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CHAPTER 1 
INTRODUCTION 

 
 

“Human behavior flows from 
three main sources: desire, 

emotion and knowledge” 
 

Plato, The republic, ~380 BCE  
 
 

 

The idea that motivation constitutes the primary engine of human 

behavior dates back at least to ancient Greece, where the philosopher Plato 

assigned to “desire” a cardinal role in his theory of soul. This component 

was also described as appetite, which encompasses a number of basic human 

urges, from hunger to sexual needs, as well other non-biological goals which 

entail pleasure, like money, political activity or even physical exercise 

(Wagner, 2001). In this perspective, appetite was considered as a strong 

driver of  human behavior, independent of reason and possibly interfering 

with rational behavior. 

Since this early intuition, the study of motivation has evolved across 

multiple theories, constructs and applications, capturing the interest of 

several disciplines, like philosophy, psychology, economics and more 

recently neuroscience and machine learning (Rangel, Camerer, & Montague, 

2008). The scope of this dissertation embraces the most recent steps of these 

developments, with a particular focus: how motivational drive is embedded 

in the human brain, and how this shapes adaptive behavior. 
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THE QUEST FOR VALUE 
 

The study of motivation relies on the principle that animals’ behavior 

is guided by the pursuit of extrinsic or intrinsic benefits, such as rewards, 

pleasure and satisfaction (Berridge, 2004). Pursuing benefits requires the 

ability to track benefits, their probability of occurrence, and possibly other 

associated features (e.g., costs). In the literature, the term value is used to 

indicate how such features are combined. Classic decision theory posits that 

expected value of an option or object is an additive function of its possible 

reward outcomes, each outcome weighted by its probability of occurrence. 

This influential concept was formulated in the 17th century by the 

mathematician and philosopher Blaise Pascal and dominated economic 

models for two centuries (Schoemaker, 1982). In 1979, Kahneman and 

Tversky expanded this idea, by formulating the prospect theory. This theory 

postulates that the value of an option or object is also influenced by 

contextual and cognitive factors, which shift a reference point. As a result, 

value may vary depending on the circumstances and on the state of the 

agent. This theory succeeded in predicting a number of human behaviors, 

deviating from the classic decision theory predictions, and gave a strong 

impulse to the cross-disciplinary investigation of value-based decision 

making (D’Acremont & Bossaerts, 2008; Glöckner & Pachur, 2012; Rangel 

et al., 2008; Takahashi, 2012; Trepel, Fox, & Poldrack, 2005).  

The influence of value on behavior has been investigated focusing on 

two types of rewards. On the one hand, some objects are endowed with 

intrinsically rewarding properties, as they respond to human adaptive needs, 

such as food. These rewards are called primary reinforcers. In other words, 

these objects are intrinsically appetitive, which means they elicit approach 

behavior. On the other hand, such a value can also be attributed to a neutral 
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stimulus, via learning. A long tradition of behavioral experiments in animals 

described the phenomenon of conditioning (Skinner, 1953) which implies 

that a neutral stimulus can be assigned with a rewarding value, when this 

stimulus predicts a reward. This line of research gave a substantial 

contribution to the understanding of learning mechanisms which occur in 

presence of reward, with or without action, in a simple or complex context 

and with or without punishment. What is relevant to the current work, is that 

this laid the basis for reinforcement learning theories (learning via 

reinforcements, that is the receipt of a reward, Rescorla & Wagner, 1972; 

Sutton & Barto, 1998) and their application to animal and human behavior. 

These theories provided a promising framework for understanding how 

value drives adaptive behavior (Matthew M Botvinick, Niv, & Barto, 2009; 

Maia, 2009).  

 

Neural correlates of value and reward prediction 

 
The neural correlates of value have been investigated since the 20th 

century. In 1954, Olds and Milner showed that electrical stimulation of 

specific brain region in rats had rewarding properties. If given the chance of 

controlling the stimulation, the animals would keep on self-delivering the 

stimulation. Subsequent studies determined that these regions were part of 

the dopaminergic (DA) network, including the Ventral Tegmental Area 

(VTA) and the nucleus Accumbens (nAcc, Corbett & Wise, 1980; Phillips, 

Brooke, & Fibiger, 1975). 

Since then, studies have proliferated trying to determine how value 

and reward-related behavior might be associated with this neural substrate. 
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In a seminal study in 1998, Schultz showed that VTA can actually encode 

not only reward receipt, but also reward prediction (Figure 1).  

 

Figure 1:   Recordings from dopaminergic (DA) neurons in the VTA. The top graph 

represents DA firing at reward receipt, when no prediction was formulated. The 

middle graph shows DA firing when the reward predicting stimulus (conditioned 

stimulus CS) occurs. This illustrates the DA shift, as no response is detected at 

reward receipt (R). The bottom graph shows DA firing pattern in presence of a 

violation of the prediction: CS predicts a reward, and this is associated with 

increased firing; no reward is delivered (no R), and this results in a drop in DA 

firing (adapted from Schultz, 1998). 
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When a stimulus is reliably associated with a reward, the firing of 

VTA neurons is initially coupled with reward delivery, but then shifts to the 

predictive stimulus instead. In other words, VTA-DA neurons encode the 

expectation of the reward. This phenomenon is often referred to as 

dopaminergic shift. Furthermore, the same neurons fire when the 

experienced outcome diverges from the learned prediction. This signal is 

named prediction error, and can encode both a positive and a negative 

violation of the expectation (positive prediction error and negative prediction 

error, respectively). These findings opened the way to a conjoint research 

effort across the fields of neurophysiology, neurobiology and psychology to 

determine how VTA-DA input to cortical and subcortical brain areas 

contributes to neural encoding of value and reward prediction. 

VTA-DA input reaches a widespread cortico-subcortical network 

(Figure 2). Direct targets are for example the ventral and dorsal striatum, the 

Nucleus Accumbens (NAcc), the hippocampus, the amygdala and the medial 

Prefrontal Cortex (mPFC, Haber & Knutson, 2010; Lisman & Grace, 2005). 

All the nodes in this network have been shown to contribute to reward-

related behavior in humans in a wealth of studies using functional 

neuroimaging (Knutson & Cooper, 2005; Liu, Hairston, Schrier, & Fan, 

2011; Rangel & Hare, 2010; Vassena, Krebs, Silvetti, Fias, & Verguts, 

2014).  
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Figure 2: Schematic illustration of the reward circuit and the pathways linking the 

different regions. The bottom part represents the brainstem, with Ventral Tegmental 

Area (VTA), Substantia Nigra (SN), Raphe nucleus and Pedunculupontine Nucleus 

(PPN). The central structure represents Nucleus Accumbens (NAcc), part of the 

Ventral Striatum, where s is a specific part of the NAcc, called shell. On the top of 

the figure, the cortical targets are represented: Dorsolateral Prefrontal Cortex 

(DLPFC), dorsal Anterior Cingulate Cortex (dACC), and ventromedial Prefrontal 

Cortex (vmPFC). On the sides, other interconnected structures are represented, with 

respective projections: Amygdala (Amy), Hippocampus (Hipp), Thalamus (Thal), 

Ventral Pallidum (VP), Subthalamic Nucleus (STN), Lateral Habenula (LHb), and 

Hypothalamus (Hypo, adapted from Haber & Knutson, 2010). 
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The ventral striatum (including the nucleus Accumbens) plays a 

pivotal role in appetitive behavior, encoding value at reward delivery and 

driving value-based learning (Diekhof, Kaps, Falkai, & Gruber, 2012). 

Striatal activation typically correlates with individual preferences and with 

the value attributed by subjects to a specific stimulus (Berridge, Robinson, & 

Aldridge, 2010; Kringelbach & Berridge, 2009; Levy & Glimcher, 2011; 

Sabatinelli, Bradley, Lang, Costa, & Versace, 2007). The mPFC has also 

been implicated in different aspects of value processing, including reward 

prediction and outcome value coding. However the functional architecture 

within the mPFC remains debated. One main question concerns the 

hypothesis of a functional segregation of value coding and reward prediction 

coding across the main sub-regions, that is the Anterior Cingulate Cortex 

(ACC) and the ventromedial Prefrontal Cortex (vmPFC, Rushworth, 

Behrens, Rudebeck, & Walton, 2007). 

 

Computational accounts of value and reward prediction 

 

The dopaminergic shift and prediction error coding in the VTA 

demonstrated by Schultz (1998) inspired fruitful computational work, aimed 

at gaining a mechanistic understanding of value-based neural computations. 

Montague, Dayan, and Sejnowski (1996) exploited the principles of 

Reinforcement Learning (RL, Sutton & Barto, 1998) to model VTA 

dopaminergic signaling. Specifically, they formulated the Temporal 

Difference (TD) reinforcement learning algorithm. This model formalizes 

the concepts of reward prediction as a value that is updated over time on the 

basis of experienced outcomes. Strikingly, this model succeeded in 

simulating both dopaminergic shift and prediction error signals, giving rise 
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to a wealth of studies applying RL principles to investigate value-based 

learning and decision-making  (Garrison, Erdeniz, & Done, 2013). Building 

on this foundation, recent work focused on bridging the gap between single-

neuron simulation and higher level cognitive effects (Alexander & Brown, 

2011; Silvetti, Seurinck, & Verguts, 2011). For example, Silvetti and 

colleagues implemented the Reward Value and Prediction Model (RVPM, 

Figure 3). This model simulates meso-limbic interactions borrowing the 

actor-critic architecture in the RL framework (Sutton & Barto, 1998). Put 

simply, the critic is the unit that stores value information associated to a 

certain stimulus, which is updated on the basis of outcomes to formulate 

future predictions similarly to previous computational RL models (Sutton 

Barto, Montague, Dayan, & Sejnowski, 1996). The authors also formulate a 

neurobiologically plausible architecture,  hypothesizing the critic functions 

to be implemented in the ACC. The innovative contribution of RVPM 

resides in its ability of simulating a number of higher level well-known 

cognitive effects, including response conflict (Botvinick, Cohen, & Carter, 

2004; van Veen, Cohen, Botvinick, Stenger, & Carter, 2001) and volatility 

effects (Behrens, Woolrich, Walton, & Rushworth, 2007) in the ACC. 

Importantly, these effects arise from the behavior of the model, without 

explicit implementation of conflict and volatility. The model also 

accommodates a number of previous fMRI results, and in a later model-

based fMRI study the same authors demonstrated the role of mPFC 

(especially the ACC) in encoding reward prediction error (Silvetti, Seurinck, 

& Verguts, 2013). This work provides a framework to study value-based 

goal-directed behavior (Silvetti, Alexander, Verguts, & Brown, 2013), also 

in pathological conditions where DA signaling is impaired (Silvetti, 

Wiersema, Sonuga-Barke, & Verguts, 2013). 
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Figure 3: Reward Value and Prediction Model (RVPM). C1 and C2 represent the 

possible stimuli to choose among. Every choice is associated with an action 

producing an effect on the environment. This results in an outcome, evaluated via 

dopaminergic VTA input, which provides ACC with a reward signal (RW) and a 

temporal difference signal (TSN), reproducing the dopaminergic shift effect.  In the 

ACC module, value V is represented, together with δ units. δ+ units encode positive 

violations of the predicted reward (positive prediction errors). δ- encode negative 

violations of the predicted reward (negative prediction errors). On the basis of 

environmental outcomes, ACC computes new expectations, leading to new choices 

(adapted from Silvetti et al. 2013). 
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BEYOND VALUE: WHEN REWARD COMES AT A COST 
 

Despite the substantial role played by value in motivating goal-

directed behavior, this construct alone does not exhaustively address all real 

life situations. In a natural environment outside the laboratory setting, 

earning a benefit usually entails some cost. For example, the benefit of a 

wage only comes in exchange of a month of a hard work. The breathtaking 

view from the summit of a mountain requires hours of effortful climbing. As 

a more ancestral example, a predator will have his dinner served only upon 

running after (and faster than) his prey. Clearly, pursuing a reward often 

requires a certain amount of effort. Not surprisingly, this exerts a powerful 

influence on decision-making behavior and motivation in a number of 

contexts.  

In 1989, the social psychologist Jack Brehm defined motivation itself 

as the amount of effort one is willing to exert to achieve a goal, such as the 

receipt of a reward (Brehm & Self, 1989). More specifically, in Brehm’s 

theory, motivation is the result of a joint function of potential motivation 

(need, outcome value) and the difficulty of the required behavior. From then 

on, the relationship between potential reward and effort implied in obtaining 

it, received considerable attention in economics. For example, in the labor-

supply theory (Nicholson & Snyder, 2012) value is represented as a utility 

function combining amount of work, wage and extra unearned 

compensations. Interestingly, this framework powerfully predicts apparently 

irrational human behaviors, such as the effect of an income-compensated 

wage decrease. When workers are given a non-earned payment upfront, but 

their wage (earned income) is reduced, they will choose to work less, even if  
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by working the same number of hours as before they would have managed to 

reach the same total amount of money. 

To sum up, motivation sustaining effortful behavior has been mostly 

investigated in the field of economics and social psychology. Only recently 

cognitive psychologists became interested in this topic, discovering the 

applicability of previous theories to a wider range of behaviors, also outside 

the working environment. Kool and Botvinick for example (2012), replicated 

the income-compensated wage decrease effect in laboratory settings,  when 

the involved factors were candies, as a reward for performing cognitively 

demanding tasks. These authors also discuss the application of the labor-

supply theory in the broader perspective of decision-making. This cross-

disciplinary evidence provides empirical support for the intuition that 

humans estimate the effort involved in the pursuit of a certain appetitive 

goal, and that this shapes their decisions.  

 

Neural correlates of effort estimation 

 

If required effort influences behavior as a function of attainable 

reward, prospective effort needs to be encoded by the brain as reward is. The 

first evidence for this claim comes from animal research. Salamone and 

colleagues showed in several studies that dopaminergic neurotransmission is 

essential in this process (Cousins, Atherton, Turner, & Salamone, 1996; 

Salamone, Correa, Farrar, & Mingote, 2007; Salamone, Correa, Mingote, & 

Weber, 2005; Salamone, Correa, Nunes, Randall, & Pardo, 2012). Animals 

show effort avoidance, unless effort exertion leads to a reward. In that case, 

more effort is exerted as a function of available reward. However, this effort-

overcoming behavior is impaired if DA structures are lesioned or if DA 
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levels are pharmacologically depleted. This has been shown in a T-maze 

setting: control rats would normally choose to climb a barrier when this 

would lead to higher amount of food. DA-impaired rats however, would 

choose the easier (no-barrier) less rewarding option instead.  

 

 

Figure 4: On the left, the typical T-maze setting. The animal is placed in the start 

box. When the trial starts, the animal can choose to go to the left (high density arm), 

where more food will be available, but the animal must climb over a barrier. Going 

to right offers a lower amount of food, but no (climbing) effort is required. On the 

right, behavioral results are reported, with on the y axis the number of choices for 

the high effort/high reward arm. Importantly, when striatal dopamine is impaired via 

6-hydroxidopamine lesion, the number of choices for the high effort/high reward 

arm drops dramatically (right panel, 4th column in each test week, adapted from 

Salamone et al. 1984). 
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This evidence that DA network is essential in supporting effortful 

behavior received support from neuropsychological studies in humans. 

Patients with a mesio-frontal lesion (including the mPFC) show a deficit in 

initiating motivated behavior. Moreover, depressed patients, known to have 

DA-alterations, show decreased willingness to exert effort in exchange for 

rewards as compared to controls (Treadway, Bossaller, Shelton, & Zald, 

2012). This indirect evidence in humans is backed up by experimental 

studies investigating the correlates of effort estimation with fMRI. Some 

studies report a crucial contribution of the ventral striatum and the ACC in 

effort-discounting tasks (Botvinick, Huffstetler, & McGuire, 2009; Croxson, 

Walton, O’Reilly, Behrens, & Rushworth, 2009). In such tasks, participants 

are confronted with different rewards, entailing different amount of efforts. 

Apparently, the value of the prospective reward is discounted (i.e. decreased) 

by the amount of effort implied in obtaining it, thus resulting a net-value 

signal. This net-value signal would then drive choice adaptively. However, 

contrasting perspectives remains on how prospective effort is anticipated 

(i.e. estimated in advance), especially concerning its direct encoding by the 

ACC and striatum, and how this is linked to effort-related decision-making 

and preparation for effort exertion. 

 

Computational accounts of effort estimation 

 
The wealth of results from animal research stimulated a mechanistic 

understanding of effort estimation and exertion via computational modeling. 

A first interesting model was proposed by Niv, Daw, Joel and Dayan (2007), 

who operationalized effort coding as a combination of a vigor cost and an 

opportunity cost. The vigor cost was associated with energizing behavior, 
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that is initiating an action. The opportunity cost referred to the worth of 

allocating a certain amount of time to a specific task, thus avoiding 

alternative tasks. Hence, value resulted from a combination of reward and 

the two related costs. However, this model was specifically applied to 

physical effort, thus without considering possible influence of cognitive 

factors. Moreover, the model did not account for difference in effort 

allocation in other dimensions than time (e.g., allocating attention).   

Recently, a new theoretical framework has been proposed, which has 

the potential to go beyond this limitation. Shenhav, Botvinick and Cohen 

(2013) incorporated effort cost in the computation of value, postulating that 

the brain estimates the value of exerting control, in terms of cognitive effort. 

In other words, exerting effort is valuable as it leads to a reward. This type of 

encoding would allow overcoming the otherwise aversive effort, but only 

when this is considered worth. This new theoretical perspective opens 

interesting computational possibilities, and calls for a better specified 

functional understanding of effort anticipation. 

 

OUTLINE OF THE DISSERTATION 
 

As emerged from the overview in this introduction, some crucial 

questions are left open with respect to the neural basis of reward prediction, 

value encoding and effort anticipation. The goal of this dissertation was to 

tackle these issues, using functional Magnetic Resonance Imaging (fMRI) 

and Transcranial Magnetic Stimulation (TMS) as neuroscientific tools for 

investigating the architecture of motivation. 

As a first step, we addressed the neural representation of value and 

reward prediction, coupled with decision-making. In Chapter 2, we discuss 
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the debate concerning the functional specialization within mPFC. This 

region is clearly implicated in both value coding and reward prediction 

(Rushworth & Behrens, 2008). Hypotheses of functional segregation have 

been put forth, with respect to two sub-regions of mPFC, namely vmPFC 

and ACC. These hypotheses suggested a primary role for vmPFC in value 

coding (Grabenhorst & Rolls, 2011) and a primary role of ACC in reward 

prediction (and prediction error, Alexander & Brown, 2011; Silvetti, 

Seurinck, & Verguts, 2011). However, this had never been systematically 

tested in the same experimental settings in the same subjects. The goal of 

this chapter was to investigate this hypothesis. Moreover, the potential 

influence of decision-making processes on value coding and reward 

prediction had never been questioned. This additional experimental question 

was integrated in the design, aiming at better profiling the mPFC functional 

architecture. This region is indeed implicated in choice and action selection 

(Brass & Haggard, 2007; Forstmann, Brass, Koch, & von Cramon, 2006). To 

address these questions, a gambling paradigm was implemented, where 

participants could choose between a gamble and a sure (but smaller) win. 

Participants were exposed to two types of gamble, a risky one (low 

probability, high payoff) and a safe one (high probability, low payoff). This 

allowed to target reward prediction and prediction error coding, as in a 

number of cases the outcome would be unpredicted. On top of this, in half of 

the trials, a forced choice was imposed, thus targeting the specific influence 

of free vs. imposed choice on value and reward prediction coding. This 

experimental design provided the opportunity to investigate one additional 

question on the same dataset, namely the neural underpinnings of individual 

differences in risky choice behavior. This is reported in the Appendix to 

Chapter 2, where we show that risk preference is associated with decreased 

anterior Insula activation during gambling, supporting the role of this area 
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not only in risk estimation (Singer, Critchley, & Preuschoff, 2009), but also 

in explaining inter-individual variability in risky choice. 

After clarifying the neural underpinnings of value and reward 

prediction, we moved to the next step, that is the neural representation of 

costs. In Chapter 3, we implemented an fMRI paradigm investigating the 

anticipation of a specific cost, cognitive effort. This cost was chosen for its 

central role in motivated behavior, and for its ubiquity in everyday life, as 

well as in typical experimental settings. Specifically, we targeted the 

anticipation of effort, comparing it with the anticipation of a reward. 

Importantly, the delay confound was controlled, keeping execution time 

constant across easy and hard effort levels. In this experiment, we showed 

that anticipation of higher effort and greater reward is associated with 

activation of the same cortico-subcortical network, involving ACC and 

striatum. This network seems to support engagement towards successful task 

completion, resulting in reward delivery, thus suggesting a motivational role 

for these regions. Despite the convergence with recent fMRI as well as 

neuropsychological evidence (Devinsky, Morrell, & Vogt, 1995; Németh, 

Hegedüs, & Molnár, 1988), this result stands against the dominant net-value 

account of ACC function (Amiez, Joseph, & Procyk, 2006; Rushworth & 

Behrens, 2008; Silvetti et al., 2011). According to this theory, these regions 

encode the net value associated with a specific stimulus, that is the attainable 

reward discounted by the cost (in our case effort). One clear prediction 

arising from this framework is that higher net value would be associated 

with higher ACC activation, and vice-versa lower net value (deriving from 

higher cost) would be associated with lower activation. Our results however, 

showed that anticipating a higher effort elicited increased activation, thus 
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seemingly incompatible with a net value perspective, and instead more 

compatible with a motivational coding.  

The result from Chapter 3 called for further investigation of neural 

encoding of effort, with special attention to the role of ACC in this process. 

Disentangling this issue was the goal of Chapter 4. In this fMRI 

experiment, we aimed at identifying effort encoding type, directly 

contrasting the hypothesis of net value coding against the hypothesis of a 

motivational coding. A first crucial point characterizing previous studies was 

that decision-making processes were not controlled for. In fact, ACC is 

involved in action selection and decision-making (Brass & Haggard, 2007). 

However, studies investigating anticipation of value and effort did not 

systematically control for this factor. Some studies presented cues to the 

subjects, associated with upcoming, and unavoidable, effortful and 

rewarding tasks. Other studies involved the possibility for the subjects to 

choose effortful and rewarding tasks, according to their own preference. 

ACC has been associated with both  anticipation of effort when no choice is 

required, as well as with decision-making situations (both involving effort 

and not), and therefore considering this factor is crucial. However the role of 

decision-making was never investigated systematically in the same setting 

with the same participants, thus preventing from pinpointing specific 

contributions of ACC to the different processes. Our paradigm was design to 

answer these needs. We implemented an fMRI task where participants were 

confronted with some cues, each proposing a combination of prospective 

effort and potential reward. In a first phase, they would see all these cues, 

and choose which one they were willing to accept (in comparison with a 

baseline cue). The accepted cues would then come back in a second phase, 

associated with a cognitive task, entailing the selected effort and potentially 



38     CHAPTER 1 

granting the announced reward upon correct completion. This allowed to 

simultaneously target the type of encoding (net value vs. motivational), and 

the influence of decision-making on this encoding. Additionally, effort was 

manipulated parametrically across four different levels, thus providing finer-

grained information. As a result, we showed that ACC supports effort 

encoding during both effort-related decision making as well as during 

anticipation of effortful performance. We also show how this is modulated 

by phase, showing that during decision-making parametric encoding of 

effort is better explained by a quadratic trend. This is particularly relevant, as 

it seems to be consistent with the previously illustrated theoretical account of 

ACC function, formulated by Shenhav et al. (2013). These authors suggested 

indeed that the ACC computes the value of allocating a certain amount of 

cognitive resources to pursue a certain goal. In fact, this might go beyond the 

dichotomy between net value coding and motivational coding, as ACC might 

be integrating both effort and value information, including the value of 

exerting the required effort, as it leads to a final reward. As a results, ACC 

activity seems to support goal-directed (reward-driven) behavior, both in 

estimating value and sustain effortful actions towards the goal. The 

importance of this result resides in its ability to provide a framework that 

reconciles seemingly contrasting findings. This hypothesis should further be 

tested, with broader ranges of effort, as for example situations in which the 

tasks is unsolvable and the goal unreachable, to tackle the role of ACC in 

prompting engagement and disengagement.  

Having unraveled the neural computations subserving reward and 

effort coding, the following question was how these signals influence actual 

behavioral policies. A first step in this direction was made in Chapter 5, by 

testing the hypothesis that reward and effort anticipation would influence the 
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motor system. To this end, we chose to use Transcranial Magnetic 

Stimulation (TMS), as a tool to stimulate the primary motor cortex (M1), in 

order to measure the excitability of the motor system via recording motor-

evoked potentials (MEPs) on the hand muscles during task preparation. 

Previous research showed that motor excitability is influenced by a number 

of cognitive factors, including reward expectation (Gupta & Aron, 2011; 

Klein-Flügge & Bestmann, 2012). In this experiment, we manipulate both 

reward expectation and cognitive effort required by task. Both features are 

signaled by a cue prior to task onset. At this time, the TMS pulse on M1 is 

delivered. MEPs are recorded on the hand muscles, to test for a modulation 

of reward and effort. Strikingly, we show that both reward and cognitive 

effort anticipation modulate motor excitability  in a non action specific way. 

This might reflect an increase in motor readiness to boost performance to 

achieve successful task completion. Interestingly, this effect is strongly 

modulated by individual differences in Need for Cognition, a trait measuring 

effort-related preferences and behaviors. This result is a promising first step 

in linking neural computation underlying value and effort with their 

behavioral consequences. Moreover, it shows that high level cognitive 

factors can exert a combined effect at the motor level. This opens exciting 

possibilities in investigating how more sophisticated computations can drive 

behavior, such as for example incorporating the effect of probability of 

success, and investigating how this is integrated with effort requirements and 

potential reward. Moreover, the potential effect of decision-making on the 

value-based modulation in M1 provides another interesting hypothesis to be 

investigated. 

Finally, in the General Discussion we summarize the findings across 

the chapters, discussing implications for future research. Moreover, we 
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illustrate a new neuro-computational model of adaptive effort allocation, 

developed in parallel with our empirical research and partially derived from 

it. This model resolves the controversy between net-value and motivational 

accounts of cortico-limbic structures, by implementing motivation for effort 

as an adaptive behavior, which can be learned via reinforcement learning. 

The explanatory power of the model is illustrated, as well as its empirical 

predictions, yet to be tested. To conclude, the implications of our work for 

future research are discussed, as well as the potential relevance in clinical 

settings. 
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CHAPTER 2 
DISSOCIATING CONTRIBUTIONS OF ACC AND VMPFC IN 

REWARD PREDICTION, OUTCOME AND CHOICE 1 

Acting in an uncertain environment requires estimating the probability and the 
value of potential outcomes. These computations are typically ascribed to 
various parts of the medial prefrontal cortex (mPFC), but the functional 
architecture of this region remains debated. The anterior cingulate cortex 
(ACC) encodes reward prediction and outcome (i.e. win vs lose, Silvetti, 
Seurinck, & Verguts, 2012). An outcome-related value signal has also been 
reported in the ventromedial Prefrontal Cortex (vmPFC, Rangel & Hare, 
2010). Whether a functional dissociation can be traced in these regions with 
respect to reward prediction and outcome has been suggested but not 
rigorously tested. Hence an fMRI study was designed to systematically examine 
the contribution of ACC and vmPFC to reward prediction and outcome. A 
striking dissociation was identified, with ACC coding for positive prediction 
errors and vmPFC responding to outcome, irrespective of probability. 
Moreover, ACC has been assigned a crucial role in the selection of intentional 
actions (decision-making) and computing the value associated to these actions 
(action-based value). Conversely, vmPFC seems to implement stimulus-based 
value processing (Rudebeck et al., 2008; Rushworth, Behrens, Rudebeck, & 
Walton, 2007). Therefore, a decision-making factor (choice vs. no choice 
condition) was also implemented in the present paradigm to distinguish 
stimulus-based versus action-based value coding in the mPFC during both 
decision and outcome phase. We found that vmPFC was more activated during 
the outcome phase in the no-choice than in the choice condition, potentially 
confirming the role of this area in stimulus-based (more than action-based) 
value processing.  

                                                      
1 Vassena E., Krebs R.M., Silvetti M., Fias W. & Verguts T. (2014). Dissociating 
contributions of ACC and vmPFC to reward prediction, outcome and choice. 
Neuropsychologia, 59, 112-123. 
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INTRODUCTION 

Humans constantly face Hamlet’s dilemma in everyday life. Would you 

prefer a reliable job with a steady income over working on commission for high 

bonuses? Would you invest your savings in a pension fund or buy high-

leveraged derivatives at the risk of a considerable loss? Adaptively choosing 

between an uncertain high profit versus a certain but smaller one involves 

predicting the probability of the profit, selecting one of the options, and 

verifying the outcome.  

Foreseeing and detecting benefits are adaptive skills, essential in driving 

goal-directed behavior. In the human and in the non-human primate brain, these 

computations are mediated by the medial prefrontal cortex (mPFC, Haber & 

Knutson, 2010). The mPFC computes the expectation of an upcoming reward 

(i.e. reward prediction), as well as the violation of this expectation (Amiez, 

Joseph, & Procyk, 2006; Jessup, Busemeyer, & Brown, 2010; Knutson & 

Cooper, 2005; Matsumoto, Matsumoto, Abe, & Tanaka, 2007; Silvetti et al., 

2012). This violation is often termed prediction error and it occurs when an 

outcome is better (positive prediction error, PPE) or worse than expected 

(negative prediction error, NPE) (Sutton & Barto, 1998). However, several 

other related functions have been ascribed to the mPFC besides reward 

prediction and prediction error, such as integrating reward with potential 

associated costs, driving decision making (selecting among different available 

options) and computing the value of possible outcomes (Nee, Kastner, & 

Brown, 2011; Rushworth & Behrens, 2008).  
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A major point in this debate concerns the functional architecture of the 

mPFC (Bush et al., 2002; Shackman et al., 2011). On the one hand, the anterior 

cingulate cortex (ACC) plays a critical role in reward prediction and prediction 

error coding (Jessup et al., 2010; Kennerley, Behrens, & Wallis, 2011; Silvetti 

et al., 2012). On the other hand, a complementary role in outcome coding has 

been hypothesized for ventromedial prefrontal cortex (vmPFC, Kennerley & 

Wallis, 2009; O’Doherty, Deichmann, Critchley, & Dolan, 2002; Rushworth, 

Noonan, Boorman, Walton, & Behrens, 2011), which seems to establish 

stimulus-outcome associations and encode rewarding features (i.e. value) of a 

stimulus (Bartra, Mcguire, & Kable, 2013; Chib, Rangel, Shimojo, & 

O’Doherty, 2009; Grabenhorst & Rolls, 2011; Sescousse, Caldú, Segura, & 

Dreher, 2013). This suggests a regional specialization within the mPFC with 

respect to reward prediction, prediction-error computation and outcome coding 

(Hare, Doherty, Camerer, Schultz, & Rangel, 2008). However, this hypothesis 

has not been directly tested in humans.  

Another core aspect of decision making is action selection, and it also has 

been attributed to the mPFC (Brass & Haggard, 2007; Holroyd & Coles, 2008; 

Venkatraman & Huettel, 2012). Often this process is modulated by reward 

prediction, as selecting riskier options (low probability of reward) seems to be 

associated with increased mPFC involvement (see Platt & Huettel, 2008 for a 

review). However, how action selection is linked to reward prediction and 

outcome computation across different phases of the decision-making process 

still lacks a systematic account. 

To tackle these issues, the present fMRI experiment manipulated reward 

prediction, outcome, and choice to systematically characterize the functional 

architecture within the mPFC. In a gambling task, participants were confronted 

with two options in each trial, namely a gamble and small sure win. The gamble 
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induced a reward prediction that would be sometimes violated, causing 

prediction errors. In half of the cases, participants could select the preferred 

option (choice condition) while in the other half, one option would be selected 

by the computer (no-choice condition).  

A whole-brain analysis was performed to identify prediction-error- and 

value-related signals. A subsequent set of ROI analyses aimed at disentangling 

regional specificity of this signal throughout the mPFC across different 

conditions and different phases. Further analyses also elucidated the 

contribution of mPFC to action selection by comparing choice and no-choice 

conditions during both decision and outcome phase.  

MATERIALS AND METHODS 

Participants 

Twenty-three healthy volunteers participated in this experiment (12 

females). Two subjects were excluded from further analyses due to excessive 

head motion (more than 3 mm motion in either rotation or translation). One 

subject was excluded from further analysis due to poor task performance: This 

participant never selected the gamble options in the choice condition, thus 

failing to provide data for the prediction error conditions of interest (see 

Experimental Procedure section for a detailed description of the paradigm). The 

reported results are thus based on 20 participants with a mean age of 21.9 (range 

20-26). The experimental protocol was approved by the Ethical Committee of 

the Ghent University Hospital. All participants signed an informed consent form 

before the experiment, and confirmed they had no neurological or psychiatric 

history. 
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Experimental Procedure 

A gambling task was designed (Figure 1), adapting the paradigm used by 

Jessup et al. (2010).  

 

Figure 1: Task structure. During the decision phase, two options are presented on the 

screen. Each option represents the probability of winning (in grey; but in orange in the 

actual experiment) a certain amount of money (in cents, written in the grey slice). The 

complementary (in black; but in blue in the actual experiment) part of the pie is the 

probability of not winning on that trial. After 2800 ms, a go signal is presented, and the 

participant can choose one of the two pies. Subsequently the outcome is presented (win 

or lose). a. Example of a trial in the choice condition: when the central arrows are 

pointing in the opposite direction, the participant can freely decide which option to pick. 

In this example, the gamble option is risky (low probability of winning) with a high 

pay-off. Note though that the factor gamble type (low / high winning probability) was 
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systematically crossed with factor choice / no choice. b. Example of a trial in the no 

choice condition: the participant is forced to select the option indicated by the two 

arrows. In this example, the gamble option is safe (high probability of winning) with a 

low pay-off. c. Trial timing: the Inter-trial Interval is jittered in a pseudo-exponential 

fashion, ranging from 600 to 9000 ms (mean 4000). The duration of the decision phase 

is 2800 ms. As the go signal appears, the participant is allowed to respond. A randomly 

jittered interval precedes the outcome (range 2000/4000 ms, mean 3000 ms). The 

outcome presentation concludes the trial and its duration is 2000 ms. 

At the start of every trial, two options were presented on the screen, 

namely a gamble and a sure win. Both options consisted of probability pies, 

where the grey slice indicated the probability of winning while the black slice 

showed the probability of not winning anything (defined from now on as losing 

for simplicity). Within the grey slice a number was presented, indicating the 

current amount of money at stake. One option was always the “sure win” pie, 

which was completely grey. The participants were informed that the size of the 

color pies indicated the probability of the events of winning or losing, without 

explicitly mentioning the exact probabilities. Thus the gamble pies were used to 

produce different prediction-error conditions.  

Two types of gamble were presented: a risky gamble with a low 

probability of winning but a very high pay-off; and a safer gamble with a high 

probability of winning but a lower pay-off (Figure 1). Importantly, the expected 

value of the gamble (amount of money at stake multiplied by the probability) 

was in each case approximately equal to the sure win option. In order to 

introduce some variability to make the task more engaging, in the risky gamble 

the potential win varied between 110 and 114 cents with a 5% probability of 

winning. In the safer gamble it varied between 12 and 16 cents with a 80% 

probability of winning. As a consequence, winning a risky gamble would 

produce a positive prediction error (unexpected win) while losing a risky 
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gamble would represent a fulfilled prediction (expected loss). Conversely, 

winning a safe gamble would reflect an expected win while losing a safe 

gamble would evoke a negative prediction error (unexpected loss). The 

probability indicated by the safer gamble pie was always reliable. The 

probability indicated by the risky gamble pie was in fact slightly higher (shown 

probability 5%, actual probability 10%), in order to allow the participant to 

experience the positive prediction error situation in a sufficient number of trials. 

At the end of the experiment participants were asked if they found the 

probabilities shown by the pies reliable, which was the case for everyone. 

On top of the prediction error manipulation, choice was introduced in the 

design as additional factor. In half of the trials, participants were given the 

possibility to select their preferred option (choice condition), while in the 

remaining trials one of the options would be randomly selected by the computer 

(no-choice condition, with half of no-choice trials giving the automatic selection 

of a gamble, and half of a sure win). In order to maximize visual similarities in 

the two conditions, a no-choice trial was signaled by two arrows presented 

between the pies pointing in the same direction, indicating the option to be 

selected, whereas in a choice trial two arrows pointing in opposite directions 

were displayed on top of each other (Figure 1). The presentation was 

randomized and the conditions were fully crossed (each gamble type appeared 

the same number of times in the choice and in the no-choice condition). 

In order to keep the timing of the motor response as comparable as 

possible in both choice and no-choice condition, participants had to wait for a 

go-signal after the presentation of the pies. The response execution was 

followed by a randomly jittered interval (2 to 4 seconds, mean 3 seconds). 

Subsequently, the outcome was displayed, indicating the respective win or loss. 

The post-outcome inter-trial interval was also jittered (pseudo-exponential 



56     CHAPTER 2 

distribution ranging from 600 milliseconds to 8 seconds, mean 4 seconds). The 

entire experiment consisted of 288 trials divided in three blocks, for a total 

duration of 60 minutes. The different trial types were randomly interleaved to 

be suitable for event-related analysis. During the break between blocks, the 

participants were asked via headphones to estimate how well they thought they 

were performing, in order to keep subjects focused on the task. 

fMRI Data acquisition 

Structural and functional images were acquired through a 3T Magnetom 

Trio MRI scanner (Siemens), using a 32-channel radio-frequency head coil.  

First, an anatomical T1 weighted sequence was collected, resulting in 176 high-

resolution slices (TR = 1550 ms, slice thickness = 0.9 mm, voxel size = 0.9 × 

0.9 × 0.9 mm, FoV = 220 mm, flip angle = 9°). Subsequently, functional images 

were acquired using a T2* weighted EPI sequence (30 slices per volume, TR = 

2000 ms, slice thickness = 3mm, distance factor = 17%, voxel size = 3.5 × 3.5 × 

3.0 mm, FoV = 224 mm, flip angle = 80°). On average 550 volumes per run 

were collected during 3 runs. 

fMRI Data analysis 

The first 4 volumes of the functional scans were discarded to allow for 

steady-state magnetization. The data were preprocessed with SPM8 

(http://www.fil.ion.ucl.ac.uk/spm). Images were realigned to the first image of 

the run. The structural T1 image was coregistered to the functional mean image 

to allow a more precise normalization. The unified segmentation and nonlinear 

warping approach of SPM8 was applied to normalize structural and functional 

images to the MNI template (Montreal Neurological Institute). Functional 

images were then smoothed with a Gaussian kernel of 8 mm full width half 

maximum (FWHM).  
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Subsequently a General Linear Model (GLM) was applied in order to 

identify each subject’s condition-specific activation. Three factors were 

manipulated, namely probability of winning (low, high), outcome (lose, win), 

and choice (choice, no choice). This was applied to both decision phase and 

outcome phase. Hence, sixteen different conditions were modeled, crossing 

probability of winning (low / high), outcome (win / lose), choice (choice / no 

choice), and phase (decision / outcome). The factors probability of winning and 

outcome together define expected loss (low probability of winning+lose), 

positive prediction error (low probability of winning+win), negative prediction 

error (high probability of winning+lose), and expected win (high probability of 

winning+win). 

Trials in which participants selected the sure win were modeled 

separately and were not considered for further analysis (as in Jessup et al. 

2010). One regressor of no interest was added to model trials in which errors 

were made, namely when in the no-choice condition the response did not match 

the instructed response, thus excluding error-related activation from the 

analysis. Six subject-specific regressors were added modeling motion 

parameters obtained from the realignment. The resulting stimulus functions 

were convolved with the canonical hemodynamic response function. To account 

for low frequency noise a 128 s high pass filter was included. To account for 

serial auto-correlation, an autoregressive model was applied.  

At the second level, we first concentrated on the outcome phase. A 

random-effects analysis was performed. A 2 × 2 × 2 factorial design was 

modeled, with choice (choice / no choice), outcome (lose / win) and probability 

of winning (low / high) as factors. All the reported whole-brain results where 

subjected to a voxel-level threshold of 0.001 uncorrected and survived a cluster-

level family-wise error (FWE) correction for multiple comparisons with a p-
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value of 0.05. First, the main contrasts were computed, namely main effect of  

choice, main effect of outcome, main effect of probability, and outcome by 

probability interaction (prediction-error-related activity, cf. Jessup et al. 2010). 

It should be noted that the focus was on the interaction contrast, in order to 

identify prediction-error signals. The contrast reflecting the main effect of 

probability is in fact not optimized in this design, as it might be confounded 

with reward magnitude. Furthermore, additional pairwise contrasts 

decomposing the interaction were computed. 

Subsequently the main goal of the study was addressed, namely a precise 

identification of the respective contributions of ACC and vmPFC to the 

response to reward prediction, outcome and choice. These areas have often been 

reported to be implicated in one or more of these processes. Therefore, as 

strongly hypothesis-driven approach, two region-of-interest (ROI) analyses 

were performed. First a functional ROI approach was adopted, where two ROIs 

were defined on the basis of previous studies. Importantly this guarantees an 

unbiased selection with respect to the whole-brain significant prediction error 

and outcome signals. The ROI encompassing the vmPFC was defined on the 

basis of a meta-analysis performed on several imaging studies involving reward 

(Liu, Hairston, Schrier, & Fan, 2011). In that study, two clusters are reported in 

the medial Orbito-Frontal Cortex (mOFC, left and right) to be activated when 

receiving a positive outcome. As a note, the anatomical definition of mOFC and 

vmPFC in fMRI studies overlap (Rushworth et al., 2011). We centered the 

vmPFC ROI (20 × 10 × 10 mm) on the averaged coordinates from left and right 

mOFC from Liu et al. (2011), in order to encompass both left and right vmPFC 

(MNI coordinates x=0 y=51 z=-10), as no specific lateralization could be 

hypothesized from previous evidence. The ROI targeting the ACC was derived 

from the study of Nee et al. (2011), where a systematic analysis of mPFC was 
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carried out. The ACC ROI was not defined on the basis of Liu et al. because the 

factor probability was not included in that meta-analysis. Conversely, after 

identifying whole-brain effects, Nee et al. defined multiple ROIs from previous 

studies investigating different functions attributed to the ACC, among which 

conflict processing and error monitoring. One area was defined as anterior 

rostro-cingulate zone (aRCZ). This proved to be the area most sensitive to 

unexpected events. For this reason this seemed to be the most appropriate ROI 

selection, as we were targeting prediction-error coding. It should be noted that a 

recent meta-analysis focused on prediction error (Garrison, Erdeniz, & Done, 

2013), but only studies involving model-based fMRI were included, thus 

making it not the most appropriate comparison for the current paradigm. Further 

research should focus on studies testing prediction error in decision-making 

paradigms (i.e. Jessup et al 2011) and perhaps perform ad-hoc meta-analysis 

(Wager, Lindquist, & Kaplan, 2007), thus granting an even more functionally 

precise ROI selection. To our knowledge, only a small number of studies 

addressed prediction-error under these conditions, thus making a meta-analysis 

currently unreliable. For these reasons the ROI from Nee et al. was selected. We 

centered our ACC ROI (also 20 × 10 × 10 mm) on the coordinates of the aRCZ-

ROI (MNI coordinates x= 0 y=28 z=31). As for the vmPFC, no laterality 

hypothesis could be formulated and therefore the ROI covers symmetrically left 

and right ACC (as displayed in Figure 4a).  

Second, an anatomical ROI approach was adopted, in order to provide 

convergent evidence for the previous analysis, to grant a more systematic and 

extensive sampling of the whole mPFC surface, and to ensure unbiased 

selection. Six box-shaped ROIs (10 mm wide) were anatomically defined 

sampling across the entire mPFC, starting from the posterior boundary of the 

Anterior Cingulate Cortex (ACC), as defined by the Brodmann area 24. The 
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ROIs were medially centered, in order to sample from both left and right mPFC. 

The subsequent selection of regions was determined by progressively shifting 

the ROI center along the rostro-caudal axis. In order to follow the anatomical 

architecture of the mPFC the center of the two more rostral ROIs was also 

shifted lower on the dorso-ventral axis to cover peri-genual ACC and 

ventromedial prefrontal cortex (vmPFC, see Figure 5a). As a result, 6 ROIs 

were obtained, 4 lying within the caudal to medial part of the ACC, one 

covering the peri-genual cingulate cortex, and one encompassing the vmPFC. 

Condition-specific activation (percent signal change) was extracted from 

each ROI (both functional and anatomical) using the Marsbar Toolbox (Brett, 

Anton, Valabregue, & Poline, 2002) and submitted to a repeated-measures 

analyses of variance. 

Subsequently, a separate second-level analysis was performed focusing 

on the decision phase, i.e.,  time-locked to the onsets of the display showing the 

pies. Specifically, a random-effects analysis was performed by implementing a 

2 × 2 factorial design, with choice (choice/no choice) and probability of 

winning (low/high) as factors. The probability of winning could be 5% (low), 

leading to a risky gamble; or 80% (high), leading to a safe gamble. The voxel 

level threshold was set to 0.001 uncorrected and FWE cluster-level correction 

for multiple comparisons was applied, with a p-value of 0.05. Moreover, the 

same functional ROI procedure used for the outcome phase, was applied to the 

decision phase, to better characterize contributions of these areas to decision-

making as well.  
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RESULTS 

Behavioral results 

Subjects chose the uncertain option over the sure win on 60% of the trials. On 

average, participants chose 47,05 (±15,82) of the risky gambles (67,14 % of the 

total) and 54 (± 21,78) of the safe gambles (72,97 % of the total, Figure 2a).   

 

Figure 2: Behavioral results. a. Percentage of chosen gambles (over the sure win), for 

the high probability of winning gamble (HIGH PROB) and the low probability of 

winning gamble (LOW PROB). b. Average number of experienced trials per condition. 

In both plots, error bars denote 1 standard error of the mean.  

The frequency of selection of the safe gamble over the sure win did not 

differ significantly from the frequency of selection of the risky gamble over the 

sure win (t(19) =.737, p=.47). As a result, participants experienced on average 

11,8 (± 2,69) low probability + win trials, 17,9 (± 4,41) high probability + lose 

trials, 73 (±18.35) high probability + win trials, and 70,15 (±14,73) low 

probability + lose trials (Figure 2b).  
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Outcome-phase whole-brain fMRI results 

The activation results during the outcome phase are reported in     Table 

1. The outcome contrast (win > lose) activated the vmPFC, ACC, striatum 

bilaterally, DLPFC bilaterally, brainstem, Posterior Cingulate Cortex (PCC) 

(Figure 3a). In the reverse outcome contrast (lose > win), no clusters survived. 

The probability contrast (low probability > high probability) activated the ACC, 

pre-SMA, brainstem, striatum bilaterally and insula bilaterally. The activation in 

this contrast is, however, difficult to interpret  as probability covaries with 

reward magnitude in the present design. The contrasts computed for the main 

effect of probability and the main effect of outcome elicited a widespread 

whole-brain level activation. This resulted in big clusters, potentially 

invalidating the regional validity of the cluster-level inference (Woo, Krishnan, 

& Wager, 2014). For this reason, the voxel-wise FWE (p=.05) corrected results 

are also reported (see Table 1).  

The whole-brain prediction error contrast (whole-brain interaction 

outcome by probability) yielded a consistent activation in the ACC, bilateral 

insula, bilateral striatum, brainstem and pre-SMA (Figure 3b). This pattern 

consistently reflects activity elicited by unexpected outcomes in previous 

studies (Jessup et al., 2010; Nee et al., 2011; Silvetti et al., 2012). 
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Figure 3: Whole brain contrasts  

Outcome phase: a. Outcome contrast (Win > Lose). b. Prediction error contrast 

(outcome by probability interaction). c. Outcome contrast (in red) and prediction error 

contrast showing partial overlap, as well as selectivity for outcome in the vmPFC and 

prediction error in ACC. d. No Choice>Choice contrast. e. Positive prediction error 

contrast (low probability + win>low probability + lose).  

Decision Phase: f. Choice>No Choice contrast. g. Risky gambles >safe gambles contras. 

h. No Choice>Choice contrast. 
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In a next step, in order to explore differences and commonalities in 

outcome and reward prediction coding, the prediction error contrast (outcome 

by probability interaction) and the outcome contrast (win>lose) were plotted 

together in Figure 3c. This showed partial overlap (displayed in violet) of 

outcome (in red) and prediction error (in blue). From this plot one can detect a 

first indication of selectivity for outcome versus prediction error coding along 

the mPFC; however, this claim remains exploratory at the whole-brain level. In 

the following section, the targeted ROI analyses will be discussed, providing a 

systematic and statistically sound investigation of different contributions of 

vmPFC and ACC. 

Furthermore, the pairwise contrasts decomposing the interaction were 

computed (low probability + win > high probability + win, high probability + 

lose > low probability +lose). These contrasts revealed that the interaction 

pattern was mainly driven by the response to low probability + win outcomes 

(Figure 3e), as further clarified by the ROI analysis (see below). This seems to 

highlight a power problem to detect prediction error related activity in the high 

probability + lose outcomes. Jessup et al. (2010), from which our paradigm was 

adapted, found such a pattern for the analogous contrast in the Insula and the 

ACC. The reasons for these discrepancies should be investigated in further 

research.  

Finally, a main effect of choice condition was reported. In particular a 

stronger response in the no-choice condition was observed in the vmPFC 

(Figure 3d) and in the left temporo-parietal junction (TPJ). Note that the main 

effect in the vmPFC was driven by a difference in deactivation (Figure 4e), as it 

is commonly found in this region (Raichle et al., 2001). As further noted by 

Rushworth et al. (2011, p.1057), “activations reported in vmPFC actually 

correspond to different degrees of deactivation”. 
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Table 1: Summary of the activation results 

 
MNI 

Coordinates 
cluster 
level 

cluster 
level cluster peak 

Area x y z  FWE FDR size T 
      
Outcome Phase      
      
Outcome (Win > Lose)      
Left pallidum -12    6  -2  0.000 0.000 43399 9.42 
Right pallidum 12   10  -2     8.79 
Putamen 18    4  -8     8.43 
Inferior temporal gyrus -52 -54 10 0.001 0.001 541 7.43 
Occipital cortex -18 -96 -2 0.002 0.001 507 5.62 
      
Outcome (Win>Lose) voxel-wise FWE     
Left pallidum -12    6  -2  0.000 0.000 5052 9.42 
Right pallidum 12   10  -2     8.79 
Putamen 18    4  -8     8.43 
Left inferior frontal operculum -44    6  26  0.000 0.000 1712 7.98 
Inferior frontal gyrus -38   34  10     6.82 
 -46   44  14     6.64 
Anterior cingulate cortex -6   34   6  0.000 0.000 3355 7.76 
   8   28  14     7.67 
   0   38  -2     7.53 
Right inferior frontal operculum 44   10  26  0.000 0.000 1123 7.55 
Right inferior frontal gyrus 44   36  16     6.18 
Inferior temporal gyrus -52-54-10 0.000 0.000 186 7.43 
Occipital cortex 28  -92  -4  0.000 0.000 527 7.41 
Inferior occipital gyrus 40  -82 -10     6.88 
Right inferior temporal gyrus 56  -52 -12  0.000 0.000 289 7.22 
Poster cingulate gyrus   8  -36  32  0.000 0.000 472 7.14 
Angular gyrus 32  -58  42  0.000 0.000 1185 6.84 
Right precuneus 36  -70  34     6.57 
Right inferior parietal lobule 46  -36  48     5.97 
Left inferior parietal lobule -50  -38  44  0.000 0.000 1347 6.55 
Supramarginal gyrus -42  -44  38     6.06 
Precuneus   8  -56  18  0.000 0.000 277 5.29 
  -8  -50  14     5.09 
Mid-cingulate gyrus -6   -6  32  0.000 0.000 242 6.23 
   6    0  30     6.02 
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   6   10  26     5.62 
Superior frontal gyrus -26   22  56  0.000 0.000 398 6.2 
Middle frontal gyrus -26   12  62     5.94 
 -28   34  48     5.54 
Hippocampus 32  -10 -10  0.004 0.095 25 5.69 
Occipital cortex -18 -96 -2 0.000 0.002 100 5.62 
      
Probability (Low probability > High Probability)    
Right insula 30   24  -6  0.000 0.000 23705 9.35 
Left insula -28   18  -4     8.83 
Anterior cingulate cortex   8   36  14     8.03 
Inferior parietal lobule -30  -50  44  0.000 0.000 4684 5.63 
Precuneus 30  -60  30     5.46 
Supramarginal gyrus 46  -44  30     5.23 
Inferior temporal cortex -44 -58 -10 0.001 0.001 534 5.2 
Fusiform gyrus -36 -64 -8    4.78 
Left occipital cortex -18 -98 -6 0.025 0.015 274 3.99 
Right occipital cortex 30  -88   2  0.035 0.016 250 3.93 
      
Probability (Low probability > High Probability)  voxel-wise FWE   
Right insula 30  24  -6  0.000 0.000 4756 9.35 
Left insula -28  18  -4     8.83 
Thalamus   8  -8   2     7.37 
Anterior cingulate cortex   8  36  14  0.000 0.000 2270 8.03 
  -6  34  14     7.09 
   6  32  24     6.69 
Middle frontal gyrus 48  10  50  0.000 0.000 262 6.8 
Righ precentral gyrus 48  10  34     5.53 
Posterior cingulate cortex -4 -28  28  0.000 0.000 384 6.62 
Middle frontal gyrus 28  56   0  0.000 0.022 60 5.68 
Inferior parietal lobule -30 -50  44  0.000 0.001 150 5.63 
Superior frontal gyrus 22  48  34  0.003 0.101 31 5.46 
Precuneus 32 -70  30  0.000 0.000 164 5.46 
Angular Gyrus 30 -56  44     5.08 
Left precentral gurys -46   2  54  0.013 0.340 10 5.25 
Supramarginal gyrus 46 -44  30  0.004 0.126 26 5.23 
Inferior temporal cortex -44 -58 -10 0.004 0.132 24 5.2 
Inferior frontal operculum 34  20  30  0.000 0.022 60 5.12 
Inferior frontal gyrus 46  26  28     5.07 
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Prediction-error (Outcome by Probability interaction)    
Left insula -32   22  -2  0.000 0.000 2653 8.04 
 -32   14 -12     6.43 
Inferior frontal operculum -40   10  30     4.81 
Right insula 32   24  -4  0.000 0.000 3845 7.79 
Inferior frontal gyrus 46   20   6     5.86 
Middle frontal gyrus 50   12  48     5.15 
Anterior cingulate cortex   6   38  36  0.000 0.000 4453 5.87 
   6   30  18     5.85 
   6   30  38     5.69 
Thalamus 10  -10   2  0.000 0.000 1803 5.46 
Pallidum -10    4   2     5.26 
Midbrain   0  -20 -14     5.25 
Posterior cingulate cortex -6  -26  30  0.001 0.000 564 5.27 
   6  -26  30     4.84 
Left inferior parietal lobule -32  -58  46  0.000 0.000 712 5.09 
Angular gyrus 36  -56  42  0.000 0.000 846 4.95 
  50  -60  46     4.32 
Right inferior parietal lobule 54  -48  52     3.6 
Righ precuneus 12  -68  36  0.005 0.002 401 4.9 
Left precuneus -8  -68  34     3.58 
Middle temporal gyrus 56  -26 -10  0.016 0.005 310 4.38 
  66  -40  -4     4.33 
Angular gurys 56  -50  26  0.019 0.006 298 4.34 
Left inferior parietal lobule -48  -38  44  0.121 0.035 164 4.11 
      
Positive prediction error (Low probability+win>high probability 
+win)   
Left insula -30   20  -4  0.000 0.000 35265   9.12 
Right insula 32   22  -4       8.99 
Midbrain   6  -24 -14       8.52 
Right inferior temporal gyrus 56  -52 -12  0.001 0.000 567   6.60 
Middle temporal gyrus 64  -44  -2       4.63 
  58  -40 -10       4.47 
Left inferior temporal gyrus -52 -54 -10 0.003 0.001 429   6.21 
Occipital cortex 26  -94  -4  0.001 0.000 570   5.61 
      
Positive prediction error (Low probability+win>high probabilit+win) voxel-wise FWE 
Left insula -30  20  -4  0.000 0.000 2094   9.12 
Right inferior frontal operculum -40  10  28       8.23 
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Right insula 32  22  -4  0.000 0.000 5214   8.99 
Midbrain   6 -24 -14       8.52 
Left inferior frontal operculum 44  12  26       8.13 
Anterior cingualte cortex   8  36  14  0.000 0.000 3363   7.90 
  -4  38   6       7.81 
Left inferior parietal lobule -30 -56  42  0.000 0.000 1263   7.49 
Angular gyrus 36 -58  42  0.000 0.000 777   7.41 
Right inferior parietal lobule 48 -40  48       5.61 
Posterior cingulate cortex   6 -34  32  0.000 0.000 723   7.22 
      
No Choice >Choice      
vmPFC -6 52 -14 0.044 0.030 234   4.18 
Left superior temporal gyrus -48 -2 -14 0.019 0.030 295   4.82 
Right middle temporal gyrus 64 -10 -8 0.001 0.002 576   4.38 
Right precentral gyrus 48 -18 60 0.036 0.030 249   4.16 
Left TPJ -42 -74 32 0.027 0.030 271   3.94 
      
Decision Phase      
      
Choice > No Choice      
Left and right ACC 8 26 32 0.000 0.000 6291   6.86 
Right superior parietal 28 -62 38 0.000 0.000 2508   6.85 
Right insula 30 26 4 0.000 0.000 582   5.60 
Left Superior  parietal lobule -24 -66 44 0.000 0.000 801   5.46 
Left frontal superior gyrus -24 -2 46 0.003 0.002 338   5.25 
Left Insula -24 20 6 0.000 0.000 685   5.20 
Right middle frontal gyrus 44 36 20 0.012 0.006 259   4.49 
Right inferior frontal gyrus 48 8 26 0.045 0.019 185   4.33 
      
No Choice > Choice      
Left TPJ  -44 -60 16 0.000 0.000 1894   5.94 
Right TPJ  62 -54 26 0.000 0.000 919   5.20 
Left/Right precuneus -4 -56 32 0.000 0.000 478   4.22 
      
Risky Gambles > Safe Gambles      
Bilateral ACC -10 36 20 0.018 0.021 235   4.17 
Right middle occipital gyrus 30 -92 -2 0.001 0.002 424   6.07 
Left middle occipital gyrus -28 -92 -8 0.074 0.043 158   5.03 
Left insula -28 -20 -4 0.079 0.043 155   4.32 
Right fusiform gyrus 40 -60 -12 0.090 0.043 148   3.88 
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Outcome-phase functional ROI analysis 

The planned ROI analysis was performed on the outcome-phase 

prediction-error signal. The goal of this approach was to better characterize the 

whole-brain results, targeting ACC and vmPFC function in reward prediction, 

outcome and choice coding. This analysis was guided by the a-priori hypothesis 

formulated on the basis of previous evidence, that ACC would encode reward 

prediction and prediction error, while the vmPFC would encode the outcome 

(Jessup et al. 2010, Rushworth et al. 2011). With this approach, we were able to 

contrast directly vmPFC and ACC activity by testing the specific hypothesis of 

a functional segregation within the mPFC for prediction error vs. outcome 

coding. The percent signal change scores showed a clear contribution of the 

ACC to the prediction-error signal (Figure 4), where the strongest response was 

elicited by the positive unexpected outcome (Figure 4d). This was confirmed by 

a significant outcome by probability interaction (F(1,19)=15.07. p=.001), 

irrespective of choice (no three-way interaction choice by outcome by 

probability, F(1,19)=.79. p=.39). A main effect of outcome (F(1,19)=37.96. p<.001) 

and a main effect of probability (F(1,19)=67.76. p<.001) were also identified in 

the ACC, but these did not interact with choice either (interaction choice by 

outcome F(1,19)=.08. p=.79,  interaction choice by probability F(1,19)=3.13. 

p=.10). The ACC thus showed the expected prediction error response (Figure 

4d), but this was mainly driven by a positive prediction error signal (low 

probability+win > high probability win in the choice condition  t(19)=4.4, 

p<.001, and in the no-choice condition t(19)=5.03, p<.001; high probability+lose 

>low probability + lose t(19)= -1.59, p=.13 in the choice condition and t(19)= 1.29, 

p=.21 in the no choice condition; cf. Jessup et al. 2010). 
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Figure 4: Functional ROI results  

a. Region of Interest selection across the mPFC, guided by previous evidence (ACC in 

green, from Nee et al. 2011, vmPFC in yellow, from Liu et al. 2010). b. ACC ROI 

plotted on the whole-brain prediction error contrast (outcome by probability). c. vmPFC 

ROI plotted on the whole-brain outcome contrast (win > lose). d. Percent signal change 

analysis in the ACC during the outcome phase: choice-condition is reported in grey, no-

choice condition in white. On the x-axis, the other two conditions are displayed, namely 

outcome (WIN/LOSE) and probability of winning (HIGH PROB/LOW PROB). On the 

y-axis, the percent signal change (psc) is represented. e. Percent signal change analysis 

in the vmPFC during the outcome phase: the choice condition is displayed in grey, the 

no-choice condition in white. On the x-axis, the other two conditions are displayed, 

namely outcome (WIN/LOSE) and probability of winning (HIGH PROB/LOW PROB). 

On the y-axis, the percent signal change (psc) is represented. f. Percent signal change 

analysis in the ACC during the decision phase. g. Percent signal change analysis in the 

vmPFC during the decision phase. In the plots error bars denote 1 standard error of the 

mean.  

As hypothesized, the vmPFC selectively responded to positive outcome, 

irrespective of winning probability, thus showing no sensitivity to prediction 

errors (Figure 4e). Indeed, there was a main effect of outcome in this region 

(F(1,19)=16.79, p=.001) and no significant outcome by probability interaction 

(F(1,19)= .001, p=.98). Interestingly the vmPFC also showed a main effect of 

choice (F(1,19)=13.7. p=.002). 

The differential sensitivity of vmPFC and ACC was confirmed by a 

significant three-way interaction (region by outcome by probability) when 

vmPFC and ACC were both included in the analysis as additional “region” 

factor (F(1,19) =27.634  p<.001). Consistently, this analysis also reported a main 

effect of region (F(1,19)=43.02. p<.001), an interaction region by choice 
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(F(1,19)=36.43. p<.001) and an interaction region by probability (F(1,19)=17.23. 

p=.001). 

 

Outcome-phase anatomically-guided ROI analysis 

The anatomically-guided ROI analysis was performed on the outcome 

phase prediction-error signal. The percent signal change scores showed a 

contribution of the ACC to the prediction-error signal (Figure 5), where the 

strongest response was elicited by the positive unexpected outcome. Along the 

rostro-caudal axis, the rostro-medial portion of the ACC seemed to be the most 

sensitive to prediction errors, especially to the positive unexpected outcome 

(Figure 5b). A significant interaction between outcome and probability was 

detected in the medial ACC (ROI 2, F(1,19)=6.66, p=.018), in the rostro-medial 

ACC ( F(1,19)=12.964, p=.002) and in the rostral ACC ( F(1,19)=13.910, p=.001), 

irrespective of choice. These regions showed the strongest prediction error 

response, as one can see in Figure 5c, where the prediction error size (as 

computed on the percent signal scores) is plotted as a function of anatomical 

location from caudal to rostral. This differential sensitivity within the ACC was 

confirmed by a significant three-way interaction between region, outcome and 

probability across the different ROIs within the  ACC (F(4,16)=7.597, p=.001). 

None of the regions showed a three-way interaction. 

Strikingly, the vmPFC showed no sensitivity to prediction errors, but 

selectively responded to positive outcome instead, irrespective of winning 

probability (Figure 5b). Indeed, there was a main effect of outcome in this 

region (F(1,19)=15.049, p=.001) and no significant outcome by probability 

interaction (F(1,19)= .131, p=.721). 
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Figure 5: Anatomical ROI analysis 

a. Anatomically-guided Region of Interest selection across the mPFC during outcome. 

b. Percent signal change analysis in the six ROIs (from caudal to rostral) during the 

outcome phase: choice condition is reported in black, no-choice condition in grey. On x-

axes the four prediction error conditions are listed: Expected Loss, Positive Prediction 

Error (PPE), Negative Prediction Error (NPE), Expected Win. On the y-axes the signal 

change is represented. c. Prediction error size: intensity of the prediction-error-related 

activation in the six ROIs, from caudal to rostral, during the outcome phase. The 

intensity corresponds to the interaction size computed on the percent signal change 

scores ((low probability + win – low probability + lose) – (high probability + lose -  

high probability + win)). In black the choice condition is reported and in grey the no 

choice condition is reported. The intensity is maximal in the mid-ACC, mid-rostral 

ACC and rostral ACC.  
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Decision-phase whole-brain results 

The results of the decision-phase analysis are summarized in Table 1. A 

main effect of choice was detected in the striatum (Figure 3f) and ACC, with a 

stronger response in the choice condition, confirming the role of these regions 

in action selection (Brass & Haggard, 2007; Holroyd & Coles, 2008). Increased 

activation in the left and right TPJ was observed in the no choice condition 

(Figure 3h). 

A main effect of gamble type was also identified in the ACC (Figure 3g), 

in that it was more strongly activated when participants chose the risky (i.e., 

low winning probability) gamble as compared to the safe gamble (high winning 

probability), suggesting a contribution to risk estimation as well as risk-taking 

behavior. 

Decision-phase functional ROI  analysis 

An additional ROI analysis of the decision phase was performed, based 

on the two functionally defined ROIs used in the outcome phase. It should be 

noted that in this analysis the trials where the sure thing was selected were not 

included (as in the outcome ROI analysis). ACC showed increased activity (in 

terms of percent signal change) for the low probability condition as compared to 

the high probability condition (main effect of probability, F(1,19)=15.38, p=.001, 

see Figure 4f). Moreover, ACC showed a main effect of choice versus no choice 

(F(1,19)=42.54, p<.001) but no interaction (F(1,19)=1.15, p=.297). This 

corroborates the whole brain effect during the same phase. This activation might 

reflect ACC contribution in undertaking risky behaviors, as it is associated in 

this case with choosing (voluntarily or imposed by the computer) the risky 

option (over the sure win). In this case it is not possible to draw conclusions 

regarding reward prediction, as in this design the expected value was kept 
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constant, and this should be addressed in future research. No significant effect 

of choice or probability was reported in the vmPFC ROI (Figure 4g). 

DISCUSSION 

The current study investigated the functional architecture of the mPFC by 

targeting its contribution to reward prediction, outcome coding, and decision-

making during a gambling task. A striking dissociation emerged between the 

ACC, being involved in reward prediction and (positive) prediction-error 

response, and the vmPFC, selectively coding for positive outcomes irrespective 

of probability. These findings support the hypothesis of a functional 

dissociation between ACC and vmPFC in prediction error and outcome coding. 

This idea received convergent indications from previous research but was to 

date not directly verified. We now discuss these and other results in the light of 

the current literature. 

The pivotal role of mPFC in implementing and monitoring higher-order 

cognitive processes has been widely documented. A striking variety of different 

functions has been attributed to this area, ranging from reward prediction 

(Amiez et al., 2006; Silvetti et al., 2012), outcome coding (Rangel & Hare, 

2010), reinforcement learning (Alexander & Brown, 2011; Silvetti, Seurinck, & 

Verguts, 2011), conflict monitoring and cognitive control (Blais & Bunge, 

2010; Botvinick, Cohen, & Carter, 2004; Egner, Etkin, Gale, & Hirsch, 2008; 

Nee et al., 2011), to emotional regulation (Etkin, Egner, & Kalisch, 2011), 

prompting effortful behavior (Holroyd & Yeung, 2012; Vassena et al., 2014), 

and processing aversive and painful stimuli (Rainville, 1997). 

Despite a wealth of research, no unifying comprehensive account has 

been formulated yet. The present study encompasses some elements that are 
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traceable in most, if not all, of these different domains. Specifically, prediction 

errors, outcome coding, and choice are cardinal components of all goal-directed 

behavior, yet they have not been manipulated in the same experiment in a 

systematic fashion. Our design allowed investigating the role of subparts of 

mPFC in each of these processes, thereby contributing to a comprehensive 

understanding of mPFC function. 

Prediction-error signals were observed in the ACC, confirming previous 

reports (Jessup et al., 2010; Silvetti et al., 2012), as well as in the midbrain, 

striatum, pre-motor supplementary area (pre-SMA), supplementary motor area 

(SMA) and insula (see Figure 3b). The percent signal change analysis in the 

ACC revealed a sharp selectivity towards positive prediction errors, which 

elicited the strongest response (see Figure 4d). In contrast to one previous 

finding, negative prediction errors did not induce significant activity increases 

(cf. Jessup et al. 2010). As a matter of fact, single cell recordings in monkeys 

highlighted a difference in the distribution of prediction-error responses in the 

ACC, with a significantly smaller number of neurons producing a negative 

prediction-error signal (Kennerley et al., 2011). Furthermore, slight differences 

in the experimental paradigm could account for different activation patterns in 

our study compared to the Jessup et al. report , as the reward amounts in the 

current experiment were overall higher (while still respecting the proportions 

between conditions, and keeping the expected value constant across different 

options; cf. Jessup et al. 2010). The absence of negative prediction error signal 

might also be due to a power problem. The reward magnitude associated with 

the positive prediction error condition was indeed higher then in the negative 

prediction error condition (as in the original design of Jessup et al. 2010). A 

possible influence of reward magnitude cannot be completely excluded, even 

though the pattern emerging across different analyses (whole brain, functional 
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ROIs, anatomical ROIs) seems to suggest a magnitude effect in the vmPFC 

rather than in the ACC. This issue should be addressed in further research. 

ACC was involved in encoding reward prediction (see Figure 4d and 

Figure 5b). This region consistently overlaps with clusters most commonly 

reported in previous studies (cf. Jessup et al. 2010, Nee et al. 2011, Silvetti et al. 

2012). Importantly, prediction error signals  in the ACC during the outcome 

phase were independent of the origin of the event (i.e., the choice condition). 

Specifically, the selectivity for  positive prediction errors persisted irrespective 

of whether the option was selected by the person or by the computer. This is 

consistent with the findings of Kool et al. (Kool, Getz, & Botvinick, 2013). In 

an investigation of the behavioral “illusion of control” phenomenon, these 

authors did not find any modulation of intentionally accepting an option on 

neural prediction-error activity.  

In contrast, the vmPFC was insensitive to prediction errors. Instead, the 

vmPFC displayed an outcome coding pattern, responding more strongly to the 

positive outcomes, irrespective of the winning probability that was tied to the 

selected option (see Figure 4e and Figure 5b). The role of vmPFC in reward 

prediction, especially with respect to the outcome phase, had not been clarified 

yet. The vmPFC is indeed assigned a crucial function in computing outcome 

expectancies (Tom, Fox, Trepel, & Poldrack, 2007), which might rely on a 

reward prediction (or prediction error) computation. However, similar responses 

have been observed for obtained as well as omitted rewards in this region 

(Kennerley & Walton, 2011). Although it has been argued that no prediction-

error signal is computed by this area, to date opposing results have also been 

reported  (O’Doherty et al., 2002; Schoenbaum, Roesch, Stalnaker, & 

Takahashi, 2009; Sul, Kim, Huh, Lee, & Jung, 2010).  
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However, vmPFC contributions in outcome coding have been widely 

documented (Noonan, Kolling, Walton, & Rushworth, 2012; Rushworth, 

Kolling, Sallet, & Mars, 2012). Specifically, activity in the vmPFC has been 

shown to correlate with the subjective value attached to the stimulus by the 

agent (Hare, Camerer, & Rangel, 2009; Padoa-Schioppa & Assad, 2008; 

Plassmann, O’Doherty, & Rangel, 2007) and to reflect the value of a chosen 

option (Boorman, Rushworth, & Behrens, 2013; Grabenhorst & Rolls, 2011; 

Kennerley et al., 2011). Furthermore, this region has been hypothesized to be 

the merging locus of value coding, where rewarding attributes of stimuli would 

be encoded in a common currency (Levy & Glimcher, 2012). Accordingly, 

vmPFC activity seems sufficient to decode the combined value of multi-

attribute objects (Kahnt, Grueschow, Speck, & Haynes, 2011) and has been 

reported for both monetary and primary rewards (Kim, Shimojo, & O’Doherty, 

2011). The current finding is consistent with this notion, but for the first time 

clarifies its strong dissociation with ACC in humans. It shows that its 

computation is independent of whether the positive outcome was predicted or 

not, and of whether the option had been intentionally selected or randomly 

assigned. Besides providing systematic insights on differential ACC and 

vmPFC functions, these results bridge human functional to primate 

neurophysiological results  (Kennerley et al. 2011). 

Furthermore, a main effect of choice was observed in the vmPFC during 

the outcome phase. The vmPFC was more active for outcomes following 

actions instructed by the computer (no choice > choice), without interacting 

with the value coding.  This focus on the stimulus (i.e., no choice) features in 

absence of intentional action (i.e., choice) is in line with what has been 

proposed as a specialized encoding for stimulus-based value coding, 

implemented in the vmPFC, as opposed to action-based value coding, processed 
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by the ACC  (Camille, Tsuchida, & Fellows, 2011; Rudebeck et al., 2008; 

Rushworth et al., 2007). The increased action in the vmPFC in this condition 

across all outcome types might thus derive from the absence of action selection. 

The potential functional role of this activation might be attentional in nature, 

with the purpose of underlying that the currently obtained outcome was not a 

consequence of an intentional choice, and therefore should not influence 

subsequent strategies (i.e. subsequent intentional choice). Albeit interesting, this 

interpretation is speculative and should be further addressed in future research. 

A possible alternative explanation would consider this activity to be Default 

Mode Network (DMN, Raichle et al. 2001) related. This region is indeed known 

to be part of the DMN. Moreover one can assume that the No Choice condition 

is less engaging, and this would justify DMN involvement. However, DMN 

activity would not coherently explain the outcome-value effect (increased 

activation for positive outcome). We therefore consider this second option less 

likely.  

Increased activity in the no-choice condition was also observed in the left 

TPJ. A TPJ contribution is typically detectable whenever an action is performed 

by an external agent, such as a computer, as compared to when it is internally 

generated (Spengler, von Cramon, & Brass, 2009; Sperduti, Delaveau, Fossati, 

& Nadel, 2011). This may correspond to the same distinction between stimulus-

based versus action-based value coding; however this interpretation remains 

speculative and requires further investigation. 

Concerning the decision phase, the involvement of the ACC is evidently 

increased in the choice condition, as compared to the random (i.e., no choice) 

assignment. This is in line with studies on intentional action, where the ACC is 

reported as being more active while deciding between two options as opposed to 

an externally-driven selection (Brass & Haggard, 2007; Demanet, De Baene, 
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Arrington, & Brass, 2013; Forstmann, Brass, Koch, & von Cramon, 2006; 

Mueller, Brass, Waszak, & Prinz, 2007). The striatum was also more active in 

the choice condition. This has been previously related to the affective value 

associated with the possibility of choosing. Leotti and Delgado (2011) reported 

increased activation in the ventral striatum, while participants were exposed to 

cues predicting a trial where they could choose. This could potentially explain 

striatal involvement in our study as well.  

The ACC also showed a stronger activation during the decision phase 

when a risky gamble was selected (low winning probability, high pay-off) as 

compared to a safe gamble (high winning probability, low pay-off). In other 

words, a stronger ACC involvement was triggered when people decided to 

choose a risky gamble over a sure small win, as compared to choosing a safe 

gamble over the sure small win. This suggests a role for ACC in undertaking a 

risky behavior. Notwithstanding the speculative nature of this hypothesis, 

understanding the neural mechanism underlying intentional selection of risky 

situations (low probability of reward) might provide useful insight with respect 

to pathological conditions, such as pathological gambling. 

Interestingly, the no-choice condition in the decision phase also elicited a 

bilateral activation in the TPJ, again consistent with agency studies (Farrer & 

Frith, 2002; Spengler et al., 2009). However, the TPJ activation was mostly 

unilateral (right) in these studies.  This difference may be explained by the 

increased relevance of our stimuli due to the reward manipulation. 
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CONCLUSIONS 

The current study systematically investigated mPFC function in encoding 

three crucial components characterizing goal-directed behavior, namely reward 

prediction, outcome evaluation, and choice. A striking functional dissociation 

was detected within the mPFC: While ACC activity reflected reward prediction 

by signaling positive prediction errors, irrespective of whether the outcome 

derived from an intentional choice or a randomly selected option, the vmPFC 

selectively responded to positive outcomes, irrespective of the probability they 

were linked to. Although this dissociation did not interact with choice condition, 

vmPFC also carried a neural signature distinguishing between randomly 

selected (no choice) and intentionally chosen (choice) options. These findings 

provide new evidence for how complementary but dissociable information that 

is necessary to drive optimal goal-directed behavior is processed by different 

subregions within the mPFC. 
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APPENDIX I.  NEURAL CORRELATES OF INDIVIDUAL DIFFERENCES IN 
RISKY DECISION-MAKING 

In Chapter 2, the contribution of mPFC to reward prediction, outcome 

value and choice was investigated. For these purposes, the analysis mainly 

focused on the outcome phase, that is when reward prediction is compared with 

the actual outcome by the ACC, and whose value is then encoded by the 

vmPFC. Some insights were also provided by a whole-brain analysis and region 

of interest analysis of the decision phase. This last analysis showed how mPFC 

is implicated not only in decision-making, but potentially also in encoding 

reward probability of a chosen option, which in the decision phase might be 

interpreted as uncertainty or risk. In fact, decision-making under uncertainty 

received considerable attention in neuroscientific research, given its relevance 

in several daily life situations, as well as in deviant behaviors such as 

pathological gambling. ACC activity has been consistently associated to risk 

estimation, and especially to undertaking risky behaviors, such as selecting a 

risky option over a sure win (Christopoulos, Tobler, Bossaerts, Dolan, & 

Schultz, 2009; Fukunaga, Brown, & Bogg, 2012; Huettel, Song, & McCarthy, 

2005). 

The behavioral results revealed a considerable variability in decision-

making behavior across participants (See Chapter 2, Behavioral Result section, 

p. 61). Therefore our data were suitable to address one further question, 

concerning the underlying mechanisms of risk-preference in the current task. A 

better understanding of neural mechanisms underlying individual differences in 

risk-related behavior could provide useful insights on possible causes of 

pathological conditions, where risk estimation and risk preference play a pivotal 
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role. In fact this issue has been investigated in several studies, with different 

approaches, including neuropsychological and neuroimaging studies, and 

behavioral and personality studies (Bell, 2009; Gowin, Mackey, & Paulus, 

2013; Leeman & Potenza, 2012; Llewellyn, 2008; Spurrier & Blaszczynski, 

2013; van Holst, van den Brink, Veltman, & Goudriaan, 2010). 

When targeting the neural substrate of this variability, a potential 

candidate is the region of the anterior Insula (aInsula). This region is implicated 

in risk estimation (Bossaerts, 2010; Singer, Critchley, & Preuschoff, 2009). 

Preuschoff and colleagues reported in a number of studies that aInsula shows 

increased activation as a function of risk, defined by the authors as outcome 

variance. (Preuschoff, Quartz, & Bossaerts, 2008; Rudorf, Preuschoff, & 

Weber, 2012). Furthermore, according to these results, aInsula seems to encode 

not only the predicted risk, but also a prediction error response, signaling when 

the experienced risk deviates from the expected risk. Other studies suggest that 

aInsula encodes skewness instead (i.e. asymmetry in the predicted reward 

distribution, (Burke & Tobler, 2011; Symmonds, Wright, Bach, & Dolan, 

2011). Recent evidence is also provided by studies investigating risk preference 

in substance abusers. These studies reported decreased activation of aInsula 

during risky decisions (Claus & Hutchison, 2012; Crowley et al., 2010). 

Importantly, it has also been hypothesized that aInsula mediates not only risk 

estimation, but also risk avoidance (Kable & Glimcher, 2009; Rudorf et al., 

2012). Taken together, these results support a crucial role of the aInsula in risky 

decision making. Hence, aInsula might mediate individual differences in risk 

preference. However, this hypothesis has not been tested in healthy subjects. 

Our task involved making a series of choices between risky gambles and sure 

wins, thus providing suitable data to test this hypothesis. More precisely, the 

goal of this analysis was to investigate neural correlates of individual 

differences in risk preference, targeting neural activation associated with 
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choosing a gamble. In this context, risk is operationalized as probability of 

losing (not winning anything in this experiment). 

For these reasons, a new analysis was performed on the data collected for 

Chapter 2, (for the methods used in the original analysis, see Chapter 2, 

methods section, p. 56).This new analysis focused on the decision phase. A new 

first level GLM was set up, modeling all trials, irrespective of whether the 

gamble or the sure win was chosen (in contrast to the GLM in Chapter 2, where 

only the gambles were modeled). This resulted in 8 regressors of interest  

crossing 3 factors, namely choice (choice / no choice),  gambling (choosing the 

gamble / choosing the sure win), and probability (low probability gamble / high 

probability gamble). Outcomes were also modeled, as in the previous analysis, 

resulting in 8 outcome-related regressors. Additionally, one regressor was added 

to account for breaks and erroneous responses, and  6 regressors were added to 

account for motion. A random-effect analysis was then performed, with the goal 

of isolating activity associated with choosing a gamble (entailing risk) over a 

sure win. The whole-brain contrast for the main effect of gambling was then 

computed, with a voxel-level threshold of p=.001 uncorrected and a cluster-

level family-wise error (FWE) correction for multiple comparisons of p=.05.  

Next, a behavioral measure of risk-preference was computed, calculating 

how many times participants selected the gamble over the sure win. 

Subsequently, the main analysis targeting individual differences was performed. 

A whole-brain regression analysis was carried out, with the gambling contrast 

as a dependent variable, and risk preference as a covariate. To this contrast, a 

voxel-level threshold of p=.001 uncorrected was applied, with a cluster-level 

FWE correction for multiple comparisons of p=.05. Importantly, in the current 

experiment the expected value of the two options was kept equal, as the primary 

goal of the experiment was to target value coding and prediction error in the 

outcome phase. This implies that activity during the decision phase cannot be 
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associated with value encoding, as both options have the same expected value 

(reward magnitude x probability). As a consequence, it is possible to 

disentangle activity specifically associated with choosing a gamble, that is 

choosing to take a risk. 

 

On average, participants gambled in 68.34 %  of the cases. The inter-

individual variability in choices was substantial (standard deviation of 21.07). 

However, three participants  did not show any variance in their choice behavior 

(either they chose the gamble in every trial, or the sure win in every trial). The 

data from these participants were excluded from this analysis, as the first level 

GLM could not be fit, given that not all conditions were represented in the data. 

The whole-brain analysis targeting the main effect of gambling showed motor-

related activity, but no activation in the aInsula. This might be due to a power 

problem, given the frequency of occurrence of gambles and sure win (see 

Chapter 2, Figure 2). The individual differences analysis however (gambling 

contrast with risk-preference as a covariate) yielded activation in the right 

aInsula. Interestingly, aInsula was the only reported activation cluster (Figure 

A1, cluster size  317 voxels, T= 6.46, cluster-level p-value=.001, MNI 

coordinates of the local maximum x= 34 y = 24 z = -6).  

More specifically, this revealed a negative correlation, thus showing that 

activity in the aInsula differentiated better between choosing to gamble and 

choosing a sure win in participants with lower risk preference. For illustrative 

purposes, the average percent signal change (psc) in the aInsula functional 

cluster was computed using the MARSBAR Toolbox (Brett, Anton, 

Valabregue, & Poline, 2002).  This is plotted in figure A2 as a function of risk-

preference.  
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Figure A1: Whole-brain Gambling contrast, with risk-preference as a covariate. The 

sagittal and coronal view show an activation cluster in the right aInsula  

 

 

 
 

Figure A2: Percent signal change in aInsula in the Gambling contrast predicts actual 

gambling (risk-preference).  
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In the whole-brain analysis, the covariate predicts the difference between 

the two conditions composing the contrast, that is Choosing the gamble > 

Choosing the sure win. To better characterize this relationship, we checked if 

this effect was driven by choosing the gamble. The psc for the Choosing the 

gamble condition alone was indeed correlated to risk preference (r= -.62, 

p=.008). This was not the case for the Choosing the sure win psc (r=.34, p=.18). 

This result shows that increased aInsula activation when choosing a gamble was 

associated with lower risk-preference. In other words, people who gambled less, 

showed increased aInsula activation when gambling, while people who gambled 

more showed decreased aInsula activation when gambling. This result confirms 

a pivotal contribution of aInsula to risk-preference. In fact, this is in line with 

the results of one recent study, showing decreased aInsula activation in risk-

seekers, even though in that study risk was quantified as outcome variance, and 

not as probability of losing (Rudorf et al., 2012). Further studies should keep 

this heterogeneity in the definitions of risk into account. One open question for 

instance is  if the aInsula would similarly encode inter-individual variability in 

risk preference also when the alternative option would be a sure loss, instead of 

a sure win. As for the relevance of the current results, speculatively, decreased 

aInsula during gambling in people with higher risk preference might provide a 

potential etiopathogenetic mechanisms for the development of deviant 

behaviors. Choosing more often the risky option might be driven by an 

underestimation of the risk attached to this action. On the one hand, this altered 

risk estimation process might reflect a vulnerability, promoting risk-prone as 

opposed to risk-averse tendencies. On the other hand, hyper-activation of the 

same region might be associated with excessive behavioral inhibition. Given the 

potential relevance for clinical assessment and treatment of behavioral 

disorders, these hypotheses should be further investigated in future research. 
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CHAPTER 3 
OVERLAPPING NEURAL SYSTEMS REPRESENT COGNITIVE 

EFFORT AND REWARD ANTICIPATION 1 

Anticipating a potential benefit and how difficult it will be to obtain it are 
valuable skills in a constantly changing environment. In the human brain, the 
anticipation of reward is encoded by the Anterior Cingulate Cortex (ACC) and 
Striatum. Naturally, potential rewards have an incentive quality, resulting in a 
motivational effect improving performance. Recently it has been proposed that an 
upcoming task requiring effort induces a similar anticipation mechanism as 
reward, relying on the same cortico-limbic network. However, this overlapping 
anticipatory activity for reward and effort has only been investigated in a 
perceptual task. Whether this generalizes to high-level cognitive tasks, remains to 
be investigated. To this end, an fMRI experiment was designed to investigate 
anticipation of reward and effort in cognitive tasks. A mental arithmetic task was 
implemented, manipulating effort (difficulty), reward, and delay in reward 
delivery to control for temporal confounds. The goal was to test for the 
motivational effect induced by the expectation of bigger reward and higher effort. 
The results showed that the activation elicited by an upcoming difficult task 
overlapped with higher reward prospect in the ACC and in the striatum, thus 
highlighting a pivotal role of this circuit in sustaining motivated behavior.  

                                                      
1 Vassena E., Silvetti M., Boehler C.N., Achten E., Fias W. & Verguts T. (2014). 
Overlapping neural systems represent cognitive effort and reward anticipation. PLoS 
ONE, 9(3), e91008 
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INTRODUCTION 

Reward processing has been investigated by several disciplines, ranging 

from economics to psychology and machine learning (Rangel, Camerer, & 

Montague, 2008). An established finding is that animals typically strive for the 

most beneficial consequences of their action, and that they do so via optimizing 

the net reward they can obtain from the environment (Kahneman & Tversky, 

1979). This complex skill relies on reward estimation, which is precisely encoded 

in the primate and in the human brain (Alexander & Brown, 2011; Knutson & 

Cooper, 2005; Schultz & Dickinson, 2000; Silvetti, Seurinck, & Verguts, 2011, 

2013). This consists in anticipating the value of the potential benefit. 

Nevertheless, benefits seldom come for free. They usually entail some cost, and 

this cost is taken into account by the brain to calculate the net value of each 

available option (Basten, Biele, Heekeren, & Fiebach, 2010; Kennerley, 

Dahmubed, Lara, & Wallis, 2009; Park, Kahnt, Rieskamp, & Heekeren, 2011; 

Walton, Rudebeck, Bannerman, & Rushworth, 2008). Usually, obtaining a 

benefit requires a certain degree of effort, either in terms of cognitive demand 

(Boksem & Tops, 2008) or physical energy expenditure (Kurniawan et al., 2010; 

Schweimer & Hauber, 2010; Walton, Kennerley, Bannerman, Phillips, & 

Rushworth, 2006). The more effortful the task, the less the animal values the 

respective reward (Assadi, Yücel, & Pantelis, 2009; Kurniawan, Guitart-Masip, 

& Dolan, 2011). Humans also discount reward by effort (Matthew M Botvinick, 

Huffstetler, & McGuire, 2009; Croxson, Walton, O’Reilly, Behrens, & 

Rushworth, 2009), meaning that subjective reward value decreases as a function 

of the effort required to obtain it. Hence, also effort needs to be estimated when 

calculating reward value, and a major role in this process has again been 
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attributed to the Anterior Cingulate Cortex (ACC) and the striatum. These 

structures would integrate predicted cost and reward in a net value signal (Basten 

et al., 2010; Walton et al., 2008).  

Besides estimating reward and cost, expecting to earn a reward is a 

powerful motivational factor per se (Berridge, 2004). This can improve 

behavioral performance (Hübner & Schlösser, 2010) and influence learning and 

memory, according to a concept known as incentive-salience (Berridge, 

Robinson, & Aldridge, 2010; Berridge, 2004). At the neural level, the 

anticipation of a potential reward is associated with increased activation in the 

ACC and striatum (Knutson & Cooper, 2005). 

Recent evidence suggests that facing an upcoming effortful task also 

induces increased ACC and striatum involvement. This might reflect a 

motivational effect towards task performance, comparable to the incentive given 

by a monetary reward (Boehler et al., 2011; Krebs, Boehler, Roberts, Song, & 

Woldorff, 2012; Stoppel et al., 2011). In terms of energy expenditure, this would 

be translated to the invigoration of the optimal behavior, which in turn is required 

to obtain a reward. Several findings in animals support this hypothesis, 

identifying its neural mediator in the fronto-striatal dopaminergic system 

(Salamone, Correa, Mingote, & Weber, 2005). Accordingly, if this circuit is 

pharmacologically inhibited (Bardgett, Depenbrock, Downs, Points, & Green, 

2009) or lesioned (Walton et al., 2006) the ability of engaging in a high-demand 

task to obtain a reward is blunted. A recent fMRI study in humans (Kurniawan, 

Guitart-Masip, Dayan, & Dolan, 2013) also highlighted the contribution of this 

network in anticipating higher energy expenditure, in terms of a more effortful 

grip.  

Thus, both reward and effort anticipation are core functions ascribed to 

ACC and striatum (Knutson & Cooper, 2005; Kurniawan et al., 2013; Silvetti et 
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al., 2013). How and whether these elements are combined when cognitive effort 

is required, recently received considerable attention (Matthew M Botvinick et al., 

2009; Croxson et al., 2009; Hernandez Lallement et al., 2013; McGuire & 

Botvinick, 2010; Schmidt, Lebreton, Cléry-Melin, Daunizeau, & Pessiglione, 

2012). However, findings concerning ACC and striatum are controversial. Krebs 

et al. (2012) made a first attempt towards clarifying this matter, by combining 

reward and effort in an attentional-cueing paradigm in order to probe for shared 

neural activation. In that study, both task demand (effort) and reward were 

manipulated in a perceptual task. The cue predicting the more effortful condition 

elicited a stronger activation of the midbrain and striatum, dopaminergic 

structures that broadly innervate the ACC (Haber & Knutson, 2010). Moreover, 

this nigro-striatal network partially overlapped with the activations elicited by the 

cue predictive of a high reward, and the ACC maximally responded to the high 

reward/high effort condition. These results are interpreted by the authors as part 

of a resource-recruitment process, essential in successfully accomplishing the 

task and hence obtaining the reward. Nevertheless, this result was obtained in a 

perceptual task where during the preparation period the allocation of attentional 

resources was crucial for successful completion. It is unclear if this finding 

extends to tasks requiring higher-level cognitive skills, thus relying on a more 

general preparation effect. This would argue in favor of a motivational effect, 

going beyond attentional-cueing facilitation. The contribution of the ACC in 

preparation for arithmetical tasks (Kong et al., 2005) and in logical-rules tasks 

(Sohn, Albert, Jung, Carter, & Anderson, 2007) would  strongly suggest this 

mechanism to be a more general preparation effect, in line with theories of task-

set preparation (Aarts, Roelofs, & van Turennout, 2008; Sterling, 2012), rather 

than a simple spatial-attention facilitation. However, this hypothesis has never 

been tested in demanding high-level cognitive tasks in combination with reward.  
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Hence, an fMRI experiment was designed where cognitive effort and 

reward prospect were manipulated in order to investigate effort and reward 

anticipation. The goal was to test for the cognitive equivalent of a behavioral 

invigoration signal, especially in the ACC and in the striatum. 

Moreover, a third condition was added, where the delay in reward delivery 

was manipulated. Controlling the time variable is crucial, as effortful tasks 

typically require more time to be performed. Delay estimation is in fact a well-

known mechanism both at the behavioral and the neural level (Green & Myerson, 

2004; Kobayashi & Schultz, 2008; Peters & Büchel, 2011; Roesch, Taylor, & 

Schoenbaum, 2006) which in the light of the current purpose could be a potential 

confound. For these reasons the same task was implemented for both effort and 

delay conditions. Furthermore, this allowed to test the specificity of the 

motivational effect of the effort condition.   

In the experiment, in each trial the cue phase informed about the upcoming 

reward, effort, or delay. The task consisted of solving arithmetic operations of 

different degrees of difficulty. In a first step, the anticipatory encoding of high-

level cognitive effort and reward was tested, as well as their overlap (Krebs et al., 

2012). This aimed at determining the type of encoding of these two variables. A 

motivational encoding would imply higher activation for higher effort and bigger 

reward, as those would serve as incentive to task performance. An alternative 

encoding would be value-related, where maximal response should be reported for 

the condition with the highest net-value (low effort and big reward). This putative 

shared substrate was also tested.  

In a second step, selective response to the anticipation of cognitive effort 

was addressed in an exploratory analysis, to isolate a potential neural mechanism 

specifically supporting cognitive effort exertion, unrelated to reward. 
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MATERIALS & METHODS 

Participants 

Twenty-five healthy volunteers participated in this experiment (8 males). 

Three subjects were excluded from further analyses due to excessive head motion 

(more than 3 mm motion in either rotation or translation). This left 22 subjects (8 

males), with a mean age of 20 (range 18-24). The experimental protocol was 

approved by the Ethical Committee of the Ghent University Hospital. All 

participants signed an informed-consent form before the experiment, and 

confirmed they had no neurological or psychiatric history. 

Experimental procedure 

An event-related fMRI design was set up, with the main manipulations 

being separated into different experimental blocks. In every block, reward, effort, 

or delay was manipulated, resulting in three different block types (Figure 1). 

Every block type was presented twice, resulting in six randomized blocks in the 

experiment. To avoid sequence effects, a block type was never preceded or 

followed by the same block type. Every block started with a display informing 

the participant about the block type (reward, effort, or delay block). 
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Figure 1: Task structure. Block types. In every block only one trial type is presented, 

where only one feature is manipulated. In a trial in the reward block, the cue informs 

about the final reward being small or big. In a trial in the effort block, the cue informs 

about the difficulty level (low or high). In the delay block, the cue informs about the 

length of the delay between response and reward delivery (short or long). 
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Every trial in a block started with a cue formed by two words, informing 

participants whether the manipulated feature (reward, effort, or delay) would be 

low or high (Figure 2).  

 

Figure 2: Task structure and timing. The cue presentation is followed by a fixation 

symbol. The task follows, consisting of an addition followed by a subtraction. Two 

possible results are presented and the subject has to choose the correct one. After the 

response, a delay can occur. If the response was accurate, the reward is shown.  
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The resulting six cues were “Small Reward”, “Big Reward”, “Low Effort”, 

“High Effort”, “Short Delay”, or “Long Delay”. Within a block, the presentation 

of different trial types (i.e. “Low Effort” and “High Effort”) was randomized. The 

inter trial interval (ITI) was randomly jittered (range 2-5 seconds, mean 3.5) as 

well as the period between cue onset and task onset (range 2-6 seconds, mean 4, 

Figure 2). At task onset, two subsequent arithmetic operations had to be 

performed, an addition followed by a subtraction. Participants had to mentally 

perform the calculation and then select the correct solution from two possible 

results by pressing the corresponding key (Figure 2). Correct responses were 

followed by positive feedback consisting of a picture of a coin representing the 

reward. Errors were followed by the word “incorrect”.  

In the reward condition, the reward could be small or big, leading to a win 

of 1 cent or 50 cents after performing the easy version of the task, with no delay 

in reward delivery. In the effort condition, the task could be easy or difficult. In 

both cases it consisted in single digit calculations, but in the difficult condition 

every single operation required carrying or borrowing, whereas the easy condition 

did not (Imbo, De Rammelaere, & Vandierendonck, 2005). In this case the 

reward was constant at 20 cents, and there was no delay in delivery. In the delay 

condition, the interval between response selection and reward delivery could be 

short (no delay) or long (6 seconds). The task was easy and the reward constant at 

20 cents. The cues were fully predictive of the manipulation, thus ruling out 

uncertainty confounds. Trials in the reward and effort blocks lasted on average 14 

seconds, while trials in the delay block lasted on average 17 seconds. The 

experiment consisted of 180 trials in total (60 trials per condition, 30 trials per 

event), with each condition divided in two blocks. The participants underwent a 

short version of the experiment as training before the scanning session. They 
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were asked to be as fast and as accurate as possible. At the end of the experiment, 

they received the amount of money that they won by performing the calculations. 

We focused our analyses on the cue period activity, thus avoiding potential 

confounds of actual effort, motor response activation, or differential delay. The 

experiment was implemented in E-prime 2.0 (www.pstnet.com/eprime; 

Psychology Software Tool) and presented to the participants using a dual display 

MRI compatible LCD display and mounted in a lightweight headset (VisuaStim 

XGA, Resonance Technology Inc., Northridge, CA; http://www.mrivideo.com/). 

Ratings & questionnaires 

Participants filled in a safety checklist prior to scanning and a post-scan 

checklist after the session. Every block was followed by a short break, in which 

the participant was asked to rate how much attention he had paid to the cues. 

These questions aimed at keeping the participant focused on the cue and avoiding 

potential distractions. At the end of the session participants filled in two more 

questionnaires. One questionnaire queried the pleasantness of each cue type and 

the pleasantness of the effective outcome related to each cue, in order to check 

whether the high cost options were perceived as less pleasant. The second 

questionnaire was the Bis/Bas (Carver & White, 1994), testing reward sensitivity, 

drive and fun-seeking tendencies. 

fMRI data acquisition 

Images were acquired through a 3T Magnetom Trio MRI scanner 

(Siemens), using an 8 channel radio frequency head coil.  First, an anatomical T1 

weighted sequence was applied, collecting 176 high-resolution slices (TR = 1550 

ms, slice thickness = 0.9 mm, voxel size = 0.9 ´ 0.9 ´ 0.9, FoV = 220 mm, flip 

angle = 9°). Subsequently, functional images were acquired using a T2* weighted 
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EPI sequence (30 slices per volume, TR = 2000 ms, slice thickness = 3mm, 

distance factor = 17%, voxel size = 3.5 x 3.5 x 3.0, FoV = 224 mm, flip angle = 

80°). The session was divided into 6 runs. On average 225 volumes per run were 

collected. Run length varied according to the block type, namely 7 minutes for 

reward blocks and effort blocks and 8.5 minutes for delay blocks. 

fMRI data analysis 

After discarding the first 4 volumes of each run to allow for steady-state 

magnetization, data were preprocessed with SPM8 

(http://www.fil.ion.ucl.ac.uk/spm). Images were realigned to the first image of 

each run and the structural image was coregistered to the functional mean image 

to allow a more precise spatial normalization. The unified segmentation and 

nonlinear warping approach of SPM8 was applied to normalize structural and 

functional images to the MNI template (Montreal Neurological Institute). 

Functional images were then smoothed with a Gaussian kernel of 8 mm full width 

half maximum (FWHM).  

Subsequently a General Linear Model (GLM) was applied in order to 

identify each subject’s condition-specific activations. Cue onsets were modeled 

as events of interest (2 regressors per run) and two condition-specific task 

regressors (from stimulus onset to response, 2 regressors per run) were introduced 

to account for task- and motor-related activation. Four further regressors were 

added to model trials in which errors were made (2 cue-locked regressors plus 2 

task-locked regressors) in order to exclude them from the contrasts of interest. 

The resulting stimulus functions were convolved with the canonical 

hemodynamic response function. To account for low frequency noise a 128 s high 

pass filter was included; to account for serial auto-correlation, an autoregressive 

model was applied. All group-level effects are based on random-effects analysis. 
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First, contrasts of interest were computed at the group level, generating a 

Reward contrast (big reward > small reward), an Effort contrast (high effort > 

low effort) and a Delay contrast (long delay > short delay). The reversed contrasts 

for effort and delay were also computed, in order to test for preferential activation 

for low cost anticipation (low effort > high effort, short delay > long delay). The 

voxel-level threshold was set to 0.001 uncorrected. A whole-brain cluster-level 

family-wise error (FWE) correction for multiple comparison was applied, with a 

p-value of 0.05. 

Second, we performed a conjunction between single contrasts (strict 

conjunction approach, Nichols, Brett, Andersson, Wager, & Poline, 2005), (big 

reward > small reward) & (high effort > low effort). The goal of this contrast was 

to test for shared neural activation in reward and effort anticipation. A whole-

brain cluster-level FWE correction for multiple comparison with a p-value of 

0.05 was applied to each component. 

Third, in order to isolate the neural response selective to high effort, the 

following contrast was performed: (high effort – low effort) > (big reward – small 

reward). This would reveal effort-related activity, when controlling for response 

to reward. On the basis of previous findings, reporting a significant contribution 

of the brainstem nuclei in different types of effortful conditions (Boehler et al., 

2011; Krebs et al., 2012; Malecek & Poldrack, 2013; Nakagawa et al., 2013; 

Raizada & Poldrack, 2007; Stoppel et al., 2011) and in response to high-arousal 

situations (Aston-Jones & Cohen, 2005), a small volume correction (SVC) for the 

brainstem region was applied to this contrast, to test for brainstem involvement. 

Within this volume, we applied a voxel-level threshold of 0.001 uncorrected, with 

a cluster-level FWE correction for multiple comparison (p-value 0.05).  It should 

be noted that this was an exploratory analysis, as the current protocol would not 

grant sufficient spatial resolution to separate different brainstem nuclei. 
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RESULTS 

Behavioral performance 

As predicted, a repeated-measures ANOVA on the reaction times (RTs) 

revealed a significant interaction between condition (reward, effort, delay) and 

cue-type (low, high; F(2, 42) = 47.2, p<.001). 

Pairwise comparisons across participants revealed a significant difference 

in the high effort compared to the low effort condition (t(21)=6.874, p < 0.001, 

Figure 3). In particular, subjects were significantly faster in performing easy than 

difficult calculations (difference of 760 ms). This confirms the effectiveness of 

the effort manipulation. As expected, for the delay and reward condition, no 

significant difference was found between the two cues (long vs. short delay, p = 

0.88; big vs. small reward p = 0.33). 

 

Figure 3: Average reaction times (RTs) in every condition (small reward, big reward, low 

effort, high effort, short delay, long delay).  RT in the high effort condition is significantly 

higher than in the low effort condition (p<0.001). 
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Overall accuracy was very high (average 98%).  In the effort block, 

average accuracy was also calculated for low effort (98%) vs. high effort trials 

(96%). This small difference was however significant (t(21)=2.13, p=.045), 

confirming that the high effort trial were more difficult to perform than the low 

effort trials. Despite being very small, this difference might carry the potential 

confound of uncertainty estimation, as the chance of successful completion of a 

high-effort trial was slightly smaller for some participants. Although it seems 

unlikely that this difference in accuracy might have confounded the anticipation 

of effort, the dissociation between effort anticipation and uncertainty estimation 

should definitely be investigated in future research. 

Ratings 

Pairwise comparisons on the ratings about the pleasantness of the cues 

were performed to ensure that effort and delay costs were actually perceived as 

unpleasant. Indeed at the end of the experiment the participants rated the big 

reward cue as significantly more pleasant than the small reward cue (t(21) = 9.14, 

p<.001), the low effort cue as more pleasant than the high effort cue (t(21) = 6.87, 

p<.001) and the short delay cue as more pleasant than the long delay cue (t(21) = 

5.53, p<.001, see Figure 4). 
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 Figure 4: Average rating of pleasantness for every cue-type (small reward cue, big 

reward cue, low effort cue, high effort cue, short delay cue, long delay cue).	
  	
  	
   

 

Furthermore, the pleasantness ratings for the big reward cue correlated 

with the reward responsiveness scale of the Bis/Bas (r = .49, p < .01), indicating 

that more reward-responsive participants also liked the big reward cue more.  

Participants were asked to provide ratings during every break, quantifying 

how much attention they had paid to the cues during the previous block, on a 

scale from 1 to 10. The goal of these ratings was to keep participants focused on 

the cues.  A one-way repeated-measures ANOVA on the scores with cue type as a 

factor (reward, effort, delay) revealed a significant difference (F(2,42)=19.7, 

p<.001). Pair-wise comparisons showed that participants paid more attention to 

the reward cues (M=6.73, SD=2.08) as compared to the delay cues (M=4.59, 

SD=2.53, t(21)=4.36, p<.001) and to the effort cues (M= 7.59, SD= 1.83) as 

compared to the delay cues (t(21)=6.05, p<.001). The difference between reward 

and effort cues was not significant ((t(21)=-1.76, p=.09). These ratings suggest that 
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while reward and effort cues were correctly attended to, overall participants paid 

less attention to the delay cues.  

 

fMRI results 

First, the single contrasts during the cue period were computed (see Table 

1 for a summary). The Reward contrast (big reward > small reward, Figure 5a) 

showed significant activation in the left caudate nucleus, right anterior cingulate 

(ACC) and right posterior cingulate cortex (PCC). Then, anticipation of effort 

was addressed (high effort > low effort, Figure 5b). This contrast resulted in 

widespread activation, originating a cluster of 27430 voxels. Such an extended 

cluster-size might hamper the validity of the cluster-level inference (Woo, 

Krishnan, & Wager, 2014), especially concerning regional specificity. For this 

reason a more stringent voxel-level threshold was applied (uncorrected p=0.0001 

instead of the standard 0.001). This resulted in breaking down the massive cluster 

in multiple clusters, thus ensuring a better localization of the significant 

activations.  
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Table 1: Summary of the activation results 

 Local Maxima Cluster Peak 
cluster-

level 

Area 
MNI 

Coordinates size T 
p(FWE 
-cor) 

Big Reward >Small Reward     

Posterior Cingulate Cortex   18  -40  34 3574   5.54 0.000 
Thalamus 0 -18 18  4.31  
Inferior Parietal Cortex -38 -28  30 598   4.33 0.001 
Left Striatum -10  14   2 290   3.78 0.026 
Precuneus 6 -52 62  4.54  
Superior Frontal Gyrus  24  42  16 786   4.19 0.000 
Right Striatum  22  28   2    4.12  
Anterior Cingulate Cortex  20  20  34    4.04  

High Effort > Low Effort(*)      

Left Striatum  -8   6   2  6574   6.43 0.000 
Brainstem   -2 -28 -20     5.94  
Right Striatum   10  10  -2     5.86  
Right primary motor cortex  40  -2  40     5.77  
Anterior Cingulate Cortex   8  12  46     5.35  
Superior Frontal Gyrus  20   8  62     5.29  
Right Precuneus  18 -68  38  1631   5.81 0.000 
Inferior Parietal lobule  32 -50  46     5.09  
Left Precuneus  -8 -72  38  543   5.57 0.000 
Premotor cortex -24   6  60  478   5.28 0.000 
Left primary motor cortex -38   6  36  358   5.19 0.000 

Short Delay > Long Delay     
Orbitofrontal Cortex -22  44  -8 243   4.75 0.047 

Effort-selective contrast (SVC)    
Brainstem  -4 -32 -10 129   4.00 0.010 
     
(*) cluster-forming threshold p=0.0001 uncorrected   
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Figure 5: fMRI Results a. Reward contrast (big reward > small reward). b. Effort contrast 

(high effort > low effort). c. Conjunction of high effort > low effort & big reward > small 

reward.  
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Anticipation of effort significantly activated striatum bilaterally, left 

brainstem, right ACC, supplementary motor area (SMA), primary motor cortex 

bilaterally, left premotor cortex, left Insula, right superior frontal gyrus (SFG) and 

precuneus bilaterally. The Delay contrast (long delay > short delay) did not show 

any significant activation cluster surviving the whole brain FWE threshold 

correction.  

In the reversed Effort contrast (low effort > high effort) no clusters 

survived the whole brain threshold. Concerning the reversed Delay contrast (short 

delay > long delay) the orbitofrontal cortex (OFC) proved to be sensitive to 

shorter delay (Figure 6). 

 

Figure 6: Short delay > long delay contrast 

 

Second, the strict conjunction between effort- and reward-related activation 

((high effort > low effort) & (big reward > small reward); incentive conjunction) 

revealed activation in the striatum bilaterally, the precuneus bilaterally and the 

right ACC (Figure 5c, see Table 2 for a detailed list). 
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Table 2: List of the regions resulting from the effort and reward conjunction 

 

As a third step, the effort-selective contrast ((high effort >low effort) – (big 

reward > small reward) showed a selective involvement of the brainstem in effort 

anticipation (Figure 6a, T(21)= 4,00, p=0.01, SVC). No clusters at the cortical level 

survived. For exploratory purposes, the brainstem activated cluster was 

superimposed on a high-resolution proton-density averaged template normalized 

to the MNI space, as this sequence allows identifying the Substantia Nigra (SN, 

Oikawa, Sasaki, Tamakawa, Ehara, & Tohyama, 2002) thereby providing a 

reference for better anatomical characterization of the brainstem (Figure 7a). At 

visual inspection, the location of the activation cluster is not consistent with the 

main dopaminergic nuclei. According to the Duvernoy’s atlas (Naidic et al., 

2009), the location of this cluster might be compatible with other non-

dopaminergic brainstem nuclei, including the serotonergic Dorsal Raphe Nucleus 

(DRN), or the noradrenergic Locus Coeruleus (LC). The parameter estimates for 

every condition for the peak voxel of this cluster are plotted in figure 7b. Paired 

comparisons performed on these scores revealed a significantly higher response 

for high effort as opposed to low Effort (T(21)=-3.73, p=.001) and for long delay 

as opposed to short delay (T(21)= 2.891, p=.009). No differential response was 

detected for high reward as opposed to low reward (T(21)=-1.033, p=.313). Given 

Conjunction   
High Effort >Low Effort  & Big Reward > Small Reward 

 Local Maxima Cluster 
Area MNI Coordinates size 
 x y z  
Left Precuneus -8 -72 38 260 
Right Striatum 10 10 -2 171 
Right Precuneus 8 -54 48 133 
Left Striatum -14 10 -4 97 
Anterior Cingulate Cortex 12 14 40 49 
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its potential theoretical relevance, this exploratory result is further discussed 

below, yet one should note the exploratory nature of this result. It should also be 

noted that the resolution of the current fMRI protocol was not optimal to 

distinguish between different small structures in the brainstem. 

 

 

Figure 7: a. Effort-selective activation ((high effort > low effort) > (high reward> low 

reward)), SVC for the region of the brainstem, p value 0.05 FWE correction for multiple 

comparisons, plotted on Proton Density Weighted MRI Template (left image). b. 

Parameter estimates plot at voxel -4, -32, -10 (MNI coordinates), local maximum in the 

activation cluster located in the Brainstem in the effort-selective contrast.  



118     CHAPTER 3 

DISCUSSION 

The present study investigated the anticipation of high-level cognitive 

effort required to obtain a reward, while controlling for temporal confounds. 

Crucially, both prospective effort and reward anticipation activated the same 

network, involving the ACC and the striatum. This confirms the contribution of 

these areas to incentive-motivation and supports the essential role of this network 

in sustaining task-preparation for cognitive effort. The current results do not find 

support for a value-related encoding, according to which low effort should have 

elicited a stronger response. Moreover, exploratory analyses suggest a selective 

contribution of the brainstem to cognitive effort anticipation.  

Reward-related activation (Figure 5a) was identified in the ACC and 

striatum, principal targets of dopaminergic midbrain projections (Haber & 

Knutson, 2010) and key components of reward circuitry (Amiez, Joseph, & 

Procyk, 2006; Kennerley et al., 2009; Liu, Hairston, Schrier, & Fan, 2011; 

Silvetti et al., 2013). Also, the right PCC was activated in this condition, which is 

known to be selectively activated by monetary gain anticipation compared to 

primary reinforcers (Levy & Glimcher, 2011).   

The anticipation of a higher cognitive effort (Figure 5b) activated the 

bilateral striatum, right ACC and left brainstem, among other regions. Preparing 

to perform difficult calculations seems to rely on the same system that subserves 

other demanding cognitive functions, such as conflict monitoring (Botvinick, 

Braver, Barch, Carter, & Cohen, 2001; Sohn et al., 2007) working memory 

encoding (Engström, Landtblom, & Karlsson, 2013), and top-down attentional 

facilitation (Boehler et al., 2011; Krebs et al., 2012). This converging evidence 

confirms the role of the ACC not only in experiencing effort (Naccache et al., 

2005), but also for effort anticipation during task preparation (Hernandez 
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Lallement et al., 2013; Kurniawan et al., 2013; Schmidt et al., 2012). The 

information of an upcoming demanding task seems to act as a motivational factor 

needed for successful task completion. This would be in line with theoretical 

accounts of task preparation and task-set maintenance (Aarts et al., 2008; Luks, 

Simpson, Feiwell, & Miller, 2002; Sterling, 2012). This preparation effect might 

be mediated via dopaminergic transmission, which would be consistent with the 

hypothesized role of dopamine in invigorating behavior (Krebs et al., 2012; Niv, 

Daw, Joel, & Dayan, 2007) in effortful tasks. In the context of a task where effort 

is required to obtain a reward, dopaminergic release may enhance motivation for 

performing effortful actions, in order to overcome response cost and reap the 

expected benefit (Kurniawan et al., 2011). A potential mechanism is that 

motivational stimuli, such as the prospect of reward, boost the neuronal signal-to-

noise ratio towards optimal performance (Pessiglione et al., 2007). A similar 

underlying mechanism might be called upon in the case of a prospective difficult 

task.  

This interpretation finds support in animal experiments, where 

dopaminergic depletion induces effort avoidance (Salamone, Correa, Farrar, & 

Mingote, 2007; Salamone & Correa, 2012). A convergent computational 

framework has also been suggested by Niv et al. (2007), where dopaminergic 

neurotransmission would be crucial in mediating response vigor.  

Dopaminergic mediation of behavioral invigoration has also been 

confirmed in a pharmacological study in humans (Beierholm et al., 2013). fMRI 

experiments in humans demonstrated the involvement of the ACC and the 

striatum in the anticipation of physical effort (Kurniawan et al., 2013) or 

perceptual load (Krebs et al., 2012). The current results show that this mechanism 

supports high-level cognitive effort as well, in line with what was proposed by 

Sohn et al. (2007).  
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Accordingly, ACC activity has been proven to be influenced by fatigue 

deriving from sustained effort in cognitive tasks (Lorist, Boksem, & 

Ridderinkhof, 2005). Moeller et al. (2012) showed that prolonged performance 

under taxing cognitive requirements is associated with decreased ACC activation 

and as a consequence, reduced error-related responses. This supports a key role of 

this region in successfully enacting cognitive effortful behavior. Interestingly, the 

authors also showed how this pattern is altered in cocaine-abusers, known to have 

abnormal dopamine levels, and how this effect can be reversed by administering a 

dopaminergic-agonist medication. These results together converge on the 

underlying dopaminergic mediation of cognitive demanding task requirements.  

Interestingly, cognitive effort anticipation recruits a cortico-subcortical 

network that partially overlaps with reward-related regions, as shown in the 

conjunction analysis (Figure 5c). This confirms the hypothesized motivational 

effect which might reflect higher engagement induced by both the prospect of a 

greater benefit and the expectation of a difficult task. In this perspective, both 

high effort and high reward cues induce a stronger preparation effect, translated 

into increased neural recruitment of areas coding for incentive. For the first time, 

this result is shown in a high-level cognitive task, suggesting that ACC and 

striatum contribute to an incentive-induced resource allocation. Further 

converging indications are supplied by a recent study  with Positron Emission 

Tomography (PET), that showed a correlation between dopamine release in the 

striatum and subjective willingness to exert effort in exchange of a reward 

(Treadway et al., 2012). The fronto-striatal network seems therefore to be crucial 

in supporting reward-driven effort exertion. The putative dopaminergic nature of 

this mediation is also in line with previous evidence showing the crucial influence 

of dopamine on high-level cognitive processes (Cools, 2011). Moreover, these 

findings are compatible with a recently proposed view of ACC function 
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(Shenhav, Botvinick, & Cohen, 2013). Here, the authors formalize the 

contribution of this region as estimator not only of the amount of control to be 

exerted (effort in our case), but also of the value of exerting control, in so far as it 

leads to a rewarding outcome. 

In the same contrast, the precuneus was also activated bilaterally. The 

contribution of this region to the anticipation of both effort and reward offers 

interesting ground for further investigation.  

Subsequently, an exploratory analysis was performed investigating 

selective response to cognitive effort anticipation but not to reward prospect. 

Given previous evidence reporting a contribution of the brainstem and theories 

suggesting a role for brainstem neuromodulatory systems (Aston-Jones & Cohen, 

2005; Boehler et al., 2011; Krebs et al., 2012; Malecek & Poldrack, 2013; 

Nakagawa et al., 2013; Raizada & Poldrack, 2007), an SVC was applied for the 

volume of the brainstem to test for its involvement.  The contrast testing selective 

response to effort ((high effort > low effort) > (big reward > small reward) 

isolated an effort-selective signal in the brainstem (Figure 7a). Definitive 

anatomical inference on this region cannot be performed on the current data, 

given the resolution constraints. It is however possible to speculate on the nature 

of this activation. The cluster location is not consistent with locations usually 

reported for midbrain dopaminergic nuclei in fMRI studies (Boehler et al., 2011; 

D’Ardenne, McClure, Nystrom, & Cohen, 2008; Krebs et al., 2012). The current 

location might be compatible with other brainstem structures, like the 

serotonergic Dorsal Raphe Nucleus (DRN) or the noradrenergic Locus Coeruleus 

(LC; Figure 7a). These hypotheses might deserve further investigation, given that 

previous evidence suggests a potential contribution of these nuclei in aversive 

processing and arousal. On the one hand, a wealth of studies demonstrated 

striking effects of manipulating serotonin levels on processing aversive events 
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(Cools, Roberts, & Robbins, 2008; Cools, Robinson, & Sahakian, 2008; Cools et 

al., 2005; Harmer, Mackay, Reid, Cowen, & Goodwin, 2006; Robinson, Cools, & 

Sahakian, 2012; van der Veen, Evers, Deutz, & Schmitt, 2007). In this 

perspective, expecting an upcoming effort might be considered aversive (as 

confirmed in our task by the ratings) and therefore rely on serotonergic midbrain 

input to blunt aversiveness or related behavioral reactions, and perhaps boost 

prefrontal activity needed for accurate task performance  (Amat et al., 2005; 

Bromberg-Martin, Hikosaka, & Nakamura, 2010; Sterling, 2012). On a 

convergent note, theoretical and computational frameworks of cost and benefit 

encoding have assigned a putative function to serotonergic modulation (Boureau 

& Dayan, 2011; Cools, Nakamura, & Daw, 2011). On the other hand, anticipating 

higher effort might induce an arousal response and therefore elicit noradrenaline 

release (Aston-Jones & Cohen, 2005; McClure, Laibson, Loewenstein, & Cohen, 

2004), thus suggesting that the present functional result would reflect putative 

LC-noradrenergic activity. Convergent evidence for a putative LC contribution 

during demanding tasks was also provided by Raizada and Poldrack (2008). At 

the current stage, both hypotheses are rather speculative. This result might 

however be informative and fruitful ground for further investigation. 

As for the additional experimental condition, the delay manipulation, the 

expectation of a short delay (short delay > long delay, Figure 6) revealed a value-

related signal in the orbitofrontal cortex, consistent with evidence from delay 

discounting studies (McClure et al., 2004; Tanaka et al., 2004). No significant 

activation was elicited by the prospect of a longer delay. The exploratory analysis 

on the brainstem activation however, shows a stronger response in that region not 

only for greater efforts, but also for longer delays (Figure 7b). With the caveat of 

the localization limitation, it is worth nothing that  a critical involvement of the 

DRN in delay discounting has been recently shown in rats, where serotonergic 
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activity seems to facilitate waiting for a benefit (Miyazaki, Miyazaki, & Doya, 

2011), and to be necessary to tolerate longer delays (7-11 seconds) (Miyazaki, 

Miyazaki, & Doya, 2012). Additional evidence is accumulating supporting the 

hypothesis of serotonin involvement in promoting a more foresighted reward 

evaluation in both animals and humans (Luo, Ainslie, Giragosian, & Monterosso, 

2009; Schweighofer et al., 2008; Schweighofer, Tanaka, & Doya, 2007; Tanaka 

et al., 2004). Considering the methodological limitations of the current 

experiment, this might be fruitful venue for future research. 

CONCLUSIONS 

This study provides the first evidence for a shared motivational effect 

induced at the neural level by both reward prospect and the anticipation of 

cognitive effort in complex cognitive tasks. This is associated with activation in 

the ACC and the striatum, supporting behavioral engagement and resource-

recruiting towards a final goal. Moreover, an exploratory analysis identified an 

effort-selective signal in the human brainstem, which suggests potential 

contribution of non-dopaminergic brainstem nuclei to effort anticipation. 
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CHAPTER 4 
CHOOSING TO MAKE AN EFFORT AND PREPARING TO 

OVERCOME IT: THE ROLE OF THE ANTERIOR 
CINGULATE CORTEX 1 

Benefits typically come with an effort cost. Anticipating potential rewards 
and effort requirements are essential skills in driving adaptive behavior. 
However, the underlying neural mechanisms are still debated. A net-value 
account has been proposed, according to which the value of the reward is 
discounted by the required effort. This computation would be implemented 
by the Anterior Cingulate Cortex (ACC). However, this theory has been 
recently challenged by incompatible results, showing motivational encoding 
of effort in the ACC instead, where activity in this region is essential in 
prompting and sustaining effortful behavior towards a goal. The purpose of 
the current study was to directly test the divergent predictions arising from 
these accounts, incorporating a crucial factor: decision-making. Previous 
studies did not differentiate between effort-related decision-making and 
anticipation of effort when no choice was required. Given the  contribution 
of ACC to decision-making, controlling for this factor is crucial to 
disentangle effort encoding in the ACC. To this end, a cognitive effort fMRI 
paradigm was implemented, consisting of two phases: a decision-making 
phase and a performance phase. This allowed to systematically investigate 
effort encoding during decision and anticipation in the same subjects. The 
results support the motivational account, showing increased ACC activity as 
a function of required effort, across both phases. A targeted ROI analysis 
revealed a modulation of phase, showing an inverted U-shaped relationship 
between effort encoding during decision and ACC activity in the low reward 
condition. This suggests a role of ACC in prompting engagement in effortful 
behavior only when this is considered worthwhile.  

	
  

                                                      
1Vassena E., Botvinick M.M., Krebs R.M., Silvetti M., De Loof E., Fias W. & 
Verguts, T., Choosing to make an effort and preparing to overcome it: the role of the 
Anterior Cingulate Cortex. Manuscript in preparation 
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INTRODUCTION 

When faced with an effortful and potentially rewarding task, animals 

try to maximize utility (Walton et al., 2006; Schweimer and Hauber, 2010), 

taking both benefits and associated costs into account. For example, rats 

choose to climb a barrier only when this leads to more food pellets than for 

an easier available option (Salamone et al., 2007; Salamone and Correa, 

2012). Maximizing utility drives human behavior as well (Kahneman and 

Tversky, 1979). People find effort per se aversive (Kool et al., 2010), 

showing a tendency to avoid it, in favor of easier options. However, when a 

potential gain is available, the willingness to exert effort increases as a 

function of it (Prévost et al., 2010; Westbrook et al., 2013). When the gain is 

considered worth the effort, a preparation process is prompted which 

mobilizes the resources needed for successful task completion (Mulert et al., 

2005; Kouneiher et al., 2009). 

A number of studies investigated cost-benefit computations and 

resource mobilization. A pivotal role for cost/benefit computation is 

assigned to cortico-subcortical interactions mediated via dopaminergic (DA) 

transmission (Phillips et al., 2007). A main cortical station is the Anterior 

Cingulate Cortex (ACC). In vivo electrophysiology in primates showed how 

ACC neurons encode different features of relevant stimuli, including reward 

prediction error (i.e. unexpected receipt of omission of a reward, Amiez et 

al., 2006; Matsumoto et al., 2007) action values (i.e. potential reward 

associate with a particular action, Rudebeck et al., 2008), probability, and 

required effort, Kennerley et al., 2011). All these features can be integrated 

in a net-value signal, which encodes the benefit (i.e. reward) discounted by 

the costs implied in obtaining it. 
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In humans, net-value signals have been identified in the ACC and in the 

striatum at difference stages of effort-demanding behavior. Croxson et al. 

(2009) showed in cancellation task a stronger ACC and striatum activation  

when subjects viewed a cue anticipating a high reward requiring low effort 

(i.e. smaller number of dashes to be clicked on to complete the task). 

However, in this task the more effortful condition was associated with longer 

execution time, thus implicating a potential delay confound in the value 

computation process. Botvinick et al. (2009) reported an increased response 

in the ventral striatum at reward delivery for a high reward, obtained with 

low effort (i.e. higher overall net-value). Prevost et al. (2010) showed that 

activation in the ACC and ventral striatum was also associated to subjective 

value attributed to cues anticipating physical effort, to be exerted to get to 

see erotic pictures. In this last study however, striatal activity encoded 

subjective value of the cue (with higher activity for higher net-value), while 

ACC activity was associated with the anticipation of higher effort 

requirements (lower net-value). 

The result from Prevost et al. already sheds doubt on the generality of 

the net-value coding in ACC. In fact, a series of studies in animals and 

humans challenged the theory that ACC is solely dedicated to net-value 

computation. Instead, they favor a motivational account, according to which 

ACC activity sustains anticipation and exertion of effort. For example,  in 

rodents, inactivation of the ACC induces effort avoidance (Walton et al., 

2009), even when general appetitive behavior is preserved. Vascular or 

neoplastic lesions in humans can lead to clinical conditions, such as akinetic 

mutism (Devinsky et al., 1995) and other disorders, where initiation of 

motivated behavior is impaired (Wacker et al., 2009; Njomboro et al., 2012; 

Rive et al., 2013). 
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In terms of functional activation, the motivational account predicts 

increased ACC activation for the anticipation of higher effort, in sharp 

contrast with the net-value account, which instead predicts lower ACC 

activation for higher effort. Recent fMRI studies found preliminary support 

for the motivational account, showing increased ACC activity when 

anticipating higher physical and cognitive effort (Krebs et al., 2012; Schmidt 

et al., 2012; Kurniawan et al., 2013; Vassena et al., 2014). In some instances, 

the same motivational effect was also induced when the prospect of a higher 

reward was anticipated (Krebs et al., 2012; Vassena et al., 2014). According 

to this line of results, ACC implement the initiation and energizing of goal-

directed actions.  

Recent computational accounts of ACC function are formulated in the 

framework of the net-value perspective. In these frameworks, the ACC is 

implemented as a critic (in the context of an actor-critic architecture, Sutton 

and Barto, 1998), that is a unit keeping track of the value associated with 

certain stimuli in the environment, formulating predictions and updating 

these predictions on the basis of outcomes (Alexander and Brown, 2011; 

Silvetti et al., 2011). A different line of recent theories of ACC function 

seems to be compatible with a motivational account instead. Holroyd and 

Yeung (2012) hypothesize the ACC to be the locus of maintenance of 

behavioral policies (i.e. sequences of actions towards a goal), in the 

framework of hierarchical reinforcement learning theories (Botvinick et al., 

2009b). Weston (2012) suggests this region to be crucial in anticipating 

contingent “requirements” (i.e. mobilizing resources in response to needs). 

Sterling (2012) proposes a role for ACC in predictively preparing for 

environmental challenges in order to maintain homeostasis. 
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To sum up, from both empirical and theoretical lines, two dominating 

views emerge in interpreting ACC contribution to decision making and 

motivated behavior, one favoring a net-value perspective, and the other 

favoring a motivational account. The primary goal of the current study was 

to address the divergent predictions arising from these accounts. As reported 

above,  a net-value perspective predicts decreased ACC activity for higher 

effort (i.e. higher costs entails lower net-value), while a motivational account 

predicts increased ACC involvement for higher effort. However, one major 

issue characterizing previous studies was that decision-making phase was 

not explicitly manipulated. Some of the aforementioned paradigms involved 

making a series of choices between options offering different combinations 

of reward and effort demands. Others examined cue-locked activation 

instead, where only one option was available. These different conditions 

might dramatically affect net-value computation and motivation-related 

processes, and might (at least partially) account for the contradictory results. 

Indeed, net-value computation might be primarily called upon when a choice 

is possible, while upcoming but inevitable effort might prompt motivation-

related processes. Moreover, outside the effort domain, ACC activity is 

commonly associated with making a choice between different available 

options (Brass and Haggard, 2007). Testing for the modulation of decision 

making on effort encoding seems therefore mandatory, to better specify both 

effort encoding and decision-making processes. 

To address these issues, a two-phase task was implemented, 

systematically investigating effort-related decision making and anticipation 

of effortful performance. The goal was to measure ACC response using 

fMRI, in the same task in the same subjects and using the same visual 

stimuli for both phases (decision making and anticipation). We examined the 
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type of encoding (net-value vs. motivational) and tested if this was 

modulated by phase (decision-making vs. anticipation). Moreover, this 

allowed to test for a  shared neural encoding across phases. Additionally, the 

experiment was designed to overcome the categorical dichotomy easy vs. 

hard, by investigating parametric effort encoding. This allowed to test for a 

possible modulation of phase on encoding type, and for the linear nature of 

this modulation.  

MATERIALS & METHODS 

Participants 

Twenty-three healthy volunteers participated in this experiment (10 

males), with a mean age of 21 (range 19-25). The experimental protocol was 

approved by the Ethical Committee of the Ghent University Hospital. All 

participants signed an informed-consent form before the experiment. They 

filled in a safety checklist as well, to exclude contraindications, as well as  

neurological or psychiatric conditions. 

Experimental procedure 

An fMRI experimental design was implemented, consisting of a 

decision-making phase and a performance phase of the same task. In the 

decision-making phase, participants received a number of cues, that they 

could accept or reject. In the performance phase, participants had to perform 

the actual task. Before the scanning session, the participants were trained to 

familiarize them with the stimuli and the experimental procedure (Figure 1). 

The training also consisted of two parts. The first part entailed exposure to 

the decision-making phase to learn the meaning of the cues. The second part 
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was a short version of the performance phase, to have the participants 

experience all the possible effort levels of the task. The effort manipulation 

was induced by means of arithmetic operation (see below for details). Only 

in this performance-training phase, after every trial participants had to rate 

how difficult and how pleasant they found each trial upon completion. 

 

Figure 1:  Experimental procedure. Participants undergo a training phase, 

familiarizing with both decision-making phase and anticipation of performance 

phase. During the training, they are also ask to rate every trial concerning 

experienced difficulty and pleasantness. Subsequently, in the scanner they perform 

the decision-making phase, followed by the anticipation of performance phase 

In both phases, each trial started with a cue (a grey circle, displaying a 

grid of 4 by 2 lines, on which two lines were black). Every cue indicated a 

combination of a certain degree of effort (horizontal lines, 4 possible 

difficulty levels) and a certain amount of reward (vertical lines, low reward 

of 20 cents or high reward of 40 cents). This resulted in 8 possible cues (4 by 
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2, see Figure 1b). One more cue was included, the reference cue (same 

circle, without black lines). The reference cue would grant the lowest reward 

possible (5 cents) at the lowest effort possible (lower than the other 4 levels).  

 

Figure 2: Cues. Each cue represents a combination of effort and reward. Horizontal 

black lines indicate effort level (from 1 to 4). Vertical black lines indicate reward 

(low/high). The cue with no black line is the reference cue (lowest effort/lowest 

reward).  

This reference cue was introduced in both phases to make sure that its 

appearance in the performance phase would not be unexpected in any 

possible choice-strategy scenario (i.e. if the participants always accepted the 

more difficult option). Participants were alerted that the reference cue would 

sometimes be presented in the decision-making  phase, and that in this case 

their choice (accept vs. reject) would not be relevant, as they would receive 

the reference cue anyway. In both decision-making  and performance phases, 

the cue was preceded by a randomly jittered interval ranging from 2000 to 
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4000 ms (mean 3000 ms) and followed by a variable interval ranging from 

600 to 9000 ms, jittered in a pseudo-exponential fashion (mean 4000 ms). 

The decision-making phase contained 126 trials, each consisting of a 

series of choices (Figure 3). At the beginning of each trial one of the cues 

was presented, and the participant had to accept or reject this particular cue 

(i.e. this combination of prospective effort and potential reward). 

Importantly, first the cue was presented, and only after the jittered interval a 

response display would appear, showing the two options “accept” and 

“reject”. The position of the options was randomized across trials and the 

participants had to produce a left or right response, depending on the 

location of the desired answer. The goal of this procedure was to disentangle 

the decision-phase from response preparation processes.  

 

Figure 3: Decision-making phase. Participants are presented with all the cues. Per 

every cue, they have to decide to accept or reject. If they accept, they are told they 

will receive a trial corresponding to that cue in the performance phase. 
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Rejecting the current cue would mean automatically receiving the trial 

type associated with the reference cue (lowest effort and lowest reward 

possible). Participants were told that their chosen cues would determine the 

actual trials (i.e. combined reward and difficulty level) to be performed in 

the performance phase. To avoid disengagement in both tasks, they were 

also told that errors during the performance phase would cause a loss, 

corresponding to the amount of money at stake in the current trial. At the end 

of the decision-making  phase, the experimenter communicated that only a 

percentage of the trials in the performance phase would correspond to the 

actual choices from the decision-making  phase. The remaining trials would 

be randomly selected by the computer for experimental reasons (i.e. in order 

to make data from different participants comparable). The goal of this 

procedure was to administer the same performance task to all participants. 

None of the participants expressed complaints about this communication.  

In the performance phase, the same number of trials (126 trials) and 

the exact same cues (but in different random order) as the decision-making  

phase were presented (Figure 4). This aimed at making the decision-cue 

(decision-making phase) and the performance-cue (performance phase) as 

comparable as possible. In this phase, each trial started with the cue, 

indicating the upcoming effort level and the reward to be obtained in case of 

correct answer. The cue was followed by a series of 4 calculations, formed 

by single-digit numbers flashing on the screen. Each effort level 

corresponded to an operation implying decade crossing (e.g., 7+8=15). 

Decade crossing requires carrying or borrowing, which is more difficult than 

not crossing (e.g. 7+2=9; Imbo et al., 2005). The calculations were followed 

by a response display, showing two possible results among which the 

participant needed to select the correct response within 500 ms. 



CHOOSING TO MAKE AN EFFORT AND PREPARING TO OVERCOME IT:  
THE ROLE OF THE ANTERIOR CINGULATE CORTEX     143 

Subsequently, the feedback would be displayed (the obtained reward, or the 

loss in case of error).  

 

Figure 4: Anticipation of performance phase. Each cue is presented, now followed 

by a calculation of the correspondent effort level. Participants are suppose to 

calculate the result on line, and pick the correct response. After the response, they 

receive feedback.  
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At effort level n, there were n decade crossings (e.g., 2 at effort level 

2). This procedure resulted in a parametric manipulation of effort (four 

levels, from 1 easy, to 4 hard), which allowed testing for this type of neural 

encoding. Importantly, the implementation of the calculation task was 

preceded by a behavioral piloting phase, to tune the overall difficulty 

guaranteeing an overall accuracy above 90%. In this way, we ascertained 

querying effort anticipation rather than risk estimation. 

Behavioral data analysis 

The performance-training phase included 15 trials (3 trials per 

difficulty level (3*4=12) plus 3 reference trials). After completing each trial, 

the participant had to rate the trial on experienced difficulty and experienced 

pleasantness, both on a scale from 1 to 7. These ratings were analyzed as a 

manipulation check. The goal was to ensure that trials entailing higher effort 

would be perceived as more effortful and less pleasant (Kool et al., 2010). A 

linear regression model was fitted to the difficulty ratings of each participant 

separately, with effort level (1-4) as a predictor of perceived difficulty. 

Subsequently a one-sample t-test was performed on the regression 

coefficients, to test the effect at the group level. The same analysis was 

performed on the pleasantness rating dependent variable. 

During the decision-making  phase participants could choose which 

options to accept or reject. Hence, it was possible to analyze choice behavior 

as a function of the effort level and the potential reward offered by the cue. 

A multiple logistic regression model was fitted per every participant, with 

effort and reward as predictors of choice (acceptance of the cue). A one-

sample t-test was then performed across the group coefficients. To analyze 

choice reaction times (RTs), a multiple linear regression was performed for 
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each participant separately, with effort and reward as predictors. A one-

sample t-test was then performed across the group coefficients. Average 

acceptance rate and choice entropy were computed for every condition. A 

repeated-measure analysis of variance (rANOVA) was performed on the 

average percentages of acceptance, with effort and reward as factors. Choice 

entropy was also calculated for every condition, as a measure of uncertainty 

in the choice behavior (Shannon entropy, calculated as  – p log2 (p) – (1-p) 

log2(1-p), where p is the probability of accepting a particular cue, Shannon, 

1948). A rANOVA was performed on the average entropy, with effort level 

and reward as factors. Moreover, choice entropy gives information about 

choice-style of the participants, thus allowing inter-individual differences 

analysis. This is especially relevant when testing effort encoding in the ACC, 

as this region as been associated to choice conflict (Botvinick et al., 2004). 

Excluding choice entropy encoding would be a stronger indication in favor 

of effort encoding.  

Finally, the behavioral data from the performance phase were 

analyzed. Accuracy and RTs were calculated in every condition. Both 

accuracy and RT data were then subjected to rANOVAs, with effort and 

reward as factors. 

 

fMRI data acquisition 

Data was acquired using a 3T Magnetom Trio MRI scanner 

(Siemens), using a 32-channel radio-frequency head coil. First, an 

anatomical T1 weighted MPRAGE sequence was collected, resulting in 176 

high-resolution slices (TR = 1550 ms, TE = 2.39, slice thickness = 0.9 mm, 

voxel size = 0.9 x 0.9 x 0.9 mm, FoV = 220 mm, flip angle = 9°).  
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Subsequently, functional images were acquired using a T2* weighted EPI 

sequence (33 slices per volume, TR = 2000 ms, TE = 30 ms, no inter-slice 

gap, voxel size = 3 x 3 x 3mm, FoV = 192 mm, flip angle = 80°). On average 

510 volumes were collected during the decision-making  phase, and 1180 

volumes during the performance phase. 

fMRI data analysis 

The first 4 volumes of the functional scans were discarded to allow for 

steady-state magnetization. The data were preprocessed with SPM 

(http://www.fil.ion.ucl.ac.uk/spm). Images were realigned to the first image 

of the run. The structural T1 image was coregistered to the functional mean 

image to allow a more precise normalization. The unified segmentation and 

nonlinear warping approach of SPM8 was applied to normalize structural 

and functional images to the MNI template (Montreal Neurological 

Institute). Functional images were then smoothed with a Gaussian kernel of 

8 mm full width half maximum (FWHM).  

Subsequently the General Linear Model (GLM) approach was applied 

in order to identify each subject’s condition-specific activation. Two 

different first-level GLMs were set up per every participant, one modeling 

the decision-making  phase and one modeling the performance phase. In the 

decision-making  model, 18 event-related regressors of interest were 

introduced, 9 regressors to model the cues (8 cues for the different 

effort/reward combinations plus one reference cue) plus 9 regressors to 

model the response in each condition (when the participants pressed the key 

to accept or reject the cue). Six more regressors were introduced in the 

model to account for motion-related activity. In the performance model, 27 

event-related regressors of interest were introduced, 9 regressors to model 
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the cues (as in the decision-making  model, one per condition), 9 regressors 

to model task-related activation (from task onset to response display onset, 

separately modeled per every condition), and 9 regressors to model the 

feedback (also separately modeled per condition). Two additional regressors 

were added to account for the short break periods (covering the duration of 

the break) and for the trials where errors were made (covering the entire trial 

length), which were then excluded from the analysis. As in the decision-

making  phase, 6 motion-related regressors were also added. 

At the second level, we focused on cue-related activation.  As a first 

step, a random-effect analysis was performed on both phases separately, by 

implementing two 4 x 2 factorial designs, with effort (level from 1 to 4) and 

reward (low vs. high) as factors. Subsequently a parametric contrast for the 

effort factor was computed in both models, to identify areas encoding effort 

in a parametric fashion in both decision-making  and performance phase. To 

each contrast, a voxel-level threshold of p=.001 uncorrected was applied, 

and cluster-level family-wise error (FWE) correction for multiple 

comparisons with a p-value of 0.05. On the resulting images, a conjunction 

analysis was performed (Nichols et al. 2005), to identify potentially shared 

neural substrate in effort encoding across decision-making  and performance 

phase. 

As a second step, the a priori hypothesis of ACC involvement was 

investigated in a targeted Region of Interest (ROI) analysis. The ACC ROI 

was defined on the basis of a previous study on effort processing (Botvinick 

et al., 2009a, figure 3a), guaranteeing unbiased selection. This resulted in a 

sphere with a 10 mm radius, centered on the MNI coordinates  x=2 y=21 

z=40 (see figure 2). Condition-specific activation (percent signal change) 

was extracted separately for decision-making and performance phase using 
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the MARSBAR toolbox (Brett et al., 2002) and submitted to a repeated-

measures analysis of variance. The goal of this analysis was to better specify 

the role of ACC in effort and reward encoding in both phases. 

Finally, a further manipulation check was performed by analyzing 

task-related activation during the performance phase (task-regressor from 

task onset to response). A random-effect analysis was performed by 

implementing a factorial design with effort level and reward as factors. The 

parametric contrast for effort was calculated, to investigated neural 

activation during the task as a function of effort. The negative parametric 

contrast for effort was also computed, to identify regions showing decreased 

activation for increased task effort. 

RESULTS 

Behavioral results 

First, the ratings collected during the performance-training phase were 

analyzed. Despite the limited sampling of this phase (only 15 trials), it was 

still possible to test the subjective perception of the different effort levels, as 

a manipulation check. One participant had to be excluded from this analysis, 

as he/she picked always the same rating per every level. Participants reliably 

experienced higher effort trials as more difficult (regression coefficient of 

effort, t(21)= 7.17, p<.001) and less pleasant (t(21)= -4.18, p<.001). Hence, the 

effort manipulation was successful. 

Second, the choice data from the decision-making phase were 

analyzed. Participants accepted less often the more difficult cues (t(22)= -4.19, 

p<.001) and more often the high reward cues (t(22)= 4.69, p<.001). This 
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suggests that participants correctly focused on the cues in the decision-

making phase, as both manipulated factors influenced choice behavior. The 

overall acceptance rate for the proposed cue was 67.39 % ( ± 12.9, Figure 5).  

Both effort and reward levels showed a significant main effect on the 

average acceptance rate per condition (effort F(3,66)=71.06, p<.001, reward 

F(1,22)=37,73, p<.001, see Figure 5), as well as interaction (F=(3,66)=13.25, 

p=<.001). 

 

Figure 5: Average acceptance rate is reported per every effort level (x-axis) and 

reward (grey = low, black = high). 

Choice entropy was also calculated as a measure of uncertainty in 

choice behavior. This was computed per every cue and then averaged across 

participants (Figure 6). Choice entropy was significantly influenced by effort 

(F(3,66)=4.25, p=.008). Importantly, the interaction effort by reward was also 

significant (F(3,66)=4.18, p=.009). Therefore a rANOVA was run separately 

for low and high reward, showing a significant effect of effort on choice 

entropy only in the high reward condition  (F(3,66)=10.86, p<.001). No 

difference in choice entropy for low reward was reported (F(3,66)=.06, p=.98). 
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Figure 6: Average choice entropy is reported per every effort level (x-axis) and 

reward (grey = low, black = high).  

Finally, the behavioral data from the performance phase were 

analyzed. The overall accuracy was very high as planned (92,37 % ± 5,05). 

There was a main effect of effort on accuracy (F(3,66)=6.82, p=<.001) and no 

effect of reward (F(1,22)=.06, p=.81). This confirms that higher effort trials 

were consistently more difficult to perform. It is important to note however, 

that average accuracy was still high in every effort level, suggesting that the 

relevant factor is effort rather than risk. RTs showed a significant, albeit 

small, effect of effort (F(3,66)=14.31, p=<.001), mean difference between 

effort level 1 and 4 of 53 ms). This further confirms the successful effort 

manipulation. The maximum response time was 500 ms, above which the 

trial would be considered as an error. This short time window to respond 

might account for the small size of the effect on RTs and the more prominent 

effect on accuracy. Reward had no effect on RTs (F(1,22)=1.00, p=.33). These 

results, taken together with the ratings collected during the training, confirm 

the efficacy of the effort manipulation.   
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Whole-brain cue-related fMRI results 

A comprehensive summary of the activation results is reported in 

Table 1. At the cue in the decision-making phase, the parametric contrast for 

effort activated the ACC and the Precuneus (see figure 7a). In other words, 

these areas were increasingly activated for cues indicating more effortful 

options, thus showing a motivational encoding. No significant clusters were 

reported in the reversed parametric contrast (which would highlight areas 

increasingly activated for lower effort), thus providing no evidence in favor 

of a net-value encoding. The reward contrast (high reward > low reward) 

activated the extrastriate cortex (see figure 7d ).  

At the cue in the performance phase, the parametric contrast for effort 

activated the ACC, the striatum bilaterally, the right Superior Frontal Gyrus 

(SFG), the Supplementary Motor Area (SMA), the precentral gyrus, the 

Posterior Cingulate Cortex (PCC), the orbital part of the Inferior Frontal 

Gyrus (IFG), the extrastriate cortex, the right Angular Gyrus (AG) and the 

Inferior Parietal Lobule (IPL, see figure 7b). The reward contrast (high 

reward > low reward) activated the cuneus, the extrastriate cortex, the 

precentral gyrus and the Superior Parietal Lobule (SPL, figure 7e). The 

reverse parametric (increased activation for lower effort) contrast for effort 

did not elicit any significant activation.  

A conjunction analysis was performed on the parametric effort 

contrasts from the decision-making cue and the performance cue. This 

yielded overlapping activation in the ACC and in the Precuneus (see figure  

7c, Table 2). 
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Figure 7: Whole-brain activation results. a. Cue-locked parametric effort contrast 

during the decision-making phase (light blue clusters). b. Cue-locked parametric 

effort contrast during the anticipation of performance phase (blue clusters). c. 

Conjunction analysis showing the overlap between the effort parametric contrasts 

during decision making (light blue) and anticipation of performance (blue). d. 

Reward contrast (high reward > low reward) during the decision-making phase 

(yellow clusters). e. Reward contrast (high reward > low reward) during the 

anticipation of performance phase (yellow clusters).   

 

Table 1: Summary of the activation results 

 
MNI 

Coordinates 
cluster-

level 
cluster-

level cluster peak 
Area x y z  FWE FDR size T 
      
Decision-Making Phase      
      
Parametric contrast for effort     
Precuneus   6 -66 36  0.044 0.017 205 4.12 
  18 -60 34     3.44 
ACC  10  30 34  0.019 0.017 260 4.07 
   2  20 42     3.68 
      
Reward contrast (high reward>low 
reward)     
Occipital cortex 18 -94  16  0.000 0.000 537 5.52 
 26 -94  20     5.19 
 20 -78  -4     4.03 
      
Anticipation of Performance Phase     
      
Parametric contrast for effort     
Occipital cortex  16  -94  16  0.000 0.000 4058 6.63 
  -8  -98   6     6.04 
  -6  -76   4     4.82 
Right superior frontal 
gyrus  22   52  16  0.000 0.000 1371 5.31 
ACC  12   28  32     3.90 
Inferior frontal gyrus -24   18 -14  0.000 0.000 913 5.15 
 -30    8  24     4.30 
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Putamen -18   10  -4     4.03 
Mid-cingulate cortex  -2  -18  34  0.001 0.002 531 5.12 
  -6  -38  26     4.10 
   8  -36  28     3.76 
Caudate  16   18  -6  0.001 0.002 532 4.46 
Putamen  24   -4   8     3.82 
  16    4  10     3.78 
Postcentral gyrus -38  -30  32  0.003 0.004 448 4.43 
 -36  -18  30     4.39 
 -38  -10  28     3.76 
Precentral gyrus  48  -16  28  0.004 0.005 423 4.39 
  50   -2  40     4.09 
Postcentral gyrus  54  -18  40     3.58 
Supplementary motor area  -2   -6  62  0.004 0.005 416 4.14 
   4    0  66     3.99 
   6   12  60     3.44 
Angular gyrus  38  -58  36  0.007 0.008 369 4.07 
Inferior parietal lobule 32  -54  48     3.69 
      
Reward contrast (high reward>low 
reward)     
Cuneus  16  -92   8  0.000 0.000 1164 7.91 
Occipital cortex  24  -92  18     6.18 
  16  -70   2     3.95 
Precentral gyrus -44   -8  50  0.006 0.005 378 4.48 
 -36  -14  40  0.007   3.62 
Superior parietal lobule -28  -60  52  0.007 0.005 365 4.01 
 -14  -64  64     3.89 

 

Table 2: List of the regions showing overlap in the conjunction contrast 

 
MNI 

Coordinates cluster peak 
Area x y z  size T 
    
Conjunction contrast     
    
Parametric contrast for effort during decision-making  
 & anticipation of performance   
Precuneus   8 -72 38  67   4.06 
  14 -64 36     3.51 
ACC  12  28 32  54   3.90 
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fMRI cue-related ROI analysis results 

The percent signal change (psc) per every condition in both decision-

making and performance phase is reported in Figure 9 and Figure 10. The 

goal of this analysis was to further characterize the involvement of the ACC 

in effort estimation, especially targeting the type of encoding (net-value vs. 

motivational).  

 

Figure 8: Region of Interest (ROI) in the ACC from Botvinick et al. (2009). 

In the decision-making phase, the whole-brain contrast had revealed a 

parametric encoding of effort in a motivation-related manner, where 

increased activation was associated with higher effort demand. No evidence 

for a net-value encoding was reported. Interestingly, the ROI analysis 

revealed dissociable patterns for high vs. low reward condition. Effort 

encoding is indeed linearly increasing in the ACC as a function of effort 

level only the high reward condition (Figure 9). In the low reward condition 

however, this monotonic increase only reaches effort level 3, then decreasing 

again for effort level 4. This inverted U-shaped pattern is confirmed by an 

effort by reward interaction (F(3,66)=4.85, p=.004). A main effect of effort 

(F(3,66)=3.39, p=.02) and reward (F(1,22)=4.97, p=.04) were also reported in 

this area. When only the low reward condition was included in the analysis, 

the main effect of effort was only marginally significant (F(3,66)=2.71, p=.05), 
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but a significant quadratic trend was reported (F(1,22)=9.47, p=.006), 

confirming again the inverted-U shaped trend. 

 

Figure 9: Percent signal change (psc) during decision-making in the four effort 

levels (x-axis) and two reward levels (grey=low reward, white=high reward).  

In the performance phase, the whole-brain parametric contrast equally 

showed linear encoding for effort in a motivational-related fashion. 

Similarly, no indication for a value-related encoding was reported. In this 

case, the percent signal change extracted from the ROI confirmed that the 

trend was linear for both low reward and high reward conditions (Figure 10), 

showing a main effect of effort level (F(3,66)=3.25, p=.02) and no effect of 

reward (F(1,22)=.36, p=.56) nor an interaction (F(3,66)=.60, p=.62).  
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Figure 10: Percent signal change (psc) during anticipation of performance in the four 

effort levels (x-axis) and two reward levels (grey=low reward, white=high reward).  

 

fMRI task-related results 

The goal of this analysis was a further manipulation check, that is 

checking neural activation during task performance in the performance phase 

as a function of required effort. The parametric effort contrast revealed 

increased activation for increased effort in ACC, striatum, Dorsolateral 

Prefrontal Cortex (DLPFC), insula, (figure 10, in light blue, see Table 3 for a 

complete report). These regions are typically in effort processing (Krebs et 

al., 2012; Vassena et al., 2014). In the same contrast, a number of posterior 

parietal regions were also activated, which are normally involved in attention 

(Cabeza and Nyberg, 2000; Corbetta and Shulman, 2002) and numerical 

cognition (Arsalidou and Taylor, 2011). Given that task involved arithmetic 

operations, this further confirms that increasing task difficulty was 

associated with more important recruitment of task-relevant regions.  
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Figure 10: Task-related activation. Parametric effort contrast during task execution 

in the anticipation of performance phase (light blue). Negative parametric effort 

contrast during task execution in the anticipation of performance phase (yellow). 

Conversely, the negative parametric effort contrast highlighted regions 

that were more active for lower effort levels (Figure 10, in yellow). This 

contrast revealed a number of medial frontal and posterior regions, 

consistently reported as being part of the Default Mode Network (DMN, 

Raichle et al., 2001, see Table 3 for a complete report), among which 

ventromedial Prefrontal Cortex (vmPFC), medial Superior Frontal Gyrus 

(SFG) posterior Insula, Posterior Cingulate cortex (PCC). Middle temporal 

activation and lateral posterior parietal activation were also reported in this 

contrast, also consistent with the DMN. 
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Table 3: Summary of the activation results during task execution 

 
MNI 

Coordinates 
cluster-

level 
cluster-

level cluster peak 
Area x y z  FWE FDR size T 
      
Parametric contrast for effort during task execution    
      
Middle frontal gyrus -24   4  56  0.000 0.000 21151 11.93 
Inferior frontal gyrus -44   6  28     10.5 
Precuneus -10 -68  50  0.000 0.000 9466 10.67 
 -26 -70  34     10.44 
Superior parietal lobule -26 -66  44     9.92 
Middle temporal gyrus -50 -56 -4 0.030 0.015 309 8.39 
Superior frontal gyrus  38  40  38  0.004 0.002 519 6.22 
Inferior frontal gyrus  48   6  28  0.056 0.020 253 5.24 
Occipital cortex  38 -82  -4  0.036 0.015 291 4.51 
  30 -90   0     4.39 
      
Negative parametric contrast for effort during task execution   
      
Angular gyrus  52 -64  38  0.000 0.000 2975 7.38 
Inferior parietal lobule  54 -58  46     6.58 
Inferior Temporal Gyrus  60 -16 -20     5.9 
Inferior frontal gyrus -50  36 -14  0.079 0.041 223 6.38 
  50  38 -16  0.012 0.008 392 6.34 
Angular gyrus -54 -62  38  0.000 0.000 2844 6.05 
 -48 -68  44     5.79 
Superior temporal gyrus -58 -64  16     5.33 
Posterior Cingulate   4 -46  32  0.001 0.000 738 5.85 
Paracentral Lobule    8 -26  64  0.000 0.000 1067 5.38 
 -12 -34  68     3.61 
Posterior Cingulate   0 -24  42     3.33 
Superior frontal gyrus  14  50  44  0 0.000 2740 5.29 
Middle frontal gyrus   2  30 -16     4.93 
Superior frontal gyrus  10  62  10     4.89 
Posterior insula  36 -14  18  0,102 0.048 202 4.31 
Rolandic operculum  52  -6   8  0,029 0.017 310 3.93 
Supramarginal gyrus  58 -22  22     3.85 
  46 -30  26     3.50 



160     CHAPTER 4 

 

Figure 11: Activation overlap of the parametric effort contrasts during decision 

making (blue), anticipation of performance (violet) and task execution (light blue). 

 

Interestingly, activity during task execution partially overlapped in the 

ACC with activity during decision-making and anticipation of performance 

(Figure 11).  

 

Individual differences analysis 

Across participants, choice behavior during the decision-making phase 

showed considerable variability (see Behavioral Results section). Therefore, 

one further correlation analysis was performed to investigate inter-individual 

differences in effort encoding during decision-making. Interestingly, the 

regression coefficient of the parametric effort contrast in the ACC ROI was 

correlated across subjects to acceptance rate of the cue (r=.57, p=.005, 

Figure 3d). Higher intensity for the parametric contrast reflects a steeper 

linear increase in the response of this region as a function of increasing 

effort. This might be interpreted as more efficient encoding across different 

effort levels (effort encoding). In this case, this higher intensity was 

associated with increased likelihood of choosing to engage in the more 

effortful task. Interestingly, effort encoding in ACC was not correlated to 
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choice entropy (r=.006 , p=.98), thus excluding this potential confound. This 

is also confirmed when both entropy (beta=.06, p=.771) and acceptance rate 

(beta=5.82, p=.006) are introduced as predictors of effort encoding in the 

same linear regression model. 

 

Figure 12: Effort encoding in the ACC during decision making (effort parametric 

contrast, x-axis), plotted as a function of effort acceptance rate (%, y-axis).  
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 DISCUSSION 

Despite the growing interest in the topic, the neural mechanisms 

underlying effort-related decision making and effort exertion remain 

debated. In the current study, we dissociated effort-related decision making 

and anticipation of effortful performance, to investigate effort encoding in 

both situations. We tested divergent predictions of net-value account and 

motivational account of ACC function. We show that effort is encoded by 

the ACC in a motivational fashion, and that this holds across decision-

making and anticipation phases. Furthermore, effort encoding generally 

follows a parametric trend, although it is modulated by phase. The relevance 

of the current results in the light of the literature is discussed below.  

In the decision-making phase, no evidence for  a net-value encoding 

was reported. Higher effort expectation was associated with increased 

activation in the ACC and the Precuneus (see figure 7a). A few studies 

showed an ACC contribution to effort-related decision making (Prévost et 

al., 2010; Kurniawan et al., 2013; Schouppe et al., 2014), and our results 

confirm this pivotal role. Moreover, we show that ACC encodes effort 

parametrically, and in a motivational fashion. Precuneus activation is 

reported in a number of studies across different domains, and seems to be 

involved in default mode network (DMN) activity (Raichle et al., 2001) as 

well as in a variety of tasks (Cavanna and Trimble, 2006). The potential 

contribution of this region to decision-making certainly deserves to be 

investigated in depth in further research. Reward-related activation during 

the decision-making phase was also addressed (high reward > low reward), 

identifying mainly extrastriate areas. Surprisingly, no significant activation 

was reported in the typical reward-related areas. This might depend on 
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power or saliency, given that only two reward levels were presented, as 

opposed to four effort levels. It is however clear that the reward 

manipulation was effective, as it affected choice behavior (see Behavioral 

Result section). It should be noted that visual activation is often reported in 

reward contrasts (high reward > low reward) (Krebs et al., 2012) , especially 

when visual cues are used. One possible explanation is the increased learned 

relevance of the cue itself, but this should be addressed in further research. 

In the performance phase (Figure 7b), a widespread fronto-parietal 

network was activated, as well as sub-cortical regions. The essential 

contribution of ACC and striatum in anticipating cognitive effort confirms 

the results of our previous study (Vassena et al., 2014). Importantly, also in 

this phase ACC encodes effort in a motivational fashion, showing linearly 

increasing activation as a function of effort level. The current results provide 

no support for a net-value encoding. Anticipation of effort in the 

performance phase also involved a wide fronto-parietal network. Increased 

activity was detected in DLPFC, SMA, AG and IPL. Activity in the DLPF 

and SMA is typically associated with the execution of complex tasks (Kong 

et al., 2005; Sohn et al., 2007). Activity in the AG and IPL is consistently 

reported in tasks involving numerical cognition (Arsalidou and Taylor, 

2011).Given the arithmetic nature of the task, it seems plausible that neural 

activation in this phase would reflect task-preparation, and more specifically 

the recruitment of task-relevant resources recruitment and preparation. In 

this phase, reward-related activation (high reward > low reward) was located 

in the cuneus, extrastriate cortex, precentral gyrus and SPL. As in the 

decision-making phase, no typical reward activation was detected. It should 

be noted that one study on effort describes a similar pattern, where influence 

of reward is reported during the feedback, but not during the anticipation 
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phase (Kurniawan et al., 2013). Again, this issue should be further 

investigated, to identify potential reasons of this variability. 

Subsequently, overlap in effort encoding between substrates involved 

in decision-making and performance was tested in the conjunction analysis. 

Both choosing to engage in an effortful task and preparing to overcome such 

effort elicited overlapping activation in the ACC (figure 7c). Moreover, in 

both conditions ACC shows a motivational-related encoding, with higher 

activation as a function of increasing task difficulty.  This confirms what 

suggested by previous reports (Krebs et al., 2012; Vassena et al., 2014) and 

excludes a pure net-value encoding. Interestingly, while preparing for a more 

effortful task in the performance phase, ACC showed parametric encoding of 

effort, with linearly increasing activation across the different effort levels. 

This highlights the crucial role of ACC in accurate estimation of required 

task engagement, necessary for adequate resource mobilization (Gendolla 

and Brinkmann, 2005; Sterling, 2012). 

Strikingly, decision-making seems to modulate effort encoding, 

revealing a partially divergent pattern. The targeted ROI analysis revealed 

that when expecting a low reward, effort encoding was better explained by a 

quadratic (inverted-U) trend instead, as ACC activity only increased up to 

effort level 3, then dropping for the highest effort level (see figure 9). ACC 

has been shown to play a crucial role in supporting task engagement across a 

number of effort manipulations (Luks et al., 2002; Sohn et al., 2007; Krebs 

et al., 2012; Vassena et al., 2014). One recent fMRI study reported increased 

activation in the striatum when participant voluntarily chose the option 

entailing more cognitive effort, in a paradigm where no reward was 

delivered (Schouppe et al., 2014). These authors also report a similar pattern 

for the ACC, although only marginally significant. In other words, ACC 
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might also be driving effort engagement, when a voluntary choice is 

required. In the current results, this would be reflected by the quadratic 

trend, thus encoding effort that the participants are willing to exert. 

Potentially convergent evidence comes from the behavioral results, showing 

that (across subjects) increased effort encoding in the ACC predicts higher 

likelihood of engaging in the effortful task (i.e. higher acceptance rate of the 

effortful cue, figure 12). This role of prompting engagement and sustaining 

effortful behavior seems consistent with recent evidence showing that 

electrical stimulation of the ACC causes autonomical arousal, associated 

with what the authors call “will to persevere”, that is a subjective feeling of 

increased motivational drive when dealing with a difficult situation (Parvizi 

et al., 2013). 

Taken together, these results might be interpreted as evidence for a 

recent account of ACC function formulated by Shenhav et al. (Shenhav et 

al., 2013). These authors propose a new theoretical framework, where ACC 

would compute the “expected value of control”,  that is the value of 

engaging in a certain behavior. Consistent with earlier computational work, 

ACC computes value (Alexander & Brown, 2011, Silvetti et al. 2011), but 

not the value of external stimuli. Instead, it would encode the value of a 

more abstract quantity, in particular, exerting a certain amount of cognitive 

effort. Hence, the theory combines elements of the two earlier frameworks, 

as ACC is proposed to calculate the net-value of motivation. In the current 

task, this would be implemented as the worth of exerting a certain amount of 

effort, given the potential reward associated to it. This would imply that 

reward and effort are integrated in the ACC, which determines if 

undertaking a certain degree of effort is valuable and hence prompts the 

appropriate response.   
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One could argue a number of possible alternative explanations for 

ACC involvement in both stages of the task, besides the net-value account. 

Concerning the decision-making phase, increased ACC activation has been 

associated to conflict monitoring (Botvinick et al., 2004). In this perspective, 

the quadratic trend in the low reward condition might reflect choice conflict. 

In our case however, there was no significant difference in choice entropy 

across low reward condition. Moreover, the activation pattern does not even 

qualitatively follow that predicted by choice entropy values. Another 

potential interpretation could be a simulation account. While anticipating a 

certain effort, the mechanisms underlying task execution might be pre-

activated in order to facilitate task performance . Similarly, while choosing 

between different effort levels, one might simulate the offered alternative to 

make a decision. This explanation might hold for the performance phase, but 

is not congruent with the activation pattern detected in the decision-making 

phase. A purely simulative process would entail an entirely linear coding of 

effort across the different levels. Lastly, we can also exclude a pure cost 

coding interpretation, as in the decision-making phase, increasing effort 

doesn’t elicit monotonic increase in the activation. 

CONCLUSIONS 

The current study shows that during decision-making and anticipation 

of performance, prospective effort is encoded in a motivational fashion, with 

overlap in the ACC. During the anticipation of performance, ACC activity 

linearly increases as a function of effort, while during decision it encodes 

only the effort that’s considered worth engaging in the task, thus driving 

adaptive choice. Speculatively, probability of success (given the exertion of 
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a certain amount of effort) might play a role in process. For example, one 

might expect a drop in ACC activity also in the anticipation phase when the 

required effort outweighs the subject’s capacities, thus prompting 

disengagement. In this perspective, investigating ACC contribution in a 

wider varying range of effort levels (up to impossible tasks), and still 

controlling for decision-making, certainly represent fruitful venue for future 

research direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



168     CHAPTER 4 

REFERENCES 

Alexander W, Brown JW (2011) Medial prefrontal cortex as an action-
outcome predictor. Nat Neurosci 14:1338–1344. 

Amiez C, Joseph JP, Procyk E (2006) Reward encoding in the monkey 
anterior cingulate cortex. Cereb Cortex 16:1040–1055. 

Arsalidou M, Taylor MJ (2011) Is 2+2=4? Meta-analyses of brain areas 
needed for numbers and calculations. Neuroimage 54:2382–2393. 

Botvinick MM, Cohen JD, Carter CS (2004) Conflict monitoring and 
anterior cingulate cortex: an update. Trends Cogn Sci 8:539–546. 

Botvinick MM, Huffstetler S, McGuire JT (2009a) Effort discounting in 
human nucleus accumbens. Cogn Affect Behav Neurosci 9:16–27. 

Botvinick MM, Niv Y, Barto AC (2009b) Hierarchically organized behavior 
and its neural foundations: a reinforcement learning perspective. 
Cognition 113:262–280. 

Brass M, Haggard P (2007) To do or not to do: the neural signature of self-
control. J Neurosci 27:9141–9145. 

Brett M, Anton J-L, Valabregue R, Poline J-B (2002) Region of interest 
analysis using an SPM toolbox [abstract]. In: Presented at the 8th 
Internation Confrence on Functional Mapping of the Human Brain, pp 
Available on CD–ROM in NeuroImage 16:2. 

Cabeza R, Nyberg L (2000) Neural bases of learning and memory: 
functional neuroimaging evidence. Curr Opin Neurol 13:415–421. 

Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional 
anatomy and behavioural correlates. Brain 129:564–583. 

Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-
driven attention in the brain. Nat Rev Neurosci 3:201–215. 

Croxson PL, Walton ME, O’Reilly JX, Behrens TEJ, Rushworth MFS 
(2009) Effort-based cost-benefit valuation and the human brain. J 
Neurosci 29:4531–4541. 

Devinsky O, Morrell M, Vogt B (1995) Contributions of anterior cingulate 
cortex to behvior. Brain:279–306. 

Gendolla GHE, Brinkmann K (2005) The Role of Mood States in Self-
Regulation. Eur Psychol 10:187–198. 



CHOOSING TO MAKE AN EFFORT AND PREPARING TO OVERCOME IT:  
THE ROLE OF THE ANTERIOR CINGULATE CORTEX     169 

Holroyd CB, Yeung N (2012) Motivation of extended behaviors by anterior 
cingulate cortex. Trends Cogn Sci 16:122–128. 

Imbo I, De Rammelaere S, Vandierendonck A (2005) New insights in the 
role of working memory in carry and borrow operations. Psicol Belgica 
32:101–121. 

Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision 
under risk. Econometrica 47:263–292. 

Kennerley SW, Behrens TEJ, Wallis JD (2011) Double dissociation of value 
computations in orbitofrontal and anterior cingulate neurons. Nat 
Neurosci 14:1581–1589. 

Kong J, Wang C, Kwong K, Vangel M, Chua E, Gollub R (2005) The neural 
substrate of arithmetic operations and procedure complexity. Brain Res 
Cogn Brain Res 22:397–405. 

Kool W, McGuire JT, Rosen Z, Botvinick MM (2010) Decision Making and 
the Avoidance of Cognitive Demand. J Exp Psychol Gen 139:665–682. 

Kouneiher F, Charron S, Koechlin E (2009) Motivation and cognitive 
control in the human prefrontal cortex. Nat Neurosci 12:939–945. 

Krebs RM, Boehler CN, Roberts KC, Song AW, Woldorff MG (2012) The 
Involvement of the Dopaminergic Midbrain and Cortico-Striatal-
Thalamic Circuits in the Integration of Reward Prospect and 
Attentional Task Demands. Cereb cortex. 

Kurniawan IT, Guitart-Masip M, Dayan P, Dolan RJ (2013) Effort and 
valuation in the brain: the effects of anticipation and execution. J 
Neurosci 33:6160–6169. 

Luks TL, Simpson G V., Feiwell RJ, Miller WL (2002) Evidence for 
Anterior Cingulate Cortex Involvement in Monitoring Preparatory 
Attentional Set. Neuroimage 17:792–802. 

Matsumoto M, Matsumoto K, Abe H, Tanaka K (2007) Medial prefrontal 
cell activity signaling prediction errors of action values. Nat Neurosci 
10:647–656. 

Mulert C, Menzinger E, Leicht G, Pogarell O, Hegerl U (2005) Evidence for 
a close relationship between conscious effort and anterior cingulate 
cortex activity. Int J Psychophysiol 56:65–80. 

Njomboro P, Deb S, Humphreys GW (2012) Apathy and executive 
functions: insights from brain damage involving the anterior cingulate 
cortex. BMJ Case Rep 2012. 



170     CHAPTER 4 

Parvizi J, Rangarajan V, Shirer WR, Desai N, Greicius MD (2013) Case 
Study The Will to Persevere Induced by Electrical Stimulation of the 
Human Cingulate Gyrus. :1359–1367. 

Phillips PEM, Walton ME, Jhou TC (2007) Calculating utility: preclinical 
evidence for cost-benefit analysis by mesolimbic dopamine. 
Psychopharmacology (Berl) 191:483–495. 

Prévost C, Pessiglione M, Météreau E, Cléry-Melin M-L, Dreher J-C (2010) 
Separate valuation subsystems for delay and effort decision costs. J 
Neurosci 30:14080–14090. 

Raichle ME, MacLeod a M, Snyder a Z, Powers WJ, Gusnard D a, Shulman 
GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 
98:676–682. 

Rive MM, van Rooijen G, Veltman DJ, Phillips ML, Schene AH, Ruhé HG 
(2013) Neural correlates of dysfunctional emotion regulation in major 
depressive disorder. A systematic review of neuroimaging studies. 
Neurosci Biobehav Rev 37:2529–2553. 

Rudebeck PH, Behrens TE, Kennerley SW, Baxter MG, Buckley MJ, 
Walton ME, Rushworth MFS (2008) Frontal cortex subregions play 
distinct roles in choices between actions and stimuli. J Neurosci 
28:13775–13785. 

Salamone JD, Correa M (2012) The Mysterious Motivational Functions of 
Mesolimbic Dopamine. Neuron 76:470–485. 

Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related 
functions of nucleus accumbens dopamine and associated forebrain 
circuits. Psychopharmacology (Berl) 191:461–482. 

Schmidt L, Lebreton M, Cléry-Melin M-L, Daunizeau J, Pessiglione M 
(2012) Neural mechanisms underlying motivation of mental versus 
physical effort. PLoS Biol 10:e1001266. 

Schouppe N, Demanet J, Boehler CN, Ridderinkhof KR, Notebaert W 
(2014) The Role of the Striatum in Effort-Based Decision-Making in 
the Absence of Reward. J Neurosci 34:2148–2154. 

Schweimer J, Hauber W (2010) Dopamine D1 receptors in the anterior 
cingulate cortex regulate effort-based decision making. Learn Mem 
13:777–782. 

Shannon CE (1948) A Mathematical Theory of Communication. Bell Syst 
Tech J 27:379–423. 



CHOOSING TO MAKE AN EFFORT AND PREPARING TO OVERCOME IT:  
THE ROLE OF THE ANTERIOR CINGULATE CORTEX     171 

Shenhav A, Botvinick MM, Cohen JD (2013) The Expected Value of 
Control  : An Integrative Theory of Anterior Cingulate Cortex Function. 
Neuron 79:217–240. 

Silvetti M, Seurinck R, Verguts T (2011) Value and prediction error in 
medial frontal cortex: integrating the single-unit and systems levels of 
analysis. Front Hum Neurosci 49:1627–1635. 

Sohn M-H, Albert M V, Jung K, Carter CS, Anderson JR (2007) 
Anticipation of conflict monitoring in the anterior cingulate cortex and 
the prefrontal cortex. Proc Natl Acad Sci U S A 104:10330–10334. 

Sterling P (2012) Allostasis: a model of predictive regulation. Physiology 
and Behavior 106:5–15. 

Sutton, R. S., & Barto, A.G. (1998). Reinforcement Learning: an 
introduction. MIT Press, Cambridge, MA. 

Vassena E, Silvetti M, Boehler CN, Achten E, Fias W, Verguts T (2014) 
Overlapping neural systems represent cognitive effort and reward 
anticipation. PLoS One 9:e91008. 

Wacker J, Dillon DG, Pizzagalli DA (2009) The role of the nucleus 
accumbens and rostral anterior cingulate cortex in anhedonia: 
integration of resting EEG, fMRI, and volumetric techniques. 
Neuroimage 46:327–337. 

Walton ME, Groves J, Jennings K a, Croxson PL, Sharp T, Rushworth MFS, 
Bannerman DM (2009) Comparing the role of the anterior cingulate 
cortex and 6-hydroxydopamine nucleus accumbens lesions on operant 
effort-based decision making. Eur J Neurosci 29:1678–1691. 

Walton ME, Kennerley SW, Bannerman DM, Phillips PEM, Rushworth 
MFS (2006) Weighing up the benefits of work: behavioral and neural 
analyses of effort-related decision making. Neural Networks 19:1302–
1314. 

Westbrook A, Kester D, Braver TS (2013) What is the subjective cost of 
cognitive effort? Load, trait, and aging effects revealed by economic 
preference. PLoS One 8:e68210. 

Weston CSE (2012) Another major function of the anterior cingulate cortex: 
the representation of requirements. Neurosci Biobehav Rev 36:90–110. 

 

 





 

CHAPTER 5 
VALUE-BASED MODULATION OF EFFORT AND REWARD 

ANTICIPATION ON THE MOTOR SYSTEM 1 

Human actions are driven by the pursuit of goals, especially when 
achieving these goals leads to reward. Among other effects of anticipating a 
reward, a striking observation is that it influences the motor systems, 
boosting motor excitability for potentially rewarded actions and increasing 
overall motor readiness. However, attaining a reward mostly requires some 
effort. Neuroimaging research showed that  mental effort requirements are 
encoded by the same brain regions coding for reward expectation. 
Moreover, effort and reward prospect seem to be combined in an integrative 
signal. However, whether mental effort (possibly integrated with reward) 
influences the motor system directly during task preparation, remains 
debated.  To this end, we implemented a mental effort task, where reward 
prospect and effort requirements were manipulated. During task 
preparation, TMS was delivered on the motor cortex and motor-evoked 
potentials (MEPs) were recorded on the right hand muscles to probe motor 
excitability. The results show for the first time that both mental effort and 
reward anticipation influence the readiness of the motor system, in a non-
action-specific way. Moreover, effort and reward interacted, providing  
evidence for an integrative value signal effectively modulating the motor 
system. Interestingly, this effect was strongly modulated by individual 
differences in the Need for Cognition trait,  underlining a pivotal role of 
subjective effort experience in value-driven preparation for action. 

                                                      
1 Vassena E., Cobbaert S., Andres M., Fias W. & Verguts T. (2013). Value-based 
modulation of effort and reward anticipation on the motor system. Manuscript in 
preparation 
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INTRODUCTION 

Humans are immersed in complex environments and are constantly 

confronted  with behavioral options to choose among, each entailing 

potential benefits and related costs with respect to achieving goals. 

Identifying actions which can lead to a desirable outcome, such as reward, is 

a core skill in adaptive behavior. The benefit associated with a goal is termed 

value, and encompasses intrinsic value (primary reinforcers like food and 

sex, Berridge, Robinson, & Aldridge, 2010), as well as learned value 

(secondary reinforcers like money). A wealth of findings demonstrated that 

human behavior is strongly driven by value (Kahneman & Tversky, 1979; 

Trepel, Fox, & Poldrack, 2005). At the behavioral level, this is evident when 

people need to select a preferred action or stimulus over an alternative. At 

the neural level, value is encoded by a specific network in the brain, 

involving subcortical dopaminergic nuclei, the striatum, and the Anterior 

Cingulate Cortex (ACC, Haber & Knutson, 2010; Knutson & Cooper, 2005; 

Liu, Hairston, Schrier, & Fan, 2011; Vassena, Krebs, Silvetti, Fias, & 

Verguts, 2014; Vassena, Silvetti, et al., 2014). 

How value drives decision making and subsequent action selection 

remains an open question. According  to recent theories, value influences the 

motor system during action selection. Motor programs are selected through a 

competitive process, through which cognitive variables (such as the prospect 

of a reward) can contribute to determining the winning action plan (Cisek & 

Kalaska, 2010). This influence might be mediated via top-down modulation 

of the cortico-subcortical network underlying value estimation on the 
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primary motor cortex (M1,Hare, Schultz, Camerer, O’Doherty, & Rangel, 

2011) . 

A direct effect of value computations on the motor system is plausible 

from an anatomical point of view. The ACC and striatum are part of the 

limbic loop which forms the interface between emotion and action 

(Alexander, DeLong, & Strick, 1986; Haber, Kim, Mailly, & Calzavara, 

2006), thereby possibly relating value to action. The neurocircuitry of ACC 

itself has been proposed as being ideally suited for this function (Paus, 

2001), given that this region is part of both the limbic loop and the motor 

loop. Furthermore, ACC might affect the motor cortex (M1) via an indirect 

pathway through the Ventral Tegmental Area (VTA). Finally, ACC might 

modulate the final motor output via projections directly innervating the 

motor neurons in the spinal cord. These circuits provide an effective 

pathway for a modulation of value computation on action preparation. A first 

functional evidence of this network effectively mediating value translation to 

M1 is provided by a connectivity study. Hare and colleagues (2011) showed 

increased functional coupling between ventromedial Prefrontal Cortex, 

encoding stimulus value (Hare, Camerer, & Rangel, 2009; Liu et al., 2011; 

Vassena, Krebs, et al., 2014), dorsomedial Prefrontal Cortex (dmPFC, of 

which ACC is a part) and Intra-Parietal Sulcus (IPS). The authors 

hypothesize dmPFC and IPS to deal with the comparison between available 

options. Crucially, dmPFC and IPS also showed increased functional 

coupling with M1 at the time of decision. 

An ideal technique to test this hypothesis directly is Transcranial 

Magnetic Stimulation (TMS). Delivering TMS pulses to M1 and 

simultaneously recording motor-evoked potentials (MEPs) on hand muscles 

allows to measure cortico-spinal excitability (CSE). Hence, by looking at the 
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modulatory effect of value manipulations on CSE, we can have a direct 

measure of the influence of value on the primary motor system. 

Two recent studies used this method to investigate the hypothesis that 

value influences action selection. Klein-Flugge and Bestmann (2012) 

showed that the increase in CSE due to TMS prior to choice correlated with 

the value attributed to the chosen option based on reward magnitude and 

reward probability. Klein and colleagues (Klein, Olivier, & Duque, 2012) 

asked participants to perform left or right key presses depending on a given 

instruction. However, the instruction was sometimes ambiguous, in which 

case either response would be considered correct. The performance was 

rewarded at every trial, but one hand was implicitly associated to larger 

reward. As a result, participants biased their choices in the ambiguous 

condition towards the more rewarded hand. Importantly, more rewarded 

responses were associated with higher MEPs in the preparation phase. 

Hence, these two studies reported an value-driven action-specific increase in 

CSE, thus showing a modulation of cognitive factors on motor selection. 

Whether value can influence the motor system even before a suitable action 

plan can be implemented, was however not clarified. This question was 

addressed by Kapogiannis and colleagues (2008), using paired-pulse TMS  

to probe intra-cortical inhibition in M1. The task consisted of passive 

viewing of a spinning slot machine. Paired-pulse TMS consist in the delivery 

of two subsequent TMS pulses, where the second supra-threshold pulse 

allows to measure the excitatory or inhibitory effect of the first sub-threshold 

pulse on CSE. Increased reward expectation was associated with increased 

paired-pulse inhibition. This effect was amplified in trials preceded by 

reward delivery. Although different from the single-pulse protocol, this 

study shows a modulation of value on CSE, in the absence of action. Using a 
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similar TMS protocol, Thabit and colleagues (2011) reported an influence of 

reward on CSE. This effect was detected at reward delivery, at a moment 

where no upcoming action could be selected. Conversely,  Gupta and Aron 

(2011) investigated the effect of reward before action planning. In a first 

experiment, they confronted participants with pairs of food items, and asked 

them to choose the food that they wanted to eat at the end of the experiment. 

Before the session, participants rated how strongly they wanted each food 

item. MEPs on the hand muscles were recorded while food pictures were 

presented during the task, with synchronized delivery of single-pulse TMS. 

Strongly wanted items elicited stronger MEPs when displayed on the screen, 

prior to participants’ choice. Interestingly, the action to be performed to 

accept or reject the current item was still unknown to the participant at that 

time. Therefore the modulation of reward on CSE was not action-specific. 

The authors define this effect as ‘spill over’ into the motor system of the 

urge for food, that is the motivational drive to obtain food. In other words, a 

wanted item seems to induce a generalized increase in CSE, even when no 

final motor output can be implemented yet. A comparable effect was 

reported by the same authors in a second experiment, where food items were 

replaced by money. To sum up, these studies showed a modulation of CSE 

by reward, irrespective of final motor output.  

An outstanding question is, however, how effort is related to this 

modulatory influence of reward on CSE. Indeed, a crucial aspect of value 

estimation is the effort needed to obtain the reward. The anticipation of 

effort requirements is crucial for optimal performance and is encoded at the 

neural level by the same structures estimating values (Vassena, Silvetti, et 

al., 2014). A first open question is if  effort costs implied in obtaining a 

reward would modulate CSE as well. A second open question concerns the 



178     CHAPTER 5 

combination of reward and effort information in an integrated value signal. 

Such signal has been reported in ACC and striatum, which seem to respond 

to the net-value of a stimulus, namely its rewarding value discounted by the 

cost implied in obtaining, such as an effort requirement (Botvinick, 

Huffstetler, & McGuire, 2009; Croxson, Walton, O’Reilly, Behrens, & 

Rushworth, 2009; Kennerley, Dahmubed, Lara, & Wallis, 2009). Therefore, 

effort and reward prospect might interact in influencing CSE to optimize 

preparation for action. Also the direction of the effects of effort and reward 

will be informative. Indeed, besides the net-value account, a motivational 

account of ACC has been proposed. Expecting to perform a more effortful 

task is associated with increased ACC and striatal activation, showing 

overlap with activity during reward anticipation (Krebs, Boehler, Roberts, 

Song, & Woldorff, 2012; Vassena, Silvetti, et al., 2014). Hence the effect of 

reward and effort might follow a net-value coding (highest CSE for the 

highest net-value option, high reward and low effort prospect) or a 

motivational coding (highest CSE for conditions requiring more 

engagement, high reward and high effort prospect). The goal of the current 

study was to address these questions, using single-pulse TMS to measure 

CSE in a mental effort task, where both potential reward and prospective 

effort were manipulated. To this end, we adapted a mental effort task from a 

previous fMRI study (Vassena, Silvetti, et al., 2014) to the timing used by 

Gupta and Aron (2011). 
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MATERIALS & METHODS 

Participants 

Twenty-two healthy subjects participated in this study, with an 

average age of 25 (range 20-40). All participants were right-handed males, 

with no history of neurological or psychiatric disorders. The experimental 

protocol was approved by the ethical committee of the University Hospital 

of Gent. Each participant signed an informed consent prior to participation.  

Experimental procedure  

A mental effort task was implemented, adapting a previous version we 

used in an fMRI experiment investigating anticipation of effort (Vassena, 

Silvetti, et al., 2014). In this new version, visual stimuli were introduced as 

cues (Figure 1). Each cue consisted of a grey circle with a superimposed 

grid. The horizontal lines of the grid represented the level of effort, which 

could be low (lower line in black) or high (higher line in black). The vertical 

lines represent the potential reward, which could be low (left line in black) 

or high (right line in black). These type of cues have been successfully used 

to convey combined information about effort and reward (Croxson et al., 

2009). We opted for a 2 x 2 design, resulting in two possible levels of effort 

(easy/hard) and two possible levels of reward (low/high). Thus, there were 

four possible cues, and each cue indicated a combination of a certain effort 

requirement and a potential reward (low effort/low reward, low effort/high 

reward, high effort/low reward, high effort high reward). One additional cue 

was used, where only the gray circle with no black lines was presented. This 

cue represented the baseline condition. In this condition, a series of letters 

was presented on the screen, with the same timing of the other conditions. 
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The participants were told that after the baseline cue they were not supposed 

to perform any task, and that their final response would not matter.  

 

Figure 1: Visual Cues. Five possible cues were presented to the participant. The grey 

circle with no black lines represents the baseline condition. This cue is followed by 

the presentation of letters, on which participants don’t have to perform any task. 

Horizontal black lines represent effort level (low/high). Vertical black lines 

represent reward (low/high). This results in four possible combination: low 

effort/low reward, low effort/high reward, high effort/low reward, high effort/high 

reward 

 

Each cue was presented 21 times, thus resulting in 105 trials in total. 

Every trial consisted of a mental calculation (except for the baseline 

condition trials). Each calculation was  formed by 5 single digit numbers 

flashing on the screen, thus resulting in 4 subsequent operations (Figure 2). 

The last digit was followed by a display showing two possible results, one 

on the left and one on the right. Participants had to select the result they 

thought to be correct.  
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Figure 2: Task structure and timing. Every trial starts with one of the five possible 

cues. The TMS pulse is delivered with a stimulus onset asynchrony (SOA) of 1500 

ms from the cue onset, and 500 ms before the ready display. At the ready display, 

participants have to press the right key as fast as possible to start the trial, with a 

maximum response time limit of 500 ms. Subsequently, the digits composing the 

calculation are presented. Every digit stays on screen for 1200 ms. Every digit is 

preceded and followed by a blank screen lasting 500 ms. After the last digit, the 

result display appears on screen, and the participant are supposed to pick the correct 

result, by pressing the left of the right key. After the key press, they receive 

feedback (win or lose). 
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The easy task consisted of calculations with no carrying or borrowing, 

while in the hard task each operation required carrying of borrowing. This 

manipulation of mental effort proved effective in our previous study 

(Vassena, Silvetti, et al., 2014). The low reward was 20 cents and the high 

reward 40 cents. Participants were instructed to try to be both fast and 

accurate. The time limit for responding was 1500 ms. In case of late 

response or wrong response, participants were told that they would lose the 

same amount of money they were playing for (to be subtracted from their 

accumulated budget).   

Each trial started with one of the five possible cues for 500 ms. 

Subsequently, the single TMS pulse was delivered (stimulus onset 

asynchrony from cue 1500 ms). 500 ms after the pulse, a screen appeared 

displaying the word “READY”. Participants were supposed to press the 

right-hand key as fast as possible, within a limit of 500 ms. After this key 

press, the task started.  If the response to this ready display would be too 

slow, they were told that the current trial would not be considered for the 

final calculation of the reward. The timing of the TMS was selected on the 

basis of Gupta and Aron  (2011). In that study, the authors showed that this 

timing is optimal to elicit a value-related MEP. Also, they showed that this 

would not be the case in absence of action (experiment 2). For this reason we 

introduced the response to the ready display to elicit MEPs reliably. 

Importantly, this action was always the same in every trial and was unrelated 

to the task. Crucially, the pulse delivery was far apart in time from the final 

motor response to the calculation result, to avoid the potential confound of 

interference with the final motor response.  

Before administering the task, participants underwent a training phase 

to familiarize with the task . This phase consisted of a short version of the 
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task (9 trials), with no TMS applied. Only in this training phase, each trial 

was followed by two questions, asking subjects to rate difficulty and 

pleasantness experienced during the trial (scale of 1 to 7). 

After the experiment, participants filled in two questionnaires: the 

BIS/BAS scale, measuring behavioral inhibition and activation (Carver & 

White, 1994), and the Need for Cognition scale, measuring the tendency to 

engage in and enjoy thinking (Cacioppo, Petty, & Kao, 1984). The Need for 

Cognition scale was included because several studies reported an influence 

of this trait on effort, both in subjective experience and actual task 

performance (Cacioppo, Petty, Feinstein, & Jarvis, 1996; Coutinho, 2006; 

Sorrentino, Bobocel, Gitta, & Olson, 1988).  

TMS and electromyography 

Single pulse TMS was delivered through a biphasic magnetic 

stimulator (Rapid2 Magstim, Whitland, UK) connected to a polyeruthane-

coated figure-of-eight coil (5.4-cm inner diameter windings). The coil was 

held tangentially over the left hand motor area, with the handle pointing 

backwards and forming an angle of 45° with the sagittal plane. 

Electromyographical (EMG) activity was recorded with the ActiveTwo 

system (BioSemi, Amsterdam, The Netherlands). Sintered 11x17-mm active 

Ag–AgCl electrodes were placed over the right First Dorsal Interosseus 

muscle (FDI) in a belly–tendon arrangement. The FDI contributes to flex or 

abduct the index away from the middle finger.  

 The hot spot in the hand motor area was established by locating a 

stimulation site where TMS elicited reliable motor-evoked potentials (MEP) 

in the FDI. This position was marked on a closely fitting cap. TMS intensity 

was set at 110% of the resting motor threshold, i.e. the minimum intensity to 
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induce an MEP ≥ 50 µV peak to peak in more than 4 out of 10 trials. The 

average intensity (± S.D.) was 65.2 ± 8.11 % of the maximal stimulator 

output. EMG signal was amplified (internal gain scaling), digitized at 2 kHz, 

high-pass filtered at 3 Hz, and stored on a PC for off-line analysis. The peak-

to-peak amplitude of the MEPs was computed using Matlab. In order to 

control for noise and fluctuations in the signal, EMG data were trimmed 

according to three criteria. Trials were excluded when the root mean square 

of the background EMG signal recorded 500 ms before TMS was higher 

than 50 mV (1,45%).Trials where the MEP amplitude was below 50 µV 

(3,47%) were removed. Trials with MEP amplitude more than 3 standard 

deviations above or below the individual mean (1,35%) were also excluded. 

Data analysis 

First, the behavioral data from the training phase were analyzed. A 

repeated-measures ANOVA was performed on the difficulty ratings with 

effort (low/high) and reward (low/high) as factors. A second repeated-

measures ANOVA was performed on the pleasantness ratings, with effort 

(low/high) and reward (low/high) as factors. The goal of this analysis was to 

test if high effort trials were actually perceived as more difficult, and if this 

was perceived as unpleasant (Kool, McGuire, Rosen, & Botvinick, 2010).  

Subsequently, behavioral data from the task were analyzed. Two 

repeated-measures ANOVA were performed, with accuracy on the 

calculation task and reaction times as dependent variables. In both models, 

the factors were effort (low/high) and reward (low/high).  

MEP amplitudes in the five conditions were computed. For each 

participant the average MEP associated with the baseline was subtracted 

from the average MEPs in the four experimental condition. The goal of this 

procedure was to control for inter-individual variability in MEPs. 
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Subsequently, a repeated-measures ANOVA was performed on this data, 

with effort (low/high) and reward (low/high) as factors. Planned 

comparisons were also performed on the four experimental conditions. Then, 

a median-split analysis was performed, on the basis of the scores at the Need 

for Cognition scale (NFC). The goal of this analysis was to explore the 

influence of individual differences in effort perception on CSE. Participants 

were split in two groups (low NFC/high NFC). The factor group was 

introduced in the previous model, resulting in a rANOVA with effort, reward 

and NFC group as factors. To test for the reliability of possible effects a 

rANOVA was also fit to each group separately, with effort and reward as 

factors. Subsequently, planned comparisons were also performed.  

RESULTS 

Two participants were excluded from further analyses due to technical 

failure of the equipment during the experiment. Subsequently, two more 

exclusion criteria were applied to the MEPs data, on the basis of task 

performance. Trials were excluded when the final response to the calculation 

was incorrect (14,7 %). The reason for this was that cognitive processes that 

lead to an error might differ from successfully completed trials, and this was 

not the target of the current experiment. Finally, trials were excluded where 

participants did not press the key at the ready display within the time limit 

(16,4%). The reason for this was that they were told that in such 

circumstances the current trial would not count anymore and this might 

interact with MEPs. For one participant, only 33 trials in total survived all 

our criteria, especially due to slow response time to the READY display. 

The main analysis was run both with and without this participant, leading to 
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similar results. The data from this participant were excluded from further 

analysis anyway, as in all conditions less then 10 trials per condition were 

left. For the remaining participants, there were on average 14.4 ± 3.35 trials 

in the low effort/low reward condition, 13.75 ± 3.07 trials in the low 

effort/high reward condition, 12.8 ± 3.21 trials in the high effort/low reward 

condition, and 13.4 ± 3.41 trials in the high effort/high reward condition. 

Behavioral data 

First, the rating data from the training phase were analyzed. 

Participants perceived high effort trials as more difficult (main effect of 

effort F(1,18)=22.92, p<.001, ηp
2 =.56), confirming the effectiveness of the 

manipulation. No significant effect of reward on perceived difficulty 

(F(1,18)=3.24, p=.089, ηp
2 =.15), nor effort x reward interaction were obtained 

(F(1,18)=1.29, p=.27, ηp
2 =.07). The pleasantness ratings did not show any 

significant effect (main effect of effort F(1,18)=1.455, p=.24, ηp
2 =.08, main 

effect of reward F(1,18)=3.17, p=.092, ηp
2 =.15, effort x reward interaction 

F(1,18)=1.12, p=.30, ηp
2 =.06). 

Second, the behavioral data from the task were analyzed. The 

accuracy in the calculation task was 81.2 % (±7%).  The repeated-measures 

ANOVA showed a main effect of effort (F(1,18) =8.57, p=.009, ηp
2 =.32, and 

no effect of reward (F(1, 18)=.199, p=.66, ηp
2 =.01) nor effort by reward 

interaction (F(1,18)=.36, p= .56, ηp
2 =.02, see Figure 3). Pairwise comparisons 

showed a significant difference between low effort/low reward and high 

effort/low reward conditions (t(18) = 2.247, p = 037, d=.52), and between low 

effort/high reward and high effort/low reward conditions (t(18)=2.786, 

p=.012, d=.64). Hence, the effect of effort on accuracy confirmed that the 
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effort manipulation was successful, as performance worsened in the high 

effort condition.  

 

Figure 3: Accuracy results. The plot reports the average accuracy in each of the four 

experimental conditions (% of correct responses). The bars represent one standard 

error of the mean.  

 

Figure 4: Reaction times. The plot shows average reaction times (RT) in 

milliseconds in the four experimental conditions. The bars represent one standard 

error of the mean.  
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No significant effect was reported in the reaction times (main effect of 

effort, F(1,18)=2.42, p=.14, ηp
2 =.12, main effect of reward, F(1,18)= 2.31, p 

=.15, ηp
2 =.11, effort x reward interaction, F(1,18) =.297, p=.59, ηp

2 =.02, see 

Figure 4). The absence of effect on RTs could be attributed to the short 

response time limit, making the effect of effort evident in the accuracy data.  

 

TMS-MEP data 

Subsequently, the MEPs data were analyzed. This analysis showed a 

significant effort x reward interaction (F(1,18)=6.63, p=.019, ηp
2= .27, see 

Figure 5). No main effect of effort (F(1,18)=1.988, p=.18, ηp
2= .099) or reward 

(F(1,18)=.575, p=.46, ηp
2= .03) was reported. 

 

Figure 5: MEP data. The plot shows the average difference in MEP signal (mv) in 

the four experimental conditions with the respect to the baseline condition. The bars 

represent one standard error of the mean.  

 

Planned comparisons showed a significant difference between the low 

effort/low reward condition and the low effort/high reward condition       
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(t(18) = -2.40,  p= .027, d=-.55); and between the low effort/high reward 

condition and the high effort/high reward condition (t(18) = 2.29, p = .034, 

d=.52). The difference between the low effort, high reward condition and the 

high effort/low reward condition was not significant, albeit showing a weak 

trend (t(18) = 1.55, p = .139, d=.35). 

The median-split individual difference analysis showed an effect of 

NFC on CSE. When group  (NFC low or high) was added to the model, the 

effort x reward interaction was preserved (F(1,17)=6.25, p=.023, ηp
2=.27), but 

importantly, the interaction effort x group was also significant (F(1,17)=17.8, 

p=.001, ηp
2=.51). When the rANOVA was fit for each group separately, the 

low NFC group showed a main effect of effort (increased CSE for high vs. 

low effort, F(1,8)=6.26, p=.037, ηp
2=.44), a trend for the interaction 

(F(1,8)=3.58, p=.095, ηp
2=.31), and no effect of reward (F(1,8)=1.25, p=.295, 

ηp
2 =.14, see Figure 6).  

 

Figure 6: MEP data in the low Need for Cognition group. The plot shows the 

average difference in MEP signal (mv) in the four experimental condition with the 

respect to the baseline condition. The bars represent one standard error of the mean.  
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Planned comparisons showed a significant difference between low 

effort/low reward and low effort/high reward conditions (t(8)=-2.49, p=.037, 

d=-.83), low effort/low reward and high effort/high reward (t(8)=-2.70, 

p=.027, d=-.90) and a marginally significant difference between low 

effort/low reward and low effort/high reward (t(8)=-2.27, p=.053, d=-.76). 

The high NFC group also showed a main effect of effort (increased 

CSE for low vs high effort, F(1,9)=12.7, p=.006, ηp
2=.59, see Figure 6), a 

trend for the interaction (F(1,9)=3.63, p=.089, ηp
2=.29), and no effect of 

reward (F(1,9)=.006, p=.94, ηp
2 =.001). The planned comparisons showed a 

significance difference between low effort/low reward and high effort/high 

reward (T(9)=2.71, p=.024, d=.86); between low effort/high reward and high 

effort/low reward (T(9)=2.33, p=.045, d=.74); and between low effort/high 

reward and high effort/high reward (T(9)=2.77, p=.022, d=.87). 

 

Figure 7: MEP data in the high Need for Cognition group. The plot shows the 

average difference in MEP signal (mv) in the four experimental condition with the 

respect to the baseline condition. The bars represent one standard error of the mean.  
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These analyses show that the main effect of effort is present in both 

groups but in the opposite direction. People with low NFC show higher CSE 

when expecting a high effort trial, while people with high NFC show higher 

CSE when expecting a low effort trial. 

DISCUSSION 

The current study investigated the influence of anticipating mental 

effort requirements and reward prospect on motor excitability during task 

preparation, by measuring CSE while delivering TMS on M1. The goal was 

to probe sensitivity of CSE to value, when this entails an effort cost. Our 

results show that both mental effort and reward information can affect the 

excitability of motor system, even in a non action-specific manner. This 

evidence suggest that an integrative value signal influences CSE in 

preparation for action. Moreover, this is modulated by individual 

differences, potentially suggesting different contributions of neural valuation 

and motivational system to task preparation. 

Traditional theories posited a serial decision process, where first goals 

are set, the corresponding optimal motor program identified, and finally 

transmitted to lower level areas to be implemented (e.g., Broadbent, 1958; 

Sternberg, 1969). The assumption of a motor time separate from decision is 

explicit in the currently popular diffusion model (Mulder, Wagenmakers, 

Ratcliff, Boekel, & Forstmann, 2012; Ratcliff & Tuerlinckx, 2002; Ratcliff, 

1978). In this process, M1 occupies the lowest level of the hierarchy, merely 

translating the received programs into action. However, recent accounts 

reconsidered this functional architecture, postulating that action selection is a 

parallel and competitive process instead, where multiple action programs are 
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simultaneously being evaluated, until the winning program is selected (Cisek 

& Kalaska, 2010). According to these theories, the selection itself happens 

across all the levels of the hierarchy, and cognitive factors can influence or 

bias selection also at the level of M1.  Supporting evidence for this 

hypothesis has been provided by a few studies measuring motor excitability 

via stimulating M1 with TMS and recording MEPs on the hand muscles. 

These studies showed that CSE can be modulated by a high level cognitive 

variable such as the value associated to the specific motor program (Klein et 

al., 2012; Klein-Flügge & Bestmann, 2012). Furthermore, non action 

specific reward-related modulations of CSE by reward has been reported as 

well (Gupta & Aron, 2011; Kapogiannis et al., 2008). Taken together, these 

findings confirm the influence of value and reward information on the motor 

system. The functional role of this modulation might reside in increasing 

readiness when possible actions to be performed carry an incentive value, 

such as leading to a reward (Gupta & Aron, 2011). Reward prospect is 

indeed  known to boost motivation for task performance at both behavioral 

and neural level (Bijleveld, Custers, & Aarts, 2009; Pessiglione et al., 2007; 

Vassena, Silvetti, et al., 2014). 

Another key factor is the effort entailed in completing a task. The 

anticipation of an effortful task is associated with increased neural activation 

of cortico-limbic regions. This activation overlaps in the striatum and ACC 

with activation induced by a prospect of a reward (Krebs et al., 2012; 

Vassena, Silvetti, et al., 2014). These regions are also notably implicated in 

value-based decision making (Rangel & Hare, 2010; Rushworth, Noonan, 

Boorman, Walton, & Behrens, 2011; Vassena, Krebs, et al., 2014). In fact, 

evidence suggests that both effort and reward information is combined in the 

ACC in an integrative signal termed net-value (Croxson et al., 2009; 
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Kennerley et al., 2009). In the framework of competitive action selection 

theories, this leads to the prediction that anticipating effort might influence 

motor excitability as the anticipation of a reward does (Gupta & Aron, 

2011). Our results provide the first confirming evidence for this prediction, 

showing that motor excitability is modulated by both reward prospect and 

effort requirements. This emerges from the interaction effect, driven by 

increased motor excitability in the low effort/high reward condition,  as 

compared to the high effort/high reward condition. This suggests that both 

effort and reward are evaluated, and presumably integrated in a combined 

signal, which then modulates motor excitability. This computation could be 

mediated by the ACC and striatum, as suggested by neuroimaging evidence 

(Botvinick et al., 2009; Croxson et al., 2009; Prévost, Pessiglione, Météreau, 

Cléry-Melin, & Dreher, 2010). Given the high level cognitive nature of this 

computation, this result is line with the hypothesis of competitive hypothesis 

of action selection (Cisek & Kalaska, 2010), confirming that cognitive 

factors actively bias this process. Previous studies showed this modulation to 

be action specific, facilitating actions associated with a reward (Klein et al., 

2012; Klein-Flügge & Bestman, 2012). Our study shows that value can 

modulate motor excitability in a non action specific way, presumably 

increasing readiness for task performance (Gupta & Aron, 2011). 

Furthermore, this effect was strikingly moderated by individual 

differences at the Need for Cognition (NFC) questionnaire. This 

questionnaire measures a trait which has been defined cognitive motivation 

(Cacioppo et al., 1984). People with higher NFC tend to engage more in 

thinking or in cognitively demanding tasks. Besides showing a preference 

for demanding tasks, this results in higher exposure to mentally demanding 

situations and in the tendency to actively seek and process more information. 
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Some studies also report this trait to be correlated with task performance 

(Coutinho, 2006), low level visual processing (Fleischhauer, Miller, Enge, & 

Albrecht, 2014), and learning new complex skills (Day, Espejo, Kowollik, 

Boatman, & McEntire, 2007). Recently, Hill and colleagues (2013) showed 

that NFC correlates with measures of fluid and crystallized intelligence, but 

not with working memory capacity. Given the association of this trait with 

different tendencies in effort-related behavior, we hypothesized that NFC 

would predict differences in motor excitability prior to task engagement as 

well. For this reason we split our sample in a low NFC and high NFC group. 

As predicted, NFC group interacted with effort, thus showing a different 

effect of anticipating an effortful task on motor excitability as a function of 

NFC trait (low/high). Strikingly, in both groups the effort x reward 

interaction was preserved, showing that both group kept both effort and 

reward prospects into account. However, the effect of effort on CSE in the 

two groups was opposite. The low NFC group showed increased CSE in the 

high effort condition (irrespective of reward), and in the low effort/high 

reward condition (though marginally significant). The high NFC group 

showed reduced CSE in the high effort condition instead, showing maximal 

increase in motor excitability in the low effort/high reward condition instead. 

Sorrentino and colleagues (1988) showed that perception of cognitive effort 

is modulated by relevance, with people with low NFC reporting more 

experienced effort in highly relevant conditions. This might be the case in 

our task, given that at every trial participants can win or lose money. As a 

result, low NFC people might experience the task as more difficult. 

Moreover, these people tend to avoid engaging in difficult tasks, and when 

they do choose to engage, because of the relevance of the task, they might 

experience greater effort or distress (Cacioppo et al., 1996). Increased CSE 

prior to high effort trials might reflect a motivational effect, in terms of 
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readiness in preparation for the task. More precisely, they might rely on 

anticipatory compensatory mechanisms to increase their chance of 

completing the task successfully, by preparing more. In fact the similar trend 

for the low effort/high reward condition is compatible with this 

interpretation, as previous work demonstrated that both effort and reward 

can induce motivational effects (Vassena, Silvetti, et al., 2014). A possibly 

convergent explanation might reside in higher emotional arousal associated 

with effortful trials. Negative emotional arousal and even worry have been 

shown to induce increased CSE (Oathes, Bruce, & Nitschke, 2008; van 

Loon, van den Wildenberg, van Stegeren, Hajcak, & Ridderinkhof, 2010). 

Conversely, people with high NFC tend to find effortful tasks simpler, 

as reported in a mental arithmetic task (Dornic, Ekehammar, & Laaksonen, 

1991) and in an anagram solving task (Baugh & Mason, 1986). As a 

consequence, the high effort condition might not prompt the same 

motivational CSE increase (in high effort and high reward conditions). In 

our data however, no difference in accuracy across groups was reported, nor 

difference in difficulty perception at the ratings during the training. 

However, the training consisted only of 9 trials, resulting in 2 rating 

questions per cue. Future studies should foresee more extensive testing of 

subjective effort perception, to reliably test the relationship between NFC, 

subjective experience and CSE prior to task engagement. Moreover, it has 

been reported that people with high NFC generally engage more in difficult 

cognitive tasks (Cacioppo et al., 1984). This might result in an expertise 

effect. Being experienced in engaging in difficult tasks, these people might 

not need increased preparation during the anticipation phase, and as a 

consequence they might be more sensitive to the net-value information of the 

upcoming trial. Taken together, these results show that motor excitability is 
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modulated by effort prospect, and that this modulation is mediated by 

individual differences in effort-related behavior.  

Interestingly, the dichotomy opposing net-value coding to 

motivational coding that seems to fit the different CSE profiles of people 

with low vs. high NFC, mimics the debate on ACC function in effort-related 

behavior. A number of studies in animals and humans indeed suggested that 

ACC integrates effort and reward prospects in a net-value signal (Croxson et 

al., 2009; Kennerley et al., 2009). Recent evidence however, showed that the 

anticipation of higher effort induced increased ACC activation, supporting a 

motivational role of this region in supporting effortful behavior. ACC might 

influence motor excitability via cortico-cortical projections, via midbrain 

projections or via direct synapses on motoneurons in the spinal cord. If ACC 

is the driver of this CSE effect, one could derive the prediction that 

previously reported differences in net-value coding as opposed to 

motivational coding might be due to individual differences in experiencing 

effort. This interesting prediction should be investigated in further research.   

To sum up, our results provide support for the influence of high level 

cognitive factors on motor excitability in a non action specific manner. We 

show that both the effort and reward prospect influence the motor system 

prior to task execution in a cognitive task. This influence is likely to be result 

of an integration process, which combines both information in a value signal. 

This signal is strongly modulated by individual differences in NFC, showing 

that this variable should be kept into account in further studies. 
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CHAPTER 6 
GENERAL DISCUSSION 

This doctoral dissertation investigated the neural coding of reward and 

effort, and how they are integrated to guide adaptive behavior during both 

decision making and task preparation. The goal of the present studies was to 

bridge different theories of value estimation and motivation, to achieve an 

integrated view on how these computations drive adaptive behavior, and to 

unravel the underlying neural mechanisms. 

Goal-directed behavior encompasses all courses of action attaining a 

specific achievement, often represented by a reward, (Rangel & Hare, 2010). 

Engaging in such behavior implies the ability of quantifying the attainable 

benefit, as well as the likelihood of its occurrence to optimally guide 

decisions towards the best available options in the environment. The neural 

implementation of these computations was investigated in Chapter 2. More 

specifically, we tested the contribution of medial Prefrontal Cortex (mPFC) 

to outcome coding and reward prediction coding, targeting the hypothesis of 

a functional dissociation between ventromedial Prefrontal Cortex (vmPFC) 

and Anterior Cingulate Cortex (ACC). Our results show that that vmPFC 

encodes the outcome, irrespective of probability and decision-making. ACC 

was sensitive to reward prediction, with the strongest response to unexpected 

positive outcomes, irrespective of whether a choice was made or not. Given 

that the experimental design involved risky decision, it was also possible to 

investigate in the same data the neural basis of inter-individual variability in 

risk preference.  We therefore also addressed this question (in Appendix), 

showing that decreased activation in the anterior Insula during gambling was 



204     CHAPTER 6 

associated with higher risk preference. The underlying mechanism might 

consist of an altered risk estimation in this area, potentially driving risk 

taking behaviors in both healthy controls as well as in pathological 

conditions. 

After determining the neural substrate associated with reward 

prediction, outcome coding and choice, we moved to investigate another 

crucial dimension implicated in goal-directed behavior, namely motivation 

for effort. In fact, earning rewards mostly requires exertion of cognitive or 

physical effort. Investigating how effort information is processed at the 

neural level is necessary to characterize mechanisms of motivated behavior. 

For these reasons, in Chapter 3 we manipulated both cognitive effort and 

potential rewards, controlling for temporal confounds, in order to disentangle 

the neural correlates of anticipating a higher reward and a higher effort 

requirement. Strikingly, we showed that during the anticipation phase, the 

same cortico-subcortical network traditionally associated with reward 

encoding was activated by both high reward and high effort prospect. This 

network involved the striatum and the ACC. In fact,  influential theories of 

ACC function associate this area with value processing and reward 

prediction (Amiez, Joseph, & Procyk, 2006; Kennerley, Dahmubed, Lara, & 

Wallis, 2009; Rushworth & Behrens, 2008; Silvetti, Alexander, Verguts, & 

Brown, 2013). However this view is incompatible with the evidence that 

higher effort requirements equally recruit the ACC. The overlap with 

reward-related activation suggests a motivational nature of this activity, 

necessary in sustaining effortful behavior, as in overcoming a cost to obtain 

the reward at stake. This interesting hypothesis is in line with several more 

recent accounts of ACC functions (Holroyd & Yeung, 2012; Sterling, 2012; 

Weston, 2012). Moreover, exploratory analyses on our data suggested the 
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possible involvement of brainstem neuromodutalory nuclei in this 

mechanism. To sum up, the results of Chapter 3 challenge the notion of 

ACC as solely dedicated to value computation. In fact, this controversy is 

traceable across different research lines and literatures. Single-unit 

recordings in animals, flanked by neuroimaging evidence in humans and 

computational work supports the net-value perspective, according to which 

ACC directly encodes rewards discounted by the costs (Croxson, Walton, 

O’Reilly, Behrens, & Rushworth, 2009; Kennerley, Dahmubed, Lara, & 

Wallis, 2009; Silvetti et al., 2011). Lesion studies in animals, 

neuropsychological evidence and recent neuroimaging studies in humans 

(including our result) support the motivational perspective instead, according 

to which ACC activity supports motivated behavior towards a goal, thus 

showing increased activation when effort requirements become higher 

(Devinsky, Morrell, & Vogt, 1995; Holroyd & Yeung, 2012a; Krebs, 

Boehler, Roberts, Song, & Woldorff, 2012; Németh, Hegedüs, & Molnár, 

1988; Walton et al., 2009). 

 In Chapter 4 we directly investigated this dichotomy (net-value 

account vs. motivational account) with the goal of determining the nature of 

ACC contribution to reward and effort anticipation, both during effort-

related decision making  and during effort anticipation. In fact, despite the 

pivotal role of ACC in decision making (Brass & Haggard, 2007; Holroyd & 

Coles, 2008), several studies investigating neural coding of effort did not 

control for it, testing either choice or anticipation (Croxson et al., 2009; 

Krebs et al., 2012; Kurniawan, Guitart-Masip, Dayan, & Dolan, 2013; 

Schmidt, Lebreton, Cléry-Melin, Daunizeau, & Pessiglione, 2012). Given 

the contribution of this area to both decision-making and effort anticipation 

phases, combining and controlling for both phases in the same experimental 
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setting was necessary to better characterize this area’s function. For this 

reason, we implemented an fMRI paradigm where effort encoding was 

investigated both during decision and during anticipation of performance. 

Moreover, cognitive effort was manipulated parametrically, to test the 

hypothesis of linear effort encoding in the ACC. The results showed that 

during both decision and anticipation, prospective effort is encoded 

parametrically and in a motivational fashion, with overlap in the ACC. These 

data support the motivational account of ACC function, as higher effort was 

associated with increased ACC activity across both phases. Strikingly, effort 

coding was also modulated by phase. During anticipation of performance 

ACC showed linear increase. During the decision making phase however, a 

finer-grained analysis revealed the same linear trend only in the high reward 

condition, and a quadratic trend in the low reward condition instead. In the 

low reward condition, ACC activity increased only up to a certain effort 

level, then dropping for the highest effort possible. This result shows that 

during effort-related decision making, ACC might encode exclusively the 

effort one considers worth engaging. Converging evidence comes from 

individual differences in choice behavior. Participants who chose to endure 

more effortful trials also showed increased effort encoding in ACC during 

decision. This evidence is compatible with a recent account of ACC 

function, postulating the role of this region in encoding the value of exerting 

cognitive effort, to drive adaptive decision (Shenhav, Botvinick, & Cohen, 

2013).    

After investigating the neural correlates of value, in terms of effort 

and reward coding, with fMRI, in Chapter 5 we went one step further, 

questioning how these computations actually drive action. To investigate 

how value influences the motor system during task preparation, we used 
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TMS to stimulate M1, while recording MEPs on the hand muscles. With this 

method, a value modulation of motor cortico-spinal excitability had been 

reported in a few recent studies, showing how reward can both facilitate 

specific actions and increase overall motor readiness (Gupta & Aron, 2011; 

Klein, Olivier, & Duque, 2012; Klein-Flügge & Bestmann, 2012). Following 

from these results, we investigated the hypothesis that anticipating cognitive 

effort would modulate motor excitability as well, possibly in combination 

with reward. Moreover, we examined individual differences in effort 

perception measuring the Need for Cognition (NFC) trait (Cacioppo, Petty, 

& Kao, 1984), and the influence on motor preparation. Our results show that 

both anticipation of cognitive effort and reward affects motor excitability in 

a combined fashion. This suggests that value signals computed in cortical 

and subcortical areas modulate M1 to bias motor preparation, providing 

compelling evidence for recent theories of action selection (Cisek & 

Kalaska, 2010). This effect was strikingly modulated by NFC, with both low 

and high NFC groups displaying an effect of effort, but in opposite 

directions. The low NFC group showed a motivational-like pattern, with 

increased motor excitability for high effort conditions and a trend for high 

reward. The high NFC showed a net-value-like pattern, with maximal motor 

excitability for the best value option, namely high reward/low effort. This 

confirms that high level cognitive factors, such as reward, cognitive effort, 

and even differences in a personality trait like NFC can affect the motor 

system modulating motor readiness. Moreover, it is a clear indication that 

further research on effort-related goal-directed behavior should incorporate 

finer-grained measures of inter-individual differences, as these determine 

substantial variability even in low-level processes like motor preparation. 
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Beyond net-value: a model of adaptive effort allocation 

In the empirical chapters, we sought to disentangle the contribution of 

cortico-limbic structures, with particular emphasis on the ACC, to reward 

coding, effort coding, decision-making and finally motor preparation. Along 

this path, we faced the inconsistency of our effort data with the dominating 

view of the net-value account. In Chapter 3 we showed that anticipating 

higher effort was associated with increased ACC activity. This led to further 

investigate this issue, showing in Chapter 4 that direct encoding of effort in 

ACC follows a motivational fashion. In fact, the plausibility of a 

motivational account of ACC function was also backed up by a series of 

animal studies (Salamone, Correa, Mingote, & Weber, 2005; Salamone & 

Correa, 2012) and neuropsychological evidence (Németh et al., 1988). 

However, thanks to parametric manipulation of mental effort, we were able 

to identify a different pattern during decision-making in the low reward 

condition. On the one hand, this quadratic trend suggested that a net-value 

hypothesis could not be completely falsified, given that a drop in activation 

for the highest effort level with the prospect of a low reward could be 

interpreted as a cost-benefit (net-value) computation. On the other hand, the 

linear coding in the high effort condition, as well as  in the anticipation of 

performance phase, strongly supported the motivational account. Moreover, 

the results of Chapter 5 showed that both effort and reward prospect exert 

an integrative influence on motor excitability. The precise nature of this 

integration stays however elusive, as the individual differences analysis 

revealed opposite patterns with respect to effort anticipation, potentially 

mimicking motivational-like activation (low NFC) and net-value-like 

activation (high NFC). 
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These result fostered our theoretical thinking, calling for a framework 

that could consistently account for all these effects, specifically focusing on 

the integration of different features in one value signal. Inspired by the 

empirical results, we adopted a computational modeling approach, aiming at 

a mechanistic understand of neuro-functional architecture of effort-related 

behavior, going beyond the net-value versus motivational dichotomy. For the 

purpose, we employed the reinforcement learning framework (RL, Sutton & 

Barto, 1998). This framework has been successfully applied in investigating 

neural mechanisms underlying value prediction. RL models have proven 

fruitful in simulating ACC function both in reward prediction (Alexander & 

Brown, 2011; Silvetti et al., 2011), and in motivated goal-directed behavior 

(Botvinick, Niv, & Barto, 2009; Holroyd & Yeung, 2012b). Hence we 

decided to frame effort-related behavior as an RL problem as well. More 

specifically, we consider exerting effort as an action one can choose to 

perform or not. This action is called boosting. The decision of whether to 

boost or not is driven by the optimization of a utility (value) function, which 

combines reward and cost. This framing allows to explain how adaptive 

effort allocation is learned, in a number of different task contexts. Crucially, 

the same framing can explain how effort is allocated (deciding to boost or 

not) after all information concerning reward and cost has been learned, and 

only the adaptive choice of exerting effort or not needs to be made.  
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Figure 1: Neurobiological model of adaptive allocation of effort (adapted from 

Verguts et al., submitted). 

 

Importantly, the model has a modular structure. The black boxes in 

Figure 1 represent stimulus-response mappings, which have to be learned in 

a certain task context. This can be mediated via changes in parameters (e.g., 

neural network weights) w and is independent from the modules that 

implement adaptive learning of when to boost (white boxes in Figure 1). 

Potentially any task can instantiate these black boxes, from choosing to press 

a lever (like in a typical rodent experiment), to performing mental arithmetic. 

The white boxes represent the machinery that allows the model to learn 

when to boost or not. The units in the ACC represent the value of a certain 
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stimulus s (V(s)), the value of boosting given a certain stimulus Q(s,B), and 

the value of not boosting given a certain stimulus Q(s,noB). The value of 

boosting is thus learned by the ACC per every stimulus. This signal is passed 

on via ventral striatum (VS), ventral pallidum (VP) and thalamus back to the 

ACC, where it activates the boosting unit B. When choosing to boost, the B 

unit will increase the signal-to-noise ratio in the response layer, increasing 

likelihood of a correct response. Note that the correct task-relevant stimulus-

response mapping is learned independently, and that ACC learns when 

boosting is adaptive, via maximization of its own utility function. In 

practice, this means that the model learns when it’s worth boosting, that is 

when exerting effort increases the likelihood of selecting the correct 

response, and thereby the likelihood of reward.  

With this architecture, the model manages to simulate several 

experimental findings. The model simulates the choice behavior of rats in a 

T-maze setting, when one arm of the maze offers more food, but only after 

climbing a barrier (Salamone, Cousins, & Bucher, 1994). The model also 

learns how to allocate effort adaptively when simulating cognitive tasks 

involving effort and reward, such as calculations (Vassena et al., 2014) and 

conflict tasks (Egner, Etkin, Gale, & Hirsch, 2008). Interestingly, one can 

also bias the behavior of the model towards never boosting or always 

boosting, thus mimicking dopaminergic lesion  or depletion in one case 

(Salamone et al., 1994), and pharmacological dopaminergic enhancement  in 

the other case (Bardgett, Depenbrock, Downs, Points, & Green, 2009). From 

the behavioral point of view, both cases result in poor performance, as effort 

is not allocated adaptively (eg. no boosting when it would be worth, and 

excessive boosting when it’s not needed). The paper reporting this model in 
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detail is currently submitted for publication (Verguts, Vassena, & Silvetti, 

submitted). 

Besides the explanatory power with respect to existent literature, the 

model also makes an interesting prediction, yet to be tested. For increasing 

task difficulty, activation of the boost unit shows an inverted U shaped 

pattern, dropping when difficulty is too high (Figure 2).  

 

 

Figure 2: Model simulation. On the y-axis the activity of the boosting unit is plotted. 

On the x-axis, task difficulty is plotted (adapted from Verguts et al., submitted). 

 

The left part of the curve overlaps with our empirical results of 

Chapter 3, where anticipation of high effort was associated with increased 

ACC activity. In our study however, accuracy in the task was very high, thus 

preventing us from sampling from the right side of the curve predicted by 

model (i.e. higher task difficulty) The results of Chapter 4 suggest the 

plausibility of an inverted U shaped pattern, as in the low reward condition 

during the decision phase, ACC activity drops for the highest effort level. 

However, in those results ACC activity in the high reward condition is not 
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consistently higher than in the low reward condition, as opposed to the 

model. The reason for this discrepancy might reside in the parametric 

manipulation of effort, which might have decreased saliency of the reward 

manipulation. This should be investigated in further research.  

One first step for further validation of the model, would be to 

explicitly test the prediction of an inverted U shaped relationship between 

task difficulty and ACC activity. In fact this prediction is also congruent 

with the recent theoretical account of ACC function proposed by Shenhav 

and colleagues (Shenhav et al., 2013). More precisely, the boosting unit in 

our model influences the decision to allocate effort. In terms of behavior, 

this should be applicable to both a decision making situation, as well as to an 

anticipation situation. As a first experiment, one could think of an adapted 

version of the paradigms we used in Chapter 4. Both reward and task 

difficulty should be manipulated, but this time difficulty should be varied to 

its extremes, from very easy to very difficult. According to the model, in 

these circumstances one would predict a drop in ACC activity. As we 

showed that decision making can modulate effort encoding in the ACC, it 

would be interesting to test this hypothesis separately in both a decision 

making and an anticipation context. Following from our empirical results of 

Chapter 3 and Chapter 4, one might intuitively predict a shift to the right in 

of the curves in Figure 2 in the absence of choice. Concretely, this 

corresponds to linear increase in ACC activity, also for higher levels of task 

difficulty, pushing the activity drop further on the y-axes. In other words, in 

absence of choice, activity drop would happen for higher difficulty levels as 

compared to a choice situation. In the absence of choice, choosing to boost 

represent always the most adaptive behavior, as not doing would imply 

losing the reward anyway. In a decision-making context however, one would 
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be allowed for example to opt for a lower effort/lower reward option. To 

sum up, a possible empirical result would be an inverted-U in both 

anticipation and decision making, but a right-shifted curve in anticipation. In 

the model, however, boosting is always implemented as a choice, so finding 

this predicted result would present yet a further challenge for future model 

development. 

 

Beyond dopamine: interaction with other neuromodulators 

As illustrated in the introduction, reward-related and effort-related 

neural activation has mostly been associated with regions receiving massive 

dopaminergic input from the VTA in the brainstem. The results of our fMRI 

studies confirmed the involvement of the striatum and ACC, dopaminergic 

targets and part of the so-called reward system  (Haber & Knutson, 2010; 

Knutson & Cooper, 2005). Moreover, pharmacological manipulation or 

inactivation of dopamine alters effort allocation (Salamone & Correa, 2012). 

However, dopamine is not the only neuromodulator known to exert 

dramatic influence on brain activity and behavior. Noradrenaline (also called 

norepinephrine), is also known to reach widespread cortical networks. 

Noradrenaline is spread by the Locus Coeruleus, which is also located in the 

brainstem. Noradrenaline is generally associated with arousal, and has been 

proposed to modulate signal-to-noise ratio in neuronal activity in several 

situations (Aston-Jones & Cohen, 2005), including typical cognitive control 

tasks (Verguts & Notebaert, 2009). In fact, in our model boosting is also 

expressed as an increase in signal-to-noise ratio applied on the response 

layer. Hence, one possible future direction would be to try to combine these 

frameworks, for example investigating the effect of arousal on effort 
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exertion, targeting potential noradrenaline-dopamine interactions (Raizada & 

Poldrack, 2007). A first evidence for these systems interacting in effort-

related behavior comes from a recent experiment, where higher arousal 

induced by pictures  influenced physical effort exertions (Schmidt et al., 

2009). Including a noradrenergic modulation in the model, might account for 

these empirical effects. 

Serotonin is another major neuromodulator, released by the Dorsal 

Raphe Nucleus (DRN) in the brainstem, widely reaching cortical and 

subcortical regions. Classically, serotonin-mediated processes are associated 

with behavioral inhibition, stress, anxiety and depression (Daw, Kakade, & 

Dayan, 2002; Graeff, Guimarães, De Andrade, & Deakin, 1996). However, a 

few theoretical attempts have been made, to elucidate interactions with 

dopamine (Boureau & Dayan, 2011; Cools, Nakamura, & Daw, 2011; Daw 

et al., 2002). Complicating these attempts is the fact that serotonergic input 

to the cortex is far less localized than dopaminergic input (Kranz, Kasper, & 

Lanzenberger, 2010), thus making it particularly challenging to both 

measure and modulate with anatomical specificity. Several recent 

experiments in animals however, seem to provide compelling evidence of a 

serotonergic contribution to reward processing (Inaba et al., 2013; Izquierdo 

et al., 2012; Miyazaki, Miyazaki, & Doya, 2012; Nakamura, 2013; Pratt, 

Schall, & Choi, 2012). Pharmacological manipulation of central serotonin 

levels in humans also influences reward-related processing and decision 

making (Cools, Roberts, & Robbins, 2008; Cools, Robinson, & Sahakian, 

2008; Homberg, 2012; Schweighofer et al., 2008; Seymour, Daw, Roiser, 

Dayan, & Dolan, 2012). More specifically, in these studies, altering 

serotonin levels seems to affect processing of negative events (such as 

punishments) and costs (delay). This is compatible with our exploratory 
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analysis in Chapter 3, where we show that both high effort and high delay 

seem to elicit increased brainstem activation in a region compatible with 

DRN. In line with the reported studies, this might reflect serotonergic 

activation in response to costs, which need to be overcome to complete the 

task and achieve the reward. To sum up, extending our model of adaptive 

allocation of effort by including a serotonergic modulation, might help in 

elucidating the contribution of serotonin in reward and cost processing.  

 

Serotonin-dopamine interactions: a possible role for the medial 

Prefrontal Cortex  

 Further insights in the possible contribution of serotonin are provided 

by research in clinical settings. Altered serotonin release in the DRN is 

typically associated with a pattern of behavioral sequelae contributing to the 

development of depression. This phenomenon is named learned 

helplessness, and implies a number of behavioral depressive symptoms 

caused by the exposure to uncontrollable stressors (Seligman & Beagley, 

1975). Although it is not the sole cause of depression, this phenomenon has 

been long studied in rodents, mainly to develop animal models with the goal 

of improving pharmacological treatments (Pryce et al., 2011). The 

underlying neural mechanism resides in an over-sensitization of DRN 

serotonergic neurons, which leads to exaggerated serotonergic release, 

causing the behavioral consequences (Maier & Watkins, 2005). Relevant to 

our model, is the evidence that the mechanism leading to DRN over-

sensitization would be mediated by the mPFC (Amat et al., 2005). This has 

been confirmed in a more recent study, targeting the underlying mechanisms 

of mPFC-brainstem interactions while animal where facing a behavioral 
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challenge (Warden et al., 2012). Crucially, they showed in freely moving 

rats exposed to stressors, that perseverance in the behavior was associated 

with mPFC firing. Moreover, optogenetic stimulation of mPFC neurons 

projecting to the DRN increased this persistence. These results clearly show 

that mPFC modulates stress-related response in the DRN. This might be 

especially relevant when investigating adaptive allocation of effort. The 

mPFC region includes the ACC, which in our model drives effort allocation.  

According to the predictions of the model, extremely difficult tasks would 

induce disengagement (inverted U shaped relationship between difficulty 

and activity of the boosting unit). However, in a situation where 

disengagement is not an option, continuous (and unavoidable) failure due to 

excessive task difficulty might parallel the exposure to an uncontrollable 

stressor. In these circumstances, our model might provide fruitful insights in 

the cortico-subcortical interaction associated with facing a very difficult 

tasks, shedding light on mechanisms favoring persistence and resistance to 

adverse environmental conditions.  

 

Implications for the study of motivation in health and disease 

The empirical results, together with the computational work, prompt a 

theoretical shift in the understanding mPFC function in supporting motivated 

behavior, merging the net-value perspective with the motivational 

perspective. The validity of this framework should be broadly put to test, as 

its explanatory power might account not only for decision-making situations 

involving effortful behavior. In fact, considering the computational accounts 

of reward prediction (Alexander & Brown, 2011; Silvetti et al., 2011), it 

seems plausible that this logic would apply to the factor probability as well. 
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It would be interesting then to cross effort, reward and probability under this 

theoretical framework, to test how mPFC processes these factors.  

In addition to this, potential clinical implications might derive from 

this framework. Motivational impairments characterize several psychiatric 

conditions, including depression, anhedonia, ADHD, and obsessive 

compulsive disorder (Der-Avakian & Markou, 2012; Devinsky et al., 1995; 

Milad & Rauch, 2012; Silvetti, Wiersema, Sonuga-Barke, & Verguts, 2013; 

Treadway & Zald, 2011). Interestingly, these disorders are often associated 

with alteration or dysfunction of the same cortico-subcortical network 

reported in our results and implemented in our computational model. 

Adapting the model to simulate different behavioral and neural activity 

patterns associated with these disorders might provide new insights in the 

etiopathogenenetic mechanisms, as well as the development of new 

pharmacological treatments. Moreover, our empirical results shed new light 

on the neural mechanisms underlying motivation for effort. Understanding 

how mPFC (and especially ACC) actively drives engagement and 

disengagement in motivationally relevant courses of action represents the 

next challenge. Elucidating these mechanisms will provide us with the key to 

disclose the actual drivers of motivated behavior. This would open up 

exciting possibilities of behavioral intervention in people with pathological 

alteration of motivation, as well as in healthy people facing emotional or 

cognitive challenges in their life path.   
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CHAPTER 7 
NEDERLANDSTALIGE SAMENVATTING 

Het onderzoek beschreven in dit proefschrift richtte zich op de neurale 

basis van beloning en inspanning, alsmede de manier waarop deze aspecten 

betrokken zijn bij het sturen van gepast gedrag tijdens zowel het maken van 

beslissingen als het voorbereiden op een bepaalde taak. Het doel van de 

huidige studies was om verschillende theorieën van waarde-inschatting en 

motivatie bij elkaar te brengen, om zo een integrale visie op de werking van 

deze aspecten te bekomen en de onderliggende neurale mechanismen te 

ontdekken. 

Doelgeright gedrag omvat alle soorten acties die gericht zijn op een 

specifiek doel, vaak weergegeven door een beloning (Rangel & Hare, 2010).  

Het engageren in zulk gedrag geeft aan dat het voor mensen mogelijk is om 

het te bereiken voordeel te kwantificeren, alsook de waarschijnlijkheid van 

het plaatsvinden van dit voordeel, zodat er zo optimaal mogelijk afgewogen 

kan worden wat de best beschikbare opties in de omgeving zijn. De neurale 

basis van dergelijke afwegingen is onderzocht in Hoofdstuk 2. Meer 

specifiek hebben we de bijdrage onderzocht van de mediale Prefrontale 

Cortex (mPFC) aan het coderen van uitkomsten en het voorspellen van 

beloning. Hierbij werd een functionele dissociatie verwacht tussen de 

ventromediale Prefrontale Cortex (vmPFC) en de Anterior Cingulate Cortex 

(ACC). Onze resultaten tonen aan dat de vmPFC betrokken was bij het 

coderen van uitkomsten, ongeacht de waarschijnlijkheid van deze uitkomst 

en het daadwerkelijk maken van een beslissing. De ACC was betrokken bij 

het voorspellen van beloning, met name bij onverwachte positieve 
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uikomsten, ongeacht of er wel of niet een keuze gemaakt werd. Omdat 

deelnemers gedurende het experiment risicovolle beslissingen moesten 

nemen, was het mogelijk om tevens de neurale basis van inter-individuele 

variabiliteit in risico-voorkeuren te onderzoeken. Zoals beschreven in de 

Appendix toonden de resultaten aan dat verminderde activatie in de anteriore 

Insula tijdens gokken samenhangt met sterkere voorkeuren voor het nemen 

van risico. Het onderliggende mechanisme bestaat mogelijk uit een 

veranderde risico inschatting in dit gebied, wat zou kunnen aansturen op 

risicovolle gedragingen bij zowel gezonde personen als personen met een 

pathologische aandoening. 

Na het bepalen van het neurale substraat die geasocieerd is met het 

voorspellen van beloning, het coderen van uitkomsten en het maken van 

keuzes, onderzochten we in een volgende stap een tweede cruciale dimensie 

van doelgericht gedrag, namelijk motivatie voor inspanning. Meer bepaald is 

het zo dat het verkrijgen van beloningen vaak gepaard gaat met het moeten 

uitoefenen van cognitieve (mentale) of fysieke inspanning. Om te bepalen 

welke mechanismen ten grondslag liggen aan gemotiveerd gedrag, is het 

nodig te onderzoeken hoe informatie omtrent inspanning op neuraal niveau 

verwerkt wordt. In Hoofdstuk 3 hebben we daarom zowel cognitieve 

inspanning als mogelijke beloning gemanipuleerd, om de neurale basis van 

het anticiperen van hogere beloning en een vergrootte inspanning te 

onderzoeken. Opmerkelijk genoeg demonstreerden de resultaten dat 

hetzelfde cortico-subcorticale netwerk, dat traditioneel geassocieerd wordt 

met het encoderen van beloning, ook actief is gedurende de anticipatie fase 

bij zowel hogere beloning als hogere verwachte inspanning. Dit netwerk 

omvat het striatum en de ACC. Invloedrijke theorieën omtrent de functie van 

de ACC associëren het gebied met het verwerken van waarde en voorspellen 
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van beloning (Amiez, Joseph, & Procyk, 2006; Kennerley, Dahmubed, Lara, 

& Wallis, 2009; Rushworth & Behrens, 2008; Silvetti, Alexander, Verguts, 

& Brown, 2013). Deze opvatting is echter niet verenigbaar met recente 

evidentie die aantoont dat hogere eisen qua inspanning eveneens beroep 

doen op de ACC. De overlap met beloningsgerelateerde activatie lijkt erop te 

wijzen dat deze activatie motivationeel van aard is, en noodzakelijk is voor 

het voortzetten van gedrag dat inspanning vergt alsook het overwinnen van 

kosten om toch een beloning te kunnen verkrijgen. Deze interessante 

hypothese sluit aan bij recente ideeën over de functies van de ACC (Holroyd 

& Yeung, 2012; Sterling, 2012; Weston, 2012). Bovendien wezen enkele 

exploratieve analyses van onze data erop dat de neuromodulerende cellen in 

de hersenstam mogelijk betrokken zijn bij dit mechanisme. Samengevat 

betwisten de resultaten van Hoofdstuk 3 het idee dat de ACC enkel gericht 

is op het bepalen van waarde. Deze controverse is terug te zien in 

verschillende onderzoekslijnen en aanverwante literatuur. Zo wordt de 

zogeheten netto-waarde visie, die stelt dat de ACC beloning rechtstreeks 

codeert (rekening houdend met de kosten), ondersteund door single-unit 

opnames bij dieren, evidentie op basis van fMRI studies bij mensen alsook 

computationele studies (Croxson, Walton, O’Reilly, Behrens, & Rushworth, 

2009; Kennerley et al., 2009; Silvetti, Seurinck, & Verguts, 2011). Lesie-

studies bij dieren, neuropsychologisch bewijs en recente neuroimaging 

studies bij mensen (waaronder ook onze resultaten) ondersteunen 

daarentegen de motivationele visie, die stelt dat de ACC gemotiveerd gedrag 

(in de richting van een doel) aanstuurt, zodat verhoogde activatie zichtbaar is 

wanneer er meer inspanning noodzakelijk is (Devinsky, Morrell, & Vogt, 

1995; Holroyd & Yeung, 2012; Krebs, Boehler, Roberts, Song, & Woldorff, 

2012; Németh, Hegedüs, & Molnár, 1988; Walton et al., 2009). 
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In Hoofdstuk 4 onderzochten we deze dichotomie (netto-waarde visie 

vs. motivationele visie) rechtstreeks, met als doel te bepalen hoe en in welke 

mate ACC bijdraagt tot beloning en het anticiperen van inspanning. Meer 

specifiek werd dit nagegaan zowel tijdens besluitvorming waarbij 

inspanning een belangrijke rol speelt, alsook het anticiperen van inspanning 

zelf. Ondanks de centrale rol die ACC speelt tijdens besluitvorming (Brass 

& Haggard, 2007; Holroyd & Coles, 2008), werd dit niet gecontrolleerd in 

studies die neurale codering van inspanning nagaan. Meer bepaald werd 

enkel keuze getest, ofwel enkel anticipatie (Croxson et al., 2009; Krebs et 

al., 2012; Kurniawan, Guitart-Masip, Dayan, & Dolan, 2013; Schmidt, 

Lebreton, Cléry-Melin, Daunizeau, & Pessiglione, 2012). Gezien de bijdrage 

van dit hersengebied aan zowel besluitvorming als fases van anticipatie van 

inspanning, was het noodzakelijk om beide concepten te combineren en 

ervoor te controleren in eenzelfde experimentele proefopzet. Dit had als doel 

de functie van dit hersengebied beter te onderscheiden en duidelijker af te 

lijnen. Omwille hiervan implementeerden we een fMRI paradigma waarbij 

het encoderen van inspanning werd onderzocht, zowel tijdens het maken van 

een inspanningsgerelateerde beslissing als het anticiperen op een 

toekomstige inspanning. Verder werd cognitieve inspanning parametrisch 

gemanipuleerd, om na te gaan of lineaire encodering van inspanning in de 

ACC plaatsvindt. De resultaten toonden aan dat tijdens zowel 

besluitvorming als anticipatie, prospectieve inspanning parametrisch 

geëncodeerd werd en op een motivationele manier, met overlap in de ACC. 

Deze data ondersteunen de motivationele visie met betrekking tot de functie 

van ACC, gezien meer inspanning werd geassocieerd met een toename in 

ACC activiteit overheen beide fases (beslissing en anticipatie). Opmerkelijk, 

het coderen van inspannng was tevens gemoduleerd door fase. Tijdens het 

afwachten van een beoordeling van een prestatie vertoonde ACC een 
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toename op een lineaire manier. Tijdens besluitvorming daarentegen, werd 

deze lineaire trend enkel gevonden in de hoge beloningsconditie. Er werd 

een kwadratische trend bekomen in de lage beloningsconditie: Daar nam 

ACC activatie enkel toe tot een zeker niveau van inspanning werd bereikt, 

waarbij vervolgens activatie daalde bij het bereiken van maximale 

inspanning. Dit resultaat suggereert dat tijdens inspanningsgerelateerde 

besluitvorming, ACC uitsluitend inspanning codeert die men op dat moment 

de moeite waard vindt. Convergerende evidentie hiervoor komt van 

individuele verschillen in keuzegedrag. Participanten die ervoor kozen om 

taken uit te voeren die meer inspanning vergden, toonden ook een 

toegenomen codering van inspanning in ACC tijdens besluitvorming. Deze 

bevinding is compatibel met een recente visie omtrent de functie van ACC, 

die veronderstelt dat dit adaptive besluitvorming ondersteunt door het 

encoderen van de waarde van het uitoefenen van cognitieve inspanning 

(Shenhav, Botvinick, & Cohen, 2013).    

Na het onderzoeken van de neurale correlaten van waarde, in termen 

van het encoderen van inspanning en beloning door middel van fMRI, 

gingen we een stap verder in Hoofdstuk 5. In dit hoofdstuk gaan we na hoe 

deze mechanismes actie aandrijven. Om te onderzoeken hoe waarde een 

invloed heeft op het motorsysteem tijdens taakvoorbereiding, hebben we 

gebruik gemaakt van Transcraniale Magnetische Stimulering (TMS) om de 

motorische cortex (M1) te stimuleren, terwijl gelijktijdig de Motor Evoked 

Potentials (MEPs) werden geregistreerd op de handspieren. Studies die 

gebruik maakten van deze methode, hebben reeds een modulering van 

waarde van motorische cortico-spinale prikkelbaarheid gerapporteerd, die 

aantoont hoe beloning zowel specifieke acties kan faciliteren als algehele 

motorische paraatheid kan doen toenemen (Gupta & Aron, 2011; Klein, 
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Olivier, & Duque, 2012; Klein-Flügge, Hunt, Bach, Dolan, & Behrens, 

2011). Volgend op deze resultaten, onderzochten we de hypothese dat 

anticipatie van cognitieve inspanning motorische prikkelbaarheid ook zou 

moduleren, mogelijks in combinatie met beloning. We onderzochten 

daarenboven individuele verschillen met betrekking tot de perceptie van 

inspanning door middel van de ‘Need for Cognition’ (NFC) karaktertrek 

(Cacioppo, Petty, & Kao, 1984), en de invloed op motorische voorbereiding. 

Onze resultaten tonen aan dat zowel anticipatie van cognitieve inspanning 

als beloning gecombineerd een invloed hebben op motorische 

prikkelbaarheid. Dit suggereert dat waarde signalen berekend in corticale en 

subcorticale gebieden M1 moduleren om motorische voorbereiding te 

beïnvloeden. Deze bevinding ondersteunt recente theorieën omtrent het 

selecteren van acties (Cisek & Kalaska, 2010). Dit effect was verrassend 

genoeg gemoduleerd door NFC, waarbij zowel lage als hoge NFC groepen 

een effect van inspanning weergaven, zij het in tegenovergestelde richtingen. 

De lage NFC groep toonde een patroon in de richting van de motivationele 

visie, met toegenomen motorische prikkelbaarheid voor condities die hoge 

inspanning vereisen en een trend voor hoge beloning. De hoge NFC groep 

daarentegen vertoonde een patroon in de richting van de netto-waarde visie, 

met maximale motorische prikkelbaarheid voor de optie met de beste 

waarde, namelijk hoge beloning/lage inspanning. Dit bevestigt dat hogere-

orde cognitieve factoren, zoals beloning, cognitieve inspanning en zelfs 

verschillen in persoonlijkheid (NFC) een invloed kunnen hebben op het 

motorsysteem door motorische paraatheid te moduleren. Verder is het een 

duidelijke indicatie dat toekomstig onderzoek met betrekking tot 

inspanningsgerelateerd doelgericht gedrag specifieke metingen van 

interindividuele verschillen moet incorporeren, aangezien deze een 
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substantiele variabiliteit meebrengen, zelfs in “lagere-orde” processen zoals 

motorische voorbereiding. 

 

Tenslotte vatten we in de Algemene Discussie de bevindingen samen, 

en bespreken we implicaties voor toekomstig onderzoek alsook beperkingen. 

Verder illustreren we een nieuw neuro-computationeel model van adaptieve 

toewijzing van inspanning, parallel ontwikkeld met ons empirisch onderzoek 

en deels ervan afgeleid. Dit model verheldert de controverse die bestaat 

tussen de netto-waarde en motivationele visie met betrekking tot cortico-

limbische structuren, door motivatie voor inspanning te implementeren als 

een adaptieve gedraging, die kan aangeleerd worden via beloningsleren. 

Concluderend bespreken we de implicaties van onze bevindingen voor 

toekomstig onderzoek, alsook de potentiële relevantie voor klinische 

doeleinden.  
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