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SAMENVATTING 

Geslachtshormonen spelen een essentiële rol in de pubertaire ontwikkeling, de 

botmaturatie, en het verwerven van de piekbotmassa bij opgroeiende kinderen. 

Verder bepalen zij ook in belangrijke mate de lichaamssamenstelling. Hoewel 

testosteron (T) steeds naar voren wordt geschoven als het primordiaal 

geslachtshormoon bij de man, hebben recente ontdekkingen bij mannen met 

zeldzame syndromen zoals oestrogeenresistentie en aromatasedeficiëntie en 

onderzoek bij muizen zonder oestrogeenreceptor of aromatase-enzyme het belang 

van oestrogenen bij de volwassen man aangetoond. Er zijn echter weinig data rond 

de effecten van oestrogenen op de botontwikkeling, botmaturatie en 

lichaamssamenstelling bij opgroeiende jongens. Daarenboven werden de meeste 

studies uitgevoerd met onvoldoende geschikte technieken om deze associaties op 

een betrouwbare manier te bestuderen. De meeste studies gebruikten immers 

klassieke immunoassays om concentraties aan geslachtshormonen te bepalen. 

Deze assays zijn echter onvoldoende nauwkeurig om de lage concentraties in de 

kinderjaren te meten. Verder gebruikte men meestal de dual-energy x-ray 

absorptiometry (DXA) techniek om de botmineraaldichtheid te evalueren en de 

botgrootte te bepalen. DXA heeft als belangrijkste beperking dat de gemeten 

botmineraaloppervlaktedichtheid of ‘areal bone mineral density’ (aBMD) sterk 

afhankelijk is van de botgrootte. Verder levert deze techniek geen informatie over 

de botgeometrie.  

In het eerste deel van ons onderzoek worden de verschillende determinanten van 

botontwikkeling bij gezonde prepubertaire en pubertaire jongens bestudeerd. Er 

wordt hierbij specifiek gekeken naar de associaties tussen de geslachtshormonen 

(adrenale en gonadale geslachtshormonen) en de botmineraaldichtheid (aBMD en 

volumetrische botmineraaldichtheid (vBMD)), de botgeometrie en de 

botmaturatie. In ons onderzoek wordt er naast DXA, ook gebruik gemaakt van de 

peripheral quantitative computed tomography (pQCT) om verschillende 

botparameters van botgrootte en botmineraaldichtheid te evalueren. Bovendien 

wordt er gebruik gemaakt van de meer recente techniek van massaspectroscopie 

om de lage concentraties geslachtshormonen accuraat te bepalen bij deze 

kinderen. In het tweede deel van ons onderzoek worden de effecten van hoge 
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oestrogeenspiegels (estradiol (E2) en estrone (E1)) op de botmaturatie, vBMD en 

botgeometrie bestudeerd. Hiervoor recruteerden we een groep obese adolescente 

jongens, waarbij we, -op basis van de literatuur bij volwassen mannen-, ook hogere 

oestrogeenspiegels verwachten door een toegenomen aromatisatie in vetweefsel. 

De data rond geslachtshormonen bij obese kinderen en adolescenten zijn zeer 

beperkt en voorts tegenstrijdig. Als eerste werden de pubertaire ontwikkeling en 

concentraties geslachtshormonen van de obese jongens vergeleken met gezonde 

controles met een normaal gewicht. Ten tweede werden de determinanten van 

vBMD, botgrootte en botmaturatie bestudeerd met specifieke aandacht voor de 

associaties met geslachtshormonen en spiermassa in deze specifieke groep van 

obese adolescenten met langdurig bestaande obesitas, welke een residentieel 

vermageringsprogramma gingen aanvatten. 

In hoofdstuk 1 wordt een algemene achtergrond voor dit onderzoek geschetst en 

wordt de wetenschappelijke literatuur rond de seksuele en skeletale ontwikkeling 

bij gezonde en obese jongens besproken. Verder worden de belangrijkste 

determinanten voor de botontwikkeling bij kinderen toegelicht. Vervolgens 

worden de specifieke doelstellingen van dit werk geformuleerd namelijk de studie 

van de relatieve invloed van androgenen en oestrogenen op botmineraaldichtheid, 

botgrootte en botmaturatie bij gezonde en obese jongens. Tot slot, bespreken we 

de studiepopulaties en de materialen en methoden met specifieke aandacht voor 

de massaspectroscopie en pQCT techniek.  

In hoofdstuk 2, rapporteren we de resultaten van onze studies rond de associatie 

tussen geslachtshormonen (adrenale en gonadale steroïden) en (v)BMD, 

botgrootte, botmaturatie en lichaamssamenstelling bij gezonde kinderen en 

adolescenten. Zoals weergegeven in hoofdstuk 2.1, vinden we geen relatie tussen 

de adrenale steroïden (dehydroepiandrosteronsulfaat (DHEAS), androstenedione 

(A) en E1) en (v)BMD of botgrootte in een groep van prepubertaire en vroeg 

pubertaire kinderen. Er is echter wel een positieve associatie tussen DHEAS, A en 

E1 en de botmaturatie. In hoofdstuk 2.2 tonen we aan dat E2 en vrij E2 (FE2) 

predictoren zijn voor (v)BMD, de endosteale omtrek en de botmaturatie en dat T 

en vrij T (FT) positief geassocieerd zijn met de botgrootte in een groep van 

prepubertaire en pubertaire jongens. E2 en FE2 zijn positief geassocieerd met 

aBMD van de lumbale wervelzuil en het totaal skelet en de trabeculaire vBMD ter 
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hoogte van de radius en tibia. De gevonden associaties blijven significant na 

inclusie van andere mogelijke determinanten van BMD in het statistisch model 

zoals T, IGF-1, calciuminname of fysieke activiteit. Daarenboven is er een negatieve 

associatie tussen FE2 en E2 en de endosteale omtrek ter hoogte van de radius en 

een positieve associatie tussen E2 en FE2 en de botmaturatie. Deze resultaten 

benadrukken het belang van oestrogenen in de botmaturatie en het verwerven van 

de piekbotmassa en zijn in overeenstemming met de gegevens van patiënten met 

oestrogeenresistentie en aromatasedeficiëntie. Daartegenover zijn T en FT spiegels 

geassocieerd met de botgrootte zowel ter hoogte van axiaal als het appendiculair 

skelet. Er is een positieve associatie tussen T en FT en de geprojecteerde 

botoppervlakte ter hoogte van het totaal skelet en de lumbale wervelzuil. Ter 

hoogte van de radius vinden we een positieve associatie tussen T en FT en de 

dwarse trabeculaire en corticale botoppervlaktes en de periosteale omtrek. Verder 

is er een positieve associatie tussen T en FT en de vetvrije massa -als merker voor 

spiermassa- en de dwarse spieroppervlakte van de onderarm en onderbeen. De 

gevonden associaties tussen T en FT en de botgrootte zijn niet langer aanwezig na 

inclusie van de spierparameters in het model. Onze gegevens suggereren dan ook 

dat T leidt tot een toename in spiermassa en dat deze toegenomen spiermassa 

meer trekkracht uitoefent op het bot, wat dan weer leidt tot een toegenomen 

botgrootte. We kunnen echter geen oorzakelijk verband aantonen gezien de 

transversale opzet van deze studie. Een rechtstreeks effect van T op botgrootte kan 

echter ook niet volledig uitgesloten worden. 

In hoofdstuk 3, rapporteren we de resultaten van onze studies rond de relatie 

tussen geslachtshormonen en de seksuele en skeletale ontwikkeling (botmaturatie, 

vBMD en botgrootte) in een groep obese jongens en hun leeftijdsgepaarde gezonde 

controles. In hoofdstuk 3.1, tonen we aan dat obese jongens tijdens de pubertaire 

ontwikkeling (meer specifiek in Tanner stadium 3 en 4) lagere totale T (TT) 

spiegels, hogere E2 concentraties en normale FT spiegels hebben in vergelijking 

met gezonde controles. Deze afwijkingen verklaren mogelijks de dissociatie tussen 

de normale pubertaire ontwikkeling (eenzelfde Tanner stadium en serum 

prostaatspecifiek antigeen (PSA) waarden) en de versnelde botmaturatie 

(gemiddeld 1 jaar) in deze studiegroep. Onze gegevens tonen aan dat FT een betere 

indicator is voor androgeenblootstelling dan TT bij obese jongens gezien de 
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normale pubertaire ontwikkeling en PSA productie. Verder suggereren onze data 

dat de toegenomen aromatisatie en oestrogeenproductie mogelijks 

verantwoordelijk is voor de versnelde botmaturatie tijdens de pubertaire 

ontwikkeling. In hoofdstuk 3.2 tonen we aan dat obese jongens grotere en sterkere 

botten hebben ter hoogte van het onderbeen en in mindere mate ter hoogte van de 

voorarm in vergelijking met hun normaal gebouwde leeftijdsgenoten. Obese 

jongens hebben een toegenomen trabeculaire vBMD ter hoogte van de radius en de 

tibia in vergelijking met de gezonde controles. Sommige auteurs wijten de 

verschillen in vBMD aan de versnelde botmaturatie bij obese kinderen. Na 

correctie voor de versnelde botmaturatie bleven deze verschillen in onze studie 

echter bestaan. Gezien de positieve associatie tussen (F)E2 en de trabeculaire 

vBMD, vermoeden we dat de geobserveerde verschillen deels kunnen verklaard 

worden door de hogere E2 concentraties. Verder hebben obese jongens een 

significant grotere trabeculaire en corticale botoppervlakte ter hoogte van de 

radius en de tibia in vergelijking met de controles. Daarenboven weerhouden we 

een grotere periosteale en endosteale omtrek bij de obese groep. Sommige 

verschillen kunnen worden verklaard door het verschil in botmaturatie gezien er 

geen verschil meer was in botgrootte ter hoogte van de radius na correctie voor de 

versnelde botmaturatie. Ter hoogte van de tibia, weerhouden we echter nog steeds 

een significant groter botoppervlakte bij de obese jongens. Andere factoren naast 

een versnelde botmaturatie spelen hier dan ook een rol. De toegenomen 

spiermassa en kracht bij obese kinderen zoals ook aangetoond kon worden in de 

door ons bestudeerde populatie, spelen waarschijnlijk een belangrijke rol in de 

toegenomen botexpansie bij de obese adolescenten.  

Tot slot worden in hoofdstuk 4 de belangrijkste bevindingen van deze 

verschillende studies samengevat en bediscussieerd, aangevuld met het klinisch 

belang van ons werk en mogelijke toekomstige onderzoeksonderwerpen. Onze 

gegevens hebben een bijdrage geleverd aan de beschikbare kennis rond het relatief 

belang van androgenen versus oestrogenen in de pubertaire ontwikkeling, de 

botmaturatie, de opbouw van het mannelijke skelet en de wijzigingen in 

lichaamssamenstelling tijdens de lichaamsgroei. In dit proefschrift hebben we 

aangetoond dat oestrogenen geassocieerd zijn met BMD en essentieel zijn voor de 

botmaturatie van gezonde en obese jongens. Verder, hebben we aangetoond dat T, 

spiermassa en spierkracht geassocieerd zijn met botgrootte tijdens de 
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adolescentie. Hoewel een rechtstreeks effect van T op botgrootte niet volledig kan 

worden uitgesloten, worden veel van de effecten van T op de botgrootte 

waarschijnlijk veroorzaakt door het anabool effect van T op de spiermassa bij 

gezonde en obese jongens. 
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SUMMARY 

Sex steroids play an essential role in pubertal development, skeletal maturation, 

peak bone mass acquisition and changes in body composition in growing males. 

Although testosterone (T) has been regarded as the most important sex steroid in 

males, observations in humans with estrogen resistance or aromatase deficiency 

and some knock-out mouse models have stressed the importance of estrogens in 

adult males. Information about the effects of estrogens on skeletal development, 

skeletal maturation and body composition in the growing-up boy is however 

scarce. The limited available literature on associations between sex steroids, body 

composition and bone development in children is hampered by the use of 

inaccurate immunoassays to determine sex steroids and use of dual-energy X-ray 

absorptiometry (DXA) to evaluate bone mineral density (BMD) and bone area. An 

important limitation of DXA, especially in growing children is the size dependence 

of the areal bone mineral density (aBMD) and the lack of information on bone 

geometry.  

A first part of our research focusses on the determinants of bone development in 

healthy prepubertal and pubertal boys with a specific interest in the associations 

between sex steroids (adrenal and gonadal steroids) and bone mineral density 

(aBMD and volumetric bone mineral density (vBMD)), bone geometry and skeletal 

maturation using state of the art techniques namely peripheral quantitative 

computed tomography (pQCT) to evaluate bone parameters and liquid 

chromatography-tandem mass spectrometry (LC-MS-MS) to determine the low sex 

steroid concentrations in children. To enhance our understanding of the effects of 

estrogens on epiphyseal maturation and bone mass acquisition, the second part of 

our research consists of the study of a group of obese male adolescents, aiming to 

investigate the associations of high estrogen (estradiol (E2) and estrone (E1)) 

levels with skeletal maturation, vBMD and bone geometry during adolescence 

since, based on available information in adult obesity, increased estrogen 

concentrations were expected in boys with longstanding obesity due to an 

increased aromatization in fat mass. However, available data on sex steroid (E2 

and T) levels in obese children are scarce and contrasting. We therefore first 

studied pubertal development and sex steroid levels in a sizeable group of obese 

boys compared to healthy controls. Secondly, we studied vBMD, bone size, and 
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skeletal maturation in relation to sex steroid levels and muscle mass in this group 

of obese adolescents entering a residential weight loss program. 

In chapter 1, a general background with a review of the available literature on 

sexual maturation and bone development in healthy and obese boys is provided 

and discussed. Moreover, the most important determinants of bone development 

in healthy children are commented. Additionally, we state our research objectives 

which are to study the relative contribution of androgens and estrogens on bone 

mineral density, bone size and epiphyseal maturation in healthy and obese boys. 

Finally, we describe our study populations and the used methodology with special 

attention for the LC-MS-MS and pQCT techniques.  

In Chapter 2, we report our studies which investigated the association between sex 

steroid levels (adrenal and gonadal steroids) and (v)BMD, bone size, skeletal 

maturation, and body composition in healthy male children and adolescents. As 

reported in Chapter 2.1, there is no association between adrenal steroid 

concentrations (dehydroepiandrosterone sulfate (DHEAS), androstenedione (A) 

and estrone (E1)) and (v)BMD, or bone size in healthy prepubertal and early 

pubertal boys. DHEAS, A and E1 are however, positively associated with skeletal 

maturation. In Chapter 2.2, we show that E2 and free E2 (FE2) are predictors of 

(v)BMD, endosteal circumference and skeletal maturation and that T and free T 

(FT) are associated with different parameters of bone size in a group of 

prepubertal and pubertal boys. E2 and FE2 are positively associated with lumbar 

spine and whole body aBMD and trabecular vBMD at the radius and the tibia. All 

associations remain significant after inclusion of other possible determinants of 

BMD in the statistical model, such as T, IGF-1, calcium intake or physical activity. 

Moreover, E2 and FE2 are negatively associated with the endosteal circumference 

at the radius. Additionally, there is a positive association between E2 and FE2 and 

bone maturation. Our results therefore stress the importance of E2 in epiphyseal 

maturation and peak bone mass acquisition and are in line with data obtained from 

men with estrogen resistance or aromatase deficiency. T and FT levels are 

associated with different parameters of bone size, such as whole body and lumbar 

spine bone area, trabecular and cortical bone area and periosteal circumference of 

the radius. Moreover, there is a significant positive association of T and FT with 
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whole body lean mass and muscle cross-sectional area (CSA) at the forearm and 

lower leg. After inclusion of whole body lean mass or muscle CSA in the model, the 

associations of T and FT with bone size were however no longer present. These 

data suggest that T leads to an increase in muscle mass which causes a larger bone 

size resulting from an increase in strain exerted on the bone. Due to the cross-

sectional design of the study, however, we are not able to draw causative 

conclusions and a direct effect of T on bone size cannot be definitely excluded. 

In chapter 3, we report on our studies of sex steroid levels in relation to sexual and 

skeletal development (bone maturation, vBMD and bone size) in a well-described 

group of obese male adolescents and age-matched non-obese healthy controls. In 

chapter 3.1 we demonstrate that pubertal obese boys have lower total T (TT) 

levels, higher E2 but normal FT levels, at least during mid-and late puberty. These 

hormonal differences might be responsible for the observed dissociation between 

an advanced skeletal maturation (mean advancement around 1 year) and a normal 

sexual maturation (similar pubertal stage distribution and serum prostate-specific 

antigen (PSA) concentrations). Our data indicate that FT is a better indicator of 

androgen exposure than TT, explaining the normal pubertal progression and PSA 

production in male obese adolescents, and suggest that the increased 

aromatization and estrogen production might be linked to the advanced skeletal 

maturation during pubertal progression. As reported in chapter 3.2, obese 

adolescents have larger and stronger bones at the lower leg and to a lesser degree 

at the forearm than their normal-weighted peers. Obese boys have a higher 

trabecular vBMD at the radius and the tibia compared to age-matched controls. 

Some authors suggest that the differences in trabecular vBMD are due to an 

advanced skeletal maturation in the obese children, however the differences in 

trabecular vBMD remain even after correction for the advanced skeletal 

maturation using a bone-age matched control group. We speculate that the 

observed differences are due to higher E2 levels since there is a positive 

association between (F)E2 and trabecular vBMD. Trabecular area, cortical area, 

periosteal circumference, endosteal circumference at the radius and the tibia are 

significantly larger in the obese group compared to their age-matched controls. 

The advanced skeletal maturation might explain at least part of the observed 

differences in bone expansion, since after matching for bone age, no differences in 

cortical bone area parameters were present, at least at the radius. However, most 
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of the geometric differences at the tibia remained, in favor of the obese group. 

These results indicate that advanced bone maturation is probably not the sole 

explanation for the observed differences in bone geometry between obese and 

control boys. The larger muscle size and force in obese boys as described in our 

population might play an important role in the greater bone expansion in 

adolescent obesity. 

Finally, the main findings of our different studies are summarized and discussed in 

chapter 4, together with the clinical relevance and the limitations of our research 

and a perspective on future research topics. Our work has enhanced the 

understanding of the relative contribution of androgens versus estrogens in the 

regulation of pubertal development, skeletal maturation, the build-up of the male 

skeleton and changes in body composition during somatic growth. We showed that 

estrogens are associated with BMD and are essential in the skeletal maturation of 

healthy and obese boys. Furthermore, we showed that T, muscle mass and force 

are associated with parameters of bone size. Although a direct effect of T on bone 

size can not be definitely excluded, our findings suggest that an important part of 

the effects of T on bone size are probably due to the anabolic effect of T on muscle 

mass in healthy and obese boys. 
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1 INTRODUCTION 

1.1 BACKGROUND 

Sex steroids play an essential role in pubertal development, skeletal maturation, 

peak bone mass acquisition and determination of body composition in growing 

males. Observations from some human ‘experiments of nature’ and from detailed 

studies in estrogen receptor knock-out mouse and aromatase transgenic mouse 

models provided new insights into the critical role of estrogens in adult males
1,2

. 

Previous research of our group in healthy male adults and men with idiopathic 

osteoporosis has also provided evidence for a role of estrogens in the acquisition of 

adult bone mass and maintenance of skeletal integrity in adult life in males3–5. 

Little is known however about the relative contributions of androgens and 

estrogens and the specific role of estrogens on bone development and epiphyseal 

maturation in the growing-up boy. Moreover, research on the possible effects of 

high estrogens levels on bone development and epiphyseal maturation during male 

childhood and adolescence is very scarce. In order to further unravel the essential 

role of estrogens on bone growth, epiphyseal maturation and bone mass 

acquisition in males, this thesis will consist of two parts. Firstly, the associations of 

adrenal and gonadal steroids with bone mass and skeletal maturation in late male 

childhood and adolescence will be studied. Secondly, we will study a group of male 

obese adolescents to investigate the effects of high estrogen levels on skeletal 

maturation and bone mass acquisition. 

A first part of the introduction will consist of a description of the physiology of 

normal pubertal development, normal bone development and some of the 

determinants of bone development in healthy boys (section 1.1.1). Thereafter, we 

will discuss the available data on pubertal development, sex steroid levels and 

bone development in obese boys (section 1.1.2). Secondly, we will state our main 

and specific objectives (section 1.2). A third part of this introductory chapter will 

consist of the description of our study groups (section 1.3) and the used 

methodology (section 1.4). Special attention will be given to the methodology used 

to determine sex steroid levels, namely liquid chromatography–tandem mass 

spectrometry (LC-MS-MS) and to the technique used to determine bone mass, 

more specifically peripheral quantitative computed tomography (pQCT).  
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1.1.1  SEXUAL AND SKELETAL DEVELOPMENT IN HEALTHY BOYS 

1.1.1.1 PHYSIOLOGY OF ADRENARCHE AND PUBERTY IN HEALTHY BOYS 

1.1.1.1.1 PHYSIOLOGY OF NORMAL ADRENARCHE 

Adrenarche refers to the sudden rise in adrenal steroid production, primarily 

dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS), 

usually about the age of 6-8 years. Histologically, it is associated with the 

appearance of the zona reticularis in the adrenal gland
6,7

. Recent studies showed 

that this is not an abrupt process occurring in mid-childhood, but rather a 

continuous process from birth on
8
. Adrenarche is independent of puberty and can 

manifest itself clinically as the appearance of axillary and pubic hair
6,9,10

, a 

characteristic adult body odor and increased oiliness of hair and skin
11,12

. 

The mechanisms underlying the onset of the adrenarche remain unknown. 

Although adrenocorticotropic hormone (ACTH) is certainly required for 

adrenarche to occur -as patients with hypopituitarism do not experience 

adrenarche13-, it is probably not the sole factor. Since several studies demonstrated 

that ACTH and cortisol both remain constant during adrenarche despite the rise in 

adrenal androgens
14,15

, additional factors may be required to initiate adrenarche. 

Several factors have been proposed in recent years including pro-

opiomelanocortin, corticotropin-releasing hormone, prolactin, insulin and insulin-

like growth factor (IGF-1)
14–19

, although no other “master control” factor than 

ACTH has been identified up to now.  

DHEA and DHEAS, produced by the adrenal gland, are not bioactive androgens 

themselves. They act as precursors for the production of more potent androgens 

(e.g. testosterone (T) and dihydrotestosterone (DHT)) or estrogens (e.g. estrone 

(E1) and estradiol (E2)). In the adrenal gland, DHEA is converted to 

androstenedione (A) by 3β-hydroxy-steroid dehydrogenase (3β-HSD). 

Subsequently, A can be further converted to T by 17β-hydroxy-steroid 

dehydrogenase (17β-HSD) or to estrogens (E1 and E2) by aromatase in other 

tissues
20

 (figure 1). Adrenal steroid secretion (DHEA, DHEAS, A and T) increases 

significantly with age with a plateau in DHEA secretion at the age of 20 to 30 

years
21,22

.  
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Figure 1: Major pathways in adrenal sex steroid synthesis (adapted from 

reference 7,23) 

Apart from their well-known effects on the pubarche, it is not clear whether 

adrenal steroids have other effects in the prepubertal period, such as on body 

composition, bone development or skeletal maturation. Most of the available 

information comes from conditions with an elevated adrenal secretion such as 

premature adrenarche and congenital adrenal hyperplasia. These conditions are 

associated with an advanced skeletal maturation
24–27

 and increased areal bone 

mineral density (aBMD)
28,29

. Some authors report a low aBMD in congenital 

adrenal hyperplasia, however this is related to the lifelong treatment with 

glucocorticoids30,31. 
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1.1.1.1.2 PHYSIOLOGY OF PUBERTY AND SEX STEROID SECRETION IN HEALTHY BOYS 

Puberty is a complex process by which children develop secondary sexual 

characteristics and reproductive competence. Normal puberty is initiated in the 

brain. An increase in the pulsatile release of gonadotropin-releasing hormone 

(GnRH) from the hypothalamus triggers gonadotropins secretion namely follicle-

stimulating hormone (FSH) and luteinizing hormone (LH), from the pituitary gland. 

One to 3 years before the onset of clinical signs of puberty, low serum levels of LH 

already become evident during sleep. This sleep-entrained LH secretion occurs in a 

pulsatile fashion and probably reflects endogenous episodic discharge of GnRH. 

Nocturnal pulses of LH continue to increase in amplitude and to a lesser extent in 

frequency as clinical puberty approaches. The beginning of puberty is 

characterized by marked increases of GnRH and gonadotropin secretion, initially 

only during night
32,33

. As a consequence of increased nocturnal LH output, basal 

plasma T levels increase in boys, first during the early morning hours
34

 before 

becoming detectable throughout the day. As puberty progresses, pulsatile 

gonadotropin secretion gradually increases during daytime and an adult pattern of 

gonadotropin secretion is eventually established. By the end of puberty, day-to-day 

GnRH and gonadotropin secretion remain fairly constant
32,33

. The physiological 

mechanisms that trigger activation of the hypothalamic-pituitary-gonadal axis are 

largely unknown, but attainment of a set point in growth, body composition and 

energy balance seems important
35

. Furthermore, upstream effects on the 

hypothalamic-pituitary-gonadal axis may influence pubertal timing. Kisspeptin, a 

neuropeptide produced in the hypothalamus, plays a central role in GnRH 

secretion and has been found to affect reproductive function in humans
36

.  

The increase in gonadotropin secretion subsequently leads to gonadal 

steroidogenesis, testicular enlargement and spermatogenesis. FSH is mainly 

involved in stimulating spermatogenesis and the production of inhibin B by the 

Sertoli cells. LH stimulates the Leydig cells producing T and insulin-like factor 3. As 

with most hormonal axes, production and secretion of these hormones is regulated 

by a negative feedback loop. For LH secretion, this negative feedback is exerted by 

androgen as well as estrogen action both at hypothalamic and pituitary level, 

whereas for FSH secretion, negative feedback is mainly exerted by inhibin B
37 

(figure 2). 
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 Figure 2: The regulation of the hypothalamic-pituitary-gonadal axis 

The major androgen in the male circulation is T. Total T (TT) concentrations 

increase as puberty progresses. The increase in TT levels is modest from 

prepuberty (G1) to the early stage of puberty (G2), followed thereafter by a 

marked increase into mid puberty (G3), followed by a slower increase between 

mid- and late puberty (G4). No difference was observed between late- and post 

pubertal (G5) boys
34,38

. T is mainly bound to albumin and sex-hormone binding 

globulin (SHBG). SHBG concentrations decrease throughout puberty
34

. On average, 

only 1%-2% of circulating T is free. Free T (FT) is considered to be the hormone 

that reaches the target organs exerting its function through the androgen receptor 

(AR). Ankarberg-Lindgren et al. (2004) showed that FT increases –as does TT- 

from prepuberty, through puberty, to post puberty
34

. T is also in part converted by 

the aromatase enzyme to E2, which subsequently activates the estrogen receptor 

(ER)37. A study by Ankarberg-Lindgren et al. (2008) showed that E2 levels increase 

from prepuberty to early puberty but then remain relatively constant until a 

marked increase between mid puberty and late puberty, followed by a slower 

increase until post puberty
39

. Furthermore, 6 to 8% of T is converted to 5α-

dihydrotestosterone (DHT) by the 5α-reductase enzyme in specific target cells. 

DHT is a more potent activator of the AR than T
32,37

.  
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Increasing T levels during puberty promote clinical signs of pubertal development 

(i.e. secondary sex characteristics). In males, growth of the testes (>3 ml; mainly 

under stimulation by FSH secretion) and thinning of the scrotum are the first signs 

of puberty, followed by pigmentation of the scrotum and growth of the penis. Pubic 

hair normally appears a few months later
21

. These first morphological changes of 

puberty typically begin between the age of 9 and 14 years in boys
32

 and are 

referred to as the gonadarche
35

. A large cross-sectional study on 4219 Flemish boys 

aged 6-22 years performed from 2002 to 2004, showed that the mean age of 

pubertal onset (assessed by Tanner genital staging (G2)) was 11.4 years. The mean 

age at pubic hair stage 2 was some months later namely 11.9 years
40

. Median ages 

at G2 are similar to those reported for other North-West European countries
41

. A 

tendency towards a younger age of male pubertal onset during the past decades 

has been reported. A Danish study of 21612 boys studied in the period 1930 to 

1969 showed a decline in age at initiation of pubertal development and age at peak 

height velocity of 0.4 and 0.3 years respectively during that period
42

. Data from 

Greece in the period 1968 to 2011 do not support a continuing secular trend
43,44

. 

However, data from the Copenhagen Puberty study report a 3 months reduction in 

mean age at pubertal onset during a 15-year period (1991-1993 vs. 2006-2008)
45

. 

Apart from their effects on the development of secondary sexual characteristics, 

sex steroids (T and E2) also have marked effects on body composition, bone mass 

acquisition and skeletal maturation. The effects of sex steroids on bone mass 

acquisition and skeletal maturation will be discussed more in detail in section 

1.1.1.3.1.  

1.1.1.2 PHYSIOLOGY OF SKELETAL DEVELOPMENT AND GROWTH IN HEALTHY BOYS 

From infancy until young adulthood there is a progressive accrual of bone mass in 

males. The acquisition of bone mass is however not constant throughout life: it 

increases rapidly during early childhood, more steadily during late childhood, 

accelerates during the pubertal growth spurt and ends at early adulthood, when 

peak bone mass is attained
46

. Peak bone mass can be defined as the maximal 

amount of bone that is accrued during growth and development plus the 

subsequent consolidation that continues during early adulthood. The exact age at 

which peak bone mass is reached depends on gender and skeletal localization
47

. In 

the axial skeleton, peak bone mass is achieved by the end of the second life decade. 



CHAPTER 1: INTRODUCTION 
 

 29 

In the appendicular skeleton, the timing of peak bone mass has been estimated to 

occur from ages as early as 18 years (femoral neck) to as late as 35 years (radius, 

skull, whole body)
48–51

. Since the attained peak bone mass and the rate of bone loss 

in later adulthood are important determinants of bone strength at older age, it is 

essential to maximize bone mass acquisition during growth. Recently, Bonjour et 

al. (2009) estimated that 1 standard deviation increase in population peak bone 

mass would reduce fracture risk by as much as 50%
52

. 

The accrual of bone mass during childhood is mainly the result of an increase in 

bone size namely bone length and diameter. Although aBMD -as measured by dual-

energy X-ray absorptiometry (DXA)- increases during childhood, volumetric bone 

mineral density (vBMD) does not change during prepuberty
50,53,54

. The increase in 

aBMD in prepubertal children is thus due to an increase in bone size during 

growth. Whereas prepubertal boys and girls have a similar vBMD, there are 

already small differences in bone size between boys and girls during prepuberty
54–

57
. In prepubertal boys, bone width is already slightly larger compared to 

prepubertal girls, no significant sex differences in height or body segment lengths 

are however observed before puberty
57,58

. The observed differences are already 

present in newborns
59

 and infants 3 months of age
60

, suggestive for an intrauterine 

determination of bone mass. Possible explanations are genetic factors
61

 or a higher 

exposure of male fetuses to androgens in utero. Higher T levels have been 

measured in the cord blood of newborn males with levels peaking from 1–3 

months of age and then decreasing to prepubertal levels by 7 months
62,63

. 

Determining factors of prepubertal bone mass acquisition are nutrition (calcium 

and vitamin D)
64–68

, muscle mass and physical activity
66,69–71

 and the growth 

hormone-insulin-like growth factor 1 (GH-IGF-1) axis72. Some recent studies of 

Remer et al.
69,73,74

 reported a possible beneficial effect of adrenal androgens, 

specifically DHEAS metabolites, on the accretion of bone strength during 

prepuberty.  

During puberty, there are marked increases in bone mass; it is estimated that 25 to 

40% of adult bone mass is acquired in the 2 years surrounding the pubertal growth 

spurt
75,76

. Peak bone mineral accretion occurs approximately 6 months after the 
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age of peak height velocity; the age of peak bone accretion in boys is estimated to 

be around 14.1 years
76

.  

Lumbar spine and femoral neck aBMD rapidly increase during puberty in both 

sexes and have shown to plateau at about 15 and 17 years of age in girls and boys, 

respectively
48–50,77,78

. Areal BMD -as measured by DXA- is however largely 

dependent on bone size. Therefore, the observed increases in aBMD at the 

successive pubertal stages do not necessarily mean that the bone becomes denser. 

Studies using peripheral quantitative computed tomography (pQCT) and 

quantitative computed tomography give more accurate information on the true 

vBMD and bone geometry. Volumetric BMD remains independent of age until 

puberty, during puberty there is however an increase in vertebral trabecular 

density in both boys and girls
79

. These results are confirmed in the appendicular 

skeleton where trabecular and cortical vBMD increase by about 10% by the end of 

puberty in males
54,80

. In line with these data a study with high resolution pQCT 

showed an increase in trabecular thickness, cortical thickness and cortical vBMD 

from the age of 15 years onwards in boys
81

.  

Although there are no large differences in vBMD between men and women in 

young adulthood50, men do have a stronger skeleton due to the larger bone size
82–

84
. Male puberty is associated with an accelerated periosteal apposition with less 

endocortical expansion, resulting in enlargement of the bone diameter, cortical 

thickening and an increase in the medullary diameter
53,55,85

. Most of the cortical 

bone expansion in males occurs during pubertal growth, whereas periosteal bone 

expansion after puberty is very limited. When females enter puberty, periosteal 

apposition is inhibited, probably due to the inhibitory effects of higher estrogen 

levels on periosteal bone formation, whereas endocortical formation is stimulated, 

increasing cortical thickness and narrowing the medullary cavity
53

 (figure 3). The 

main determinants of pubertal bone mass are sex steroids, muscle mass and GH-

IGF-1 axis. These determinants will be discussed in detail in section 1.1.1.3. 
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Figure 3: Effects of puberty and delayed puberty in bone development in boys 

and girls (reprinted from reference 86 with permission of Elsevier) 

1.1.1.3 DETERMINANTS OF BONE DEVELOPMENT IN BOYS 

Eighty percent of the variance in bone mass is genetically determined
87

. There are 

however many other factors which influence the accumulation of bone mass during 

childhood and adolescence namely hormonal influences (e.g. adrenal and gonadal 

steroids, GH-IGF-1 axis)
69,73,88

, nutritional influences (e.g. calcium, vitamin D, 

protein intake)
65–68,89

 and physical activity and muscle mass
66,70,71

. We will focus in 

the next paragraphs on the main determinants of pubertal bone mass namely sex 

steroids, the GH–IGF-1 axis and muscle mass.  
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Figure 4: Determinants of peak bone mass (based on reference 65,71,87,88 ) 

1.1.1.3.1 EFFECT OF SEX STEROIDS ON BONE MASS ACQUISITION AND SKELETAL MATURATION  

Puberty, characterized by substantial increases in sex steroid levels, is a crucial 

stage in bone mass acquisition since about 40% of peak bone mass is achieved 

during pubertal development46. Clinical conditions as delayed puberty and primary 

and secondary hypogonadism stress the importance of sex steroids (T and E2) in 

bone mass accrual
88,90–92

. Men with a history of delayed puberty have a decreased 

radial, spinal and femoral aBMD, a smaller bone area and a lower peak bone 

mass
90,92,93

 (figure 3). Moreover, spinal and radial aBMD are also considerably 

reduced in adolescents suffering from either primary or secondary 

hypogonadism
94,95

.  

T is the main circulating androgen in men. Both gonadal and adrenal T can be 

converted into estrogens by the aromatase enzyme which is present in many 

peripheral tissues including adipose tissue
96

, bone
97

, the growth plate
98

,… . Bone 
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cells express AR as well as ER α (ERα) and ß (ERß)
99

. Therefore, T can act directly 

through the AR or indirectly through aromatization to estrogens and further 

through ERα and/or ß. The relative contribution of androgens versus estrogens in 

the regulation of the build-up of the male skeleton and the skeletal maturation is 

yet to be fully clarified.  

Clinical observations in patients with altered secretion or action of sex steroids, 

studies in sex steroid receptor inactivated transgenic mouse models and very 

limited data in healthy children already revealed some of the different actions of 

sex steroids on bone metabolism in males. 

An important role of estrogens in bone maturation and achievement of peak bone 

mass is illustrated by reports on men with impaired estrogen biosynthesis due to 

hereditary aromatase deficiency
100–103

 and a case report of a young man with 

estrogen insensitivity secondary to a mutation in the ERα gene
104

. These men had a 

low bone mass as measured by DXA100–107, a low trabecular and cortical vBMD as 

measured by pQCT108,109, a high bone turnover and open epiphyses at the distal 

radius despite normal to elevated T levels100–107 (table 1). Moreover, 

administration of E2 to aromatase deficient men resulted in a gain in bone mass 

and epiphyseal closure101–103,105,109,110 (table 1). These case reports stress the 

importance of estrogens in bone mass acquisition and epiphyseal closure in both 

girls and boys
101,104,110

. Conversely, conditions of hyperestrogenism as aromatase 

excess syndrome111,112 and Peutz-Jeghers syndrome113,114 are characterized by an 

advanced bone maturation and aromatase inhibitors have been used to normalize 

estrogen levels and decrease bone age advancement113–115. 
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Table 1: Summary of published studies on skeletal maturation and bone 

mineral status in male individuals with aromatase deficiency or estrogen 

resistance  

First 
author  

Chronological 
age 

Bone 
age 

Lumbar spine aBMD 
at start        after E2 therapy 

        vBMD 
trabecular 

 
cortical 

Aromatase deficiency 

Morishima 
et al.100,110 

24 14 ↓  ↑ N/A N/A 

Carani et 
al.101 

31 14.8 ↓ ↑ N/A N/A 

Herrmann 
et al.105 

27 16.5 ↓ ↑ N/A N/A 

Maffei et 
al.107,109 

29 15 ↓ ↑ N/A ↓ 

Maffei et 
al.106 

25 15.3 ↓ 
(ultradistal 
forearm) 

N/A N/A N/A 

Bouillon et 
al.102 

17 12 ↓ ↑ no 
reference 
values 

no 
reference 
values 

Lanfranco 
et al.103 

26.8 15.5 ↓ ↑ N/A N/A 

Estrogen insensitivity 

Smith et 
al.104,108 

28 15 ↓ Unchange
d 

↓ ↓ 

Table adapted from reference116. Comparison of lumbar spine areal bone mineral density 
(aBMD) to reference values; (↓) decreased aBMD, (↑) increase after estrogen substitution, 
(N/A) no data available. 

Individuals with the androgen insensitivity syndrome, caused by a mutation in the 

AR, offer the opportunity to assess the consequences of a total or near total lack of 

androgen action. Affected patients experience a normal pubertal growth spurt and 

achieve epiphyseal closure due to adequate amounts of circulating estrogens, 

however they present a low bone mass compared to male and female reference 

values61,117–125 (table 2). Since the bone mass deficit is most pronounced in 

gonadectomized patients with a poor compliance to estrogen substitution therapy, 

one can suspect that the bone mass deficit results at least partly from inadequate 

estrogen exposure, rather than from lack of androgen effects alone122. 

Furthermore, these patients have a periosteal circumference intermediate between 

male and female values, supporting an essential role for T as mediator for 

periosteal bone expansion. T is however probably not the sole stimulus for bone 
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expansion during growth61. A case report of a 16-year old boy with aromatase 

deficiency suggests that E2 also plays a role in cortical bone expansion as total, 

cortical and trabecular bone area increased significantly during estrogen 

treatment102. 



  

Table 2: Summary of published studies on bone mineral status in individuals with complete androgen insensitivity 

syndrome  

First author  N Mean Age (y) 
(range) 

Gonadectomy 
(yes/no) 

Hormonal 
substitution 
(yes/no) 

aBMD Reference 
values 

LS FN 

Soule et al.117 6 (13-38) 6/0 4/2 ↓ ↓ F 

Munoz et al.118 1 17 no No ↓ ↓ F 

Vered et al.119 1 39 yes No ↓ ↓ F 

Mizunuma et al.120 2 19 and 28 no No N/↓ N F 

Bertelloni et al.121 10 14 (4-20) 7/3 6/4 ↓ N/A F/M 

Marcus et al122 22 36 (11-65) 20/2 21/1 ↓ N F 

Sobel et al.123 12 35 (17-62) 10/2 8/4 ↓ ↓ F/M 

Danilovic et al.124 5 23 (20-25) 5/0 5/0 ↓ N F/M 

Han et al.125 46 32 (18-58) yes Yes ↓ ↓ F 

Taes et al.61 1 31 yes No ↓ ↓ F 

Table adapted from reference126. Comparison of lumbar spine (LS) and femoral neck (FN) areal bone mineral density (aBMD) to reference values 
(F: female reference values; M: male reference values) (↓) lower aBMD, (N) normal aBMD, (N/A) no data available. 
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Some animal experiments investigated the relative importance of AR-mediated T 

actions compared to E2 effects. The stimulatory effect of androgens on bone size in 

males and the inhibitory effect of estrogens in females is suggested by observations 

of a reduced periosteal perimeter in orchidectomized male growing rats and an 

increased periosteal circumference in ovariectomized female rats
127

. In line with 

these results, a study in pubertal mouse models showed that androgen withdrawal, 

as induced by orchidectomy decreased radial bone growth in male mice during late 

puberty
128

. Ovariectomy, on the other hand, increased radial bone expansion 

during early puberty. These observations led to the traditional concept that 

androgens stimulate male bone size whereas estrogens limit female bone size. The 

recent finding that estrogen deficiency on top of androgen withdrawal further 

reduced radial bone expansion in early pubertal male mice, partly challenges this 

concept
128

. Furthermore, the essential role of estrogens in bone mass acquisition is 

illustrated by the low bone mass of transgenic mice lacking aromatase or ER 

α
129,130

. In addition, experimental studies in juvenile ovariectomized rabbits have 

demonstrated that E2 accelerates the programmed senescence in the proliferation 

rate and number and size of chondrocytes, leading finally to epiphyseal plate 

fusion
131

.  

There are only two reports available on the effects of sex steroids on bone mass in 

healthy male children and adolescents. Both reports used DXA to evaluate aBMD. 

Pomerant et al. (2007), found that T was a significant positive predictor of whole 

body and lumbar spine aBMD in healthy male adolescents. Since they did not study 

E2 concentrations, they cannot exclude that the positive association between T and 

aBMD is in fact an E2 effect, related to the aromatization of T
132

. In a study of 83 

pubertal boys, Yilmaz et al. (2005) showed a strong positive association of E2 with 

whole body and lumbar spine aBMD
38

.  

1.1.1.3.2 EFFECT OF GH-IGF-1 AXIS ON BONE MASS ACQUISITION 

Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) are important 

hormonal contributors to bone mass accrual during childhood and 

adolescence
72,133,134

. During puberty GH and IGF-1 levels increase dramatically, 

augmented by the increasing levels of sex steroids
135,136

. In turn, GH and IGF-1 

stimulate gonadal sex steroid secretion and potentiate their effect on bone
137–139

. 
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GH action on bone is mainly mediated through IGF-1 which positively affects bone 

formation by stimulating osteoblast proliferation and differentiation and collagen 

synthesis. Moreover, it activates bone modelling and remodelling
140–143

.  

Several investigators reported low aBMD -measured by DXA- in GH-deficient 

children, however these differences are probably due to the difference in bone size 

compared to healthy controls
133,144,145

. A pQCT study in 45 GH-deficient children 

reported a normal cortical vBMD
146

. Furthermore, a quantitative computed 

tomography study in 197 healthy children showed a positive association between 

IGF-1 and both total bone cross-sectional area (CSA) and cortical bone area, there 

was however no association between IGF-1 and material density
72

. The effects of 

IGF-1 on bone expansion are supported by GH receptor knock-out and IGF-1 

deficient mouse models which present with a smaller bone size due to a limited 

radial bone expansion during growth
128,147

. The main effects of GH-IGF-1 axis are 

thus on bone size mainly promoting periosteal apposition and increasing cortical 

thickness. Furthermore, GH positively influences bone size by stimulating muscle 

mass
148,149

 and strength
150

. The reduced muscle mass and strength in patients with 

GH deficiency can indeed be improved by replacement therapy
151

. 

1.1.1.3.3 EFFECT OF MUSCLE MASS ON BONE MASS ACQUISITION 

In the early nineties, Frost developed the “mechanostat theory” stating that 

mechanical loading is one of the most important determinants of bone size and 

mass. Mechanical loading due to gravitational forces, weight-bearing or local 

muscle contractions causes stress on the bone surface. This leads to strain or 

deformation of the bone and in order to keep these deformations within safe limits 

the bones are stimulated to adapt and become stronger
152

. The “mechanostat 

theory” therefore states that the increasing muscle mass (and thus muscle force) 

during growth and development stimulates the increase in bone mass (and thus in 

bone strength). A longitudinal study by Rauch et al. (2004) showed that the bone 

mass accrual during childhood and puberty seems to follow gain in muscle mass by 

a few months
153

. It was estimated that mechanical factors account for over 40% of 

bone strength, while non-mechanical ones e.g. calcium, vitamin D and hormonal 

factors only account for up to 10%
154,155

. However, increases in muscle mass are 

also influenced by genetics and hormonal factors as testosterone
156,157

 and the GH-

IGF-1 axis
150,151,156

.  
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Several cross-sectional studies have reported a strong association between bone 

mass and parameters reflecting active mechanical loading such as the level of 

physical activity
158

, muscle mass
70,159

 and muscle strength
160–162

. Firstly, physical 

activity during early childhood and adolescence appears to be an important 

predictor of peak bone mass, since the amount of physical activity may account for 

up to 17% of the variance in BMD between individuals in their late 20s
158

. 

Moreover, the type and timing of an exercise intervention during childhood is 

important. Physical activities, characterized by a considerable loading magnitude 

applied at a rapid rate have the largest osteogenic effects on the growing skeleton: 

jumping and running have for example a higher osteogenic effect than walking
163

. 

In addition, exercise initiated during prepuberty and early puberty appears to be 

the most beneficial in improving bone mass
71

. Secondly, several studies report a 

close association between lean body mass -as a surrogate marker for muscle mass- 

and bone mass (BMC)
70,159

. Moreover, there is a strong positive correlation 

between muscle and bone CSA at the radius in children and adolescents
164

. Thirdly, 

several studies report a positive association between muscle strength -as 

measured by grip strength or peak force using jumping mechanography- and 

parameters of bone strength at the radius or tibia
160–162

. Furthermore, a functional 

relationship between mechanical forces and bone development is supported by 

clinical observations that disease processes interfering with muscle development 

(e.g. muscle dystrophy, spina bifida, poliomyelitis) have a negative effect on bone 

development
165–167

. 

1.1.2 SEXUAL AND SKELETAL DEVELOPMENT IN OBESE BOYS 

1.1.2.1 PUBERTAL DEVELOPMENT AND SEX STEROID LEVELS IN OBESE BOYS 

A multitude of factors affect the timing and tempo of pubertal development, 

including environmental influences. Adequate nutrition is a permissive factor for 

normal pubertal timing and tempo. In the 1970s, Frisch et al.
168,169

 developed the 

critical weight (fat) theory suggesting that a critical body weight of 48 kg or body 

fatness of 22% is necessary for the onset of menarche. The effects of excess 

adiposity on various aspects of pubertal development, such as timing of pubertal 

initiation and sex steroid levels, remain however unclear.  
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Whereas a large number of studies point to a relationship between obesity and 

early puberty and menses in girls
170–172

, data on the effects of obesity on pubertal 

development in boys are scarce and contrasting. Some authors describe an 

advanced sexual maturation in obese boys
170,171,173

, whereas others describe a 

normal
172,174,175

 or even a delayed genital development
172,176–178

.  

Some cohort studies from Sweden
170

 and Danemark
171

 have suggested that boys 

with a higher prepubertal body mass index (BMI) experience an earlier onset of 

puberty. He and Karlberg (2001) followed a large population-based cohort of 3650 

Swedish children and found that the higher BMI gain in children (between 2 and 8 

years old) was related to an earlier onset of puberty (measured using age at peak 

height velocity) in both genders
170

. A more recent study exploring the relationship 

between prepubertal BMI and pubertal onset, assessed by age at onset of pubertal 

growth spurt and age at peak height velocity confirmed that the heavier boys were 

at age 7, the earlier they entered puberty
171

. The same research group described a 

significant association between a higher BMI standard deviation score (SDS) and 

earlier age at voice break
173

. 

Denzer et al. (2007), reported however a normal genital development in a group of 

582 German boys in comparison with the historical Swiss standard of Largo and 

Prader
174,179

. Laron et al. (2004) also reported in a short communication no 

difference in pubertal timing among 136 obese boys and 48 non-obese Israelian 

boys
175

.  

A longitudinal study in US boys by Lee et al. (2010) showed that a higher BMI 

during early and middle childhood was associated with a later onset of puberty as 

assessed by Tanner genital staging
176

. Similar results were found in a large cross-

sectional study on 1520 boys (aged 8 to 14 years). Subjects were classified as early 

maturers if they reached a Tanner genital stage earlier than the median age for that 

stage within the cohort; otherwise, they were categorized as late maturers. In this 

study, boys with a higher BMI were more likely to be classified as late maturers
177

. 

Kleber et al. (2011) reported that obese boys had a later pubarche and voice break 

compared to their normal-weighted peers
178

. In the same line, Vignolo et al. (1988) 

showed that obese boys did not mature earlier than normal, in fact about one fifth 

had a delayed genital development
172

. 
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These discordant findings in boys can be partly explained by differences in the 

studied populations and different methodology used in assessing puberty. Most of 

the cohort studies assessed influences of BMI on sexual maturation in groups of 

healthy children with limited data on the proportion of truly obese 

children
170,171,173,176,177

, whereas others assessed differences in sexual maturation 

between obese children and healthy controls
174,175,178

. Furthermore, pubertal 

development in boys is more difficult to ascertain on a large scale compared to 

girls. Whereas age of menarche is often used as a reliable marker of pubertal 

timing in girls
180,181

, no such characteristic event in puberty exists in boys and 

clinical examination of boys is usually required for such an assessment. Few 

studies have used a direct assessment of pubertal stage using the Tanner 

method
174–178

, most frequently surrogate markers of pubertal onset/progression as 

age at peak height velocity or voice breaking are used
170,171,173

. This might explain 

part of the observed differences between studies. Since boys attain peak height 

velocity only when they reach Tanner stage 3182, an earlier onset of peak height 

velocity could represent an earlier progression of puberty rather than an earlier 

initiation of puberty or could represent simply accelerated growth independent of 

puberty. Several cross-sectional studies have shown that obese children tend to be 

taller and to present an acceleration of skeletal maturation compared to normal-

weight boys
172,174,178,183

. A longitudinal study by Johnson et al. (2012) showed that 

during prepuberty obese children already have higher height velocity and 

accelerated skeletal maturation
184

. The peak differences in height and skeletal 

maturity were respectively 3 cm and one year, both reached around the age of 13 

years. These differences then diminished so that by the age of 18 years 

overweighted or obese adults were not significantly different in stature compared 

to their normal-weight peers.  

Furthermore, few specific data regarding gonadotropins and sex steroids are 

available in obese boys. In prepubertal obese boys increased TT 

concentrations
185,186

, as well as normal
187,188

 and low TT levels have been 

described
174

. Reinehr et al. (2005) found higher TT concentrations in group of 81 

prepubertal obese boys using a chemiluminescence immunoassay (ECLIA)
185

. 

These results were confirmed by the same research group on a group of 40 obese 

boys and girls using LC-MS-MS
186

. A small study on 6 prepubertal obese boys by 
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Pintor et al. (1984) found no differences in TT levels determined by radio-

immunoassay (RIA) compared to lean controls
187

. Similar results were found by 

Gascon et al. (2000); no difference in TT by an enzyme immunoassay (EIA) was 

found between 61 boys and girls and their lean controls
188

. Denzer et al. (2007) 

found lower TT values in prepubertal children using RIA compared to age-related 

laboratory reference data. No data on pubertal development in the reference 

population were available
174

 (table 3). 

In adolescence, normal
185

, as well as decreased TT concentrations have been 

reported
174,189–191

. Reinehr et al. (2005) reported no difference in TT concentrations 

between 60 early pubertal obese boys and their 18 normal-weighted controls using 

ECLIA
185

. However, most other studies reported decreased TT concentrations at 

different pubertal stages. Denzer et al. (2007) found lower TT concentrations in 

boys aged 8-18 years using RIA
174

. A small study of 20 males aged between 12-19 

years (Tanner stage ≥2) found lower TT concentrations using an ECLIA 

methodology in obese and type 2 diabetic males (DM) as compared to lean 

males
190

. Similarly, Taneli et al. (2010) found that TT concentrations determined by 

ECLIA at Tanner stage 2 and 4 were lower in obese boys as compared to lean 

boys
189

 (table 3). Several of these studies also described lower SHBG 

concentrations in obese boys
174,185,188,189

. As approximately half of TT is bound to 

SHBG, it is likely that the lower SHBG concentrations can at least partly account for 

the lower TT concentrations in obese boys. 



 

  

Table 3: Summary of published studies that have compared total testosterone concentrations in obese and lean boys. 

First author  Population Controls Age (y) Used Method TT (nmol/l)a 

Pintor, 1984187 6 obese boys (G1) 
6 obese boys (G2) 

6 lean boys (G1) 
6 lean boys (G2) 

7-11 RIA G1: 
 
G2: 
 

Obese:0.9±0.2 
Lean:1.0±0.1 
Obese:1.0±0.2 
Lean:1.3±0.1 

Gascon, 2000188 61 obese children (G1) 61 lean controls (G1)  6-9 EIA G1: 
 

Obese:0.6±0.03 
Lean:0.7±0.03 

Reinehr, 2005185 81 obese boys (G1) 
60 obese boys (G2) 

24 lean boys (G1) 
18 lean boys (G2) 

4-14 ECLIA G1*: 
 
G2:  
 

Obese:0.6(0.1-1.0) 
Lean:0.1(<0.1-0.4) 
Obese:3.1(0.9-5.2) 
Lean:3.0(0.4-5.8) 

Denzer, 2007174 582 obese boys Age-related reference 
values 

6-18 RIA Obese: 
 

12-14y:4.4±4.7 
14-16y:9.4±6.0 
16-18y:14.8±6.0 

Moriarty, 2010190 6 obese non-DM boys 
7 obese DM boys 

7 lean boys 12-19 ECLIA Obese*: 
Obese* DM: 
Lean: 

10.4±(N/A) 
6.9±(N/A) 
17.4±(N/A) 

Taneli, 2010189 20 obese boys (G2) 
20 obese boys (G4) 

20 lean boys (G2) 
20 lean boys (G4) 

11-17 ECLIA G2*: 
 
G4*: 
 

Obese:1.1±0.8 
Lean:4.1±4.2 
Obese:5.6±4.2 
Lean:9.2±5.2 

Mogri, 2013191 25 obese boys (G4-G5) 
 

25 lean boys (G4-G5) 14-20 LC-MS-MS G4-G5*: 
 

Obese:10.5±5.2 
Lean: 21.4±8.3 

Reinehr, 2013186 40 obese children (G1) 40 lean controls (G1) 6-10 LC-MS-MS G1*:  
 

Obese: 0.5(0.4-0.7) 
Lean: 0.4(0.3-0.5) 

aComparison of total testosterone concentrations (TT) expressed as median (P25-P75) or mean±SD between obese and lean children at different 
pubertal stages (G1: Tanner genital stage 1; G2: Tanner genital stage 2; G4: Tanner genital stage 4; G5: Tanner genital stage 5) * significant 
difference; DM: diabetes mellitus; N/A: not available. 
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Almost no data are available on FT levels in obese children. Mogri et al. (2013) 

showed that obese late pubertal and post pubertal males (aged 14-20 y) had 

significantly lower FT concentrations compared to their lean counterparts. Taneli 

et al. (2010) found lower FT in obese boys at Tanner stage 2, but not at Tanner 

stage 4
189

 (table 4). However, in the latter study FT concentrations were measured 

by direct RIA, an inaccurate method, which underestimates FT concentrations by 

manifold and is strongly dependent upon SHBG concentrations
192,193

. 
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Table 4: Summary of published studies that have compared free testosterone 

concentrations in obese and lean boys. 

First author Population Controls Age 
(y) 

Used 
Method 

FT (nmol/l) 

Taneli, 
2010189 

20 obese boys 
(G2) 
20 obese boys 
(G4) 

20 lean boys 
(G2) 
20 lean boys 
(G4) 

11-17 RIA G2*: 
Obese:0.01±0.01 
Lean: 0.02±0.02 
G4: 
Obese:0.04±0.03 
Lean: 0.03±0.02 

Mogri, 
2013191 

25 obese boys  
(G4-G5) 

25 lean boys  
(G4-G5) 

14-20 Equilibrium 
dialysis 

G4-G5* 
Obese:0.26±0.11 
Lean: 0.44±0.18 

Comparison of free testosterone concentrations (FT) expressed as mean±SD between obese 
and lean boys at different pubertal stages (G2: Tanner genital stage 2; G4: Tanner genital 
stage 4; G5: Tanner genital stage 5)* significant difference. 

Whereas high E2 levels are well-described in adult obese populations
194,195

, little 

data is available in obese children. Most studies did not find a difference in E2 

levels between obese boys and lean controls
183,187,189,191

. A small study on 6 

prepubertal obese boys and 6 pubertal boys found no differences in E2 levels using 

RIA compared to lean controls
187

. Similar results were found in a study of Klein et 

al. (1998) on 18 obese boys and girls using a bioassay
183

. Taneli et al. (2010) 

compared E2 levels, measured with ECLIA, of obese boys at G2 and G4 to lean boys 

and did not find any difference in E2 levels between both groups
189

. A recent study 

of Mogri et al. (2013) did not find a significant difference in E2 levels measured by 

LC-MS-MS between 25 late and post pubertal obese boys and their lean peers
191

 

(table 5).  
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Table 5: Summary of published studies that have compared estradiol 

concentrations in obese and lean boys. 

First author  Population Controls  Age 
(y) 

Used 
method 

E2 (pmol/l) 

Pintor, 
1984187 

6 obese boys 
(G1) 
6 obese boys 
(G2) 

6 lean boys 
(G1) 
6 lean boys 
(G2) 

7-11 RIA G1: 
Obese:183±29.3 
Lean:176±11.0 
G2: 
Obese:146±16.0 
Lean:172±18.3 

Klein, 
1998183 

18 obese boys 
and girls  
(G1 or G2) 

30 lean boys 
and girls 
(G1 or G2) 

6-12 Bioassay Obese:4.6 ±4.3 
Lean:6.7±7.3 

Taneli, 
2010189 

20 obese boys 
(G2) 
20 obese boys 
(G4) 

20 lean boys 
(G2) 
20 lean boys 
(G4) 

11-17 ECLIA G2: 
Obese:84±16.5 
Lean:77±8.4 
G4: 
Obese:94±21.2 
Lean:92±30.9 

Mogri, 
2013191 

25 obese boys  
(G4-G5) 
 

25 lean boys  
(G4-G5) 

14-20 LC-MS-MS G4-G5: 
Obese:76±36.3 
Lean:66±40.7 

Comparison of estradiol concentrations (E2) expressed as mean±SD between obese and lean 
boys at different pubertal stages (G1: Tanner genital stage 1; G2: Tanner genital stage 2; G4: 
Tanner genital stage 4; G5: Tanner genital stage 5) 

Poor assessment of Tanner genital staging, small study groups
183,187,189,191

, lack of an 

age-matched control group
174

 and the use of direct immunoassays for TT and E2 

determination
183,185,187,189,190

 can partly explain these discordant findings between 

studies.  

1.1.2.2 SKELETAL DEVELOPMENT IN OBESE BOYS 

Childhood obesity has been linked to an increased risk of skeletal fractures as 

obese children were overrepresented in studies reporting on fracture rates in 

children
196–202

. Taylor et al. (2006) showed in their review a significant increase in 

fracture rate in obese children compared to their non-obese counterparts
196

. These 

results were confirmed by a recent study of Rana et al. (2009) showing a higher 

incidence of extremity fractures after trauma in obese children
200

. Goulding et al. 

showed that overweight boys are overrepresented in groups with single and 

repeated forearm fractures
197,198

. In addition to these results Manias et al. (2006) 
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indicated that children with recurrent fractures had a higher BMI than children 

with only one or no fractures
202

. Furthermore, several cross-sectional studies 

stated that a higher BMI is also associated with a higher risk for lower extremity 

fractures
199,201

. The exact mechanisms contributing to this increased fracture risk 

are however unclear. Possible explanations are an increased impact during falls 

due to a higher body mass
203

, an increased risk of falling due to a poorer balance 

and/or a decreased protective response
204–206

 and a higher fracturing rate caused 

by a lower bone mass
197,207

.  

Controversy exists about the effect of obesity on BMD. Some authors report a 

normal or higher bone mass in overweight children
208–213

, whereas others conclude 

that obesity is linked to a lower bone mass as measured by DXA
197,207,214–216

.  

Several cross-sectional and longitudinal studies have reported a negative 

association of fat mass with BMC
214–216

, BMD
214,216

 and bone area
214,215

 measured by 

DXA in healthy children (table 6). Dimitri et al. (2010) reported a negative 

association between fat mass and lumbar spine and whole body aBMD and, 

between fat mass and lumbar spine area
214

. In line with these results, fat mass 

measured at the age of 3.4 y was inversely related to bone area and BMC at the age 

of 7 years
215

. Weiler et al. (2000) showed that increased body fat had a negative 

effect on attaining peak bone mass and BMC in adolescents
216

. Foley et al. (2009) 

assessed potential factors that may lead to deviation in bone mass tracking during 

skeletal growth and maturation. They found that an increase in fat mass resulted in 

a negative deviation from normal bone mass tracking in both sexes. Furthermore, 

there are several case-control studies reporting a low aBMD in obese and 

overweight children compared to lean controls
207,217

. Goulding et al. (2002) 

reported that overweight and obese children have a low vertebral BMC for their 

bone area, body height, body weight and pubertal development
217

. In another 

study, the same group reported that total body BMC was low relative to body 

weight in the overweight and obese children207 (table 7).  
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Table 6: Summary of published studies evaluating the associations between 

fat mass and lumbar spine and whole body areal bone mineral density, bone 

mineral content and bone area. 

First 
author 

Population Age (y) Association  
fat mass–aBMD 

Association  
fat mass–BMC 

Association  
fat mass–area 

Weiler, 
2000216 

61 children 10-19 WB aBMD:- WB BMC:- N/A 

Clark, 
2006211 

3503 children 10  N/A WB BMC:+ WB area:+ 

Wosje, 
2009215 

215 children 3.5-7 N/A WB BMC:- WB area:- 

Dimitri, 
2010214 

52 obese and 
51 lean 
children 

7-14  WB aBMD:- 
LS aBMD:- 

WB BMC:- 
LS BMC:- 

WB area: no 
association 
LS area:- 

Associations between fat mass and lumbar spine (LS) and whole body (WB) areal bone 
mineral density (aBMD), bone mineral content (BMC) and bone area: (+) positive association, 
(-) negative association, (N/A) no data available. 



 

  

Table 7: Summary of published studies that have compared lumbar spine and whole body areal bone mineral density, 

bone mineral content and bone area using DXA in obese and lean boys. 

First author Population Controls Age (y) aBMD  
obese vs. lean 

BMC 
obese vs. lean 

Bone area 
obese vs. lean 

De Schepper, 1995209 59 obese children 59 lean children 6-15.6 LS aBMD= N/A N/A 

Fischer, 2000208 16 obese children 16 lean children 5-13  WB aBMD*↑ 
Hip aBMD= 
LS aBMD= 

WB BMC*↑ N/A 

Hasanoglu, 2000210 37 obese children 37 lean children 5-15  LS aBMD = N/A N/A 

Goulding, 2000207 39 overweight  
21 obese children 

276 lean 
children 

3-19 N/A WB BMC*↓ WB area*↓ 

Goulding, 2002217 45 overweight  
18 obese children 

299 lean 
children 

3-19 N/A LS BMC* ↓ LS area girls*↓ 
LS area boys= 

Leonard, 2004213 103 obese children 132 lean 
children 

4-20  WB aBMD*↑ 
LS aBMD*↑ 

WB BMC*↑ 
LS BMC*↑ 

WB area*↑ 
LS area*↑ 

Rocher, 2008212 20 obese prepubertal 
children 

23 lean controls 9-12  WB aBMD= 
LS aBMD*↑ 

WB BMC*↑ 
LS BMC*↑ 

WB area*↑  
LS area= 

Comparison of mean lumbar spine (LS) and whole body (WB) areal bone mineral density (aBMD), bone mineral content (BMC) and bone area 
between obese children and lean controls. (↑) higher aBMD, BMC or bone area in the obese boys compared to healthy controls, (↓) lower aBMD, 
BMC or bone area in the obese boys compared to healthy controls, (=) similar aBMD, BMC or bone area in the obese boys compared to healthy 
controls, (N/A) no data available. * significant difference 
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In contrast, several other studies conclude that obesity is linked to a normal
208–

210,212
 or a higher aBMD

208,211,213
 as measured by DXA (table 6 and table 7). Cross-

sectional analysis of a large cohort of British prepubertal children demonstrated a 

strong positive relationship between whole body fat mass and whole body BMC 

and area, before and after adjustment for height and lean mass
211

. Several case-

control studies showed a normal
208–210,212

 or increased aBMD
208,212,213

 at the lumbar 

spine and the whole body. A study by Leonard et al. (2004) showed that obese 

children and adolescents had increased vertebral and whole body aBMD and bone 

area compared to lean controls. The observed differences remained after 

adjustments for height and pubertal stage, except for the difference in lumbar bone 

area
213

. Rocher et al. (2008), found similar results, however after adjustment for 

body weight or lean mass obese children had a lower whole body aBMD than their 

controls
212

. 

The observed differences between studies can partly be explained by differences 

within the studied populations (groups of healthy children versus case-control 

studies of obese boys and lean controls), and the use of DXA technique to evaluate 

bone strength accompanied by the use of different adjusting factors in the different 

studies. An important limitation of DXA is the two-dimensional projection of a 

three-dimensional structure, so that the third dimension of the bone i.e. the depth 

is not taken into account. Bones in taller persons are longer, wider and deeper; 

however, DXA bone area only captures the larger bone length and width and not 

the greater depth. Therefore, aBMD overestimates vBMD of tall persons. 

Consequently, assessment of aBMD for age is biased by the increased stature in 

obese children. It is therefore important to correct for differences in body size 

namely height. On the other hand, some studies also additionally correct for body 

weight in their obese groups
207,212,217

, thereby using an overadjusted model. 

Furthermore, DXA gives no information about bone geometry. Prediction of bone 

strength requires knowledge of both the material (e.g. vBMD) and geometric 

properties of bone (e.g. size and shape)
218

. Therefore, pQCT is a more useful 

approach in bone strength analysis since it can provide three-dimensional 

information about BMD, size and shape overcoming some of the problems intrinsic 

to the DXA technique
219

.  
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Literature on the effects of adiposity and obesity on vBMD and bone size in 

children is scarce and contrasting
220–222

. Some cross-sectional and longitudinal 

studies have reported a negative association between fat mass and vBMD
223,224

 and 

bone area
223

, however others have described a positive association between fat 

mass and bone area
224,225

 in healthy children (table 8). In contrast, the two 

available case-control studies comparing obese prepubertal children and lean 

controls reported a higher vBMD and bone area in the obese group
220,221

. 

Wetzsteon et al. (2008) described a larger total vBMD, bone area and bone 

strength parameters at the tibia in overweight children
220

. These results were 

confirmed by Ducher et al. (2009) who found a significantly larger bone size and 

trabecular density at both the forearm and the lower leg in the overweight 

group
221

. No difference in cortical density of the long bones could be found in either 

study
220,221

. Only one study was performed in late childhood and adolescence. 

Ehehalt et al. (2011) found in a group of 84 overweight children (mean age 12 

years) an altered bone structure at the radius: cortical vBMD was decreased, bone 

circumferences were larger, whereas the cortex was thinner compared to normal-

weight peers
222

 (table 9). 
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Table 8: Summary of published studies evaluating the associations between 

fat mass and vBMD and bone area 

First author  Population Age 
(y) 

Measure 
site 

Association  
fat mass–
vBMD 

Association  
fat mass–bone 
area 

Wey, 2011223 138 boys 8-18 radius - - 

Cole, 2012224 132 children 6  tibia - + 

Uusi-Rasi, 
2012225 

34 adult men 
with childhood 
obesity 

36  radius 
tibia 

no 
association  

+ 

Associations between fat mass and volumetric bone mineral density (vBMD) and bone area at 
the radius and tibia: (+) positive association, (-) negative association. 



 

  

Table 9: Summary of published studies that have compared vBMD and bone size using pQCT in obese and lean boys 

First author  Population Controls Age (y) Measure site vBMD 
obese vs. controls 

Bone size 
obese vs. controls 

Wetzsteon, 
2008220 

143 overweight 
children  

302 lean 
children 

8-12 tibia 8% 
         66% 

total vBMD*↑ 
cortical vBMD= 

total area*↑ 
cortical area*↑ 

Ducher, 2009221 93 overweight 
children 

334 lean 
children 

7-10 radius 
tibia 

trabecular vBMD*↑ 
cortical vBMD= 

total area*↑ 
cortical area*↑ 

Ehehalt, 2011222 84 obese children reference 
values 

5-19  radius cortical vBMD↓ marrow area↑ 
cortical thickness↓ 

Comparison of mean volumetric bone mineral density (vBMD) and bone size at the radius and tibia between obese children and lean controls. 
(↑) higher vBMD or larger bone area in the obese boys compared to healthy controls, (↓) lower vBMD or smaller bone area in the obese boys 
compared to healthy controls, (=) similar vBMD or bone area in the obese boys compared to healthy controls *significant difference 
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1.2 RESEARCH OBJECTIVES  

1.2.1 GENERAL AIMS  

From infancy until young adulthood there is a progressive accumulation of bone 

mass in males with a rapid increase of bone mass during puberty. Sex steroids, the 

GH–IGF-1 axis and muscle mass are considered to be the main determinants of 

pubertal bone mass. However, little data is available on the relative contribution of 

androgens versus estrogens in the regulation of the build-up of the male skeleton 

during adolescence. Moreover, data on the possible role of adrenal steroids during 

prepuberty and early puberty are scarce. Most of the available information is based 

on some human experiments of nature and bone studies in sex steroid receptor 

inactivated transgenic mouse models, indicating that E2 plays an essential role in 

skeletal maturation and peak bone mass acquisition.  

Moreover, the limited available literature on associations between adrenal and 

gonadal steroids and bone development is hampered by the use of inaccurate 

immunoassays to determine sex steroids and the use of the DXA technique to 

evaluate BMD and bone area. Commercial immunoassays are unable to measure 

low estrogen and androgen levels accurately in children and adolescents. DXA 

studies are limited by the size dependence of aBMD, which is especially important 

in growing children. Moreover, this technique gives no information about bone 

geometry.  

In a first part of our research we study determinants of epiphyseal maturation and 

bone development in healthy prepubertal and pubertal boys with a specific 

interest in the associations between sex steroids and skeletal maturation, vBMD 

and bone geometry using state of the art techniques namely pQCT to evaluate 

vBMD and bone geometry and LC-MS-MS to determine the sex steroid 

concentrations as required when studying low androgen and estrogen serum levels 

in children (chapter 2). 

To further unravel the essential role of sex steroids, more specifically estrogens, on 

epiphyseal maturation and bone mass acquisition, a second part of our research 

consists of the study of bone parameters and sex steroids in a well-defined group 

of children and adolescents with longstanding obesity. By using childhood obesity 
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as a model of increased estrogen production during childhood and adolescence, we 

aim to investigate the effects of high estrogen (E1 and E2) levels on skeletal 

maturation, vBMD and bone geometry. While it is well-known that adult obesity is 

associated with high circulating E2 levels due to an increased aromatization in fat 

mass, data on serum E2 levels in obese children are scarce. Moreover, only very 

limited and contrasting data have been published concerning pubertal 

development and circulating TT and FT levels in obese adolescents. Firstly, we 

describe the pubertal development and the sex steroid levels (E2 and T) in a 

sizeable well-described group of obese adolescents in comparison to age-matched 

controls. Sex steroid levels (E2 and T) are measured by LC-MS-MS and Tanner 

genital staging is determined by trained pediatricians. Secondly, we study the 

possible effects of disturbed sex steroid levels on vBMD, bone size and skeletal 

maturation using pQCT (chapter 3). 

1.2.2 SPECIFIC AIMS 

The first part of our research (chapter 2) focusses on the associations between sex 

steroids and parameters of bone strength and skeletal maturation in healthy boys. 

Our first objective is to investigate the determinants of bone strength in healthy 

children and adolescents with a specific interest in the associations of adrenal and 

gonadal steroids with bone size and (v)BMD. In chapter 2.1, we study the 

associations of adrenal steroids (DHEAS, A and E1) with (v)BMD and bone 

geometry in prepubertal and early pubertal children. Only prepubertal and early 

pubertal boys were selected, to investigate if adrenal steroids might impact on 

(v)BMD and bone size before pubertal development. Chapter 2.2 reports on the 

associations of sex steroids, namely E2 and T, with (v)BMD and bone size during 

late childhood and adolescence. Based on the available results from bone studies in 

sex steroid receptor inactivated transgenic mouse models and some case reports of 

men with estrogen resistance or aromatase deficiency, we hypothesize that during 

adolescence circulating E2 levels will be positively associated with (v)BMD and 

circulating T levels will be positively associated with bone size. We also 

hypothesize that similar associations between adrenal steroids and (v)BMD and 

bone size might be found during pre- and early puberty. 
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Our second objective is to study the associations between adrenal steroids (DHEAS, 

A, E1) and gonadal steroids (FE2, E2, FT and TT) and bone maturation in healthy 

children and adolescents. The results of these studies are discussed in chapter 2.1 

and chapter 2.2. Based on literature on estrogen resistant and aromatase deficient 

men, we hypothesize that estrogens levels (E1 and E2) will be positively associated 

with bone maturation. 

In the second part of our research (chapter 3), we studied male adolescents with 

primary obesity to investigate the effects of high estrogen levels on skeletal 

maturation, vBMD and bone geometry. In chapter 3.1 the differences in sex steroid 

levels (TT, FT, E2) in parallel with skeletal and sexual maturation in obese boys 

compared to healthy controls are given.  

Our first objective is to clarify if sex steroid levels (TT, FT, E2) are indeed disturbed 

in obese adolescents. Secondly, we want to investigate if these possible 

disturbances have an effect on sexual maturation (evaluated by genital 

development and serum PSA levels) and skeletal maturation (evaluated by X-ray of 

the left hand) in obese boys. We hypothesize a normal genital development in 

association with normal FT concentrations and a more rapid skeletal maturation in 

relation to increased E2 levels. Our third objective is to analyze whether the 

observed hormonal differences in adolescent obesity might result in a different 

bone size or vBMD. Previous studies on vBMD and bone size in obese adolescents 

are scarce and their results are contrasting. Therefore, vBMD and bone size of a 

group of obese adolescent boys and age-matched controls are studied in parallel 

with sex steroids and muscle strength in chapter 3.2. We hypothesize that the 

higher estrogen levels will be associated with a higher vBMD.  
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1.3 STUDY POPULATIONS 

1.3.1 HEALTHY BOYS AGED 6-19 Y 

All analyses presented in chapter 2.2 were performed on a cohort of one hundred 

and ninety-nine healthy male children and adolescents aged between 6 and 19 

years (mean age: 12.5 years). Participants were recruited by letters distributed in 

primary and secondary schools within the Ghent area. Two hundred and six 

children participated in our study, however 7 were excluded. Children were 

excluded if they were taking medication known to influence bone or mineral 

metabolism in the past year or if they had a metabolic bone disease, thyroid 

disorder or diabetes, if their height standard deviation score (SDS) was <-2.5 or 

>2.5 or if their BMI SDS was <-2 or >2. The study protocol was approved by the 

Ghent University Hospital Ethical Committee. Informed consent was obtained from 

the parents and all participants gave their assent. Blood sampling, determination of 

anthropometry and Tanner genital staging, an X-ray of the left hand, and 

measurements of bone strength ((v)BMD and bone size) and muscle mass (lean 

mass and muscle CSA) were performed in all participants. This methodology is 

discussed more in detail in chapter 1.4. 

All analyses presented in chapter 2.1 were performed on a subgroup of the 

previous cohort by selecting only prepubertal (Tanner genital stage 1 n=65) and 

early pubertal boys (Tanner genital stage 2 n=33). Ninety-eight healthy male 

children and adolescents aged between 6-14.5 years (mean age: 10.2 years) were 

included in this subgroup; 81 children were pre-pubarchal and 17 children had 

pubic hair stage 2.  

Information about medical history, lifestyle and socio-economic background was 

collected through a questionnaire, which all participants (>12 y) or their parents 

(<12 y) completed. Calcium intake was estimated by a food questionnaire on dairy 

products accounting for the number of standard portions per week which was 

previously validated in adults226. Physical activity was assessed using the Flemish 

Physical Activity Questionnaire
227,228

. 
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1.3.2 OBESE BOYS AGED 10-19 Y 

All analyses presented in chapter 3.1 were performed on a case-control study. 

Ninety male obese (BMI SDS >+2) adolescents, aged between 10 and 19 years, 

were recruited at the entry of a residential weight-loss program at the 

Zeepreventorium in De Haan in 2011 (n=51 obese boys) and 2013 (n=39 obese 

boys). Ninety age-matched normal-weighted controls were randomly selected from 

an ongoing longitudinal study evaluating changes in bone geometry, bone 

maturation and muscle strength in relation to sex steroids in childhood and 

adolescence (study population described in section 1.3.1). Subjects with a history 

of hypogonadism, panhypopituitarism, diabetes, previous or ongoing treatment 

with T or oral steroids were excluded. Blood sampling, determination of 

anthropometry, Tanner genital staging and an X-ray of the left hand were 

performed in all participants. 

The analyses presented in chapter 3.2 were performed on a subgroup of the obese 

study population, namely the obese boys recruited in 2011. These 51 male obese 

(BMI SDS >2) adolescents received in addition to the previously described 

examinations, some additional measurements of bone strength (vBMD and bone 

geometry) and muscle mass using pQCT and muscle strength using jumping 

mechanography. Their results were compared to 51 age- and body height matched 

healthy normal-weighted controls as well as to 51 bone age- and body height 

matched healthy normal-weighted controls, who were randomly selected from an 

ongoing longitudinal study evaluating changes in bone geometry and muscle 

strength in relation to sex steroids in childhood and adolescence (study population 

described in section 1.3.1). Obese and control children were excluded if they were 

taking medication known to influence bone or mineral metabolism in the past year 

or if they had a metabolic bone disease, thyroid disorders or diabetes. Both study 

protocols were approved by the Ethical Committee of the Ghent University 

Hospital. Informed consent was obtained from the parents and all participants 

gave their assent. 
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1.4 METHODS 

1.4.1 ANTHROPOMETRY AND TANNER GENITAL STAGING 

Body weight was measured in light indoor clothing without shoes to the nearest 

0.5 kg. Standing and sitting height were measured to the nearest 0.1 cm using a 

wall-mounted Harpenden stadiometer (Holtain Ltd., Crymuch, UK). Length of the 

forearm (from the olecranon to the processus ulnaris) and the tibia (from the 

medial knee joint line to the tip of the medial malleolus) was measured to the 

nearest 0.1 cm. BMI was calculated as the body weight in kilograms divided by the 

square of the body height in meter. As described in the review of Lobstein et al. 

(2004), BMI is widely used as an index of relative adiposity among children, 

adolescents and adults
229

. As confirmed by Lazarus et al. (1996)
230

 and Sardinha et 

al. (1999)
231

, BMI can be used as reliable index of relative adiposity compared with 

DXA. Lazarus et al. (1996) showed that BMI had a true positive rate of 0.67 and a 

false positive rate of 0.06 for predicting high fat percentage in children 4 to 20 

years old. In a study of Sardinha et al. (1999) BMI had a true positive rate of 0.96 

for 10-11 year old, 0.86 for 12-13 year old and 0.50 for 14-15 year old boys for 

predicting a high percentage of total body fat as assessed by DXA
231

. Waist 

circumference, defined as the smallest abdominal circumference if present or 

otherwise measured halfway between the iliac crest and the rib cage, was 

determined to the nearest 0.1 cm. Waist circumference is regarded as one of the 

most reproducible anthropometric measures of girth and is also the best simple 

indicator of intra-abdominal fat mass in children
232

. All anthropometric 

measurements were performed by the same trained physician. The SDS for body 

height, weight, and BMI was computed using the reference data of the 2004 

Flemish growth study
40

. The SDS for waist circumference was also computed using 

the reference data of the 2004 Flemish growth study (Dr. M. Roelants; 

unpublished).  

Pubertal status of the subjects was assessed by trained pediatricians according to 

the method established by Tanner (Tanner Genital Staging: stage 1: prepuberty; 
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stage 5: post puberty). Testicular volume was determined with use of a Prader 

orchidometer.  

1.4.2 BLOOD SAMPLING AND BIOCHEMICAL ANALYSES 

Blood samples in the healthy children were collected after a small breakfast 

between 0800 and 1000 h to avoid diurnal variation of T and E levels. Venous 

blood samples in the obese group were also obtained between 0800 and 1000 h, 

but after overnight fasting. Cream with 2.5% lidocaine and 2.5% prilocaine (EMLA 

®; Astra Zeneca; UK) was applied to reduce the pain of the puncture, and unusually 

anxious or unwilling children were excluded from blood sampling. A maximum of 

15 ml of blood was drawn (both EDTA-plasma and serum). This was less than 1% 

of the total blood volume in all children which is regarded as an acceptable amount 

in research setting
233

. The obtained plasma and serum was divided in aliquots in 

adequately sealed tubes and stored at -80°C until batch analysis.  

Serum E2, E1, TT, A and cortisol were determined by LC-MS-MS (AB Sciex 5500 

triple-quadrupole mass spectrometer; AB 173 Sciex, Toronto Canada). Serum limit 

of quantification (LOQ) was <0.5 pg/mL (1.9 pmol/L) for E2 and E1 and the 

interassay coefficients of variation (CV's) were 4.0% at 21 pg/mL (77 pmol/L) for 

E2, 7.6% at 25 pg/mL (93 pmol/L) for E1234. Serum LOQ was 1.2 ng/dl for TT and 

the interassay coefficient of variation (CV) was 8.3% at 36.7 ng/dl and 3.1% at 

307.8 ng/dl. Serum LOQ was 4.25 ng/dl for A and the interassay CV was 2.9% at 

59.8 ng/dl. Serum LOQ was 0.05 µg/dl for cortisol and the interassay CV ‘s were 

2.3% at 7.43 µg/dl and 3.1% at 24.7 µg/dl. 

LC-MS-MS is an analytical chemistry technique that combines the physical 

separation capabilities of liquid chromatography (LC) or high performance liquid 

chromatography with the mass analysis capabilities of mass spectrometry (MS). LC 

is a separation technique by which components of a sample are separated 

according to their polarity, electrical charge or molecular size. In general, a liquid 

mobile phase consisting of a mixture of solvents with different polarity is passed 

under high pressure through a column coated with adsorbent material. This 

adsorbent material interacts with the different components of the sample with a 

slightly different strength, resulting in specific retarding of the flow of each 

component
235

. This sample preparation increases the sensitivity of the subsequent 

http://en.wikipedia.org/wiki/Mass_spectrometry
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analysis by mass spectrometry. After separation, the eluate of the chromatography 

column is coupled to a MS detector. MS is an analytical technique that measures the 

mass-to-charge ratio of charged particles. Briefly, the loaded sample undergoes 

vaporization and is most often ionized and subsequently fragmentized into 

charged molecules. There are three different ionization modes namely electrospray 

ionization (ESI), heated nebulizer atmospheric pressure chemical ionization (APCI) 

and atmospheric pressure photoionization (APPI). The ESI ionization source is 

considered more sensitive than the APCI source for polar compounds. However, for 

the nonpolar or lower polar compounds, which comprises most steroid molecules, 

APCI provides a better sensitivity
236

. These ions are then accelerated in a magnetic 

or electric field and are separated according their mass-to-charge ratio by filtering 

on an analyzer. A fragmentation pattern of the molecule is generated and the 

obtained spectrum allows identifications of the fragment ions. The tandem MS in 

LC-MS-MS uses two sequential mass-filtering devices
237,238

. The advantages of 

mass-spectrometry are the high sensitivity and specificity. The limits of 

quantification are very low. Unlike immunoassays, LC-MS-MS allows for measuring 

whole steroid profiles in one single run from one sample. In addition the technique 

requires only small sample volumes (50 to 200 µl) for a complete profile. However, 

using LC-MS-MS requires more technical experience than immunoassays and 

although running costs are affordable the sensitive equipment is expensive
239

. 

Free testosterone (FT) was determined by equilibrium dialysis
240

, CV of the method 

calculated from duplicate measurements is 11.7%. Free estradiol (FE2) was 

calculated from total E2, SHBG and albumin concentrations using a previously 

validated equation derived from the mass action law
241

.  

Commercial immunoassays were used to measure serum IGF-1 (Diagnostic 

Systems Laboratories, Webster, TX), leptin (Linco Research Inc., Missouri, USA), 

SHBG, LH, FSH and DHEAS (Modular, Roche Diagnostics, Mannheim, Germany). The 

intra- and interassay CV’s for all assays were less than 10%. PSA was measured by 

a commercial immunoassay (Elecsys, Roche Diagnostics, Mannheim, Germany). 

The lower detection limit for PSA was 0.003 ng/ml and the intra-assay and 

interassay CV’s were respectively 1.2% and 3.5%.  
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1.4.3 TECHNICAL EXAMINATIONS 

1.4.3.1 DUAL-ENERGY X-RAY ABSORPTIOMETRY (DXA)  

In the group of healthy boys, areal bone parameters (aBMD and bone area) at the 

lumbar spine and whole body, as well as whole body fat and lean mass were 

measured using a commercial DXA densitometer (Hologic QDR 4500, software 

version 11.2.1; Hologic Inc, Bedford, MA). The CV for both spine and whole-body 

calibration phantoms was less than 1%, as calculated from daily and weekly 

measurements, respectively. DXA measurements in the obese population, which 

were performed with a different device, are not reported in this thesis.  

DXA is presently the most used method to assess aBMD as well as whole body soft 

tissue composition. It was first introduced for osteoporosis diagnosis and 

screening in postmenopausal women in the late 1980’s
242

. Since the 1990’s DXA 

measurements are also used in children. However, these measurements have some 

potential problems especially in growing children. Apart from the fact that bones 

change in size, shape and mass, the tempo of change varies by skeletal site and 

individual. An important pitfall of DXA measurements is the fact that it is a 

projection technique, making a two-dimensional image and measurement of a 

three-dimensional structure. The third dimension of the bone i.e. the depth is not 

taken into account. Larger bones with more volume will attenuate more photons 

and will be reported as more dense because of lack of correction for the third 

dimension. Therefore, children with smaller bones may have a lower aBMD than 

children with larger bones despite a similar vBMD. Changes in bone mass during 

longitudinal follow-up due to increased bone size may be misconstrued for 

increased bone density. Additionally bone growth of an individual bone is not 

uniform in the three dimensions making interpretation more challenging
243

. 

Moreover, bone development and thus DXA measurements in children are strongly 

influenced by pubertal stage and bone age, which represents a major challenge as 

to the establishment of relevant reference databases
244,245

. 

DXA has some important advantages; these include the high accessibility, the 

relatively low cost, the rapid scan time, low ionizing radiation dose (effective dose 

whole body: 1.8 µSV; effective dose lumbar spine: 2.2 µSV
246

) and the high 

reproducibility. The major disadvantages of DXA are the inability to obtain 
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separate measurements on cortical and trabecular bone, the lack of information on 

bone geometry and the influence of bone size on aBMD measurements as described 

above
247

.  

1.4.3.2 PERIPHERAL QUANTITATIVE COMPUTED TOMOGRAPHY (PQCT) 

In both study groups, bone variables, estimates of bone strength and regional body 

composition of the forearm and the lower leg were measured using pQCT (Stratec 

XCT-2000, Stratec Medizintechnik). The scanner was positioned on the non-

dominant forearm (radius) and lower leg (tibia). Two 2.0 mm slices (voxel size 0.5 

mm) were measured at the sites respectively 4 and 66% of radius length 

proximally from the distal end of the radius and two slices at the sites 4 and 38% of 

tibia length proximally from the end of the tibia. The CSA of the radius/tibia was 

determined after detecting the outer bone contour at a threshold of 280 mg/cm³. 

For determining cortical vBMD, the threshold was set at 710 mg/cm³, whereas for 

trabecular bone, it was set at 180 mg/cm³. The cortical vBMD (mg/cm³), cortical 

CSA (mm²), muscle and fat CSA (cm²), endosteal and periosteal circumferences 

(mm), and cortical thickness (mm) were measured at the mid-radius (66% of bone 

length from the distal end) and mid-shaft tibia (38% of bone length from the distal 

end). The combined CSA of muscle and bone (fibula and tibia or radius and ulna) 

was determined at a threshold of 40 mg/cm³ and the bone CSA was determined 

with the threshold set at 280 mg/cm³. Muscle CSA was calculated by subtracting 

the bone CSA from the combined muscle and bone CSA. Fat CSA was calculated by 

subtracting the combined muscle and bone CSA from the total CSA. The strength-

strain index (SSIp) of the radius 66% and the tibia 38% was calculated using the 

formula of Schiessl et al. (1996)
248,249

. To assess the SSIp, a threshold of 480 

mg/cm3 was used. Trabecular vBMD (mg/cm³) and area were measured using a 

scan through the distal metaphysis at the radius and the tibia (at 4% of bone 

length). The CSA of radius and tibia was determined after detecting the outer 

margin; 55% of this cross-sectional bone area was peeled off to separate trabecular 

bone from the cortical shell. The CV for the calibration phantom was <1% as 

calculated form daily phantom measurements. 

Peripheral QCT is a non-invasive cross-sectional imaging tool used to assess 

parameters of bone quality of the peripheral skeleton (forearm and lower leg). In 
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addition to providing a measure of tissue mineral density by calculating the three-

dimensional vBMD, pQCT can make a differential assessment between cortical and 

trabecular bone. This is particularly interesting in children since the two types of 

bone tissue respond differently to stimuli such as pubertal changes, mechanical 

forces and disease related stresses. Moreover, it gives additional information about 

bone geometry, estimates of bone strength and estimates of CSA ‘s of muscle and 

fat tissue
250

. Furthermore, the radiation dose is very low (effective radiation dose 

at the radius and tibia is 0.1 µSV). A disadvantage of the pQCT is the difficulty to 

obtain repeated measurements at the same bone site in pediatric longitudinal 

studies due to variations in longitudinal bone growth rates. In addition movement 

can cause errors in locating the measurement site.  

1.4.3.3 X-RAY OF THE LEFT HAND 

Skeletal maturation was evaluated by the Greulich and Pyle method, developed 

from films taken in 1930 and 1940’s
251

. This technique is still the most frequently 

used standard for evaluation of skeletal maturation for children older than 2 years 

and was found to be still applicable in a contemporary pediatric and adolescent 

population in the Netherlands
252

. Skeletal age reading of an X-ray of the left hand 

and wrist was done by two independent readers (two pediatric radiologists), both 

blinded for the chronological age and the mean of both readings was taken. If the 

difference was more than one year a third independent reading (by a trained 

pediatrician) was performed and the two closest estimates were retained. Skeletal 

age differences were calculated by subtracting the chronological age from the 

skeletal age: positive differences reflecting an accelerated skeletal maturation and 

negative differences a delayed bone maturation. The radiation dose of this 

examination was minimal (X-ray left hand: 0.1 µSV)
253

.  

1.4.3.4 MEASUREMENT OF MUSCLE STRENGTH 

Muscle strength in lower limbs in the obese boys and their respective controls was 

evaluated by jumping mechanography, designed to measure muscle force and 

power by deriving measurements from an individual’s ground reaction forces
254,255

. 

All measurements were recorded with the Leonardo Mechanography Ground 

Reaction Force Platform (Novotec Medical GmbH, Pforzheim, Germany). Both the 

multiple one-legged hopping (M1LH) and the single two-legged jump (S2LJ) were 
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analyzed using the Leonardo Mechanography GRFP Research Edition software 

version 4.2-b05.46d. M1LH represents one-legged hopping on the forefoot with the 

aim to achieve a maximal ground reaction force. It evaluates the maximal force to 

which the tibia is exposed, and thus can serve to evaluate the muscle-bone unit. 

The maximal force and the maximal force relative to body mass of the left and the 

right leg were analyzed for this hop. The S2LJ is a vertical counter-movement jump 

to achieve maximum jump height. Parameters of this particular analysis were jump 

height, peak velocity, maximal force, maximal force/body mass, maximal peak 

power, and maximal peak power/body mass
254

. Each subject performed three 

S2LJ’s and the recording with the highest jump height was selected. For the M1LH a 

minimum of 10 accurate jumps had to be performed on each leg. All tests were 

performed between 10 am and 3 pm by the same observer using the same device. 

All subjects were fed and had exerted normal daily activity before the test. The CV 

for the S2LJ and the M1LH was respectively 12.7% and 5.3%
254

.  

1.4.4 STATISTICAL ANALYSES 

For all considered parameters, normality was checked using quantile-quantile-

plots (QQ-plots) and Shapiro-Wilk tests. Data are presented as mean±standard 

deviation or as median (25th–75th percentile) in case of a non-normal distribution. 

To evaluate between-group differences (obese versus normal-weighted boys), 

independent Student t-tests or Mann-Whitney-U tests in case of non-Gaussian 

distribution were used. Between-group differences of categorical variables were 

calculated with χ² tests. To study difference between pubertal stages within the 

healthy controls ANOVA test or Kruskal-Wallis test in case of a non-normal 

distribution was used. Multiple linear regression was used to assess relationships 

between variables taking into account the effect of possible confounding factors. 

When necessary, the analysis was done on Box-Cox transformed data to meet the 

required model assumptions. Box-Cox transformations were performed using 

MedCalc for Windows, version 12.5 (MedCalc Software, Ostend, Belgium). For all 

statistical analyses, p-values <0.05 were considered to indicate statistical 

significance. All descriptive statistical analyses, tests between groups and multiple 

linear regression analyses were performed using SPSS software version 19.0 (SPSS 

Inc., Chicago, IL, USA). 
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2 ASSOCIATIONS OF SEX STEROIDS WITH BONE MASS 

ACQUISITION AND SKELETAL MATURATION IN HEALTHY 

MALE CHILDREN AND ADOLESCENTS 

2.1 RELATION OF ADRENAL-DERIVED STEROIDS WITH BONE MATURATION, 
MINERAL DENSITY AND GEOMETRY IN HEALTHY PREPUBERTAL AND 

EARLY PUBERTAL BOYS 
 

Vandewalle S, Taes Y, Fiers T, Toye K, Van Caenegem E, Kaufman J-M, De Schepper J 

Accepted for publication in Bone 
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ABSTRACT 

Background: Little is known about the effects of adrenal steroids on skeletal 

maturation and bone mass acquisition in healthy prepubertal boys.  

Objective: To study whether adrenal-derived steroids within the physiological 

range are associated with skeletal maturation, areal and volumetric bone mineral 

density (aBMD and vBMD) and bone geometry in healthy prepubertal and early 

pubertal boys. 

Methods: 98 healthy prepubertal and early pubertal boys (aged 6-14 y) were 

studied cross-sectionally. Androstenedione (A) and estrone (E1) were determined 

by liquid chromatography-tandem mass spectrometry and DHEAS was determined 

by immunoassay. Whole body and lumbar spine aBMD and bone area were 

determined by dual-energy X-ray absorptiometry. Trabecular (distal site) and 

cortical (proximal site) vBMD and bone geometry were assessed at the non-

dominant forearm and leg using peripheral QCT. Skeletal age was determined by X-

ray of the left hand. 

Results: Adrenal-derived steroids (DHEAS, A and E1) are positively associated 

with bone age in prepubertal and early pubertal children, independently of age. 

There are no associations between the adrenal steroids and the studied 

parameters of bone size (lumbar spine and whole body bone area, trabecular or 

cortical area at the radius or tibia, periosteal circumference and cortical thickness 

at the radius or tibia) or BMD (aBMD or vBMD).  

Conclusion: In healthy prepubertal and early pubertal boys, serum adrenal-

derived steroid levels, are associated with skeletal maturation, independently of 

age, but not with bone size or (v)BMD. Our data suggest that adrenal-derived 

steroids are not implicated in the accretion of bone mass before puberty in boys.  
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INTRODUCTION  

In boys, estradiol (E2) and testosterone (T), produced in increasing amounts 

during puberty, play an important role in the regulation of bone growth, bone mass 

acquisition and bone maturation
(1,2)

. The contribution of the adrenal-derived 

steroids, which are secreted in increasing amounts from the age of 5-6 years, has 

not been well studied
(3,4,5)

. In animal studies adrenal androgens have been shown 

to accelerate bone maturation and bone growth
(6)

 and several conditions with an 

elevated adrenal secretion such as premature adrenarche and congenital adrenal 

hyperplasia are associated with an advanced skeletal maturation
(7,8,9,10)

 and 

increased areal bone mineral density (aBMD)
(11,12)

. There is, however, little data on 

the possible role of adrenal-derived steroids on bone maturation, areal and 

volumetric bone mineral density (aBMD and vBMD) or bone geometry in 

prepubertal and early pubertal boys. DHEAS and androstenedione (A) can be 

converted to the potent androgens T and dihydrotestosterone (DHT) in target 

tissues, whereas A is aromatized to estrone (E1). The effects of E1, a weaker 

estrogen compared to E2, on bone mass accretion have not been evaluated in 

prepubertal boys.  

Therefore, this study aims to describe for different age groups of healthy 

prepubertal and early pubertal boys, serum levels of adrenal-derived steroids and 

bone maturation, -mineral density (aBMD and vBMD) and -geometry, as well as 

their association. Our working hypothesis is that the rising production of adrenal-

derived steroids from adrenarche might have an impact on bone maturation and 

accrual of bone mass and size in prepubertal and early pubertal healthy boys. 
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METHODS  

SUBJECTS 

Ninety-eight healthy male children and adolescents aged 6-14.5 years (mean age: 

10.2 years) were included in this cross-sectional study. In total 65 were 

prepubertal Tanner genital stage 1 and 33 boys had Tanner stage 2. Eighty-one 

children were pre-pubarchal and 17 boys had pubic hair stage 2. Children were 

excluded if they were taking medication known to influence bone or mineral 

metabolism in the past year or if they had a metabolic bone disease, thyroid 

disorder or diabetes, if their height standard deviation score (SDS) was <-2.5 or 

>2.5 or if their BMI SDS was <-2 or >2. The study protocol was approved by the 

Ethics Committee of the Ghent University Hospital. Informed consent was obtained 

from the parents and all participants gave their assent. Participants were recruited 

by letters distributed in schools within the Ghent area.  

METHODS 

ANTHROPOMETRY AND WHOLE BODY COMPOSITION AND WHOLE BODY AND 

LUMBAR SPINE BONE PARAMETERS BY DXA 

Information on medical history, lifestyle and socio-economic background was 

collected through a questionnaire. Standing height was measured to the nearest 0.1 

cm using a Harpenden stadiometer (Holtain Ltd, Crymuch, UK). Body weight was 

measured in light indoor clothing without shoes to the nearest 0.5 kg. The length of 

the forearm (from the olecranon to the processus ulnaris) and the tibia (from the 

medial knee joint line to the tip of the medial malleolus) were measured with a 

ruler to the nearest 0.1 cm. All anthropometric measurements were performed by 

the same trained physician (SV). Pubertal status was determined by the same 

trained physician (SV) according to the Tanner staging method (Tanner Genital 

Staging: stage 1: prepuberty; stage 2: early puberty). Standard bone parameters at 

the lumbar spine (LS) and whole body (WB) namely LS and WB bone area and LS 

and WB areal BMD, as well as WB fat and lean mass were measured using DXA 

(Hologic QDR 4500, software version 11.2.1; Hologic Inc, Bedford, MA). Areal BMD 

(aBMD) is obtained by dividing bone mineral content by bone area. Since the third 

dimension of the bone i.e the depth is not taken into account, aBMD is strongly 
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bone size dependent. The coefficient of variation (CV) for both LS and WB 

calibration phantoms was less than 1%, as calculated from daily and weekly 

measurements, respectively. 

BONE AGE DETERMINATION 

Bone age reading of an X-ray of the left hand and wrist was done by two 

independent readers (a pediatric radiologist and a pediatrician), both blinded for 

the chronological age, using the Greulich and Pyle method
(13)

. The mean of both 

readings was taken as variable for analysis.  

REGIONAL BODY COMPOSITION AND VBMD AND BONE GEOMETRY PARAMETERS 

BY PQCT 

Standard bone parameters, estimates of bone strength(14) and regional body 

composition of the non-dominant forearm (radius) and the lower leg (tibia) were 

measured by pQCT (Stratec XCT-2000, Stratec Medizintechnik, Germany, version 

6.0) which can provide three-dimensional information about bone mineral density 

(BMD), size and shape. A 2.0 mm slice (voxel size 0.5 mm) was performed at the 4 

and 66% sites proximally from the distal end of the radius and at the 4 and 38% 

site proximally from the distal end of the tibia. Due to movement artefacts, radius 

66% measurements of only 76 boys could be analyzed. The cross-sectional area 

(CSA) of the radius/tibia was determined after detecting the outer bone contour at 

a threshold of 280 mg/cm³. For determining cortical vBMD, the threshold was set 

at 710 mg/cm³, whereas for trabecular bone, it was set at 180 mg/cm³. The cortical 

vBMD (mg/cm³), cortical CSA (mm²), muscle and fat CSA, endosteal and periosteal 

circumferences (mm), and cortical thickness (mm) were measured at the mid-

radius (66% of bone length from the distal end) and mid-shaft tibia (38% of bone 

length from the distal end). The combined CSA of muscle and bone (fibula and tibia 

or radius and ulna) was determined at a threshold of 40 mg/cm³ and the bone CSA 

was determined with the threshold set at 280 mg/cm³. Muscle CSA was calculated 

by subtracting the bone CSA from the combined muscle and bone CSA. Fat CSA was 

calculated by subtracting the combined muscle and bone CSA from the total CSA. 

The strength-strain index (SSIp) of the radius 66% and the tibia 38% was 

calculated(14). To assess the SSIp, a threshold of 480 mg/cm3 was used. Trabecular 



 72 

vBMD (mg/cm³) and area were measured using a scan through the distal 

metaphysis at the radius and the tibia (at 4% of bone length). The CSA of the 

radius/tibia was determined after detecting the outer margin; 55% of this cross-

sectional bone area was peeled off to separate trabecular bone from the cortical 

shell. The CV for the calibration phantom was <1% as calculated form daily 

phantom measurements.  

HORMONAL MEASUREMENTS 

Venous blood samples were collected between 0800 and 1000 h after a small 

breakfast. Serum samples were stored at –80°C until batch analysis. Commercial 

immunoassays were used to measure serum DHEAS, SHBG, LH and FSH (Modular, 

Roche Diagnostics, Mannheim, Germany). The intra- and interassay CV’s for these 

assays were less than 10%. The lower detection limit for DHEAS was 5 µg/dl and 

the interassay CV was 2.7% at 157.3 µg/dl. E1, E2, A, T and cortisol were 

determined by liquid chromatography-tandem mass spectrometry (AB Sciex 5500 

triple-quadrupole mass spectrometer; AB Sciex, Toronto Canada). Serum limit of 

quantification (LOQ) was <0.5 pg/mL (1.9 pmol/L) for E2 and E1 and the 

interassay CV was 4.0% at 21 pg/mL (77 pmol/L) for E2 and 7.6% at 25 pg/mL (93 

pmol/L) for E1 
(15)

. Serum LOQ was 1.2 ng/dl for T and the interassay CV was 8.3% 

at 36.7 ng/dl and 3.1% at 307.8 ng/dl. Serum LOQ was 4.25 ng/dl for A and the 

interassay CV was 2.9% at 59.8 ng/dl. Serum LOQ was 0.05 µg/dl for cortisol and 

the interassay CV‘s were 2.3% at 7.43 µg/dl and 3.1% at 24.7 µg/dl. 

STATISTICS 

Normality was checked using quantile-quantile plots. Data are presented as 

mean±standard deviation or as medians (25th–75th percentile) in case of a non-

normal distribution. Differences between the age categories were evaluated using 

ANOVA, when criteria for normality were met. We used LSD test as post-hoc test. In 

case of a non-normal distribution, Kruskal-Wallis tests were performed. The 

independent predictors of the various bone geometry, -density and -maturation 

parameters were tested using linear regression analysis including age, height for 

the analyses of the DXA parameters and bone length for the analyses of the pQCT 

parameters, body weight and serum E1, A or DHEAS levels. The difference was 
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considered statistically significant at p<0.05. Data were analyzed using SPSS 

software version 19.0. 

Based on the available literature
(16,17,18)

, sample size calculations were performed 

using G*power (version 3.1.5) (α: 0.05; ß: 0.20). We calculated a necessary sample 

size of 10 to 14 children in each age-group to discern the published differences in 

bone size between the different age groups. To detect the effects of adrenal 

steroids on bone density and bone size, a sample size between 73 and 125 children 

was needed depending on the studied parameter.  

RESULTS 

ANTHROPOMETRIC CHARACTERISTICS, BODY COMPOSITION AND HORMONAL 

PARAMETERS IN HEALTHY PRE-AND EARLY PUBERTAL BOYS ACCORDING TO AGE.  

Growth, body composition and hormonal parameters of the study population 

classified according to age are shown in table 1 and 2. As expected, body height, 

body weight and body composition differ significantly between the age groups 

(p<0.001) (table 1). 
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Table 1: Anthropometric data and measures of body composition in 

prepubertal (G1) and early pubertal healthy boys (G2) (n=98) at different 

age groups. 

 6-7 y (n=15) 
Mean±SD 

8-9 y (n=24) 
Mean±SD 

10-11y (n=42) 
Mean±SD 

12-14 y (n=17) 
Mean±SD 

Anthropometry     

Age (y)a 6.8±0.6 9.0±0.5 10.9±0.5 12.9±0.7 

Bone age (y)a 6.7±0.8 8.9±1.2 10.9±1.0 12.0±1.0 

Height (cm)a 124±4.3 137±6.9 145±6.6 151±7.2 

Weight (kg)a 23.7±2.6 31.6±5.7 35.8±4.7 39.2±6.1 

BMI (kg/m²)b 15.5±1.1 16.6±1.9 16.9±1.5 17.0±1.5 

Body composition     

Whole body     

Lean mass (kg)a 18.6±2.1 24.0±3.0 27.7±3.4 30.1±4.5 

Fat mass (kg)c 4.0±1.0 5.9±2.8 6.2±2.5 6.5±2.6 

Fat percentage 
(%)d 

17.1±3.8 18.3±5.5 17.4±5.6 16.5±5.2 

Radius 66%     

Muscle area (cm²)a 1427±225 1551±170 1721±201 1904±282 

Fat area (cm²)d 598±141 836±291 778±275 744±304 

Tibia 38%     

Muscle area (cm²)a 1923±312 2089±294 2358±359 2468±461 

Fat area (cm²)d 1218±267 1540±493 1472±411 1551±551 

Differences between the age groups were evaluated using ANOVA. a p<0.001; b p<0.01; c 
p<0.05; d non-significant 

A significant difference in DHEAS, A, E1, T, SHBG, LH, and FSH levels is present 

between the different age groups (p<0.01). Cortisol levels remain however stable 

during pre- and early puberty (table 2). As shown in table 2, DHEAS (by 7 fold), A 

(by 4 fold), and E1 (by 4 fold) levels increase significantly from age group 6-7y to 

age group 12-14y (p<0.001). After an initial decline in SHBG levels between age 

group 6-7 y and 8-9 y, SHBG levels remain stable. For the age-groups 6-7 y until 10-

11 y E2 levels are stable. The increases in T, E2, FSH and LH levels only become 

apparent at the onset of puberty (age group 10-11 and 12-14 y). 
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Table 2: Hormonal parameters in prepubertal (G1) and early pubertal 

healthy boys (G2) (n=98) at different age groups. 

Hormonal parameters Age 
groups 

n n(G1)/n(G2) Median  
(P25-P75) 

Significance 
level (p) 

DHEAS (µg/dl) 6-7 y 15 15/- 15.2 (8.1-48.4) <0.001 

 8-9 y 24 24/- 65.7 (25.0-83.9)  

 10-11 y 42 25/17 77.2 (49.3-116)  

 12-14 y 17 1/16 105 (73.9-150)  

Androstenedione 
(ng/dl) 

6-7 y 15 15/- 5.2 (4.0-9.5) <0.001 

 8-9 y 24 24/- 10.3 (4.9-14.5)  

 10-11 y 42 25/17 15.9 (10.8-22.4)  

 12-14 y 17 1/16 20.5 (15.5-25.0)  

Estrone (ng/l) 6-7 y 15 15/- 1.4 (0.9-2.2) <0.001 

 8-9 y 24 24/- 2.8 (1.6-3.7)  

 10-11 y 42 25/17 4.7 (3.2-6.3)  

 12-14 y 17 1/16 5.9 (4.6-8.4)  

Estradiol (ng/l) 6-7 y 15 15/- 0.86 (0.5-1.2) <0.05 

 8-9 y 24 24/- 0.50 (0.5-0.6)  

 10-11 y 42 25/17 0.61 (0.5-1.0)  

 12-14 y 17 1/16 1.0 (0.5-1.9)  

Testosterone (ng/dl) 6-7 y 15 15/- 1.8 (1.1-2.7) <0.001 

 8-9 y 24 24/- 2.7 (1.9-3.9)  

 10-11 y 42 25/17 7.1 (4.7-10.8)  

 12-14 y  17 1/16 24.0 (8.3-53.3)  

Cortisol (µg/dl) 6-7 y 15 15/- 7.3 (3.9-9.5) ns 

 8-9 y 24 24/- 5.8 (4.3-7.2)  

 10-11 y 42 25/17 6.7 (5.3-9.2)  

 12-14 y 17 1/16 7.6 (6.3-8.3)  
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Table 2 continued 

Hormonal parameters Age 
groups 

n n(G1)/n(G2) Median  
(P25-P75) 

Significance 
level (p) 

SHBG (nmol/l) 6-7 y 15 15/- 171 (135-190) <0.01 

 8-9 y 24 24/- 119 (95.1-145)  

 10-11 y 42 25/17 115 (88.1-147)  

 12-14 y 17 1/16 118 (78.6-147)  

LH (U/L) 6-7 y 15 15/- 0.1 (0.1-0.1) <0.001 

 8-9 y 24 24/- 0.1 (0.1-0.1)  

 10-11 y 42 25/17 0.3 (0.1-0.8)  

 12-14 y 17 1/16 1.3 (0.3-2.0)  

FSH (U/L) 6-7 y 15 15/- 0.5 (0.4-0.9) <0.001 

 8-9 y 24 24/- 0.8 (0.4-1.1)  

 10-11 y 42 25/17 1.7 (1.2-2.1)  

 12-14 y 17 1/16 1.9 (1.3-2.5)  

Non-Gaussian distribution: data presented as median (25th-75th percentile (P25-P75)). 
Comparison between age groups were performed using Kruskal-Wallis tests. Conversion 
factor to SI-units for DHEAS from µg/dl to nmol/l is 2.714, for A from ng/dl to nmol/l is 
0.0349, for E1 from ng/l to pmol/l is 3.698, for T from ng/dl to nmol/l is 0.0347, for E2 from 
ng/l to pmol/l is 3.671, for cortisol from µg/dl to nmol/l is 27.59.
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AREAL BMD AND BONE AREA AT THE LUMBAR SPINE AND WHOLE BODY, VBMD 

AND BONE GEOMETRY AT THE RADIUS AND TIBIA IN PREPUBERTAL AND EARLY 

PUBERTAL BOYS ACCORDING TO AGE. 

Figure 1 shows significantly higher LS and WB aBMD and bone area values in the 

successive age groups (p<0.001).  

 

 

Figure 1 (a-d): Whole body and lumbar spine aBMD and bone area at different 

age groups. The box and whisker plots present (a) lumbar spine aBMD, (b) 

lumbar spine bone area, (c) whole body aBMD and (d) whole body bone area 

for different age groups.  
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As shown in figure 2 and 3, cross-sectional bone size (trabecular and cortical bone 

cross-sectional area (CSA), periosteal circumference and cortical thickness) at the 

radius and tibia are significantly larger in the successive age groups (p<0.001). At 

the distal radius and tibia, the increase in trabecular bone area between age groups 

6-7 y and 12-14 y is respectively 33% (p<0.001) and 39% (p<0.001). Cortical CSA, 

periosteal circumference and cortical thickness at the proximal radius are 

respectively 35% (p<0.001), 8% (p<0.05), and 30% (p<0.01) larger in the age 

group 12-14y compared to the age group 6-7y. Cortical CSA, periosteal 

circumference, endosteal circumference and cortical thickness at the tibia are 

respectively 39% (p<0.001), 20% (p<0.001), and 25% (p<0.001) larger in the age 

group 12-14y compared to the age group 6-7y. As a consequence of these changes, 

there is a significant increase in estimated bone strength as measured by the 

strength-strain index (SSIp) between age group 6-7 y and age group 12-14 y         

(SSIp : +50% at tibia and +37% at radius). Trabecular and cortical vBMD at the 

radius and tibia remain stable during prepuberty and early puberty.  
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Figure 2 (a-f): Trabecular and cortical bone parameters at the radius at 

different age groups. The box and whisker plots present (a) trabecular vBMD, 

(b) trabecular area, (c) cortical vBMD, (d) cortical area, (e) periosteal 

circumference and (f) cortical thickness at the radius at different age groups.  
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Figure 3 (a-f): Trabecular and cortical bone parameters at the tibia at different 

age groups. The box and whisker plots present (a) trabecular vBMD, (b) 

trabecular area, (c) cortical vBMD, (d) cortical area, (e) periosteal 

circumference and (f) cortical thickness at the radius at different age groups.  
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ADRENAL STEROIDS AS INDEPENDENT PREDICTORS OF BONE MATURATION. 

DHEAS, A and E1 are highly correlated (spearman correlation coefficient (r) 

r(DHEAS-A)=0.80 p<0.001; r(DHEAS-E1)=0.77 p<0.001; r(A-E1)=0.86 p<0.001). In 

multivariable-adjusted analysis (including age, body weight and height) adrenal-

derived steroids (DHEAS, A, E1) are found to be independent positive predictors of 

bone age (DHEAS: ß=0.24 p<0.001; A: ß=0.23 p<0.001; E1: ß=0.23 p<0.001). The 

positive association between E1 and bone age remains after inclusion of E2 in the 

model (E1: ß=0.23 p<0.001) and the positive association between A and bone age 

remains after inclusion of T in the model (A: ß=0.23 p<0.001). Similar results are 

found when studying only the prepubertal group (DHEAS: ß=0.31 p<0.001; A: 

ß=0.29 p<0.001; E1: ß=0.31 p<0.001). The positive association between DHEAS 

and bone age remains after inclusion of E1 (DHEAS: ß=0.19 p<0.01) and A (DHEAS: 

ß=0.18 p<0.01) in the model. The positive association between A and bone age 

remains after inclusion of E1 in the model (A: ß=0.16 p<0.05), but disappear after 

inclusion of DHEAS. The positive association between E1 and bone age disappears 

after inclusion of A or DHEAS in the model.  

ADRENAL STEROIDS AS INDEPENDENT PREDICTORS OF ABMD AND BONE AREA OF 

THE LUMBAR SPINE AND WHOLE BODY AND OF THE VBMD AND BONE GEOMETRY 

PARAMETERS AT THE RADIUS AND TIBIA. 

All multivariable adjusted analyses are corrected for age, body weight, height (for 

the DXA parameters) and bone length (for pQCT analysis). There is no association 

between DHEAS and either parameters of bone size (WB and LS bone area, 

trabecular area at the radius and tibia, cortical area at the radius and tibia, 

periosteal circumference at the radius and the tibia, cortical thickness at the radius 

and tibia; p=ns), BMD (WB and LS aBMD, trabecular vBMD at the radius and tibia, 

cortical vBMD at the radius and tibia; p=ns), or parameters of bone strength (SSIp 

at radius or tibia; p=ns). A is not associated with parameters of bone size (WB and 

LS bone area, trabecular area at the radius and tibia, cortical area at the radius and 

tibia, periosteal circumference at the radius and the tibia, cortical thickness at the 

radius  and tibia; p=ns) or bone strength (SSIp at radius or tibia; p=ns). 

Furthermore, there is no association between A and BMD (WB aBMD, trabecular 

vBMD at the radius and tibia, cortical vBMD at the radius and tibia; p=ns), except 
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for lumbar spine aBMD (A: ß= 0.22 p<0.05). E1 is not associated with parameters 

of bone size (WB and LS bone area, trabecular area at the radius and tibia, cortical 

area at the radius and tibia, periosteal circumference at the radius and the tibia, 

cortical thickness at the radius and tibia; p=ns), bone strength (SSIp at the radius 

and tibia p=ns) or BMD (WB and LS aBMD, trabecular vBMD at the radius and tibia, 

cortical vBMD at the radius and tibia; p=ns). 

DISCUSSION 

This cross-sectional study presents data on the age-related differences in adrenal 

steroids levels, body composition, (v)BMD and bone geometry in healthy pre- and 

early pubertal boys, enabling the study of the associations of circulating adrenal-

derived steroids levels (DHEAS, A, E1) with bone maturation, growth and mineral 

density in childhood and early puberty. To the best of our knowledge, this is the 

first study to investigate the role of circulating adrenal-derived sex steroids in bone 

mass accretion and bone maturation in healthy prepubertal and early pubertal 

boys. 

Firstly, we found –as previously described by others- a significant increase in 

adrenal androgens namely DHEAS and A from the age of 6 onwards
(18,19,20,21)

. While 

no significant increase in E2 was observed before puberty in our male population, 

E1 increased 4 fold between 6 and 14 years. In contrast with the increase in A and 

DHEAS, we observed no age-related difference in cortisol levels. This is in line with 

the results of other studies showing stable cortisol levels during adrenarche
(22,23)

. 

Secondly, there was a significant increase in LS and WB aBMD and bone area 

during pre-and early puberty. Furthermore, trabecular and cortical CSA, periosteal 

circumference and cortical thickness at the radius and tibia increased significantly 

at the successive age groups, as described previously
(16,24,25)

. Since trabecular and 

cortical vBMD at the radius and tibia remained stable during the prepubertal 

period, the observed increases in WB and LS aBMD in prepubertal boys reflect the 

increase in bone size rather than in true vBMD.  

Thirdly, the associations between adrenal-derived steroids and (v)BMD and bone 

geometry were studied. Since it is well-known that bone mineral content and 

cross-sectional bone size increase with age, body height and weight
(26)

, all 
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multivariate analyses were adjusted for age, weight and height or bone length 

depending on the analysis. No association between the adrenal-derived steroids (A, 

DHEAS and E1) and bone size or (v)BMD was found. Whether adrenal androgens 

within physiological range may contribute to changes in bone geometry has been 

previously studied by Remer et al. in 59 healthy prepubertal boys using the urinary 

excretion of the major urinary androgen (C19) metabolites
(3,4)

. While in this study 

positive effects of DHEA and its 16-hydroxylated downstream metabolites on 

cortical vBMD and bone mineral content at the proximal radial diaphyseal bone 

were observed in prepubarchal children, no effect on the metaphyseal site was 

observed
(3,4)

. Their finding that of all adrenal androgen metabolites studied, only 

androstenediol, which acts as an estrogen and androgen receptor agonist, showed 

a long term prediction of bone strength suggests that adrenal DHEA increases are 

not bone anabolic per se
(17)

. In a study of 118 boys, 7 to 8 years old, no independent 

association of lumbar spine and femoral neck bone mass with DHEAS, E2 or T was 

found
(5)

. In this study, however, standard commercial radio-immunoassays were 

used for E2 and T measurements
(5)

.  

Finally, the influence of adrenal-derived steroids on bone maturation was studied. 

Serum adrenal-derived steroids (DHEAS, A, E1) were positively associated with 

bone maturation, independently of chronological age in the studied group of 

prepubertal and early pubertal boys. These associations were confirmed in a 

subgroup of only prepubertal boys and the associations of E1 and A with bone age 

remained after inclusion of respectively E2 and T in the model. We expected that 

the observed effects of adrenal androgens on bone maturation would be mainly 

due to E1, as no increase in E2 was observed in prepubertal boys and higher E1 

levels in prepubertal girls in comparison with boys might contribute to their 

greater rate of skeletal maturation. However, after inclusion of DHEAS or A in the 

model the association between E1 and bone age disappeared. Possible 

explanations for this finding are local aromatization of androgens to estrogens at 

level of the growth plate
(27,28)

 or technical issues. As to the latter, it can be 

mentioned that a highly performant assay
(15)

 was used for measurement of E1 (and 

E2) serum levels. In any case, it should be pointed out that A, DHEAS and E1 are 

highly intercorrelated (r=0.77 to 0.86) so that it might not be possible to reliably 

estimate their relative contribution. No other studies have investigated the 
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association between adrenal steroids and bone age in prepubertal healthy children. 

Our results might enhance the understanding of bone age advancement in obese 

prepubertal children. It is well-known that bone age is advanced in obesity
(29,30,31)

. 

Previous research from our group showed that the advanced bone maturation in 

obese adolescents is probably due to the higher E2 levels as a consequence of an 

increased aromatization in fat tissue
(32) 

(see chapter 3.1 and 3.2). However, bone 

maturation is already advanced throughout childhood
(30)

. Based on our present 

results, we hypothesize that the advanced bone maturation in prepubertal obese 

children is due to higher adrenal steroid levels (DHEAS, A) in these children as 

reported by Reinehr et al. (2013)
(31)

. On the other hand, patients with anorexia 

nervosa(33) or malnutrition(34,35) known to be associated with low DHEAS and 

androstenedione concentrations(36,37) often have a delayed bone maturation. Thus, 

alterations in adrenal steroids secretion pattern may affect progression of bone age 

at both extremes of the weight spectrum. 

The strength of the present study is the comprehensive evaluation of (v)BMD, bone 

geometry, and hormonal factors. Moreover, A, T, E1 and E2 were measured by 

highly sensitive and accurate mass spectroscopy-based methodology as required 

when studying low androgen and estrogen serum levels in children and 

adolescents. Our study also has some limitations. Firstly, adrenal steroid levels 

were single point measurements executed between 8 and 10 am. Although it is 

possible that a single measurement is not fully representative for adrenal steroid 

exposure, in clinical settings, a single measurement from a serum sample drawn in 

early morning is commonly used and acceptable. A second limitation is the fact that 

not all children had a valid radius 66% measurement due to movement artefacts 

and one might speculate that this has influenced our results. However, we are 

rather confident that it is not the case since none of the associations between 

adrenal steroids and bone size measurements at the radius 66% showed any trend 

towards significance and the results of the radius 66% were in line with all other 

bone size measurements obtained without missing data. Finally, one should 

emphasize that this is a cross-sectional study that gives only information about 

associations and does not allow us to draw causative conclusions. In addition, we 

want to stress that we only studied healthy prepubertal and early pubertal boys 

and therefore one has to be careful when generalizing our results to other age 

groups, girls or pathological situations because the associations between adrenal-
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derived steroids and bone mineral density, size and maturation may be age-, sex- 

and level-specific. In order to confirm our findings and further unravel the 

underlying mechanisms, prospective longitudinal studies are required and further 

research in healthy girls and conditions associated with altered androgen and/or 

estrogen levels such as obesity and anorexia nervosa, would be interesting.  

In conclusion, our findings showed a significant positive association between 

adrenal-derived steroids (DHEAS, A and E1) and bone age, and might contribute to 

the understanding of bone age advancement in prepubertal obese children. In the 

absence of associations between adrenal-derived steroids and either (v)BMD or 

bone size, our data provide no evidence for a direct bone-anabolic effect of these 

hormones in pre-or early pubertal boys. 
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ABSTRACT 

Background: Although both testosterone (T) and estradiol (E2) are considered 

essential in the regulation of the male skeleton, there are few data concerning the 

relative contribution of T and E2 on bone mineral density (BMD), bone geometry 

and bone maturation in healthy boys. 

Objective: To analyze the relationship between T and E2 and BMD, bone geometry, 

skeletal maturation and body composition. 

Methods: This is a cross-sectional study in 199 healthy boys (aged 6-19 y). T and 

E2 were determined by liquid chromatography-tandem mass spectrometry. Whole 

body and lumbar areal bone mineral density (aBMD) and bone area, lean mass and 

fat mass were determined by dual-energy X-ray absorptiometry. Trabecular (distal 

site) and cortical (proximal site) volumetric BMD (vBMD) and bone geometry were 

assessed at the non-dominant forearm and leg using peripheral QCT. Skeletal age 

was determined by X-ray of the left hand. 

Results: T was positively associated with lean mass (p<0.001), lumbar and whole 

body bone area (p<0.001), trabecular and cortical area (p<0.01) and periosteal 

circumference (p<0.01) at the radius. E2 was positively associated with lumbar 

and whole body aBMD (p<0.001), trabecular vBMD at the radius and tibia (p<0.01) 

and cortical thickness at the radius (p<0.05). E2 was an independent negative 

predictor of the endosteal circumference (p<0.01). Moreover, E2 was positively 

associated with bone age advancement (p<0.001).  

Conclusion: Circulating E2 is positively associated with bone maturation and areal 

and volumetric BMD and negatively with endosteal circumference in healthy boys, 

whereas T is a determinant of lean mass and bone size. These findings underscore 

the important role of E2 in skeletal development in boys. 
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INTRODUCTION 

From infancy until young adulthood there is a progressive accumulation of bone 

mass in males. A crucial stage in bone mass acquisition is adolescence as it has 

been estimated that about 40% of peak bone mass is achieved during pubertal 

development
(1)

. Sex steroids, GH–IGF-1 axis and muscle mass
(2)

 are the main 

determinants of pubertal bone mass. Clinical conditions as delayed puberty and 

primary and secondary hypogonadism stress the importance of sex steroids in 

bone mass accrual
(2,3,4,5)

. The relative contribution of androgens versus estrogens in 

the regulation of the build-up of the male skeleton is yet to be fully clarified. 

Testosterone (T) can act directly through the androgen receptor or indirectly 

through aromatization to estrogens and further through estrogen receptor (ER) 

alfa and/or beta
(6)

. Only very scarce data concerning the effects of T and estrogens 

on bone maturation, bone mineral density (BMD) and bone geometry in healthy 

boys at different pubertal stages have been published(1,7). In most of these studies, 

BMD and bone area were evaluated by dual-energy x-ray absorptiometry (DXA)
(1,7)

 

and sex steroids were measured by immunoassays
(7)

. An important limitation of 

DXA studies is the size dependence of the areal BMD (aBMD in g/cm²) and the lack 

of data on bone geometry. Consequently, there is no information at present on the 

possible relationship of serum sex steroid levels to trabecular versus cortical bone 

compartments or to bone geometric parameters in growing children and 

adolescents. Therefore, peripheral quantitative computed tomography (pQCT) is a 

useful approach in bone strength analysis, particularly during the pubertal growth 

spurt, because it can provide 3-dimensional information about volumetric BMD 

(vBMD in g/cm³), bone size, and bone shape
(8)

.  

This study aims to describe differences in (v)BMD, bone geometry and sex steroids 

in healthy boys at different pubertal stages. Moreover, it investigates whether 

levels of estradiol (E2) and T are independently associated with geometric and 

densitometric properties of radius and tibia. Based on the available results from 

bone studies in sex steroid receptor inactivated transgenic mouse models
(9,10)

, 

some human experiments of nature
(11,12,13,14)

 and in healthy young adults
(15,16)

, we 

hypothesized that during adolescence circulating E2 levels would be associated 

with BMD and bone maturation and circulating T with bone size. 
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METHODS 

SUBJECTS 

One hundred and ninety-nine healthy male children and adolescents aged 6-19 

years (mean age: 12.5 years) were included in this cross-sectional study. 

Participants were recruited by letters distributed in schools within the Ghent area. 

Children were excluded if they were taking medication known to influence bone or 

mineral metabolism in the past year or if they had a metabolic bone disease, 

thyroid disorder or diabetes, if their height standard deviation score (SDS) was <-

2.5 or >2.5 or if their BMI SDS was <-2 or >2. The study protocol was approved by 

the Ghent University Hospital Ethical Committee. Informed consent was obtained 

from the parents and all participants gave their assent.  

METHODS 

ANTHROPOMETRY AND WHOLE BODY COMPOSITION AND AREAL BONE 

PARAMETERS BY DXA 

Information about medical history, lifestyle and socio-economic background was 

collected through a questionnaire. Calcium intake was estimated by a food 

questionnaire on dairy products accounting for the number of standard portions 

per week. Physical activity was assessed using the Flemish Physical Activity 

Questionnaire
(17,18)

. Standing and sitting height were measured to the nearest 0.1 

cm using a Harpenden stadiometer (Holtain Ltd, Crymuch, UK). Body weight was 

measured in light indoor clothing without shoes to the nearest 0.5 kg. The length of 

the forearm (from the olecranon to the processus ulnaris) and tibia (from the 

medial knee joint line to the tip of the medial malleolus) was measured with a ruler 

to the nearest 0.1 cm. All anthropometric measurements were performed by the 

same trained physician. The SDS for body height and BMI was computed using the 

reference data of the 2004 Flemish growth study
(19)

. Pubertal status was 

determined by the same trained physician according to the Tanner staging method 

(Tanner Genital Staging: stage 1: prepuberty; stage 5: post puberty). Testicular 

volume was determined with a Prader orchidometer. Areal bone parameters at the 

lumbar spine (LS) and whole body (WB), as well as WB fat and lean mass were 

measured using DXA (Hologic QDR 4500, software version 11.2.1; Hologic Inc, 
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Bedford, MA). The coefficient of variation (CV) for both LS and WB calibration 

phantoms was less than 1%, as calculated from daily and weekly measurements, 

respectively. 

BONE AGE DETERMINATION 

Bone age reading of an X-ray of the left hand and wrist was done by two 

independent readers (a pediatric radiologist and a pediatrician), both blinded for 

the chronological age, using the Greulich and Pyle method
(20)

 and the mean of both 

readings was taken. Skeletal age differences (SAD) were calculated by subtracting 

the chronological age (CA) from the skeletal age (BA) (SAD=BA–CA), positive 

differences reflecting an accelerated skeletal maturation. 

REGIONAL BODY COMPOSITION, VBMD AND BONE GEOMETRY PARAMETERS BY 

PQCT 

Bone variables, estimates of bone strength
(21)

 and regional body composition of the 

non-dominant forearm (radius) and the lower leg (tibia) were measured using 

pQCT (Stratec XCT-2000, Stratec Medizintechnik, Germany, version 6.0). Two 2.0 

mm slices (voxel size 0.5 mm) were performed at the 4 and 66% sites proximally 

from the distal end of the radius and two slices at the 4 and 38% site proximally 

from the distal end of the tibia. The CV for the calibration phantom was <1% as 

calculated from daily phantom measurements. Procedure details were as described 

previously
(22)

.  

HORMONAL MEASUREMENTS 

Venous blood samples were collected between 0800 and 1000 h after a small 

breakfast. Serum samples were stored at – 80°C until batch analysis. Commercial 

immunoassays were used to measure serum IGF-1 (Diagnostic Systems 

Laboratories, Webster, TX) and SHBG (Modular, Roche Diagnostics, Mannheim, 

Germany). The intra- and interassay CV’s for these assays were less than 10%. E2 

and T were determined by liquid chromatography-tandem mass spectrometry (AB 

Sciex 5500 triple-quadrupole mass spectrometer; AB Sciex, Toronto Canada). 

Serum limit of quantification (LOQ) was <0.5 pg/mL (1.9 pmol/L) for E2 and the 

interassay CV was 4.0% at 21 pg/mL (77 pmol/L)
(23)

. Serum LOQ was 1.2 ng/dl for 
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T and the interassay CV was 8.3% at 36.7 ng/dl and 3.1% at 307.8 ng/dl. Free T 

(FT) was determined by equilibrium dialysis 
(24)

 and free E2 (FE2) was calculated 

from total E2, SHBG and albumin concentrations using a previously validated 

equation derived from the mass action law
(25)

. 

STATISTICS 

Normality was checked using quantile-quantile plots and Shapiro-Wilk tests. Data 

are presented as mean±standard deviation or as medians (25th–75th percentile) in 

case of a non-normal distribution. Differences between pubertal stages were 

evaluated using ANOVA, when criteria for normality were met. We used LSD test as 

post-hoc test. In case of a non-normal distribution, Kruskal-Wallis tests were used. 

The independent predictors of various bone and body composition parameters 

were tested using linear regression analysis including age, height for the analyses 

of the DXA parameters and bone length for the analyses of the pQCT parameters, 

weight and serum E2 or T. The difference was considered statistically significant at 

p<0.05. Data were analysed using SPSS software version 19.0. 
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RESULTS 

ANTHROPOMETRIC CHARACTERISTICS AND BODY COMPOSITION 

Growth parameters and body composition results of the study population 

classified according to pubertal stage are shown in table 1. As expected, body 

height, weight and body composition differ significantly between different pubertal 

stages (p<0.001). As shown in figure 1, there is a major increase in WB lean mass 

and to smaller extent an increase in fat mass at the successive pubertal stages, 

resulting in a decrease of fat percentage from stage 3 onward. Regional body 

composition at the forearm and tibia follows a similar pattern (table 1; figure 1).
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Figure 1: Lean mass and fat mass at different pubertal stages. (a) The box and 

whisker plots present whole body lean mass (dark-grey box) and fat mass 

(light-grey box) at different pubertal stages. The box and whisker plots present 

(b) whole body fat percentage, (c) muscle cross-sectional area (dark-grey box) 

and fat cross-sectional area (light-grey box) at the radius (66% from the distal 

end), (d) muscle cross-sectional area (dark-grey box) and fat cross-sectional 

area (light-grey box) at the mid-shaft tibia (38% of bone length from the distal 

end) at different pubertal stages. 



 

  

Table 1: Anthropometric data and measures of body composition in healthy boys (n=199) at different pubertal stages 

 Genital Tanner stage 

 1 (n=67) 2 (n=35) 3 (n=22) 4 (n=49) 5 (n=26) 

Anthropometry Mean±SD  Mean±SD Mean±SD Mean±SD Mean±SD 

Age (y)a 9.2±1.7 11.9±1.3 13.3±0.7 14.9±1.1 16.7±1.3 

Bone age (y)a 9.0±2.0 11.5±1.0 13.1±0.4 15.0±1.4 17.6±1.3 

Height (cm)a 136±10.3  150±6.6  160±10.2  171±7.9  179±5.8  

Weight (kg)a 30.9±6.5  38.0±5.4  47.8±9.6  59.5±10.5  70.1±7.8  

BMI (kg/m²)a 16.4±1.6 16.9±1.5 18.5±2.3  20.2±2.9  21.9±2.4  

Sitting height (cm)a 71±4.8 76±3.2 81±4.5 89±4.4 94±2.6 

Testicular volume (ml)a 3±1 6±2 11±2 18±4 24±2 

      

Body composition Mean±SD  Mean±SD Mean±SD Mean±SD Mean±SD 

Whole body      

Lean mass (kg)a 23.8±4.5 29.6±3.9 36.8±5.8 47.9±6.8 56.6±5.0 

Fat mass (kg)a 5.5±2.4 6.4±2.6 8.7±4.6 8.9±4.7 10.4±4.4 

Fat percentage (%)b 18±5 17±5 17±6 15±5 15±5 

Radius 66%      

Muscle area (cm²)a 1613±215 1808±261 2196±348 3002±504 3704±483 

Fat area (cm²)d 784±284 744±271 891±365 717±423 673±485 

Tibia 38%      

Muscle area (cm²)a 2131±361 2451±402 2611±523 3490±568 4128±664 

Fat area (cm²)c 1419±420 1523±488 1760±505 1717±741 1689±692 

Differences between the pubertal stages were evaluated using ANOVA, since criteria for normality were met. ap<0.001; b p<0.01; c p<0.05; dnon-
significant. 



  

Table 2: Hormonal data in healthy boys (n=199) at different pubertal stages 

 Genital Tanner stage 

 1 (n=67) 2 (n=35) 3 (n=22) 4 (n=49) 5 (n=26) 

Hormonal measurements Median (P25-P75) Median (P25-P75) Median (P25-P75) Median (P25-P75) Median (P25-P75) 

Estradiol (ng/l)a 0.5 (0.5-1.0) 0.8 (0.5-1.5) 3.9 (2.3-6.4) 12 (8.3-16.4) 16 (14.1-22.2) 

Free Estradiol (ng/l)a 0.006 (0.004-0.01) 0.007 (0.005-0.015) 0.05 (0.03-0.09) 0.2 (0.15-0.31) 0.3 (0.27-0.44) 

Testosterone (ng/dl)a 3.6 (2.1-6.0) 14.1 (6.0-36.8) 234 (175-315) 411 (336-502) 520 (455-624) 

Free Testosterone (ng/dl)a 0.02 (0.01-0.04) 0.12 (0.04-0.26) 2.4 (1.4-5.0) 7.8 (6.0-9.3) 11.9 (9.4-13.6) 

SHBG (nmol/l) a 126 (102-168) 118 (81-146) 80 (49-93) 38 (31-50) 35 (27-40) 

IGF-1 (ng/ml)a 179 (127-210) 236 (183-277) 353 (281-432) 474 (421-558) 421 (367-507) 

Differences between the pubertal stages were evaluated using Kruskal-Wallis tests. ap<0.001. 
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AREAL BMD AND BONE AREA AT THE LUMBAR SPINE AND WHOLE BODY, VBMD 

AND BONE GEOMETRY AT THE RADIUS AND TIBIA ACCORDING TO PUBERTAL 

STAGES. 

Figure 2 shows mean values of LS and WB aBMD and bone area at different 

pubertal stages; aBMD and `bone area values are significantly higher at successive 

pubertal stages (p<0.001). The mean increase between prepuberty and post 

puberty in aBMD at LS and WB is respectively 38% (p<0.001) and 28% (p<0.001). 

Bone area increases respectively 40% (p<0.001) at LS and 39% (p<0.001) at WB. 

 

Figure 2 (a-d): Whole body and lumbar spine bone area and aBMD at different 

pubertal stages. The box and whisker plots present (a) whole body aBMD, (b) 

whole body bone area, (c) lumbar spine aBMD and (d) lumbar spine bone area 

at different pubertal stages. 
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As shown in figure 3 and figure 4, cross-sectional bone size (trabecular and cortical 

bone cross-sectional area (CSA), periosteal circumference and cortical thickness) 

and cortical vBMD are significantly different at the successive pubertal stages 

(p<0.001). At the distal radius and tibia, the increase in trabecular bone area 

between prepuberty and post puberty is more than 40% (p<0.001). Post pubertal 

cortical CSA, periosteal circumference, endosteal circumference and cortical 

thickness are respectively 46% (p<0.001), 18% (p<0.001), 11% (p<0.01), and 30% 

(p<0.001) larger at the proximal radius and tibia compared to the prepubertal 

stage. Trabecular vBMD at the radius and tibia are rather stable during puberty; 

however, there is a 10% (p<0.01) difference in trabecular vBMD between post 

pubertal and prepubertal boys. As a consequence of these changes, a significant 

increase in estimated bone strength between stage 1 to stage 5 is present (SSIp: 

+150% at tibia and radius).  
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Figure 3 (a-f): Trabecular and cortical bone parameters at the radius at 

different pubertal stages. The box and whisker plots present (a) trabecular 

vBMD, (b) cortical vBMD, (c) trabecular area, (d) cortical area, (e) periosteal 

circumference and (f) cortical thickness at the radius at different pubertal 

stages.  
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Figure 4 (a-f): Trabecular and cortical bone parameters at the tibia at different 

pubertal stages. The box and whisker plots present (a) trabecular vBMD, (b) 

cortical vBMD, (c) trabecular area, (d) cortical area, (e) periosteal 

circumference and (f) cortical thickness at the tibia at different pubertal stages.  



CHAPTER 2: HEALTHY BOYS 

 

 105 

SEX STEROIDS AS INDEPENDENT PREDICTORS OF BODY COMPOSITION AND BONE 

MATURATION. 

As expected, higher sex steroids ((F)E2 and (F)T) levels are found with advancing 

pubertal development (table 2) (p<0.001). On the contrary, SHBG levels are 

significantly lower at the successive pubertal stages (table 1) (p<0.001).  

In multivariable-adjusted analyses (including age, height and weight) we observe 

significant positive correlations of T as well as FT with WB lean mass (T: ß=0.13 

p<0.001; FT: ß=0.14 p<0.001) and muscle CSA at the radius (T: ß=0.38 p<0.001; 

FT: ß=0.41 p<0.001) and the tibia (T: ß=0.15 p<0.05; FT: ß=0.19 p<0.05). We 

observe a negative association between respectively T and FT and the fat 

percentage (T: ß=-0.57 p<0.001; FT: ß=-0.66 p<0.001). These associations remain 

significant after inclusion of IGF-1 in the model (p<0.05). 

In a regression model including height and weight, E2 and FE2 are found to be 

independent predictors of bone age advancement (E2: ß: 0.31 p<0.01; FE2: ß: 0.35 

p<0.01). These associations remain significant after inclusion of T (p<0.01) or IGF-

1 (p<0.01) in the model. 

SEX STEROIDS AS INDEPENDENT PREDICTORS OF ABMD AND BONE AREA OF THE 

LUMBAR SPINE AND WHOLE BODY AND OF VBMD AND BONE GEOMETRY OF THE 

RADIUS AND TIBIA. 

Regression models including age, height and weight, show that T and FT are 

positively associated with LS bone area (T: ß=0.26 p<0.001; FT: ß=0.26 p<0.001) 

and WB bone area (T: ß=0.12 p<0.001; FT: ß=0.15 p<0.001) (table 3). Moreover, in 

multivariable-adjusted analyses (including age, forearm length and weight) we 

observe significant positive associations of T as well as FT and trabecular area (T: 

ß=0.24 p<0.001; FT: ß=0.18 p<0.05), cortical area (T: ß=0.20 p<0.01; FT: ß=0.25 

p<0.01) and periosteal circumference at the radius (T: ß=0.24 p<0.01; FT: ß=0.12 

ns) (table 3). All these associations remain significant after controlling for physical 

activity (p<0.05), calcium intake (p<0.05) or inclusion of IGF-1 (p<0.05) in the 

model. After inclusion of E2 in the model, the associations remain significant 

(p<0.01) expect for the association (F)T and cortical area at the radius and T and 
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WB area. Significant associations between T and FT and bone area parameters 

were no longer present after inclusion of lean mass (in the analyses of WB and LS 

area) or muscle CSA (in the analyses of bone area at the radius) in the model. No 

significant associations could be found between T or FT and trabecular bone area, 

cortical bone area and periosteal circumference at the tibia. 

Table 3: Sex steroids as independent predictors of aBMD and bone area of the 

lumbar spine and whole body and of the vBMD and bone geometry of the 

radius and tibia. 

 Testosterone Free Testosterone 

 ß p ß p  

Whole body area 0.12 <0.001 0.15 <0.001 

Lumbar spine area 0.26 <0.001 0.26 <0.001 

Radius     

Trabecular area 4% 0.24 <0.001 0.18 <0.05 

Cortical area 66% 0.20 <0.01 0.25 <0.01 

Periosteal circumference 66% 0.24 <0.01 0.12 ns 

Tibia     

Trabecular area 4% -0.02 ns -0.19 ns 

Cortical area 38% 0.03 ns -0.03 ns 

Periosteal circumference 38% 0.001 ns -0.1 ns 

 Estradiol Free Estradiol 

 ß p ß p 

Whole body aBMD 0.17 <0.01 0.18 <0.01 

Lumbar spine aBMD 0.30 <0.001 0.31 <0.001 

Radius     

Trabecular vBMD 4% 0.36 <0.01 0.40 <0.001 

Cortical vBMD 66% 0.09 ns 0.14 ns 

Cortical thickness 66% 0.19 <0.05 0.21 <0.05 

Endosteal circumference 66% -0.12 <0.01 -0.12 <0.01 

Tibia     

Trabecular vBMD 4% 0.23 0.06 0.27 <0.05 

Cortical vBMD 38% 0.13 ns 0.15 ns 

Cortical thickness 38% 0.03 ns 0.05 ns 

Endosteal circumference 38% -0.02 ns -0.04 ns 

All analyses included age, weight and respectively height for the DXA parameters and bone 
length (forearm or tibia) for the pQCT parameters as covariates. Data are presented as 
regression coefficients (β) and their significance level (p). 

E2 and FE2 are positively associated with aBMD measured at LS (E2: ß=0.30 

p<0.001; FE2: ß=0.31 p<0.001) and WB (E2: ß=0.17 p<0.01; FE2: ß=0.18 p<0.01). 
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Moreover, there is a positive association of E2 and FE2 with trabecular vBMD at 

the radius (E2: ß=0.36 p<0.01; FE2: ß=0.40 p<0.001) and the tibia (E2: ß=0.23 

p=0.06; FE2: ß=0.27 p<0.05) and with cortical thickness at the radius (E2: ß=0.19 

p<0.05; FE2: ß=0.21 p<0.05) (table 3). All associations remain significant after 

inclusion of T (p<0.05), IGF-1 (p<0.05), calcium intake (p<0.05) or physical activity 

(p<0.05) in the model. After inclusion of lean mass or muscle CSA in the model, all 

associations remain expect for the associations of (F)E2 with WB aBMD and (F)E2 

with cortical thickness. No associations are found between (F)E2 and the cortical 

vBMD of the radius or between (F)E2 and cortical vBMD or cortical thickness of the 

tibia. To study the influence of E2 and FE2 on the endosteal circumference a 

regression model including age, weight, forearm length and periosteal 

circumference is used; E2 and FE2 are independent negative predictors of the 

endosteal circumference at the radius (E2: ß=-0.12 p<0.01; FE2: ß=-0.12 p<0.01) 

(table 3). However, no associations are found at the level of the tibia.  

SEX STEROIDS AS INDEPENDENT PREDICTORS OF ABMD AND BONE AREA OF THE 

LUMBAR SPINE AND WHOLE BODY AND OF VBMD AND BONE GEOMETRY OF THE 

RADIUS AND TIBIA: DIFFERENCES BETWEEN EARLY-MID PUBERTAL AND LATE-POST 

PUBERTAL BOYS. 

In order to study possible differences in the associations between sex steroids and 

bone parameters at different pubertal stages the study group was divided in two 

subgroups namely an early-mid pubertal (P2-P3; n=57) and a late-post pubertal 

group (P4-P5; n=75). 

In the early-mid pubertal children, we only find a significant association between 

(F)T and periosteal circumference (T: ß=0.42 p<0.001; FT: ß=0.43 p<0.01). 

However, in the late-post pubertal group most of the described differences in the 

whole group are confirmed. Regression models including height and weight show 

that T and FT are positively associated with LS bone area (T: ß=0.31 p<0.001; FT: 

ß=0.23 p<0.01), WB bone area (T: ß=0.12 p<0.05; FT: ß=0.10 p=0.06), trabecular 

area (T: ß=0.32 p<0.01; FT: ß=0.22 p=0.07), cortical area (T: ß=0.20 p=0.06;FT: 

ß=0.24 p<0.05) and periosteal circumference at the radius (T: ß=0.37 p<0.01;FT: 

ß=0.24 p=0.07). As described in the whole group, there are no significant 

associations at the tibia. E2 and FE2 are positively associated with aBMD measured 
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at LS (E2: ß=0.35 p<0.001;FE2: ß=0.37 p<0.001) and WB (E2: ß=0.36 p<0.001; 

FE2: ß=0.39 p<0.001) and trabecular vBMD at the radius (E2: ß=0.34 p<0.01; FE2: 

ß=0.38 p<0.01) and cortical vBMD at the tibia (E2: ß=0.26 p<0.05; FE2: ß=0.27 

p<0.05). No significant associations between (F)E2 and cortical thickness at the 

radius and tibia, trabecular vBMD at the tibia, cortical vBMD at the radius are 

found. 
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DISCUSSION  

This is the first study presenting data about the association of sex steroids ((F)E2 

and (F)T) with (v)BMD, bone geometry, bone maturation and body composition in 

healthy pubertal boys. The role of androgens and estrogens in bone maturation 

and mineralization during male pubertal development is mainly based on studies 

of diseases with altered steroidogenesis or steroid receptor mutations.  

Firstly, the associations between sex steroids and body composition were studied. 

We showed that the increase in lean mass parallels the increase in T at the 

different pubertal stages. There is a strong positive association between (F)T and 

lean mass and between (F)T and muscle CSA at the radius and tibia. These findings 

are in line with our previous observations in transsexual men on cross-gender 

testosterone treatment, showing more lean mass and a larger muscle CSA in the 

androgen treated group compared to female controls 
(26)

. 

Secondly, we analyzed areal and volumetric BMD as well as bone geometry at 

different pubertal stages. In line with previous studies, we showed a higher LS and 

WB aBMD at successive pubertal stages(1,7,27)
. Post pubertal cortical and trabecular 

vBMD at the radius and tibia is significantly higher compared to prepubertal 

values. As previously described by others, trabecular vBMD remains relatively 

constant until the age of 15 years but increases by about 10% at the end of 

puberty
(28,29,30,31)

. On the other hand, bone CSA, periosteal circumference and 

cortical thickness are significantly larger at the successive pubertal stages. The 

increase in cortical thickness in male adolescents is explained by a greater 

periosteal apposition in comparison with the endosteal resorption
(29,30)

. In 

comparison to females, who add more bone to the endosteal surface, male 

adolescents add bone to the periosteal surface, which has the greatest effect on 

bone strength
(30)

. Most of the cortical bone expansion thus occurs during pubertal 

growth, where periosteal bone expansion after puberty is very limited. Pubertal 

mouse models also demonstrated a larger bone in male mice at the end of puberty 

due to a net increase in periosteal bone formation
(10)

. 
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Additionally, we studied associations of sex steroids with areal and volumetric 

BMD and bone geometry, given the limited availability of data in healthy children 

and adolescents. It is well-known that bone mineralization and cross-sectional 

bone size increase with age, height and weight
(7)

, all multivariate analyses were 

therefore adjusted for age, weight, height or bone length. (F)T levels are associated 

with different parameters of bone size, such as WB and LS bone area, trabecular 

and cortical bone area and periosteal circumference of the radius. These 

associations are no longer present after inclusion of lean mass or muscle CSA in the 

model. It is well-known that increase in bone size is driven by strain from muscle 

force and that muscle development precedes bone development during pubertal 

growth spurt
(32,33)

. Since there is a positive association between (F)T and muscle 

mass as well as a positive association between (F)T and bone size which 

disappears after inclusion of muscle mass in the model, we hypothesize that (F)T 

leads to an increase in muscle mass which causes a larger bone size due to an 

increase in strain exerted on the bone. Due to the cross-sectional design, however, 

we are not able to draw causative conclusions and a direct effect of (F)T on bone 

size cannot be definitely excluded.  

Furthermore, the observed associations differed between early-mid pubertal boys 

and late-post pubertal boys. In early-mid pubertal boys, only the association (F)T 

and periosteal circumference was significant, however in late-post pubertal boys 

all described associations were present. This is not unexpected since bone 

diameter increases in early puberty by rapid periosteal apposition and periosteal 

apposition rates peak at the same time as growth in length(34).. Our results are in 

line with previously reported association of FT with cortical bone area and 

periosteal circumference at the radius in young male adults
(15)

.  

(F)E2 was found to be positively associated with LS and WB aBMD. These 

associations were independent of age and bone size, and remained significant after 

inclusion of T in the model. Conversely, there was no association of T with aBMD in 

the presence of E2 in the model. Our results are in line with the findings of Yilmaz 

et al. (2005) in healthy adolescents, showing a strong positive association of E2 

with WB and LS aBMD. Pomerant et al. (2007), however found a significant 

association between T and WB and LS aBMD in healthy male adolescents. Since 

they did not study E2, they cannot exclude that the positive association with T 
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could be an E2 effect, related to the aromatization of T. Moreover, in our study 

(F)E2 is positively associated with trabecular vBMD at the radius and tibia and 

cortical thickness at the radius. Furthermore, there is a negative association 

between (F)E2 and endosteal circumference at the radius. As far as we know, there 

are no previous studies in male children and adolescents, studying the effects of 

(F)E2 on vBMD and endosteal circumference. In young adult males -at the age of 

peak bone mass- positive associations between (F)E2 and cortical vBMD at the 

radius and tibia as well as a negative association between (F)E2 and the endosteal 

circumference (endosteal contraction)
(15,16)

 is described. These data suggest that 

for normal bone mass accrual throughout puberty an estrogen-induced 

suppression of endosteal expansion is needed in addition to an androgen-induced 

periosteal bone expansion.  

Our findings on specific associations between E2 and bone parameters are 

supported by limited observations in rare clinical syndromes of estrogen 

resistance and aromatase deficiency. Men who are estrogen resistant due to a 

mutation in de ER α gene or have aromatase deficiency due a mutation in the CYP 

19 gene present with a low BMD despite high androgen levels
(11,12,14)

. Aromatase 

deficient men respond to estrogen therapy with a marked increase in bone mass, 

whereas there is no effect of testosterone
(11,12,13,14)

. 

Finally, the influence of sex steroids on bone maturation was studied. The essential 

role of estrogens in the regulation of the human growth plate is supported by the 

finding that both men and women with estrogen resistance
(11)

 or aromatase 

deficiency
(12,13,14)

 have non-fused epiphyses and continue to grow after sexual 

maturation, whereas individuals with androgen insensitivity due to a mutation of 

the androgen receptor achieve epiphyseal closure
(35)

. Experimental studies in 

juvenile ovariectomized rabbits have demonstrated that E2 accelerates the 

programmed senescence in the proliferation rate and number and size of 

chondrocytes, leading finally to epiphyseal plate fusion
(36)

. There are no previous 

data on the effects of estrogen on bone maturation in healthy males. Our results 

show that (F)E2 is positively associated with bone maturation. This is in line with 

our finding in obese adolescents showing an advance in bone maturation in 

parallel with higher circulating estrogen levels compared to non-obese males
(22) 
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(see chapter 3.2). The accelerated bone maturation in girls compared to boys can 

also be explained by the higher estradiol levels in girls, even before pubertal onset, 

since there is no sex difference in estrogen receptors alfa and beta expression in 

the human growth plate at different pubertal stages
(37,38)

.  

It should be noted however that associations found between sex hormones and 

bone size, are not solely or only directly caused by sex hormones, but could be 

caused by sex hormone-dependent alterations in IGF-1 levels. Previous research 

showed that circulating IGF-1 is affected by ER α signaling
(39)

 and that it is at least 

partly involved in the regulation of cortical bone geometry in mice
(10)

. The inclusion 

of IGF-1 as independent predictor in the multiple linear regression analyses did, 

however, not change the found associations. This suggests that the observed 

associations between sex hormones, BMD and bone geometry are at least in part 

independent associations not mediated by circulating IGF-1. 

To our knowledge, this is the first study reporting data on the associations of sex 

steroids with vBMD and bone geometry in healthy male children and adolescents. 

Our findings might contribute to the better understanding of sexual dimorphism of 

the skeletal bone geometry occurring during puberty. The strength of the present 

study is the comprehensive evaluation of BMD, bone geometry, body composition, 

pubertal development and hormonal factors involved in bone expansion. 

Moreover, sex steroids were measured by highly sensitive and accurate mass 

spectroscopy-based methodology as required when studying low androgen and 

estrogen serum levels in children.  

Our study has some limitations. Firstly, serum T and E2 levels were single point 

measurements for samples obtained between 8 and 10 am. Although it is possible 

that a single measurement is not fully representative for E2 or T exposure, in 

clinical settings, a single measurement from a serum sample drawn in early 

morning is commonly used and acceptable. Moreover, a lot of attention was given 

to take the samples as early as possible and all before 10 am. A second limitation is 

the rather broad age range. Possibly there are different effects of sex steroids on 

bone mass and size at different pubertal stages. To address in part this problem, 

we performed subanalyses within our population. Finally, one should emphasize 

that this is a cross-sectional study that gives only information about associations 

and does not allow us to draw causative conclusions. In order to confirm our 
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findings and further unravel underlying mechanisms, prospective longitudinal 

studies are required, ideally with a yearly follow-up from start of puberty until 

adulthood.  

In conclusion, we found that (F)E2 is significantly and positively associated with 

bone maturation, LS and WB aBMD, and trabecular and cortical vBMD. On the other 

hand, (F)E2 is negatively associated with endosteal circumference. Serum T is 

positively associated with muscle mass and bone size. Our findings underscore the 

important role of estrogens in skeletal development in boys, but need further 

confirmation by a longitudinal study.   
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3 SEXUAL AND SKELETAL DEVELOPMENT IN OBESE BOYS  

3.1 SEX STEROIDS IN RELATION TO SEXUAL AND SKELETAL MATURATION IN 

OBESE MALE ADOLESCENTS  
 

Vandewalle S, Taes Y, Fiers T, Van Helvoirt M, Debode P, Herregods N, Ernst C, Van 

Caenegem E , Roggen I, Verhelle F , De Schepper J , Kaufman J-M 

Journal of Clinical Endocrinology and Metabolism; 2014 99: 2977-85 
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ABSTRACT  

Background: Childhood obesity is associated with an accelerated skeletal 

maturation. However data concerning pubertal development and sex steroids 

levels in obese adolescents are scarce and contrasting.  

Objectives: To study sex steroids in relation to sexual and skeletal maturation and 

to serum PSA, as a marker of androgen activity, in obese boys from early to late 

adolescence.  

Methods: 90 obese boys (aged 10-19 y) at the start of a residential obesity 

treatment program and 90 age-matched controls were studied cross-sectionally. 

Pubertal status was assessed according to the Tanner method. Skeletal age was 

determined by an X-ray of the left hand. Morning concentration of total 

testosterone (TT) and estradiol (E2) by LC-MS-MS, free T (FT) by equilibrium 

dialysis, and LH, FSH, SHBG and PSA by immunoassays, were measured.  

Results: Genital staging was comparable between the obese and non-obese group, 

whereas skeletal bone advancement (mean 1 year) was present in early and mid 

adolescence in the obese males. While both median SHBG and TT concentrations 

were significantly (p<0.001) lower in obese subjects during mid and late puberty, 

median FT, LH, FSH and PSA levels were comparable to those of controls. In 

contrast, serum E2 concentrations were significantly (p <0.001) higher in the 

obese group at all pubertal stages.  

Conclusion: Obese boys have lower circulating SHBG and TT, but similar FT 

concentrations during mid and late puberty in parallel with a normal pubertal 

progression and serum PSA levels. Our data indicate that in obese boys, serum FT 

concentration is a better marker of androgen activity than TT. On the other hand, 

skeletal maturation and E2 were increased from the beginning of puberty, 

suggesting a significant contribution of hyperestrogenemia in the advancement of 

skeletal maturation in obese boys.  
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INTRODUCTION 

It is well-known that obesity in childhood is associated with an accelerated growth 

and skeletal maturation
(1,2,3,4)

, but it remains unclear which hormonal changes are 

most important for stimulating the skeletal maturation in this particular 

condition
(5,6,7)

. Moreover, only very limited and contrasting data have been 

published concerning pubertal development and sex steroids (testosterone (T) as 

well as estradiol (E2) concentrations), especially in male obese adolescents. 

Whereas some authors found an advanced sexual maturation in obese boys
(8,9,10)

, 

others reported a normal
(1,2)

 or even a delayed genital development
(1,3,11)

.  

Furthermore, there is controversy about T concentrations in obese children and 

adolescents. In prepubertal obese boys increased total T (TT) concentrations
(12,13)

, 

as well as normal
(14)

 and low TT levels have been described
(2,15)

, whereas in 

pubertal boys normal
(12)

, as well as decreased TT concentrations have been 

reported
(2,16,17,18)

. Poor assessment of pubertal staging, small study groups
(14,15)

, lack 

of age-matched control group
(2)

 and the use of direct immunoassays for TT 

determination
(12,16,17)

 might explain these contrasting hormonal findings between 

studies. Moreover, the well-known lower SHBG production in obesity, especially 

during puberty, might be responsible for the finding of lower TT concentration in 

obese adolescents
(2,12,15,16)

. Little experience exits with free T (FT) in adolescent 

obesity
(16,18)

. Therefore, in the present study TT, SHBG and FT were assessed as 

markers of androgen secretion and both clinical (genital development) and 

biological (prostate-specific antigen (PSA) concentrations) markers of androgen 

activity were assessed in a well-described group of obese adolescents. We 

hypothesized a normal genital development in association with normal FT 

concentrations and a more rapid skeletal maturation in relation to increased E2 

levels.  
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MATERIAL AND METHODS  

SUBJECTS  

Ninety male obese adolescents (BMI SDS >+2), aged 10-19 years, were investigated 

at the entry of a residential weight-loss program at the Zeepreventorium in De 

Haan, Belgium. Ninety age-matched healthy normal-weighted controls were 

randomly selected from an ongoing longitudinal study evaluating changes in bone 

geometry, bone maturation and muscle strength in relation to sex steroids in 

childhood and adolescence. These healthy children were recruited by letters 

distributed in several schools within the Ghent area. Subjects with a history of 

hypogonadism, panhypopituitarism, diabetes, previous or ongoing treatment with 

T or oral steroids were excluded. Both study protocols were approved by the 

Ethical Committee of the Ghent University Hospital. Informed consent was 

obtained from the parents and all participants gave their assent.  

METHODS  

ANTHROPOMETRY AND SEXUAL MATURATION  

Standing height was measured to the nearest 0.1 cm using a Harpenden 

stadiometer (Holtain Ltd, Crymuch, UK). Body weight was measured in light indoor 

clothing without shoes to the nearest 0.5 kg. Waist circumference, defined as the 

smallest abdominal circumference if present or otherwise measured halfway 

between the iliac crest and the rib cage, was determined to the nearest 0.1 cm. All 

anthropometric measurements were performed by the same trained physician 

(SV). The standard deviation score (SDS) for body height, weight, waist 

circumference and BMI was computed using the reference data of the 2004 

Flemish growth study
(19)

. Pubertal status of the subjects was assessed by trained 

pediatricians according to the method established by Tanner (Tanner Genital 

Staging: stage 1: prepuberty; stage 5: post puberty). Testicular volume was 

determined with a Prader orchidometer in a subgroup of 40 consenting obese boys 

and their respective controls.  
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BONE AGE DETERMINATION 

Bone age reading of an X-ray of the left hand and wrist was done by two 

independent experienced pediatric radiologists, blinded for the chronological age, 

using the Greulich and Pyle method
(20)

. The mean of both readings was taken, but if 

the difference was more than one year a third independent reading (by a trained 

pediatrician) was performed and the two closest estimates were retained for final 

calculations. Skeletal age differences (SAD) were calculated by subtracting the 

chronological age (CA) from the skeletal age (BA) (SAD=BA–CA): positive 

differences reflecting an accelerated skeletal maturation and negative differences a 

delayed bone maturation.  

HORMONAL MEASUREMENTS  

Venous blood samples in the obese group were obtained between 0800 and 1000 h 

after overnight fasting. Blood samples in the age-matched control group were 

collected within the same time interval, but allowing a small breakfast. All samples 

were stored at –80°C until batch analysis. Commercial automated immunoassays 

were used to measure SHBG, LH, FSH, DHEAS, PSA (Roche Diagnostics, Mannheim, 

Germany). The intra- and interassay coefficients of variation (CV’s) for all assays 

were less than 10%. The lower detection limit for PSA was 0.003 ng/ml and the 

intra-assay and interassay CV’s were respectively 1.2% and 3.5%. Serum E2, TT 

and androstenedione (A) were determined by liquid chromatography-tandem 

mass spectrometry (AB Sciex 5500 triple-quadrupole mass spectrometer; AB 173 

Sciex, Toronto Canada). Serum limit of quantification (LOQ) was <0.5 pg/mL (1.9 

pmol/L) for E2 and the interassay CV was 4.0% at 21 pg/mL (77 pmol/L)(21). 

Serum LOQ was 1.2 ng/dl for TT and the interassay CV was 8.3% at 36.7 ng/dl and 

3.1% at 307.8 ng/dl. Serum LOQ was 4.25 ng/dl for A and the interassay CV was 

2.9% at 59.8 ng/dl. Serum FT was determined by equilibrium dialysis (FT 

dialysis)
(21)

, CV of the method calculated from duplicate measurements is 11.7%. FT 

was also calculated (cFT) in all subjects from the concentrations of TT, SHBG and 

albumin according to Vermeulen et al.
(22)

. The results for FT dialysis and cFT are 

not substantially different as can be seen from a comparison by Passing-Bablok and 

Bland-Altman analysis (see supplemental data). 
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STATISTICS 

Normality was checked using QQ-plots and Shapiro-Wilk tests. The anthropometric 

data showed a normal distribution, hormonal data were however not normally 

distributed. Data are presented as mean±standard deviation or as medians (25th–

75th percentile) in case of a non-normal distribution. Comparison between obese 

and control groups were performed using parametric independent T-tests or 

ANOVA, when criteria for normality were met. In other cases, Mann-Whitney U 

tests were used. Between-group differences of categorical variables were 

calculated with χ² tests. The difference was considered statistically significant at 

p<0.05. To study hormonal parameters and anthropometric parameters in the 

obese boys compared to the controls taking pubertal stage into account as 

presented in figure 1 and figure 2, linear regression analysis was used. Hormonal 

parameters TT, FT, E2, LH, SHBG, A, DHEAS and PSA underwent a Box-Cox 

transformation to enhance normality (transformation factors were TT: λ=0.49; FT: 

λ=0.42; E2: λ=0.32; LH: λ=0.63; SHBG: λ=-0.29; PSA: λ=0.23; A: λ=0.40; DHEAS: 

λ=0.26). Box-Cox transformations were performed using MedCalc for Windows, 

version 12.5 (MedCalc Software, Ostend, Belgium). Based on the available 

literature
(13,18)

 on sex steroid (TT, FT) levels determined by LC-MS-MS and SHBG 

levels in obese prepubertal and late pubertal boys, sample size calculations were 

performed using Medcalc for Windows, version 12.4.00 (MedCalc Software, Ostend, 

Belgium) (α: 0.05; ß: 0.20). We calculated a necessary sample size of 7 to 14 

children in each group at the different pubertal stages to discern the published 

differences in TT, FT and SHBG between both groups. Post-hoc power calculations 

on our E2 analyses using G*power (version 3.1.5) demonstrated a power between 

70 and 99% at the different pubertal stages. Data were analyzed using SPSS 

software version 19.0. 



CHAPTER 3: OBESE BOYS 
 

 125 

RESULTS 

COMPARISON OF ANTHROPOMETRIC DATA AND SEXUAL AND SKELETAL 

DEVELOPMENT BETWEEN OBESE BOYS AND AGE-MATCHED CONTROLS 

Table 1 summarizes the anthropometric characteristics and Tanner stages of both 

groups. Mean body weight (SDS), BMI (SDS) and waist circumference (SDS) of the 

obese group were almost double of those of normal-weighted peers. Mean BMI SDS 

did not differ between the different pubertal stages in the control group, while BMI 

SDS at Tanner stage G5 was found to be highest in the obese group (BMI SDS G4: 

2.6±0.25; BMI SDS G5:3.0±0.35; p<0.001) (figure 1). Moreover, waist 

circumference SDS at Tanner genital stage 5 was significantly higher than waist 

circumference SDS at Tanner genital stage 4 in the obese group (waist 

circumference SDS G4: 2.5±0.28; waist circumference SDS G5:2.7±0.24; p<0.05).  
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Table 1: Comparison of anthropometric data and skeletal and sexual 

development between obese and age-matched control boys. 

 n Obese boys 
(mean±SD) 

n Age-matched 
controls  
(mean±SD)  

Significance 
level (p) 

Anthropometry      

Age (y) 90 14.6±2.2 90 14.5±2.2 ns 

Height (cm) 90 169.0±11 90 167.0±13 ns 

Height (SDS) 90 0.36±1.1 90 0.11±1.0 ns 

Weight (kg) 90 104.8±26.0 90 55.6±15.0 <0.001 

Weight (SDS) 90 2.9±0.6 90 0.03±0.9 <0.001 

BMI (kg/m²) 90 36.2±5.8 90 19.5±3.2 <0.001 

BMI (SDS) 90 2.6±0.37  90 -0.04±0.97 <0.001 

Waist circumference 
(cm) 

85 109±15 85 69±8 <0.001 

Waist circumference 
(SDS) 

85 2.5±0.28 85 -0.06±0.88 <0.001 

      

Skeletal maturation      

Bone age (y) 90 15.6±2.2 90 14.6±2.6 <0.01 

Difference bone age-
age (y) 

90 1.1±0.9 90 0.2±1.1 <0.001 

      

Tanner genital stage  Obese boys 
(frequency) 

Age-matched controls  
(frequency) 

G1  8 8.8% 11 12.1% ns (χ²) 

G2 17 18.7% 14 15.4%  

G3 13 14.3% 12 13.2%  

G4 30 33.0% 31 34.1%  

G5 23 25.3% 23 25.3%  

Comparison between obese boys and age-matched controls were performed using parametric 
independent t-tests. Between-group differences of categorical variables were calculated using 
chi-square tests. 

Height and height SDS were not significantly different between both groups by 

ANOVA analysis (figure 1, table 1). Height and height SDS of prepubertal and early 

pubertal (G1 and G2) obese children were significantly higher compared to their 

healthy peers (height: G1-G2: obese: 158±6 vs. controls: 151±7 cm, p<0.001; height 

SDS: G1-G2: obese: 0.6±1.1 vs. controls:-0.06±1.1, p<0.05). Although skeletal 

maturation is advanced in obese children from Tanner stage 1 to 4 (<0.001), there 

is no significant difference in pubertal development between both groups (figure 1, 

table 1). Moreover, studying a subgroup of 40 obese adolescents and their matched 
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controls no difference in testicular volume was observed (figure 1). 

Anthropometric characteristics of this subpopulation were similar to the whole 

population (data not shown).  

 

 

Figure 1 Height (a), bone age (b), BMI (c) and testicular volume (d) at different 

pubertal stages in obese adolescents compared to their age-matched controls. 

The line plots present mean height, BMI, bone age and testicular volume for 

each pubertal stage (prepuberty: 1; post puberty: 5) for the two study groups. 

The error bars represent 1 standard error of the mean (SEM). The obese group 

is presented by the dotted line and the control group (age-matched controls) 

by the full line. The interconnecting lines do not present longitudinal data. 
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COMPARISON OF HORMONAL AND BIOLOGICAL PARAMETERS BETWEEN OBESE 

ADOLESCENTS AND AGE-MATCHED CONTROLS. 

Before pubertal onset, TT was similar, while SHBG concentrations were lower and 

FT, DHEAS, A and E2 higher in obese boys (table 2). There was a significant 

positive correlation between FT and DHEAS and between FT and A (spearman rank 

correlation coefficient (r) r(DHEAS-FT)=0.79 p<0.001; r(A-FT)=0.71 p<0.001). As 

shown in figure 2, significantly higher sex steroids (TT, FT and E2) and PSA 

concentrations were found with advancing pubertal stage in both groups 

(p<0.001) (figure 2, table 2). The subanalysis in the different Tanner genital stages 

showed that obese adolescents (at least stage G2) have lower SHBG levels at every 

pubertal stage, lower TT concentrations from stage G3 onward, but similar FT 

concentrations, except for adolescents in pubertal stage 5. There was no significant 

difference between values obtained from FT dialysis and cFT (cFT= 0.0109 + 

0.9762 FT dialysis). No significant difference in circulating LH, FSH and PSA 

concentrations was found between the obese boys and their controls. Serum E2 

concentrations and E2/TT ratio were significantly higher in the obese adolescents 

(p<0.01).  
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Table 2: Comparison of hormonal parameters and biochemical parameters 

between obese boys and age-matched controls. 

 Tanner 
genital 
stage 

n Obese boys 
(median)  
(P25-P75) 

n Controls  
(median) 
(P25-P75) 

Significance 
level (p)  

TT (ng/dl) G1 8 6.3 (5.8-10.3) 11 6.2 (4.8-7.3) ns  

 G2 16 19.9 (10.1-67.2) 14 20.7 (9.0-44.8) ns  

 G3 13 170 (32.6-317) 12 227 (170-293) ns  

 G4 30 300 (201-365) 30 423 (326-504) <0.001  

 G5 23 335 (265-469) 23 517 (445-616) <0.001  

FT dialysis 
(ng/dl) 

G1 8 0.12 (0.1-0.15) 11 0.04 (0.03-0.06) <0.001  

 G2 16 0.45 (0.24-1.0) 14 0.13 (0.08-0.40) <0.05  

 G3 13 3.2 (0.5-6.2) 12 2.6 (1.5-4.7) ns  

 G4 30 6.7 (5.1-9.3) 30 8.0 (5.9-10.6) ns  

 G5 23 8.8 (6.7-10.3) 23 11.6 (9.1-13.3) <0.01  

cFT (ng/dl) G1 8 0.13 (0.11-0.16) 11 0.04 (0.03-0.06) <0.001  

 G2 16 0.44 (0.24-1.1) 14 0.14 (0.07-0.39) <0.05  

 G3 13 3.1 (0.5-6.5) 12 2.5 (1.4-4.7) ns  

 G4 30 6.5 (5.2-8.8) 30 7.8 (5.4-9.9) ns  

 G5 23 8.9 (7.1-9.8) 23 11.3 (9.8-12.8) <0.01  

SHBG (nmol/l) G1 8 33.6 (28.4-40.4) 11 99.0 (73.0-187) <0.001  

 G2 16 27.5 (20.2-44.9) 14 115.9(73.6-148) <0.001  

 G3 13 35.7 (23.7-43.9) 12 79.9 (52.0-93.1) <0.001  

 G4 30 21.3 (17.2-29.7) 30 36.3 (28.7-44.5) <0.001  

 G5 23 17.6 (15.4-23.8) 23 33.2 (26.4-38.5) <0.001  

E2 (ng/l) G1 8 1.9 (1.4-3.0) 11 1.0 (0.5-1.0) <0.001  

 G2 16 3.5 (2.8-5.4) 14 1.0 (0.5-1.4) <0.001  

 G3 13 10.6 (4.0-16.9) 12 3.5 (2.7-5.3) <0.05  

 G4 30 18.6 (14.9-25.3) 30  12.4 (8.5-17.0) <0.001  

 G5 23 34.8 (25.6-41.1) 23 15.7 (13.2-21.0) <0.001  

Ratio E2/TT G1 8 0.29 (0.20-0.44) 11 0.14 (0.08-0.19) <0.01  

 G2 16 0.16 (0.07-0.37) 14 0.04 (0.02-0.1) <0.01  

 G3 13 0.06 (0.05-0.12) 12 0.02 (0.01-0.02) <0.001  

 G4 30 0.07 (0.05-0.08) 30 0.03 (0.02-0.04) <0.001  

 G5 23 0.11 (0.06-0.13) 23 0.03 (0.02-0.05) <0.001  
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Table 2 continued 

 Tanner 
genital 
stage 

n Obese boys 
(median) 
(P25-P75) 

n Controls  
(median) 
(P25-P75) 

Significance 
level (p)  

LH (U/L) G1 8 0.1 (0.1-1.1) 11 0.3 (0.1-0.5) ns  

 G2 16 1.6 (0.65-1.8) 14 1.3 (0.53-1.8) ns  

 G3 13 2.6 (1.1-3.2) 12 3.1 (2.3-3.5) ns  

 G4 30 4.4 (3.4-5.5) 30 3.7 (2.5-4.5) <0.05  

 G5 23 4.6 (3.8-6.0) 23 3.9 (3.0-5.3) ns  

FSH (U/L) G1 8 1.8 (1.1-2.8) 11 1.6 (1.1-2.1) ns  

 G2 16 2.1 (1.6-3.1) 14 2.1 (1.3-2.3) ns  

 G3 13 3.0 (1.8-4.6) 12 2.0 (1.8-2.8) ns  

 G4 30 3.7 (2.8-5.1) 30 3.1 (2.1-4.7) ns  

 G5 23 2.6 (2.0-4.1) 23 2.7 (1.5-4.7) ns  

DHEAS (µg/dl) G1 8 138 (114-152) 11 89.6 (41.1-106) <0.01  

 G2 16 174 (114-244) 14 133 (81.5-180) ns  

 G3 13 225 (144-288) 12 142 (87.1-181) <0.05  

 G4 30 204 (162-315) 30 221 (157-322) ns  

 G5 23 370 (268-469) 23 348 (223-438) ns  

A (ng/dl) G1 8 26.1 (15.7-46.2) 11 17.5 (10.8-20.2) 0.06  

 G2 16 46.7 (38.7-57.0) 14 23.1 (18.9-34.3) <0.001  

 G3 13 64.6 (49.6-102) 12 31.1 (25.5-47.5) <0.001  

 G4 30 79.4 (58.7-93.5) 30 47.1 (35.8-73.0) <0.001  

 G5 23 81.7 (63.0-117) 23 80.9 (66.3-85.3) ns  

PSA (µg/l) G1 8 undetectable 11 undetectable -  

 G2 17 0.005 (0-0.01) 14 undetectable -  

 G3 13 0.05 (0.01-0.17) 12 0.03 (0.01-0.16) ns  

 G4 30 0.25 (0.16-0.35) 31 0.28 (0.19-0.44) ns  

 G5 23 0.46 (0.33-0.67) 23 0.52 (0.27-0.62) ns  

Non-Gaussian distribution: data presented as median (25th-75th percentile (P25-P75)). 
Comparison between obese boys and age-matched controls were performed using non-
parametric Mann-Whitney-U tests. Conversion factor to SI-units for TT from ng/dl to nmol/l 
is 0.0347, for FT from ng/dl to nmol/l is 0.0347, for E2 from ng/l to pmol/l is 3.671, for 
DHEAS from µg/dl to nmol/l is 2.714, for A from ng/dl to nmol/l is 0.0349. 
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Figure 2 Total testosterone (a), SHBG (b), Free testosterone (c), Estradiol (d), LH 

(e) and PSA (f) in obese boys and their age-matched controls at different 

pubertal stages. The line plots present median TT, SHBG, FT, E2, LH and PSA 

levels for each pubertal stage (prepuberty: 1; post puberty: 5) for the two 

study groups. Since the hormonal data do not meet the criteria for a normal 

distribution, data are presented as medians and the error bars represent 95th 

confidence interval. The obese group is presented by the dotted line and the 

control group (age-matched controls) by the full line. The interconnecting lines 

do not present longitudinal data. 
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ASSOCIATIONS BETWEEN THE DEGREE OF OBESITY AND HORMONAL 

PARAMETERS IN THE OBESE BOYS 

In order to study the importance of the degree of obesity on hormonal parameters, 

associations between the degree of obesity, expressed as BMI SDS and waist 

circumference SDS, and TT, FT, SHBG, E2 and PSA were studied using linear 

regression (including pubertal stage) in the obese group only. Waist circumference 

SDS was a negative predictor of TT (waist circumference SDS: ß=-0.18 p<0.01) and 

FT (waist circumference SDS: ß=-0.13 p<0.05) levels. However, no association 

between BMI SDS and TT or FT was found. There was a trend to a negative 

association of BMI SDS and waist circumference SDS with SHBG (BMI SDS: ß=-0.20 

p=0.08; waist circumference SDS: ß=-0.20 p=0.06). BMI SDS was a positive 

predictor of E2 levels (BMI SDS: ß=0.20 p<0.01). No association was found 

between waist circumference SDS and E2. All results remained unchanged when FT 

dialysis was substituted by cFT in the analyses. 
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DISCUSSION  

The present study investigates both androgen secretion (assessed by serum TT and 

FT concentrations using sensitive assays) and androgen activity using detailed 

clinical and biological assessment of sexual (Tanner genital staging, PSA) as well as 

skeletal (bone age readings of the left hand and wrist ) maturation in a group of 

obese prepubertal and pubertal boys. Our results demonstrate that pubertal obese 

boys have lower TT levels, higher E2, but normal FT levels at least during mid and 

late puberty. These hormonal differences might be responsible for the observed 

dissociation between an advanced skeletal maturation (mean advancement around 

1 year) and a normal sexual maturation (similar pubertal stage distribution and 

PSA concentrations). Our data indicate that FT is a better indicator of androgen 

exposure than TT, explaining the normal pubertal progression and PSA production 

in male obese adolescents and suggest that the increased estrogen production and 

aromatization might be linked to the advanced skeletal maturation during pubertal 

progression.  

Firstly, we confirmed the presence of an accelerated growth and skeletal 

maturation during childhood and early stages of puberty in our group of obese 

children and adolescents, who had a longstanding and persisting obesity, 

necessitating a residential weight loss program
(1,2,3,4)

. This accelerated growth and 

bone maturation contrasts with the finding of a normal androgen secretion and 

activity during this period, but is in accordance with the increased estrogen 

production and aromatization.  

Secondly, we found a normal genital development in obese adolescents. Only few 

other studies have examined the pubertal development in obese 

adolescents
(1,2,3,11,23)

. Our results of a normal pubertal progression is in accordance 

with the findings of Denzer et al. (2007), reporting a normal genital development in 

German boys in comparison with the historical Swiss standard of Largo and 

Prader
(2)

. Laron et al. (2004) also reported in a short communication no difference 

in pubertal timing among 136 obese boys and 48 non-obese boys
(23)

. On the other 

hand, an increased prevalence of delayed pubertal development in obese males has 

been observed by some pediatric obesity clinics
(1,24)

. The reasons for this 
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phenomenon, is not known, although some recruitment bias might be involved, 

given the well-known accelerated body fat accumulation in boys occurring before 

pubertal onset, promoting some overrepresentation of obese boys with a delayed 

sexual maturation in obesity clinics. 

Thirdly, we found normal serum PSA concentrations in obese adolescents. During 

male development, PSA concentrations correlate with the rise in T levels, being 

high during mini-puberty, declining to undetectable values by six months, 

reappearing by about age 10 years and increasing in concentration thereafter until 

adulthood
(25)

. Serum PSA concentrations have been found to correlate with T 

concentrations during puberty, especially when T concentrations were adjusted for 

SHBG levels
(26,27)

. This study is the first report of PSA concentrations in obese boys 

and suggests that PSA seems to be a better marker for evaluating androgen activity 

at tissue level than skeletal maturation, given it is less influenced by estrogens 

during pubertal development  

Our study design allowed us to assess the difference in circulating sex steroids 

between obese and non-obese adolescents at different pubertal stages. We found 

clearly lower TT in obese adolescents from stage 3 onwards. Most studies have 

reported low TT levels in obese subjects during pubertal progression
(2,16,17,18)

, 

although two studies did find normal TT concentrations at Tanner stage G2
(12,14)

. As 

previously described by Denzer et al. (2007), we found markedly lower SHBG 

levels at every pubertal stage possibly caused by the increased insulin levels
(28)

. 

Since approximately half of TT is bound to SHBG, it is likely that the lower SHBG 

concentrations in obese adolescents can account at least in part for these lower TT 

concentrations. Moreover, FT concentrations -as assessed by the equilibrium 

dialysis method- were comparable with the concentrations in non-obese subjects 

at mid and late puberty (G3 and G4). The findings of a normal pubertal 

development and normal PSA values indicate that FT levels seem to be a more 

representative index of androgen activity during adolescence than TT levels in 

obese pubertal boys. Our finding of higher FT concentrations in prepubertal and 

early pubertal obese boys is probably related to an increased adrenal activity
(2,13)

 in 

obese children and adolescents which seems to be supported by the increased 

DHEAS and A levels in our prepubertal and early pubertal obese boys and the 

strong positive correlation between DHEAS and FT and between A and FT. Taneli 
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et al. (2010) reported lower FT in obese boys at Tanner stage 2, but not at Tanner 

stage 4
(16)

. However, in the latter study FT concentrations were measured by direct 

radioimmunoassay, an inaccurate method that underestimates FT concentrations 

by manifold and is dependent upon SHBG concentrations
(29,30)

. In accordance with 

Mogri et al. (2013), also using an equilibrium dialysis method, we found that post 

pubertal obese males (G5) had significantly lower FT concentrations compared to 

their lean counterparts
(18)

. In adult men FT concentrations have been reported to 

be preserved in moderately obese men and decreased in severely obese subjects 

due to a deficient gonadotropin secretion, as evidenced by a decreased amplitude 

of secretory LH pulses
(31,32)

. The lower FT concentrations at completion of puberty 

in obese boys might be related to increasing body fat accumulation since a higher 

degree of obesity (assessed as waist circumference SDS) was negatively associated 

with FT levels in the obese group. Although the obese adolescents with a G5 status 

studied by us had indeed the most severe degree of obesity, -as shown by their 

higher BMI SDS and waist SDS-, and highest E2 concentrations, known to play a 

major role in negative feedback regulation of LH
(33,34)

, their E2/TT was not higher 

in comparison with earlier pubertal stages and a single point LH measurement was 

not different from lean controls.  

The few studies reporting on estrogens in obese boys, did not find a significant 

difference in E2 levels between obese boys and lean controls, but these studies 

were hampered by a very small sample size
(14,16,18,35)

 as well as the use of inaccurate 

immunoassays
(14,16,35)

.  

The strength of the present study is the comprehensive and reliable evaluation of 

pubertal development (by trained pediatricians), skeletal maturation (by two 

experienced radiologists) and sex steroids (measured by highly sensitive and 

accurate mass spectrometry-based methodology as required when studying low 

androgen and estrogen serum levels in children and adolescents) in a large group 

of obese adolescents. Since there are no universally accepted reference ranges for 

TT and FT concentrations in pubertal boys, we used age-matched controls, 

recruited in parallel with the obese study subjects to avoid secular trends. As far as 

we know this is the first study to present sex steroid data at different pubertal 

stages with an acceptable sample size in obese boys using state-of-the-art 
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techniques and to have evaluated PSA levels as a marker for androgen 

responsiveness in an obese pediatric population in relation to FT, measured by 

equilibrium dialysis. Given the wide usage of free testosterone calculations, the cFT 

was also included in the analyses. All results remained unchanged when FT by 

dialysis was substituted by cFT in our analyses. 

Our study has some limitations. Firstly, our sample size in the prepubertal and 

early pubertal group is rather small especially in comparison with our late and post 

pubertal group. However, after sample size calculations based on the available 

literature we are confident that this is not a major drawback. Secondly, our study is 

limited by the fact that we only have assessed cross-sectional data. In order to 

confirm the underlying mechanisms in the dissociation between skeletal and 

sexual maturation, prospective longitudinal studies are required, ideally with a 

follow-up from early childhood at onset of obesity until adulthood.  

In conclusion, obese male mid and late pubertal adolescents have lower TT 

concentration, but similar FT levels compared to age-matched lean controls. This 

normal androgen activity is reflected in a normal sexual development and similar 

PSA levels. On the other hand, skeletal maturation and E2 were increased from the 

onset of puberty, suggesting a significant contribution of hyperestrogenemia in the 

advancement of skeletal maturation in obese boys.  
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ABSTRACT 

Context: Controversy exists on the effect of obesity on bone development during 

puberty.  

Objective: To determine differences in volumetric bone mineral density (vBMD) 

and bone geometry in male obese adolescents (ObA) in overlap with changes in 

bone maturation, muscle mass and force development and circulating sex steroids 

and IGF-1. We hypothesized that changes in bone parameters are more evident at 

the weight-bearing site and that changes in serum estradiol are most prominent.  

Design, setting, participants: 51 male ObA (10-19y) recruited at the entry of a 

residential weight-loss program and 51 healthy age-matched and 51 bone age-

matched controls. 

Main Outcome Measures: vBMD and geometric bone parameters, as well as 

muscle and fat area were studied at the forearm and lower leg by pQCT. Muscle 

force was studied by jumping mechanography. 

Results: Beside an advanced bone maturation, differences in trabecular bone 

parameters (higher vBMD and larger trabecular area) and cortical bone geometry 

(larger cortical area, periosteal and endosteal circumference) were observed in 

ObA both at the radius and tibia at different pubertal stages. After matching for 

bone age, all differences at the tibia, but only the difference in trabecular vBMD at 

the radius remained significant. Larger muscle area and higher maximal force were 

found in ObA compared to controls, as well as higher circulating free estrogen, but 

similar free testosterone and IGF-1 levels. 

Conclusions: ObA have larger and stronger bones at both the forearm and lower 

leg. The observed differences in bone parameters can be explained by a 

combination of advanced bone maturation, higher estrogen exposure and greater 

mechanical loading resulting from a higher muscle mass and strength.  
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INTRODUCTION 

Childhood and adolescence are critical periods in the development of optimal bone 

strength since a low peak bone mass achieved in early adulthood is a risk for 

osteoporosis later in life. The most crucial stage in bone mass acquisition is 

puberty: skeletal mass approximately doubles between the start and the end of 

adolescence
(1,2)

. Conditions that alter bone development during this particular 

maturational period may lead to suboptimal bone strength and higher fracture 

risk
(2)

.  

Given the rising prevalence and severity of obesity in adolescence and the 

increasing evidence that overweight in adolescence may contribute to skeletal 

fractures
(3,4,5)

, it is essential to understand the effects of obesity on bone 

development. Some studies report higher areal bone mineral density (aBMD) in 

overweight children
(6)

, whereas others conclude that obesity is linked to a lower 

aBMD
(7)

. An important limitation of these dual-energy X-ray absorptiometry (DXA) 

studies is the size dependence of the aBMD and the lack of data on bone geometry. 

Prediction of bone strength requires knowledge of both the material (e.g. 

volumetric bone mineral density (vBMD)) and geometric properties of bone (e.g. 

size and shape)
(8)

. Therefore, peripheral quantitative computed tomography 

(pQCT) is a useful approach in bone strength analysis since it can provide three-

dimensional information about bone mineral density (BMD), size and shape
(9)

. 

Literature on the effects of adiposity and obesity on vBMD and bone size in 

children is scarce
(10,11,12)

 with conflicting results. In prepubertal children, there is 

some evidence that fat mass may have a positive effect on bone, whereas fat mass 

has a negative effect on bone during puberty and immediately post 

puberty
(13,14,15,16)

.  

Main determinants of pubertal bone mass accumulation and changes in bone 

geometry are sex steroids, the growth hormone-insulin-like growth factor axis 

(GH-IGF-1 axis) and muscle mass and strength. Sex steroids and the GH-IGF-1 axis 

have not only a role in stimulating bone growth, but also in muscle mass accrual in 

adolescents
(1)

. Muscle strength strongly stimulates the acquisition of bone mass by 
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exerting strain on the bone surface
(9)

. The interactions of loading, IGF-1 and sex 

steroids are held responsible for the development of skeletal gender dimorphism, 

leading to greater bone size, periosteal expansion and bone strength in adolescent 

boys
(17,18)

. There is some evidence from studies in prepubertal children and 

adolescents that obese subjects have a higher muscle mass 
(11)

 and disturbed sex 

steroid and IGF-1 levels
(19, 20)

. 

As mechanical and hormonal determinants (especially estradiol) are important in 

bone mass acquisition in male adolescents by their effects on bone expansion and 

bone mineralization, this study aims to determine the changes in vBMD as well as 

geometry of long bones by pQCT in male obese adolescents (ObA) by studying non-

weight-bearing (radius) as well as a weight-bearing (tibia) sites. Moreover, it also 

aims to investigate potential disturbances in muscle strength and specific 

hormonal parameters, such as sex steroids and IGF-1 known to influence bone 

mineralization and bone expansion during adolescence. We hypothesized that in 

ObA changes in bone parameters would be more evident at the weight-bearing site 

and that changes in serum estradiol would be most prominent. 
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METHODS 

SUBJECTS 

Fifty-one male ObA (BMI SDS >2) aged 10-19 years were investigated at the entry 

of a residential weight-loss program in July 2011 at the Zeepreventorium in De 

Haan, Belgium. Fifty-one age (maximal difference of six months) and body height 

(maximal difference of 5 cm) matched as well as 51 bone age (maximal difference 

of six months) and body height (maximal difference of 5 cm) matched healthy 

normal-weighted controls were selected blindly from an ongoing longitudinal 

study evaluating changes in bone geometry and muscle strength in relation to sex 

steroids in childhood and adolescence. These healthy children were recruited by 

letters distributed in several schools within the Ghent area. Obese and control 

subjects were not related to each other. Neither was there any relatedness between 

the control subjects. Obese and control children were excluded if they were taking 

medication known to influence bone or mineral metabolism in the past year or if 

they had a metabolic bone disease, thyroid disorders or diabetes. Both study 

protocols were approved by the Ethical Committee of the Ghent University 

Hospital. Informed consent was obtained from the parents and all participants 

gave their assent. 

METHODS 

ANTHROPOMETRY 

Information about medical history, lifestyle, physical activity and socio-economic 

background was collected through a questionnaire. Standing height was measured 

to the nearest 0.1 cm using a Harpenden stadiometer (Holtain Ltd, Crymuch, UK). 

Body weight was measured in light indoor clothing without shoes to the nearest 

0.5 kg. Waist circumference, defined as the smallest abdominal circumference if 

present or otherwise measured halfway between the iliac crest and the rib cage, 

was determined to the nearest 0.1 cm. All anthropometric measurements were 

performed by the same trained physician. The standard deviation score (SDS) for 

body height, weight and BMI was computed using the reference data of the 2004 

Flemish growth study
(21)

. Pubertal status of the subjects was assessed by the same 
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trained physician according to the method established by Tanner (Tanner Genital 

Staging: stage 1: prepuberty; stage 5: post puberty).  

BONE AGE DETERMINATION 

Bone age reading of an X-ray of the left hand and wrist was done by two 

independent readers (two pediatric radiologists), both blinded for the 

chronological age, using the Greulich and Pyle method
(22)

 and the mean of both 

readings was taken. If the difference was more than one year a third independent 

reading (by a trained pediatrician) was performed and the two closest estimates 

were retained. Skeletal age differences (SAD) were calculated by subtracting the 

chronological age (CA) from the skeletal age (BA) (SAD=BA–CA), with positive 

differences reflecting an accelerated skeletal maturation and negative differences a 

delayed bone maturation. 

PQCT 

Bone variables, estimates of bone strength and regional body composition of the 

forearm and the lower leg were measured using pQCT (Stratec XCT-2000, Stratec 

Medizintechnik, Germany, version 6.0). The scanner was positioned on the non-

dominant forearm (radius) and lower leg (tibia). Two 2.0 mm slices (voxel size 0.5 

mm) were measured at the 4 and 66% sites proximally from the distal end of the 

radius and two slices at the 4 and 38% site proximally from the end of the tibia. 

The cross-sectional area (CSA) of the radius/tibia was determined after detecting 

the outer bone contour at a threshold of 280 mg/ cm³. For determining cortical 

vBMD, the threshold was set at 710 mg/cm³, whereas for trabecular bone, it was 

set at 180 mg/cm³. The cortical vBMD (mg/cm³), cortical CSA (mm²), muscle and 

fat CSA, endosteal and periosteal circumferences (mm), and cortical thickness 

(mm) were measured at the mid-radius (66% of bone length from the distal end) 

and mid-shaft tibia (38% of bone length from the distal end). The combined CSA of 

muscle and bone (fibula and tibia or radius and ulna) was determined at a 

threshold of 40 mg/cm³ and the bone CSA was determined with the threshold set 

at 280 mg/cm³. Muscle CSA was calculated by subtracting the bone CSA from the 

combined muscle and bone CSA. Fat CSA was calculated by subtracting the 

combined muscle and bone CSA from the total CSA. The strength-strain index (SSI) 

of the radius 66% and the tibia 38% was calculated
(23)

. To assess the SSI, a 
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threshold of 480 mg/cm3 was used. Trabecular vBMD (mg/cm³) and area were 

measured using a scan through the distal metaphysis at the radius and the tibia (at 

4% of bone length). The CSA of the radius/tibia was determined after detecting the 

outer margin; 55% of this cross-sectional bone area was peeled off to separate 

trabecular bone from the cortical shell. The CV for the calibration phantom was 

<1% as calculated form daily phantom measurements. 

JUMPING MECHANOGRAPHY 

All measurements were recorded with the Leonardo Mechanography Ground 

Reaction Force Platform (Novotec Medical GmbH, Pforzheim, Germany). Both the 

multiple one-legged hopping (M1LH) and the single two-legged jump (S2LJ) were 

analyzed using the Leonardo Mechanography GRFP Research Edition software 

version 4.2-b05.46d. M1LH represents one-legged hopping on the forefoot with the 

aim to achieve a maximal ground reaction force. It evaluates the maximal force (F 

max) to which the tibia is exposed, and thus can serve to evaluate the muscle-bone 

unit. F max and F max relative to body mass (Fmax/body mass) of the left and the 

right leg were analyzed for this hop. The S2LJ is a vertical counter-movement jump 

to achieve maximum jump height. Parameters of this particular analysis were jump 

height, peak velocity, F max, F max/body mass, maximal peak power (P max), and P 

max/body mass
(24)

. Each subject performed three single two legged jumps and the 

recording with the highest jump height was selected. For the multiple one legged 

hopping a minimum of 10 accurate jumps had to be performed on each leg. All tests 

were performed between 10 am and 3 pm by the same observer using the same 

device. All subjects were fed and had exerted normal daily activity before the test.  

HORMONAL MEASUREMENTS 

Venous blood samples in the obese group were obtained between 0800 and 1000 h 

after overnight fasting. Blood samples in the age and height matched control group 

were collected between 0800 and 1000 h after a small breakfast 
(25)

. All samples 

were stored at –80°C until batch analysis. Commercial immunoassays were used to 

measure serum IGF-1 (Diagnostic Systems Laboratories, Webster, TX), leptin 

(Linco Research Inc., Missouri, USA), and SHBG (Modular, Roche Diagnostics, 

Mannheim, Germany). The intra- and interassay coefficients of variation (CV’s) for 
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all assays were less than 10%. Estradiol (E2), estrone (E1), and testosterone (T) 

were determined by liquid chromatography-tandem mass spectrometry (AB Sciex 

5500 triple-quadrupole mass spectrometer; AB Sciex, Toronto Canada). Serum 

limit of quantification (LOQ) was <0.5 pg/mL (1.9 pmol/L) for E2 and E1 and the 

interassay CV's were 4.0% at 21 pg/mL (77 pmol/L) for E2, 7.6% at 25 pg/mL (93 

pmol/L) for E1
(26)

. Serum LOQ was 1.2 ng/dl for T and the interassay CV was 8.3% 

at 36.7 ng/dl and 3.1% at 307.8 ng/dl. Free testosterone (FT) was determined by 

equilibrium dialysis
(27) 

and free estradiol (FE2) was calculated from total E2, SHBG 

and albumin concentrations using a previously validated equation derived from 

the mass action law
(28)

. 

STATISTICS 

Normality was checked using QQ-plots and Shapiro-Wilk tests. Data are presented 

as mean±standard deviation or as medians (25th–75th percentile) in case of a non-

normal distribution. Comparison between obese and control groups were 

performed using parametric independent T-tests or ANOVA, when criteria for 

normality were met. In other cases, Mann-Whitney U tests were used. Between-

group differences of categorical variables were calculated with χ² tests. The 

independent predictors of the various bone parameters were tested using linear 

regression analysis including age, BMI and estrogen levels. The difference was 

considered statistically significant at p<0.05. In figure 1 A age categories were used 

children between 11 and 12 years were categorized as 11 years, children between 

12 and 13 years were categorized as 12 years, etc. No rounded ages were used in 

the other statistical analyses. Data were analysed using SPSS software version 19.0. 
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RESULTS 

COMPARISON OF ANTHROPOMETRIC DATA AND REGIONAL BODY 

COMPOSITION ANALYSIS BY PQCT  

Groups matched for chronological age and height  

As shown in table 1, not only chronological age, and body height, but also pubertal 

stage were comparable between the two groups, whereas body weight (SDS) and 

BMI (SDS) of the obese group were almost double (p<0.001). Moreover, ObA had a 

significantly greater waist circumference (p<0.001). A higher absolute fat CSA, fat-

muscle CSA ratio and muscle CSA at both tibia and forearm (p<0.01) was observed 

in the obese boys (table 1). There was no significant difference in mean 

chronological age and bone age between both groups. However, there was a 

significant advanced bone maturation in the obese group (p<0.001). Figure 1 A 

shows an advanced bone maturation present up to the age of 16 years.  
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Figure 1:  

A.Mean bone age at different ages in obese adolescents compared to their 

age-matched controls. The line plots present mean bone age for each age 

group from 11 until 19 years for the two study groups. The error bars 

represent 1 standard error of the mean (SEM). The obese group is presented 

by the dotted line and the control group (age-matched controls) by the full 

line. The interconnecting lines do not present longitudinal data. 

B-D. Estrone (B), Estradiol (C), Testosterone (D) in obese adolescents and their 

age-matched controls at different pubertal stages. The line plots present 

median estrone levels, median estradiol levels and median testosterone levels 

for each pubertal stage (prepuberty: 1; post puberty: 5) for the two study 

groups. Since the hormonal data do not meet the criteria for a normal 

distribution, data are presented as medians and the error bars represent 95th 

confidence interval. The obese group is presented by the dotted line and the 

control group (age-matched controls) by the full line. The interconnecting lines 

do not present longitudinal data. 

Groups matched for bone age and height  

While body weight SDS (+2.69; p<0.001), BMI SDS (+2.47; p<0.001), waist 

circumference (+31 cm; p<0.001) were significantly different between obese and 

control group, no significant difference could be found in bone age (0.1 y; p=0.8), 

height SDS (0.29; p=0.13) , chronological age (-0.6 y; p=0.2), or pubertal stage 

distribution (P1: 12 vs 4%; P2: 18 vs 8%; P3:12 vs 18%; P4: 33 vs 37%; P5: 26 vs 

33%, p=0.27).  
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Table 1: Comparison of anthropometric data and measures of regional body 

composition between obese boys and age and bone age- matched control 

boys. 

 Obese boys 
(mean±SD) 

Age-
matched 
controls 
(mean±SD)  

Bone age-
matched 
controls 
(mean±SD) 

Significance  
Age-
matched  
(p) 

Significance  
Bone-age 
matched  
(p)    

Anthropometry 

Age (y) 14.4±2.3 14.4±2.3 15.0±2.0 ns ns 

Bone age (y) 15.5±2.3 14.6±2.7 15.4±2.5 0.07 ns 

Difference 
bone age-age 

1.12±0.90 0.18±0.90 -0.36±1.0 <0.001 <0.001 

Height (cm) 167.6±11 166.3±11.3 168.7±10.5 ns ns 

Height sds 0.29±1.25 0.17±0.89 -0.04±0.9 ns ns 

Weight (kg) 99.4±24.0 53.4±12.4 57.7±11.9 <0.001 <0.001 

Weight (sds) 2.74±0.59 -0.05±0.77 0.06±0.8 <0.001 <0.001 

BMI (kg/m²) 35.0±5.7 19.0±2.5 19.5±2.5 <0.001 <0.001 

BMI sds 2.55±0.37  -0.18±0.89 -0.36±1.0 <0.001 <0.001 

Waist (cm) 102±11 68±6 71±6 <0.001 <0.001 

Body composition 

Proximal forearm 

Fat CSA (cm²)  2660±817 683±380 709±388 <0.001 <0.001 

Muscle CSA 
(cm²)  

3106±840 2673±799 2969±799 <0.01 ns 

Fat/Muscle 
ratio 

91±31.9 29±20.8 27±19.2 <0.001 <0.001 

Proximal tibia 

Fat CSA (cm²)  4402±1426 1574±498 1656±580 <0.001 <0.001 

Muscle CSA 
(cm²) 

3737±776 3213±850 3429±735 <0.01 <0.05 

Fat/Muscle 
ratio 

121±41 51±21 51±22 <0.001 <0.001 

Tanner 
genital stage 

Obese boys 
(frequency) 

Age-
matched 
controls 
(frequency) 

Bone-age 
matched 
controls 
(frequency) 

  

G1 11.8% 9.8% 3.9% ns (χ²) ns 

G2 17.6% 15.7% 7.8%   

G3 11.7% 15.7% 17.6%   

G4 33.3% 33.3% 37.3%   

G5 25.5% 25.5% 33.3%   

Comparison between obese and control groups were performed using parametric 
independent t-tests. Between-group differences of categorical variables were calculated using 
chi-square tests. 
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COMPARISON OF BONE PARAMETERS AT THE UPPER AND LOWER LIMB USING 

PQCT 

RADIUS 

Groups matched for chronological age and height 

ObA have a higher trabecular vBMD (+7%) and a larger trabecular area (+10%) at 

the distal radius. At the proximal site, cortical area (+9%), periosteal circumference 

(+6%), endosteal circumference (+6%) and SSI (+13%) were significantly larger in 

the obese group (table 2). However, there was no difference in cortical vBMD and 

cortical thickness between the groups. Figure 2 shows higher values of trabecular 

vBMD, trabecular area, periosteal circumference and cortical area at the different 

pubertal stages in the obese group.  

Groups matched for bone age and height 

ObA still had a higher trabecular vBMD (+6.5%) in comparison with bone age 

matched controls, but there was no difference anymore in trabecular area at the 

distal end. Moreover, at the proximal site, cortical parameters were comparable 

(table 2). 
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Figure 2 (A-F): Trabecular and cortical bone parameters at the radius at 

different pubertal stages. 

The line plots present (from left to right) mean trabecular vBMD (A), mean 

trabecular area (B), mean periosteal circumference (C), mean cortical area (D), 

mean cortical thickness (E) and mean cortical vBMD (F) for each pubertal stage 

(prepuberty, 1; post puberty, 5) for the two study groups. The error bars 

represent 1SEM. The obese group is presented by the dotted line and the age-

matched control group by the full line. The interconnecting lines do not 

present longitudinal data. 
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Table 2: Comparison of volumetric bone parameters as measured by pQCT at 

the distal (trabecular parameters) and proximal radius (cortical parameters) 

and distal (trabecular parameters) and proximal tibia (cortical parameters) 

between obese boys and controls matched for age and height and controls 

matched for bone age and heighta.  

 Obese  
Boysa 

 

Age-
matched 
controlsa 

Bone age-
matched 
controlsa 

Significance(p) 
Age-matcheda 

Significance(p) 
Bone age-
matched 

Radius      

4% measurement 
site 

     

Trabecular vBMD 
(mg/cm³) 

215±33 199±35 201±33 <0.02 <0.05 

Trabecular area 
(mm²) 

157±26 141±33 149±3 <0.01 ns 

66% measurement 
site 

     

Cortical vBMD 
(mg/cm³) 

1001±54 999±55 1006±56 Ns ns 

Cortical area 
(mm²) 

74±19 67±17 71±16 <0.05 ns 

Periosteal 
circumference 
(mm) 

47±4.8 44±4.3 46±4.6 <0.05 ns 

Endosteal 
circumference 
(mm) 

35±4.9 33±6.0 35±4.9 <0.05 ns 

Cortical thickness 
(mm) 

1.8±0.4 1.7±0.4 1.8±0.4 Ns ns 

SSI (mm³) 295±94 258±81 281±85 <0.05 ns 
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Table 2 continued 

 Obese  
Boysa 
 

Age-
matched 
controlsa 
 

Bone age-
matched 
controlsa 

Significance 
(p)  
Age-
matcheda 

Significance 
(p)  
Bone age-
matched 

Tibia      

4% measurement 
site 

     

Trabecular vBMD 
(mg/cm³) 

239±28 225±34 225±33 <0.05 <0.05 

Trabecular area 
(mm²) 

545±88 463±79 474±76 <0.001 <0.001 

38% measurement 
site 

     

Cortical vBMD 
(mg/cm³) 

1079±37 1080±54 1093±52 Ns ns 

Cortical area (mm²) 310±60 264±46 272±39 <0.001 <0.001 

Periosteal 
circumference 
(mm) 

82±9.0 73±6.7 74±8 <0.001 <0.001 

Endosteal 
circumference 
(mm) 

53±8.2 45±6.4 46±10 <0.001 <0.001 

Cortical thickness 
(mm) 

4.6±0.6 4.4±0.6 4.5±0.5 Ns ns 

SSI (mm³) 1809±467 1424±342 1497± 325 <0.001 <0.001 

a Results are shown as mean±SD. Comparisons between obese and control groups were 
performed using parametric independent t-test.  

TIBIA 

Groups matched for chronological age and height 

As shown in table 2, trabecular vBMD (+6%) and area (+15%) at the tibia were 

significantly higher in the obese group. At the midshaft, tibial cortical area (+15%), 

periosteal circumference (+11%) and endosteal circumference (+15%) were larger 

in the obese group (p<0.001). The SSI was also significantly higher (+21%) in the 

obese group. Figure 3 shows clearly a larger cortical area and periosteal 

circumference at the different pubertal stages. Additionally, both trabecular vBMD 
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and area were higher in the obese group, while there was no significant difference 

in cortical vBMD and cortical thickness between the two groups.  
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Figure 3 (A-F): Trabecular and cortical bone parameters at the tibia at different 

pubertal stages. 

The line plots present (from left to right) mean trabecular vBMD (A), mean 

trabecular area (B), mean periosteal circumference (C), mean cortical area (D), 

mean cortical thickness (E) and mean cortical vBMD (F) for each pubertal stage 

(prepuberty, 1; post puberty, 5) for the two study groups. The error bars 

represent 1 SEM. The obese group is presented by the dotted line and the age-

matched control group by the full line. The interconnecting lines do not 

present longitudinal data. 

Groups matched for bone age and height 

Matching for bone age, gave similar results: the trabecular vBMD (+6%) and area 

(+13%) measured at the distal end of the tibia were significantly higher in the 

obese group. At the midshaft, tibial cortical area (+12%), periosteal circumference 

(+10%) and endosteal circumference (+13%) were larger in the obese group 

(p<0.001). There was no significant difference in cortical vBMD and cortical 

thickness between the two groups. The SSI was significantly higher (+17%) in the 

obese group (table 2). 

COMPARISON OF HORMONAL PARAMETERS BETWEEN OBESE ADOLESCENTS 

AND AGE-MATCHED CONTROLS. 

ObA have significant higher serum leptin levels (28.3 (17.0-38.9) vs 2.9 (2.1-5.4) 

ng/ml; p<0.001) compared to chronological age-matched controls representative 

for their higher fat mass. Median serum estrogen levels (E2 (16.2 (3.7-25.7) vs. 8.4 

(1.7-15.7) ng/l; p<0.01), FE2 (0.32 (0.07-0.54) vs. 0.14 (0.02-0.30) ng/l; p<0.01 

and E1 (22.3 (13-35.6) vs. 17.0 (7.6-26.5) ng/l; p<0.03)) were markedly higher in 

the obese group. While both T (247 (35-355) vs. 407 (81.1-482) ng/dl; p=0.05) and 

SHBG (22.4 (17.1-38.6) vs. 48.9 (35.7-79.6) nmol/l; p<0.001) levels were lower in 

the obese group, FT levels (5.6 (0.6-9.0) vs. 5.7 (0.7-9.1) ng/dl; ns) were 

comparable between both groups. There was no difference in IGF-1 levels between 

the two groups (288 (217-412) vs. 314 (251-399) ng/ml; ns).  
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As expected, higher sex steroids (E2 and T) levels were found with advancing 

pubertal development in both groups (figure 1 C, D). Moreover, ObA had at each 

pubertal stage markedly higher serum estrogen levels (E2 and E1) compared to 

normal-weighted controls (figure 1 B, C). Median T levels tended to be lower in the 

obese group at different pubertal stages (figure 1 D). 

COMPARISON OF MUSCLE FORCE AND MUSCLE MASS DATA BETWEEN OBESE 

ADOLESCENTS AND AGE-MATCHED CONTROLS. 

As shown in table 3, peak force and peak power in the single two-legged jump, 

were respectively 43% and 21% higher in the ObA compared to the controls. 

However, ObA jumped on average less high than the controls, and their maximal 

vertical velocity during the take-off phase of the jump was lower. Weight-related 

peak force and power were respectively, 9% and 32% lower than in the controls. In 

the multiple one-legged hopping, peak force on the left and right side were 35% 

and 32% higher in the obese subjects. However, relative to body weight, these 

forces were 6% and 11% lower in the obese group than in de control group. Muscle 

mass as well as muscle force was higher in the obese group at any pubertal stage 

(data not shown).  
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Table 3: Comparison of single-two legged jump and multiple one-legged 

hopping between obese and normal–weighted boys (matched for age and 

height).  

 Obese 
(median)  
(P25-P75) 

Controls 
(median)  
(P25-P75)) 

Significance level 
(p) 

Single Two-Legged Jump    

Jumping height (m) 0.2 (0.16-0.25) 0.4 (0.38-0.49) <0.001 

Peak Force (kN) 2.1 (1.5-2.4) 1.2 (1.1-1.6) <0.001 

Peak Power (kW) 2.9 (2.1-3.7) 2.3 (1.8-3.2) <0.02 

Peak Velocity (m/s) 2.0 (1.8-2.1) 2.5 (2.2-2.6) <0.001 

Peak Force per body weight 2.4 (2.1-2.6) 2.5 (2.2-2.6) 0.07 

Peak Power per body weight 
(W/kg) 

34.3 (29.5-40.6) 45.0 (40.2-52.4) <0.001 

Multiple One-Legged Hopping    

Peak Force left leg (kN) 2.1 (1.7-2.6) 1.4 (1.2-1.8) <0.001 

Peak Force right leg (kN) 2.0 (1.6-2.5) 1.4 (1.2-1.8) <0.001 

Peak Force left leg per body 
weight 

2.5 (2.2-2.7)  2.7 (2.4-3.1) <0.001 

Peak Force right leg per body 
weight 

2.5 (2.3-2.7) 2.8 (2.4-3.1) <0.001 

Non-Gaussian distribution: data presented as median (25th-75th percentile (P25-P75)). 
Comparison between obese and control group was performed using Mann-Whitney U tests.  

THE CORRELATION BETWEEN ESTRADIOL AND FREE ESTRADIOL AND THE BONE 

PARAMETERS IN THE WHOLE POPULATION  

Both E2 and FE2 correlated by linear regression with trabecular vBMD at the 

radius (E2: ß=0.46 p<0.001; FE2: ß=0.47 p<0.001) and tibia (E2: ß=0.51 p<0.001; 

FE2: ß=0.53 p<0.001) and with cortical area at both sites (radius:E2: ß=0.70 

p<0.001; FE2: ß=0.50 p<0.001; tibia: E2: ß=0.73 p<0.001; FE2: ß=0.73 p<0.001). 

Regression models including age and BMI showed that E2 and FE2 were positively 

associated with trabecular vBMD at the radius (E2: ß=0.38 p<0.05; FE2: ß=0.42 

p<0.01) and tibia (E2: ß=0.35 p<0.05; FE2: ß=0.37 p<0.05) and with the cortical 

area at the radius (E2: ß=0.31 p<:0.01; FE2: ß=0.32 p<0.01) and the tibia (E2: 

ß=0.24 p<0.05; FE2: ß=0.23 p<0.05). No significant associations were found 

between (F)E2 and cortical vBMD, endosteal circumference and trabecular area. 
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DISCUSSION  

The present study was undertaken to investigate the vBMD and bone geometry of 

the peripheral skeleton in obese children during late childhood and adolescence. 

Our results demonstrate that obese adolescents have larger and stronger bones at 

the lower leg (tibia) and to a lesser degree at the lower arm (radius) than their 

normal-weighted peers. Moreover, obese adolescents show a more advanced bone 

maturation in early and mid puberty, have higher circulating estrogen levels and 

develop higher muscle forces at jumping.  

As far as we known, only three other studies investigated the effects of obesity on 

vBMD and bone size in male children, but they included principally prepubertal 

children
(10,11,12)

. Since our study group consists mainly of adolescents, our data can 

contribute to a better understanding of the effect of obesity on bone geometry and 

mineralization in puberty. In contrast, we used both a chronological and bone age-

matched control design to explore the impact of increased adiposity. Additionally, 

changes in hormones involved in bone growth, as sex steroids and IGF-1, as well as 

alterations in muscle mass and force were investigated to explore their potential 

role in bone development during adolescence.  

Our bone results are in line with the results of Wetzsteon et al.
(10)

 and Ducher et 

al.
(11)

 who studied only prepubertal children. Wetzsteon et al (2008) described 

higher vBMD, bone area and bone strength parameters at the tibia in overweight 

children
(10)

. These results were confirmed by Ducher et al. (2009) who found a 

significantly larger bone size and trabecular density at the forearm and the lower 

leg in their overweight group
(11)

. No difference in cortical density could be found in 

either study
(10,11)

. Ehehalt et al. (2011) studied a group of 84 overweight children 

and early adolescents (mean age: 12 years) and found an altered bone structure 

compared to normal-weight peers at the radius; bone circumferences were larger, 

whereas the cortex was thinner
(12)

. 

By studying bone maturation, hormones and muscle force in parallel, our data give 

the opportunity to speculate about the different mechanisms that may underlie the 

observed differences in bone geometry and bone mineralization. Firstly, in 

accordance with previous studies we found that up to the age of 16 years obese 
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adolescents have a more advanced bone maturation compared to age- and height-

matched controls
(19,29,30,31)

. The advanced bone development might explain at least 

part of the observed differences in bone expansion in our study, since after 

matching for bone age, no difference in cortical parameters were present, at least 

at the radius. However, most of the geometric differences at the tibia remained, in 

favor of the obese group. These results indicate that advanced bone maturation is 

probably not the sole explanation for the observed differences in bone geometry 

between obese and control boys. We speculate that higher estrogen levels as a 

consequence of a higher aromatization rate due to excess body fat are likely to 

contribute to the advanced bone maturation in adolescent obesity
(29)

. However, this 

might not be the unique explanation since Johnson et al. (2012) described also a 

more advanced rate of bone maturation throughout childhood
(30)

. Some authors 

suggest that the advanced bone development in obese children is due to an 

increased IGF-1 production
(19)

. However, we did not find significant differences in 

IGF-1 levels between young obese boys and their controls. Our results of normal 

serum IGF-1 levels are in accordance with the more recent studies in obese 

children and adolescents using similar immunoassays
(32,33)

, although we cannot 

exclude that the free IGF-1 concentration might be elevated, as a consequence of 

decreased IGF-1 binding proteins 1 and 2 concentrations and an elevated IGF-1 

binding protein proteolysis in obesity
(33)

.  

Secondly, a larger muscle size and force might play an important role in a greater 

bone expansion in adolescent obesity. Strain from muscle force is a known major 

determinant of bone size during childhood and adolescence
(34, 35)

. Our results 

confirmed a significantly higher muscle CSA at the tibia and the radius and a higher 

muscle force and power in obese adolescents. Since muscle mass and force 

increase throughout puberty together with increases in bone area, it seem 

plausible that the larger bones and increased bone strength in obese adolescents, 

after correction for bone age, are caused by the higher mechanical load applied to 

the skeleton, not only through a greater body weight, but also by an increased 

muscle mass and force. This is supported in our study by the observation of more 

distinct differences in bone geometry at the tibia, a weight-bearing bone, compared 

to the radius, a non-weight-bearing bone. These features are consistent with the 

results of some other studies. In obese children, Ducher et al. (2009) described a 
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higher muscle CSA both at the tibia and at the radius
(11)

 and Rauch et al. (2012) 

documented a higher peak muscle force and peak power
(36)

. More support for this 

view comes from a recent longitudinal study in overweight children showing that 

increases in bone size and strength were related to the larger muscle mass but not 

fat mass
(10)

. These findings support Frost’s mechanostat theory 
(34)

 and the concept 

that bones adapt primarily to dynamic forces produced by muscle contractions
(37,38)

 

and not to static forces imposed by extra fat mass.  

Finally, we hypothesized that hormonal changes related to obesity could be 

involved in a different bone development and bone mass accrual during puberty. 

Obese adolescents in our study had at the different pubertal stages higher E2 and 

E1 levels, which were determined using a state of the art LC-MS-MS-based 

methodology. It can be noted that the difference in serum E2 is even greater when 

considering FE2, as a consequence of lower SHBG concentrations. Only one other 

study addressed the influence of sex steroids on BMD in obese children. In contrast 

to our study, no differences in circulating estrogen levels and a similar aBMD were 

found in this study
(29)

. Both the low number of adolescents studied and the use of 

an immunoassay, known to have a limited reliability for measuring low levels of 

E2, might be responsible for not finding a difference in circulating estrogens in this 

particular study. To study the influence of E2 on different bone compartments, 

well-described determinants of bone mass were assessed using linear regression. 

We observed a positive association between (F)E2 and trabecular vBMD at the 

radius and the tibia, as well as an association between (F)E2 and cortical area at 

the radius and tibia.  

To our knowledge, this is the first matched-control study to report data on 

volumetric bone parameters and bone geometry of the tibia and the radius in 

adolescent obesity. The strength of the present study is the comprehensive 

evaluation of bone geometry, muscle strength, pubertal development and 

hormonal factors (especially estrogens) involved in bone expansion. Although the 

important role of estrogens in bone homeostasis is generally acknowledged, this 

study is the first to look for relationship between circulating total and free 

estrogens in a mixed obese and lean adolescent population. Moreover, in this study 

sex steroids were measured by highly sensitive and accurate mass spectrometry-

based methodology as required when studying low androgen and estrogen serum 
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levels in children and adolescents. Our study is limited by the fact that we only 

have assessed cross-sectional data. In order to confirm and further unravel 

underlying mechanisms, prospective longitudinal studies are required, ideally with 

follow-up from early childhood at onset of obesity until adulthood.  

CONCLUSION 

We observed at both forearm and lower leg larger and stronger bones in obese 

adolescents compared to normal-weight peers. These differences in bone 

development can be explained by a combination of advanced bone maturation, 

higher estrogen exposure and higher mechanical loading resulting from a greater 

muscle mass and strength.  
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4  SUMMARY OF CONTRIBUTIONS AND GENERAL 

DISCUSSION  

This thesis has enhanced the understanding of the relative contribution of 

androgens versus estrogens in the regulation of pubertal development, skeletal 

maturation, bone mass acquisition and determination of body composition in 

healthy and obese up-growing boys. Our main findings are summarized in section 

4.1, afterwards we will discuss our results in section 4.2, in section 4.3 we will 

discuss the clinical relevance of our findings and finally we will state de limitations 

of our research and give a perspective on future research topics in section 4.4. 

4.1 MAIN FINDINGS 

4.1.1 ASSOCIATIONS BETWEEN SEX STEROIDS AND (V)BMD AND BONE SIZE IN 

HEALTHY MALE CHILDREN AND ADOLESCENTS 

In Chapter 2, we investigated the associations between sex steroid levels (adrenal 

and gonadal steroids) and (v)BMD and bone size in healthy male children and 

adolescents using multivariable-adjusted regression models including age, body 

height and weight. 

In Chapter 2.1, we studied the contribution of adrenal-derived steroids (DHEAS, A, 

E1) on (v)BMD and bone size in prepubertal and early pubertal male children. Only 

prepubertal and early pubertal boys were selected, to investigate if adrenal 

steroids might impact on (v)BMD and bone size before pubertal development. 

Although there are some reports linking conditions with an elevated adrenal 

secretion such as premature adrenarche and congenital adrenal hyperplasia to an 

increased aBMD
28,29

, we found no associations between adrenal steroid 

concentrations (DHEAS, A and E1) and (v)BMD or bone size in healthy prepubertal 

and early pubertal boys. Whether adrenal androgens within physiological range 

may contribute to changes in bone geometry has been previously studied by Remer 

et al. in 59 healthy prepubertal boys using the urinary excretion of the major 

urinary androgen (C19) metabolites
69,73

. While in this study slightly positive effects 

of DHEA and its 16-hydroxylated downstream metabolites on cortical vBMD and 

BMC at the proximal radial diaphyseal bone were observed in prepubarchal 
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children, no effect on the metaphyseal site was observed
69,73

. Their finding that of 

all adrenal androgen metabolites studied, only androstenediol, which acts as an 

estrogen and androgen receptor agonist, showed a long term prediction of bone 

strength suggests that adrenal DHEA increases are not bone anabolic per se
74

. 

Based on our data, we have no arguments for a direct bone-anabolic effect of 

adrenal-derived steroids determined in serum on either (v)BMD or bone size in 

prepubertal boys. Muscle mass was however a significant positive predictor of 

bone size in pre-and early pubertal children. This is not unexpected since it is well-

known that strain from muscle force is a major determinant of bone size during 

childhood and adolescence152,256. 

In Chapter 2.2, the associations between sex steroids (T, FT, E2, FE2) and (v)BMD 

and bone size were investigated in boys 6 to 19 years old. We found that in males 

(F)E2 is associated with (v)BMD and endosteal circumference and that (F)T is 

associated with different parameters of bone size.  

E2 and FE2 were positively associated with lumbar spine and whole body aBMD. 

Moreover, there was a positive association of E2 and FE2 with trabecular vBMD at 

the radius and the tibia. However, no associations between E2 and FE2 and cortical 

vBMD at the radius or tibia were present. All associations remained significant 

after inclusion of other possible determinants of BMD in the model such as T, IGF-1, 

calcium intake or physical activity. After inclusion of lean mass or muscle CSA in 

the model, all associations remained significant except for the associations of (F)E2 

with whole body aBMD. Furthermore, E2 and FE2 were negatively associated with 

the endosteal circumference at the radius.  

T and FT levels were associated with different parameters of bone size, such as 

whole body and lumbar spine bone area, trabecular and cortical bone area and 

periosteal circumference of the radius. Moreover, there was a significant positive 

association of T and FT with whole body lean mass and muscle CSA at the radius 

and tibia. It should be noted, however, that associations found between sex 

hormones and bone size, might not reflect solely direct effects of sex hormones on 

bone, but could reflect at least in part indirect effects resulting from sex hormone-

dependent alterations in IGF-1 levels. Previous research showed that circulating 

IGF-1 is affected by ERα signaling
257

 and that it is at least partly involved in the 

regulation of cortical bone geometry in mice
128

. The inclusion of IGF-1 as 
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independent predictor in the multiple linear regression analyses did, however, not 

change the found associations. This suggests that the observed associations 

between sex hormones, (v)BMD and bone geometry are independent associations 

not mediated by circulating IGF-1. After inclusion of whole body lean mass or 

muscle CSA in the model, the associations of T and FT with bone size were however 

no longer present, indicating that in boys the effects of T are mainly mediated 

through its effects on muscle mass and strength.  

4.1.2 ASSOCIATIONS BETWEEN SEX STEROIDS AND SKELETAL MATURATION IN 

HEALTHY MALE CHILDREN AND ADOLESCENTS 

In Chapter 2, the associations between sex steroid levels and skeletal maturation 

were studied in healthy boys.  

In Chapter 2.1, we investigated the contribution of adrenal steroids (DHEAS, A, E1) 

on skeletal maturation in prepubertal and early pubertal boys. Studies in 

conditions with an elevated adrenal secretion such as premature adrenarche and 

congenital adrenal hyperplasia have reported an advanced skeletal maturation
24–27

. 

No data are however available on the association between adrenal steroids and 

bone maturation in healthy prepubertal and early pubertal boys. DHEAS, A and E1 

are highly intercorrelated (r=0.77 to 0.86). In multivariable-adjusted analyses 

(including age, body weight and height) adrenal steroids (DHEAS, A, E1) are found 

to be independent positive predictors of bone age in males. Since we included also 

early pubertal boys (ie, pubertal stage G2) it might be argued that the observed 

effect on bone maturation could result from gonadal steroid production. We are 

however confident that this is not the case since the observed associations were 

confirmed in a subgroup of only prepubertal children. Moreover, the associations 

of E1 and A with bone age remained after inclusion of respectively E2 and T in the 

model. Based on human
100,101,104

 and animal data
131

, we would expect that the 

observed associations are due to E1. However, after inclusion of DHEAS or A in the 

model the association between E1 and bone age disappeared.  

In Chapter 2.2, the associations between sex steroids (E2 and T) and skeletal 

maturation were investigated in boys between 6 and 19 years old. There was a 

positive association of E2 and FE2 with bone maturation. These associations 
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remained significant after inclusion of T or IGF-1 in the models. Our results 

therefore stress the importance of E2 in epiphyseal maturation in boys and are in 

line with data obtained from men with estrogen resistance104 or aromatase 

deficiency
100,101,110

 who have non-fused epiphyses and continue to grow after 

sexual maturation. 

4.1.3 SEX STEROIDS IN RELATION TO SEXUAL AND SKELETAL MATURATION IN 

OBESE MALE ADOLESCENTS 

In chapter 3.1 we studied sex steroid levels in relation to sexual and skeletal 

maturation in a well-described group of 90 obese male adolescents and 90 age-

matched controls. It is known that childhood obesity is associated with an 

advanced skeletal maturation
172,174,178,183,184

. Data concerning pubertal development 

and sex steroids are however limited and contrasting. Our results demonstrate that 

obese boys compared to controls have a normal genital development and similar 

serum PSA levels, which can be used as a marker of androgen activity in males. 

However, skeletal maturation was advanced (mean advancement around 1 year) 

from Tanner genital stage 1 to 4. Before pubertal onset, TT concentrations were 

similar, while SHBG concentrations were lower and FT, E2, DHEAS and A were 

higher in the obese boys. During puberty, obese adolescents with at least stage G2 

pubertal development have lower SHBG levels at every pubertal stage, lower TT 

concentrations from stage G3 onward, but similar FT concentrations, except for 

adolescents in pubertal stage 5. No significant differences in circulating LH and FSH 

concentrations were found between the obese boys and their controls. On the 

other hand, serum E2 concentrations were significantly higher in the obese 

adolescents at each pubertal genital stage. Our data therefore indicate that FT is a 

better indicator of androgen exposure than TT, explaining the normal pubertal 

progression and PSA production in male obese adolescents despite lower TT levels. 

Our findings further suggest that increased aromatization with higher estrogen 

production in obese boys might be linked to the advanced skeletal maturation 

during pubertal progression.  
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4.1.4 SEX STEROIDS AS ONE OF THE DETERMINANTS OF VBMD AND BONE SIZE 

IN OBESE MALE ADOLESCENTS 

The results of chapter 3.1 showed that obese adolescents have higher E2 levels at 

every pubertal stage probably due to the increased aromatization of androgen to 

estrogen in fat mass. Based on our results in chapter 2.2 showing positive 

associations between (F)E2 and trabecular vBMD in healthy children, one could 

expect higher vBMD in the obese subjects. Apart from hyperestrogenemia in obese 

children, there is some evidence from studies in prepubertal children that obese 

subjects also have a larger muscle mass
220,221

 which is regarded as an essential 

contributor of pubertal bone mass46. To further unravel the effects of obesity on 

bone development, vBMD and bone size were studied in parallel with sex steroids 

and muscle mass and strength in 51 obese male adolescents and 51 healthy age-

matched controls. Our results demonstrate that obese adolescents have larger and 

stronger bones at the lower leg (tibia) and to a lesser degree at the forearm 

(radius) than their normal-weighted peers. Obese male adolescents have a higher 

trabecular vBMD at the radius and the tibia compared to age-matched controls. No 

difference in cortical vBMD between the two groups with different adiposity was 

however present. This is in line with the results of two previous studies in 

prepubertal obese children describing a higher trabecular vBMD, but a similar 

cortical vBMD compared to lean controls
220,221

. Wetzsteon et al. (2008)
220

 suggested 

that the difference in trabecular vBMD is related to an advanced skeletal 

maturation in the obese children; however, our results showed that the differences 

in trabecular vBMD remain even after correction for the advanced skeletal 

maturation using a bone age-matched control group. We speculate that the 

observed differences are rather due to higher E2 levels since there were positive 

associations between (F)E2 and trabecular vBMD. However, the cross-sectional 

design does not allow us to draw causative conclusions. Only one other study 

addressed the influence of sex steroids on BMD in obese children. In contrast to 

our study, no differences in circulating estrogen levels and a similar aBMD were 

found in this study
183

. Both the low number of adolescents studied and the use of 

an immunoassay, known to have a limited reliability for measuring low levels of 

E2, might be responsible for not finding a difference in circulating estrogens in this 

particular study.  
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In our study trabecular area, cortical area, periosteal circumference and endosteal 

circumference at the radius and the tibia were significantly larger in the obese 

adolescents. This is in line with the results of two studies performed in prepubertal 

obese children. Wetzsteon et al. (2008) described a larger bone area at the distal 

and proximal tibia in overweight children
220

. These results were confirmed by 

Ducher et al. (2009) who found a significantly larger bone area at the forearm and 

the lower leg in their overweight group
221

. The advanced skeletal maturation might 

explain at least part of the observed differences in bone expansion in our study, 

since after matching for bone age, no differences in cortical bone area parameters 

were present, at least at the radius. However, most of the geometric differences at 

the tibia remained, in favor of the obese group. These results indicate that 

advanced bone maturation is probably not the sole explanation for the observed 

differences in bone geometry between obese and control boys. An additional 

argument is given by a study of Uusi-Rasi et al. (2012), showing that overweight at 

the age of 12 is associated with a larger bone CSA at the radius and tibia in 

adulthood
225

. A larger muscle size and force might play an important role in a 

greater bone expansion in adolescent obesity, as has been stated by several 

researchers
220,221

. Our results indeed showed a significantly higher muscle CSA at 

the tibia and the radius and a higher muscle force and power in obese adolescents. 

Moreover, we found more distinct differences in bone geometry at the tibia, a 

weight-bearing bone, compared to the radius, a non-weight-bearing bone.  

In conclusion, obese boys have larger and stronger bones at both forearm and 

lower leg compared to normal-weight peers. These differences in bone 

development can be explained by a combination of advanced bone maturation, 

higher estrogen exposure and higher mechanical loading resulting from a larger 

muscle mass and strength.  

4.2 GENERAL DISCUSSION 

Sex steroids play a critical role in pubertal development, skeletal maturation, peak 

bone mass acquisition and determination of body composition in up-growing 

males. Although T is regarded as the most important sex steroid in males, several 

observations in humans and animal models have stressed the importance of 

estrogen in adult males
1,2

. Information about the effects of estrogens on skeletal 

development, skeletal maturation and body composition during childhood and 
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adolescence is however scarce. This thesis has provided further insight into the 

understanding of the relative contribution of androgens versus estrogens in the 

regulation of different developmental processes in healthy and obese boys.  

Firstly, our research clarified some items of discussion concerning pubertal 

development and sex steroid levels in obese boys. As described in the introduction, 

data on the effects of obesity on pubertal development
172,174–178

 and sex steroid 

levels
174,185–191

 in obese boys are scarce and contrasting. Our results demonstrate 

that pubertal obese boys have lower TT levels, but normal FT levels, at least during 

mid-and late puberty. As previously described by others, we found markedly lower 

SHBG levels at every pubertal stage, probably caused by the increased insulin 

levels in obese boys
258

. Since approximately half of TT is bound to SHBG, it is likely 

that the lower SHBG concentrations can account at least partially for these lower 

TT concentrations. Our data indicate that FT is preserved and a better indicator of 

androgen exposure than TT, explaining the normal pubertal progression and PSA 

production in male obese adolescents.  

Secondly, our research illustrated the essential role of estrogens (E2 and E1) on 

skeletal maturation. In chapter 2.2, we demonstrated that E2 and FE2 are 

significant positive predictors of bone maturation in healthy boys. Our results are 

in line with the data from men with estrogen resistance104 or aromatase 

deficiency
100,101,110 

who present with non-fused epiphyses, whereas individuals 

with androgen insensitivity syndrome due to a mutation of the AR achieve 

epiphyseal closure
122

. Moreover, administration of E2 to aromatase deficient men 

results in closure of the epiphysis
101,102,110

. Experimental studies in juvenile 

ovariectomized rabbits have demonstrated that E2 accelerates the programmed 

senescence in the proliferation rate and number and size of chondrocytes, leading 

finally to epiphyseal plate fusion
131

. The essential role of estrogens in the inhibition 

and final cessation of growth after puberty is further supported by the finding that 

FE2 was an independent negative predictor of height in young men who had just 

reached final height
259

. The observation that obese boys have an accelerated bone 

maturation linked to an increased aromatization and E2 production provides 

additional evidence for an important role of estrogens in bone maturation. Since 

Johnson et al. (2012), already described an advanced skeletal maturation in obese 
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children throughout childhood, the high E2 levels might not be the unique 

explanation
184

. Some authors suggest that the advanced bone maturation in obese 

children is due to an increased IGF-1 production
260

. However, we did not find 

significant differences in IGF-1 levels between young obese boys and their controls. 

Another possible explanation for the bone age advancement in obese prepubertal 

children is elevated adrenal steroid levels. A study by Reinehr et al. (2013) has 

recently reported higher adrenal steroid levels (DHEAS and A) in obese 

prepubertal children
186 

and it is known that children with conditions characterized 

by an increased adrenal steroid secretion as premature adrenarche present with 

an advanced skeletal maturation
24–27

. In favor of this hypothesis, we found a 

positive association between serum levels of adrenal-derived steroids and bone 

maturation in healthy (prepubertal and early pubertal) children. Although one 

would expect that the effects are due to E1, the association between E1 and bone 

age disappeared after inclusion of DHEAS or A in the model. Possible explanations 

are local aromatization of androgens to estrogens at level of the growth plate
98,261

 

or technical issues. As to the latter, it can be mentioned that a highly performant 

assay
234

 was used for measurement of E1 (and E2) serum levels in our study. In any 

case, serum levels of the studied adrenal–derived steroids are strongly 

interrelated, so that it might not be possible to establish the independent 

contribution of single adrenal steroids from an association study.  

Thirdly, our results presented in chapter 2.2 and 3.2 stress the importance of E2 as 

a determinant of BMD. As shown in chapter 2.2, (F)E2 is a positive predictor of 

lumbar spine and whole body aBMD. Our results are in line with the findings of 

Yilmaz et al. (2005) in healthy adolescents, showing a strong positive association of 

E2 with whole body and lumbar spine aBMD38. Pomerant et al. (2007), however 

reported that T was a significant positive predictor for whole body and lumbar 

spine aBMD in healthy boys. Since they did not study associations between E2 and 

aBMD, they cannot exclude that the observed positive association with T is an E2 

effect, related to the aromatization of T
132

. Furthermore, we found positive 

associations between (F)E2 and trabecular vBMD at the radius and the tibia, 

whereas there were no associations between (F)E2 and cortical vBMD at the radius 

or tibia. These results are supported by data from our obese population, showing a 

higher trabecular vBMD at the radius and tibia compared to healthy lean controls. 

Moreover, a multivariate regression model showed that E2 was indeed a positive 
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predictor of trabecular vBMD in a mixed obese-lean population. Cortical vBMD of 

the obese boys was however similar to healthy controls. As far as we know, there 

are no previous studies assessing the effects of (F)E2 on vBMD in healthy or obese 

boys. Our results are in line with the observations of Lapauw et al. (2009), showing 

a positive trend between FE2 and trabecular vBMD in young adult males at the age 

of peak bone mass
3
. However, they also described positive associations between 

FE2 and cortical vBMD at the radius and tibia
3,259

, which is at variance with our 

data in children. More evidence comes from research in men with idiopathic 

osteoporosis linking low FE2 concentrations to a lower trabecular and cortical 

vBMD
4
. Furthermore, a recent report by Smith et al. (2008) described a lower 

trabecular and cortical vBMD in a patient with estrogen resistance
108

. Unexpectedly 

and in contrast with our results, there was no increase in trabecular or cortical 

vBMD during estrogen treatment in a case report of an aromatase deficient male
102

. 

Furthermore, results of some mouse experiments indicated that AR activation may 

be the sole responsible for the development and maintenance of male trabecular 

bone mass and that both AR and ER α activation are needed to optimize acquisition 

of cortical bone and muscle mass
262,263

. These results seem in contrast with our 

observations in healthy and obese boys. 

Finally, we will discuss the determinants of bone size in healthy and obese boys 

with particular focus on the associations between sex steroids and bone size. In 

chapter 2.1, we showed that (F)T levels are associated with different parameters of 

bone size, such as whole body and lumbar spine bone area, trabecular and cortical 

bone area, and periosteal circumference at the radius. The observed associations 

differed between early-mid pubertal boys and late-post pubertal boys. In early-mid 

pubertal boys, only the association of (F)T with periosteal circumference was 

significant. This is not unexpected since bone diameter increases in early puberty 

by rapid periosteal apposition and periosteal apposition rates peak at the same 

time as growth in length
264

. In late-post pubertal boys, there were positive 

associations of (F)T with lumbar spine and whole body bone area and with 

trabecular bone area, cortical bone area and periosteal circumference at the radius. 

Our results are in line with previously reported associations of FT with cortical 

bone area and periosteal circumference at the radius in young male adults259. 

Moreover, a role of T in bone expansion is supported by the finding of a bone size 
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intermediate between males and females in a patient with androgen insensitivity 

syndrome. Furthermore, (F)E2 are negatively associated with the endosteal 

circumference at the radius in our healthy boys. This finding confirms the data in 

young adult males describing negative associations between (F)E2 and the 

endosteal circumference (endosteal contraction)
3,259

. These data suggest that for 

normal bone mass accrual throughout puberty an estrogen-induced suppression of 

endosteal expansion is needed in addition to an androgen-induced periosteal bone 

expansion. A possible role of estrogens in bone expansion during early puberty is 

suggested by some mouse experiments and a case report of a boy with aromatase 

deficiency. Total, cortical and trabecular bone CSA of a 16 year old boy with 

aromatase deficiency increased significantly during estrogen treatment, suggesting 

that optimal cortical bone expansion requires activation of both AR and ER α
102

. In 

male mice, estrogen deficiency on top of androgen withdrawal further reduced 

radial bone expansion, at least during early stages of puberty suggesting that both 

AR and ER α activation appear to stimulate radial bone expansion in early pubertal 

male mice. However, the described estrogen-mediated stimulatory effects on 

periosteal bone formation and cortical bone growth may be mediated indirectly by 

GH-IGF-1 axis since IGF-1 levels in the orchidectomized mice treated with an 

aromatase inhibitor were significantly lower compared to both sham and 

orchidectomized mice
128

. We were not able to confirm these data in our research; 

further longitudinal research in healthy boys is needed to clarify if there is indeed, 

as was suggested, a bimodal dose-response relationship between estrogens and 

periosteal bone expansion with stimulating effects at low dosage and inhibiting 

actions at higher concentrations.  

Based on our results, we suppose that an important part of the effects of T on bone 

size are due to an increase in muscle mass during puberty. It is known that the 

increase in bone size is driven by strain from muscle force and that muscle 

development precedes bone development during pubertal growth spurt
152,153

. Since 

there are positive associations between (F)T and muscle mass as well as positive 

associations between (F)T and bone size which disappear after inclusion of muscle 

mass in the model, we hypothesize that (F)T lead to an increase in muscle mass 

which in turn causes a larger bone size due to an increase in strain exerted on the 

bone. Due to the cross-sectional design of our studies, however, we are not able to 

draw causative conclusions and direct effects of (F)T on bone size cannot be 
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definitely excluded. Our results in obese boys support the importance of muscle 

mass and force on bone size. We showed in chapter 3.2 that obese boys have larger 

long bones compared to age-matched controls, in addition to a larger muscle CSA 

and a higher muscle force and power output measured by mechanography. These 

features are consistent with the results of some other studies. Ducher et al. (2009) 

described a higher bone and muscle CSA both at the tibia and at the radius in 

prepubertal obese children
221

 and Rauch et al. (2012) documented a higher peak 

muscle force and peak power in obese children
265

. Since muscle mass and force 

increase throughout puberty together with increases in bone area, it seem 

plausible that the larger bones and the increased bone strength in our study, even 

after correction for bone age, are caused by the higher mechanical load applied to 

the skeleton, not only through a larger body weight by an increased fat mass, but 

also by an increased muscle mass and force. More support for this view comes 

from a recent longitudinal study in overweight children showing that increases in 

bone size and strength were related to muscle mass, but not to fat mass
220

. These 

findings support Frost’s mechanostat theory
152

 and the concept that bones adapt 

primarily to dynamic forces produced by muscle contractions
266,267

 and not to static 

forces imposed by extra fat mass. Based on the negative associations between 

(F)E2 and endosteal circumference in healthy boys, one should expect a smaller 

endosteal circumference in the obese boys. In contrast, obese adolescents had a 

larger endosteal circumference at the radius and the tibia compared to healthy 

controls probably due to larger bone size as a result of higher muscle mass and 

force. The effects of muscle mass and force seem thus to overrule the expected sex 

steroid effects on bone size in obese boys.  

4.3 CLINICAL RELEVANCE 

In the next paragraph, we will discuss the clinical relevance of some of our findings.  

The observed associations of estrogens with skeletal maturation and bone mineral 

density can be of importance for the treatment of boys with short stature. Since 

estrogens are formed by the conversion of androgens by the aromatase enzyme, 

aromatase inhibition may be an effective means of enhancing growth in boys with 

short stature by postponing epiphyseal closure. Up to now, two controlled studies 

have examined the effects of aromatase inhibitors on height in boys with idiopathic 
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short stature268,269, showing a mean increase in predicted adult height between 4 

and 6 cm. No data to adult height are however yet available. Furthermore, the 

safety of aromatase inhibitors is not yet established. As we have shown that 

estradiol is positively associated with aBMD and vBMD in healthy and obese boys, 

the possible side effects of aromatase inhibitors on skeletal growth and bone mass 

accrual need to be studied. When aromatase inhibitors are used in clinical or 

research setting, a conscientious follow-up is needed. At the start of the treatment, 

we suggest taking an X-ray of the vertebrae, a DXA scan of the lumbar spine and a 

whole body and pQCT scan of the forearm, followed by a yearly follow-up using 

DXA scans (including an instant vertebral assessment (IVA)) and pQCT scans. We 

would suggest a final X-ray of the vertebrae at the end of the treatment to evaluate 

possible vertebral deformities. Preventive strategies as encouraging physical 

activity and intake of dairy products, as well as vitamin D supplementation when 

deficient, should be implemented during treatment. 

The observed advanced skeletal maturation in obese boys is of importance when 

interpreting bone mineral density and bone size results of this particular group. 

Although the advanced skeletal maturation in obese boys does not compromise 

final height184,270, it can be important in the timing of dentofacial and orthopedic 

treatments as a patient will respond more effectively to the treatment if skeletal 

development has not yet reached its conclusion271,272.  

The observation that obese boys have a normal pubertal development and similar 

PSA concentrations (used as a marker of androgen activity) accompanied by 

normal FT levels but low TT levels, stresses the importance to determine FT as well 

as TT to evaluate gonadal function in this population. FT seems to be a better 

marker for androgen activity than TT which is largely influenced by the low SHBG 

levels.  

4.4 LIMITATIONS AND PERSPECTIVES 

Although our findings have contributed to the understanding of the relative role of 

androgens and estrogens in the regulation of pubertal development, epiphyseal 

maturation, the build-up of the skeleton and changes in body composition during 

the growth phase, we were unable to draw causative conclusions on the observed 

associations due to the cross-sectional design of our work. A second limitation of 
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our work is related to the data collection. Although for recruitment of the healthy 

study population particular attention was paid to recruitment of children from a 

representative diversified background (e.g. children following different types of 

education), there was among participants some bias towards children from higher 

socio-economic background. This is in particular the case when comparing to the 

children in the obese study population. Furthermore, calcium intake in our study 

populations was estimated with a questionnaire validated in adults but not in 

children. Moreover, there are some recent and better validated questionnaires 

available. A final limitation is the fact that the measurements of adrenal and 

gonadal sex steroids were single point measurements. Although it is indeed 

possible that a single measurement is not fully representative for adrenal or 

gonadal steroid exposure, in clinical settings, a single measurement from a serum 

sample drawn in early morning is commonly used and acceptable.  

In order to confirm and further unravel underlying mechanisms in the relation 

between sex steroids and skeletal maturation, bone mass acquisition and body 

composition, prospective longitudinal studies are required, ideally with follow-up 

from early childhood until adulthood. Our healthy controls are currently followed 

up longitudinally to evaluate changes in bone geometry, bone maturation and 

muscle strength in relation to sex steroids and to further clarify the causes and 

consequences in the observed relations. However, it was not possible to collect 

these longitudinal data within the time frame of this doctoral dissertation.  
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We are convinced that a longitudinal follow-up of obese children from early 

childhood to adulthood would be very interesting, preferentially organized within 

the setting of an obesity clinic. Our data did not show any difference in Tanner 

genital staging between obese boys and their healthy controls, however to 

establish with certainty if there is a difference in timing (start) or tempo 

(progression) of pubertal development, a longitudinal design is required. 

Furthermore, it would be interesting to study at what time and at which degree of 

weight gain the differences in vBMD and bone size become apparent.  

An interesting additional question to be addressed is the effects of weight loss not 

only on sex steroids, but also on bone maturation, vBMD, bone geometry and body 

composition. Therefore, an evaluation 3 to 6 months (for sex steroids and body 

composition) and 1 year (for sex steroids, body composition and bone parameters) 

after the start of a weight loss intervention would be interesting. The additional 3 

to 6 months evaluation (mean weight loss after 6 months is about 20%) is 

necessary to study the effects on sex steroid levels, since an evaluation only at the 

end of the year, could possibly create some problems in the interpretation of the 

sex steroid levels as there are in fact evolutions of two variables to be taken into 

account, namely pubertal progression and weight loss. Furthermore, there are 

some other potential confounding factors that will have to be taken into account in 

future analyses. Increased physical activity during a weight loss program will have 

an effect on muscle mass, which in turn influences bone size. Possible changes in 

calcium, vitamin D and protein intake due to dietary changes, will have to be 

recorded by a structured food questionnaire and corrected for in the further 

analyses. Additionally, the results at one year could be compared to the evolution 

in bone maturation, vBMD and bone size in our healthy control group. 

Beside conditions of high estrogen production in boys, such as childhood obesity, 

also situations of low estrogen exposure are of interest for further study. To study 

the effects of low estrogen exposure on skeletal maturation and bone mass 

acquisition two additional studies have already been started.  

Firstly, young sons (<18y) of men with idiopathic osteoporosis are followed up at 

the Ghent University Hospital, Endocrinology department. In this particular group 
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of men indirect evidence was present that an impaired estrogen action during 

skeletal maturation might be involved in the deficient bone mass acquisition. 

However, definitive proof of the implication of a low estrogen status during 

childhood resulting in this specific bone phenotype of idiopathic osteoporosis in 

males and their affected sons is lacking
4,273

, by lack of longitudinal data during 

childhood. A cross-sectional analysis of the already available bone data showed 

that young sons of men with idiopathic osteoporosis have a lower whole body 

aBMD, lower trabecular vBMD at the radius and tibia and a delayed bone 

maturation compared to healthy controls. These findings are suggestive that 

relative estrogen deficiency during childhood might be responsible for male 

idiopathic osteoporosis. However, sex steroid levels are not available in all children 

reducing the power of the study. Therefore, further recruitment and follow-up is 

ongoing. 

Secondly, a Belgian multi-center study has started to treat a group of 25 boys 

diagnosed with idiopathic short stature with an aromatase inhibitor at onset of 

puberty to suppress the estrogen production in order to delay bone maturation 

and increase final adult height. In this particular study, vBMD and bone geometry 

at the radius will be followed during treatment to observe potential adverse effects 

of relative estrogen deficiency during adolescence. 
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