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1 | General Introduction

1.1 Motivation of the research questions

The success of macroeconomic policy relies on precise and timely estimates of the state of the
economy. Measuring the state of the economy often entails decomposing a series of aggregate
data, such as the unemployment rate, into a long-run level and deviations thereof. In the
long-run, the economy is assumed to be driven by supply-side factors, i.e. labor, capital,
and its productivity. They determine the economy’s potential to produce goods and services.
Transitory deviations from the long-run path are usually associated with factors that influence
the total demand for goods and services. In case of the unemployment rate, the long-run level
is often referred to as the natural rate. Friedman (1968) and Phelps (1968) argued that
when actual unemployment is equal to its natural level, total production coincides with the
economy’s potential and the inflation rate is stable. It is a stylized fact that the labor market
fluctuates around this natural level along with the alternating phases of economic booms and
recessions. The labor market gap can be used by central banks as a yardstick for monetary
policy. If the unemployment gap is positive, i.e. current unemployment exceeds the natural
level, the central bank might favor stimulative policies to drive down the unemployment
rate. A negative unemployment gap can indicate an overheating economy and herald a rising
inflation rate. The natural level and the respective gap provide also valuable information
for fiscal policy, which should provide stimulus only if the labor market is temporarily below
its potential. If, in contrast, unemployment is characterized as a structural problem, policy
makers should turn to alternative strategies that focus on the employability of the workforce.

The preceding considerations establish linkages between unemployment, inflation and out-
put (production). The relation between unemployment and output is referred to as Okun’s
law, named after Arthur Okun (1962), who observed a negative correlation between the de-
viations of unemployment and output from their natural levels. Specifically, he found that a
negative output gap of 2% corresponds to a positive unemployment gap of 1% in the United
States. The intuition is straightforward. An economy that produces goods and services be-
low its potential will employ less people than needed at full potential. Consequently, the
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unemployment rate rises. Another important linkage is the famous Phillips (1958) curve.
In its original form, the curve represented the empirical relationship between changes in the
unemployment rate and wage growth, but economists soon began to replace the latter with
price inflation. The stability of the relationships between these macroeconomic aggregates is
essential for economists and policy makers. For example, central banks use more advanced
versions of the Phillips curve to forecast inflation. In case of the United States Federal Re-
serve (FED), the trade-off between inflation and unemployment is directly incorporated in its
monetary policy objectives. The so-called dual mandate states that the FED should pursue
price stability and full unemployment, which requires the economy to be close to its potential.

There is an ongoing debate about whether the relationship between the labor market
and other key variables is stable over time. In econometric terms, these relationships are
potentially non-linear. In fact, many argue that they have changed substantially or have
broken down completely. For example, the large and negative output gaps around the globe
in the course of the recent Great Recession implied substantial deflation according to standard
macroeconomic models. Although inflation slowed down, there was no notable deflationary
period. This “deflation puzzle" could imply that the Phillips curve has broken down. The
discussion has recently regained attention as signs of economic improvement in the United
States have led many observers to call for a turnaround in the FED’s policy.1 Since its
peak in late 2009, the unemployment rate has dropped from 10% by almost half to 5.1% in
August 2015. Thus, the FED is expected to end the period of quantitative easing and begin
to tighten monetary policy. Such a policy change would not only have consequences for the
United States, but is likely to affect the world economy. Other central banks, including the
European Central Bank (ECB), will have to adjust their policy accordingly. Hence, whether or
not the FED believes that the economy is back to potential is downright crucial. However, the
substantial decline in unemployment might not accurately reflect the state of the economy. A
drop in the unemployment rate can also be caused by discouraged people, who stop actively
seeking a job and are thus not counted in the unemployment statistics. Moreover, people
might technically be employed, but work fewer hours than before the crisis - a phenomenon
known as underemployment. In a recent speech, FED chair Janet Yellen (2015) elaborated
on the role of labor force participation and underemployment:

“[...] it is my judgment that the lower level of the unemployment rate today prob-
ably does not fully capture the extent of slack remaining in the labor market - in
other words, how far away we are from a full-employment economy. [...] I think

1Just days before this dissertation went to press, the Federal Open Market Committee delayed the expect
tightening for at least another month.
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a significant number of individuals still are not seeking work because they perceive
a lack of good job opportunities, and that a stronger economy would draw some of
them back into the labor force. [...] Another factor we consider when assessing
labor market slack is the elevated number of workers who are employed in part-
time jobs but would prefer to have full-time work [...] I continue to think that it
probably remains higher than it would be in a full-employment economy.”

The information content of the unemployment rate for the state of the economy today is
probably lower than some years or even decades ago, because other channels have become
more important for the adjustment process. This observation is an important motivation
for this dissertation. The first half will investigate the interaction of the labor market and
the rest of the economy at the aggregate level in a stylized empirical macroeconomic model.
The questions to be answered are: Has the relationship between the cyclical components in
output, unemployment and inflation changed over time? How can these changes be linked to
structural changes within the economy? How can an alternative labor market indicator be
constructed, that is robust to the aforementioned problems?

So far, only the level of the economy’s potential and the size of the business cycle gap have
been discussed. However, there is evidence that also the variance of the business cycle has
changed notably over time in many countries. The most prominent example is the Great Mod-
eration - a term which describes the large and persistent decline in macroeconomic volatility
during the 1980s, that lasted until the recent Great Recession. Changes in the volatility are
equally important from a policy point of view, as a greater volatility implies greater uncer-
tainty about the exact size of the business cycle gap and thus the state of the economy. Even
if one is not interested in the volatility per se, accounting for changing volatility remains im-
portant for hypothesis testing. The second part of this dissertation focuses on the volatility of
macroeconomic data. As a matter of course, economists are not only interested in measuring
volatility, but also explaining it. If the driving forces can be revealed, this possibly opens up
a way to also influence volatility. Again, the focus in the corresponding chapters will be on
the interaction of the labor market with other macroeconomic aggregates. A new strand of
literature gives preliminary evidence that the demographic composition, i.e. the share of old
and young workers, might play an important role for economic volatility. However, as will be
discussed later, one can raise doubts about the methodology used to establish the empirical
relationship. The key questions answered in the second part of this dissertations is whether
the previous findings in the literature on demographics and its effect on output volatility are
spurious. Moreover, the aim is to re-estimate the effect more consistently.
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1.2 Methodology

The methodology used in this dissertation arises as a natural choice due to the unobservability
of the economy’s potential and the business cycle gap. In macroeconomic data only the
sum of the two components is observed. There exist different approaches to disentangle
cyclical from trend components. Besides purely statistical approaches such as the Hodrick-
Prescott (HP) filter, a widely used technique is to estimate a structural time series models
as pioneered by Harvey (1985). These models are also known as Unobserved Components
(UC) models. The data series, for example the unemployment rate, is decomposed into a
trend and a cyclical component by imposing a stochastic law of motion for each of these two
components. Identification can be achieved by assuming that shocks to the trend component
have permanent effects on the economy, while shocks to the cyclical component are only
transitory. The stochastic processes will therefore exhibit different degrees of persistence.
Given an identifying assumption, the unobserved latent variables are extracted using the
Kalman filter and the unknown coefficients are estimated via Maximum-likelihood techniques.
In order to better pin down the natural rate, cyclical swings in the unemployment rate are
allowed to co-move with other macroeconomic variables such as the cyclical component in
output or inflation. The correlation parameters in this case represent the Phillips curve and
Okun’s law. They anchor the empirical time series model to macroeconomic theory. The
structural time series approach is not necessarily limited to the unobserved components. It is
also possible to assume a stochastic law of motion for the volatility and filter it in a similar
way. Moreover, the latent components need not to be purely stochastic, but can also be linked
to other explanatory variables.

A key contribution of this dissertation is to account for various forms of non-linearity
on the class of structural time series models. This implies that the correlation and variance
parameters are allowed to change over time, which results in highly nonlinear models that
cannot be estimated in the classical (frequentist) way. Instead, the dissertation builds on
Bayesian estimation techniques. When the classical approach is not feasible because the
likelihood function is ill-behaved, the Bayesian approach offers an interesting an often intuitive
alternative solution. In contrast to the likelihood principal, that makes a statement about the
likelihood of the data conditional on the model’s unknown parameters, the Bayesian approach
turns the problem around and gives the probability of the unknown parameters given the
observed data. Moreover, it allows to incorporate prior knowledge about the parameter,
for example when some parameter regions can be ruled out according to economic theory.
As such, it is attractive also for policy purposes. It offers an elegant way to incorporate



1.3. Outline of the dissertation 5

a policy maker’s belief about certain parameters. Finally, the Bayesian methods applied
in this dissertation entail computing the complete distribution of the unknown components
conditional on all other parameters. Hence, the results do not only give a point estimate, but
also quantify the uncertainty around these estimates - something that is not straightforward
within the classical approach.

1.3 Outline of the dissertation

Although the chapters of this dissertation are related, they represent self-contained papers,
each tackling a specific research question. The outline of the dissertation is as follows:

• Chapter 2 starts with an illustration of how the unemployment rate has become a mis-
leading indicator for the state of the labor market in the United States and in Germany.
While in the United States recent movements in the unemployment rate appear to be
partially driven by discouraged workers or early retirees, the German labor market has
adjusted in the crisis mostly along the intensive margin, i.e. working hours. In or-
der to cushion the impact of the economic and financial crisis, Germany introduced a
country-wide short time work program. Thus, only looking at the unemployment rate
when evaluating the state of the labor market would be misleading. In this chapter an
alternative measure for the slack of the aggregate labor market is proposed. Instead of
the conventional unemployment rate, the ratio of aggregate hours worked over potential
hours is used. This measure takes into account the intensive margin and is robust to
variations in labor force participation. An unobserved components model is estimated
to disentangle cyclical swings in the labor market from its natural level. The result-
ing hours-based gap outperforms a conventional unemployment-gap when it comes to
explaining monetary policy with historic data.

• Chapter 3 focuses on structural change in an empirical macroeconomic model for the
United States economy. Structural change can affect the relation between the labor
market and other macroeconomic aggregates, but also the volatility of the trend and gap
components. Specifically, the model decomposes output, inflation and unemployment in
their stochastic trend and business cycle gap components, with the latter linked through
the Phillips curve and Okun’s Law. A key feature in this chapter is the use of a novel
Bayesian approach to testing which parameters are time-varying. Based on United
States data from 1959 to 2014, the results point to substantial variation in Okun’s
law. The relation between unemployment and output is found to be stronger during
recessions than recoveries. The slope of Phillips curve is found to be time invariant
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but flat, i.e. the link to the nominal sphere of the economy is weak. Changes in the
volatility of the latent components are only found to be important for cyclical shocks,
while shocks to the long-run or natural components are constant over time.

• Macroeconomic volatility, which has also been discussed in the previous chapter, is in-
vestigated more intensively in Chapter 4. In particular, the focus lies on explaining the
observed changes in output volatility. Recent studies suggest a robust relationship be-
tween the share of young and old labor force participants and the volatility of aggregate
production. This chapter casts doubt on the methodology used in these studies. The
time series properties of the data are not taken into account correctly, so that regression
results might be spurious. The data used in these regressions involve non-stationary
data, i.e. data with trend-like behavior. It is a well-known phenomenon that this can
lead to spurious correlation estimates, although there exists no meaningful relationship.
This chapter replicates three well-published studies and investigates whether the results
are robust to the aforementioned concerns.

• Chapter 5 investigates the determinants of output volatility in a panel of 22 OECD
countries. The chapter adds important methodological contributions. Building on the
observation of time series characteristics from the preceding chapter, the model explic-
itly accounts for the trend-like behavior of the data. An unobserved components model
with stochastic volatility is chosen. As demonstrated by Everaert (2011), the relation-
ship between integrated series, that do not constitute a cointegrating relationship, can
still be consistently estimated in an UC framework. We follow this approach to inves-
tigate the driving forces behind business cycle volatility. Recent findings on the role of
demographics are combined with the literature on fiscal policy and its effects on output
stabilization. The results suggest indeed a robust effect of demographics.

1.4 Main findings, implications, and outlook

The dissertation follows two lines of research: The role of non-linearities in a structural time
series model for the aggregate labor market and the interaction between the labor market
and macroeconomic volatility. The main findings from the first part can be summarized as
follows. When investigated in detail, the labor market in the United States and Germany
underwent important structural changes. The unemployment rate, although still a key vari-
able for macroeconomists and policy makers, does not capture all relevant dimensions of the
labor market. Changes in hours worked and labor force participation are additional channels
through which the labor market can adjust to cyclical shocks.
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This does not imply that the unemployment rate should be abolished as a key indicator.
Rather, the findings reinforce the need to also look at other dimensions of the labor market
and take them into account when evaluating the state of the economy. The Taylor rule exercise
in Chapter 2 suggests that the FED has already done this in the past, since the alternative
indicator explains central bank behavior better than an unemployment-based rule.

When a standard structural time series model is extended to allow for various forms of
structural change, important conclusions can be drawn about the changing characteristic of
the United States economy. The potential growth rate of the economy has declined sub-
stantially. In addition to the “productivity slowdown” during the early 1970s, which has
previously been documented in the literature, the results show a prolonged and persistent
decline in the potential growth rate over the whole sample. This finding delivers support for
the hypothesis of a “secular stagnation” in the United States. The period of slow growth,
low interest rates, and sluggish employment growth is likely to be a permanent phenomenon.
Now that a permanent slowdown is established as a stylized fact, more economic research is
needed on the sources and consequences of this slowdown. Most economists would agree that
the stagnation implies huge potential costs: From the problem of the zero lower bound related
to overall low interest rates, to the millions of under- and unemployed who see their skills
deteriorating. Hence, future research should disentangle the driving forces of the slowdown.

Another interesting finding are the apparent business cycle swings in the Okun relation.
Over the whole sample the Okun coefficient is larger in recessions than in booms. This implies
that when output falls below potential, job losses are big and occur relatively fast. During
the following recovery, job growth is weaker and it takes more time for employment to return
to its pre-recession level. The results from this dissertation show that this is not a recent
phenomenon. Rather, the Okun relation has always been non-linear over the postwar business
cycles. However, the Great Recession still stands out as an episode of exceptional labor market
sensitivity. An interesting path for future research is the link between Okun’s law and the
recent literature on the financial cycle - a concept similar to the cycle in aggregate production.
Borio (2014) demonstrated how to approximate the financial cycle based on data on credit
and property prices. Incorporating this additional information substantially improves the
real-time performance when estimating the state of the economy. As noted by Borio (2014),
the turning points of the financial cycle do not necessarily match the conventional business
cycle turning points. While the business cycle appears at the 1-8 year frequency, the financial
cycle typically last up to 16 years. If the sensitivity of unemployment depends on financial
conditions, this might help to explain the complex dynamics of the Okun coefficient found in
this dissertation. The dependence of Okun’s law on financial conditions should ideally not only
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be identified from the time series dimension but also from cross-country differences. In the
United States, credit to private sector and market capitalization are historically higher than
in Europe and these differences could explain the variation in cross-country Okun regressions.

The main results from the second half of this dissertation can be summarized as follows:
The volatility of the business cycle has changed notably in many of the industrialized countries
within the last 50-60 years. However, there exist important differences across countries. The
demographic composition of the labor force can explain a large part of these changes. Another
important factor is fiscal policy in the form of labor taxes. This is in line with the established
concept of taxes as automatic stabilizers. It should be noted that stabilization might come
at a cost. Distortionary taxes, such as labor taxes, can exert negative effects on the growth
rate of the economy. These effects are likely to depend on the composition of the government
spending as well. A possible path for future research is to investigate the determinants of
output volatility and output growth simultaneously. The proposed framework from the final
chapter offers a well-suited model. In Chapter 5 the average growth rate is allowed to change
over time, but assumed to be purely stochastic. A straightforward model extension would
be to link the growth rate to a set of explanatory variable. Such a study could pick up the
discussion on the secular stagnation from Chapter 3 as well.



Bibliography
Borio, C. (2014): “The Financial Cycle and Macroeconomics: What Have We Learnt?,”
Journal of Banking & Finance, 45, 182–198.

Everaert, G. (2011): “Estimation and Inference in Time Series with Omitted I(1) Vari-
ables,” Journal of Time Series Econometrics, 2(2), 1–28.

Friedman, M. (1968): “The Role of Monetary Policy,” American Economic Review, 58(1),
1–17.

Harvey, A. C. (1985): “Trends and Cycles in Macroeconomic Time Series,” Journal of
Business & Economic Statistics, 3(3), 216–227.

Okun, A. M. (1962): “Potential GNP: Its Measurement and Significance,” American Statis-
tical Association, Proceedings of the Business and Economic Statistics Section, pp. 98–104.

Phelps, E. S. (1968): “Money-Wage Dynamics and Labor-Market Equilibrium,” Journal of
Political Economy, 76, 678–711.

Phillips, A. W. (1958): “The Relation between Unemployment and the Rate of Change of
Money Wage Rates in the United Kingdom, 1861-1957,” Economica, 25(100), 283–299.

Yellen, J. L. (2015): “Recent Developments and the Outlook for the Economy,” Speech at
the City Club of Cleveland, July 10, Ohio.





2 | Estimating the Natural Rate of
Hours

with Tino Berger

Abstract: This paper proposes an alternative measure for the slack of the aggregate labor
market. The natural rate of hours holds valuable information about the state of the labor
market which are not reflected by conventional measures, such as the equilibrium rate of
unemployment, since it takes into account the intensive margin and is robust to variations
in labor force participation. We set up and estimate a multivariate unobserved components
model using information in GDP, inflation, and hours worked, and apply it to the United
States and Germany. The estimated hours gap outperforms conventional unemployment gap
measures in a Taylor rule by means of formal model comparison.
JEL classification: C32, E24, E32, E52

For helpful comments we thank Freddy Heylen, Gerdie Everaert, Irina Panovska, and participants at the
20th SNDE Annual Symposium, the CMR Lunch Seminar at the University of Cologne, the 7th ifo Workshop on
Macroeconomics and the Business Cycle, and the Baltic Sea Colloquium. Hauke Vierke acknowledges financial
support from the Friedrich-Ebert-Stiftung and from Ghent University’s Special Research Fund (BOF).



12 2. Estimating the Natural Rate of Hours

2.1 Introduction

Knowing how far a country’s labor market deviates from its equilibrium level is of great
relevance for various reasons. The sign and magnitude of the labor market gap provide
valuable information to better predict output growth and the impact of monetary policy.
Central banks take some form of natural rate estimate into account when evaluating the
state of the economy. For instance, the Federal Reserve Open Market Committee (FOMC)
estimates the “long-run normal rate of unemployment”, as published quarterly in the FOMC’s
Summary of Economic Projections.

The most widely used indicators for the state of the labor market are the Non-accelerating
inflation rate of unemployment (NAIRU) and the corresponding gap. The idea of a natural
rate of unemployment has been pioneered by Friedman (1968) and Phelps (1968), who claim
that unemployment is at its natural level when neither inflationary nor deflationary pressure
emanates from the labor market. The existence of a constant NAIRU has been questioned
after the oil price shocks of the 1970s as unemployment remained high even after inflation had
stabilized. More recently, the NAIRU is assumed to be a function of labor market institutions
and real macroeconomic variables such as real interest rates or productivity growth and hence
is time-varying.

Using the NAIRU as an indicator for the state of the aggregate economy assumes that the
unemployment rate captures the most relevant changes in the labor market. In this paper we
argue that labor force participation (extensive margin) and hours worked (intensive margin)
play an important role for the adjustment process, such that additional information, other
than the unemployment rate, can help to estimate the natural level more precisely. During
the Great Recession Germany has reacted to the severe decline in GDP with a widespread
short-time work-program. In order to avoid layoffs, employees agreed with firms to work less
and received a subsidized wage allowance. The scope of underemployment in Germany, with
about 1.5 million short-time workers at maximum, was concealed by a relatively stable unem-
ployment rate during the crisis. However, hours worked dropped by 3.3%, i.e. the adjustment
occurred along the intensive margin. Moreover, changes in labor force participation can alter
the unemployment rate, even if the overall employment level stays constant. If many discour-
aged workers exit the labor force after a severe recession, the unemployment rate overestimates
the state of the labor market. There is an ongoing debate on the determinants of the decline

In January 2012, two and a half years after the end of the Great Recession, FED chairman Ben Bernanke
argued whether or not an increase in long-term unemployment has caused a shift in the natural rate of
unemployment. Bernanke concluded that the unemployment rate of 8.5% was well above any natural rate
estimate, hence sustaining an accommodative stance of monetary policy would be within the scope of the
FED’s dual mandate (Bernanke, 2012).
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in U.S. labor force participation and its impact on employment dynamics. Fujita (2014) ar-
gues that both long-run and cyclical factors have driven the decline and that the number of
discouraged workers has certainly risen during the recent recession. Whether these marginally
attached workers play an important role for the unemployment rate is not clear-cut: Davig
and Mustre-del Rio (2013) find that reentry of the “shadow labor supply” will only have a
modest impact on the unemployment rate. Ravikumar and Shao (2014) construct an alter-
native unemployment rate that accounts for the reentry of discouraged workers. This series
is only slightly higher as the official series and exhibits a similar trend. However, according
to Romero (2012) the number of around 900,000 discouraged workers at the end of 2013 is
severely underestimated as this only includes people who have searched for a job within the
past year. In contrast, 3.2 million workers generally want a job but stopped looking more
than one year ago. Zandweghe (2012) argues that the current cyclical gap between the actual
and trend labor force participation rate is likely to hold back the return of the unemployment
rate to its long-run level. Hence, the dynamics of hours worked and labor force participation
may have important implications for the state of the labor market. By exclusively focusing
on unemployment as the labor market indicator these information are neglected.

In this paper we take a fresh look at the adjustment dynamics of various labor market
variables over the business cycle in the United States and Germany. The main focus is on
the estimation of an additional indicator for the state of the labor market that captures
movements along the extensive and intensive margin. We estimate the natural rate of total
hours over potential hours and find a meaningful correlation between the proposed indicator
and other macroeconomic variables. We demonstrate the implications of our alternative labor
market gap for the conduct of monetary policy. A Taylor rule based on the hours gap as the
relevant labor market indicator leads to a better model fit and is not subject to parameter
instability. We find strong support for the hours-based rule using formal model comparison.

The remainder of the paper is structured as follows: Section 2.2 shows the adjustment
dynamics of key labor market variables over the business cycle. Section 2.3 introduces the
hours ratio as an alternative variable of aggregate movements in the labor market. Section 2.4
lays down a stylized structural time series model used to estimate the natural rate of hours.
Section 2.5 describes the data and the Bayesian estimation procedure. Results are given in
section 2.6. We demonstrate the importance of our findings for monetary policy via a Taylor
rule in section 2.7. Section 2.8 gives a conclusion.
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Figure 2.1: Labor market indicators over business cycles: United States
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2.2 Labor market adjustment

This section analyzes the adjustment dynamics of key labor market variables over the business
cycle. Particular attention is paid to changes over time and across countries in the response of
(i) the employment-to-population ratio, (ii) the unemployment rate, (iii) labor force partici-
pation, and (iv) hours worked after a recession. We focus on the United States and Germany.
The United States is known to have a flexible labor market, while Germany represents the
more rigid European labor market regime. The focus in the following graphical analysis is on
the role of the extensive margin for the United States and the intensive margin for Germany.

Figure 2.1 shows the evolution of the United States unemployment rate, the labor force
participation rate and the employment-to-population ratio during business cycles over the
period from 1973 to 2012. Each graph plots the series until the 20th quarter after the peak
date. All variables are displayed in deviations from their value at the business cycle peak.
After the first two recessions the unemployment rate and the employment-to-population ratio
evolve symmetrically and follow a V-shaped pattern, i.e. both series return to their pre-
recession levels shortly after a sharp turning point. Labor force participation stagnates for
some time, but starts to increase right after the trough. This suggests that the decline in the
unemployment rate during the recoveries was driven by additional job creation and not by
people exiting the labor force. During the recession in the 1990s the unemployment rate and

We use the peak and trough dates provided by the National Bureau of Economic Research for the United
States and the Economic Cycle Research Institute for Germany throughout this paper.
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the employment-to-population ratio exhibit a U-shaped pattern. Although this recession was
less severe in terms of absolute changes, it took longer time for both series to return to their
pre-recession level. The early 2000s recession shows an incomplete U-pattern, as neither the
unemployment rate nor the employment-to-population ratio return to their pre-recession level
during the recovery. However, the absolute change is larger for the employment-to-population
ratio. In contrast to the recessions of the 1970s and 1980s, the labor force participation rate
steadily decreased throughout this cycle. Thus, the rather moderate increase in the unem-
ployment rate suggests that fewer people actively looked for a job. Regarding the most recent
recession, all three labor market indicators exhibit changes that are substantially larger in
magnitude as compared to all previous recessions in the sample. In contrast to former peri-
ods, the employment-to-population follows an L-shaped pattern, i.e. employment stagnates
at its recession level and without any sign of recovery. The unemployment rate, however,
evolved in a very different way. While the magnitude of changes in these two variables has
been very similar over the previous recessions, changes in the unemployment rate are consid-
erably smaller during the most recent recession. Moreover, the declining unemployment rate
after 2010:Q1 coincides with a steep decline in labor force participation. Thus, the decline
in the unemployment rate may not be interpreted as a recovery of the labor market as such,
but as the result of fewer people joining the labor market. The increased importance of the
extensive margin in the recent recession and to a lesser extend in the early 2000s recession
implies that the deviation of the unemployment rate from a natural level such as the NAIRU
is too small and does not reflect all dimensions of the aggregate labor market. Even if one still
believes in the NAIRU as an important piece of information, its relation to other labor market
variables such as the labor force participation rate and the employment-to-population ratio
has changed over time. The latter point on its own is relevant for the conduct of monetary
policy.

Turning to the German labor market, there is a remarkable difference in the magnitude
between the different cycles within Germany and compared to the United States. Figure 2.2
shows the evolution of the German unemployment rate, hours worked and the employment-
to-population ratio during business cycles over the period from 1973 to 2013. The first four
cycles deliver clear evidence on how business cycle shocks left permanent “scars” on the
German economy as the unemployment rate initially increased and then stagnated on a new
plateau. Similarly, employment exhibits an L-shaped pattern during the first three recessions,
but employment dynamics are very different for the recession in the early 2000s as job-losses

Juhn and Potter (2006) argue that unemployment during the early 2000s has led to a more or less permanent
withdrawal from the labor market.
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Figure 2.2: Labor market indicators over business cycles: Germany

1974 1976 1978
−8

−6

−4

−2

0

2

4

6

P
er
ce
n
ta
ge

(p
oi
n
t)

d
ev
ia
to
n
fr
om

p
ea
k
-v
al
u
e

1980 1982 1984 1992 1994 2002 2004 2010 2012

Unemployment rate Average hours worked Employment-to-population ratio

are small and employment recovers quickly. The fact that the unemployment rate increases
despite growing employment can be explained by German labor market reforms that led
to a broader definition of the unemployed population. The picture for the 2008 recession is
drastically different from previous cycles as the unemployment rate increases only slightly and
only for a few quarters before it continues to decrease permanently. Similarly, the recession
does not alter the upward trend in employment notably. Almost all of the adjustment occurs
along the intensive margin of the labor market. Hours worked plunge sharply in Germany,
but recover just as fast. The series for hours worked over all five recessions also points to
the important distinction between trend and cyclical movements. The hours series exhibits
a distinct downward trend movement in Germany over the full sample, but the very last
recession is a distinct example for a temporary decrease in the number of hours worked. This
is the result of short-time work arrangements during the crisis in Germany - a feature of the
labor market not captured by the official unemployment rate.

The importance of the intensive margin for the adjustment process on the labor market
also appears in cross-country comparisons. Ohanian and Raffo (2012) document that in many
OECD countries about half of the adjustment occurs along the intensive margin. In fact,
different dynamics in hours worked might be one reason why the unemployment rate reacted
so differently across countries during the Great Recession. Table 2.1 shows the changes in

In January 2005 the number of unemployed persons shot up to about 5 million people, mainly because
previous welfare recipients were classified as “capable of working” and, thus, counted as unemployed.
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Table 2.1: Labor market adjustment during the Great Recession

Change from peak to trough

Germany United States
08:Q1-09:Q2 07:Q4-09:Q2

GDP % -6.0 -4.1
Unemployment rate pp. -0.1 4.4
Employment (level) % 0.3 -4.8
Avg. hours per empl. pers. % -3.3 -1.5

GDP, the unemployment rate, the employment level, and hours per employed person from
peak to trough. While the size of the GDP shock is larger for Germany, the United States
experienced a stronger reaction of the labor market with a larger increase in the unemployment
rate and a bigger drop in employment. The intensive margin appears to be less important
for the adjustment process. In contrast, Germany experienced only a slight movement in the
(un)employment series (with a counter-intuitive sign). Hours per employed person, however,
have been reduced substantially during the recession. This can be explained by the short-time
work program, which was set up in order to avoid mass layoffs during the crisis. Hence, solely
looking at the NAIRU could be misleading for the case of Germany.

In sum, the adjustment of labor markets differs across countries and has changed over
time. Using the unemployment rate as the predominant labor market indicator (i) leaves out
the intensive margin and (ii) is sensible to shifts in labor force participation. Hence, using
the natural rate of hours, as estimated from a structural time-series model, provides a more
realistic picture about the state of the labor market.

2.3 Measuring employment in hours worked

An indicator which takes into account the intensive margin and is robust to movements along
the extensive margin is the ratio of aggregate hours worked to potential hours of an economy
within one year. It is also known as the employment rate in hours and given by

hours rate = hours per employed person× employment
1920× population at working age . (2.1)

The employment rate in hours has previously been used as an indicator for the aggregate labor market by
Dhont and Heylen (2008) and Berger and Heylen (2011).
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Figure 2.3: Overall employment measured in hours
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This indicator combines different dimensions of the labor market. Fewer hours worked show
up as a lower number, thereby capturing movements along the intensive margin. Changes
in the participation rate affect the numerator in eq. (1). However, changes in labor force
participation that do not correspond to changes in the employment level, i.e. unemployed
persons, who give up looking for a job, will not shift the hours rate. This is different from the
unemployment rate, which would decrease if unemployed people exit the labor force. While
changes in the unemployment can be induced by very different factors with very different
implications, changes in the hours rate are always linked to an increase (or decrease) in
overall labor utilization. For the calculation of potential hours, we assume a workweek of
40 hours and 48 workweeks, which results in 1920 potential hours per capita and per year.
Figure (2.3) shows hours series for both countries considered here. Germany starts at a much
higher employment level than the United States, but exhibits a persistent downward trend
just until the early 2000s. For example, in 1970:Q1 Germans worked about 71% of potential
hours while Americans worked about 63%. Since the early 1980s, the United States have
reached a permanently higher employment level (in hours) than Germany. More recently,
both series exhibit convergence. Differences in the hours rate are substantially smaller than

The number of potential hours per year may be affected by labor market legislation and thus varies over
time and countries. Infrequent changes in potential hours would change the long-run mean of the hours rate.
Since the aim of our econometric approach is to extract cyclical swings from long-run movements this should
not affect our results. Nevertheless, we check the robustness of the results regarding the choice of potential
hours.
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20 years ago. Moreover, the United States exhibit more pronounced cyclical swings while the
German series seems to be driven mainly by structural or long-run factors. The cross-country
differences are the subject of a large literature. While some authors emphasize the role of
labor and product market characteristics such as employment protection legislation, union
power, wage bargaining systems, and barriers to entry, other studies highlight the influence of
fiscal policy, particularly the differences in the level and composition of taxes and government
expenditures (see Berger and Heylen, 2011). However, the focus here is not on the mean of
the series but on the cyclical movements around its long-run trend. In particular, the series
for hours is decomposed into a long-run trend and a cyclical component. To the best of our
knowledge all previous studies on this subject have focused on the unemployment rate.

2.4 Empirical model

This section lays down a structural time series model to estimate the natural rate of hours.
The empirical model borrows from the recent NAIRU literature, i.e. we estimate the time-
varying natural rate within a multivariate unobserved components (UC) model that treats
the equilibrium rate and its corresponding gap as latent variables. The latent variables as
well as the model parameters are jointly estimated using a Gibbs sampling procedure.

Laubach (2001) introduced the structural unobserved components model in order to es-
timate the NAIRU. In his bivariate model, a Phillips curve is used to link the unobserved
unemployment gap to changes in the rate of inflation. The model is structural in the sense
that, by using a Phillips curve, the resulting equilibrium rate of unemployment is consistent
with the stochastic law of motions for the latent variables that have been specified, and with
a zero unemployment gap when inflation is stable. The latter point distinguishes NAIRU
estimates based on an unobserved components model from purely statistical trend-cycle de-
compositions.

Since Laubach (2001) the literature has extended the modeling framework in several di-
mensions. Common to most of the recent NAIRU estimates is that they rely on multivariate
unobserved components models, i.e. the latent variables are identified using information con-
tained in various macroeconomic aggregates. In fact, Basistha and Startz (2008) show that
using additional information from multiple indicators which share a similar cycle with the
unemployment rate, cuts in half uncertainty about the estimate as measured by variance.

We will refer to the equilibrium level of the hours rate as the natural rate of hours.
Domenech and Gomez (2006) focus on the United States and estimate a model in which the latent variables

are identified using information contained in inflation, unemployment, output, and investment. Berger (2011)
estimates a trivariate unobserved components model for the aggregate Euro area NAIRU with special emphasis
on correlated shocks and structural breaks in the trend components of output and unemployment.
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This paper’s model is based on the assumption that the series for total hours shares a
common cyclical component with the two other variables considered, namely inflation and
output. First, the employment-inflation relation is presented. A standard Phillips curve
relation expresses realized inflation as the sum of current expectations of future inflation and
the labor market gap. Denoting the inflation rate in period t by πt and defining the labor
market gap, hct , as the deviation of total hours, ht, from its natural level, h∗t , the Phillips
curve can be written as

πt = Et(π∞) + θ(L)(ht − h∗t ) + επt , (2.2)

where επt is a Gaussian mean zero white noise error term, θ is the slope coefficient of the
Phillips curve and the lag polynomial is defined as θ(L) = θ0 + θ1L + ... + θqL

q. Inflation
expectations are not observed and thus have to be proxied. Often, a backward-looking or ac-
celerationist curve is assumed, i.e. lagged inflation is used as a proxy for inflation expectations
(see e.g. Laubach, 2001; Fabiani and Mestre, 2004). Instead of assuming backward-looking
expectations this paper follows Morley, Piger, and Rasche (2015) and proxies the expectation
term by a stochastic trend. In theoretical work, Cogley and Sbordone (2008) and Goodfriend
and King (2009) derive versions of the New Keynesian Phillips Curve (NKPC) that incorpo-
rate a time-varying inflation trend, such that the inflation gap rather than the level of inflation
is influenced by the real activity gap. In empirical studies, the forward-looking NKPC can be
reconciled with the data once inflation is allowed to have a stochastic trend (see Nelson and
Lee, 2007; Piger and Rasche, 2008). The inflation trend, π∗t , is assumed to follow a driftless
random walk,

π∗t = π∗t−1 + ηπt , (2.3)

where ηπt is a Gaussian mean zero white noise error term. Similarly, real GDP is decomposed
into a stochastic trend and a cyclical component. Trend output, g∗, is assumed to follow
a random walk with drift. The cyclical component in output is linked to the hours gap
through a stylized production function, which states that deviations of output from its trend

We included the investment ratio as an additional variable in a previous version of the paper. However, as
the series does not deliver much information beyond what is already contained in the output series, we stick
to trivariate model.

We will refer to this as the hours gap.
Atkeson and Ohanian (2001) show that United States inflation is well described by a random walk.
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are correlated with the hours gap,

gt = g∗t + ω(L)hct−1 + εgt , (2.4)

g∗t = γ + g∗t−1 + ηgt , (2.5)

where εgt and ηgt are Gaussian mean zero white noise error terms and the lag polynomial is
defined as ω(L) = ω0 + ω1L+ ...+ ωqL

q.

In equation (2.4) the output gap reacts to previous periods’ hours gaps. However, the
direction of causality may also be the other way around. Indeed, most studies relating the
unemployment rate to output assume a lagged reaction of the unemployment gap to the
output gap. As Knotek (2007) has shown for the United States the correlation between
current unemployment and past output has gained importance over time. However, since the
labor market series used in our model incorporates both employment (in persons) and hours
worked, the dynamic relationship is not clear-cut. In fact, hours worked are considered a
leading indicator. For instance, Kydland and Prescott (1990) and Cooley and Prescott (1995)
investigate the United States business cycle and find that while employment lags output,
hours worked slightly lead. Fiorito and Kollintzas (1994) use data for the G7 and show that
for most countries employment is a lagged and hours is a leading or coincident indicator.

To close the model we have to specify the stochastic law of motion for the natural rate
and the hours gap. The latter is specified as a stationary autoregressive process. Denoting
the natural rate by h∗t and cyclical hours by hct , the dynamics for employment can be written
as

ht = h∗t + hct , (2.6)

h∗t = µ+ h∗t−1 + ηht , (2.7)

hct = φ(L)hct−1 + νt, (2.8)

where ηht and νt are Gaussian mean zero white noise error terms and the lag polynomial is
defined as φ(L) = φ0 + φ1L+ ...+ φqL

q.

This corresponds to the Okun’s law approach used in the NAIRU literature in which the cyclical in output
is linked to the unemployment gap (see e.g. Fabiani and Mestre, 2004).

We also estimated the model with a standard specification, i.e. where the labor market gap reacts to
lagged values of the output gap and find the results are nearly identical. The results of this exercise are not
reported but are available upon request.
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2.5 Data and estimation methodology

2.5.1 Data

We use quarterly data from 1964:Q1 to 2013:Q4 for the United States and from 1970:Q1 to
2013:Q4 for Germany. The inflation series is obtained by taking first differences of the log
of the seasonally adjusted Consumer Price Index (CPI) at an annualized rate. Output is the
log of real gross domestic product at constant local prices. The hours series is calculated
according to equation (2.1). Details on the data sources are given in 2.A.

2.5.2 Estimation methodology

The outlined model can in principle be estimated by using the Kalman filter and maximum
likelihood (ML) technique. Instead of using ML, we estimate the model using Gibbs sampling.
For our purposes, the Gibbs sampler has a number of advantages over standard ML estimation.
First, it directly provides an entire distribution of all parameters and states allowing us to
analyze the uncertainty around our state estimates. Second, by specifying prior distributions
for the variance parameters which are strictly positive, we avoid the so-called pile-up problem.
Third, by using prior information we down-weight the likelihood function in regions of the
parameter space that are inconsistent with out-of-sample information and/or in which the
structural model is not interpretable.

The Gibbs sampler splits the model parameters and unobserved components into blocks
that are conditional on each other in order to draw sequentially from the conditional distri-
bution. After a sufficiently large number of iterations, the algorithm produces draws from the
joint posterior distribution of all parameters and states. Thus, the credible bands around the
states combine filter and parameter uncertainty.

Gibbs Sampling

Denote the model parameters by ψ =
{
φ, θ, ω, σεπ , σεg , σηh , σηπ , σηg , σν , γ, µ

}
. The poste-

rior density of interest is p(hc, h∗, π∗, g∗, ψ|h, π, g). Given an arbitrary set of starting values
(hc{0}, h

∗
{0}, π

∗
{0}, g

∗
{0}, ψ{0}), the algorithm consists of the following blocks:

1. Sample the unobserved components (hc{1}, h
∗
{1}, π

∗
{1}, g

∗
{1}) from p(hc, h∗, π∗, g∗|h, π, g, ψ{0})

according to observation equations (2), (4) and (6) and state equations (3), (5), (7) and

In the classical ML approach filter and parameter uncertainty can be calculated, but it is not obvious how
to combine them.

See Kim and Kim (2013) for simulation based evidence that support Bayesian estimation for UC models
over ML.
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(8).

2. Sample the parameters ψ from p(ψ{1}|h, π, g, hc{1}, h
∗
{1}, π

∗
{1}, g

∗
{1}).

Sampling from these blocks can then be iterated J times and, after a sufficiently long burn-in
period B, the sequence of draws (B+1, ..., J) approximates a sample from the virtual posterior
distribution. Details on the exact implementation can be found in 2.B.

Priors

Normal priors are used for all slope parameters, while inverted gamma-2 distributions are used
for all variance parameters. As stated above, the main motivation for setting these priors is
to down-weight the likelihood function in regions of the parameter space that are inconsistent
with out-of-sample information and/or in which the structural model is not interpretable.
Previous estimates as well as economic theory give us an idea about the approximate value
of the model’s parameters. However, using previous studies to set priors should be done with
caution, particularly if these studies consider the same time period. We therefore use previous
estimates only as a rough indication for the prior means but choose the prior variance fairly
loose. Prior beliefs about the parameters and the strength of these beliefs are given in Tables
2.2-2.5. We express the strength of the priors as a fraction of the sample precision. For many
parameters the strength is set to 0.0001, implying that prior information is proportionate to
0.01% of the in-sample-information. We apply slightly more informative priors only for the
standard deviations of trend and cycle components, which are proportionate to 10% of the
sample information. For example, the prior mean of 0.7 for σηg implies that 95% of all shocks
to potential output lie between -1.4% and +1.4% per quarter. The prior belief about the
AR-coefficients imply a hump-shaped pattern of the labor market gap. Moreover, we assume
positive signs on the hours-output relation and the slope of the Phillips curve, implying that
above-trend inflation is associated with a positive output gap and a positive inflation gap.

When estimating the model, a lag order q of two is chosen, which is in line with the
literature (see e.g. Laubach, 2001; Domenech and Gomez, 2006; Basistha and Startz, 2008)
and sufficient for quarterly data.

Alternatively, we estimated the model with more than two lags. As additional lags have not found to be
significant and the results were similar, we only report results for the AR(2) model.



24 2. Estimating the Natural Rate of Hours

Table 2.2: Parameter estimates for the United States: Hours-based model

Prior Posterior

Parameter Belief Strength Mean 5% 95%

Employment φ1 1.4 0.0001 1.322 1.154 1.447
φ2 -0.6 0.0001 -0.411 -0.489 -0.318
σν 0.7 0.1 0.416 0.377 0.460
σηh 0.1 0.1 0.128 0.091 0.184

Inflation Σθi 1.0 0.0001 0.951 -0.160 2.024
σηπ 0.25 0.1 0.541 0.388 0.729
σεπ 1.0 0.0001 1.748 1.576 1.947

Output Σωi 1.5 0.0001 1.538 0.717 2.254
σηg 0.7 0.1 0.651 0.547 0.774
σεg 0.1 0.0001 0.815 0.684 0.961
γ 0.7 0.0001 0.745 0.665 0.822

2.6 Results

2.6.1 United States

Table 2.2 shows the posterior mean for all model parameters along with the 5th and 95th

percentile of the posterior distributions. The AR coefficients imply a highly persistent cyclical
component as the posterior of the sum is close to one. The estimated standard deviation for
cyclical shocks is substantially larger than for permanent shocks. The slope of the Phillips
curve is 0.95 which states that a labor market gap of one percent leads to a deviation of actual
from trend inflation of roughly the same size. However, the 90% credible interval also contains
the value of zero. The output-employment relation is somewhat stronger with a mean estimate
of 1.5. The drift in trend output, which represents the average growth rate of potential GDP,
is very close to what is commonly found in the literature and the credible interval is quite
narrow. Figure 2.4 plots the hours series, the mean estimate of the natural rate (left scale)
and the corresponding hours gap (right scale). Shaded areas indicate recessions of the U.S.
economy. The natural rate exhibits moderate long-run swings with two turning points. The
rather steep decline within the first years of the sample can be explained by a large-scale
withdrawal from prime-age men from the U.S. labor force. This withdrawal is associated with
a rapid expansion of the social security programs (see Parsons, 1980). The first turning-point
occurs in the late 1970s when the initial downward trend reversed and the natural rate started
to increase for about two decades. The continuing decrease in male labor force participation
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Figure 2.4: Natural rate and hours gap: United States
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was then offset by a growing participation of women, who increased their hours devoted to
market work rapidly until the late 1980s. This expansions slowed down in the 1990s, as
described by Juhn and Potter (2006). Despite important shifts in hours worked between
different labor market subgroups, aggregate hours appear relatively stable over the sample
(see McGrattan and Rogerson, 2004). The second turning point lies in the late 1990s when
the labor force participation of women started to stagnate and failed to offset the ongoing
decline of male participation. The impact of the Great Recession on the natural rate is rather
moderate, since the model ascribes most of the movements in the original hours series to the
cyclical component. Recently, the natural rate of hours is at roughly the same level as in
the 1970s. The estimated labor market gap of 3.5% during the trough of the last recession is
as large as never before. We compare our alternative measure of the labor market gap to a
conventionally estimated unemployment gap. In order to estimate the unemployment gap we
replaced the hours series with the U.S. civilian unemployment rate and estimated the model as
outlined in Section 2.4. Parameter estimates for the unemployment-based model are given in
Table 2.3. A visual comparison of the gap measures is given in Figure 2.5. Both gap series pick

Alternatively, we used NAIRU series from the CBO or OECD to calculate the unemployment gap. This
leads to even more pronounced differences between the hours and unemployment gap.

For a better comparison the hours gap has been multiplied by minus one. Thus, positive gaps imply that
the labor market performs below its trend level.
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Table 2.3: Parameter estimates for the United States: Unemployment-based model

Prior Posterior

Parameter Belief Strength Mean 5% 95%

Unemployment φ1 1.4 0.0001 1.437 1.273 1.570
φ2 -0.6 0.0001 -0.528 -0.612 -0.429
σν 0.7 0.1 0.355 0.321 0.393
σηu 0.1 0.1 0.105 0.081 0.142

Inflation Σθi -1.5 0.0001 -1.028 -2.247 0.139
σηπ 0.25 0.1 0.554 0.409 0.744
σεπ 1.0 0.0001 1.740 1.574 1.923

Output Σωi -1.5 0.0001 -1.595 -2.443 -0.729
σηg 0.7 0.1 0.628 0.529 0.753
σεg 0.1 0.0001 0.787 0.663 0.934
γ 0.7 0.0001 0.736 0.664 0.808

up the same business cycle turning points and match with the NBER recession dates. While
for some periods the gaps are almost identical, the hours gap moves outside the 80% credible
bound of the unemployment gap in other periods. These differences are large for the recession
in the early 1970s as well as for most of the 1990s. The hours gap implies that the deviation
from the long-run labor market level in the 1990s was larger than standard unemployment
measures suggested. Regarding the Great Recession, both gap measures peak at about the
same level but diverge during the most recent observations. While the unemployment gap is
almost zero by the end of 2013, the hours gap is still as big as 1.5%. As differences in the gaps
can lead to substantially different policy choices, one would like to have a statistical measure
for these differences. Thus, we compute the difference of the unemployment and the hours
gap in each iteration of the Gibbs sampler, resulting in an empirical distribution of the gap
difference at each quarter. In times where the intensive and the extensive margin of the labor
market become more important we find that the 90% credible interval does not include zero.

However, the fact that the credible interval contains zero in many other periods should
not be interpreted as evidence that the gaps are not different from each other. In fact, while
non-overlapping confidence bounds insure significant differences, the reverse is not true as
shown by Schenker and Gentleman (2001).

Central banks might in general be interested in the complete distribution of relevant
variables, but they will ultimately base their policy choice on some type of average value,

This is the case for the time around 1992 and 1997.
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Figure 2.5: Hours gap and unemployment gap: United States
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i.e. the mean or mode of the distribution. Thus, differences in the mean estimate can have
different policy implications. We demonstrate the policy implications of the two different gap
estimates via a Taylor-rule exercise in Section 2.7.

2.6.2 Germany

The posterior distributions of the model parameter for Germany are given in Table 2.4. In
contrast to the United States, permanent shocks to the labor market are larger, reflecting more
rigid labor market institutions. The slope of the Phillips curve is similar to the United States,
but again the credible intervals are large. The estimated production function coefficients,
which display the correlation between the output and the labor market gap, sum up to 2.5 on
average with the estimate being significantly different from zero. One notable feature of the
German economy is the lower output drift, which implies a yearly growth rate of potential
GDP of 2.2% as compared to 3% for the United States. Figure 2.6 shows the German hours
series, the mean estimate of the natural rate of hours (left scale) and the corresponding
hours gap (right scale). The natural rate follows the three decade-long decline in total hours
that ended in the mid-2000s. Since then, trend hours have picked up again and are now
back to the pre-1991 recession-level. While most of the cyclical swings in total hours appear
rather persistent, the downturn in hours during the latest recession stands out as severe but
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Table 2.4: Parameter estimates for Germany: Hours-based model

Prior Posterior

Parameter Belief Strength Mean 5% 95%

Employment φ1 1.4 0.0001 0.747 0.518 0.960
φ2 -0.6 0.0001 0.123 -0.037 0.291
µ 0 0.0001 -0.083 -0.120 -0.047
σν 0.7 0.1 0.409 0.358 0.465
σηh 0.1 0.1 0.266 0.187 0.344

Inflation Σθi 1.0 0.0001 1.176 0.178 2.212
σηπ 0.3 0.1 0.372 0.273 0.488
σεπ 1.0 0.0001 1.165 1.047 1.296

Output Σωi 1.5 0.0001 2.451 1.074 3.948
σηg 0.7 0.1 0.889 0.699 1.089
σεg 1.0 0.0001 1.229 1.039 1.451
γ 0.5 0.0001 0.541 0.427 0.656

short-lived. Almost all of the dynamics during this recession are explained by the transitory
component, while the natural rate continues to increase at pre-recession pace. In order to
compare the hours gap to the unemployment gap we re-run the model and substitute hours
by the rate of unemployment. Parameter estimates for the unemployment-based model are
given in Table 2.5. The resulting gap is compared to the hours gap in Figure 2.7. During
the first two downturns and the following recoveries the unemployment and hours gap evolve
symmetrically, implying that cyclical changes in hours worked and labor force participation
had less of a role to play. The picture is somewhat different for the last three recessions.
During the cycles in the 1990s and early 2000s the unemployment gap is larger (by as much
as 2 percentage points) than the hours gap. Conversely, the hours gap is larger during the
most recent recession, which is the result of nation-wide short-time work arrangements. Only
looking at the unemployment rate as the relevant labor market indicator would not provide
a complete picture of the state of the German labor market. This becomes even more clear
if one compares the magnitude of the two gap measures over time. The cyclical increase in
the unemployment rate during the latest recession is small compared to former periods. The
recessions in the 1980s, 1990s, and early 2000s led to much larger shifts of the unemployment
rate away from its long-run trend. In contrast, the hours gap reacts much stronger. This
finding does not come as a surprise. As outlined in Section 2.2 unemployment stayed almost
constant during the Great Recession in Germany, but aggregate hours worked declined.
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Figure 2.6: Natural rate and hours gap: Germany
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Table 2.5: Parameter estimates for Germany: Unemployment-based model

Prior Posterior

Parameter Belief Strength Mean 5% 95%

Unemployment φ1 1.4 0.0001 0.971 0.657 1.258
φ2 -0.6 0.0001 -0.083 -0.338 0.180
µ 0 0.0001 0.032 0.006 0.058
σν 0.7 0.1 0.349 0.308 0.395
σηu 0.1 0.1 0.182 0.118 0.271

Inflation Σθi -1.5 0.0001 -0.713 -2.140 0.675
σηπ 0.3 0.1 0.391 0.285 0.525
σεπ 1.0 0.0001 1.251 1.116 1.402

Output Σωi -1.5 0.0001 -1.731 -3.806 0.319
σηg 0.7 0.1 0.962 0.770 1.177
σεg 1.0 0.0001 1.395 1.176 1.650
γ 0.5 0.0001 0.532 0.405 0.655
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Figure 2.7: Hours gap and unemployment gap: Germany
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2.7 An hours-based Taylor rule

In a seminal paper, Taylor (1993) argued that changes in the federal funds rate (FFR) can
be explained by a simple policy rule. According to this rule, central bankers set the nominal
interest rate as a reaction to deviations of inflation from the inflation target and deviations
of output from potential output. Given the assumption of a constant inflation target and a
constant equilibrium real-interest rate, such a rule can be estimated as a regression of the
FFR on a constant, some measure of inflation and a measure of the real activity gap. The
latter variable is often proxied by the unemployment gap (see e.g. Mankiw, 2001; Ball and
Moffitt, 2001; Lansing, 2006, 2008; Rudebusch, 2009, 2010).

In order to demonstrate policy implications of the hours gap, we estimate a standard
Taylor rule relationship for the United States and analyze whether the hours gap can provide
additional information to explain central bank behavior. The hours-based Taylor rule is com-
pared to an unemployment-based model using Bayes factor. The Taylor rule in a regression
equation takes the following form:

rt = β0 + β1π
PCE
t + β2gapt + εt, (2.9)

where rt is the United States FFR, πPCEt is inflation measured by Core Personal Consumption



2.7. An hours-based Taylor rule 31

Table 2.6: OLS Taylor rule estimates

Hours gap Unemployment gap

Constant β0 2.415∗∗∗ 3.269∗∗∗
Inflation β1 1.800∗∗∗ 1.805∗∗∗
Gap β2 1.676∗∗∗ −1.428∗∗∗

R
2 0.88 0.65

Log-likelihood -93.31 -138.65

QA-breakpoint test on β2

Date 1994:Q2 2001:Q2
MaxF 4.41 47.66∗∗∗
ExpF 1.07 20.08∗∗∗
AveF 1.69 13.30∗∗∗

∗ ∗ ∗ denote significance at the 1% level.

Expenditure, gapt is either the hours or unemployment gap estimated in Section 2.6.1, and εt
is an i.i.d. error term. We run the regression using OLS for data from 1987:Q1 to 2007:Q4,
i.e. we choose the same starting date as Taylor, but extend the sample just until the start
of the Great Recession. The estimated coefficients are given in Table 2.6. All coefficients are
statistically significant and have the expected sign, i.e. the FED raises the target rate when
the labor market is above its natural level. This is the case for negative unemployment gaps or
positive hours gaps. The estimated coefficients for the unemployment based rule are similar to
values typically found in the literature. For example, Rudebusch (2009) estimates an inflation
coefficient of 1.3 and an unemployment gap coefficient of −2.0 while Ball and Moffitt (2001)
report the inflation coefficient to range between 1.3 and 2.0 and the gap coefficient between
−1.7 and −2.0. Importantly, the hours based Taylor rule has considerable higher explanatory
power regarding the FED policy with an adjusted R2 of 0.88 compared to 0.65 when the
unemployment gap is used.

Finally, we test whether the hours gap outperforms the unemployment gap in the Taylor
rule. The two models are compared using Bayes factor. Specifically, we denote the hours
based Taylor rule as model M1 and the unemployment gap based Taylor rule as model M2.
We follow Kass and Raftery (1995) and use the Schwarz criterion to approximate the (log)

We do not include more recent observations as we would have to deal with the zero lower bound in our
analysis. Moreover, we estimated the same equation with a smaller sample starting in 1995, which led to very
similar results.
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Figure 2.8: Taylor rule estimates
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Bayes factor given by

logB12 ≈ ll(D|M1)− ll(D|M2)− 1
2(d1 − d2) log(n), (2.10)

where ll denotes the maximum of the log-likelihood function, d the number of parameters, and
n the sample size. When we evaluate the hours-based model, M1, against the unemployment-
based model, M2, we find 2 × logB12 = 90.7. According to Kass and Raftery (1995), any
value greater than 10 represents strong evidence against the alternative model. Thus, the
Taylor rule with the hours gap is the model favored by the data.

The better fit of the hours based rule is visible in Figure 2.8, which shows the FFR along
with the fitted series from both Taylor rules. The vertical dashed line marks the end of the
sample, hence observations right from this line shed light on the policy implications of both
rules during the recent crisis and recovery. We emphasize that the hours gap based rule
performs superior in explaining monetary policy during most of the 1990s and 2000s. The

Bayes factor is a ratio of marginal likelihoods which are often difficult to calculate. In many cases, the
marginal likelihood may not have a closed form solution.

In order to check the robustness of this result, we estimated the Taylor rule using the Gibbs sampler with
uninformative priors and calculated Bayes factor directly via the marginal likelihood as described in Chib
(1995). We find that 2× logB12 ≈ 93, confirming the results based on the Schwarz criterion.
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unemployment gap based rule leads to substantially lower rates between 1994 and 2000 and
higher rates for the period 2001 to 2008. This is in fact not new to the literature: Rudebusch
(2006) estimates a simple Taylor rule model for 1987:Q4-2004:Q4 and finds similar deviations
between the fitted and the actual series. He corrects for this fact by adding lagged endogenous
variables. Lansing (2006) presents a Taylor rule with fixed coefficients which also leads to
lower rates during the 1990s and higher rates the early 2000s. When the coefficients are
estimated using OLS, Lansing (2008) finds that the FFR is consistently above the estimated
rule from 1995 to 1998 and below the rule from 2003 to 2008. Adding stock market variables
leads to a better fitting rule. Similar findings on the classic Taylor rule are presented by
Orphanides (2003) as well as Rudebusch (2009).

Large deviations from the policy rule could also point to non-linearities in the form of
parameter instability. Lee, Morley, and Shields (2015) estimate a “Meta-Taylor rule” via
Bayesian model averaging techniques, where the weights on inflation and the output gap are
allowed to change over time. The authors report a doubling of the gap coefficient for the
mid-Greenspan era that started in 1994. This is seen as the result of the central bank’s desire
to avoid overheating of the economy. However, parameter stability can be restored by using
the hours gap as a slack measure. We perform a Quandt-Andrews breakpoint test on the
gap coefficient for one single break at an unknown point in time. Results are given in the
lower half of Table 2.8. The null hypothesis of no break is rejected for the unemployment
gap based rule. Results point to a significant change in the reaction of the central bank to
unemployment deviations in 2001. For the hours gap based rule the null cannot be rejected
at the usual significance levels.

A Taylor rule with the hours gap as the relevant measure of real activity does not suffer
from parameter instability as the unemployment gap based rule does. Measuring labor market
slack not only along the employment margin, but along the intensive margin helps to explain
central bank behavior even on the basis on a simple two-variable Taylor rule.

Additional evidence in favor of the hours gap as an alternative indicator is given by the
performance of the two rules during the recent crisis and recovery. Both series fail terribly
in explaining the FFR during the recession, as the FED hit the zero lower bound (ZLB).
However, since the end of 2011 the unemployment gap based rule would have called for

In principal, these deviations could also be driven by the fact that our model for estimating unemploy-
ment gap is misspecified. Therefore, we ran an alternative Taylor regression and replaced our model-based
unemployment gap with the official CBO gap. However, the fitted series are almost identical and results are
not reported. We conclude that the deviations of the FFR from the unemployment-based rule are driven by
factors not captured by the unemployment gap.

A Bai-Perron test for an unknown number of breaks cannot reject the null of no break for the hours-based
rule, but confirms a significant breaks for the unemployment-based rule in 2001.
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monetary tightening while the hours gap based rule still favors accommodative policies. In
2013:Q4 both rules differ by about 2.5 percentage points, which is tremendous in central bank
terms. We notice that this number should be interpreted with caution in the presence of
the ZLB, as important non-linearities may arise. However, the fact that both rules differ in
the sign of the desired policy rate is already revealing. We take the Taylor rule exercise as
evidence that central banks in fact consider more measures than the unemployment rate when
evaluating the state of the labor market. As James Bullard (2013), President and CEO of the
Federal Reserve Bank of St. Louis, explained in January 2013:

“Although some focus on the unemployment rate, it is only one aspect of the labor
market. By itself, this indicator is an incomplete measure of overall labor-market
health. [...] Along with payroll employment and the unemployment rate, the FOMC
monitors the labor force participation rate, which has been a very important factor
in recent years. [...] Changing practices in labor markets could bring more people
into part-time and temporary work; from that point of view, hours might be a better
indicator of the state of the labor market than simply counting the number of jobs.”

2.8 Conclusion

This paper argues that due to changes in the adjustment process to shocks of key labor market
variables, the unemployment rate does not capture all important dimensions of the aggregated
labor market. We propose the hours rate as an alternative indicator which takes into account
adjustments along the intensive margin and is robust to changes along the extensive margin.
The natural rate of hours and the corresponding hours gap is estimated from a multivariate
unobserved components model for the United States and Germany. We utilize additional
information contained in inflation and output in order to reduce the uncertainty around the
natural rate estimate. A Phillips curve is used to derive the amount of hours worked at which
inflation stabilizes. The hours gap is linked to the output gap via a reduced form production
function equation.

For both countries the natural rate of hours evolves smoothly and picks up long-run trends
in employment. The estimated labor market gaps are very persistent and follow the usual
business cycle turning points. Results for Germany point to a strong impact of the recent
crisis on the labor market. The widespread use of short-time work arrangements, concealed
by a relatively stable unemployment rate, is picked up as a cyclical drop in hours. For the
United States, we find that the labor market gap due to the crisis is severe, although our
model assigns most of it to cyclical and not structural factors.
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We demonstrate the policy implications of our findings via a Taylor rule estimation. A
policy rule based on the hours gap as the relevant labor market indicator outperforms an
unemployment gap based rule in explaining the FED. Bayesian model comparison favors the
hours gap based model. Depending on whether the unemployment or the hours gap is taken
into account, policy rules give very different advice on whether to end expansionary monetary
policy in the United States.
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Appendices

2.A Data description

All data are on quarterly basis. In case seasonal adjusted series were not available, we followed
the X-12-ARIMA approach.

• Hours worked: The United States data on average hours worked are taken from the
Bureau of Labor Statistics, BLS (via Datastream, code: USHKIP..O). For Germany
we make use of a dataset provided by Ohanian and Raffo (2012) and add more recent
data provided by the Federal Statistical Office (via Datastream, code: BDHOURPBQ).

• Employment: Data on United States civilian employment are taken from the BLS (via
Datastream, code: USEMPTOTO). Data on German employment are collected from
the German Bundesbank (via Datastream, code: BDUSBA14O).

• Population at working age: Data on United States civilian non-institutional population
are taken from the BLS (via Datastream, code: USCV....P ). For Germany we use
population data provided by Ohanian and Raffo (2012) and add more recent data from
OECD Main Economic Indicators (via Datastream, code: BDQLFT32P ).

• Inflation: We use the Consumer Price Index from the BLS (via FRED, code: CPI-
AUCSL). German data are taken from the OECD’s Main Economic Indicators (via
Datastream, code: BDQCP009F).

• Gross Domestic Product: Real GDP data for the United States are taken from the
U.S. Bureau of Economic Analysis (via FRED, code: GDPC1 ). In case of Germany,
data are taken from the IMF International Financial Statistics (via Datastream, code:
BDI99BVRG)

• Unemployment rate: The United States civilian unemployment rates are taken from
the BLS (via Datastream, code: USUN%TOTQ). The German unemployment rates are
taken from the OECDMain Economic Indicators (via Datastream, code: BDQLRT28Q).
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• Recession dates: For the United States the peak and trough dates are defined by the
NBER Business Cycle Dating Committee. For Germany we use dates from the Economic
Cycle Research Institute (ECRI).

2.B Gibbs sampling algorithm

In this paper we follow a Bayesian approach and apply a Gibbs sampling procedure to estimate
our model. This appendix gives details of the algorithm, which relies on step-wise sampling of
the unobserved states (h∗, π∗, y∗, hc) and the model’s hyperparameters (φ, θ, ω, σεπ , σεg , σηh , σηπ ,
σηg , σν , γ, µ). The model’s general state space form is given by

yt = Zαt + εt, εt ∼ i.i.d.N(0, H), (2.11)

αt = d+ Tαt−1 +Kηt, ηt ∼ i.i.d.N(0, Q), (2.12)

where yt is a p×1 vector of observations and αt an unobservedm×1 state vector. The matrices
Z, T , K, H, Q and the vector d are assumed to be known (conditioned upon) and the error
terms εt and ηt are assumed to be serially uncorrelated and independent of each other at all
points in time. As equations (2.11)-(2.12) constitute a linear Gaussian state space model, the
unknown state variables in αt can be filtered using the standard Kalman filter. Within the
classical approach the hyperparameters could be estimated via Maximum likelihood based on
a prediction error decomposition. As these estimates are taken as true values when filtering
the unobserved components, confidence intervals do not reflect parameter uncertainty, but
only filtering uncertainty. The Bayesian approach allows for jointly estimating the states and
hyperparameters and, thus, leads to credible intervals which take into account both sources of
uncertainty. Given an initial guess for the hyperparameters, we start by filtering and sampling
the unobserved components.



2.B. Gibbs sampling algorithm 43

Block 1: Filtering and sampling the unobserved components

The model given by eq. (2) - (8) can be cast into the following state space form:

yt︷ ︸︸ ︷
ht

πt

gt

 =

Z︷ ︸︸ ︷
1 0 0 1 0
0 1 0 θ1 θ2

0 0 1 ω1 ω2



αt︷ ︸︸ ︷

h∗t

π∗t

g∗t

hct

hct−1


+

εt︷ ︸︸ ︷
0
επt

εgt

, (2.13)

αt︷ ︸︸ ︷

h∗t

π∗t

g∗t

hct

hct−1


=

d︷ ︸︸ ︷

µ

0
γ

0
0


+

T︷ ︸︸ ︷

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 φ1 φ2

0 0 0 1 0



αt−1︷ ︸︸ ︷

h∗t−1

π∗t−1

g∗t−1

hct−1

hct−2


+

K︷ ︸︸ ︷

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



ηt︷ ︸︸ ︷
ηht

ηπt

ηgt

νt

, (2.14)

with H =


0 0 0
0 σ2

επ 0
0 0 σ2

εg

 and Q =


σ2
ηh

0 0 0
0 σ2

ηπ 0 0
0 0 σ2

ηg 0
0 0 0 σ2

ν

.
We make use of the standard Kalman filter to compute the vector of unobserved compo-

nents at every point in time. Initial values are given by the unconditional distribution in case
of the stationary component and are set to arbitrary values with large initial variance in case
of non-stationary components. The state vector αt is sampled from its conditional distribution
via the multimove Gibbs sampler of Shephard (1994) and Carter and Kohn (1996).

Block 2: Sampling the hyperparameters

Conditioning on the unobserved components sampled in Block 1, the hyperparameters can be
expressed as unknown parameters in the standard static linear regression model

yt = b′xt + ut, ut ∼ N
(
0, σ2

)
, (2.15)

where xt and b are (`× 1) vectors. The matrix version of (2.15) is y = Xb + u with obvious
notations X (T × ` matrix), y and u (T × 1 vectors). We follow the approach outlined
in Bauwens, Lubrano, and Richard (1999) (pages 56-61). Prior information is represented
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through the following normal-inverted gamma-2 density

ϕ
(
b, σ2

)
= fNIg

(
b, σ2|b0,M0, s0, V0

)
, (2.16)

with the prior information being summarized by the hyperparameters (b0,m0, σ
2
0, v0). First, b0

is the prior belief about the coefficient vector b with corresponding prior strength M0 = m0M

such thatm0 is defined as being the prior precision proportional to the sample precision matrix
M = X ′X. Second, σ2

0 is the prior belief about the error variance σ2, such that s0 = σ2
0V0

is the prior belief about the residual sum of squares s with V0 being the corresponding prior
strength defined as V0 = v0T where v0 is the prior degrees of freedom proportional to the
sample size T .

The posterior density of b and σ2 in the linear regression model (2.15) with prior density
(2.16) is a normal-inverted gamma-2 distribution

ϕ
(
b, σ2|y,X

)
= fNIg

(
b, σ2|b∗,M∗, s∗, V∗

)
, (2.17)

with hyperparameters defined by

M∗ = M0 +X ′X,

b∗ = M−1
∗

(
M0b0 +X ′Xb̂

)
,

s∗ = s0 + s+
(
b0 − b̂

)′ (
M−1

0 +
(
X ′X

)−1
)−1 (

b0 − b̂
)
,

V∗ = V0 + T,

where b̂ is the LS estimator for b in (2.15). Sampling b and σ2 from the posterior distribution
(2.17) can then be done separately from

b ∼ N
(
b∗,

s∗
V∗ − 2M

−1
∗

)
, (2.18)

σ2 ∼ IG2 (V∗, s∗) . (2.19)

If X = [.], the posterior density in (2.17) reduces to

ϕ
(
σ2|y,X

)
= fIg

(
σ2|s∗, V∗

)
, (2.20)

with s∗ = s0 + s and V∗ as defined above.
The hyperparameters can now be sampled as:

• Obtain the posterior distribution of γ and σ2
ηg in (2.5) conditioning on g∗t by using (2.17)
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setting yt = g∗t − g∗t−1 and xt = 1 in (2.15). Next, sample γ and σ2
ηg from (2.18) and

(2.19) respectively.

• Obtain the posterior distribution of φ and σ2
ν in (2.8) conditioning on hct by using (2.17)

setting yt = hct and xt =
[
hct−1, h

c
t−2
]
in (2.15). Next, sample φ and σ2

ν from (2.18) and
(2.19) respectively. Resample φ and σ2

ν in case the coefficients imply a non-stationary
process.

• Obtain the posterior distribution of µ and σ2
ηh in (2.7) conditioning on h∗t by using (2.17)

setting yt = h∗t − h∗t−1 and xt = 1 in (2.15). Next, sample σ2
ηh from (2.18) and (2.19)

respectively. For the model with µ = 0 set xt = [.] and sample σ2
ηh from (2.19).

• Obtain the posterior distribution of σ2
ηπ in (2.3) conditioning on π∗t by using (2.20)

setting yt = π∗t − π∗t−1 and xt = [.] in (2.15). Next, sample σ2
ηπ from (2.19).

• Obtain the posterior distribution of θ and σ2
επ in (2.2) conditioning on π∗t and hct by

using (2.17) setting yt = πt − π∗t and xt =
[
hct , h

c
t−1
]
in (2.15). Next, sample θ and σ2

επ

from (2.18) and (2.19) respectively.

• Obtain the posterior distribution of ω and σ2
εg in (2.4) conditioning on g∗t and hct by

using (2.17) setting yt = gt − g∗t and xt =
[
hct , h

c
t−1
]
in (2.15). Next, sample ω and σ2

εg

from (2.18) and (2.19) respectively.

We repeat these steps iteratively 10,000 times and discard the first 5,000 draws as a burn-in
sample.
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3.1 Introduction

Over the last decades the U.S. economy has experienced a number of notable structural
changes. Well documented are the productivity slowdown in the early 1970s and the reduc-
tion in the volatility of key macroeconomic variables in the mid 1980s, known as the Great
Moderation. More recently, due to the experience of the 2001 recession and the Great Reces-
sion, the interest in the academic literature in analyzing structural changes has been renewed.
In particular, during the Great Recession, with unemployment being very high, most Phillip
curve estimates imply that prices should have fallen much more than what the actual data
show. This case of missing deflation has cast doubt on the stability of the Phillips curve.
Moreover, in the aftermath of the last two recessions, job growth was substantially lower than
what the level of output growth would have implied. These episodes, known as ‘jobless re-
coveries’, have let many observers to conclude that the trade-off between unemployment and
output has changed. Finally, the severeness of the Great Recession and the related increases
in the volatility of key macroeconomic variables may herald the end of the Great Moderation.

A growing literature investigates time variation in macroeconomic relationships. First,
the necessity for empirical models to account for changes in the volatility of macroeconomic
variables has been emphasized by Hamilton (2008) and Fernández-Villaverde and Rubio-
Ramírez (2010), the former showing that not accounting for volatility changes can lead to
biased estimates and false hypothesis testing. Second, regarding the relation between inflation
and real economic activity, the literature has collected growing evidence for a change in the
slope of the Phillips curve. Ball and Mazumder (2011) forecast inflation over the period
2008-2010 using backward-looking Phillips curve estimates for the period 1960-2007. The
model predicts substantial deflation, which is not in line with the slightly positive actual
inflation rate observed over this period. Hall (2011) also emphasizes the case of missing
deflation during the Great Recession and notes that inflation remained remarkably stable
at a small but positive rate despite the large and persistent slack in real activity. Roberts
(2006) analyzes data prior to the Great recession and finds that the Phillips curve slope
of a reduced-form equation for the U.S. fell by nearly half between the periods 1960-1983
and 1984-2002. Similar results can be found in Atkeson and Ohanian (2001) and Mishkin
(2007). Third, regarding the relationship between unemployment and real economic activity,
a related literature investigates the stability of Okun’s Law. Daly, Hobijn, Şahin, and Valletta
(2012) note that if Okun’s Law had held in 2009, the U.S. unemployment rate would only
have risen by about half of the actual rise. Owyang and Sekhposyan (2012) conclude that the
relation between unemployment and output fluctuations changes significantly during the most
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recent recessions. Lee (2000) reports international evidence for structural breaks in the Okun
coefficient during the 1970s. Contradicting evidence is given by Ball, Leigh, and Loungani
(2013), who find that Okun’s Law is a ‘strong and stable’ relationship.

Measuring these various types of time variation is challenging as it relates to variables that
are not directly observed. The Phillips curve links inflation to expected inflation and to a
measure for the deviation of real economic activity from its potential, such as the output gap
or the unemployment gap. These determinants are unobserved. The same argument holds
for Okun’s Law which models the interaction between the output gap and the unemployment
gap. To proxy these unobserved factors, many studies rely on purely statistical trend-cycle
decompositions based on filtering techniques such as the Hodrick-Prescott filter or use external
estimates provided by a statistical bureau such as the Congressional Budget Office’s (CBO)
series for the U.S. economy. The first approach suffers from a lack of structural interpretation
while the second entails the risk of falling into an endogeneity trap. The CBO for instance
follows a growth model for calculating potential output thereby relying on constant values for
the slope of the Phillips curve and the Okun’s Law coefficient. As such, these slopes and their
stability are artificially imposed on the data from the outset.

In this paper, we set up and estimate a multivariate unobserved components model for the
U.S. economy to jointly estimate a time-varying NAIRU, trend inflation, potential output, and
the respective gaps. Important model parameters are allowed to change over time. Specifically,
we allow the forward-looking New Keynesian Phillips curve slope, the Okun’s Law coefficient,
the growth rate of potential output and the variances of the innovations to all unobserved
components to vary over time.

The model in our paper is most closely related to the following recent papers. First, Stella
and Stock (2012) estimate the time-varying trend inflation and the NAIRU using a bivariate
unobserved components (UC) model with stochastic volatility (SV). While the Phillips curve
slope is treated as constant in the forward-looking inflation equation, the implied backward-
looking Philips curve has a time-varying slope parameter which is found to vary considerably.
Second, Chan, Koop, and Potter (2015) build on this model and use a bounded random
walk specification for the trend components. However, their analysis can be understood as a
forecasting exercise as less emphasis is put on time variation in the parameters. They stick
to a bivariate model of inflation and unemployment. Third, Kim, Manopimoke, and Nelson
(2014) allow for two structural breaks in the slope of the U.S. New Keynesian Phillips curve.
The sensitivity of inflation to the CBO output gap is found to be small but significant prior

An alternative version of Okun’s Law relates the change in the unemployment rate to output growth.
This framework, however, rests on the restrictive assumption of a constant natural rate of unemployment and
a constant growth rate of potential output.
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to 1971, while being insignificant from 1971 onwards.

We contribute to this literature in the following way. Our unrestricted model nests impor-
tant empirical models with time-varying parameters. In contrast to the existing literature,
we start from a more general framework which allows most of the model’s parameters to vary
according to a random walk process. This allows for a very flexible evolution over time. We
then select a parsimonious model by testing the relevance of the estimated time variation in
each of the model’s components. To this end, we use the Bayesian stochastic model specifi-
cation search for state space models as outlined in Frühwirth-Schnatter and Wagner (2010).
The Bayesian approach is well-suited to deal with the non-regular testing problem of deciding
whether a component is fixed or time-varying. To the best of our knowledge, this is the first
study to allow and explicitely test for a wide range of time-varying parameters in a macroe-
conomic time-series model. A such, our results will provide new evidence on the form and the
degree of structural change in the U.S. economy.

Our main findings can be summarized as follows. First, the correlation between cyclical
unemployment and cyclical output varies over time. The responsiveness of unemployment to
output appears to be more pronounced in recessions. Second, the slope of the Phillips curve is
constant over time. This finding is robust over a forward and backward-looking specification.
Third, the growth rate of potential output has decreased from a quarterly growth rate of
1% in the 1960s to 0.4% in the 2000s. The most substantial decreases are observed over the
1970s and 2000s. Fourth, shocks to the output gap and to the transitory inflation component
exhibit stochastic volatility while shocks to the NAIRU, potential output and trend inflation
appear to be homoskedastic.

The remainder of the paper is structured as follows: The next section introduces our
empirical model and explains how we test for time variation. Results are presented in section
3.3. In section 3.4 we perform several robustness checks and discuss model extensions. The
final section concludes.

3.2 Empirical approach

This section explains our econometric approach. First, it lays out a multivariate unobserved
components model with time varying parameters and stochastic volatilities, designed to fit
U.S. macroeconomic data. Second, the Bayesian stochastic model selection approach is ex-
plained followed by a description of the Markov Chain Monte Carlo (MCMC) algorithm
employed to estimate the model.
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3.2.1 An unobserved components model

Output: trend/cycle decomposition

Consider a decomposition of real GDP yt into a stationary cycle yct and a non-stationary trend
yτt referred to as potential output

yt = yτt + yct + εyt , εyt ∼ i.i.d.N (0, σ2
ε,y), (3.1)

where εyt is included to capture measurement error and non-persistent shocks. Potential
output is modeled as a random walk process with stochastic drift κt

yτt+1 = κt + yτt + exp {hyt }ψ
y
t , ψyt ∼ i.i.d.N (0, 1), (3.2)

κt+1 = κt + ψκt , ψκt ∼ i.i.d.N (0, σ2
κ). (3.3)

The stochastic drift is included to capture permanent changes in the growth rate of potential
output. The productivity slowdown in the early 1970s for instance is likely to have lowered
the growth rate of potential output. Demographic changes as well as potential long-run effects
of the Great Recession are other potential drivers of κt. The output gap yct is modeled as a
stationary autoregressive (AR) process of order two

yct+1 = ρ1y
c
t + ρ2y

c
t−1 + exp {hct}ψct , ψct ∼ i.i.d.N (0, 1). (3.4)

This AR(2) specification allows the output gap to exhibit the standard hump-shaped pattern.
The stochastic volatility terms exp {hyt } and exp {hct} in the innovations to the trend and
the cycle are included to account for changes in macroeconomic volatility such as the Great
Moderation or the recent increase in volatility due to the financial crises. These components
are specified below.

Inflation: a time-varying New-Keynesian Phillips curve

In contemporary macroeconomic models, the New-Keynesian Phillips Curve (NKPC) relates
actual inflation to expected inflation and some measure for excess demand. It can be derived
from a micro-founded theoretical model with Calvo (1983) pricing in which firms seek to set
their price as a mark-up over marginal costs but are only randomly allowed to change their
prices. However, in its pristine form the empirical performance of the NKPC is disappointing
as the slope of the NKPC is often found to be small and insignificant. Moreover, it fails to
match important stylized facts of inflation dynamics. The purely forward-looking specification
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implies that current inflation is the discounted present value of expected future activity gaps.
As the activity gap is a stationary process inflation should be stationary as well. This is at
odds with the observed high degree of persistence in inflation, which is typically found to be
non-stationary. Fuhrer and Moore (1995), Mankiw (2001), Rudd and Whelan (2005, 2007)
and Mavroeidis, Plagborg-Møller, and Stock (2014) discuss these failures in greater detail.

An appealing way to match the NKPC with the data is the introduction of stochastic trend
inflation as in Kim, Manopimoke, and Nelson (2014); Morley, Piger, and Rasche (2015); Stella
and Stock (2012). Cogley and Sbordone (2008) derive a NKPC that allows for a time-varying
trend inflation rate. By incorporating trend inflation their purely forward-looking NKPC
fits the data well without the need to include backward-looking components. We follow this
literature and use an inflation gap NKPC in which inflation is modeled in deviation from
trend inflation πτt and the output gap is used as a measure of real activity, i.e.

πt − πτt = ωEt(πt+1 − πτt+1) + βπt y
c
t + ζ̃t, (3.5)

where ω is a discount factor. As shown by Beveridge and Nelson (1981), in the presence
of a zero-mean transitory component the trend component πτt equals the long-run inflation
forecast lim

h→∞
E(πt+h). Following Cogley and Sbordone (2008) and Kim, Manopimoke, and

Nelson (2014), the term ζ̃t is included to capture variation in the inflation gap that is not
explained by the conventional forward-looking NKPC. According to Mavroeidis, Plagborg-
Møller, and Stock (2014) this term can be interpreted as a combination of cost-push shocks,
such as shocks to the markup or to input (e.g. oil) prices. As this term is potentially serially
correlated, it allows for an additional source of inflation persistence not related to expectations
or real activity. Hence, our model resembles alternative hybrid NKPC models that explicitly
add lagged inflation or supply shock variables. As we want to analyze whether the slope of the
Phillips curve is time-varying we allow βπt to be a time-varying parameter. Our specification
of the Phillips curve is most closely related to that of Kim, Manopimoke, and Nelson (2014)
who allow βπt to vary using a three-state Markov switching model. Iterating equation (3.5)
forward and rearranging yields

πt = πτt + lim
j→∞

ωjEt(πt+j − πτt+j) +
∞∑
j=0

ωjEt(βπt+jyct+j) + ζt,

= πτt +
∞∑
j=0

ωjEt(βπt+jyct+j) + ζt, (3.6)

The trend may be attributed to shifts in monetary policy (see e.g. Woodford, 2008; Cogley and Sbordone,
2008; Goodfriend and King, 2012).
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with ζt =
∑∞
j=0Et

(
ζ̃t+j

)
and lim

j→∞
ωj = 0. Equation (3.6) implies that inflation has a

trend/cycle representation, i.e.

πt = πτt + πct + επt , επt ∼ i.i.d.N (0, σ2
ε,π), (3.7)

where πct is the inflation gap given by

πct =
∞∑
j=0

ωjEt(βπt+jyct+j) + ζt. (3.8)

The idiosyncratic term επt is added in equation (3.7) to capture measurement error and non-
persistent shocks. Trend inflation πτt is modeled as a driftless random walk

πτt+1 = πτt + exp {hπt }ψπt , ψπt ∼ i.i.d.N (0, 1), (3.9)

where the innovations ψπt are allowed to exhibit stochastic volatility to capture changes in
the dynamics of long-run inflation, possibly driven by different monetary policy regimes (see
e.g. Stock and Watson, 2007, for a similar specification). The slope of the Phillips curve βπt
is allowed to change over time according to a random walk

βπt+1 = βπt + ηπt , ηπt ∼ i.i.d.N (0, σ2
η,π). (3.10)

We model the temporary inflation component ζt in equation (3.8) as an AR(1) process

ζt+1 = %ζt + exp
{
hζt

}
ψζt , ψζt ∼ i.i.d.N (0, 1). (3.11)

Given the DGPs of yct and βπt in equations (3.4) and (3.10) and the assumption that ψct and ηπt
are mutually uncorrelated error terms, the output gap term

∑∞
j=0 ω

jEt(βπt+jyct+j) in equation
(3.8) can be expressed as

πct = βπt

[
1 0

] 1 0
0 1

− ω
 ρ1 ρ2

1 0

−1  yct

yct−1

 , (3.12)

= βπt
1− ωρ1 − ω2ρ2

(
yct + ωρ2y

c
t−1
)
. (3.13)

Hence, the model for inflation in equation (3.7) can be rewritten as

πt = πτt + βπt ỹ
c
t + ζt + επt , (3.14)
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where ỹct = 1
1−ωρ1−ω2ρ2

(
yct + ωρ2y

c
t−1
)
.

Unemployment: a time-varying Okun’s Law relation

We assume that the unemployment rate ut has the following trend/cycle representation

ut = uτt + βut y
c
t + εut , εut ∼ i.i.d.N (0, σ2

ε,u), (3.15)

where εut captures measurement error and non-persistent shocks. Following, among others,
Staiger, Stock, and Watson (1997) and Laubach (2001) we model trend unemployment uτt as
a random walk process

uτt+1 = uτt + exp {hut }ψut , ψut ∼ i.i.d.N (0, 1). (3.16)

We give this component a NAIRU interpretation, i.e. as long as the observed unemployment
rate equals this long-run trend, no inflationary pressure emanates from the labor market.
Again, we allow for stochastic volatility in the trend component so that the variance of
permanent shocks to the labor market can differ over time. The strength of Okun’s Law βut

is allowed to change over time according to a random walk process

βut+1 = βut + ηut , ηut ∼ i.i.d.N (0, σ2
η,u). (3.17)

Stochastic volatilities

All stochastic volatilities are modeled as random walks

hkt+1 = hkt + γkt , γkt ∼ i.i.d.N (0, σ2
γ,k), (3.18)

for k = y, π, u, c, ζ. A key feature of the stochastic volatility components exp
{
hkt

}
ψkt is that

they are nonlinear but can be transformed into linear components by taking the logarithm of
their squares

ln
(
exp

{
hkt

}
ψkt

)2
= 2hkt + ln

(
ψkt

)2
, (3.19)

where ln
(
ψkt

)2
is log-chi-square distributed with expected value −1.2704 and variance 4.93.

Following Kim, Shephard, and Chib (1998), we approximate the linear model in (3.19) by an
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offset mixture time series model as

gkt = 2hkt + εkt , (3.20)

where gkt = ln
((

exp
{
hkt

}
ψkt

)2
+ c

)
with c = .001 being an offset constant, and the distri-

bution of εkt being the following mixture of normals

f
(
εkt

)
=

M∑
i=1

qifN
(
εkt |mi − 1.2704, ν2

i

)
, (3.21)

with component probabilities qi, means mi − 1.2704 and variances ν2
i . Equivalently, this

mixture density can be written in terms of the component indicator variable ιkt as

εkt |
(
ιkt = i

)
∼ N

(
mi − 1.2704, ν2

i

)
, with Pr

(
ιkt = i

)
= qi. (3.22)

Following Omori, Chib, Shephard, and Nakajima (2007), we use a mixture of M = 10 normal
distributions to make the approximation to the log-chi-square distribution sufficiently good.
Values for {qi,mi, ν

2
i } are provided by Omori, Chib, Shephard, and Nakajima in their Table

1.

3.2.2 Stochastic model specification search

The empirical model outlined in the Subsection 3.2.1 nests a number of model specifications
used in the recent literature. The univariate unobserved components model for inflation ex-
amined by Stock and Watson (2007) can for instance be obtained by restricting βπt , % and σ2

ε,π

to zero. The bivariate unobserved components specification for inflation and unemployment
of Stella and Stock (2012) is nested when we replace the output gap by the unemployment
gap, set % and σ2

ε,π to zero and restrict βπt to be constant.
A key question therefore is which model components are relevant and which can be ex-

cluded. However, model specification for state space models is a difficult task as this leads
to non-regular testing problems. Consider for instance the question whether the slope of the
Phillips curve should be modeled as constant or time-varying. This implies testing σ2

η,π = 0
against σ2

η,π > 0, which is a non-regular testing problem as the null hypothesis lies on the
boundary of the parameter space. A similar problem arises when testing whether the tempo-
rary component ζt should be included in equation (3.14) or whether the stochastic volatilities
are relevant.

In principle we could derive the reduced form VARMA representation of our model and
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apply standard structural break tests for mean and variances. However, by testing for time-
variation in the UC model instead of the reduced form VARMA model, we can distinguish
between changes in the volatilities to permanent versus transitory shocks. Moreover, deriving
the reduced form VARMA representation requires assumptions regarding the order of inte-
gration of all variables. However, for output the order of integration is an outcome of our
testing procedure as we allow potential output growth to be either constant or evolve as a
random walk in which case output is I(2).

As an alternative, we use a Bayesian stochastic model specification search. The Bayesian
approach is well-suited to deal with non-regular testing problems by computing posterior
probabilities for each of the candidate models. In particular, Frühwirth-Schnatter and Wagner
(2010) show how to extend Bayesian variable selection in standard regression models to state
space models. Their approach relies on a non-centered parameterization of the state space
model in which (i) binary stochastic indicators for each of the model components are sampled
together with the parameters and (ii) the standard inverse Gamma prior for the variances
of innovations to the components is replaced by a Gaussian prior centered at zero for the
square root of these variances. The exact implementation applied to our state space model is
outlined below.

Non-centered parameterization

Frühwirth-Schnatter and Wagner (2010) argue that a first piece of information on the hypoth-
esis whether a variance parameter in a state space model is zero or not can be obtained by
considering a non-centered parameterization. For the variances of the innovations to the slope
of the Phillips curve and Okun’s Law, i.e. σ2

η,π and σ2
η,u, this implies rearranging equations

(3.10) and (3.17) to

βjt+1 = βj0 + ση,j β̃
j
t+1, (3.23)

with β̃jt+1 = β̃jt + η̃jt , β̃j0 = 0, η̃jt ∼ i.i.d.N (0, 1), (3.24)

for j = π, u and where βj0 is the initial value of the level of βjt . A crucial aspect of the
non-centered parameterization is that it is not identified, i.e. the signs of ση,j and β̃jt can be
changed by multiplying both with -1 without changing their product in equation (3.23). As a
result of the non-identification, the likelihood function is symmetric around 0 along the ση,j
dimension and therefore multimodal. If the slope of the Phillips curve is time-varying, i.e.
σ2
η,j > 0, then the likelihood function will concentrate around the two modes −ση,j and ση,j .

For σ2
η,j = 0 the likelihood function will become unimodal around zero. As such, allowing for
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non-identification of ση,j provides useful information on whether σ2
η,j > 0.

Likewise, the non-centered parameterization of the stochastic volatility terms in equation
(3.18) is given by

hkt+1 = hk0 + σγ,kh̃
k
t+1, (3.25)

with h̃kt+1 = h̃kt + γ̃kt , h̃k0 = 0, γ̃kt ∼ i.i.d.N (0, 1), (3.26)

for k = y, π, u, c, ζ and where hk0 = 0 is the initial value of the level of hkt .
Finally, the non-centered parameterization of the time-varying drift in equation (3.3) is

given by

κt+1 = κ0 + σκκ̃t+1, (3.27)

with κ̃t+1 = κ̃t + ψ̃κt , κ̃0 = 0, ψ̃κt ∼ i.i.d.N (0, 1), (3.28)

and where κ0 = 0 is the initial value of the level of κt.

Parsimonious specification

A second advantage of the non-centered parameterization is that when e.g. σ2
η,π = 0 the

transformed component β̃πt , in contrast to βt, does not degenerate to the time-invariant slope
of the Phillips curve as this is now represented by βπ0 . As such, the question whether the
slopes of the Phillips curve and Okun’s Law are time-varying or not can be expressed as a
variable selection problem in equation (3.23). To this aim Frühwirth-Schnatter and Wagner
(2010) introduce the parsimonious specification

βjt = βj0 + δjση,j β̃
j
t , (3.29)

for j = π, u and where δj is a binary indicator which is either 0 or 1. If δj = 0, the component
β̃jt drops from the model such that βj0 represents the constant slope parameter. If δj = 1 then
β̃jt is included in the model and ση,j is estimated from the data. In this case βj0 is the initial
value of the slope parameter.

Likewise, the parsimonious non-centered parameterization of the stochastic volatility terms
in equation (3.25) is given by

hkt = hk0 + θkσγ,kh̃
k
t , (3.30)

for k = y, π, u, c, ζ and where θk is again a binary indicator that is either 0 or 1. If θk = 0,
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the component h̃kt drops from the model such that
(
exp{hk0}

)2
is the constant variance of ψkt .

If θk = 1 then h̃kt is included in the model and σγ,j is estimated from the data. In this case(
exp{hk0}

)2
is the initial value of the time-varying variance of ψkt .

Finally, the parsimonious non-centered parameterization of the time-varying drift term in
equation (3.27) is given by

κt = κ0 + λσκκ̃t, (3.31)

where λ is a binary indicator that is either 0 or 1. If λ = 0, the component κ̃t drops from
the model such that κ0 is the constant drift in potential output. If λ = 1 then κ̃t is included
in the model and σκ is estimated from the data. In this case κ0 is the initial value of the
time-varying drift κt.

Collecting the binary indicators in the vectorM = (δπ, δu, θy, θπ, θu, θc, θζ , λ), each model
is indicated by a value forM, e.g. M = (0, 1, 0, 0, 0, 1, 0, 1) is a model with a constant Phillips
curve slope, a time-varying Okun’s Law coefficient, stochastic volatility in the innovations to
the output gap component, a constant variance for the innovations to the trend components
in output, inflation and unemployment as well as to the AR(1) inflation gap component and
a time-varying drift in potential output.

Gaussian prior centered at zero

Our Bayesian estimation approach requires choosing prior distributions for the model param-
eters ρ = (ρ1, ρ2), %, β0 = (βπ0 , βu0 ) and h0 = (hy0, hπ0 , hu0 , hc0, h

ζ
0), for the binary indicators

M and for the variances of the idiosyncratic factors σ2
ε =

(
σ2
ε,y, σ

2
ε,π, σ

2
ε,u

)
, the innovations

to the drift component σ2
κ, the time-varying parameters σ2

η =
(
σ2
η,π, σ

2
η,u

)
and the stochastic

volatility components σ2
γ =

(
σ2
γ,y, σ

2
γ,π, σ

2
γ,u, σ

2
γ,c, σ

2
γ,ζ

)
.

It is well-known that when using an inverse Gamma prior distribution for the variance
parameters, the choice of the shape and scale hyperparameters that define this distribution
have a strong influence on the posterior when the true value of the variance is close to zero.
More specifically, as the inverse Gamma does not have probability mass at zero, using it as
a prior distribution tends to push the posterior density away from zero. This is of particular
importance when estimating the variances of the innovations to the time-varying parameters,
to the drift in potential output and to the stochastic volatilities, as for these components
we want to decide whether they are relevant or not. A further important advantage of the
non-centered parameterization is therefore that it allows us to replace the standard inverse
Gamma prior on a variance parameter σ2 by a Gaussian prior centered at zero on σ. Centering
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the prior distribution at zero makes sense as for both σ2 = 0 and σ2 > 0, σ is symmetric
around zero. Frühwirth-Schnatter and Wagner (2010) show that, compared to using an inverse
Gamma prior for σ2, the posterior density of σ is much less sensitive to the hyperparameters
of the Gaussian distribution and is not pushed away from zero when σ2 = 0.

As such we choose a Gaussian prior distribution centered at zero for ση, σκ and σγ , which
are the standard deviations of the innovations to the time-varying parameters, to the drift
in potential output and to the stochastic volatilities. For the variances of the idiosyncratic
factors σ2

ε , which are always included in the model, we choose the standard inverse Gamma
prior distribution. For each of the model parameters in ρ, % and β we assume a normal prior
distribution. Details on the prior distributions are presented in Subsection 3.3.2 below. For
the binary indicatorsM we choose a uniform prior distribution over all combinations of the
indicators such that each model has the same prior probability, i.e. p(M) = 2−8, and each
model component has a prior probability p0 = 0.5 of being included in the model.

3.2.3 MCMC algorithm

In a standard linear Gaussian state space model, the Kalman filter can be used to filter
the unobserved states from the data and to construct the likelihood function such that the
unknown parameters can be estimated using maximum likelihood. However, the inclusion of
the time-varying parameters βπt and βut on the unobserved output gap yct and the stochastic
volatilities hkt in the state space model given in eq. (3.1) - (3.18) and the use of the stochastic
model specification search outlined in Subsection 3.2.2 imply a highly non-linear estimation
problem for which the standard approach via the Kalman filter and maximum likelihood is
not feasible. Instead we use the Gibbs sampler which is a MCMC method to simulate draws
from the intractable joint and marginal posterior distributions of the unknown parameters
and the unobserved states using only tractable conditional distributions. Intuitively, this
amounts to reducing the complex non-linear model into a sequence of blocks for subsets of
parameters/states that are tractable conditional on the other blocks in the sequence.

For notational convenience, define a state vector αt = (yτt , πτt , uτt , yct , ζt, κt), a time-varying
parameter vector βt = (βπt , βut ), a stochastic volatilities vector ht =

(
hyt , h

π
t , h

u
t , h

c
t , h

ζ
t

)
and an

indicator vector ιt =
(
ιyt , ι

π
t , ι

u
t , ι

c
t , ι

ζ
t

)
. The unknown parameters are collected in the vector

φ =
(
ρ, %, β0, σ, σ

2
ε

)
, with σ = (ση, σκ, σγ). Finally, let xt = (yt, πt, ut) be the data vector.

Stacking observations over time, we denote x = {xt}Tt=1 and similarly for α, β, h and ι.
The posterior density of interest is then given by f (α, β, h, ι, φ,M|x). Following Frühwirth-
Schnatter and Wagner (2010) our MCMC scheme is as follows:

1. Sample the binary indicators inM from f (M|α, β, h, x) marginalizing over the parame-
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ters φ and sample the unrestricted parameters in φ from f (φ|α, β, h,M, x) while setting
the restricted parameters, i.e. the elements in σ for which the corresponding component
is not included in the modelM, equal to 0.

2. Sample the trend and temporary components α from f (α|β, h, φ,M, x), the time-
varying parameters β from f (β|α, h, φ,M, x), the mixture indicators ι from f(ι|α, β, h, φ,
M, x) and the stochastic volatilities h from f (h|α, β, ι, φ,M, x).

3. Perform a random sign switch for ση,j and {β̃jt }Tt=1; for σκ and {κ̃t}Tt=1 and for σγ,k and
{h̃kt }Tt=1, e.g. ση,π and {β̃πt }Tt=1 are left unchanged with probability 0.5 while with the
same probability they are replaced by −ση,π and {−β̃πt }Tt=1.

Given an arbitrary set of starting values, sampling from these blocks is iterated J times
and, after a sufficiently long burn-in period B, the sequence of draws (B + 1, ..., J) approx-
imates a sample from the virtual posterior distribution f (α, β, h, ι, φ,M|x). Details on the
exact implementation of each of the blocks can be found in 3.A. The results reported below are
based on 35,000 Gibbs sampler iterations, with the first 10,000 discarded as a burn-in period.
We store every 5th of the remaining 25,000 iterations, leaving 5,000 draws for inference.

3.3 Estimation results

3.3.1 Data

We estimate the model using quarterly U.S. data from 1959Q2 - 2014Q3. Inflation is measured
by the annualized quarterly change in the core personal consumption expenditures (PCE)
index. For unemployment we use the civilian unemployment rate as collected by the Bureau
of Labor Statistics. Output is measured by the log of real GDP. All series are taken from St.
Louis Federal Reserve Economic Data.

3.3.2 Prior choice

Table 3.1 reports summary information on our prior distributions for the unknown parame-
ters. For the variance parameters of the idiosyncratic factors σ2

ε =
(
σ2
ε,y, σ

2
ε,π, σ

2
ε,u

)
we use

the inverse Gamma prior IG(c0, C0) where the shape c0 = ν0T and scale C0 = s0σ
2
0 pa-

rameters are calculated from the prior belief σ2
0 about the variance parameter and the prior

strength ν0 which is expressed as a fraction of the sample size T . Following the notation in

Since this prior is conjugate, ν0T can be interpreted as the number of fictitious observations used to
construct the prior belief σ2

0 .
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Frühwirth-Schnatter and Wagner (2010), for the remaining parameters we use a Gaussian
prior N (a0, A0σ

2
e) in a regression with homoskedastic errors and N (a0, A0) when the errors

exhibit stochastic volatility. Details on the notation are given in 3.A. Each of the prior choices
is discussed below. Note that in Table 3.1 and in the text we report and discuss standard
deviations rather than variances as the former are easier to interpret

• Idiosyncratic components, σ2
ε,g, σ2

ε,g, σ2
ε,π: We set the prior beliefs to σε,y = 0.1,

σε,π = 1.0, and σε,u = 0.5. The strength of all three priors is 0.1. The larger value for
σε,π is in line with the literature, which usually finds relative large measurement errors
in inflation.

• Volatility of trend components, exp {hy}, exp {hπ}, exp {hu}: The prior beliefs
a0 for the constant volatility part h0 of the level shocks to potential output, trend
inflation, and the NAIRU are set to ln(0.1), ln(0.2), and ln(0.05) respectively with the
prior standard deviation

√
A0 set to 0.1. Note that the prior belief ln(0.1) for potential

output implies that, if there is no time-varying volatility, 95% of the innovations lie
between −0.2 and +0.2 per quarter. For inflation and unemployment the 95% interval
ranges from −0.4 to +0.4 and −0.1 to +0.1 respectively. These values are within the
range of previous estimates and are of an economically reasonable value. The prior
distribution on the time-varying part of the volatility of the trends is uninformative and
centered at zero: σγ,k ∼ N (0, 1), for k = y, π, u.

• Potential output growth, κ: In line with existing estimates, our prior belief about
the time-invariant part of the output drift is given by κ ∼ N (0.75, 0.12). For example,
Morley, Nelson, and Zivot (2003), Sinclair (2009) and Mitra and Sinclair (2012) find
values between 0.79 and 0.86 for quarterly U.S. postwar data. Similar to the volatilities
of the trends, we set the time-varying part of potential output growth to σκ ∼ N (0, 1).

• Output gap, ρ, exp {hc}: While the output gap is stationary by assumption, it is
often found to be a very persistent process (see e.g. Morley, Nelson, and Zivot, 2003;
Kim, Manopimoke, and Nelson, 2014). In order to ensure stationarity, we find it useful
to impose prior information on the sum of the AR(2) parameters instead of restricting
each parameter separately. Hence, we use an informative prior on the sum (ρ1 + ρ2) ∼
N (0.9, 0.0152) and a much less informative prior on the first lag ρ1 ∼ N (1.25, 0.52). The
prior belief of 0.90 for (ρ1 + ρ2) is an average of values typically found in the literature

See for instance Morley, Piger, and Rasche (2015); Kim, Manopimoke, and Nelson (2014); Stock and
Watson (2007). Regarding the smoothness of the NAIRU, we are close to Fleischman and Roberts (2011) who
estimate the NAIRU’s standard deviation around 0.1.
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Table 3.1: Prior distributions of model parameters

Inverse Gamma priors: IG(c0, C0) = IG(ν0T, ν0Tσ
2
0) Percentiles
σ0 ν0 2.5% 97.5%

idiosyncratic component output σε,y 0.10 0.10 0.080 0.141
idiosyncratic component inflation σε,π 1.00 0.10 0.777 1.408
idiosyncratic component unemployment σε,u 0.50 0.10 0.387 0.701

Gaussian priors homoskedastic errors: N (a0, A0σ
2
e) Percentiles

Regression parameters a0
√
A0 × σe 2.5% 97.5%

const. Phillips curve slope βπ0 0.20 0.25× 1.0 −0.290 0.690
const. Okun coefficient βu0 −0.50 0.25× 0.5 −0.745 −0.255

Non-centered components
std. of time-varying Phillips curve ση,π 0.00 1.00× 1.0 −1.960 1.960
std. of time-varying Okun coefficient ση,u 0.00 1.00× 0.5 −0.980 0.980

Gaussian priors SV errors: N (a0, A0) Percentiles
Regression parameters a0

√
A0 2.5% 97.5%

1st AR lag: output gap ρ1 1.25 0.50 0.270 2.230
sum of AR lags: output gap ρ1 + ρ2 0.90 0.015 0.871 0.930
AR lag: AR(1) inflation component % 0.70 0.05 0.602 0.798
const. output drift κ0 0.75 0.10 0.554 0.946

Stochastic volatility parameters
const. volatility of potential output hy0 ln (0.10) 0.10 ln (0.082) ln (0.122)
const. volatility of trend inflation hπ0 ln (0.20) 0.10 ln (0.164) ln (0.243)
const. volatility of NAIRU hu0 ln (0.05) 0.10 ln (0.041) ln (0.061)
const. volatility of output gap hc0 ln (0.60) 0.10 ln (0.493) ln (0.730)
const. volatility of temporary inflation hζ0 ln (0.70) 0.10 ln (0.575) ln (0.852)

Non-centered components
std. of SV: potential output σγ,y 0.00 1.00 −1.960 1.960
std. of SV: trend inflation σγ,π 0.00 1.00 −1.960 1.960
std. of SV: NAIRU σγ,u 0.00 1.00 −1.960 1.960
std. of SV: output gap σγ,c 0.00 1.00 −1.960 1.960
std. of SV: AR(1) inflation component σγ,ζ 0.00 1.00 −1.960 1.960
std. of time-varying output drift σκ 0.00 1.00 −1.960 1.960

Notes: We set IG priors on the variance parameters σ2 but in the top panel of this table we report details on
the implied prior distribution for the standard deviations σ as these are easier to interpret. Likewise, in the
bottom panel of the table we report

√
A0 instead of A0. For the stochastic volatility parameters h0 we report a

logarithm expression for the mean and percentiles as the arguments can then easily be interpreted as the mean
and percentiles of exp {h0}.
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on trend-cycle decomposition of U.S. GDP (see e.g. Kuttner, 1994; Morley, Nelson, and
Zivot, 2003; Luo and Startz, 2014). The small prior standard deviation of 0.015 is to
ensure that the output gap is stationary. Setting a lower belief together with a higher
standard deviations results in a similar posterior, though. The prior belief of 1.25 for
ρ1, which implies a prior belief of -0.35 for ρ2, is in line with the typical hump-shaped
pattern in response to cyclical shocks. With a prior standard deviation of 0.5 we are very
uninformative on these individual parameters, though. The prior distribution for the
time-invariant part of the cyclical volatility is given by hc0 ∼ N (ln(0.6), 0.12), implying
that 95% of the shocks lie between −1.2 and +1.2. Again, an uninformative prior for
the time-varying volatility part is used, i.e. σγ,c ∼ N (0, 1).

• AR(1) inflation component, %, exp
{
hζ
}
: We set the prior distribution for the au-

toregressive coefficient of the AR(1) inflation component to ϕ ∼ N (0.7, 0.052). The
relative small standard deviation ensures that % lies within a region of medium persis-
tence. With values too close to one, the AR(1) component becomes highly persistent
and soaks up all variation in trend inflation. If % becomes too small, ζ is indistin-
guishable from the white noise inflation component επt . The prior distribution of the
time-invariant part of the volatility component is set to hζ0 ∼ N (ln(0.7), 0.12). A loose
prior is used for the standard deviation of the time-varying component: σγ,ζ ∼ N (0, 1),
allowing for a high degree of time variation in ζt as found in Kim, Manopimoke, and
Nelson (2014).

• Slope of Phillips curve, βπ: Estimates for the slope of the Phillips curve in the
literature differ depending on whether a forward or backward-looking curve is modeled.
In forward-looking specifications, βπ is often found small and statistically insignificant
(see e.g. Kim, Manopimoke, and Nelson, 2014). For the time-invariant part βπ0 we set
a prior distribution of βπ0 ∼ N (0.2, 0.252). Our prior belief about the degree of time
variation in the Phillips curve is uninformative, i.e. ση,π ∼ N (0, 1).

• Okun coefficient, βu: According to Lee (2000) and Reifschneider, Wascher, and
Wilcox (2013) the impact of the unemployment gap on the output gap is close to −2
for the U.S., which would correspond to a value of −0.5 in our model as we express
this relationship in reverse. Owyang and Sekhposyan (2012) estimate a rolling regres-
sion and find a very similar value on average. Thus, we set the prior distribution to
βu0 ∼ N (−0.5, 0.1252). The prior on the degree of time variation in Okun’s Law is set
to ση,u ∼ N (0, 1).
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Figure 3.1: Posterior distributions of the standard deviations, unrestricted model (all binary indica-
tors set to 1)
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3.3.3 Results stochastic model specification search

We first estimate an unrestricted model with all binary indicators set to one to generate
posterior distributions for the standard deviations (σ) of the innovations to the 8 non-centered
components of interest. If these distributions are bimodal, with low or no probability mass
at zero, this can be taken as a first indication of time variation in the considered component.
Results are shown in Figure 3.1. Clear-cut bimodality is found in the posterior distribution of
the standard deviation of the innovations to the Okun’s Law parameter (ση,u), to the volatility
of the output gap (σγ,c) and the temporary inflation component (σγ,ζ) and to the drift in
potential output (σκ). For the stochastic volatility of trend inflation evidence is less clear.
While the distribution σγ,π appears to have two modes, it also has a considerable probability
mass at zero. For the innovations to the Phillips curve parameter and to the stochastic
volatility components in trend output and trend unemployment, the posterior distributions
of ση,π, σγ,y and σγ,u are clearly unimodal at zero. This suggests that these components are
stable over time.

As a more formal test for time variation, we next sample the stochastic binary indicators
together with the other parameters in the model. Table 3.2 displays the individual posterior
probabilities for the binary indicators being one. These probabilities are calculated as the
average selection frequencies over all iterations of the Gibbs sampler. The second row shows
results for our benchmark case A0 = 1. This implies a relatively loose prior on the degree of
time variation σ. To check robustness, the other rows show results over alternative values for
A0. The first row shows results for the case where A0 = 0.1. This corresponds to a relatively
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stronger prior that allows for less time variation. The third and fourth row show results
for diffuse prior distributions that allow for large variances on the time-varying components.
The following conclusions can be drawn. First, the model selection rejects time variation in
the slope of the Phillips curve. Over all four prior specifications, the posterior probability
for a model with a time-varying Phillips curve slope is either far below or just above one
percent. Second, the data clearly favor time variation in the Okun’s Law parameter. Third,
for the trend components in output, inflation and unemployment, a model with a constant
volatility fits the data best. In our benchmark case (A0 = 1) the posterior probabilities of a
stochastic volatility component in the trend components varies between 8 and 18%, while the
probabilities fall well below 5% when more diffuse priors are used. When the prior distribution
allows for little time variation (A0 = 0.1), the inclusion probabilities of the stochastic volatility
components increase, but remain below 0.5.

Table 3.2: Posterior inclusion probabilities, different prior variances A0

Prior Posterior

Time-varying parameter Stochastic volatility

Phillips
curve

Okun’s
law

Output
drift

Potential
output

Trend
inflation

NAIRU Output
gap

Temp.
inflation

p0 A0 δπ δu λ θy θπ θu θc θζ

0.5 0.1 0.0110 1.0000 1.0000 0.2150 0.1704 0.3084 1.0000 1.0000

0.5 1 0.0026 1.0000 1.0000 0.1456 0.0828 0.1992 1.0000 1.0000

0.5 10 0.0007 1.0000 1.0000 0.0247 0.0263 0.0923 1.0000 1.0000

0.5 100 0.0000 1.0000 1.0000 0.0219 0.0206 0.0429 1.0000 1.0000

In the baseline specification, we assign a 0.5 prior probability to each of the binary indi-
cators being one. As noted by Scott, Berger, et al. (2010), this prior choice does not provide
multiplicity control for the Bayesian variable selection. When the number of possible variables
is very large and each of the binary indicators has a prior probability of 0.5, the fraction of
selected variables will very likely be around 0.5. Our findings appear to be unaffected by this
issue, though. First, the number of variables to be selected is only 8 in this paper. Second,
we re-estimate the (unrestricted) model with different priors. Specifically, the prior inclusion
probability on each of the 8 components is set to 0.1 and 0.9 respectively. The resulting pos-
terior probabilities are reported in Table 3.3. For all prior choices the same model is selected,

The increase in the posterior probability may appear counter intuitive, but is due to the fact that by
restricting the amount of time variation the competing models become similar in their marginal likelihoods
and thus the posterior probability shrinks towards the prior probability p0 = 0.5.



66 3. Testing for Time Variation in an UC Model

i.e. the indicators δu, θc, θζ and λ have inclusion probabilities of ≥ 0.5, while the indicators
δπ, θy, θπ and θu are excluded in the majority of all draws.

Table 3.3: Posterior inclusion probabilities, prior probabilities p0

Prior Posterior

Time-varying parameter Stochastic volatility

Phillips
curve

Okun’s
law

Output
drift

Potential
output

Trend
inflation

NAIRU Output
gap

Temp.
inflation

p0 A0 δπ δu λ θy θπ θu θc θζ

0.5 1 0.0026 1.0000 1.0000 0.1456 0.0828 0.1992 1.0000 1.0000

0.9 1 0.0192 1.0000 1.0000 0.4606 0.4478 0.4484 1.0000 1.0000

0.1 1 0.0004 1.0000 1.0000 0.0174 0.0302 0.0496 1.0000 1.0000

Besides inference on the importance of time variation in the individual components, the
model selection search also allows to compute overall model probabilities. The introduction of
8 binary indicators leads to 28 possible models. As 4 out of the 8 binary indicators have low
individual probabilities, most models have a probability of zero. As a result, in the benchmark
case where A0 = 1 only 7 models are selected in more than 1% of the Gibbs iterations. The
posterior probabilities for these models are reported in Table 3.4. The favored model has
a time-varying Okun’s Law parameter and stochastic volatility in the output gap and the
transitory inflation component, while the Phillips curve slope is constant and there is no
stochastic volatility in the three trend components. This model choice is robust to different
prior specification, i.e. the model in row one has the highest probability for each of the four
considered values of A0. In the case of strict priors (A0 = 0.1), this model has a posterior
probability of 45%, which rises to 92% when diffuse priors (A0 = 100) are used. The three
other models with notable probabilities larger than 10% include stochastic volatility in either
potential output, trend inflation or in the NAIRU. As the variance of the prior A0 increases,
the probabilities of these models shrink towards zero.

For completeness, Figure 3.2 shows the evolution of the four components for which the
time-variation does not show up as relevant using the model selection. These components will
be restricted to be constant in the remainder of this paper. The evolution of the significant
time-varying components is discussed more in detail in below.
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Table 3.4: Posterior model probabilities over different prior variances A0 (with p0 = 0.5)

Model Posterior probability

δπ δu λ θy θπ θu θc θζ A0 = 0.1 A0 = 1 A0 = 10 A0 = 100

0 1 1 0 0 0 1 1 0.4454 0.6415 0.8620 0.9180

0 1 1 0 0 1 1 1 0.1976 0.1334 0.0864 0.0395

0 1 1 0 1 0 1 1 0.0888 0.1080 0.0228 0.0183

0 1 1 1 0 0 1 1 0.1290 0.0555 0.0223 0.0208

0 1 1 0 1 1 1 1 0.0438 0.0342 0.0034 0.0023

0 1 1 1 1 0 1 1 0.0192 0.0121 0.0001 0.0000

0 1 1 1 0 1 1 1 0.0502 0.0111 0.0023 0.0011

3.3.4 Parameter estimates and unobserved components

In this section we present the results of the model that is favored by the stochastic model
selection. We will refer to this as the parsimonious model. As a convergence check we plot
the 20th-order autocorrelations for all parameter and component draws in Figure 3.3. This
diagnostic has been used before in Primiceri (2005) and Liu and Morley (2014). The majority
of autocorrelations lie well below 0.1, while for a few parameters we find values between 0.2
and 0.3. Only one value is as high as 0.5. We take this as evidence for satisfactory convergence
of the Markov-Chain.

The posterior distributions of the parsimonious model’s time-invariant parameters are
plotted in Figure 3.4. Descriptive statistics are given in Table 3.5. For the standard devia-
tions of the non-centered variables the posterior distributions are bimodal. Thus, we report
descriptive statistics on the unimodal posterior of the respective squared standard deviation
parameters. The evolution of the unobserved components is shown in Figures 3.5-3.9 and
discussed more in detail below.

Inflation

Figure 3.5 plots actual inflation against the median of the posterior distribution of trend infla-
tion and its 90% highest posterior density (HPD) interval for the parsimonious model. Trend
inflation evolves smoothly and tracks the low-frequency movements in observed inflation. It
steadily rises over the Great Inflation period from the late 1960s until the late 1970s and then

Note that the posterior distributions of the standard deviations for the non-centered variables in the
unrestricted model are reported in Figure 3.1. As there is no noticeable difference in these distributions in the
parsimonious model, they are not included in Figure 3.4.
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Table 3.5: Posterior distributions of model parameters (parsimonious model)

Inverse Gamma Percentiles

median 2.5% 97.5%

idiosyncratic component output σε,y 0.122 0.091 0.168

idiosyncratic component inflation σε,π 0.544 0.492 0.607

idiosyncratic component unemployment σε,u 0.239 0.217 0.266

Gaussian Percentiles

Regression parameters median 2.5% 97.5%

const. Phillips curve slope βπ0 0.067 −0.061 0.196

const. Okun coefficient βu0 −0.438 −0.525 −0.350

1st AR lag: output gap ρ1 1.299 1.166 1.418

sum of AR lags: output gap ρ1 + ρ2 0.942 0.922 0.963

AR lag: AR(1) inflation component % 0.759 0.676 0.846

const. output drift κ0 1.023 0.933 1.118

Stochastic volatility parameters

const. volatility of potential output exp {hy0} 0.131 0.113 0.152

const. volatility of trend inflation exp {hπ0} 0.208 0.181 0.239

const. volatility of NAIRU exp {hu0} 0.079 0.070 0.089

const. volatility of output gap exp {hc0} 0.582 0.519 0.646

const. volatility of temporary inflation exp
{
hζ0

}
0.505 0.441 0.579

Non-centered components

variance of time-varying Okun coefficient σ2
η,u 0.0016 0.0009 0.0029

variance of SV: output gap σ2
γ,c 0.0350 0.0131 0.0757

variance of SV: AR(1) inflation component σ2
γ,ζ 0.0155 0.0053 0.0397

variance of time-varying output drift σ2
κ 0.0003 0.0001 0.0007
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Figure 3.2: Evolution of the time-varying components not selected by the model search

1960 1970 1980 1990 2000 2010
−0.2

−0.1

0

0.1

0.2

0.3

0.4

Phillips curve coefficient

90% HPD interval NBER recessions

(a) Phillips curve

1960 1970 1980 1990 2000 2010
0

0.05

0.1

0.15

0.2

0.25

0.3

Volatility of potential output shocks

90% HPD interval NBER recessions

(b) SV potential output

1960 1970 1980 1990 2000 2010
0

0.1

0.2

0.3

0.4

0.5

0.6

Volatility of trend inflation shocks

90% HPD interval NBER recessions

(c) SV trend inflation

1960 1970 1980 1990 2000 2010
0.04

0.06

0.08

0.1

0.12

0.14

Volatility of NAIRU shocks

90% HPD interval NBER recessions

(d) SV NAIRU

Figure 3.3: 20th-order autocorrelations of all parameter and component draws

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.2

0.4

0.6



70 3. Testing for Time Variation in an UC Model

Figure 3.4: Posterior distributions of parameters (parsimonious model)
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falls back during the disinflation period of the 1980s and 1990s. Since the late 1990s trend
inflation remains low and stable at around 2%. Our estimated trend inflation series is very
similar to those reported by Cogley and Sbordone (2008), Kim, Manopimoke, and Nelson
(2014) and Stella and Stock (2012). The variance of innovations to trend inflation was found
to be constant over time by the model selection procedure and is estimated with a posterior
median of 0.21. This result is consistent with Kim, Manopimoke, and Nelson (2014) who find
similar values over three distinct regimes and could not reject the null of constant volatility for
trend inflation. It contrasts with Stock and Watson (2007) who find considerable variability
in the variance of innovations to trend inflation. However, they do not allow for a persistent
transitory component (ζt in our model) in the inflation gap such that trend inflation has to
incorporate this component. Similar to the recent literature, we find that the inflation gap
and idiosyncratic shocks are the most important driver of inflation. On average, they account
for more than 90% of the variance of inflation changes at the one-quarter horizon. The infla-
tion gap itself is driven by the output gap yct but more importantly by the persistent AR(1)
component ζt. As can be seen from Figure 3.6, ζt and its stochastic volatility peak in the
1970s. Inflation is not very sensitive to the output gap. As shown in panel (a) of Figure 3.7,
we estimate the slope of the (time-invariant) Phillips curve to be very small with a posterior

In fact when we drop ζt, the model selection procedure selects a specification with stochastic volatility for
trend inflation (results not reported).
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median of 0.07 and a 90% HPD interval ranging from -0.06 to 0.20. This finding confirms
Kim, Manopimoke, and Nelson (2014) but contrasts with Morley, Piger, and Rasche (2015)
who find the real activity gap, as measured by the unemployment gap, to be an important
driver of the inflation gap.

Our estimates shed light on a number of important episodes of U.S. monetary economic
history. First, the Great Inflation of the late 1960s and the 1970s is reflected in a prolonged
rise in trend inflation combined with an increase in the level and volatility of the temporary
inflation component ζt. In our model, the latter captures the variation in inflation that is
not explained by the conventional forward-looking Phillips curve. From our estimates, this
component mainly seems to capture the extent to which the oil price shocks of 1973-74 and
1979-80 drove up inflation without increasing inflation expectations or being reflected in the
output gap. Second, the aggressive disinflation strategy pursued by Paul Volcker when he
became chairman of the Federal Reserve resulted in a steady but strong decline in trend
inflation. Together with the sudden drop in the temporary inflation component, due to
a drop in oil prices, this resulted in a sharp decline in realized inflation. The impact of
the disinflation strategy on output depends on the credibility of monetary policy (see e.g.
Ball, 1994). Imperfect credibility raises the output cost of reducing inflation. Our results
point to a large output gap in the beginning of the disinflation period. In line with the
small and stable slope of the Phillips curve, this is accompanied by only moderate negative
deviations of realized inflation from its trend. This pattern changes during the second half of
the disinflationary period, where the output gap decreases and realized inflation tracks trend
inflation more closely. We take this as evidence that the credibility of the FED improved
over time. This explanation is in line with the findings of Goodfriend and King (2005), who
build a model with imperfect credibility, i.e. the FED acquires credibility over time as agents
change their beliefs about whether the new policy regime is permanent. According to the
authors, the initial real effects of the Volcker disinflation were mainly due to its imperfect
credibility. Third, our results also contribute to the discussion on the missing deflation puzzle
during the Great Recession. Specifically, this paper casts doubt on the existence of such a
puzzle as the link between inflation and real activity is weak over the full sample. The fact
that actual inflation does not deviate substantially from trend inflation is therefore consistent
with a relatively large output gap.
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Figure 3.5: Trend inflation (parsimonious model)
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Figure 3.6: AR(1) inflation component (parsimonious model)
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Output

Figure 3.8 plots the posterior results for the various components in output. Potential output,
depicted in panel (a), is estimated as a smooth upward trend that tracks the low frequency
movements in U.S. real GDP. The constant volatility of shocks to the level of potential output
is found to be small with a posterior median of 0.13, while the drift in potential output,
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depicted in panel (b), exhibits substantial time variation. The downward trend in the drift
term implies potential output growth to slow down from around 4% on an annual base in
the early 1960s to about 1.6% at the end of the sample. This overall movement is highly
consistent with the CBO’s estimates for potential output growth, although this series is more
volatile. The first sizable drop in potential output growth is in the early to mid 1970s. This
is a well-known feature of the data generally referred to as the great productivity slowdown.
From the late 1970s to the early 2000s potential output growth varies around an annual rate
of 3%. The second sizable drop occurred during the 2000s with the most recent estimates
pointing to a pessimistic scenario where slow growth is the ‘new normal’. Our results support
Perron and Wada (2009) who highlight the importance of accounting for breaks in potential
output growth for UC models. By analyzing data from 1947 to 1998 they find one break in
1973.

Figure 3.7: Phillips curve and Okun’s Law (parsimonious model)
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Panel (c) of Figure 3.8 shows the estimated output gap together with the CBO gap. Both
series evolve very similar and are able to identify the recession periods as dated by the NBER.
A somewhat sizable difference in the level of the two series is observed during the 1980s. This
is due to the fact that our model attributes most of the variation in real GDP during the
early 1980s to cyclical shocks while the CBO assigns a larger fraction to potential output
growth-related shocks as visualized by the sharp drop in the CBO potential growth series
displayed in panel (b) in that period. The Great Moderation shows up in panel (d) as a
considerable drop in the stochastic volatility of innovations to the output gap in the 1980s
and a low volatility period that continued until 2007. During the Great Recession, volatility
increases considerably but has not led to a permanent increase as it returns almost to its
pre-crisis level in 2009.
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Figure 3.8: Output components (parsimonious model)

1960 1970 1980 1990 2000 2010

800

850

900

950

Potential output Observed output

90% HPD interval NBER recessions

(a) Potential output

1960 1970 1980 1990 2000 2010
0.2

0.4

0.6

0.8

1

1.2

Output drift CBO potential growth

90% HPD interval NBER recessions

(b) Output growth

1960 1970 1980 1990 2000 2010

−10

−5

0

5

Output gap CBO gap
cycl

90% HPD interval NBER recessions

(c) Output gap

1960 1970 1980 1990 2000 2010
0

0.5

1

1.5

2

Volatility of cycle shocks

90% HPD interval NBER recessions

(d) Stochastic volatility of output gap

Unemployment

The NAIRU is shown in Figure 3.9 along with the CBO’s NAIRU estimate and the actual
unemployment rate. We find that the NAIRU evolves very smoothly over time which implies
that most of the variations in unemployment are assigned to cyclical (demand-related) fac-
tors. However, the recent decline in the unemployment rate may also partially be driven by
people exiting the labor force, possibly discouraged jobless workers. Our NAIRU estimate is
consistent with Laubach (2001) and Basistha and Startz (2008). Similar to the latter study,
our multivariate model results in a relatively narrow 90% HPD interval for the NAIRU.

Regarding the relation between the output gap and the unemployment gap, we find sub-
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Figure 3.9: NAIRU (parsimonious model)

1960 1970 1980 1990 2000 2010
2

4

6

8

10

12

NAIRU estimate Unemployment rate CBO NAIRU

90% HPD interval NBER recessions

stantial time variation in Okun’s Law parameter as displayed in Figure 3.7, panel (b). The
time variation captures both changes at business cycle frequency and long-run changes, which
is similar to the findings of Knotek (2007). We find that the sensitivity of the unemployment
rate to cyclical output is higher during recessions than during recoveries. This asymmetric
pattern holds for most of the postwar business cycles, except for the period after the 2001
recession, over which labor market sensitivity continues to increase. Before this turning point,
the Okun coefficient fluctuates around a value of −0.4, suggesting that a positive output gap
of 1% is associated with a negative deviation of the unemployment rate from the NAIRU of
−0.4%. Since the 2001 recession, the Okun coefficient has decreased to roughly −0.7 in the
Great Recession. Recently the Okun coefficient has quickly returned back to the historical
average. According to the reasoning in Daly and Hobijn (2010), the spike in the Okun coef-
ficient around the year 2009 can be explained by a surge in labor productivity, accompanied
by a reduction in employment and hours worked which led to a break in the pattern between
unemployment and output as observed over the past 60 years.

There exist several explanations for why the correlation between output and unemploy-
ment may depend on the business cycle stance. Starting from a microeconomic model, Camp-
bell and Fisher (2000) explain how asymmetries in firms’ adjustment costs can lead to asym-
metric job creation and destruction rates at the macro level. Palley (1993) focuses on the
aggregate labor market and explains the negative excess sensitivity of cyclical unemployment
to cyclical output with sectoral shifts and changing behavior of female labor force participants.
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Silvapulle, Moosa, and Silvapulle (2004) offer an explanation based on over-pessimistic firm
behavior. If bad news is believed more quickly than good news, firms tend to adjust the work-
force relatively quick in recessions, but are reluctant to hire during recoveries. The authors
argue that such behavior leads to asymmetry in the Okun coefficient typically found in U.S.
data. Moreover, our findings are in line with the literature on insider-outsider models pio-
neered by Lindbeck and Snower (1988) and Blanchard and Summers (1986). After a cyclical
rise in unemployment, the remaining workers (so-called insiders) may demand higher wages
during the following recovery due to labor turnover costs. Instead of creating new jobs for
the unemployed workers (so-called outsiders), economic recovery translates into higher insider
wages. Such behavior gives rise to asymmetry in the Okun coefficient, leading to persistent
cyclical unemployment.

Our estimates also contribute to the discussion on jobless recoveries in the United States.
We do not find that the business cycle sensitivity of the Okun coefficient has changed in the
1990s. Rather, our results suggest that recoveries have always been ‘jobless’ in the sense that
the unemployment rate adjusts faster during recessions than during recoveries. The argument
that the unemployment rate has become less sensitive to output growth over time is not
supported by our model. However, the notion of ‘jobless recoveries’ is typically related to job
growth and thus makes a statement about employment dynamics. The estimated Okun’s Law
coefficient reflects sensitivity of the unemployment rate and is sensitive to changes in labor
force participation. Slower than average job growth could be counteracted by decreasing
labor force participation, leaving the unemployment rate and therefore also the Okun’s Law
coefficient unchanged.

In sum, we find substantial time variation in various model’s parameters. There is a
sizable reduction in the volatility of output gap shocks and inflation gap shocks. We also find
a significant decline in potential output growth in the 1970s and even more pronounced in the
2000s. Moreover, there is time variation in the Okun’s Law parameter with unemployment
being more sensitive to the output gap in recessions than in expansions.

3.4 Model extensions and robustness checks

In this section we check the robustness of our results along several dimensions. First, we
replace the NKPC by a backward-looking Phillips curve in order to see if our findings regarding
the inflation dynamics and the stability of βπ depend on the forward-looking specification of
the Phillips curve. Second, we use the unemployment gap, instead of the output gap, as a
measure of real activity in the Phillips curve.
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3.4.1 Backward-looking Phillips curve

As described in Section 3.1, the literature provides mixed support for the NKPC in empiri-
cal applications. In contrast to the theoretical foundations, some studies find an important
backward-looking component in inflation dynamics, i.e. inflation depends on its own lagged
values. We therefore check for the robustness of our findings by replacing equation (3.14) by
the following backward-looking Phillips curve specification

πt =
4∑
p=1

bpπt−p + βπt ỹ
c
t + επt , (3.32)

where the sum of the coefficients on lagged inflation is assumed to be one. The model is
identical to the baseline model except for the absence of a stochastic trend in inflation and
the temporary inflation component ζ. This specification matches standard backward-looking
Phillips curve models in the literature. Table 3.7 gives the posterior probability of time
variation in the slope of the Phillips curve for both the baseline and the backward-looking
model. The Phillips curve is found to be stable in both specifications. Moreover, the finding
is robust to different prior distributions for the degree of time variation. In all settings, the
posterior probability of a time-varying Phillips curve are in the area of 1% or below. However,
the estimated slope coefficients differ between the forward and the backward-looking model.
Figure 3.10 plots the posterior distributions of the time-invariant slope parameter for both
models. The probability mass of the coefficient in the backward-looking model is strictly
positive and has a slightly higher median. This is in line with the literature that usually finds
a bigger and more significant Phillips curve slope in backward compared to purely forward-
looking models.

3.4.2 Alternative inflation measures

In the empirical literature on the Phillips curve, no single preferred inflation measure has
emerged. This paper focuses on the core PCE inflation series, since it eliminates large outliers
associated with energy price fluctuations as pointed out by Stock and Watson (2010). How-
ever, other inflation measures have been used repeatedly in the literature such as core and
headline CPI inflation or the implicit GDP deflator. We check the robustness of our results
by estimating the model for different inflation measures but leaving all prior distributions un-
changed. Columns 2-4 in Table 3.6 report the estimated posterior distribution of the constant

Results are nearly identical when the unit-root assumption is relaxed. The sum of the coefficients in the
unrestricted case is close to one.

Among many others see e.g. Rudd and Whelan (2005) and Ball and Mazumder (2011).
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Figure 3.10: Posterior distributions of βπ0 : Backward and Forward-looking
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Phillips curve slope. The median slope estimates range between 0.067 for the GDP deflator
and 0.110 for headline CPI and headline PCE inflation. In all five specifications the 95%
credible interval covers positive and negative values. Thus, the slope of the Phillips curve is
found to be more or less flat regardless of the inflation measure used. Columns 5-8 report the
posterior inclusion probabilities of a time-varying Phillips curve and the time-varying volatil-
ities in trend and temporary inflation. Again, findings are robust to the different inflation
measures. The posterior probability of time-variation in the Phillips curve is below 1% in all
cases. Results differ more for the stochastic volatility component in trend inflation. However,
probabilities remain below 5% except for the baseline measure and thus no evidence of time-
varying shocks to trend inflation is found. Finally, stochastic volatility is always included in
the temporary inflation component. We conclude that our findings are robust to alternative
measures of price inflation.

3.4.3 Unemployment gap instead of output gap

The baseline model finds a constant Phillips curve slope and a time-varying Okun’s Law
parameter. Consequently, when we replace the output gap by the unemployment gap in the
Phillips curve, the impact of unemployment on inflation is time-varying. However, when we
estimate the model with the unemployment gap in the Phillips curve, the model selection
procedure rejects a time-varying slope parameter. We believe that this is due to the fact
that the real activity measure, independently on weather we proxy it by the output gap or
the unemployment gap, has little impact on inflation. Thus, all conclusions drawn remain

Estimates for the output and unemployment components do not change notably, but are available on
request.
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Table 3.6: Robustness of parameter estimates to different inflation measures

Posterior parameter distribution Posterior inclusion probability

Slope coefficient βπ0 Phillips
curve

SV
trend
inflation

SV
temp.
inflation

median 2.5% 97.5% δπ θπ θζ

CPI 0.110 -0.080 0.303 0.0070 0.0303 1.0000

CPI excl. F&E 0.094 -0.032 0.245 0.0080 0.0430 1.0000

PCE 0.110 -0.043 0.272 0.0026 0.0378 1.0000

PCE excl. F&E 0.067 -0.061 0.196 0.0026 0.0828 1.0000

GDP deflator 0.076 -0.072 0.235 0.0024 0.0476 1.0000

Priors are set to p0 = 0.5 and A0 = 1.

Table 3.7: Stability of Phillips curve for different models

Prior Posterior probability of δπ = 1

p0 A0 New-Keynesian Backward-looking

0.5 0.1 0.0110 0.0040

0.5 1 0.0026 0.0012

0.5 10 0.0007 0.0008

0.5 100 0.0000 0.0004

unchanged when replacing the output gap by the unemployment gap.

3.5 Conclusion

We have investigated the degree of time variation in the parameters of a multivariate unob-
served components model designed for the U.S. economy over the period 1959 to 2014. The
empirical model decomposes real GDP, inflation and the unemployment rate into a common
stochastic cyclical factor and their respective stochastic trends and idiosyncratic components.
Key parameters such as the growth rate of potential output, the slope of the Phillips curve,
Okun’s Law coefficient as well as all variance parameters are allowed to vary over time. Im-
portantly, while allowing for time variation the priors in the Bayesian estimation strategy are
set to nest the case that the parameters are actually time-invariant. In a first estimation step,
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a stochastic model selection procedure is employed to test which parameters are time-varying.
We find that potential output growth, Okun’s Law coefficient, the variance of innovations to
the output gap and to a persistent inflation gap component are time-varying while the slope of
the Phillips curve and the variances of innovations to all trend components are time-invariant.
Our estimation result show a clear decrease in potential output growth, which can be char-
acterized by substantial drops in the 1970s and the 2000s. Okun’s Law coefficient is found to
be lower in recessions than in expansions, i.e. unemployment is more sensitive to the output
gap in a downturn and reacts less sensitive in a recovery. With regard to the dynamics of
inflation, we find that the inflation gap and idiosyncratic shocks are the major determinants
of inflation changes. However, the inflation gap is not very sensitive to the output gap but is
driven by a persistent AR(1) component. The latter component exhibits stochastic volatility
and mainly captures the large and persistent swings in inflation during the inflationary period
in the 1970s and 1980s.
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Appendix

3.A Gibbs sampling algorithm

In this appendix we provide details on the Gibbs sampling algorithm used in Subsection 3.2.3
to jointly sample the binary indicatorsM, the hyperparameters φ, the trend and temporary
components α, the time-varying parameters β, the mixture indicators ι and the stochastic
volatilities h. The structure of our Gibbs sampling approach is based on Frühwirth-Schnatter
and Wagner (2010).

Block 1: Sampling the binary indicators M and the parameters φ

For notational convenience, let us define a general regression model

w = zMbM + e, e ∼ N (0,Σ) , (3.33)

with w a vector including observations on a dependent variable wt and z an unrestricted
predictor matrix with rows zt that contain the state processes from the vectors αt, βt and ht
that are relevant for explaining wt. The corresponding unrestricted parameter vector with
the relevant elements from φ is denoted b. zM and bM are then the restricted predictor
matrix and restricted parameter vector that exclude those elements in z and b for which the
corresponding indicator in M is 0. Furthermore, Σ is a diagonal matrix with elements σ2

e,t

that may vary over time to allow for heteroskedasticity of a known form.

A naive implementation of the Gibbs sampler would be to sampleM from f (M|α, β, h, φ, w )
and φ from f (φ |α, β, h,M, w ). However, this approach does not result in an irreducible
Markov chain as whenever an indicator inM equals zero, the corresponding coefficient in φ
is also zero which implies that the chain has absorbing states. Therefore, as in Frühwirth-
Schnatter and Wagner (2010) we marginalize over the parameters φ when sampling M and
next draw the parameters φ conditional on the indicators M. The posterior distribution
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f (M|α, β, h, w ) can be obtained using Bayes’ Theorem as

f (M|α, β, h, w ) ∝ f (w |M, α, β, h) p (M) , (3.34)

with p (M) being the prior probability ofM and f (w |M, α, β, h) being the marginal likeli-
hood of the regression model (3.33) where the effect of the parameters bM and σ2

e has been
integrated out. The closed form solution of the marginal likelihood depends on whether the
error term et is homoskedastic or heteroskedastic. More specifically:

• In the homoskedastic case Σ = σ2
eIT , under the normal-inverse gamma conjugate prior

bM ∼ N
(
aM0 , AM0 σ2

e

)
, σ2

e ∼ IG (c0, C0) , (3.35)

the closed form solution for f (w |M, α, β, h) is

f (w |M, α, β, h) ∝

∣∣∣AMT ∣∣∣0.5∣∣AM0 ∣∣0.5 Γ (cT )Cc0
0

Γ (c0)
(
CMT

)cT , (3.36)

and the posterior moments aMT , AMT , cT and CMT of bMand σ2
e can be calculated as

aMT = AMT

((
zM

)′
w +

(
AM0

)−1
aM0

)
, (3.37)

AMT =
((
zM

)′
zM +

(
AM0

)−1
)−1

, (3.38)

cT = c0 + T /2 , (3.39)

CMT = C0 + 0.5
(
w′w +

(
aM0

)′ (
AM0

)−1
aM0 −

(
aMT

)′ (
AMT

)−1
aMT

)
. (3.40)

• In the heteroskedastic case Σ = diag
(
σ2
e,1, ..., σ

2
e,T

)
, under the normal conjugate prior

bM ∼ N
(
aM0 , AM0

)
the closed form solution for the marginal likelihood f (w |M, α, β, h)

is

f (w |M, α, β, h) ∝
|Σ|−0.5

∣∣∣AMT ∣∣∣0.5∣∣AM0 ∣∣0.5 exp
(
−1

2

(
w′Σ−1w +

(
aM0

)′ (
AM0

)−1
aM0

−
(
aMT

)′ (
AMT

)−1
aMT

))
, (3.41)
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with

aMT = AMT

((
zM

)′
Σ−1w +

(
AM0

)−1
aM0

)
, (3.42)

AMT =
((
zM

)′
Σ−1zM +

(
AM0

)−1
)−1

. (3.43)

Following George and McCulloch (1993), instead of using a multi-move sampler in which
all the elements inM are sampled simultaneously, we use a single-move sampler in which each
of the binary indicators δj (for j = π, u), θk (for k = y, π, u, c, ζ) and λ inM is sampled from
f
(
δj |δ\j , θ, λ, α, β, h, x

)
, f
(
θk|δ, θ\k, λ, α, β, h, x

)
and f (λ|δ, θ, α, β, h, x) respectively. Block

1 is therefore split up in the following subblocks:

Block 1(a): Sampling the binary indicators δ and the parameters β, ση and
σ2
ε

In this block we sample the binary indicators δ = (δπ, δu) and the parameters β = (βπ0 , βu0 ),
ση = (ση,π, ση,u) and σ2

ε =
(
σ2
ε,y, σ

2
ε,π, σ

2
ε,u

)
conditional on the states α, β and h. First, as there

is no binary indicator in equation (3.1), σ2
ε,y can be sampled directly from IG (cT , CT ) with

cT as in equation (3.39) and CT = C0 + 0.5(εy′εy) with εy calculated from εyt = yt − yτt − yct .

Next, using equation (3.29), equations (3.14) and (3.15) can be rewritten in the general
linear regression format of (3.33) as

wt︷ ︸︸ ︷
πt − πτt − ζt =

zMt︷ ︸︸ ︷[
ỹct δπβ̃

π
t ỹ

c
t

] bM︷ ︸︸ ︷ βπ0

ση,π

+
et︷︸︸︷
επt , (3.44)

ut − uτt︸ ︷︷ ︸
wt

=
[
yct δuβ̃

u
t y

c
t

]
︸ ︷︷ ︸

zMt

 βu0

ση,u


︸ ︷︷ ︸
bM

+ εut︸︷︷︸
et

, (3.45)

where in both the restricted vector zMt and the restricted parameter vector bM the second
term is excluded when δj = 0 (for j = π, u). Note that, next to the parameters in bM

and σ2
e , each of the specifications (3.44) and (3.45) depends only on the data wt, on some

of the states in αt and βt and on δj . As such, we can simplify the specification of the
posterior from f

(
δj |δ\j , θ, λ, α, β, h, x

)
to f (δj |α, β, w ) for which we have f (δj |α, β, w ) ∝

f (w |δj , α, β ) p (δj). As the error terms επt in the inflation equation and εut in the employment
equation are homoskedastic, we have Σ = σ2

eIT in the general notation of equation (3.33)
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such that the marginal likelihood f (w |δj , α, β ) can be calculated as in equation (3.36). The
binary indicator δj can then be sampled from the Bernoulli distribution with probability

p (δj = 1 |α, β, w ) = f (δj = 1 |α, β, w )
f (δj = 0 |α, β, w ) + f (δj = 1 |α, β, w ) , (3.46)

while σ2
ε,j can be sampled from IG

(
cT , C

M
T

)
and, conditionally on σ2

ε,j , bM fromN
(
aMT , AMT σ2

ε,j

)
,

for j = π, u and with aMT , AMT , cT and CMT as defined in equations (3.37)-(3.40). Note that
bM =

(
βj0, ση,j

)′
when δj = 1 and bM = βj0 when δj = 0. In the former case ση,j is sampled

from the posterior while in the latter case we set ση,j = 0.

Block 1(b): Sampling the binary indicators θ and the parameters h0 and σγ

In this block we sample the binary indicators θ = (θy, θπ, θu, θc, θζ) and the parameters h0 =(
hy0, h

π
0 , h

u
0 , h

c
0, h

ζ
0

)
and σγ = (σγ,y, σγ,π, σγ,u, σγ,c, σγ,ζ) conditional on the states α, β and h.

Using equation (3.30), equation (3.20) can be rewritten in the general linear regression format
of (3.33) as

wt︷ ︸︸ ︷
gkt −

(
mιkt
− 1.2704

)
=

zMt︷ ︸︸ ︷
2
[

1 θkh̃
k
t

] bM︷ ︸︸ ︷ hk0

σγ,k

+

et︷︸︸︷
ε̃kt , (3.47)

for k = y, π, u, c, ζ, with ε̃kt = εkt −
(
mιkt
− 1.2704

)
is εkt recentered around zero and where

using equations (3.2), (3.9), (3.16), (3.4) and (3.11), gkt = ln
((

exp{hkt }ψkt
)2

+ .001
)

can be
calculated as

gyt = ln
((
yτt − yτt−1 − κt

)2 + .001
)
, (3.48)

gπt = ln
((
πτt − πτt−1

)2 + .001
)
, (3.49)

gut = ln
((
uτt − uτt−1

)2 + .001
)
, (3.50)

gct = ln
((
yct − ρ1y

c
t−1 − ρ2y

c
t−2
)2 + .001

)
, (3.51)

gζt = ln
(
(ζt − %ζt−1)2 + .001

)
. (3.52)

As specification (3.47) depends only on the data wt, on the stochastic volatility term hkt

and on θk, we can simplify the specification of the posterior from f
(
θk|δ, θ\k, λ, α, β, h, x

)
to f (θk |h,w ). Using Bayes’ Theorem, we have f (θk |h,w ) ∝ f (w |θk, h) p (θk). Given the
mixture distribution of εkt defined in equation (3.22), the error term ε̃kt in equation (3.47)
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has a heteroskedastic variance v2
ιkt

such that Σ = diag
(
v2
ιk1
, ..., v2

ιkT

)
in the general notation

of equation (3.33). In this case, the marginal likelihood f (w |θk, h) can be calculated as in
equation (3.41). The binary indicator θk can then be sampled from the Bernoulli distribution
with probability p (θk = 1 |h,w ) calculated from an equation similar to (3.46). Next, bM

can be sampled from N
(
aMT , AMT

)
for k = y, π, u, c, ζ and with aMT and AMT as defined in

equations (3.42) and (3.43). Note that bM =
(
hk0, σγ,k

)′
when θk = 1 and bM = hk0 when

θk = 0. In the latter case, we set σγ,k = 0.

Block 1(c): Sampling the binary indicator λ and the parameters κ0 and σκ

In this block we sample the binary indicator λ and the parameters κ0 and σκ conditional on
the states α, β and h. Using equation (3.31), equation (3.2) can be rewritten in the general
linear regression format of (3.33) as

wt︷ ︸︸ ︷
yτt − yτt−1 =

zMt︷ ︸︸ ︷[
1 λκ̃t

] bM︷ ︸︸ ︷ κ0

σκ

+
et︷ ︸︸ ︷

exp{hyt }ψ
y
t , (3.53)

with Σ = diag
(
exp{hy1}2, . . . , exp{h

y
T }2

)
. The indicator λ can then be sampled from the

posterior distribution f (λ |α,w ) ∝ f (w |λ, α) p (λ) with the marginal likelihood f (w |λ, α)
calculated from equation (3.41). Next, bM can be sampled from N

(
aMT , AMT

)
with aMT and

AMT as defined in equations (3.42) and (3.43). Note that bM = (κ0, σκ)′ when λ = 1 and
bM = κ0 when λ = 0. In the latter case, we set σλ = 0.

Block 1(d): Sampling the parameters ρ and %

For sampling ρ = (ρ1, ρ2) conditional on the states α, β and h, equation (3.4) can be written
in the general notation of equation (3.33) as: wt = yct , zt =

(
yct−1, y

c
t−2
)
, b = (ρ1, ρ2)′ and

et = exp{hct}ψct , such that Σ = diag
(
exp{hc1}2, . . . , exp{hcT }2

)
. Under the normal prior

distribution N (a0, A0), ρ can then be sampled from the posterior N (aT , AT ) with aT and
AT as in equations (3.42) and (3.43).

Likewise, for filtering % conditional on the states α, β and h, equation (3.11) can be
written in the general notation of equation (3.33) as: wt = ζt, zt = ζt−1, b = % and
et = exp{hζt }ψ

ζ
t , such that Σ = diag

(
exp{hζ1}2, . . . , exp{h

ζ
T }2

)
. Under the normal prior

distribution N (a0, A0), % can again be sampled from the posterior N (aT , AT ) with aT and
AT as in equations (3.42) and (3.43).
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Block 2: Sampling the state vectors α, β and h and mixture indicators ι

In this block we use a forward-filtering and backward-sampling approach of Carter and Kohn
(1994) and De Jong and Shephard (1995) to sample the states α, β and h based on a general
state space model of the form

wt = ZMt sMt + et, et ∼ iidN (0, Ht) , (3.54)

st+1 = R0 +R1st +Ktvt, vt ∼ iidN (0, Qt) , s1 ∼ iidN (a1, A1) , (3.55)

where wt is now a vector of observations and st an unobserved state vector. The matrices Zt,
R0, R1, Kt, Ht, Qt and the expected value a1 and variance A1 of the initial state vector s1

are assumed to be known (conditioned upon). The vector sMt and the matrix ZMt are again
restricted versions of st and Zt with the elements excluded depending on the model indicators
M. The error terms et and vt are assumed to be serially uncorrelated and independent of
each other at all points in time. As equations (3.54)-(3.55) constitute a linear Gaussian state
space model, the unknown state variables in st can be filtered using the standard Kalman
filter. Sampling s = [s1, . . . , sT ] from its conditional distribution can then be done using the
multimove simulation smoother of Carter and Kohn (1994) and De Jong and Shephard (1995).

Block 2(a) Sampling the trend and temporary components α

We first filter and draw the state vector α = (yτ , πτ , uτ , κ, yc, ζ) conditionally on the time-
varying parameters β, the stochastic volatilities h and the hyperparameters φ. More specif-
ically, using the general notation in equations (3.54)-(3.55), the unrestricted (i.e. λ = 1)
conditional state space representation is given by

wt︷ ︸︸ ︷
yt

πt

ut

 =

ZMt︷ ︸︸ ︷
1 0 0 0 0 1 0
0 1 0 0 1 aβπt bβπt

0 0 1 0 0 βut 0



sMt︷ ︸︸ ︷

yτt

πτt

uτt

κ̃t

ζt

yct

yct−1


+

et︷ ︸︸ ︷
εyt

επt

εut

, (3.56)
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yτt+1

πτt+1

uτt+1

κ̃t+1

ζt+1

yct+1

yct


︸ ︷︷ ︸
st+1

=



κ0

0
0
0
0
0
0


︸ ︷︷ ︸
R0

+



1 0 0 σκ 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 % 0 0
0 0 0 0 0 ρ1 ρ2

0 0 0 0 0 1 0


︸ ︷︷ ︸

R1



yτt

πτt

uτt

κ̃t

ζt

yct

yct−1


︸ ︷︷ ︸

st

+Kt



ψyt

ψπt

ψut

ψκt

ψζt

ψct


︸ ︷︷ ︸
νt

, (3.57)

with Kt =



exp{hyt } 0 0 0 0 0
0 exp{hπt } 0 0 0 0
0 0 exp{hut } 0 0 0
0 0 0 σψ,κ 0 0
0 0 0 0 exp{hζt } 0
0 0 0 0 0 exp{hct}
0 0 0 0 0 0



and where a =
(
1− ωρ1 − ω2ρ2

)−1, b = aωρ2, Ht = diag
(
σ2
ε,y, σ

2
ε,π, σ

2
ε,u

)
and Qt = I6. The

random walk components yτt , πτt , uτt and κ̃t are initialized by setting a1 = 0 and A1 = 1000 for
each of these components while the stationary components ζt and yct are initialized from their
unconditional distributions. Note that using κ0, σκ and κ̃t, κt can easily be reconstructed
from equation (3.27).

In the restricted model (i.e. λ = 0) κ̃t is excluded from sMt , with appropriate adjustment
of the other matrices. In this case, no forward-filtering and backward-sampling is needed and
κ̃t can be sampled directly from its prior using equation (3.28).

Block 2(b): Sampling the time-varying parameters β

We next filter and draw the time-varying parameters β = (βπ, βu) conditionally on the state
vector α, the stochastic volatilities h, the hyperparameters φ and the binary indicators M.
More specifically, using equation (3.29) in (3.14) and (3.15), the unrestricted (i.e. δj = 1)
conditional state space representations for the time-varying parameters β̃πt and β̃ut are given
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by

wt︷ ︸︸ ︷[
πt − πτt − ζt − βπ0 ỹct

]
=

ZMt︷ ︸︸ ︷[
ση,πỹ

c
t

] sMt︷ ︸︸ ︷[
β̃πt

]
+

et︷ ︸︸ ︷[
επt

]
, (3.58)[

β̃πt+1

]
︸ ︷︷ ︸
st+1

=
[

1
]

︸ ︷︷ ︸
R1

[
β̃πt

]
︸ ︷︷ ︸
st

+
[

1
]

︸ ︷︷ ︸
Kt

[
η̃πt

]
︸ ︷︷ ︸
νt

, (3.59)

with Ht = σ2
ε,π and Qt = 1, and

wt︷ ︸︸ ︷[
ut − uτt − βu0 yct

]
=

ZMt︷ ︸︸ ︷[
ση,uy

c
t

] sMt︷ ︸︸ ︷[
β̃ut

]
+

et︷ ︸︸ ︷[
εut

]
, (3.60)[

β̃ut+1

]
︸ ︷︷ ︸
st+1

=
[

1
]

︸ ︷︷ ︸
R1

[
β̃ut

]
︸ ︷︷ ︸
st

+
[

1
]

︸ ︷︷ ︸
Kt

[
η̃ut

]
︸ ︷︷ ︸
νt

, (3.61)

with Ht = σ2
ε,u and Q = 1. Both random walk components β̃πt and β̃ut are initialized by

setting a1 = 0 and A1 = 1000.
In the restricted model (i.e. δj = 0), ZM and sM are empty. In this case, no forward-

filtering and backward-sampling is needed and β̃jt can be sampled directly from its prior using
equation (3.24). Note that the sampling of the state vector α in block 2(a) depends on βjt

rather than on β̃jt . Using β
j
0, ση,j and β̃

j
t , β

j
t can easily be reconstructed from equation (3.23).

Block 2(c): Sampling the mixture indicators ι and the stochastic volatilities
h

In this block we draw the mixture indicators ι =
(
ιy, ιπ, ιu, ιc, ιζ

)
and the stochastic volatilities

h =
(
hy, hπ, hu, hc, hζ

)
conditionally on the state vector α, the time-varying parameters β,

the hyperparameters φ and the binary indicators M. Following Del Negro and Primiceri
(2014), in this block we first sample the mixture indicator ιkt (for k = y, π, u, c, ζ) from its
conditional probability mass

p
(
ιkt = i|hkt , εkt

)
∝ qifN

(
εkt |2hkt +mi − 1.2704, ν2

i

)
, (3.62)

with values for {qi,mi, ν
2
i } taken from Table 1 in Omori, Chib, Shephard, and Nakajima

(2007).
Next, we filter and sample the stochastic volatility terms h̃kt (for k = y, π, u, c, ζ) condition-

ing on the transformed states gkt defined in equations (3.48)-(3.52), on the mixture indicators
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ιkt and on the parameters φ. More specifically, the unrestricted (i.e. θk = 1) conditional state
space representation is given by

wt︷ ︸︸ ︷[
gkt −

(
mιkt
− 1.2704

)
− 2hk0

]
=

ZMt︷ ︸︸ ︷[
2θkσγ,k

] sMt︷ ︸︸ ︷[
h̃kt

]
+

et︷ ︸︸ ︷[
ε̃kt

]
, (3.63)[

h̃kt+1

]
︸ ︷︷ ︸
st+1

= [1]︸︷︷︸
R1

[
h̃kt

]
︸ ︷︷ ︸
st

+
[

1
]

︸ ︷︷ ︸
Kt

[
γ̃kt

]
︸ ︷︷ ︸
νt

, (3.64)

with Ht = v2
ιkt
, Qt = 1 and where ε̃kt = εkt −

(
mιkt
− 1.2704

)
is εkt recentered around zero. The

random walk components h̃kt are initialized by setting a1 = 0 and A1 = 1000.
In the restricted model (i.e. θk = 0), ZM and sM are empty. In this case, no forward-

filtering and backward-sampling is needed and h̃kt can be sampled directly from its prior using
equation (3.26). Note that the sampling of the state vector α in block 2(a) depends on hkt

rather than on h̃kt . Using hk0, σγ,k and h̃kt , hkt can easily be reconstructed from equation
(3.25).
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4.1 Introduction

In a well-cited paper Jaimovich and Siu (2009), hereafter Ja&Si, argue that the run-up of
U.S. volatility in the mid-1960s and the marked decline since the mid-1980s, known as the
Great Moderation, are the consequence of long swings in the age composition of the Amer-
ican population induced by the baby boom and subsequent baby bust. Ja&Si start from
well-documented differences in the responsiveness of labor market activity to the business cy-
cle over individuals of different ages. Both ‘the young’ and ‘the old’ tend to experience greater
sensitivity of employment and hours worked than the prime-aged. Given this U-shaped pat-
tern Ja&Si define the volatile-age labor force share sit as the fraction of the 15-64 year old
labor force accounted for by those aged 15-29 and 60-64. Using an unbalanced panel for the
G7 countries covering the period 1963-1999, sit is then linked to the time-varying standard
deviation of output σit in the following benchmark regression

σit = αi + βt + γsit + εit, (4.1)

with αi a country fixed effect and βt a time fixed effect. Using a variety of alternative measures
for σit, Ja&Si show that shifts in the volatile-age share variable sit account for a significant
fraction of the observed variation in cyclical volatility in the G7 countries. Similar results
are obtained by Lugauer (2012) for a panel of 50 U.S. states and by Lugauer and Redmond
(2012) for a panel of 51 advanced and developing countries.

A theoretical explanation for the effect of demographics in output volatility is given by
Jaimovich, Pruitt, and Siu (2013), who modify a standard neoclassical model to include
capital-experience complementarity in the production function. The model distinguishes be-
tween young and old workers, where the latter have greater labor market experience and,
thus, higher capital complementarity. As the elasticity of substitution between capital and
labor differs among the two age groups, technology shocks induce an asymmetric change in
labor demand, where labor demand for the young is more volatility than for the prime-aged
workers.

Although the exact timing and specific evolution has been different, most developed coun-
tries have experienced a similar shift in the age distribution of the labor force over the postwar
period which seems to coincide with a decline in macroeconomic volatility. The aim of this
paper is to investigate whether this alleged long-run relationship is meaningful or is in fact
spurious. First, we look at the properties of the G7 data used by Ja&Si for the volatility
measures and the labor share variable. We show that both are non-stationary and exhibit
significant cross-sectional dependence. The latter implies that the long swings in the data that



4.2. Time series properties and cross-sectional dependence 99

are, to a certain extent, common over the G7 countries. Second, we replicate the results of
Ja&Si and show that (4.1) is not a cointegrating relation. This does not automatically imply
that the results are not meaningful as Phillips and Moon (1999) have shown that a spurious
regression can be avoided in a panel with a large number of independent cross-sections. How-
ever, the small cross-sectional dimension of the G7 panel dataset together with the presence of
significant cross-sectional dependence raise questions on whether the Phillips and Moon result
applies. Third, to shed further light on whether there is a stable long-run relation between
business cycle volatility and demographics, we use the richer panel datasets of Lugauer (2012)
and Lugauer and Redmond (2012). The larger number of cross-sections allows us to use the
common correlated effects (CCE) approach of Pesaran (2006) to account for cross-sectional
dependence. We still find no evidence of cointegration and the estimation results are found to
be very sensitive to small changes in the data and/or to the specification of the volatile-age
labor force share.

4.2 Time series properties and cross-sectional dependence

As a first step in the empirical analysis, Table 4.1 reports unit root and cross-sectional de-
pendence tests on the cyclical volatility σit and the volatile-age labor share variable sit taken
from the Ja&Si dataset. As a measure for σit, we consider both the standard deviation of
HP filtered real GDP during a 10-year window, hereafter HP, and the instantaneous standard
deviation of real output growth calculated from the stochastic volatility model of Stock and
Watson (2003, 2005), hereafter SW. More details on the construction of these variables can
be found in Ja&Si.

The top left panel of Table 4.1 reports country-specific Augmented Dickey and Fuller
(1979) (ADF) and Maddala and Wu (1999) (MW) panel unit root tests for a specification
with a constant. The null hypothesis of a unit root in the HP and SW volatility measures
cannot be rejected at the 5% level of significance for any of the individual countries nor for
the panel as a whole. For the labor share variable sit the unit root hypothesis is rejected for
only 2 out of 7 countries, i.e. for Canada and Japan, while not rejected using the panel MW
test.

The bottom left panel of Table 4.1 reports the average cross-sectional correlation ρ̂ in
the data together with the Pesaran (2004) cross-sectional dependence (CD) test. To avoid
spurious non-zero correlations due to non-stationarity of the data in levels, we also report
results for the first-differenced data and for the error terms of the ADF regressions. For

The data are available at the AER website: https://www.aeaweb.org/aer/data/june09/20070168_data.zip.
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Table 4.1: Properties of the Ja&Si data: unit root and cross-sectional dependence tests

Sample period: 1963-1999, unbalanced panel of G7 countries
Model: constant constant + time dummies

σit sit σit sit

HP SW HP SW
Country-specific ADF unit root tests
Canada −0.88 −2.44 −3.87 −1.28 −2.33 −2.82

[0.79] [0.14] [0.01] [0.63] [0.17] [0.07]
France −2.76 −2.38 1.40 −0.31 −0.56 −0.01

[0.08] [0.16] [0.99] [0.91] [0.87] [0.95]
Germany −0.17 −1.45 0.41 −2.14 −1.27 −3.40

[0.94] [0.55] [0.98] [0.23] [0.63] [0.02]
Italy −0.48 −1.28 −0.60 −0.54 −0.73 −1.80

[0.88] [0.63] [0.84] [0.85] [0.81] [0.37]
Japan −1.26 −1.60 −4.64 −1.37 −1.43 −2.88

[0.64] [0.48] [0.00] [0.59] [0.56] [0.06]
U.K. −0.34 −0.99 2.34 1.17 −1.57 −1.85

[0.91] [0.75] [0.99] [0.99] [0.48] [0.35]
U.S. −0.42 −0.92 −1.63 −1.69 −2.02 −2.30

[0.90] [0.77] [0.45] [0.44] [0.28] [0.18]
Panel unit root tests
MW 7.36 12.40 20.45 7.13 10.37 26.45

[0.92] [0.57] [0.12] [0.93] [0.74] [0.02]
Cross-sectional dependence tests
Data in levels
ρ̂ 0.21 0.27 0.59 −0.15 −0.14 −0.22
CD 5.74 7.22 13.18 −3.71 −3.61 −4.68

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
Data in first-differences
ρ̂ 0.18 0.06 0.13 −0.16 −0.04 −0.05
CD 4.73 1.64 2.49 −3.53 −1.19 −1.08

[0.00] [0.10] [0.01] [0.00] [0.23] [0.28]
Error terms of the ADF regressions
ρ̂ 0.11 0.13 0.21 −0.11 0.03 0.20
CD 2.92 3.28 4.94 −2.63 0.50 4.24

[0.00] [0.00] [0.00] [0.00] [0.61] [0.00]
Notes: The lag length of the country-specific ADF unit root tests is selected using the
Akaike information criterion with a maximum lag length of int{12 (T /100)0.25}. The
ADF tests for the model with constant include a constant while for the model with con-
stant and time dummies the data are first regressed on fixed and time effects and the resid-
uals are next used to calculate the ADF statistics. The MW panel unit root test is defined
as −2

∑N

i=1 ln (pi) where pi is the p-value corresponding to the unit root test of the ith
country. The average cross-correlation coefficient ρ̂ = (2 /N (N − 1) )

∑N−1
i=1

∑N

j=i+1 ρ̂ij

is the average of the country-by-country cross-correlation coefficients ρ̂ij (for i 6= j). The
cross-sectional dependence CD test is defined as

√
2T /N (N − 1)

∑N−1
i=1

∑N

j=i+1 ρ̂ij ,
which is asymptotically standard normal under the null of cross-sectional independence.
p-values are in square brackets.
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each of the variables and error terms significant positive cross-sectional dependence is found.
This is in line with the graphs in Ja&Si which show a similar long-run pattern in σit and
sit over countries. The only clear exception is Japan, which experienced an overall postwar
moderation in output volatility and aging of the workforce similar to the other countries in
the sample, but the evolution over time was quite different.

To control for cross-sectional dependence, Ja&Si include a full set of time dummies. The
top right panel of Table 4.1 therefore also reports unit root tests after projecting out time
effects (model = constant + time dummies). This does not change the main conclusion with
respect to the non-stationarity of the data. The null hypothesis of a unit root can still not be
rejected for the HP and SW volatility measures using either the country-specific ADF tests
or the MW panel test. Especially for the SW measure this should not come as a surprise as
(the log of) volatility is explicitly generated as a random walk process. For the labor share sit
the unit root hypothesis is again rejected for Canada and Japan, although here only at the
10% level, while the unit root is now also rejected for Germany. As a result the MW panel
test rejects the unit root hypothesis at the 2% level of significance. The bottom right part of
Table 4.1 shows that the time dummies are able to remove most of the positive cross-sectional
dependence in the data. The small number of countries available to estimate the time effects
even induces significant negative cross-sectional dependence. Only for the error terms of the
ADF specification for the labor share variable the positive cross-sectional dependence does
not disappear.

Taking stock, the unit root tests show that the data, especially the volatility measures,
exhibit non-stationary behavior such that one should be careful when using them in a standard
regression context. In the next section we analyse the consequences of this finding for the
estimation results in Ja&Si.

4.3 The Jaimovich and Siu (AER, 2009) regression

The top left panel of Table 4.2 replicates the baseline coefficient estimates of 4.02 when using
the HP volatility measure and 3.34 when using the SW measure reported by Ja&Si in their
Table 4. These results show that the volatile-age workforce participants have a strong and
significant positive impact on business cycle volatility. Next to results for a model with both
individual and time fixed effects (FETE), as used by Ja&Si, we also report fixed effects (FE)

The finding of significant cross-sectional dependence implies that the MW panel unit root test, which
ignores cross-sectional dependence, is inappropriate.

Ja&Si also report results using an IV instead of a LS estimator to account for the possible endogeneity of
the labor share variable. Although in a non-stationary panel endogeneity is typically dealt with in a different
way, we experimented with the IV approach but this did not change the qualitative results.
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estimation results to signify the difference. For the full G7 sample, excluding the time effects
does not result in fundamentally different results. Not removing the common trend in the
data by not including time dummies results in point estimates that are a bit higher and
standard errors that are a bit lower. Given the non-stationarity of the data detected in the
previous section, Table 4.2 also includes country-specific ADF and MW panel cointegration
tests using the estimated error terms ε̂it. These results show that equation (4.1) is not a
cointegration regression as the null hypothesis of a unit root in εit cannot be rejected. This
raises the question whether the correlation between demographics and volatility is spurious.
Ja&Si do suggest themselves that the observed strong positive correlation could be spurious
because of omitted non-stationary factors such as unstable oil prices and monetary policy in
the 1970s. They argue however that the different evolution in demographics and volatility over
countries, most markedly in Japan compared to the other countries, should avoid spurious
correlation. Phillips and Moon (1999) indeed show that pooling over a large number of
cross-sections attenuates the strong effect of the non-stationary residuals while retaining the
strength of the signal. In this case, a consistent estimate of the long-run relation can be
obtained even if there is no cointegration. An important condition for this result to hold
is that the error terms are cross-sectionally independent. Urbain and Westerlund (2011) for
instance show that the Phillips and Moon result does not longer hold when the non-stationary
in the error term is induced by a common factor structure. The bottom left panel of Table
4.2 shows that although there are signs of cross-sectional dependence in the error terms this
is not overwhelming especially when using the SW volatility measure. However, given the
small cross-sectional dimension of the G7 panel dataset and some cross-sectional dependence
the question remains whether the Phillips and Moon result holds or whether the results
are in fact spurious. In this respect, it is informative to see that the positive correlation
disappears, and even becomes negative, when excluding Japan from the panel in a model
including both individual and time fixed effects. When including only individual fixed effects
the strong positive correlation remains, though. This shows that when controlling for the
common evolution in volatility in the remaining 6 G7 countries, there is no longer a role for
the country-specific evolution in demographics. The different evolution in the variables for
Japan together with the small cross-sectional dimension in the data seems to undermine the
effectiveness of the time dummies to adequately capture the common factors in the full G7
dataset.
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Table 4.2: The Jaimovich and Siu (AER, 2009) regression

Sample period: 1963-1999, unbalanced panel of G7 countries
Full G7 sample G7 sample excl. Japan

HP SW HP SW

FE FETE FE FETE FE FETE FE FETE
Estimation results
γ 4.70 4.02 4.89 3.34 4.39 −0.34 4.24 −3.09

(0.79) (1.13) (0.70) (1.17) (0.95) (1.64) (0.82) (1.78)
Country-specific ADF cointegration tests
Canada −1.22 −1.15 −2.78 −2.35 −1.25 −1.31 −2.92 −2.35

[0.65] [0.69] [0.08] [0.17] [0.64] [0.61] [0.06] [0.17]
France −1.01 0.11 1.40 −0.40 −1.11 −0.44 1.21 −0.72

[0.74] [0.96] [0.99] [0.90] [0.70] [0.89] [0.99] [0.83]
Germany −1.62 −1.67 −0.92 −1.37 −1.60 −2.69 −0.77 −1.93

[0.46] [0.44] [0.77] [0.58] [0.47] [0.09] [0.81] [0.31]
Italy −1.62 −2.21 −0.48 −1.82 −1.59 −0.50 −0.66 −1.33

[0.45] [0.21] [0.87] [0.36] [0.46] [0.87] [0.83] [0.59]
Japan −2.15 −1.93 −2.11 −1.82

[0.23] [0.32] [0.24] [0.37]
U.K. 1.55 0.88 −2.68 −2.34 −0.17 0.40 −2.45 −1.90

[0.99] [0.99] [0.10] [0.17] [0.93] [0.98] [0.14] [0.33]
U.S. −1.05 −1.48 −1.54 −1.84 −1.00 −1.52 −1.42 −1.82

[0.73] [0.54] [0.50] [0.36] [0.75] [0.52] [0.56] [0.37]
Panel cointegration test
MW 8.30 9.20 14.96 14.55 5.43 7.71 11.71 11.65

[0.87] [0.82] [0.38] [0.41] [0.94] [0.81] [0.47] [0.47]
Cross-sectional dependence in the first-differenced error terms
ρ̂ 0.10 −0.15 0.06 −0.03 0.14 −0.17 0.08 −0.04
CD 2.35 −3.42 1.16 −0.93 2.65 −3.08 1.32 −1.12

[0.02] [0.00] [0.25] [0.35] [0.01] [0.00] [0.19] [0.26]
Notes: Newey-West standard errors in parentheses, p-values in square brackets.
The cointegration tests are unit root tests on the estimated error terms ε̂it.
See Table 4.1 for further notes.
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4.4 Two datasets with a richer cross-sectional dimension

The Phillips and Moon (1999) result that a consistent estimate of the long-run relation be-
tween non-stationary variables can be obtained even if there is no cointegration only holds
when pooling over a large number of independent cross-sections. Banerjee and Carrion–i–
Silvestre (2015) show that consistent estimation is possible once cross-sectional dependence is
controlled for using the pooled common correlated effects (CCEP) estimator of Pesaran (2006)
and Kapetanios, Pesaran, and Yamagata (2011). By including cross-sectional averages of the
data to proxy for the unobserved common factors, the CCEP approach is able to account for a
more general heterogeneous cross-sectional dependence compared to the homogeneous pattern
when using time fixed effects. Moreover, CCEP allows for consistent estimation under very
general integration properties of both the data and the unobserved common factors that gen-
erate the cross-sectional dependence. As these results requires the number of cross-sections
to grow to infinity, in the next section we look at two panels with a larger cross-sectional
dimension than the G7 panel considered by Ja&Si.

4.4.1 Lugauer and Redmond (EconLet, 2012)

Lugauer and Redmond (2012) collect a balanced panel dataset for 51 countries over the period
1957-2000. GDP data from the Penn World Table (2009, version 6.3) are used to calculate
output volatility, which is defined as the 9-year rolling standard deviation of log annual GDP,
detrended using the HP filter. Demographic data are taken from the United Nations World
Population Prospects (2008). Following Ja&Si, the volatile-age labor share variable is defined
as the fraction of the working age population aged 15 to 29 plus those aged 60 to 64. Country-
specific ADF unit root tests (not reported) after projecting out time fixed effects show that
the null hypothesis of a unit root is rejected at the 5% level of significance in 3 countries
for the volatility measure and in 14 countries for the age share variable. A MW panel unit
root test rejects the unit root hypothesis for the age share variable but not for the volatility
measure. This marked difference in time series behavior already suggests that demographics
can probably not explain the stochastic trend in volatility in a lot of countries.

The FETE column in the upper left panel of Table 4.3 replicates the result in LR that the
age distribution has an economically large impact on volatility, i.e. a 10% points increase in
the share variable raises the standard deviation of cyclical output by 0.38, although only being
significant at the 10% level of significance. The CCEP estimator yields an even larger estimate
which is moreover significant at the 5% level. The cointegration test shows that only in a

Although these data are publicly available, we thank Steven Lugauer for kindly providing the original data.
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Table 4.3: The Lugauer and Redmond (EconLet, 2012) regression

Original sample, all Original sample, OECD Revised sample, all
(N = 51) (N = 22) (N = 51)

FE FETE CCEP FE FETE CCEP FE FETE CCEP
Estimation results
γ 7.71 3.84 5.99 4.47 2.19 0.01 5.77 −0.62 0.92

(1.46) (1.99) (2.49) (1.04) (1.89) (2.34) (1.40) (1.74) (2.11)
Cointegration tests
ADF: # pi < 5% 5 2 3 3 2 1 4 4 1
Panel MW 116.83 104.78 96.71 70.81 70.09 48.85 115.41 126.37 95.30

[0.15] [0.41] [0.63] [0.01] [0.01] [0.28] [0.17] [0.05] [0.67]
r − − 4 − − 2 − − 4
Cross-sectional dependence in the first-differenced error terms
ρ̂ 0.04 0.01 −0.00 0.12 −0.03 −0.04 0.04 −0.00 −0.01
CD 8.72 1.54 −0.34 11.51 −3.43 −3.62 8.66 −0.09 −1.43

[0.00] [0.12] [0.74] [0.00] [0.00] [0.00] [0.00] [0.93] [0.15]
Notes: For the country-specific ADF cointegration test we report the number of countries for which the unit root
hypothesis is rejected, i.e. for which the p-value pi is smaller than 5%.
For the CCEP estimator, the cointegration test is a unit root test on the idiosyncratic part of the error terms,
which is obtained by removing r common factors from the estimated error terms using the principal components
approach suggested by Bai and Ng (2004). The value of r is chosen to make sure that the idiosyncratic error
terms are cross-sectionally independent. See Everaert (2014) for more details.
See Tables 4.1 and 4.2 for further notes.

small number of countries this constitutes a cointegration relation while the panel MW test
does not reject the null hypothesis of no cointegration. Despite the finding of no cointegration
but given that the error terms of the FETE and CCEP regressions are independent over cross-
sections, the result in Banerjee and Carrion–i–Silvestre (2015) implies that these estimators
should still yield consistent estimates. In this respect, only the FE estimate is not trustworthy
as there is significant cross-sectional dependence left in the error terms.

However, having a closer look at the data reveals that the estimates are driven by only a
small number of countries. After removing 5 countries (the Democratic Republic of the Congo,
Nicaragua, Ethiopia, Nigeria and Mauritius) which exhibit very large swings in volatility,
the relation between demographics and volatility completely disappears, i.e. the FETE and
CCEP estimates drop to 0.25 and 0.28 respectively and are no longer significant (more detailed
results are available on request). As dropping specific countries is a somewhat ad hoc choice,
Table 4.3 reports results of two alternative robustness checks. First, the middle panel shows
that demographics also have no significant impact on volatility when using only the more
homogeneous panel of OECD countries. As a further robustness check, we use a more

Note that the MW test on the error terms of the FE and FETE regressions rejects the null of no cointe-
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recent version of the Penn World Table (2012, version 7.1) and the 2012 revision of the World
Population Prospects, but leave the sample period unchanged (1957 - 2000). The estimation
results in the right panel of Table 4.3 show that data revisions apparently also remove the
alleged strong relation between demographics and volatility.

4.4.2 Lugauer (ReStat, 2012)

Lugauer (2012) uses a panel including data on 50 U.S. states over the period 1981-2004.
Output volatility is defined as in Lugauer and Redmond (2012), with state-level GDP data
taken from the Bureau of Economic Analysis. Demographic variables are based on U.S. Census
data. The age share variable used in the baseline regression is the youth share, defined as the
fraction of the population aged 20 to 54 under the age of 35. State-specific ADF unit root
tests (not reported) after projecting out time fixed effects show that the null hypothesis of a
unit root is rejected at the 5% level of significance in 1 state for the HP volatility measure and
in 3 states for the age share variable. The null hypothesis of a unit root is also not rejected
using a MW panel unit root test.

Table 4.4 replicates the FETE estimate of 3.13 reported by Lugauer. Again this is not a
cointegrating relation, i.e. the null hypothesis of a unit root is rejected in only 1 out of the
50 states while the MW panel test does not reject the null hypothesis. Also note that the
time dummies are now no longer able to remove all of the cross-sectional dependence. The
CCEP estimate of 1.20 is much smaller but still significant at the 5% level. Interestingly, this
estimator is able to remove all of the cross-sectional dependence with the MW test on the
idiosyncratic part of the error term rejecting the null of no cointegration.

Important to note is that the youth share used by Lugauer (2012) as demographic variable
is different from the volatile-age share variable suggested by Ja&Si. As such, this variable
does not capture the alleged U-shaped pattern of employment volatility as it excludes the
youngest (15-19) and oldest (60-64) workers. In column 5-7 of Table 4.4 we therefore present
regression results when the demographic variable is defined as in Ja&Si. The coefficient turns
negative and, in the case of the FETE estimator, is even statistically significant. The CCEP
regression is now no longer a cointegrating relation.

gration. This is due to the fact that for the OECD sample the MW test also rejects the null of a unit root in
the HP volatility measure.

The data are available at the Review of Economics and Statistics Database:
http://hdl.handle.net/1902.1/19663.

To construct the volatile-age share variable we had to make us of the most recent Census revision. Replacing
the original with the revised data but keeping the youth share definition did not notably change the results
reported in columns 2-4 of Table 4.4.
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Table 4.4: The Lugauer (ReStat, 2012) regression

sit = youth share sit = volatile-age share
(N = 50) (N = 50)

FE FETE CCEP FE FETE CCEP
Estimation results
γ 4.64 3.13 1.20 6.50 −2.92 −1.01

(0.24) (1.24) (0.51) (0.31) (1.11) (0.83)
Cointegration tests
ADF: # pi < 5% 1 1 4 1 0 4
Panel MW 82.73 107.27 124.07 107.51 94.47 103.08

[0.89] [0.29] [0.05] [0.29] [0.64] [0.40]
r - - 2 - - 2
Cross-sectional dependence in the first-differenced error terms
ρ̂ 0.44 0.06 0.00 0.39 0.06 −0.01
CD 73.32 9.33 0.80 66.04 9.80 −1.30

[0.00] [0.00] [0.42] [0.00] [0.00] [0.19]
Notes: see Tables 4.1, 4.2 and 4.3.

4.5 Conclusion

This paper has replicated several important studies estimating the impact of the age distri-
bution of the work force on cyclical output volatility. Using the original datasets we first
replicate the estimation results. However, the existing literature ignores the non-stationary
behavior and the cross-sectional dependence in the error terms. We therefore go on to show
that there is clear evidence of a unit root in the error terms of the regressions. This suggest
that the strong correlation between demographics and business cycle volatility reported in
the literature may be spurious rather than signaling a meaningful long-run relationship. This
suggestion is supported by the finding that the estimation results are very sensitive to small
changes in the sample and/or in the definition of the labor share variable. Accounting for
unobserved common factors using the CCEP estimator does not change this conclusion. Our
results show that the current setup of using only a composite demographic change variable is
probably too restrictive and more work is needed to come up with a satisfactory explanation
for the great moderation and for shifts in volatility more in general.
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5 | What Drives Output Volatility?
The Role of Demographics and
Government Size Revisited

Abstract: This paper investigates the determinants of output volatility in a panel of 22
OECD countries. In contrast to the existing literature, we avoid ad hoc volatility measures
based on rolling windows and account for the possible non-stationarity of the data. Specifi-
cally, we estimate output volatility from an unobserved components model where the volatility
series is the outcome of both macroeconomic determinants and a latent integrated process.
A Bayesian model selection is performed to test for the presence of the non-stationary com-
ponent, similar to a cointegration test. Results suggest that output volatility is driven by
demographics and openness of the economy, while the effects of government size and taxation
are ambiguous.
JEL classification: C32, E32, E62, J11
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5.1 Introduction

Since its first documentation by Kim and Nelson (1999) and McConnell and Perez-Quiros
(2000), the persistent reduction in United States business cycle volatility during the 1980s
has inspired a large body of literature. Stock and Watson (2003) coined the term “Great
Moderation” to describe the puzzling fall in volatility. Since then, many studies have tried to
explain the time variation in business cycle volatility, mainly through advances in economic
policy or changes in deep structural factors of the economy. The latter explanation is sup-
ported by recent studies on the role of demographics. While it was first documented in the
United States, Del Negro and Otrok (2008) showed that the decline in volatility was a global
phenomenon with important differences across countries regarding the magnitude, timing,
and sources. International differences in output fluctuations have also been investigated in
an earlier strand of literature that mainly focused on cross-country regressions to explain
volatility among OECD countries. Results suggest an important role of government size for
stabilizing the economy. However, the literature suffers from two important shortcomings:
The use of ad hoc measures for output volatility and possible spuriousness of the regression
result. The latter point was investigated extensively by Everaert and Vierke (2015) for the
relationship between demographics and output volatility.

In this paper, a novel approach for estimating the determinants of output volatility is
proposed. The contribution is threefold. First, instead of relying on rolling standard deviation,
the volatility series is obtained from an unobserved components model with a latent volatility
process, which is partly driven by macroeconomic covariates. The second key feature is the
inclusion of an unobserved I(1) component in the volatility equation to account for possible
non-stationary factors driving volatility. Third, in order to obtain the most parsimonious
model, a Bayesian variable selection is performed on the non-stationary factor, similar to a
cointegration test. The model is estimated for an unbalanced panel of 22 OECD countries with
data from 1960 to 2007. We merge a recent literature strand on the effect of demographics
with the literature on the role of government stabilization. Specifically, we try to explain
output volatility over time and across countries with the demographic composition of the
labor force as well as the size of the government, while controlling for tax composition and
openness of the economy. The regression results suggest important effects of demographics,
openness, and labor taxation.

The remainder of the paper is structured as follows: Section 5.2 reviews the literature
on the relationship between government size, taxation, demographics, and output volatility.

We use the terms output volatility and business cycle volatility interchangeably in this paper.
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Section 5.3 presents the unobserved components model and gives a short introduction to the
testing problem involved with this approach. In section 5.4 the Gibbs sampling algorithm
and the prior distributions are presented. Section 5.5 discusses the sources, transformations,
and time-series properties of the data. Estimation results are presented in section 5.6, and
section 5.7 concludes.

5.2 Literature review

This paper focuses on the effect of fiscal policy, mainly government size and taxation, and
demographics on output volatility. From a theoretical point of view, there exist different
perspectives on the role of the government in stabilizing output. While the Keynesian school
argued that the economy is inherently unstable and cyclical fluctuations are costly, Lucas
(1987) estimated the welfare cost of the business cycle, based on a micro-founded model, to
be negligible. Abstracting from normative statements about the cost of the business cycle, the
question arises whether governments are able to alter output fluctuations in the first place. A
seminal contribution on the role of government size for output stabilization was given by Gali
(1994), who investigates the effect of income taxation and government purchases on output
volatility in a real business cycle (RBC) model with technology-driven shocks. The model
predicts a destabilizing effect of tax increases as they reduce (after tax) productivity and thus
lower steady-state employment. The resulting higher labor elasticity leads to a greater la-
bor supply sensitivity to technology shocks. Higher government purchases, on the other hand,
have an opposing effect and lead to lower output volatility. For different calibrations the desta-
bilizing effect of higher labor taxes dominates. However, when taken to data from 22 OECD
countries the estimated effects do not match the theoretical predictions. A cross-country re-
gression reveals that income taxes and government purchases are “automatic stabilizers” in
the Keynesian sense. Tax progressivity and transfer payments could therefore help to cushion
the impact of shocks to aggregate production on disposable income. Gali (1994) argues that
the model might be missing important features such as productivity-improving government
spending.

Since the seminal work by Gali, many papers have investigated the effect of government
size and/or taxation on output volatility. For example, Fatás and Mihov (2001) estimate
the effect of government spending on output volatility for 20 OECD countries (1960-1997).
They report that regardless of the volatility or government size measure, the effect on output
is always stabilizing. In a related study, Martinez-Mongay and Sekkat (2005) test whether
the negative relation between government size and output volatility depends on the tax mix.
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Specifically, the authors are interested in the effect of distortionary taxes. Using data for 25
OECD countries (1960-2000), they find that labor and capital taxes have stabilizing effects,
although the evidence is weak. Pisani-Ferry, Debrun, and Sapir (2008) extend the literature by
exploiting the time series dimension of the data and perform a panel regression for 20 OECD
countries (1960-2006). They confirm the link between government size and macroeconomic
volatility for the beginning of the sample, but show that the relation disappeared during the
1990s. Carmignani, Colombo, and Tirelli (2011) pay special attention to the endogeneity of
government size and estimate simultaneous equations. They find that greater volatility causes
larger governments. In contrast to previous studies, their estimates imply a destabilizing effect
of government expenditure on output volatility. Crespo Cuaresma, Reitschuler, and Silgoner
(2011) estimate a dampening and non-linear effect of government size on output volatility for
a sample of EU countries, which reverts at very high levels of government expenditure. In a
recent contribution Posch (2011) derives the effect of different taxes on the volatility of output
growth within a stochastic neoclassical growth model and tests the theoretical predictions
within a panel regression of 20 OECD countries. Special attention is paid to the nature of
the unobserved variance process. Different tax ratios are found to have ambiguous effects:
Taxes on labor and corporate income are stabilizing, while capital taxes increase volatility.
Overall, the existing literature suggests a dampening effect of government expenditure on
output volatility, in line with the notion of automatic stabilizers. However, when some of the
channels are investigated individually, the picture is less clear-cut and opposing effects arise.

Next to the role of the government for output stabilization, we take into account recent
studies that attribute the Great Moderation to structural change in the form of demographic
shifts. As the decline in United States’ output volatility coincides with a decrease in the
number of young workers relative to prime-age workers, the demographic composition of the
labor force arises as a possible explanation for volatility shifts. A theoretical explanation was
given by Jaimovich, Pruitt, and Siu (2013) within a standard neoclassical model. When the
production function includes capital-experience complementarity, the elasticity of substitution
between capital and labor differs among young and old workers, which leads to higher volatility
in the wages and working hours of the younger workers. Jaimovich and Siu (2009) were the
first to empirically test this relationship for a small sample of countries. They start from
documenting differences in the volatility of employment and hours worked across different
age groups. The youngest and oldest among the workforce experience larger employment
fluctuations than prime-age workers. To reflect this U-shaped pattern the authors define a
volatile-age share variable, constructed as the ratio of the 15-29 and 60-64 old workers over
the entire workforce. Estimating a panel regression for the G7 countries they find a large and
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significant effect of the age share on output volatility, defined as the rolling standard deviation
of the HP-filtered output gap. The estimated effect is large enough to account for up to one-
third of the decline in output volatility in the United States. Lugauer (2012) confirms this
significant effect of demographics for a large panel of the 50 federal states. Similar results are
also found in Lugauer and Redmond (2012) for 51 advanced and developing countries.

Nevertheless, we identify two important shortcomings in the literature. First, the majority
of the studies using panel methods do not discuss the time series properties of the variables
considered, although many are potentially non-stationary. Notable exceptions, which pay
attention to the problem of spurious regression results, are Posch (2011), who performs a
cointegration analysis and confirms a long-run relation between taxes and volatility, and
Kent, Smith, and Holloway (2005), who discuss the limits of a linear time trend or common
time effects for capturing common volatility trends. Jaimovich and Siu (2009) mention that
their findings could be spurious because of omitted non-stationary factors, but argue that
cross-country differences in volatility and demographics ensure identification. Everaert and
Vierke (2015) replicate three studies on the relationship between demographics and business
cycle volatility and show that common time-dummies are insufficient to account for non-
stationarity. As the majority of studies on the determinants of output volatility rely only on
time dummies to cope with non-stationary common factors, this casts doubt on the reliability
of their results.

Second, the latent volatility series is usually estimated via rolling standard deviations.
This generates a high degree of persistence in the endogenous variable due to the overlapping
windows, so that the error terms of the subsequent regression exhibit serial correlation. More-
over, complex dynamics in output volatility are averaged out through this procedure. The
problem is partly acknowledged by Jaimovich and Siu (2009) and Lugauer (2012), who obtain
an alternative volatility series from the stochastic volatility model of Stock and Watson (2003).
However, volatility is explicitly modeled as a non-stationary process, which emphasizes the
problem of spurious results when regressing the obtained series on a set of non-stationary
explanatory variables. Jaimovich and Siu (2009) and Posch (2011) also address the unobserv-
ability of output volatility and estimate a GARCH model borrowed from Ramey and Ramey
(1995), which relies on common time dummies to capture time-variation not explained by the
covariates. Posch (2011) touches on the limits of this approach in the context of cointegra-
tion. We conclude that the time series treatment in the literature is insufficient. The different
approaches are conflicting, as the same variable is assumed to be stationary in one application

While a large number of cross sections can eliminate the problem of spurious results, this only holds for
the case of cross-sectionally independent error terms.



116 5. What Drives Output Volatility?

while explicitly modeled as I(1) in another one.

5.3 Empirical model

5.3.1 An unobserved components model with stochastic volatility

The empirical model is based on the following output growth decomposition

yi,t = µi,t + ρ1,i(yi,t−1 − µi,t−1) + ρ2,i(yi,t−2 − µi,t−2) + exp{h∗i,t}εi,t, εi,t ∼ i.i.d.N (0, 1),
(5.1)

where yi,t is annual output growth in country i = 1, ..., N at time t = 1, ..., T . µi,t is the
time-varying mean growth rate, and exp{h∗i,t} is the time-varying standard deviation of out-
put shocks. Deviations from the mean growth rate are assumed to be transitory, i.e. the
characteristic roots of the AR(2) process lie strictly outside the unit circle. The mean growth
rate is assumed to evolve over time according to a random walk:

µi,t = µi,t−1 + ηµi,t, ηµi,t ∼ i.i.d.N (0, σ2
µ,i). (5.2)

Although a time-varying mean growth rate is not a stylized fact in empirical macroeconomics,
we follow a recent finding by Berger, Everaert, and Vierke (2015) of a persistent decline in
potential output growth. This is in line with the literature on the United States productivity
slowdown in the early 1970s. Perron and Wada (2009), Kim, Piger, and Startz (2007), and
Morley and Piger (2012) take this slowdown into account by allowing for structural breaks
in the growth rate of potential output. The random walk specification can mirror a similar
pattern, but allows for more complex dynamics as well. The volatility process h∗i,t is assumed
to be driven by a vector of macroeconomic covariates, xi,t, where the country-specific slope
coefficients are collected in the vector βi. These covariates or a subset of them may ex-
hibit non-stationarity. Thus, the question of cointegration between output volatility and the
explanatory variables arises. As shown by Everaert (2011), standard cointegration analysis
yields spurious results when relevant integrated variables are omitted from the model. One
solution is to model the omitted variables as a random walk component within an unobserved
components framework, so that the long-run relation between the non-cointegrated variables
can be estimated consistently via the Kalman filter. Hence, an unobserved non-stationary
error component, hi,t, is introduced to the model. In line with the literature on stochastic
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volatility, this component is modeled as a driftless random walk:

h∗i,t = β′ixi,t + hi,t, (5.3)

hi,t = hi,t−1 + ηhi,t, where ηhi,t ∼ i.i.d.N (0, σ2
h,i). (5.4)

Equations (5.1)-(5.4) constitute a state-space model, where (5.1) is the observation equation,
linking the latent variables to the observed output series, and (5.2) - (5.4) are the state
equations, describing the dynamics of the latent variables. Given estimates for the model
parameters, the latent variables of this state space system can be estimated via the standard
Kalman filter.

5.3.2 Model selection in the UC framework

A key feature of this paper is that we test for the presence of a non-stationary country-specific
error component hi,t. This testing problem is equivalent to testing the hypothesis σ2

h,i = 0
against σ2

h,i > 0. Note that in the first case, hi,t becomes a constant and takes on the role of a
country-specific intercept in the volatility equation, i.e. it captures differences over countries
that are not explained by the set of covariates and do not change over time. In the latter case,
hi,t will capture omitted and/or unobservable non-stationary factors which permanently shift
volatility. The proposed test is non-regular, since the null hypothesis lies at the boundary
of the parameter space. In principle, this could be dealt with by a Lagrange multiplier test.
This paper follows a different approach and applies a Bayesian procedure, mainly for two
reasons. First, the Bayesian approach allows to make intuitive statements about the inclusion
probability of the non-stationary factors. Second, the estimation of the proposed SV model
becomes intractable for the classical approach. A Gibbs sampling approach, which relies on
splitting the complex nonlinear model into conditionally normal blocks, makes estimation
feasible and leads to a Bayesian testing procedure without many additional modifications.

Specifically, the stochastic model specification search (SMSS), introduced by Frühwirth-
Schnatter and Wagner (2010), is applied. This approach requires the model to be re-written

Ex ante, no correlation structure is imposed on the factors across countries. As explained in the Appendix,
all country-specific factors are filtered and sampled separately. This approach keeps the size of the covariance
matrices manageable, but still allows for ex post correlation among the country-specific factors.

See Morley, Panovska, and Sinclair (2015) for an evaluation of the LM test for the presence of a non-
stationary component and a discussion of its small sample properties.
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in a non-centered parameterization. Equation (5.4) is rearranged in the following way:

hi,t = hi,0 + σh,i h̃i,t, (5.5)

h̃i,t = h̃i,t−1 + η̃hi,t, where h̃i,0 = 0 and η̃hi,t ∼ i.i.d.N (0, 1). (5.6)

The non-centered parameterization splits the factor, hi,t, into a constant part, hi,0, and a time-
varying part, h̃i,t. The standard deviation of the innovations to the random walk component
now enters multiplicatively in equation (5.5). As such, the model is non-identified. To see
that, note that the signs of σh,i and h̃i,t can be interchanged without affecting the sign of
their product. In the non-centered parameterization, σh,i holds valuable information about
the presence of a time-varying component. If the posterior distribution is unimodal, the
model favors a constant country-specific volatility factor. If the the distribution is bimodal
around zero, a time-varying factor is favored. The non-centered parameterization leads to a
more formal test for time-variation without much further modification. Frühwirth-Schnatter
and Wagner (2010) introduce a binary indicator to select the most parsimonious specification.
Here, the indicator is labeled δi, which takes on the value δi = 1 for a model with time-varying
volatility factor in country i and δi = 0 if the country factor is constant over time. Hence,
the final volatility equation is given by

h∗i,t = β′ixi,t + hi,0 + δiσh,i h̃i,t. (5.7)

All country-specific indicators are collected in a vector M = (δ1, δ2, ..., δN ), where every
possible combination of the binary indicators constitutes one specific model. We impose a
uniform prior on the model probabilities, so that each model has the same prior probability.
The models are then sampled according to their Bayesian model probability. Details on how
to estimate the indicators are given in the Appendix of this paper. The SMSS in combination
with the non-centered parameterization holds important advantages: It avoids inverse-Gamma
prior distributions, which can lead to a substantial bias for the variance of the non-stationary
factor when the true value is close to zero. Instead, the square root of the variance of the
non-stationary component now enters as a regression coefficient in equation 5.5, for which
a normal prior distribution can be used. This prior does not impose the same bias as the
inverse-Gamma distribution. Moreover, the SMSS relies on binary model indicators that
can easily be sampled during the Gibbs sampling procedure along with the remaining model
parameters. These indicators can be used to test for non-stationary factors in the volatility
equation.
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5.4 Bayesian estimation

5.4.1 Gibbs sampling

This paper relies on Markov Chain Monte Carlo (MCMC) methods for estimation. The pro-
posed model is highly nonlinear because of the stochastic volatility components, which enter
exponentially into equation 5.1. Thus, the standard application of the Kalman Filter and
Maximum likelihood technique is not feasible. Instead a Gibbs Sampling procedure is ap-
plied. Specifically, the complex model is split into blocks of parameters and components that
are linear conditional on the other blocks. To linearize the nonlinear volatility process, we
follow Kim, Shephard, and Chib (1998) and take the logarithm of the square of the process.
The resulting linear model, which has non-Gaussian error terms, is then approximated by an
offset mixture model. This section only holds a brief description. A detailed explanation of
the algorithm is given in the Appendix. For notational convenience, the country-specific com-
ponents are collected in the vectors µt = (µt,1, ..., µt,N ) and h̃t = (h̃t,1, ..., h̃t,N ). Observations
are stacked over time, i.e. x = {xt}Tt=1, y = {yt}Tt=1, µ = {µt}Tt=1 and h̃ =

{
h̃t
}T
t=1

. Country-
specific parameters are collected in the vectors h0 = (h0,1, ..., h0,N ), σh = (σh,1, ..., σh,N ),
and β = (β1, ..., βN ). Moreover, denote ρi = (ρ1,i, ρ2,i)′ and ρ = (ρ1, ..., ρN ). All parame-
ters are collected in ψ = (β, ρ, h0, σh, σµ). The posterior density of interest is then given by
f(h̃, µ, ψ,M|y, x). In short, the algorithm consists of the following Gibbs Sampling steps:

1. Sample the binary indicatorsM from f(M|h̃, µ, y, x) marginalizing over the parameters
ψ and sample the unrestricted parameters in ψ from f(ψ|h̃, µ,M, y, x), while setting
σh,i equal to zero for countries for which δi = 0 fromM.

2. Sample the latent components h̃ from f(h̃|µ, ψ,M, y, x) and µ from f(µ|h̃, ψ,M, y, x).

3. Perform a random sign switch for σh and h̃ with probability 0.5.

By sampling repeatedly from these blocks, we obtain parameters draws from the joint posterior
after a sufficiently large number of “burn-in” iterations

5.4.2 Prior choice

This paper follows a Bayesian approach and therefore the choice of prior distributions deserves
some explanations. Prior distributions are given in Table 5.1. The main parameters of
interest are the β coefficients, which represent the effect of the explanatory variables on output
volatility. For these parameters a diffuse prior is chosen. The prior is normal with mean zero
and large standard deviation. Because of the non-centered parameterization, normal priors
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Table 5.1: Prior distributions

Name Description Density Specification

Mean a0 Std
√
A0

βi,k Correlation coefficients N (a0, A0) 0.0 10.0
hi,0 Constant country-specific

volatility
N (a0, A0) 0.0 1.0

σh,i Std of country-specific tv-
volatility

N (a0, A0) 0.0 1.0

ρ1,i AR coefficient output gap N (a0, A0) 0.6 0.05
ρ2,i AR coefficient output gap N (a0, A0) -0.2 0.05

Belief σ2
0 Strength ν0

σ2
µ,i Variance of growth trend

shocks
IG(v0T, v0Tσ

2
0) 0.1 T × 0.1

Success rate p
p(δi = 1) Inclusion probability of

country-specific tv-volatility
Bern(p) 0.5

can also be applied to the constant output volatility, h0,i, and the standard deviation of the
country-specific time-varying volatility, σh,i, which take on the role of regression coefficients.
For both parameters the prior distributions are relatively uninformative with a zero-mean and
unit standard deviation. The normal priors on the autoregressive coefficients ρ imply a low
degree of persistence, which is in line with fitting a simple univariate AR model with constant
volatility to annual output growth. For the standard deviation of the time-varying output
growth rate, the prior distribution is the usual inverse-Gamma distribution IG(c0, C0) where
the shape c0 and scale C0 are expressed in terms of a prior belief σ2

0 and a prior strength v0.
Specifically, we set c0 = v0T and C0 = s0σ

2
0, so that the strength can be expressed as a fraction

of the sample size. Our belief implies that roughly 95% of shocks to the mean growth rate at
annual frequency lie between +/- 0.62%-points. The strength of this belief is relatively weak,
as it implies a number of “fictitious” observations equal to 10% of the sample size. Finally,
the prior probability for time-variation in country-specific output volatility, which is needed
for the SMSS procedure, is given by a Bernoulli distribution with p = 0.5, which assigns equal
weight to the null and alternative hypothesis.
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5.5 Data and time series properties

This paper studies output volatility dynamics in an unbalanced panel of 22 OECD countries
at annual frequency for the years 1960 to 2007. The explanatory variables include 7 indicators
for fiscal policy, demographics, and openness. Details on variable construction and sources
are given in Table 5.2. Output growth is measured by the first difference of the log of real
GDP, which is standard in the literature. In line with the recent studies on the effects of
demographics on volatility, we add the share of the working age population aged 15-29 and
60-64 as an explanatory variable. Empirical estimates by Jaimovich and Siu (2009) suggest a
positive effect of the share variable. Regarding the impact of fiscal policy on output volatility,
we consider both the revenue and expenditure side. On the expenditure side, we measure the
size of the government by the government’s final consumption expenditure expressed as a share
of GDP. However, as first noted by Rodrik (1998) and then discussed by Fatás and Mihov
(2001) and others, the effect of government size might suffer from a simultaneity bias. More
open economies might experience greater volatility because of their exposure to international
business cycle shocks. If governments can indeed reduce volatility, they will likely be bigger
in more open economies, which would induce a downward bias of the estimated effect of
government size. Hence, we include trade openness, defined as the sum of exports and imports
as a share of GDP, into our regression analysis. Despite the argument of Rodrik (1998), the
sign of the effect of openness is not clear-cut, as higher openness can also represent a form
of risk diversification that can counteract shocks at the national level. On the revenue side,
we measure the tax mix by three different tax variables: Consumption, capital, and labor tax
ratios. We combine tax data from two different sources, McDaniel (2007) and Posch (2011),
to achieve a larger sample. Specifically, Posch (2011) measures average taxes following the
methodology of Mendoza, Razin, and Tesar (1994) using OECD data. This data set covers
22 countries, but is only available from 1970 onwards. The data provided by McDaniel (2007)
are based on national accounts and thus start as early as 1950. Unfortunately, the sample
covers only 15 out of the 22 countries. Thus, we merge the two sources and extend the data
from Posch (2011) with the earlier data from McDaniel (2007) for these 15 countries. This
leaves us with an unbalanced panel consisting of 22 countries and a total of 984 observations.
Posch (2011) derives marginal tax effects in a stochastic neoclassical growth model and finds
that theoretical effects are ambiguous. Labor taxes have negative effects on output volatility

The countries considered are: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany,
Greece, Ireland, Italy, Japan, Korea, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland,
United Kingdom, United States.

See McDaniel (2007) for more details on the comparison with the Mendoza, Razin, and Tesar (1994)
methodology.
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Table 5.2: Data description and sources

Variable Description Source

y First difference of log real GDP Penn World Tables 8.0

age Share of the the working age popu-
lation (15-64) aged 15-29 and 60-64,
see Jaimovich and Siu (2009)

World Population Prospects:
The 2012 Revision

openness Sum of exports and imports as a
share of GDP

World Bank national accounts
data

govsize General government final consump-
tion expenditure as a share of GDP

World Bank national accounts
data

captax Average tax rate on capital income

McDaniel (2007) & Posch (2011)

contax Average tax rate on consumption
expenditures

labtax Average tax rate on labor income
(incl. payroll tax and tax on house-
hold income)

in the model, while consumption taxes are volatility neutral. Capital taxes are a form of
income taxation but also on investment and wealth. Thus, they have no clear-cut theoretical
effect. Before taking the model to the data, the time series properties of the variables are
discussed. As argued in the motivation of this paper, some of the explanatory variables may
exhibit non-stationarity so that correlations are potentially spurious. Table 5.3 reports the
results of country-specific Augmented Dickey and Fuller (1979) (ADF) and Maddala and Wu
(1999) (MW) panel unit root test. In case of the ADF test, the number of cross-sections
with an individual p-value lower than 5% is reported. For the MW test, the Fisher test
statistic is given along with the corresponding p-value in brackets. Columns 2-3 refer to tests
with a country-specific constant, while in columns 4-5 a time trend is added. Only looking
at the individual ADF statistics suggests that most of the series considered are in fact unit
root processes. For output growth the null of a single unit root can be rejected for almost
all countries considered when individual tests are performed. Looking at the explanatory
variables, the null of a single unit root in country-wise ADF tests cannot be rejected for the
majority of countries. Results from the Madalla-Wu panel unit root test are less clear-cut.
For a model with only country-specific intercepts, the data series for openness, capital taxes,
and consumption taxes are found to have unit roots. If a time trend is added to the testing
equation, unit roots cannot be rejected for openness, government size, consumption, and labor
taxes. Taking together the evidence from country-wise and panel unit root tests, it appears
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Table 5.3: Country-specific and panel unit root tests

constant constant & time trend

Variable ADF: Panel MW ADF: Panel MW#(pi < 5%) #(pi < 5%)

y 20 331.26 [0.00] 20 332.83 [0.00]
age 4 100.37 [0.00] 3 122.73 [0.00]
openness 1 19.85 [0.99] 2 54.02 [0.14]
govsize 2 78.11 [0.00] 2 42.49 [0.54]
captax 2 50.42 [0.23] 4 71.15 [0.01]
contax 1 49.27 [0.27] 2 55.89 [0.11]
labtax 7 78.20 [0.00] 1 25.05 [0.99]
Optimal lag length was determined by Schwartz criterion with maximum number set to 4.

important to account for the time series properties of the data when estimating the model in
order to avoid spurious results.

5.6 Estimation results

We iterate the Gibbs steps 10,000 times and drop the first 3,000 as a “burn in” period. For
the first 1,500 of these “burn in” iterations, we restrict the binary indicators to be equal to
one, after which they are sampled according to the SMSS. This ensures convergence to the
ergodic distribution. The results presented in this section are thus based on the remaining
7,000 iterations. Before turning to the estimated effects of the macroeconomic covariates, this
section presents results on the time-varying and latent output components: The unobserved
trend growth rate, the country-specific latent I(1) component, and the unobserved overall
volatility. Then, results on the explanatory variables are given when the full vector or only a
subset of covariates is used.

The empirical model arises from the decomposition of annual output growth into a (stochas-
tic) trend and innovation term. The estimated country-specific trend components from the
baseline model are given in Figure 5.1. This model includes the full set of explanatory vari-
ables. Moreover, all binary indicators are sampled according to the SMSS procedure. Over all
countries, the trend rate captures low-frequency movements, so that observed annual growth
is mainly driven by the transitory component. The shorter series for some countries are due
to limited data availability of the covariates.

One key feature of the approach presented in this paper is the inclusion of a latent non-

We check and reject that the unit roots in the tax rates are the result of the procedure for merging the
data sets.
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Figure 5.2: Posterior distributions of standard deviation for SV component, excl. covariates
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stationary volatility component, which is selected according to Bayesian model probabilities.
As a preliminary test, prior to the stochastic model specification search, one can investigate
the importance of this component by looking at the posterior distribution of the country-
specific standard deviation of the stochastic component. In Figures 5.2 and 5.3 the empirical
distributions of σh,i are plotted for both a model without any covariates and the full set of
covariates. As such, Figure 5.2 gives preliminary evidence on the degree of time-variation in
output volatility when volatility is purely stochastic, i.e. all βi,k are set to zero. Comparing
Figures 5.2 and 5.3 shows how much of the time-variation can be accounted for by the ex-
planatory variables. In order to obtain the full empirical distribution of the parameter, the
binary indicators on the I(1) component are restricted to be δi = 1.

Most of the distributions in Figure 5.2 are bimodal, giving support for a model with time-
varying volatility in the majority of the 22 countries. However, once the explanatory variables
are added to the equations, there is less evidence for the presence of the latent component.
The distribution switches to a unimodal distribution in most cases. As the graphical evidence
is mixed for some countries, e.g. Australia, the binary indicators and their respective inclusion
probabilities can give quantitative evidence for the presence of a non-stationary component.
Table 5.4 gives the posterior probability for the country-specific indicators being equal to
one according to the SMSS. Columns 2 and 6 refer to a model without covariates, i.e. time-
variation can only arise due to the the unobserved component. To make the effect of the
number of covariates more visible, columns 3 and 7 report results for when only the age share
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Figure 5.3: Posterior distributions of standard deviation for SV component, baseline model
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is included. Columns 4 and 8 refer to the full model, i.e. all 7 covariates are included. Not
surprisingly, the inclusion probabilities for a model without covariates are relatively high. This
is in line with previous results from the literature that permanent volatility changes occurred
in many countries since the 1980s. For the demographic model, 7 out of the 22 countries show
an important non-stationary component. This confirms the findings of Everaert and Vierke
(2015) on panel regressions when demographics is the only explanatory variable. However,
the inclusion probabilities drop way below 0.5 in all countries for the full model specification.
This is a first key result: A larger vector of covariates that demographics, openness, and
various fiscal indicators does not produce a non-stationary error component, i.e. results are
not spurious.

Furthermore, one can look at the estimated paths of the country-specific non-stationary
factors, as given in Figure 5.4. For this exercise, binary indicators are set to δi = 1 for all
countries in order to obtain the full empirical distribution for the non-stationary components.
As the non-stationary components are found to be important especially for the demographic
model, we plot the components for this specific model. Most importantly, the individual
dynamics are quite different across countries and common time dummies will not be able to
capture the heterogeneity in non-stationary factors. Countries like Australia, Ireland, Italy, or
Portugal show a hump-shaped pattern, while countries like Finland or Korea exhibit a larger
spike in the second half of the sample. As already indicated by the estimated posterior stan-
dard deviation of the non-stationary components, the variation over time in other countries
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Table 5.4: Posterior inclusion probabilities of I(1) factors

Probability δi = 1 Probability δi = 1
Country Excl. x Age Full model Country Excl. x Age Full model
Australia 0.55 0.12 0.06 Japan 0.88 0.07 0.06
Austria 0.56 0.97 0.17 Korea 0.27 0.69 0.16
Belgium 0.24 0.08 0.05 Netherlands 0.78 0.25 0.08
Canada 0.12 0.07 0.08 New Zealand 0.99 0.34 0.09
Denmark 0.17 0.08 0.08 Norway 0.07 0.08 0.08
Finland 0.3 0.06 0.06 Portugal 0.96 1.00 0.07
France 0.34 0.07 0.06 Spain 0.94 0.93 0.08
Germany 0.08 0.10 0.13 Sweden 0.05 0.07 0.06
Greece 1.00 1.00 0.10 Switzerland 0.94 0.06 0.09
Ireland 0.07 0.16 0.10 United Kingdom 1.00 0.81 0.06
Italy 1.00 1.00 0.07 United States 0.64 0.18 0.07
Age: Only age variable is included.
Bold numbers indicate probabilities > 0.5.

Figure 5.4: Median estimates of non-stationary components (demographic model, δi = 1)
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Figure 5.5: Median estimate of overall volatility (full model)
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is limited.
The estimated overall country-specific volatilities, given by the sum of the explained and

unexplained component, are plotted in Figure 5.5. There is clear evidence of a substantial
decline in output volatility in the second half of the sample in the United Kingdom or the
United States. Many other countries experience a similar decline, but the reduction is much
less pronounced and the timing is quite different. Some economies even exhibit an increase
in output volatility, such as Korea or Greece. This leads to the conclusion that the Great
Moderation has been an international phenomenon, but with important differences across
countries. The volatility measure in this paper differs from the ones commonly used in the
literature. Therefore, Figure 5.6 compares the UC approach to an instantaneous measure
with the standard deviation of output growth from a centered 9-year rolling window. We
report only the median posterior estimates. For many countries, differences between the
two series appear rather small. In case of the United States, for example, the rolling window-
based standard deviation evolves quite closely to our instantaneous stochastic volatility series.
This could suggest that an endogenous measure of volatility is less important, and a rolling
standard deviation is a reasonable approximation. Moreover, an advantage of the rolling
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Figure 5.6: Comparison between UC and rolling window approach
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window approach is that no explicit assumption needs to be made about the volatility process.
However, the estimated correlation coefficients can be quite different, especially if one does
not account for the non-stationarity of the series in the regression analysis. Moreover, there
exist important differences between the two volatility measures for other countries, such as
Australia, Denmark, Japan, Korea or the United Kingdom. In addition, the existing literature
usually uses centered windows for filtering the rolling standard deviation, which means that
the volatility measure inhibits future realized volatility. As a consequence the centered window
“predates” the Great Recession as can be seen by the sharp increase in the rolling measure at
the very end of the sample. The instantaneous volatility measure is robust to this problem.
The estimated effects of the explanatory variables are given in Table 5.5. We report the mean
group estimator, given by the arithmetic average of the country-specific slope coefficients.
Columns 2-5 refer to a regression based on the full tax data set. To demonstrate robustness
we also report results when the original sources are used separately. This gives an indication
on whether tax effects are mostly identified though cross-sectional or over-time variation.
The effect of demographics on output volatility is strong and positive. The median estimate
of 3.5 on the age variable implies an increase in the standard deviation of output growth
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of 0.35 for a 10%-point increase in the age share. This value is broadly in line with the
finding from Jaimovich and Siu (2009) when an instantaneous volatility measure instead of
a rolling window is used. Moreover, this effect is statistically different from zero, as the 95%
credible band covers only positive parameter values. The effect is also robust over the different
samples. For economic openness, we find a strong negative effect on output volatility. The
median effect is −1.7, so that a 10%-point increase in the share of imports and exports to total
output decreases output volatility by 0.17. It implies that trade openness as a form of risk
diversification played an important role for the decrease in output volatility as on average the
country-specific share increased by 35%-points. Our findings are thus in line with Haddad,
Lim, Pancaro, and Saborowski (2013), who argue that trade openness reduces output growth
volatility for well-diversified economies. This criterion certainly applies to the majority of our
22 country sample. We do not find a meaningful effect of government size on output volatility,
when controlling for openness and the different tax channels. The standard error is very large,
so that a zero effect of government size on output volatility cannot be ruled out across all
three data sets. Interestingly, a large negative effect is obtained when output volatility is
regressed only on demographics and government size. This reinforces the need to control for
openness and the tax mix when evaluating the role of government size. However, we still
find a meaningful effect of fiscal policy, mainly through labor taxes, although the estimate
contains a moderate amount of uncertainty. We can rule out meaningful effects of capital or
consumption taxes on output volatility. Labor taxes are found to have a stabilizing effect on
the economy. The median estimate and the corresponding standard error differ across the
three data sets. In the baseline specification (columns 2-5) we find that an increase of the
labor tax ration of 10%−points reduces the standard deviation of output by 0.2. A zero effect
can be ruled out at the 90%, but not the 95% credible level. Using only the data provided
by Posch (2011), the effect is stronger and statistically different from zero. This finding is in
line with previous results from Posch (2011) and suggests that the stabilizing effect of fiscal
policy works mainly through labor taxation as an automatic stabilizer. Earlier results on a
negative effect of government size are possibly due to missing control for the tax mix. However,
we note that there might exist a trade-off between stabilization and efficiency, as discussed
by Martinez-Mongay and Sekkat (2005) and Posch (2011) among others. Specifically, while
higher distortionary taxes can work in favor of output stabilization, there exist well-described
arguments on their negative effect of long-run growth.

Results are not reported here, but available on request.
Restricting the Posch data set to the 15 countries available in the McDaniel sample does not change the

results substantially. However, the estimated effects of openness and labor taxes are even stronger.
Evaluating the effects on first and second moments on output growth simultaneously is beyond the scope

of this paper, but opens up an interesting path for future research.
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Table 5.5: Posterior distribution of mean group estimator

Full set McDaniel Posch
22 countries, 1960-2007 15, 1960-2007 22, 1970-2007

Variable Median Std P2.5 P97.5 Median Std Median Std

age 3.507 [0.647] 2.243 4.755 3.514 [0.795] 3.477 [0.742]
openness -1.679 [0.485] -2.587 -0.712 -2.193 [0.704] -2.066 [0.571]
govsize 0.809 [1.871] -2.861 4.538 2.654 [2.352] 1.837 [2.023]
captax 0.682 [0.878] -1.053 2.385 -0.724 [1.651] 1.670 [0.992]
contax 0.299 [1.647] -2.882 3.512 0.102 [1.949] 1.741 [1.725]
labtax -1.992 [1.077] -4.103 0.184 -1.468 [1.646] -3.575 [1.231]

Bold numbers: 95% credible interval does not contain zero.

In order to demonstrate the contribution of the explanatory variables to the evolution
of output volatility over time, we construct a selection of counterfactual volatility series by
holding constant one ore more of the explanatory variables. Specifically, we take the esti-
mated effects from the baseline model as given, but assume that the respective variable stays
constant at a value equal to the 5-year average at the beginning of the sample. Counter-
factual scenarios are not based on the mean group estimators, but on country-specific slope
coefficients. Moreover, we construct a counterfactual series at every iteration of the Gibbs
sampling algorithm to obtain the full posterior distribution. Thus, the credible bands around
the counterfactuals take into account all sources of filtering and parameter uncertainty within
the model. We focus on the effects of demographics and the fiscal policy variables. Here, we
present only a selection of countries in order to keep the analysis brief. Figure 5.7 plots the
counterfactual series for France, Germany, the United Kingdom, and the United States. The
counterfactual series reflect a working age population with no demographic shifts, i.e. the
share of young and very old workers is constant over the full sample. In all four countries
considered, demographics explain most of the long-run swings in output volatility. When the
age share variable is constant, the series still exhibit some distinct short-run fluctuations. The
common long-run decline in volatility, however, is completely absent or less pronounced in the
counterfactual. Overall, the graphical analysis is in line with the notion that a higher share
of prime-age workers reduced output volatility. As most industrialized countries experience
important shifts towards an aging society, actual volatility in the last decade lies below the
counterfactual series that is based on the demographic composition from 40-50 years ago. In
Germany, for example, the counterfactual volatility is twice as large as the actual series in

We use averages to account for possible outliers at the start of the sample.
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Figure 5.7: Counterfactual volatility series: Constant demographics
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the second half. However, there is large uncertainty around the median volatility estimates.
The large difference comes as no surprise as Germany is one of the fastest aging countries.
Turning to the United States, we find supporting evidence that output volatility in the last 5
decades was in large parts driven by demographics. As argued by Jaimovich and Siu (2009)
the “baby boom” in the United States lead to a large inflow of young workers during the
1970s and a subsequent large share of prime-aged workers since the 1990s. Note that our esti-
mated volatility series indeed shows a large upward deviation from the counterfactual during
the 1970s and 1980s, before falling below the counterfactual in the 1990s. However, there
remains a persistent long-run decline in output volatility even after removing the influence of
demographic. The median of the counterfactual volatility series drops by almost one standard
deviation over the full sample.

When we hold constant all four fiscal variables, i.e. government size, consumption, cap-
ital, and labor taxes, we obtain the series plotted in Figure 5.8. In contrast to the effect
of demographics, the fiscal variables account mainly for the short-run fluctuations in volatil-
ity. See for example the case of Germany, where the counterfactual exercise leads to a very
smooth series that still exhibits a hump-shaped pattern. However, the very large credible
bands around the German counterfactual indicate that the effect of fiscal variables is not well
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Figure 5.8: Counterfactual volatility series: Constant fiscal policy
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identified. In France and the United States, the counterfactual series lie below the realized
series for large parts of the sample period, although the bands overlap in case of the United
States. This indicates that fiscal policy had an overall de-stabilizing effect on the economies.
However, we emphasize that results from this exercise should be handled carefully, as we
assume policy-invariance of the parameters.

5.7 Conclusion

In this paper we have estimated the determinants of output volatility in an unbalanced panel
of 22 OECD countries. In contrast to the existing literature, the volatility series arises endoge-
nously from an unobserved components model, that treats output volatility as a latent and
possibly non-stationary process. Thus, we avoid using ad hoc volatility measures based on
rolling standard deviations. Moreover, we explicitly account for the possible of non-stationary
factors driving output volatility. A Bayesian model selection procedure is used to test for the
presence of non-stationary error components in the volatility equation, similar to a cointe-
gration test. We merge the literature on the role of government size in output stabilization

In other words, the usual Lucas critique applies.
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with new advances on the effect of demographics on business cycle volatility. We control for
international openness and the tax mix when investigating the role of fiscal policy. We find
that demographics played an important role for the evolution of output volatility during the
last decades in many advanced economies. The evidence on the role of fiscal policy is mixed.
When controlling for trade openness, the main channel for fiscal policy to stabilize output
is through labor taxation. This finding is in line with the concept of taxes as automatic
stabilizers. Finally, we construct counterfactual series for a selection of countries in order to
demonstrate the contribution of individual determinants to output volatility over time.
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Appendix

5.A Gibbs sampling algorithm

The structure of the Gibbs sampling algorithm is based on Frühwirth-Schnatter and Wagner
(2010) and the description draws heavily from Berger, Everaert, and Vierke (2015). To
linearize the nonlinear volatility specification, we follow the procedure by Kim, Shephard,
and Chib (1998) and approximate the non-Gaussian distribution in the volatility equation by
a mixture distribution. Specifically, we re-arrange and then linearize the growth equation in
the following way:

yi,t = µi,t + ρ1,i(yi,t−1 − µi,t−1) + ρ2,i(yi,t−2 − µi,t−2) + exp{β′ixi,t} exp{hi,t}εi,t, (5.8)

where εi,t ∼ i.i.d.N (0, 1) and hi,t is defined as in (5.5). Both the explained and unexplained
component of volatility enter multiplicatively. The Gibbs sampling approach allows for split-
ting and transforming this model into blocks that are conditionally linear. Thus, given βi and
xi,t, estimates for the latent non-stationary component can be obtained from the following
model:

ỹi,t = exp{hi,t}εi,t, (5.9)

where ỹi,t = (yi,t − µi,t − ρ1,i(yi,t−1 − µi,t−1) − ρ2,i(yi,t−2 − µi,t−2))(exp{β′ixi,t})−1. This
expression can be linearized by taking the natural-log of the squares:

ln(ỹ2
i,t + c) = 2hi,t + εi,t, (5.10)

where c = 0.001 is an offset constant and εi,t = ln(ε2
i,t). The last term follows a log-chi-square,

which can be approximated by the following mixture of normal distributions:

f(εi,t) =
M∑
j=1

qjfN (εi,t|mj − 1.2704, ν2
j ), (5.11)
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where qj is the component probability of a specific normal distribution with mean mj −
1.2704 and variance ν2

j . This mixture can equivalently be expressed in terms of component
probabilities:

εi,t|(ιi,t = j) ∼ N (mj − 1.2704, ν2
j ) with Pr(ιi,t = j) = qj . (5.12)

We follow Omori, Chib, Shephard, and Nakajima (2007) and use a mixture ofM = 10 normal
distributions to proxy the log-chi-square distribution. With this linearization at hand, the
Gibbs sampling algorithm consists of the following steps:

Block 1: Sampling the binary indicators M and the hyperparameters φ

Block 1(a): Sampling M, h0 and σh

For notational convenience, let us define a general regression model:

w = zMbM + e, e ∼ N (0,Σ), (5.13)

with w a vector including observations on a dependent variable wt and z an unrestricted
predictor matrix containing the state processes h̃t that is relevant for explaining wt. The
corresponding unrestricted parameter vector with the relevant elements from φ is denoted
b. zM and bM are then the restricted predictor matrix and restricted parameter vector
that exclude those elements in z and b for which the corresponding indicator in M is 0.
Furthermore, Σ is a diagonal matrix with elements σ2

e,t that may vary over time to allow for
heteroskedasticity of a known form.

A naive implementation of the Gibbs sampler would be to sampleM from f(M|h̃, w, φ)
and φ from f(φ|h̃,M, w). However, this approach does not result in an irreducible Markov
chain as whenever an indicator in M equals zero, the corresponding coefficient in φ is also
zero which implies that the chain has absorbing states. Therefore, as in Frühwirth-Schnatter
and Wagner (2010) we marginalize over the parameters φ when samplingM and next draw
the parameters φ conditional on the indicatorsM. The posterior distribution f(M |h̃, w) can
be obtained using Bayes’ Theorem as

f(M|h̃, w) ∝ f(w|M, h̃)p(M), (5.14)

with p(M) being the prior probability ofM and f(w|M, h̃) being the marginal likelihood of
the regression model (5.13) where the effect of bM and σ2

e is integrated out. The closed form
solution of the marginal likelihood in the case of heteroskedasticity Σ = diag

(
σ2
e,1, ..., σ

2
e,T

)
,
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under the normal conjugate prior bM ∼ N
(
aM0 , AM0

)
, is given by

f
(
w
∣∣∣M, h̃

)
∝
|Σ|−0.5

∣∣∣AMT ∣∣∣0.5∣∣AM0 ∣∣0.5 exp
(
−1

2

(
w′Σ−1w +

(
aM0

)′ (
AM0

)−1
aM0

−
(
aMT

)′ (
AMT

)−1
aMT

))
, (5.15)

with

aMT = AMT

((
zM

)′
Σ−1w +

(
AM0

)−1
aM0

)
, (5.16)

AMT =
((
zM

)′
Σ−1zM +

(
AM0

)−1
)−1

. (5.17)

Following George and McCulloch (1993), instead of using a multi-move sampler in which all
the elements inM are sampled simultaneously, we use a single-move sampler in which each
of the binary indicators δi (for i = 1, ..., N) is sampled separately.

Using equation (5.5), equation (5.10) can be rewritten in the general linear regression
format of (5.13) as

wt︷ ︸︸ ︷
gi,t −

(
mιi,t − 1, 2704

)
=

zMt︷ ︸︸ ︷
2
[

1 δih̃i,t

] bM︷ ︸︸ ︷ hi,0

σh,i

+
et︷︸︸︷
ε̃i,t , (5.18)

for i = 1, ..., N , with ε̃i,t = εi,t −
(
mιi,t − 1, 2704

)
is εi,t recentered around zero and where

gi,t = ln(ỹ2
i,t + c) The marginal likelihood f (w |δi, h) can be calculated as in equation (5.15).

The binary indicator δi can then be sampled from the Bernoulli distribution with probability
p
(
δi = 1

∣∣∣h̃i, w) calculated from

p
(
δi = 1

∣∣∣h̃i, w) =
f
(
δi = 1

∣∣∣h̃i, w)
f
(
δi = 0

∣∣∣h̃i, w)+ f
(
δi = 1

∣∣∣h̃i, w) , (5.19)

Next, bM can be sampled from N
(
aMT , AMT

)
with aMT and AMT as defined in (5.16) and (5.17).

Note that bM = (hh,0, σh,i)′ when δi = 1 and bM = hh,0 when δi = 0. In the latter case, we
set σh,i = 0.
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Block 1(b): Sampling ρ

Using the general notation from (5.13), define

wt︷ ︸︸ ︷[
yi,t − µi,t

]
=

Zt︷ ︸︸ ︷[
yi,t−1 − µi,t−1 yi,t−2 − µi,t−2

]
bt︷ ︸︸ ︷ ρ1,i

ρ2,i

+

et︷ ︸︸ ︷[
exp{hi,t + β′ixi,t}

]
(5.20)

with Σ = diag(exp {hi,1 + β′ixi,1}
2 , ..., exp {hi,T + β′ixi,T }

2). The parameters can be sampled
according to (5.16) and (5.17).

Block 1(c): Sampling σ2
µ,i

Again, we use the more general notation from (5.13) and sample the variance conditioning on
µi,t according to:

wt︷ ︸︸ ︷[
µi,t − µi,t−1

]
=

et︷ ︸︸ ︷[
ηµi,t

]
, (5.21)

where σ2
µ,i can be sampled from IG(cT , CT ) with CT = C0 + 0.5(ηµ′ηµ) where ηµ is calculated

from ηµt = µi,t − µi,t−1, and where cT = c0 + T/2.

Block 1(d): Sampling the βi

Starting from (5.8), we condition on hi,t and linearize again by taking the log of the squares:

ln(ỹ2
i,t + c) = 2β′ixi,t + εi,t, (5.22)

where ỹi,t = (yi,t − µi,t − ρ1,i(yi,t−1 − µi,t−1)− ρ2,i(yi,t−2 − µi,t−2)) exp{hi,t}−1 and εi,t follows
a log-chi-square distribution. Similar to (5.18), we use the more general notation:

wt︷ ︸︸ ︷
gi,t −

(
mιi,t − 1, 2704

)
=

zt︷︸︸︷
2βi

b︷︸︸︷
xi,t +

et︷︸︸︷
ε̃i,t , , (5.23)

where the predictor matrix and corresponding parameter vector are always unrestricted and
gi,t = ln(ỹ2

i,t + c). βi can then be sampled from N (aT , AT ) similar to (5.16) and (5.17), where
all elements are unrestricted.
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Block 2: Sampling mixture indicators ι and latent components µ and h̃i

Block 2(a): Sampling ι

Following Del Negro and Primiceri (2014), the mixture indicators are sampled before the
stochastic non-stationary volatility component. Specifically, we use equation (5.10) and sam-
ple the indicator from its conditional probability mass

p(ιi,t = j|hi,t, εi,t) ∝ qjfN (εi,t|2hi,t +mj − 1.2704, ν2
j ), (5.24)

with the values for qj ,mj , and ν2
j taken from Omori, Chib, Shephard, and Nakajima (2007).

Block 2(b): Sampling h̃i

In this block we use a forward-filtering and backward-sampling approach of Carter and Kohn
(1994) and De Jong and Shephard (1995) to sample the unobserved state h̃i based on a general
state space model of the form

wt = ZMt sMt + et, et ∼ iidN (0, Ht) , (5.25)

st+1 = R0 +R1st +Ktvt, vt ∼ iidN (0, Qt) , s1 ∼ iidN (a1, A1) , (5.26)

where wt is now a vector of observations and st an unobserved state vector. The matrices Zt,
R0, R1, Kt, Ht, Qt and the expected value a1 and variance A1 of the initial state vector s1

are assumed to be known (conditioned upon). The vector sMt and the matrix ZMt are again
restricted versions of st and Zt with the elements excluded depending on the model indicators
M. The error terms et and vt are assumed to be serially uncorrelated and independent of
each other at all points in time. As equations (5.25)-(5.26) constitute a linear Gaussian state
space model, the unknown state variables in st can be filtered using the standard Kalman
filter. Sampling s = [s1, . . . , sT ] from its conditional distribution can then be done using the
multimove simulation smoother of Carter and Kohn (1994) and De Jong and Shephard (1995).

We filter and sample the stochastic volatility terms h̃i,t (for i = 1, ..., N) conditioning on
the transformed series gi,t = ln(ỹ2

i,t + c), on the mixture indicators ιi,t and on the parameters
φ. More specifically, the unrestricted (i.e. δi = 1) conditional state space representation is
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given by

wt︷ ︸︸ ︷[
gkt −

(
mιi,t − 1, 2704

)
− 2hi,0

]
=

ZMt︷ ︸︸ ︷[
2δiσh,i

] sMt︷ ︸︸ ︷[
h̃i,t

]
+

et︷ ︸︸ ︷[
ε̃kt

]
, (5.27)[

h̃i,t+1
]

︸ ︷︷ ︸
st+1

= [1]︸︷︷︸
R1

[
h̃i,t

]
︸ ︷︷ ︸
st

+
[

1
]

︸ ︷︷ ︸
Kt

[
η̃hi,t

]
︸ ︷︷ ︸
νt

, (5.28)

with Ht = v2
ιkt
, Qt = 1 and where ε̃kt = εkt −

(
mιkt
− 1, 2704

)
is εkt recentered around zero. The

random walk components h̃kt are initialized by setting a1 = 0 and A1 = 0.0001.
In the restricted model (i.e. δi = 0), ZM and sM are empty. In this case, no forward-

filtering and backward-sampling is needed and h̃kt can be sampled directly from its prior
using equation (5.5). Using draws for hi,0, σh,i and h̃i,t, hi,t can easily be reconstructed from
equation (5.6).

Block 2(c): Sampling µi

We sample the unobserved state µi based on the general state space model from (5.25) and
(5.26), where all elements are unrestricted. Conditioning on the observed series yi,t, the time-
varying volatility h∗i,t = exp{hi,t + β′ixi,t}, and the parameter σ2

µ,i and ρi, the state space
representation is given by

wt︷ ︸︸ ︷[
yi,t − ρ1,iyi,t−1 − ρ2,iyi,t−2

]
=

Zt︷ ︸︸ ︷[
1 − ρ1,i − ρ2,i

]
st︷ ︸︸ ︷
µi,t

µi,t−1

µi,t−2

+

et︷ ︸︸ ︷[
εi,t

]
, (5.29)


µi,t+1

µi,t

µi,t−1


︸ ︷︷ ︸

st+1

=


1 0 0
1 0 0
0 1 0


︸ ︷︷ ︸

R1


µi,t

µi,t−1

µi,t−2


︸ ︷︷ ︸

st

+


1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

Kt

[
ηµi,t

]
︸ ︷︷ ︸
νt

, (5.30)

with Ht a matrix with diagonal elements exp{h∗i,t}, Qt = σ2
µ,i, and where µi,t is diffusely

initialized by setting a1 = 0 and A1 = 1000.

Block 3: Random sign switch on σh and h̃

For each cross section, a random sign switch is performed on σh,i and
{
h̃i
}T
t=1

with probability
0.5.
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