB Sciex) 

was used in the linear mode and covered a mass range from 2-20 kDa. The mass spectrometer used a 200 Hz 

frequency tripled Nd:YAG laser, operating at a wavelength of 355 nm. Generated ions were accelerated at 20 kV 

through a grid at 19.2 kV into a 1.5 m, linear, field-free drift region towards the detector. For each spot, 40 subspectra 

resulting from 50 laser shots from randomized positions within the spot were collected and presented as one 

spectrum (2000 laser shots in total). The laser intensity was set at 4800 procedure defined units. The Bacterial Test 

Standard (Bruker Daltonics) was included as positive control. 

7.2.3 MALDI-TOF MS data analysis 

The mass spectra were retrieved as t2d files from the 4800 Plus MALDI TOF/TOFTM Analyzer via the 4000 Series 

Explorer software. Data Explorer 4.0-software (AB Sciex) was used to convert the t2d files into text files that were 

subsequently used as input files for the BioNumerics 5.1 and 7.1 software packages (Applied Maths). A mass spectrum 

was considered of acceptable quality if the absolute signal intensity of the highest peak was > 500 counts, if more 

than 5 peaks with a signal-to-noise ratio (S/N) > 20 were detected in the 3-20 kDa range and if there were no 

repetitive signals in the 2.1-3 kDa range. The mass spectral data comprised in the text files were imported into 

BioNumerics 5.1 software package and converted into fingerprints for further analysis. The curve-based Pearson 
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product-moment correlation coefficient and UPGMA cluster analysis allowed for a simple and rapid comparison of 

the obtained yeast isolates [38]. 

The purchase of a more recent version of this software package allowed biomarker-based analysis of the same 

spectra. To this end, the spectral data were imported in the BioNumerics version 7.1 software using an optimised 

preprocessing template including consecutive continuous wavelet transform (CWT) noise estimation, a Savitsky-

Golay filter smoothing and a baseline subtraction using the rolling disk algorithm [39]. Each peak with an S/N ratio ≥ 5 

and an absolute intensity of at least 6 counts was annotated. Mass spectra of two technical replicates per isolate were 

combined into a summary spectral profile (SSP). To obtain this SSP, a peak matching analysis was conducted with 

constant and linearly varying tolerance values of 1 m/z and 800 ppm, respectively [39]. The minimum peak detection 

rate was set at 100%, meaning that each summary peak occurred in both profiles of the technical replicates, thus 

minimizing the impact of technically induced variations [39]. Subsequently, the signal intensity for each data point in 

the SSP was calculated by averaging the respective signal intensities from the technical replicates. Afterwards, the 

peak-based data analysis matches all peaks in the mass spectra to a peak class using constant and linearly varying 

tolerance values of 2 m/z and 800 ppm, respectively [39]. The obtained dataset was converted into a binary character 

set and SSPs were compared using the binary Dice coefficient to detect strain-specific peaks [40].  

7.2.4 Sequence analysis of D1/D2 region of 26S rRNA genes 

Yeast DNA was obtained using the protocol of Harju et al. [41]. Yeast isolates were identified through sequence 

analysis of the D1/D2 region of the 26S rRNA gene [42]. Amplification and sequencing was performed as described by 

Snauwaert et al. [43] using the primers LR0R (5’-ACCCGCTGAACTTAAGC-3’) and LR6 (5’-CGCCAGTTCTGCTTACC-3’) 

(http://biology.duke.edu/fungi/mycolab/primers.htm). The obtained sequences were blasted against several 

sequence databases via MycoID (http://www.mycobank.org/). 

  

https://owa.ugent.be/OWA/redir.aspx?C=b57c6d3c8de441fb8cf330da68475ee3&URL=http%3a%2f%2fbiology.duke.edu%2ffungi%2fmycolab%2fprimers.htm
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7.3 Results and Discussion 

In the brewery, yeast cells are not fully aseptically harvested from previous fermentation batches 

and repitched in multiple novel fermentation batches [8, 13]. Hence, it is important that the pitching 

yeast is pure and not contaminated with bacteria, wild-type yeasts or even other in-house 

production brewer’s yeast strains. The applicability of MALDI-TOF MS as a fast technique to verify 

the purity of brewer’s pitching yeast cultures was investigated based on a practical case study. The 

quality control manager of a Belgian brewery noted deviations in fermentation outcome for several 

production batches of a top fermented beer with refermentation in the bottle. These deviations 

were suspected to be caused by contamination of the brewer’s pitching yeast with either bacteria or 

wild-type yeasts. 

 

TABLE 7.1. Overview of yeast isolates used in this study and their morphological and final typing. 

 

 

The microbial diversity of the obtained samples was microscopically checked for the presence of 

bacteria after growth in different specific media for beer spoilage bacteria; yet only yeast cells were 

observed. Two different yeast cell morphologies were observed in both samples suggesting the 

presence of a contaminating wild-type yeast strain. After plating the samples on DYPA medium, two 

different colony types were found for each sample. They were referred to as yeast types 1 and 2 and 

their cell morphologies corresponded with the two microscopically observed cell morphologies 

(TABLE 7.1). The colony and cell morphology of yeast type 1 was characterised by pinpoint, whitish 

and round colonies and small and round cells; while yeast type 2 was characterised by big, round, 

whitish colonies and big oval-shaped cells that contained more vacuoles compared to yeast type 1 

(TABLE 7.1). 

Yeast isolate Source Morphological type Final type

T1 Contaminated brew er's pitching yeast culture 1 Wild

T2 Contaminated brew er's pitching yeast culture 1 Wild

T3 Contaminated brew er's pitching yeast culture 2 Original

T5a Contaminated bottled top fermented beer 1 Wild

T6 Contaminated bottled top fermented beer 1 Wild

T7 Contaminated bottled top fermented beer 2 Original

T9 Axenic brew er's pitching yeast strain 2 Original
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FIG 7.1. Mass spectra and corresponding curve-based cluster analysis using the Pearson product-moment correlation coefficient 
and UPGMA cluster algorithm of the six isolates and the axenic brewer’s pitching yeast strain T9. Rectangles mark two peak classes 
(i.e., m/z 5806.33 ± 6.65 and 11608.30 ± 11.29) which were only present in the mass spectra generated from the wild-type yeast 
isolates (T1, T2, T5a and T6, red cluster). The isolates T3 and T7 grouped with the axenic brewer’s yeast strain (green cluster), yet 
separated from the wild-type yeast isolates. Isolates recovered from the contaminated brewer’s yeast culture are shown in blue 
boxes; isolates collected from the bottled top fermented beer with refermentation in the bottle are shown in purple boxes on the 
right. 

 

 

FIG 7.2. Mass spectra derived from wild-type yeast strain T2, brewer’s yeast T3 isolated from contaminated yeast culture and axenic 
brewer’s pitching yeast strain T9. The seven wild-type yeast-specific peak classes are indicated by red asterisks and corresponding 
m/z values are shown in red boxes at the top. Rectangles mark the two wild-type yeast-specific peak classes which were visually 
absent in the mass spectra derived from brewer’s yeast strains (FIG 7.1). The 19 common peak classes are indicated by blue 
asterisks and corresponding m/z values are shown in. r.int., relative intensity. 
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MALDI-TOF MS profiles of the 6 isolates (four were yeast type 1 and two were yeast type 2) and of 

the axenic brewer’s yeast strain T9 were subsequently generated and compared using curve-based 

cluster analysis (FIG 7.1). The brewer’s yeast strain T9 and isolates T3 and T7 had indistinguishable 

MALDI-TOF MS profiles, while the remaining isolates (i.e., T1, T2, T5a and T6) also had 

indistinguishable profiles which clustered separately (FIG 7.1). This high similarity in MALDI-TOF 

mass spectra of strain T9 and isolates T3 and T7 on the one hand, and of isolates T1, T2, T5a and T6 

on the other hand clearly demonstrates that isolates T3 and T7 represent subcultures of strain T9, 

while isolates T1, T2, T5a and T6 represent a contaminating wild-type yeast strain. Moreover, cell 

and colony morphology of the brewer’s yeast strain T9 resembled the morphology observed for 

subcultures T3 and T7. In addition, peak-based numerical analysis of the SSPs generated from all 

isolates revealed that seven peak classes occurred solely in the mass spectra generated from each of 

the wild-type yeast isolates (FIG 7.2). 

 

 

TABLE 7.2. Nineteen peak classes 
common to SSPs derived from all of the 
isolates grown on DYPA medium. 

 

  

m/z values of shared peak classes

2295.54 ± 3.84

2679.10 ± 4.14

3009.56 ± 4.41

3086.15 ± 4.47

3107.80 ± 4.49

3270.15 ± 4.62

3300.08 ± 4.64

3503.90 ± 4.80

4351.26 ± 5.48

6017.83 ± 6.81

6171.47 ± 6.94

6214.08 ± 6.97

6599.30 ± 7.28

6639.75 ± 7.31

6856.35 ± 7.49

6991.56 ± 7.59

7005.40 ± 7.60

7924.18 ± 8.34

8462.77 ± 8.77
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These results demonstrated that a wild-type strain contaminated the brewer’s pitching yeast and 

that this contamination persisted until packaging of the top fermented beer with refermentation in 

the bottle. Despite the presence of multiple differentiating peak classes, the mass spectra generated 

from all isolates were highly similar and included 19 shared peak classes (TABLE 7.2; FIG 7.2), 

suggesting that the contaminating isolates belong to S. cerevisiae as well [27, 28, 34, 35]. This was 

confirmed by sequence analysis of the D1/D2 region of 26S rRNA gene of yeast isolates T1 and T3 

which revealed very high sequence similarities towards the S. cerevisiae taxonomic reference strain 

NRRL Y-12632T (AY048154) (99.9% for both isolates T1 and T3). 

In conclusion, this study demonstrated as a proof of concept that MALDI-TOF MS allows 

discrimination of brewing and non-brewing S. cerevisiae isolates by comparing their mass spectra 

with that of the in-house production brewer’s yeast strain. Discrepancies in peak patterns between 

the mass spectra can confirm or reject possible contamination with non-brewing wild yeasts. Hence, 

MALDI-TOF MS functions as a rapid and easy authenticity check which suggests that this technique 

can be a useful monitoring tool in the entire fermentation and starter culture industry. 
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8 General reflections and future perspectives 

The main objective of the present study was to investigate the potential of Matrix-Assisted Laser 

Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) as a rapid, low cost and 

high-throughput identification tool for bacteria isolated from spoiled beer and brewery samples. 

Therefore, an in-house MALDI-TOF MS identification database was constructed containing mainly well-

characterised reference strains originating from spoiled beer and other brewery samples, but also from 

other niches where strains of the same species occur. Moreover, the reference strains were cultivated on 

to multiple different selective and non-selective growth media to anticipate cultivation condition 

induced variability in an organism’s MALDI-TOF MS profile. The intraspecies diversity and the growth 

medium induced variability towards the mass spectra generated were determined. State-of-the-art 

taxonomic standard methods were applied to validate the reassignment of reference strains indicated 

by MALDI-TOF MS. The MALDI-TOF MS identification database was subsequently evaluated, and 

errors in the MALDI-TOF MS based classification of reference strains were mostly related to underlying 

taxonomical errors. The validated MALDI-TOF MS identification database was subsequently used for 

the identification of bacteria isolated from spoiled beer and brewery samples. Mass spectra generated of 

the isolates were compared in order to assess the obtained diversity and to select representative isolates. 

Subsequently, mass spectra of isolates were analysed, and MALDI-TOF MS identification results were 

confirmed using state-of-the-art taxonomic standard methods. Furthermore, the potential of MALDI-

TOF MS was investigated for the detection and identification of bacteria directly from enrichment 

cultures of spoiled beer and brewery samples with or without the concomitant presence of yeast cells. 

Finally, MALDI-TOF MS was also explored as a tool to differentiate among brewing and unwanted 

yeasts. The present chapter comprises a general discussion and the final conclusions of this study, and 

provides perspectives for future studies. 

8.1 MALDI-TOF MS as a low cost, rapid and high-throughput detection and 

identification tool for bacteria present in spoiled beer and brewery samples 

Beer is a beverage with usually good microbiological stability because it contains almost no oxygen 

and nutrients for bacterial growth. In addition, low pH, high CO2-content and the presence of 

ethanol and antibacterial hop compounds ensure microbiological stability [1-4]. Nevertheless, beer 

spoilage due to bacteria is a common problem in the brewing industry and causes important 

economic losses worldwide [5-8]. Nowadays, the hop-resistant lactic acid bacteria (LAB) 

Lactobacillus backii, Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus lindneri, Lactobacillus 
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coryniformis, Lactobacillus plantarum, Lactobacillus malefermentans, Lactobacillus parabuchneri, 

Pediococcus damnosus, Pediococcus inopinatus and Pediococcus claussenii are generally regarded as 

the most problematic beer spoilage microorganisms [9, 10] (CHAPTER 1). The prevalence of strictly 

aerobic acetic acid bacteria (AAB) has decreased because of improved process filling technology [6]. 

However, in aerobic environments, AAB can prevail and form biofilms in which other spoilage 

bacteria are protected and survive [11, 12]. During the last two decades, anaerobic Gram-stain 

negative bacteria like Pectinatus, Megasphaera and Zymophilus species have gained importance as 

spoilage bacteria in the brewing industry as well [6, 13, 14] (CHAPTER 1). 

The taxonomically diverse group of beer spoilage bacteria is currently detected and/or identified 

using a range of culture-dependent or culture-independent methods (CHAPTER 2). These methods 

are time-consuming and often lack high-throughput capacity and do not facilitate real-time 

interventions. Furthermore, these methods mostly target only a narrow range of beer spoilage 

bacteria. Therefore, MALDI-TOF MS was investigated as an alternative identification tool for the 

most prevalent beer spoilage AAB and LAB by constructing an identification database and 

evaluating its applicability for the identification of novel spoilage bacteria. The method was 

validated by state-of-the-art taxonomic standards. Multiple research groups demonstrated the 

application of MALDI-TOF MS as a high-throughput, accurate and low-cost identification tool for 

isolates obtained in medical, environmental and food-related studies, enabling the simultaneous 

identification of a diverse group of microorganisms [15-22] (CHAPTER 3). 

 

8.1.1 Construction of the MALDI-TOF MS identification database  

Currently, there are different commercially available and user-friendly MALDI-TOF MS identification 

systems for which instrumentation is mostly coupled to a mass spectral database and appropriate 

data analysis software packages [23-27] (CHAPTER 3). In the present study, the 4800 MALDI 

TOF/TOFTM Analyzer of AB Sciex (Framingham, MA, USA) was used. The instrumentation is not 

equipped with an identification database, nor with appropriate tools to analyse mass spectra 

generated from crude protein extracts prepared from the intact cells of microorganisms as it is 

mainly applied for high-throughput proteomics research. Therefore, efforts were made to construct 

an extensive mass spectral database in the BioNumerics 5.1 software package (Applied Maths, 

Belgium). This version of the software supported only curve- or band-based analysis of less complex 

DNA fingerprinting patterns (e.g., DGGE, AFLP or (GTG)5 fingerprinting patterns). The recent 

availability (june 2013) of BioNumerics version 7.1 allows for a more comprehensive analysis as the 

incorporated algorithms enable users to perform an in-depth preprocessing of raw, more complex 
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MALDI-TOF mass spectra (e.g., by the removal of baseline, estimation of noise, profound peak 

picking) and to analyse data using either a curve-based (i.e., using the complete mass spectrum) or 

peak-based (i.e., presence-or-absence analysis of peaks only) approach [28]. 

The MALDI-TOF MS technique had already previously been successfully explored at the Laboratory 

of Microbiology at Ghent University for the identification of isolates belonging to the genera 

Fructobacillus, Lactococcus and Leuconostoc [29]. During this study, both the intact cell method (ICM) 

and cell extraction method (CEM) were applied for the construction of a robust and reproducible 

database. Within the course of the present study, both sample treatment procedures were 

evaluated using a selection of AAB and LAB reference strains. Mass spectra generated using the ICM 

often did not comply with the established mass spectral quality parameters (see below). Especially 

mass spectra generated from Gram-stain positive LAB contained an increased slope or a limited 

number of peaks detected; which substantiated previously reported results [30]. The CEM based on 

the procedure recommended by Bruker Daltonics (Germany) was preferred for the construction of 

the present MALDI-TOF MS identification database as the mass spectra generated were more 

reproducible and of superior quality (FIG 8.1).  

 

 

FIG 8.1. Mass spectra of Lactobacillus paracollinoides strain LMG 22473
T
 obtained using the intact cell method (ICM) (1) and 

the cell extraction method (CEM) (2). The slope is highlighted in the rectangle. a.i., absolute intensity. 

 

Visual inspection of the mass spectral quality and evaluation of the identification results obtained 

when using poor quality spectra enabled us to establish cut-off values for three parameters: 

presence of a slope, the peak signal intensity and the number of peaks detected. For instance, mass 

spectra characterised by an increased slope tended to group together during curve-based cluster 

analysis even if mass spectra were generated from strains belonging to different species. Ultimately, 

the mass spectral quality was considered to be acceptable if the absolute intensity of the highest 

1

2
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peak was more than 500 counts, if more than 5 peaks with a signal-to-noise ratio of more than 20 

were detected in the range of 3-20 kDa and if there were no repetitive peaks in the range of 2.1-3 

kDa (FIG 8.2).  

 

 

FIG 8.2. Mass spectra of different quality. Mass spectrum 1 is of good quality (i.e., no slope, high signal intensity and data 
richness). In contrast, a slope (highlighted in the rectangle) is observed in spectrum 2; yet this mass spectrum still showed a 
high data richness and signal intensity. Mass spectrum 3 is not-suited for further analysis due to its high slope, low signal 
intensity and the absence of peaks. a.i., absolute intensity. 

 

At the start of our study, the identification database present in the Laboratory of Microbiology at 

Ghent University did not contain organisms regarded as potential beer spoilage bacteria (CHAPTER 1). 

Therefore, the identification database was expanded by incorporating 273 (mostly) well-

characterised reference strains representing 18 AAB and 34 LAB species for which 4200 good quality 

mass spectra were generated. These reference strains originated from spoiled beer and brewery 

samples but also from other niches where these same species occur in order to encompass the 

intraspecies phenotypic diversity wherever possible [31]. The VITEK MS in vitro diagnostic 

automated microbial identification system (bioMérieux) contains mass spectra generated from ten 

isolates per species that were obtained from different isolation sources, year and origin [32]. The 

most effective performance for species level identification of bacteria according to Lartigue et al. [33] 

was obtained by using a MALDI-TOF MS database designed not by selecting one or more strains 

randomly, but by choosing the strains based on phylogenetic diversity that would represent the 

species studied. The strain selection for the present identification database was based on their 

1

2

3
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relevance as beer spoilage bacteria, their isolation source and their availability in international 

culture collections. For these reasons, Lb. brevis was well-represented in the identification database 

whereas Lb. malefermentans, for which few strains have been deposited in international culture 

collections, was represented by only two strains. All reference strains were cultivated on multiple 

selective and non-selective growth media to incorporate and anticipate any growth medium induced 

variation to the mass spectra generated. The extraction procedure was performed from cells 

obtained from the subsequent 3rd, 4th and 5th generation cultures of each strain per growth medium. 

The extensive subcultivation of the strains was time-consuming; however these biological replicates, 

together with the inclusion of technical replicates (duplicate spotting of the cell extract on to the 

MALDI-TOF MS target plate) enabled us to construct an extensive and robust MALDI-TOF MS 

identification database.  

The present study investigated the effect of the growth medium used on the mass spectra 

generated and its consequence for species level identification using a set of 25 AAB strains grown on 

five different growth media (CHAPTER 4). To this end, summary spectral profiles (SSPs) were created 

per strain and growth medium using a peak detection rate of 100%, meaning that each peak 

accounted for during analysis had to be present in each of the member mass spectra. As such, 

technical and biological induced variations towards the mass spectra were excluded from further 

analysis. In general, culture media that did not sustain optimal growth influenced the generated 

mass spectra strongly; and this effect has also been observed for the other reference strains grown 

on multiple culture media present in our identification database (FIG 8.3). Yet, the growth medium 

induced differences did not disturb the species level differentiation. It has been recommended to 

include multiple well-selected growth media during the construction of a MALDI-TOF MS 

identification database [32]. For that reason, the VITEK MS in vitro diagnostic mass spectral 

database consists of reference mass spectra generated from strains cultured at different growth 

conditions (e.g., growth medium, different incubation times) [18, 32]. Different incubations times 

were not included in the present study as cell extracts were prepared from single colonies obtained 

from young, freshly grown cultures; moreover all of the other growth conditions (oxygen rate and 

incubation temperature) were fixed for each reference strain according to the providers’ 

specifications. 

The present study also revealed that the number of strain-specific peak classes is culture medium 

dependent and that the selected culture medium affects the potential for strain level differentiation. 

The data presented in CHAPTER 4 also demonstrated that the number of shared peak classes 

appeared to decrease with an increasing number of strains per species examined; and that a growth 

medium dependent core set of peak classes and thus peptides seems to exist. A similar analysis was 
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performed using SSPs generated from different LAB reference strains grown on the same culture 

medium; and revealed that the core set of peak classes decreased when more strains per species 

were incorporated in the analysis (FIG 8.4). The core set of peak classes examined for Lb. 

malefermentans that was represented in our database by two strains only, revealed that additional 

strains of the species should be included before a reasonably accurate representation of core 

peptides will be obtained. The inclusion of SSPs generated from three additional Lb. malefermentans 

strains isolated from two different spoiled samples during the course of the present study indeed 

visualised a clear decrease in shared peak classes with increasing numbers of SSPs examined (FIG 

8.4). Therefore, we speculate that the inclusion of more reference strains will probably lead to a 

stabilizing core set of peak classes that could indicate sufficient coverage of the intraspecies 

diversity of the MALDI-TOF MS identification database (FIG 8.4). 

 

 

FIG 8.3. The ‘Nachweismedium für bierschädliche Bakterien’ [NBB; (Conda Pronadisa)] did not support the growth of P. 
acidilactici strain LMG 25667 very well; hence the mass spectrum generated (1) differed considerably from those obtained 
when the strain was grown on either de Man, Rogosa and Sharpe [MRS; (Oxoid)] medium (2) or Raka-Ray medium (Oxoid) 
(3). Varying peak signal intensities of the shared peaks were however observed among the latter two mass spectra. r. int., 
relative intensity. 

1

2

3
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FIG 8.4. The decrease in shared peak classes among SSPs of eight G. oxydans strains grown on AAM (A), two (dotted curve) and five 
(full curve) Lb. malefermentans strains grown on MRS (B), seven Lb. brevis strains grown on MRS (C) and thirteen Lb. paracasei 
strains grown on MRS (D). The number of shared peak classes is plotted as a function of the number of strain-specific SSPs 
sequentially added. Squares represent the average of shared peak classes per sequential addition of a strain-specific SSP. 

 

In conclusion, it is of utmost importance to have an exhaustive MALDI-TOF MS identification 

database containing good quality mass spectra generated from sufficient reference strains of the 

same species grown on multiple media [31, 34]. The inclusion of biological and technical replicates 

per strain grown at a specific culture condition enables the final elimination of biological or technical 

induced variations towards the mass spectra generated. In addition, an important advantage of 

MALDI-TOF MS as an identification tool resides in the minimal adaptations to the sample treatment 

procedure required to expand the identification database to other (types of) microorganisms. The 

present study focussed mainly on the beer spoiling LAB and AAB; yet good quality mass spectra 
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were generated from other beer spoilage microorganisms such as Pectinatus and Zymomonas strains 

as well using the same sample treatment procedure (FIG 8.5). This is a major advantage, especially 

compared to other detection and/or identification methods for which thorough modifications 

towards sample treatment protocols, e.g., novel design of primers or probes, are necessary. 

 

 

FIG 8.5. Mass spectra of some beer spoilage bacteria or bacteria isolated from the brewery environment that were not included in 
the present study. r. int., relative intensity. 

 

8.1.2 Validation of the MALDI-TOF MS identification database 

The performance of the MALDI-TOF MS identification database largely depends on the correct 

classification of the reference strains examined. Mass spectra generated from each of the reference 

strains were analysed using either a curve-based or peak-based cluster analysis approach. Mass 

spectra of 11 species of the 52 included species grouped in multiple clusters and twelve of these 

Megasphaera paucivorans – DSM 16981T

Chryseobacterium pallidum – LMG 25631T

Pectinatus frisingensis – CCUG 43283T

Pectinatus haikarae – LMG 25790

Zymomonas mobilis subsp. pomaceae – LMG 448T
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clusters comprised mass spectra of two or more species when the curve-based Pearson product-

moment correlation coefficient and UPGMA (Unweighted Pair Group Method with Arithmetic Mean) 

analysis method was performed. In contrast, the peak-based cluster analysis using the Dice 

coefficient and UPGMA cluster algorithm enabled species level differentiation far more efficiently. 

Yet, mass spectra of groups of closely related bacteria like Lactobacillus plantarum/Lactobacillus 

paraplantarum and Acetobacter cerevisiae/Acetobacter malorum grouped in a single cluster each [35-

37]. The inability to comprehensively discriminate among certain closely related species is not of 

major concern as long as it is recognised and accounted for during the data interpretations [38-41]. 

Peak-based numerical analysis of mass spectra of Lb. plantarum and Lb. paraplantarum revealed 

only three shared peak classes (i.e., m/z 2866.55 ± 4.29, 4560.63 ± 5.65 and 9418.88 ± 9.54) (data not 

shown); however not a single peak class was found to enable discrimination between mass spectra 

of both species. In contrast, discrimination among strains of the closely related Lb. collinoides and Lb. 

paracollinoides (who had three shared peak classes) was feasible based on the presence of two peak 

classes characterised by an m/z value of 6580.87 ± 7.26 and 6884.81 ± 7.51 (data not shown). 

The peak-based cluster analysis revealed that 34 out of 273 (12%) reference strains including some 

strains isolated from beer or the brewery environment, clustered aberrantly (CHAPTER 5.1; ANNEX 

1). Consequently, sequence analysis of protein coding genes was performed as a taxonomic 

reference method for accurate species level identification and this consistently confirmed the 

MALDI-TOF MS cluster result, implying that the previous identification rather than the MALDI-TOF 

MS identification was wrong. Some of these aberrantly clustering strains represented species that 

were never reported as potential beer spoilage bacteria such as Gluconobacter japonicus and 

Acetobacter fabarum. The potential of these species as spoilage bacteria in the brewing industry 

therefore merits further attention. Noteworthy in this context was that the mass spectra generated 

from the type strain of Pediococcus lolii grouped together with those of Pediococcus acidilactici 

strains and that an in-depth taxonomical study elaborately discussed in CHAPTER 5.2 confirmed that 

the P. lolii subcultures deposited in the DSMZ and JCM culture collections belong to P. acidilactici 

[42]. Similarly, mass spectra generated from Lb. homohiochii strain LMG 9478T could not be 

differentiated from those of Lb. fructivorans strain LMG 9201T, but are clearly distinguished from the 

closely related Lb. lindneri strain R-49605 (FIG 8.6). DNA-DNA hybridization values (93%), and 16S 

rRNA (99.9%) and pheS (100%) gene sequence analysis revealed a high degree of similarity among 

these strains; thereby confirming the MALDI-TOF MS results and suggesting that Lb. fructivorans is 

an earlier heterotypic synonym of Lb. homohiochii [43, 44] (unpublished data). 
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FIG 8.6. Mass spectra obtained from Lb. homohiochii strain LMG 9478
T
, Lb. fructivorans strain LMG 9201

T
 and the closely related Lb. 

lindneri strain R-49605. r. int., relative intensity. 

 

8.1.3 Application of the MALDI-TOF MS identification database to identify unknown bacteria 

isolated from spoiled beer and brewery samples 

Species level identification of spoilage microorganisms is of utmost importance for the brewing 

industry even though not all strains share similar beer spoiling capabilities [45, 46]. Nevertheless, 

species level identification enables the estimation of the impact of bacterial spoilage and the 

prevention of further product deterioration and future spoilage. In total 29 beer spoilage LAB strains 

collected from Danish, Czech and Belgian breweries were analysed to test the performance and 

applicability of our MALDI-TOF MS identification database ([47]; unpublished results). Peak-based 

cluster analysis of mass spectra generated from these isolates together with those of LAB reference 

strains enabled rapid and reliable identification of all isolates (number of strains in brackets). The 

spoilage isolates included strains of the following species: Lb. brevis (23), Lb. plantarum (3), Lb. 

lindneri (1), Lb. paracasei (1) and P. inopinatus (1). The MALDI-TOF MS identification results were 

confirmed using pheS gene sequence analysis (data not shown).  

Fourteen spoiled beer and brewery samples provided by three Belgian breweries were analysed. Due 

to the low numbers of bacterial cells present in such samples and the small sample volume that is 

available for analysis, an enrichment step prior to isolation was necessary. In total 348 isolates were 

picked from agar plates inoculated with a sample from these enrichment cultures, and were 

subsequently analysed using MALDI-TOF MS. The diversity observed among this large set of isolates 

Lactobacillus homohiochii – LMG 9478T

Lactobacillus fructivorans – LMG 9201T

Lactobacillus lindneri – R-49605
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was rapidly ordered by grouping the mass spectra obtained by means of the curve-based Pearson 

product-moment correlation coefficient and UPGMA cluster analysis (CHAPTER 5.1). In total 15 

distinct MALDI-TOF mass spectra were obtained after this dereplication step; and several cluster 

representatives were chosen depending on the cluster heterogeneity observed. The peak-based 

cluster analysis correctly identified 94% of the isolates as revealed by subsequent sequence analysis 

of protein coding genes. The remaining 6% of the isolates were either representing species that 

were not regarded as potential beer spoilage bacteria (Acetobacter fabarum, Acetobacter 

indonesiensis, Acetobacter persici and Gluconobacter japonicus) and thus not present in our database 

or represented novel species altogether (Gluconobacter sp. and Gluconobacter cerevisiae sp. nov. 

[Chapter 5.3]). The expansion of our database by including reference strains of these species will 

enable a straightforward identification in future experiments. An alternative classifier-based 

approach allowed for an automated identification analysis; yet yielded a high percentage of 

inaccurate and unreliable identification results. The underrepresentation of strains of certain 

reference species (e.g., Lb. malefermentans) was responsible for some false identification results (see 

above, FIG 8.4). 

In conclusion, the results of the present study demonstrated that MALDI-TOF MS coupled to a well-

constructed mass spectral database allowed to identify a large and diverse set of isolates from 

different spoiled beer and brewery samples. Curve-based cluster analysis was instrumental for the 

initial isolate dereplication, after which a selection of cluster representative isolates was identified 

using peak-based cluster analysis. 

 

8.1.4 The detection and identification of bacteria directly from enrichment cultures obtained 

from spoiled beer and brewery samples 

The applicability of MALDI-TOF MS as a rapid and high-throughput tool for the identification of beer 

spoilage bacteria isolated from beer and brewery samples is already demonstrated in this study. 

Unfortunately, enrichment and isolation of the spoilage bacteria are required prior to MALDI-TOF 

MS analysis merely because too low numbers of bacterial cells are present in spoilage samples. 

Therefore, we investigated the potential of MALDI-TOF MS to identify the bacteria directly from the 

enrichment cultures (CHAPTER 6). The minimal cell concentration required to generate good quality 

MALDI-TOF mass spectra that allowed identification was determined at approximately 5 × 107 

CFU/mL enrichment culture which corresponds with previous reports [40, 48]. The (beer) matrix 

strongly influenced the mass spectra generated; yet two consecutive washing steps using Milli-Q 

water prior to cell extraction were sufficient to eliminate the matrix effect almost completely. 
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Moreover, a sample preparation protocol based on a filtration procedure enabled detection and 

identification of bacteria directly in enrichment cultures of spoiled beer and brewery samples, even 

in the presence of yeast or mould cells.  

Mass spectra generated from the monomicrobially enrichment cultures were of good quality and 

enabled identification of the potential spoilage bacterium present. However, it is not uncommon 

that multiple microorganisms simultaneously cause beer spoilage. In the present study, 7 out of 14 

spoiled samples were contaminated with cells of more than one species (CHAPTER 5.1). The 

identification of microorganisms present in polymicrobially contaminated samples remained 

extremely challenging, considering the various types of peak suppression effects when different 

microorganisms are present in the enrichment culture [38, 49] (CHAPTER 6). When peak-based 

analysis of the mass spectrum of the enrichment culture assigned it to a certain species, a 

comparison of peak classes may or may not suggest the presence of additional species. Therefore, it 

is again important that each species is well-represented in the MALDI-TOF MS identification 

database. For instance, the inclusion of additional Lb. malefermentans reference strains would 

increase the number of peak classes, and consequently decreased the number of uncorrelated peak 

classes present in the mass spectrum generated from the enrichment culture contaminated with Lb. 

malefermentans (CHAPTER 6). Mass spectra of enrichment cultures that group separately from those 

of reference strains after peak-based cluster analysis could mean that the sample is of polymicrobial 

nature, that the microorganism is not present in the identification database, or that the sample is 

contaminated with a novel species altogether (CHAPTER 5.1). Although preliminary identification 

results may provide the brewery’s quality manager with pivotal information to start prevention of 

further product deterioration and future spoilage, our data demonstrated that it is highly 

recommended to plate these enrichment cultures and use MALDI-TOF MS to dereplicate and 

identify the isolates obtained in order to confirm the identification results obtained after two to five 

days [34, 50] (FIG 8.7).  

It would be interesting to determine which concentration of cells in spoiled beer and brewery 

samples would allow direct identification of the spoilage bacteria without enrichment step [51]. For 

instance, the use of affinity-based methods such as coated magnetic nanoparticles requires less 

time and played already an important role in the MS-based identification of clinically and 

environmentally relevant microorganisms [52-54]. Fractionation tools such as hollow fiber field flow 

fractionation or cell sorting by flow cytometry can be applied to separate and concentrate different 

microorganisms (i.e., different types of bacterial cells and even yeast cells) present in the 

polymicrobial samples [27, 51, 55]. 
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FIG 8.7. Scheme of the general workflow for the detection and identification of beer spoilage bacteria in enrichment cultures of 
beer and brewery samples using MALDI-TOF MS (blue pathway). Confirmation of these identification results can be obtained by 
isolating the contaminants present in the enrichment cultures and subsequently identify them via MALDI-TOF MS (green pathway). 

 

8.1.5 MALDI-TOF MS as infraspecific discrimination tool applied in brewing microbiology 

In the course of our study, the applicability of MALDI-TOF MS as a fast technique to verify the purity 

of brewer’s pitching yeast cultures was investigated based on a practical case study (CHAPTER 7). The 

quality control manager of a Belgian brewery noted deviations in fermentation outcome for several 

production batches of a top fermented beer with refermentation in the bottle which were 

potentially related to a contamination of the brewer’s pitching yeast culture. Microscopic analysis 

revealed the presence of two different yeast cell morphologies in both samples. The MALDI-TOF 

mass spectra generated from isolates obtained from both samples (i.e., the spoiled brewer’s pitching 

yeast culture and a top fermented beer with refermentation in the bottle produced with the spoiled 

brewer’s pitching yeast culture) were compared with those of the axenic culture of the brewer’s 

pitching yeast. The curve-based cluster analysis revealed two distinct types of mass spectra that 

correlated either with the axenic in-house brewing pitching yeast culture or with a potential wild-

type yeast strain. Moreover, sequence analysis of the D1/D2 region of 26S rRNA gene identified both 

types of yeast strains with 99.9% sequence similarity as Saccharomyces cerevisiae. The results 
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demonstrated as a proof of concept that MALDI-TOF MS allows discrimination of brewing and wild-

type S. cerevisiae isolates by comparing their mass spectra with that of the in-house production 

brewer’s yeast strain.  

Compared to currently available DNA-based strain level differentiation techniques [56], the 

proteomic-based MALDI-TOF MS approach can be proposed as a more rapid and straightforward 

tool for infraspecific level discrimination. This approach however demands for high resolution and 

tends to be more challenging as strains of the same species have substantial genetic overlap, and 

most of the peak classes observed in the different MALDI-TOF mass spectra are identical [22, 57, 58]. 

The in-depth peak-based numerical analysis performed in CHAPTER 4 focussed on the presence of 

strain-specific peak classes; and revealed that the number of such strain-specific peak classes varied 

depending on the growth medium used (CHAPTER 4). Therefore, it is of utmost importance to 

cultivate the strains using strict growth conditions when performing comparative infraspecific mass 

spectral analysis (CHAPTER 4; [22]). An in-depth peak-based numerical analysis of the mass spectra 

of the brewing and wild-type yeast strains grown at the same culture conditions revealed that seven 

peak classes occurred solely in the mass spectra generated from the wild-type yeast isolates. More 

advanced MS-based methods could enable the identification of proteins of which these strain-

specific peaks originated, thereby providing more insights in the physiological characteristics of the 

wild-type strain and their contribution in deviating fermentation outcome. Recently, MALDI-TOF 

MS has been explored to discriminate among isolates of Lb. brevis with respect to their beer spoilage 

potential [i.e., their tolerance towards iso-α-acids and their ability to grow in four different types of 

beer (wheat beer, lager beer and two different pilsner beers)] [59]. However, of the 17 strains 

examined, none of the peaks detected could be related exclusively to either strong or weak beer 

spoilage capability [59]. Remarkably, during the latter study a minimum peak detection rate of 40% 

only was applied. This parameter is in our opinion crucial when performing infraspecific 

discrimination studies; and was set at 100% in our study so that each strain-specific peak occurred in 

each of the mass spectra generated from that particular strain and thereby eliminating biological or 

technical induced variations (CHAPTER 4).  

Infraspecific level discrimination allows for a more comprehensive analysis of spoilage 

microorganisms found in the brewery as it can assist in the determination of the source of 

contamination [10, 56, 60, 61]. In the present case study, the results demonstrated that a wild-type 

yeast strain contaminated the brewer’s pitching yeast culture and that this contamination persisted 

until packaging of the top fermented beer with refermentation in the bottle. In earlier studies we 

isolated Lb. malefermentans from two different batches of contaminated bottled dinner beer 

obtained from the same brewery with a one year interval. Mass spectra generated from all of the 
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isolates obtained from both samples were very similar and differed from those of the two Lb. 

malefermentans reference strains present in the identification database. Moreover, isolates from 

both samples had indistinguishable RAPD fingerprints suggesting that Lb. malefermentans is a 

resident spoilage bacterium of this brewery (data not shown). Sampling of critical control points in 

the brewery (e.g., brewer’s yeast cultures, biofilm sensitive dead-ends in piping systems, conveyors 

in the filling hall) and subsequent MALDI-TOF MS analysis coupled to RAPD fingerprinting analysis 

of the obtained isolates could rapidly elucidate the real origin of this Lb. malefermentans strain and 

enables the brewery’s quality manager to counteract against future spoilage. 

 

8.2 The bacterial diversity observed in the spoiled beer and brewery samples 

examined 

The main goal of the present study was to evaluate the application of MALDI-TOF MS as high-

throughput and rapid identification tool for beer spoilage bacteria belonging to AAB and LAB; and 

not to perform an extensive diversity study of beer spoilage bacteria observed in the brewery. The 

samples investigated represented a small, but heterogeneous selection of brewery intermediates or 

end products that are prone to bacterial spoilage (e.g., sweet wort, brewer’s pitching yeast cultures, 

low-alcoholic or non-pasteurised beers) (CHAPTER 1; CHAPTER 5.1). In total 348 potentially beer 

spoiling isolates belonging to fifteen AAB and LAB species were obtained from only fourteen 

samples retrieved from three Belgian breweries (CHAPTER 5.1). 

The large bacterial diversity observed in these fourteen samples was remarkable; moreover seven 

out of fourteen samples were contaminated with more than one species. For instance, one sample 

contained Lb. malefermentans, P. inopinatus, and four AAB species (i.e., Acetobacter indonesiensis, A. 

fabarum, G. japonicus and a novel unnamed Gluconobacter species). Slime forming AAB are 

considered to be primary brewery colonizers. Through their growth in biofilms they contribute to 

the favourable conditions for other beer spoilage bacteria by reducing oxygen levels and providing 

an acidic environment [5, 11, 12]. The diverse range of such ‘indirectly spoiling’ AAB species isolated 

from this sample may be correlated with the presence of biofilms in the piping systems of the filling 

installation in which Lb. malefermentans and P. inopinatus can be harboured. Sampling of biofilm-

sensitive dead-ends in the piping systems and on conveyors belts in the filling hall could reveal the 

origin of these contaminants. In total seven out of fourteen samples were contaminated with the 

obligate beer spoiling bacterium Lb. brevis; and four of these samples were of polymicrobial nature. 

For example, a bottled top fermented beer with an alcohol content of 6.6% v/v was not only 

contaminated with Lb. brevis, but also with the ‘indirectly spoiling’ AAB species A. persici and A. 
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orleanensis. A final kegged pilsner beer was contaminated with two obligate beer spoiling bacteria, 

Lb. brevis and Lb. backii.  

Microbiological contamination of the brewer’s pitching yeast culture is a major concern, as these 

cultures are often not fully aseptically cropped and could successively spoil other fermentation 

batches. In our study, four contaminated yeast samples were retrieved from two different breweries; 

and all of them were contaminated with the indirectly beer spoiling bacterium A. cerevisiae/A. 

malorum. One yeast sample was also contaminated with Gluconobacter cerinus and a novel species 

belonging to the genus Gluconobacter. The latter species was also isolated from lambic beer samples 

in both an industrial and a traditional type of lambic brewery located 74 km apart in Belgium and was 

described in the present study as the novel species Gluconobacter cerevisiae (CHAPTER 5.3) [62]. 

Acetobacter cerevisiae/A. malorum was also collected from two bottled dinner beers characterised by 

different alcohol contents, i.e., 1.8% v/v and 2.25% v/v. Besides A. cerevisiae/A. malorum, 

Gluconobacter oxydans was also isolated from the latter dinner beer sample (with an alcohol content 

of 2.25% v/v) which was artificially sweetened whereas the former was not. The production of non-

pasteurised, low- and non-alcoholic beers demands for strict hygienic standards to prevent bacterial 

spoilage. In the present study, the potential spoilage bacterium P. claussenii was isolated from a 

fruity wheat beer characterised by an alcohol content of 4.3% v/v and low hop content (IBU of 5). 

Previous reports stated that the prevalence of AAB species as beer spoilage organisms decreased [9, 

63]; however this is in contrast with the results obtained in the present study, i.e., ten out of fifteen 

species recovered from eight out of fourteen samples belong to the AAB (CHAPTER 5.1). Therefore, 

they should not be neglected as potential spoilage bacteria as they may cause off-flavours, turbidity 

and ropiness in the presence of oxygen [64]. Moreover, such bacteria will be missed by detection 

and identification kits currently used in the brewery industry which focus primarily on beer spoiling 

LAB and some strict anaerobic genera (e.g., Pectinatus and Megasphaera). 
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8.3 The risks and benefits of MALDI-TOF MS, some concluding remarks and 

perspectives 

The established culture-dependent and culture-independent methods for the detection and/or 

identification of beer spoilage microorganisms are summarised in CHAPTER 2. In general, these 

methods are rather time-consuming, often lack throughput capacity and do not facilitate real-time 

interventions. Furthermore, these methods mostly target only a narrow range of beer spoilage 

bacteria. TABLE 8.1 visualises the comparative analysis of these currently established methods with 

MALDI-TOF MS. The present study demonstrated that MALDI-TOF MS enabled the rapid and 

accurate identification of a diverse group of beer spoilage bacteria isolated from different samples. 

Hence, one of the major benefits of MALDI-TOF MS as a microbial detection and identification tool 

is its flexibility. The mass spectral database constructed in CHAPTER 5.1 can be easily complemented 

with (novel) species without the need for modifying the sample treatment procedure. Other 

detection and identification methods will require modifications of the primers, oligonucleotide 

probes and monoclonal antibodies applied. This flexibility is a major asset as novel beer spoilage 

species continue to emerge [10, 62, 65-67] (CHAPTER 5). In contrast, data portability is not 

straightforward for MALDI-TOF mass spectra, and this due to the influences of different parameters 

(e.g., growth media, sample preparation procedures and instrumentation) on the mass spectra 

generated [58, 68]. At present, publicly dedicated databases comprising unprocessed mass spectra 

of microorganisms (cf. DNA sequence databases) are minimally available. The use of internal and/or 

external control samples and meticulous annotations of different parameters (e.g., growth 

conditions, instrumentation and sample treatment used) affecting the mass spectra generated could 

potentially enable future inter-laboratory comparison. 

Another major advantage of the MALDI-TOF MS technique resides in its speed of performance and 

throughput capacity. The sample preparation procedure is very straightforward and consists of only 

a brief cell extraction procedure followed by automated MALDI-TOF MS analysis. Approximately 

200 samples can easily be analysed in one working day. Hence, identifications are obtained faster 

using MALDI-TOF MS compared to conventional methods. A thorough analysis of a microbial 

community requires the identification of large numbers of isolates which is not only time-consuming 

but also expensive [69]. In the present study, a total of 384 isolates was rapidly reduced to only 15 

distinct mass spectra. Other studies also reported the suitability of MALDI-TOF MS as a rapid 

screening method in order to remove redundancy and to select for novelty [69-75]. For instance, the 

technique is useful for the characterization of LAB associated with the production of diverse 
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Vietnamese fermented vegetables [76] and for the grouping of heterotrophic marine bacterial 

isolates from sea-water surface layers of the Norwegian Trondheimsfjord [69]. 

Finally, the costs of MALDI-TOF MS consumables, operational manipulations and downstream 

processing of mass spectral data generated are low compared to conventional detection and 

identification methods [77]. However the initial investment cost and subsequent maintenance costs 

of the apparatus are high [71], which render its purchase and use in small and medium-sized brewery 

companies problematic. It seems therefore more appropriate to adopt MALDI-TOF MS in food-

related reference laboratories [e.g., Das Bierlabor (Germany) or Accugenix® Microbial ID & Strain 

Typing (USA)] and to provide these low-cost identification services to the brewing industry.  

As stated previously, MALDI-TOF MS like almost each detection and/or identification method 

currently available in this industry does not allow direct detection and identification of bacteria in 

spoiled samples due to the low numbers of microbial cells present and therefore requires an 

enrichment step and ideally the isolation of axenic cultures prior to analysis (CHAPTER 2; TABLE 8.1). 

The major disadvantage of the technique is that the inclusion of cultivation steps often leads to 

misinterpretations of results obtained, as, for instance, fastidious, slow-growing or uncultivable 

microorganisms will be easily missed [78, 79]. We demonstrated however that MALDI-TOF MS can 

be used for the direct identification of bacteria in enrichment cultures of monomicrobially 

contaminated samples. The identification of microorganisms present in enrichment cultures of 

polymicrobial samples remains challenging. Advancements in the MALDI-TOF MS technology (i.e., 

improvement of the dynamic range of the instrumentation) and especially in data analysis tools may 

help to address these outstanding issues. At present, it is better to invest in improving data analysis 

instead of novel hardware; and thereby attempt to extract as much information as possible from the 

mass spectra generated.  



 

 

 

 

TABLE 8.1. Overview of characteristics, major benefits and drawbacks of currently established methods used for the detection and/or identification of beer spoilage bacteria (BSB). 

 

Method D / I / T Target Sensitivity Time of analysis Benefits Drawbacks

G
R

O
W

T
H

Culturing on selective and non-selective 

grow th media¥
D All BSB 1-5 culturable cells/sample days - w eeks

Sensitive (w hen appropriate culture condition are applied); 

detection of culturable cells; easy-to-perform

Time-consuming (days up to w eeks); often unreliable 

results; viable but nonculturable cells are not detected

A
T

P

Detection of bacterial ATP using the 

enzyme coupled luciferin/luciferase 

assay¥

D All BSB 50 cells/sample <1 h (48 h*) Rapid tool for hygienic monitoring

Interference w ith chemicals (false-negative results); 

expensive read-out system; false-positive results; 

variable sensitivity; poor reproducibility

IM
M

U
N

O

Immuno-based assays using MAbs D / I
Species- or 

group-specif ic
3-40 cells/100 mL sample <1 h (48 h*) Rapid and sensitive; quantif ication possible

Expensive and tedious design of MAbs; cross-reactions 

& background interferences; expensive read-out system; 

no distinction betw een viable and dead cells

P
R

O
B

E

Hybridization of oligonucleotide probes 

onto specif ic target sequences¥
D / I

Species- or 

group-specif ic

102-105 CFU/mL sample; 1-5 CFU / 

membrane (microcolony approach)
3 h (48 h*) 

Without DNA extraction; quantif ication possible; detection 

of viable cells

Investment costs; enrichment step preferred 

(microcolonies); design of probes; different 

probemarkers for multiplex detection

End-point amplif ication of target DNA 

sequences
D / I 

Species- or 

group-specif ic
103-108 cells/100 mL sample 3-6 h (48 h*) Easy-to-use; detection of spoilage capabilities

Real-time amplif ication and quantif ication 

of target DNA sequences¥
D / I

Species- or 

group-specif ic
104-105 cells/100 mL sample 2-3 h; (24-72 h*)

Less post-PCR manipulations; real-time follow -up; better 

cost/benefit ratio

Ribotyping, restriction enzyme-pattern 

analysis of genomic DNA using Southern 

blot analysis¥

I / T All BSB Pure cultures 8 h
Automation possible; easy-to-perform; standardised; 

objective identif ication; typing possible

Sodium dodecyl sulphate-polyacrylamide 

gel electrophoresis (SDS-PAGE) protein-

profiling

I / T All BSB Pure cultures 1-2 days
Objective identif ication; gene expression-based protein 

patterns

M
A

L
D

I-
T

O
F

 M
S

Mass spectra generated from microbial 

intact cells or crude protein extractions 

thereof are typically unique for a certain 

microorganism 

D / I / T All BSB
Pure cultures or 107-108 cells/sample 

(direct analysis of enrichment cultures) 
<1 h (24h-days*) 

Rapid and accurate; f lexible; straightforw ard sample 

preparation; high-throughput analysis; automation possible; 

dereplication tool; low  consumable cost; objective 

identif ication; typing possible 

High investment and maintenance costs; culture-

dependent; data portability (inter- and intra-laboratory 

reproducibility)

¥
commercialised; 

*time of pre-enrichment of sample;

Abbreviations: D, Detection; I, Identification; T, Strain level differentiation possible; MAbs: Monoclonal antibodies

P
C

R
F

IN
G

E
R

P
R

IN
T

IN
G

Enrichment and/or pre-f iltration step needed; DNA-

extraction; PCR-inhibition from beer matrix (false-negative 

results); unable to distinguish betw een viable or dead 

cells; presence of naked DNA (false-positive results); 

post-PCR processing (only for end-time PCR); primer 

development; high investment costs

High investment and running costs; time-consuming; pure 

cultures are required; cumbersome sample preparations; 

identif ication database-dependent; selection of restriction 

enzymes (Ribotyping); no high-throughput analyses
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SUMMARY 

 

Beer is a beverage with usually good microbiological stability because it contains almost no oxygen 

and nutrients for bacterial growth. In addition, low pH, high CO2-content and the presence of 

ethanol and antibacterial hop compounds ensure microbiological stability. Nevertheless, beer 

spoilage due to bacteria is a common problem in the brewing industry worldwide. These bacteria 

typically cause visible turbidity, acidity and off-flavours. Nowadays, the hop-resistant lactic acid 

bacteria (LAB) Lactobacillus backii, Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus lindneri, 

Lactobacillus coryniformis, Lactobacillus plantarum, Lactobacillus malefermentans, Lactobacillus 

parabuchneri, Pediococcus damnosus, Pediococcus inopinatus and Pediococcus claussenii are generally 

regarded as the most problematic beer spoilage microorganisms (CHAPTER 1). The prevalence of the 

strictly aerobic acetic acid bacteria (AAB) has decreased because of improved process filling 

technology. However, in aerobic environments, AAB can prevail and form biofilms in which other 

spoilage bacteria are protected and survive. During the last two decades, anaerobic Gram-stain 

negative bacteria species have gained importance as spoilage bacteria in the brewing industry as 

well (CHAPTER 1). The taxonomically diverse group of beer spoilage bacteria is currently detected 

and/or identified using a range of culture-dependent or culture-independent methods which are 

time-consuming, often lack high-throughput capacity, do not facilitate real-time interventions, and 

target only a narrow range of bacteria (CHAPTER 2). Multiple research groups demonstrated the 

usefulness of the soft ionisation technique matrix-assisted laser desorption/ionisation time-of-flight 

mass spectrometry (MALDI-TOF MS) as a high-throughput, accurate and low-cost identification tool 

for isolates obtained in medical, environmental and food-related studies, enabling the simultaneous 

identification of a diverse group of microorganisms (CHAPTER 3). Therefore, MALDI-TOF MS was 

investigated as an alternative identification tool for the most prevalent beer spoiling AAB and LAB.  

The MALDI-TOF mass spectra generated can be used to characterise and identify bacteria at species 

and even at infraspecific levels. To this end, an MALDI-TOF mass spectral database was constructed 

containing 273 mainly well-characterised reference strains representing 52 AAB and LAB species 

originating from spoiled beer and other brewery samples but also from other niches where strains of 

the same species occur. Moreover, all reference strains were cultivated onto multiple selective and 

non-selective growth media to anticipate cultivation condition induced variability in an organism’s 

MALDI-TOF MS profile (CHAPTER 4). Cultivation media that did not sustain optimal growth 

influenced the mass spectra generated strongly; yet, the growth medium induced variations had no 

impact on the final species level identification. The present study also demonstrated that the 

number of strain-specific peaks is culture medium-dependent and that the selected culture medium 
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affects the potential for strain level differentiation (CHAPTER 4). The data finally also demonstrated 

that the number of shared mass peaks detected appeared to decrease with an increasing number of 

strains per species examined, and that a growth medium-dependent core set of peaks and thus 

peptides seems to exist (CHAPTER 4). It is assumed that the inclusion of more reference strains per 

species will eventually lead to a stabilizing core set of peaks that could indicate sufficient coverage 

of the intraspecies diversity of the MALDI-TOF mass spectral identification database. It is therefore 

of utmost importance to have an exhaustive MALDI-TOF MS identification database containing 

good quality mass spectra generated from sufficient reference strains of the same species grown on 

multiple culture media.  

The performance of the identification database largely depends on the correct classification of the 

reference strains examined; and in total 34 (12%) out of 273 strains were reclassified based on their 

position in the peak-based cluster analysis (using the Dice coefficient and UPGMA cluster algorithm; 

CHAPTER 5.1). State-of-the-art gene sequence analysis confirmed each of the MALDI-TOF MS 

reclassifications implying that the previous identification of those reference strains was wrong. 

Some of these aberrantly clustering strains represented species that were never reported as 

potential beer spoilage bacteria such as Gluconobacter japonicus and Acetobacter fabarum. 

Noteworthy in this context was that the mass spectra generated from the type strain of Pediococcus 

lolii grouped together with spectra of Pediococcus acidilactici strains. An in-depth taxonomical study 

confirmed that the P. lolii subcultures deposited in the DSMZ and JCM culture collections belong to 

P. acidilactici (CHAPTER 5.2).  

Species level identification of spoilage microorganisms is of utmost importance for the brewery 

industry even though not all strains share similar beer spoiling capabilities. Nevertheless, species 

level identification enables the estimation of the impact of bacterial spoilage and the prevention of 

further product deterioration and future spoilage. The fourteen spoiled beer and brewery samples 

examined during the present study were provided by three distinct Belgian breweries. These 

samples represented a small, but heterogeneous selection of brewery intermediates or end products 

that are prone to bacterial spoilage (e.g., sweet wort, brewer’s pitching yeast cultures, low-alcoholic 

or non-pasteurised beers). Due to the low numbers of bacterial cells present in such samples and the 

small sample volume that is available for analysis, an enrichment step prior to isolation was 

necessary. In total 348 isolates were retrieved from these samples, and were subsequently analysed 

using MALDI-TOF MS. The diversity observed among this large set of isolates was rapidly ordered by 

grouping the mass spectra obtained by means of the curve-based cluster analysis (using the Pearson 

product-moment correlation coefficient and UPGMA cluster algorithm; CHAPTER 5.1). In total 15 

distinct MALDI-TOF mass spectra were obtained after this dereplication step; and several cluster 
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representatives were chosen depending on the cluster heterogeneity observed. The peak-based 

cluster analysis (using the Dice coefficient and UPGMA cluster algorithm) correctly identified 94% of 

the isolates as revealed by subsequent sequence analysis of protein coding genes (Acetobacter 

cerevisiae/Acetobacter malorum, Acetobacter orleanensis, Gluconobacter cerinus, Gluconobacter 

oxydans, Lactobacillus backii, Lactobacillus brevis, Lactobacillus malefermentans, Pediococcus 

claussenii and Pediococcus inopinatus). The remaining 6% of the isolates were either representing 

species that were not regarded as potential beer spoilage bacteria (Acetobacter fabarum, 

Acetobacter indonesiensis, Acetobacter persici and Gluconobacter japonicus) and therefore not present 

in our database or represented novel species altogether (Gluconobacter sp. and Gluconobacter 

cerevisiae sp. nov. [CHAPTER 5.3]). The main goal of the study was to evaluate the application of 

MALDI-TOF MS as high-throughput and rapid identification tool for beer spoilage bacteria 

belonging to AAB and LAB; and not to perform an extensive diversity study of beer spoilage bacteria 

observed in the brewery. Previous studies stated that the prevalence of AAB species as beer spoilage 

organisms decreased; and are therefore not accounted for in currently available detection and 

identification kits applied in the brewing industry. Yet, the relatively high number of AAB species (10 

out of 15) recovered from eight samples in the present study indicated that these species should not 

be ignored as potential beer spoiling bacteria (CHAPTER 5.1). 

To speed-up analysis, the applicability of MALDI-TOF MS was investigated for the detection and 

identification of bacteria directly from enrichment cultures of spoiled beer and brewery samples 

with or without the concomitant presence of yeast cells (CHAPTER 6). The minimal cell concentration 

required to generate good quality MALDI-TOF mass spectra that allowed identification was 

determined at approximately 5 × 107 CFU/mL enrichment culture. The (beer) matrix strongly 

influenced the mass spectra generated; yet, two consecutive washing steps using Milli-Q water prior 

to cell extraction were sufficient to eliminate the matrix effect almost completely. Moreover, a 

sample preparation protocol based on a filtration procedure enabled detection and identification of 

bacteria directly in enrichment cultures of spoiled beer and brewery samples, even in the presence of 

yeast or mould cells. Mass spectra generated from the monomicrobially enrichment cultures were of 

good quality and enabled identification of the potential spoilage bacterium present. When peak-

based cluster analysis of the mass spectrum of the enrichment culture assigned it to a certain species, 

an in-depth comparison of peaks may or may not suggest the presence of cultures of additional 

species. The identification of microorganisms present in polymicrobially contaminated samples 

remained extremely challenging, considering the various types of peak suppression effects when 

different microorganisms are present after growth in the enrichment culture. Nevertheless, 

preliminary identification results may provide the brewery’s quality manager with pivotal 
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information to start prevention of further product deterioration and future spoilage. The data 

demonstrated that it is highly recommended to plate the enrichment cultures and use MALDI-TOF 

MS to dereplicate and identify the isolates obtained in order to confirm the identification results. 

Compared to currently available DNA-based strain level differentiation techniques, the proteomic-

based MALDI-TOF MS approach can be proposed as a more rapid and straightforward tool for 

infraspecific level discrimination. The results presented in this PhD study demonstrated as a proof of 

concept that MALDI-TOF MS allows discrimination of brewing and wild-type Saccharomyces 

cerevisiae isolates by comparing their mass spectra with that of the in-house production brewer’s 

yeast strain (CHAPTER 7). An in-depth peak-based numerical analysis of the mass spectra of the 

brewing and wild-type yeast strains grown at the same culture conditions revealed multiple strain-

specific peaks in the mass spectra generated from the wild-type yeast. 

In conclusion, the results of the PhD study demonstrated that MALDI-TOF MS coupled to a well-

constructed mass spectral database is a powerful tool for the detection, identification and typing of 

spoilage microbiota in the brewing industry. Compared to currently established detection and/or 

identification techniques applied in brewing microbiology, MALDI-TOF MS facilitates high-

throughput, accurate and rapid detection and identification of a taxonomically diverse group of 

bacteria.
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SAMENVATTING 

 

Bier is een alcoholische drank met een relatief goede microbiële stabiliteit en dit omwille van het 

zuurstofarme milieu en de beperkte aanwezigheid van nutriënten voor de groei van bacteriën. Deze 

stabiliteit wordt nog versterkt door de lage pH, het hoge CO2-gehalte en de aanwezigheid van 

alcohol en antibacteriële hopcomponenten. Bacterieel bierbederf is desondanks een 

veelvoorkomend probleem in de brouwerijindustrie met een zware economische impact tot gevolg. 

Bierbederf wordt immers vaak gekenmerkt door een troebel, verzuring en de aanwezigheid van 

onaangename geur- en smaakcomponenten. Over het algemeen worden de hopresistente 

Grampositieve melkzuurbacteriën (MZB), zoals Lactobacillus backii, Lactobacillus brevis, 

Lactobacillus buchneri, Lactobacillus lindneri, Lactobacillus coryniformis, Lactobacillus plantarum, 

Lactobacillus malefermentans, Lactobacillus parabuchneri, Pediococcus damnosus, Pediococcus 

inopinatus en Pediococcus claussenii beschouwd als de meest problematische bierbedervers 

(HOOFDSTUK 1). Het gebruik van zuurstofarme afvulsystemen in de brouwerij resulteerde in een 

verlaagd voorkomen van strikt aerobe azijnzuurbacteriën (AZB). Echter, in een zuurstofrijk milieu 

kunnen deze AZB zich profileren en uitgroeien tot biofilms waarin andere bederfbacteriën worden 

beschermd en kunnen overleven. In de voorbije twee decennia kenden de strikt anaerobe 

Gramnegatieve bacteriën een opmars als potentiële bedervers in de brouwerij (HOOFDSTUK 1). 

Momenteel wordt de taxonomisch diverse groep van bacteriële bierbedervers gedetecteerd en/of 

geïdentificeerd met behulp van tijdrovende en onvoldoende nauwkeurige cultuurafhankelijke en 

cultuuronafhankelijke technieken. Deze laatste zijn vaak niet breed en gemakkelijk toepasbaar, en 

slechts gericht op een beperkte groep van bedervers (HOOFDSTUK 2). Matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) werd door verschillende 

onderzoeksgroepen succesvol geïmplementeerd als een snelle, accurate en goedkope 

identificatietechniek voor een diverse groep van micro-organismen van medische, omgeving en 

voedingsoorsprong (HOOFDSTUK 3). In het doctoraatsonderzoek, werd MALDI-TOF MS onderzocht 

als een alternatieve identificatiemethode voor potentiële bacteriële bierbedervers met de focus op 

de AZB en MZB.  

De gegenereerde MALDI-TOF massaspectra kunnen worden gebruikt om bacteriën te 

karakteriseren en te identificeren op species- en zelfs op infraspecifiek niveau. Tijdens dit onderzoek 

werd een identificatiedatabank opgebouwd bestaande uit spectra van 273 voornamelijk goed 

gekarakteriseerde referentiestammen die in totaal 52 species behorende tot AZB en MZB 

vertegenwoordigen. Deze stammen werden geïsoleerd uit gecontamineerde bier- en 

brouwerijproducten, maar ook uit andere niches waarin stammen van hetzelfde species voorkomen. 
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Elke referentiestam werd opgekweekt op verschillende selectieve en niet-selectieve groeimedia om 

de groeimedium geïnduceerde variabiliteit ten opzichte van de gegenereerde spectra te 

onderzoeken (HOOFDSTUK 4). Als het cultuurmedium niet gunstig was voor de groei van de bacterie, 

werden er duidelijke variaties in de spectra opgemerkt. Deze hadden echter geen invloed op de 

finale speciesdifferentiatie. De studie toonde ook aan dat het aantal gedetecteerde stamspecifieke 

pieken in de spectra cultuurafhankelijk is, met als gevolg dat er mag geconcludeerd worden dat het 

gebruikte groeimedium een duidelijke invloed zal hebben op stamdifferentiatie (HOOFDSTUK 4). Het 

aantal gemeenschappelijke pieken daalt naarmate er meer spectra van stammen van hetzelfde 

species werden geanalyseerd en deze groep van gemeenschappelijke pieken blijkt ook 

cultuurafhankelijk te zijn. Het insluiten van meerdere referentiestammen van hetzelfde species zal 

uiteindelijk leiden tot een vaste groep van gemeenschappelijke pieken en kan daarbij een maat zijn 

voor de intraspecies diversiteit van de MALDI-TOF MS identificatiedatabank. Finaal mag gesteld 

worden dat een MALDI-TOF MS identificatiedatabank het beste wordt opgebouwd met voldoende 

referentiestammen die gegroeid werden op verschillende cultuurmedia (HOOFDSTUK 5.1).  

Het succesvol gebruik van de databank berust grotendeels op de correcte taxonomische 

classificaties van de stammen ingesloten in het referentiekader. De piekgebaseerde clusteranalyse 

(m.b.v., Dice coëfficiënt en UPGMA clusteralgoritme) van de gegenereerde spectra van alle 

referentiestammen toonde aan dat in totaal 34 (12%) van de 273 stammen in eerder onderzoek aan 

het verkeerde species werden toegewezen (HOOFDSTUK 5.1). Sequentieanalyses van huishoudgenen 

bevestigden elk van deze MALDI-TOF MS hergroeperingen, wat impliceerde dat de eerdere 

identificaties van deze referentiestammen incorrect waren. Sommige van deze incorrect 

geclassificeerde stammen vertegenwoordigden species die nooit eerder als potentiële bierbedervers 

werden vermeld, zoals Gluconobacter japonicus en Acetobacter fabarum. Opmerkelijk is dat de 

gegenereerde spectra van de typestam van Pediococcus lolii samen groepeerden met spectra 

gegeneerd van de Pediococcus acidilactici referentiestammen. Een grondige polyfasische 

taxonomische benadering bevestigde dat de P. lolii subculturen gedeponeerd in de internationale 

DSMZ- en JCM-cultuurcollecties behoren tot P. acidilactici (HOOFDSTUK 5.2). 

Hoewel niet alle stammen van hetzelfde species eenzelfde bederfprofiel hebben, is de identificatie 

van de geïsoleerde bacteriën tot op speciesniveau uitermate belangrijk voor de brouwerijindustrie. 

Aan de hand van deze resultaten kan de kwaliteitsmanager ingrijpen en het bederf eventueel 

inperken en zelfs vermijden in de toekomst. In totaal werden veertien gecontamineerde bier- en 

brouwerijproducten onderzocht tijdens deze studie. De stalen vertegenwoordigden een heterogene 

groep van brouwerij tussen- en eindproducten die gevoelig zijn aan bacterieel bederf (bv, wort, 

culturen van de brouwersgist, laag alcoholische en niet gepasteuriseerde bieren). Aanrijken in een 
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vloeibaar medium was nodig omdat in de stalen lage bacteriële celaantallen aanwezig zijn en het 

beschikbare staalvolume beperkt was. In totaal werden 348 isolaten verkregen waarvan de 

massaspectra na MALDI-TOF MS-analyses werden gegroepeerd met behulp van curvegebaseerde 

clusteranalyse (m.b.v., Pearson product-moment correlatie coëfficiënt en UPGMA cluster algoritme; 

HOOFDSTUK 5.1). In totaal werden vijftien verschillende MALDI-TOF massa spectra weerhouden. Een 

aantal isolaten werden geselecteerd als vertegenwoordigers van elk van de vijftien clusters en dit 

gebeurde volgens de geobserveerde heterogeniteit. De piekgebaseerde clusteranalyse (m.b.v., Dice 

coëfficiënt en UPGMA cluster algoritme) liet vervolgens toe om 94% van de isolaten op een 

betrouwbare manier te identificeren (Acetobacter cerevisiae/Acetobacter malorum, Acetobacter 

orleanensis, Gluconobacter cerinus, Gluconobacter oxydans, Lactobacillus backii, Lactobacillus brevis, 

Lactobacillus malefermentans, Pediococcus claussenii and Pediococcus inopinatus). Deze MALDI-TOF 

MS-identificatieresultaten werden gevalideerd en bevestigd via sequentieanalyses van 

huishoudgenen (HOOFDSTUK 5.1). De resterende 6% van de isolaten waren ofwel species die nooit 

eerder als bierbedervers werden omschreven (Acetobacter fabarum, Acetobacter indonesiensis, 

Acetobacter persici en Gluconobacter japonicus) en daarom ook niet werden opgenomen in ons 

MALDI-TOF MS- referentiekader of ze vertegenwoordigden nieuwe species (Gluconobacter sp. en 

Gluconobacter cerevisiae sp. nov. [HOOFDSTUK 5.3]). Het voornaamste doel van dit onderzoek was om 

de toepassing van MALDI-TOF MS als een snelle en betrouwbare techniek voor de identificatie van 

bierbedervende AZB en MZB te evalueren en niet om een uitgebreide diversiteitstudie uit te voeren. 

Eerder onderzoek toonde aan dat de prevalentie van AZB in de brouwerijen duidelijk was 

afgenomen en toch werden tijdens dit onderzoek een groot aantal AZB geïsoleerd (10 van de 15 

species) uit acht van de veertien onderzochte stalen (HOOFDSTUK 5.1). Hieruit blijkt dat deze groep 

van bierbedervers niet zou mogen worden genegeerd als potentiële bederforganismen, zoals dat nu 

wel het geval is in de courant gebruikte commerciële detectie- en/of identificatiekits. 

Om de tijdrovende isolatiestap te vermijden, werd het potentieel van MALDI-TOF MS onderzocht 

voor de detectie en identificatie van de bedervers rechtstreeks uit de aanrijkingsculturen van 

gecontamineerde stalen (HOOFDSTUK 6). De minimale celconcentratie die nodig was om spectra met 

een goede kwaliteit te genereren werd bepaald op ongeveer 5 × 107 KVE / ml aanrijkingscultuur. 

Zoals verwacht, had de (bier)matrix een sterke invloed op de gegenereerde massaspectra, maar met 

behulp van twee opeenvolgende wasstappen met Milli-Q water werden storende 

achtergrondcomponenten verwijderd. De finale staalvoorbereiding bestaat uit een filtratiestap 

waarbij gisten en schimmels werden verwijderd, vervolgens werd alleen de bacteriële fractie 

aangerijkt. Spectra gegenereerd uit monomicrobieel gecontamineerde aanrijkingsculturen waren 

van een goede kwaliteit en maakten de speciesidentificatie van de potentiële bederver mogelijk. 
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Indien de piekgebaseerde clusteranalyse een spectrum toewijst aan spectra gegenereerd van een 

bepaald species, kan een verdere grondige vergelijking van pieken in deze spectra al dan niet wijzen 

op de aanwezigheid van additionele species. De identificatie van micro-organismen in 

polymicrobiële stalen blijft een uitdaging. De aanwezigheid van meerdere micro-organismen in de 

aanrijkingscultuur leidt immers tot pieksuppressie-effecten waardoor het zeer moeilijk wordt om de 

pieken van verschillende micro-organismen te onderscheiden van elkaar. Een initiële identificatie 

biedt de kwaliteitsmanager echter al cruciale informatie om direct in te grijpen en het bederf in te 

perken en te vermijden in de toekomst. Het blijft aangewezen om de aanrijkingsculturen uit te 

platen op verschillende cultuurmedia en de potentiële bedervers te isoleren en vervolgens te 

identificeren.  

In vergelijking met huidige DNA-gebaseerde technieken, kan MALDI-TOF MS sneller en 

eenvoudiger zijn voor de differentiatie op infraspecifiek niveau. Dit onderzoek toonde als een “proof 

of concept” aan dat MALDI-TOF MS het mogelijk maakt om Saccharomyces cerevisiae brouwers- en 

wild-type gisten te onderscheiden door de spectra van beiden te vergelijken met de spectra van de 

originele cultuur van de brouwersgist (HOOFDSTUK 6). Meerdere stamspecifieke pieken werden 

geïdentificeerd bij de piekgebaseerde numerieke analyse en deze maakten het mogelijk om deze 

stammen te differentiëren.  

De MALDI-TOF MS techniek gecombineerd met een uitstekend opgebouwde identificatiedatabank 

zijn een uitermate geschikte methode voor de detectie, identificatie en infraspecifieke differentiatie 

van potentieel bierbederf micro-organismen in de brouwerijindustrie. MALDI-TOF MS maakt het 

dus mogelijk om op een snelle, nauwkeurige wijze een taxonomisch diverse groep aan micro-

organismen te detecteren en te identificeren. 
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Finally! Het schrijven van dit dankwoord is één van de laatste, maar de meest plezante actie van het 

thesissen. Het doet me even mijmeren over de afgelopen fantastische, zeer intense, maar vooral 
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waarbij ik letterlijk mocht proeven van de microbiële diversiteit van waterkefir. Onder supervisie van 

Dr. Elisabeth Vercammen leerde ik de vele kneepjes van het vak en werden mijn gevoelens voor de 

microbiologie alleen maar aangewakkerd. Nog belangrijker, tijdens deze Master thesis, was mijn 

eerste kennismaking met MALDI-TOF MS. Dolenthousiast was ik toen ik de vraag kreeg om te 

doctoreren, en deze techniek te optimaliseren voor de identificatie van bacteriële bierbedervers. 

Elisabeth, bedankt om hiervoor even aan mij te denken! 

In het bijzonder wil ik graag mijn beide promotoren, Prof. Dr. Anita Van Landschoot en Prof. Dr. Peter 

Vandamme bedanken. Zij hebben mij elk met hun unieke, typerende aanpak begeleid tijdens dit 

doctoraat, me telkens opnieuw op het juiste pad gebracht, en me gevormd tot de wetenschapper 

die ik nu ben. Peter, bedankt voor de geduldige, open en vooral directe samenwerking. In het 

bijzonder ook bedankt voor uw strenge, maar rechtvaardige verbeteringen aan mijn teksten en uw 

klare kijk op heel wat wetenschappelijke vraagstukken. Anita, wat bewonder ik uw positivisme, 

enthousiasme en eerlijkheid enorm. U was een ware steun voor mij deze afgelopen jaren, en dit niet 

alleen op wetenschappelijk vlak, maar ook op persoonlijk vlak! U gaf me telkens opnieuw stof tot 

nadenken, en een enorme boost wanneer het even moeilijk ging. Bedankt! 

Freek, eerlijk, eerst dacht ik: ‘Oh neen, moet ik hier mijn volledig doctoraat naast zitten? Die kerel 

spreekt amper’, maar wat heb ik verkeerd gedacht! Ik heb je beter leren kennen, en toegegeven, je 

werd een echte steun en toeverlaat. Jouw pittige steken, je schijnbare onschuldigheid, de vele 

oppeppers en vooral de toffe discussies… ik ga ze missen. Ik kan maar hopen dat mijn nieuwe 

collega’s een streepje van jouw persoonlijkheid bezitten… Ik wens je het allerbeste toe!  

Maarten, dé mass spec specialist van het labo, die me steevast doopte tot ‘cal-girl’. Een oprechte 

dankjewel voor de onderdompeling in de wereld van mass spec en het vele nalezen, om me telkens 

opnieuw op het lineaire pad te brengen en me in te lichten dat MALDI-TOF MS een vrouwtje is (en 

dat je er dus niet op mag schoppen). Charlotte, Isabel en Anne, wat zijn jullie één voor één fijne 

mensen, die ik enorm ga missen, bedankt voor alles en super veel succes gewenst in de eindspurt! 

Ook aan alle andere doctoraatstudenten, veel plezier in het doctoraatsdoolhof, geniet ervan! 

Liesbeth, je hebt het hart op de juiste plaats, enorm bedankt voor al jouw schouderklopjes! Bart, de 

meest gestructureerde persoon ter wereld, maar toch telkens weer in het bezit van een brooddoos 

in oorlog. Ik genoot van de meetings, de praatjes en je enthousiaste explicaties op allerhande vragen. 

Cindy, Evie en Margo, ook voor jullie was niets te veel om me met raad en daad bij te staan. Cindy, 

bedankt voor je oplossingen op de vele praktische vragen, je hilarische replieken en je luisterend oor. 

Evie, verlies nooit je directheid, het siert je enorm. Prof. Dr. Paul De Vos, jouw vinnige steken, en 

meer nog je verdraagzaamheid naar weerwoord, maakten de middagpauzes des te aangenamer. 

Jeannine, je deed onze afwas en leverde onze producten telkens opnieuw met een glimlach. Dankzij 

jou kon ik steeds aan de slag blijven, dankjewel! Nadine en Claudine, bedankt om telkens opnieuw de 

aanvraagde stammen tegen de meest strakke deadlines te leveren. Kim, bedankt voor de vele 

‘verluchtende’ gesprekken, de intense discussies en om me telkens opnieuw aan te moedigen. Mario, 

dankjewel voor alle grote en kleine depannages! Bart, mercikes om op het laatste moment nog 
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scriptjes te schrijven, ze hebben me heel wat rekenwerk en werkuurtjes uitgespaard! Als laatste ook 

nog een dikke dankjewel aan het voltallige ontvangstcomité op de vijfde verdieping, en in het 

bijzonder de ‘kotgenoten’ Marjan en Katrien, ik heb er me de laatste maanden van mijn doctoraat 

enorm thuis gevoeld! 

Tijdens mijn doctoraat zijn heel wat mensen begonnen aan een nieuw hoofdstuk in hun leven. 

Enkele mensen zijn me sterk bijgebleven… Paul Segers, je was een icoon in het labo, de eeuwige 

hamsteraar en een prachtige verteller. Annemie, bedankt voor de vele ‘verluchtende’ pauzes, je 

praktische regelingen en meer nog, jouw luisterend oor! Katrien en Gwen, jullie waren voor mij de 

oud-strijders van de 3e fase, alles mocht ik aan jullie vragen en niets was teveel. Ik vind het dan ook 

super dat we nog steeds contact hebben met elkaar! An, wat een sterke vrouw, jou kan ik niet 

genoeg bedanken voor alle fijne momenten en de vele hart-opluchtende-etentjes, ze deden me één 

voor één deugd. 

Hoewel ik de meeste tijd van mijn doctoraat spendeerde op de Ledeganck, voelde ik me steeds 

welkom in de brouwerij. André, Veerle, Dana en Sylvie, jullie zijn één voor één schatten van mensen 

en een hechte groep collega’s waar velen een voorbeeld mogen aan nemen. Enorm bedankt voor de 

vele ruggensteuntjes, de gezellige gesprekken en de vele hulp met de organisatie. 

All work and no play …. Onder het motto We Only Live Once, een dikke merci aan Pieter, Nele, Leen, 

Gerrit, Frederik, Alexander en onze jongste telg, Janne voor jullie interesse, de toffe weekendjes, de 

leutige cafébezoekjes, de lekkere etentjes, kortom voor de vele ontspannende momenten. Vrienden 

voor het leven noem ik dat. Ook de Hermessertjes mogen niet ontbreken, ik hoop dat we nog vaak 

op weekend mogen gaan, en nog vele leuke momenten met elkaar mogen beleven. Patricia, 

dankjewel voor alles! Katrien en Kevin, dankjewel voor de vele gezellige ontspannende avondjes, de 
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wat zie ik jullie graag. Wouter, broerke, mercikes om er altijd voor mij te zijn. Joost, mijn lieve tijger, 

jouw geduld werd zo vaak op de proef gesteld! Dankjewel voor de vele opkikkertjes, jouw 

nuchterheid, hulp en alomvattende liefde. Ik zie je graag. Ik kijk vol spanning uit naar onze volgende 

stap! Tantes, nonkel, neven en nichten, dank je voor de vele gezellige familiemomenten en de 
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ANNEX 



 

 

 

ANNEX 1. List of 273 reference strains used for the construction of the MALDI-TOF MS identification database. 
*
Corresponding strains from the mentioned species were reclassified in the present study. LMG, 

Belgian Co-ordinated Collections of Microorganisms/Laboratory of Microbiology, Ghent University; LAB and R, research collections of the Laboratory of Microbiology, Ghent University. 

Species Strain Source Received as* 

Acetobacter aceti 

LMG 1504
T
 Beech-wood shavings of vinegar plant   

LMG 1505 Quick vinegar (The Netherlands, Zwolle)   

LMG 5 Beer (Belgium)   

Acetobacter cerevisiae 

LMG 1625
T
 Ale beer in storage (Canada, Toronto)   

LMG 1545 Film in fermentor of rice vinegar (Japan, Aichi)   

LMG 1599 Brewer's pitching yeast (UK)   

LMG 1608 Beer (The Netherlands)   

LMG 1682 Beer (Ireland)   

Acetobacter cerevisiae / Acetobacter malorum 

LMG 1549 Top fermented beer Acetobacter pasteurianus 

LMG 1587 Ale beer Acetobacter pasteurianus 

LMG 1597 Brewer's pitching yeast and beer (UK) Acetobacter pasteurianus 

LMG 1604 Sour beer (UK) Acetobacter pasteurianus 

LMG 1698 Brewery (UK) Acetobacter pasteurianus 

LMG 1699 Brewery (UK)   

R-50418 Brewer’s pitching yeast (Belgium)   

Acetobacter estunensis 

LMG 1626
T
 Cider (UK, Bristol)   

LMG 1572 Cider (UK, Bristol)   

LMG 1580 Beer (The Netherlands, Leiden)   

Acetobacter fabarum 
LMG 1701 Beerwort (South Africa, Alberton) Acetobacter pasteurianus 

LMG 24630 Kefir grains (Belgium, Gembloux) Acetobacter lovaniensis 

Acetobacter lovaniensis LMG 1579
T
 Sewage on soil (Belgium, Becquevoort)   

Acetobacter malorum LMG 1746
T
 Rotting apple (Belgium, Ghent)   

Acetobacter orleanensis LMG 1583
T
 Bottled beer (Belgium)   

Acetobacter pasteurianus 

LMG 1262
T
 Beer (The Netherlands)   

LMG 1553 Spoiled beer (Japan, Osaka)   

LMG 1590 Unknown source   

LMG 1591 Vinegar   

LMG 1639 Beer (The Netherlands)   

Gluconacetobacter liquefaciens  LMG 1381
T
 Diospyros sp. dried fruit (Japan)   

Gluconobacter cerinus 

LMG 1368
T
 Prunus sp. (cherry) (Japan, Osaka)   

LMG 1415 Beer (The Netherlands)   

LMG 1679 Amstel Beer (The Netherlands, Leiden)   

Gluconobacter frateurii LMG 1365
T
 Fragaria ananassa (Japan, Osaka)   

Gluconobacter japonicus  LMG 1678 Amstel Beer (The Netherlands, Delft) Gluconobacter cerinus 

Gluconobacter oxydans 

LMG 1408
T
 Beer   

LMG 1398 Beer (UK)   

LMG 1406 Spoiled beer   

LMG 1519 Spoiled top fermented beer (UK)   

LMG 1581 Beer (The Netherlands, Delft)   

LMG 1674 Beer (The Netherlands, Delft)   

LMG 1676 Amstel Beer (Belgium, Leuven)   



 

 

 

Species Strain Source Received as* 

Gluconobacter oxydans LMG 1683 Beer (Ireland)   

Gluconobacter sphaericus LMG 1414
T
 Grapes (Japan)   

Gluconobacter thailandicus LMG 1743 Rotting pear (Belgium, Ghent) Gluconobacter cerinus 

Komagataeibacter europaeus 

LMG 18890
T
 Submerged culture vinegar generator (Germany, Esslingen)   

LMG 1510 Vinegar (Denmark, Copenhagen)   

LMG 1521 Vinegar (Kenya, Nairobi)   

Komagataeibacter swingsii LMG 25 Unknown source Komagataeibacter xylinus 

Komagataeibacter xylinus 
LMG 1515

T
 Mountain ash berries   

LMG 1518 Unknown source   

Lactobacillus acetotolerans LMG 10751
T
 Spoiled rice   

Lactobacillus acidophilus LMG 13550
T
 Human   

Lactobacillus backii 
LMG 23555

T
 Lager beer (Germany, Bavaria)   

LMG 23556 Lager beer (Italy)   

Lactobacillus bifermentans LMG 9845
T
 Blown Dutch cheese   

Lactobacillus brevis 

LMG 6906
T
 Human faeces   

LAB 286 Cherry mash   

LAB 288 Plum mash   

LAB 1003 Unpasteurised Heineken beer (The Netherlands, Zoeterwoude)   

LAB 1008 Unpasteurised Heineken beer (The Netherlands, Zoeterwoude)   

LAB 1146 Beer spoiler   

LAB 1160 Beer spoiler   

LAB 1161 Beer spoiler   

LAB 1163 Tank cleaning water   

LAB 1222 Beer spoiler   

LAB 1223 Beer spoiler   

LAB 1224 Beer spoiler   

LAB 1315 Possible beer spoiler   

LAB 1316 Possible beer spoiler   

LAB 1318 Possible beer spoiler   

LAB 1326 Unknown source   

LAB 1357 Brewery culture collection   

LAB 1359 Brewery culture collection   

LAB 1364 Wort   

LAB 1373 Spoiled beer   

LMG 7761 Green fermenting olives    

LMG 11401 Beer   

LMG 11437 Silage   

LMG 11771 Unknown source Lactobacillus parabuchneri 

LMG 11974 Marinated fish Lactobacillus buchneri 

LMG 11988 Dried yeast culture   

LMG 12023 Human intestine   



 

 

 

Species Strain Source Received as* 

Lactobacillus brevis 

LMG 14527 Spoiled beer (Germany)   

LMG 16322 Spoiled beer   

LMG 18940 Unknown source Lactobacillus perolens 

LMG 22109 Beer (12% v/v alcohol)   

R-21108 Cellar tank   

R-21111 Unpasteurised beer   

R-21115 Final product of beer   

R-21120 Unpasteurised beer   

R-21122 Final product of beer   

R-49143 Final beer (8% v/v alcohol) (Denmark)   

R-49144 Final beer (The Czech Republic)   

R-49147 Unknown source   

R-49148 Final unpasteurised pilsner beer (Denmark)   

R-49149 Final unpasteurised pilsner beer (Denmark)   

R-49151 Final unpasteurised pilsner beer (Denmark)   

R-49152 Final unpasteurised pilsner beer (Denmark)   

R-49153 Final unpasteurised pilsner beer (Denmark)   

R-49154 Final unpasteurised pilsner beer (Denmark)   

R-49155 Final unpasteurised pilsner beer (Denmark)   

R-49156 Final unpasteurised pilsner beer (Denmark)   

R-49157 Final unpasteurised pilsner beer (Denmark)   

R-49158 Final unpasteurised pilsner beer (Denmark)   

R-49159 Final unpasteurised pilsner beer (Denmark)   

R-49160 Final unpasteurised pilsner beer (Denmark)   

R-49161 Final unpasteurised pilsner beer (Denmark)   

R-49162 Final unpasteurised pilsner beer (Denmark)   

R-49163 Final unpasteurised pilsner beer (Denmark)   

R-49164 Final unpasteurised pilsner beer (Denmark)   

R-49165 Final unpasteurised pilsner beer (Denmark)   

R-49166 Final unpasteurised pilsner beer (Denmark)   

R-49603 Top fermenting beer in CCT (Belgium)   

R-49604 White beer in cask (Belgium)   

R-50070 Final kegged beer (Belgium)   

Lactobacillus buchneri 

LMG 6892
T
 Tomato pulp   

LMG 11439 Unknown source   

LMG 11985 Oral cavity   

LMG 12000 Silage Lactobacillus sp. 

LMG 22102 Final product of beer   

Lactobacillus buchneri 

R-21109 Final product of beer   

R-21117 Ketchup   

R-21118 Ketchup   

  



 

 

 

Species Strain Source Received as* 

Lactobacillus buchneri R-27972 Sourdough (Belgium)   

Lactobacillus casei subsp. casei LMG 6904
T
 Cheese   

Lactobacillus collinoides  

LMG 9194
T
 Fermenting apple juice (not a beer spoiler)   

LMG 9195 Cider and apple juice   

LMG 18850 Distillation cider (France, Pont l'Evèque Normandy)   

LAB 285 Apple mash Lactobacillus brevis 

Lactobacillus coryniformis subsp. coryniformis LMG 9196
T
 Silage   

Lactobacillus coryniformis subsp. torquens LMG 9197
T
 Air of dairy barn   

Lactobacillus curvatus 

LMG 9198
T
 Milk   

LAB 158 Sauerkraut   

LAB 195 Sausage material   

LAB 289 Mettwurst   

LAB 290 Salami (Hungary)   

LAB 962 Spoiled vacuum sealed sausage   

LMG 12006 Hard cheese (Italy)   

Lactobacillus delbrueckii subsp. bulgaricus 

LMG 6901
T
 Bulgarian yoghurt   

LAB 55 Unknown source   

LAB 464 Unknown source   

LMG 12168 Homemade yoghurt   

Lactobacillus delbrueckii subsp. delbrueckii 

LMG 6412
T
 Distillery sour grain mash incubated at 45°C   

LAB 1276 Unknown source   

LMG 22235 Human urine (Sweden, Göteborg)   

Lactobacillus delbrueckii subsp. indicus 

LMG 22083
T
 Traditional dairy fermented products (India)   

LMG 22084 Traditional dairy fermented products (India)   

LMG 22085 Traditional dairy fermented products (India)   

Lactobacillus delbrueckii subsp. lactis 

LMG 7942
T
 Emmental cheese   

LAB 463 Unknown source   

LMG 13136 Unknown source   

LMG 18223 Unknown source   

LMG 6401 Unknown source   

Lactobacillus dextrinicus  LMG 11485
T
 Silage   

Lactobacillus fermentum LAB 1307 Possible beer spoiler   

Lactobacillus fructivorans LMG 9201
T
 Unknown source   

Lactobacillus harbinensis 

LMG 24040
T
 Chinese fermented vegetable (China, Harbin)   

LAB 1446 Unknown source Lactobacillus perolens 

LMG 18938 Orange lemonade (The Netherlands) Lactobacillus perolens 

Lactobacillus hilgardii 
LMG 7934 Wine "Lactobacillus brevis subsp. gravesensis" 

LMG 7935 Wine "Lactobacillus brevis subsp. otakiensis" 

Lactobacillus lindneri 

LMG 14528
T
 Spoiled beer (Germany)   

DSM 20691 Spoiled beer   

LMG 11404 Spoiled beer   

  



 

 

 

Species Strain Source Received as* 

Lactobacillus lindneri R-49605 Top fermenting beer in CCT (Belgium)   

Lactobacillus malefermentans 
LMG 11455

T
 Beer   

LMG 11416 Beer   

Lactobacillus parabrevis 
LMG 11984

T
 Wheat   

LMG 11494 Farmhouse red cheshire cheese   

Lactobacillus parabuchneri 

LMG 11457
T
 Human saliva (UK)   

LAB 1170 Soft drink   

LAB 1172 Beer Spoiler   

LAB 153 Sauerkraut   

LMG 11768 Unknown source   

LMG 11769 Unknown source   

LMG 11770 Unknown source   

LMG 11772 Unknown source   

LMG 11773 Unknown source   

LMG 11973 Brewery   

LMG 11987 Unknown source   

LMG 22038 Malt whisky fermentation (UK)   

LMG 22103 Beer (The Czech Republic)   

LMG 22462 Malt whisky fermentation (UK)   

Lactobacillus paracasei subsp. paracasei 

LMG 13087
T
 Unknown source   

LAB 313 Green olives   

LAB 460 Unknown source   

LAB 523 Feta cheese brine   

LAB 524 Feta cheese brine   

LMG 11961 Port wine, Portugal   

LMG 11963 Machinery used in port wine production (Portugal)   

LMG 13722 Young red table wine (Portugal)   

LMG 13731 Spoiled port wine (Portugal)   

LMG 7955 Unknown source   

LMG 9207 Cheshire cheese   

R-21110 Unpasteurised beer Lactobacillus parabuchneri 

R-21121 Final product of beer Lactobacillus parabuchneri 

R-49150 Final unpasteurised pilsner beer (Denmark)   

Lactobacillus paracasei subsp. tolerans LMG 9191
T
 Pasteurised milk   

Lactobacillus paracollinoides 
LMG 22473

T
 Brewery environment (Japan)   

LMG 9204 Beer   

Lactobacillus paraplantarum LMG 16673
T
 Beer (France)   

Lactobacillus paucivorans LMG 25291
T
 Beer storage tank (Germany)   

Lactobacillus pentosus 
LMG 10755

T
 Unknown source   

LAB 160 Sauerkraut   

  



 

 

 

Species Strain Source Received as* 

Lactobacillus pentosus 

LAB 170 Sausage starter preparation   

LAB 351 Green olives Lactobacillus plantarum 

LAB 352 Green olives Lactobacillus plantarum 

LMG 17677 Chili bo (Malaysia)   

LMG 9210 Lactic acid fermentation of waste sulphite liquor   

R-18410 Unknown source   

Lactobacillus perolens 

LMG 18936
T
 Orange lemonade (Germany)   

LAB 1190 Soft drink   

LAB 1191 Soft drink   

LAB 1423 Unknown source   

LMG 18937 Orange lemonade (Germany)   

LMG 18939 Beer wort (Germany)   

Lactobacillus plantarum subsp. plantarum 

LMG 6907
T
 Pickled cabbage   

LAB 1018 Starterculture for spent grains acidification   

LAB 1159 Beer Spoiler Lactobacillus buchneri 

LAB 530 Fresh Feta cheese   

LAB 541 Fresh Feta cheese Lactobacillus paracasei subsp. paracasei 

LAB 547 Feta cheese brine   

LMG 11405 Silage   

LMG 22106 Beer (The Czech Republic)   

LMG 22107 Beer (The Czech Republic)   

LMG 9209 Ensilage vegetables   

LMG 22108 Final product of beer Lactobacillus brevis 

R-30196 Sourdough (Belgium)   

R-49145 Final beer (The Czech Republic)   

R-49146 Unknown source   

Lactobacillus plantarum subsp. plantarum R-49262 Unknown source   

Lactobacillus plantarum subsp. argentoratensis LMG 9205
T
 Fermented corn product (Ogi) (South Nigeria)   

Lactobacillus rossiae 

LMG 22972
T
 Wheat sourdough (Italy)   

LAB 1192 Soft drink Lactobacillus perolens 

LAB 1193 Soft drink Lactobacillus perolens 

Lactobacillus sakei subsp. carnosus 
LMG 17302

T
 Raw sausage   

LMG 18295 Raw sausage (Germany)   

Lactobacillus sakei subsp. sakei LMG 9468
T
 Starter of sake (Moto)   

Pediococcus acidilactici 

LMG 11384
T
 Barley   

LAB 173 From sausage starter preparation   

LAB 196 Sausage starter   

LMG 25667 Ryegrass silage Pediococcus lolii 

LMG 26010 Beer (UK)   

LMG 26011 Beer (UK) Pediococcus damnosus 

LMG 26012 Beer (UK) Pediococcus inopinatus 

 
  



 

 

 

Species Strain Source Received as* 

Pediococcus claussenii 

LMG 21948
T
 Spoiled beer (Canada, Toronto)   

LAB 1004 Unpasteurised beer (The Netherlands, Zoeterwoude)   

LAB 1232 Unknown source   

LAB 1329 Unknown source   

LAB 1330 Unknown source Pediococcus damnosus 

LAB 1331 Unknown source Pediococcus damnosus 

LAB 1453 Unknown source Pediococcus damnosus 

LAB 994 Unknown source   

Pediococcus damnosus 

LMG 11484
T
 Lager beer yeast   

LAB 1362 Unknown source   

LAB 1370 Spoiled beer   

LAB 1447 Unknown source   

LAB 1449 Unknown source   

Pediococcus inopinatus 

LMG 11409
T
 Brewing yeast   

LAB 1451 Unknown source   

LAB 1452 Unknown source   

LAB 1454 Unknown source   

LMG 11410 Beer   

LMG 22104 Final product of beer   

LMG 22105 Beer 10% v/v alcohol   

R-21106 Beer 10% v/v alcohol   

R-21112 Final product of beer   

R-21126 Final product of beer   

R-49606 Dinner beer during lagering (Belgium)   

Pediococcus pentosaceus 

LMG 11488
T
 Dried American brewer's yeast   

LAB 676 Unknown source   

LMG 11385 Sake Mash   

LMG 13373 Grass samples   
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Strain 

number
Genus Species Source

Isolation 

year

Geographical 

origin

R-49483 Lactobacillus backii Final kegged pilsner beer 2010 Belgium

R-49484 Lactobacillus backii Final kegged pilsner beer 2010 Belgium

R-49531 Lactobacillus brevis Spoiled pitching yeast culture 2012 Belgium

R-49532 Lactobacillus brevis Spoiled pitching yeast culture 2012 Belgium

R-49533 Staphylococcus sp. Spoiled pitching yeast culture 2012 Belgium

R-49534 Corynebacterium sp. Spoiled pitching yeast culture 2012 Belgium

R-49601 Acetobacter cerevisiae Spoiled pitching yeast culture 2012 Belgium

R-49602 Acetobacter cerevisiae Spoiled pitching yeast culture 2012 Belgium

R-49856 Lactobacillus brevis Bottled beer (alc. cont. of 7.5% v/v) 2012 Belgium

R-49857 Lactobacillus brevis Bottled beer (alc. cont. of 7.5% v/v) 2012 Belgium

R-49858 Staphylococcus sp. Final kegged pilsner beer 2010 Belgium

R-49859 Staphylococcus sp. Final kegged pilsner beer 2010 Belgium

R-49860 Gluconobacter oxydans Bottled sw eetened dinner beer (alc. cont. of 2.25% v/v) 2010 Belgium

R-49861 Gluconobacter oxydans Bottled sw eetened dinner beer (alc. cont. of 2.25% v/v) 2010 Belgium

R-49862 Acetobacter orleanensis Bottled beer (alc. cont. of 6.6% v/v) 2012 Belgium

R-49863 Pediococcus claussenii Fruity w heat beer (alc. cont. of 4.3% v/v) 2010 Belgium

R-49864 Lactobacillus brevis Spoiled pitching yeast culture 2012 Belgium

R-49868 Lactobacillus malefermentans Bottled dinner beer (alc. cont. of 1.5% v/v) 2012 Belgium

R-49869 Staphylococcus sp. Fruity w heat beer (alc. cont. of 4.3% v/v) 2012 Belgium

R-49877 Lactobacillus brevis Bottled beer (alc. cont. of 7.5% v/v) 2012 Belgium

R-49878 Bacillus sp. Bottled dinner beer (alc. cont. of 1.5% v/v) 2012 Belgium

R-49879 Lactobacillus brevis Spoiled w ort 2012 Belgium

R-49880 Staphylococcus sp. Fruity w heat beer (alc. cont. of 4.3% v/v) 2010 Belgium

R-49881 Lactobacillus paracollinoides Bottled beer (alc. cont. of 8.5% v/v) 2009 Belgium

R-50064 Acetobacter persici Bottled beer (alc. cont. of 6.6% v/v) 2012 Belgium

R-50069 Lactobacillus backii Final kegged pilsner beer 2010 Belgium

R-50070 Lactobacillus brevis Final kegged pilsner beer 2010 Belgium

R-50294 Staphylococcus sp. Fruity w heat beer (alc. cont. of 4.3% v/v) 2012 Belgium

R-50295 Staphylococcus sp. Fruity w heat beer (alc. cont. of 4.3% v/v) 2012 Belgium

R-50296 Staphylococcus sp. Fruity w heat beer (alc. cont. of 4.3% v/v) 2012 Belgium

R-50297 Staphylococcus sp. Fruity w heat beer (alc. cont. of 4.3% v/v) 2012 Belgium

R-50344 Acinetobacter sp. Water closure fermentation tank 2013 Belgium

R-50345 Klebsiella sp. Water closure fermentation tank 2013 Belgium

R-50346 Leuconostoc sp. Cleaning w ater from lauter tun 2013 Belgium

R-50347 Enterococcus sp. Cleaning w ater from mashing tun 2013 Belgium

R-50348 Lactococcus sp. Cleaning w ater from mashing tun 2013 Belgium

R-50349 Lactococcus sp. Cleaning w ater from mashing tun 2013 Belgium

R-50350 Lactococcus sp. Cleaning w ater from mashing tun 2013 Belgium

R-50351 Enterococcus sp. Cleaning w ater from plate cooler 2013 Belgium

R-50352 Bacillus sp. Sw ab boiling kettle 2013 Belgium

R-50353 Enterobacter sp. Cleaning w ater boiling kettle 2013 Belgium

R-50354 Lysinbacillus sp. Cleaning w ater from lauter tun 2013 Belgium

R-50355 Lysinbacillus sp. Cleaning w ater from lauter tun 2013 Belgium

R-50356 Lysinbacillus sp. Cleaning w ater from lauter tun 2013 Belgium

R-50357 Leuconostoc sp. Tab from lauter tun to boiling kettle 2013 Belgium

R-50358 Weisella sp. Tab from lauter tun to boiling kettle 2013 Belgium

R-50359 Leuconostoc sp. Tab from lauter tun to boiling kettle 2013 Belgium

R-50360 Enterococcus sp. Brew ing liquid from plate cooler 2013 Belgium

R-50361 Gluconobacter sp. Packaged beer 2013 Belgium

R-50362 Acetobacter indonesiensis Packaged beer 2013 Belgium

R-50363 Gluconobacter japonicus Packaged beer 2013 Belgium

R-50364 Bacillus sp. Outlet Whirlpool 2013 Belgium

R-50365 Bacillus sp. Oxoniumbath 2013 Belgium

R-50366 Bacillus sp. Oxoniumbath 2013 Belgium

R-50367 Bacillus sp. Oxoniumbath 2013 Belgium

R-50368 Bacillus sp. Oxoniumbath 2013 Belgium

R-50369 Leuconostoc sp. Milk kefir 2013 Belgium

R-50370 Acetobacter sp. Kombucha 2013 Belgium

R-50371 Gluconobacter oxydans Kombucha 2013 Belgium

R-50372 Lactobacillus nagelii Kombucha 2013 Belgium



 

 

 

 

 

 

 

 

 

Strain 

number
Genus Species Source

Isolation 

year

Geographical 

origin

R-50373 Acetobacter sp. Kombucha 2013 Belgium

R-50374 Gluconobacter sp. Kombucha 2013 Belgium

R-50375 Komagateibacter sp. Kombucha 2013 Belgium

R-50376 Lactobacillus nagelii Kombucha 2013 Belgium

R-50377 Lactobacillus nagelii Kombucha 2013 Belgium

R-50378 Gluconobacter oxydans Kombucha 2013 Belgium

R-50379 Lactobacillus nagelii/paracasei Kombucha 2013 Belgium

R-50380 Lactobacillus nagelii Kombucha 2013 Belgium

R-50381 Lactobacillus nagelii Kombucha 2013 Belgium

R-50382 Acetobacter sp. Kombucha 2013 Belgium

R-50383 Lactobacillus paracasei Kefir 2013 Belgium

R-50384 Lactobacillus harbinensis Kefir 2013 Belgium

R-50385 Acetobacter sp. Kefir 2013 Belgium

R-50386 Acetobacter sp. Kefir 2013 Belgium

R-50387 Acetobacter sp. Kefir 2013 Belgium

R-50388 Lactobacillus hilgardii Kefir 2013 Belgium

R-50389 Acetobacter sp. Kefir 2013 Belgium

R-50390 Lactobacillus parabuchneri Kefir 2013 Belgium

R-50391 Lactobacillus parabuchneri Kefir 2013 Belgium

R-50392 Lactobacillus paracasei Kefir 2013 Belgium

R-50393 Acetobacter sicerae Kefir 2013 Belgium

R-50405 Bacillus sp. Water closure fermentation tank 2013 Belgium

R-50406 Lactobacillus nagelii Kombucha 2013 Belgium

R-50407 Lactobacillus plantarum Kombucha 2013 Belgium

R-50408 Lactococcus sp. Cleaning w ater from mashing tun 2013 Belgium

R-50409 Lactobacillus paracasei Kefir 2013 Belgium

R-50410 Lactobacillus paracasei Kefir 2013 Belgium

R-50411 Acetobacter sicerae Kefir 2013 Belgium

R-50412 Acetobacter sicerae Kefir 2013 Belgium

R-50413 Acetobacter sicerae Kefir 2013 Belgium

R-50414 Acetobacter sicerae Kefir 2013 Belgium

R-50415 Sphingobacterium sp. Cleaning w ater from w hirlpool 2013 Belgium

R-50416 Gluconobacter cerinus Spoiled pitching yeast culture 2013 Belgium

R-50417 Gluconobacter cerinus Spoiled pitching yeast culture 2013 Belgium

R-50418 Acetobacter cerevisiae/malorum Spoiled pitching yeast culture 2013 Belgium

R-50419 Gluconobacter cerevisiae Spoiled pitching yeast culture 2013 Belgium

R-50445 Lactobacillus acetotolerans Kefir 2013 Belgium

R-50446 Lactobacillus acidophilus Milk kefir 2013 Belgium

R-50643 Gluconobacter japonicus Bottled dinner beer (alc. cont. of 1.5% v/v) 2013 Belgium

R-50644 Lactobacillus malefermentans Bottled dinner beer (alc. cont. of 1.5% v/v) 2013 Belgium

R-50645 Acetobacter indonesiensis Bottled dinner beer (alc. cont. of 1.5% v/v) 2013 Belgium

R-50646 Lactobacillus malefermentans Bottled dinner beer (alc. cont. of 1.5% v/v) 2013 Belgium

R-50647 Lactobacillus malefermentans Bottled dinner beer (alc. cont. of 1.5% v/v) 2013 Belgium

R-50648 Pediococcus inopinatus Bottled dinner beer (alc. cont. of 1.5% v/v) 2013 Belgium

R-50649 Lactobacillus malefermentans Bottled dinner beer (alc. cont. of 1.5% v/v) 2013 Belgium

R-50650 Acetobacter fabarum Bottled dinner beer (alc. cont. of 1.5% v/v) 2013 Belgium

R-50651 Pediococcus inopinatus Bottled dinner beer (alc. cont. of 1.5% v/v) 2013 Belgium

R-53261 Acetobacter cerevisiae/malorum Bottled dinner beer (alc. cont. 1.5% v/v) 2010 Belgium

R-53262 Acetobacter cerevisiae/malorum Bottled dinner beer (alc. cont. 1.5% v/v) 2010 Belgium

R-53263 Acetobacter cerevisiae/malorum Bottled sw eetened dinner beer (alc. cont. 2.25% v/v) 2010 Belgium

R-53264 Klebsiella sp. Fruity w heat beer 2012 Belgium

R-53265 Acetobacter cerevisiae/malorum Spoiling pitching yeast culture 2012 Belgium

R-53266 Acetobacter cerevisiae/malorum Spoiling pitching yeast culture 2012 Belgium

R-53267 Acetobacter cerevisiae/malorum Spoiling pitching yeast culture 2012 Belgium

R-53268 Lactobacillus brevis Spoiling pitching yeast culture 2012 Belgium

R-53269 Acetobacter cerevisiae/malorum Spoiling pitching yeast culture 2012 Belgium

R-53270 Lactobacillus brevis Bottled beer (alc. cont. of 6.6% v/v) 2012 Belgium

R-53271 Lactobacillus brevis Bottled beer (alc. cont. of 6.6% v/v) 2012 Belgium

R-53272 Lactobacillus brevis Bottled beer (alc. cont. of 7.5% v/v) 2012 Belgium

R-53273 Lactobacillus brevis Bottled beer (alc. cont. of 7.5% v/v) 2012 Belgium



 

 

 

 


