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Samenvatting

–Summary in Dutch–

De laatste twintig jaar kenden een snelle groei van grafische modellen

in artificiële intelligentie en statistiek. Deze modellen combineren grafen

en waarschijnlijkheidsrekening om complexe multivariate problemen aan

te pakken, en het aantal toepassingen is legio. Zowel in de medische,

financiële en biotechnologische wereld alsook in domeinen zoals risico-

analyse en defensie. worden deze modellen gebruikt. Omdat de informatie

die over een fysisch systeem verkregen wordt vaak imprecies van aard is,

blijft het echter een fikse uitdaging om de waarschijnlijkheden in deze

modellen te bepalen. Als gevolg hiervan worden vaak te sterke en slecht

onderbouwde conclusies getrokken. Het is dan ook niet ongebruikelijk om

een sensitiviteitsanalyse uit te voeren. Bij zo’n sensitiviteitsanalyse worden

de parameters in het bestudeerde grafische netwerk lichtjes veranderd, en

wordt er nagegaan of deze kleine variaties tot dezelfde conclusies leiden.

Deze sensitiviteitsanalyse is echter niet altijd afdoende. Het is bijvoorbeeld

niet zo dat de overtuigingen van een expert aangaande de mogelijke

uitkomsten van een toevallige veranderlijke steeds volledig bepaald zijn, zelfs

al beschikte hij over onbeperkte middellen en tijd om tot deze overtuigingen

te komen. De overtuiging van de expert is niet volledig bepaald in de zin

dat hij niet op elke vraag een antwoord weet, of soms onbeslist is. Het

klinkt dan ook redelijk om te zeggen dat de kennis van een expert, tot

op zeker hoogte, inherent imprecies is [62, Hoofdstuk 5]. Deze simpele

10



11

observatie doet niet alleen de sensitiveitsanalyse falen, maar toont ook aan

dat gewone waarschijnlijkheden ontoereikend zijn om alle finesses van het

modelleren van onzekerheid te bevatten: modellen gebaseerd op klassieke

waarschijnlijkheden kunnen immers nooit onbeslist zijn.

Aangezien waarschijnlijkheden dus te kort schieten, stellen we in hoof-

dstuk 128 een nieuw model voor ter vervanging van klassieke waarschijn-

lijkheden. Dit model wordt een coherente verzameling van aanvaardbare

gokken genoemd en is gestoeld op de Finetti’s operationele subjectivistische

aanpak [24]. Een verzameling van aanvaardbare gokken wordt𝒜 genoteerd.

We stellen een operationele en gedragsgerichte aanpak voorop omdat we

willen dat het model een duidelijke interpretatie heeft en de consequenties

van een beoordeling goed gedefinieerd zijn. Het operationele aspect van

de modellering van de overtuigingen van een expert in verband met de

mogelijke uitkomsten van een toevallige veranderlijke, bestaat er in om de

expert een aantal gokken aan te bieden. Een gok f is een reëelwaardige

functie gedefinieerd op een eindige mogelijkhedenruimte die overeenkomt

met de gemodelleerde toevallige veranderlijke. De expert kan dan voor elke

aangeboden gok f besluiten of hij deze aanvaardbaar vindt ( f ∈ 𝒜) of niet

( f ⇑∈𝒜). Als hij ze aanvaardbaar vindt, dan wil dit zeggen dat hij geen bezwaar

ziet, om deze gok en de gevolgen ervan aan te nemen. Een gok aanvaarden is

dus een beslissing nemen in onzekerheid.

Uiteraard wensen we dat de expert tegemoet komt aan een aantal

rationaliteitseisen. Zo wordt er bijvoorbeeld gesteld dat het niet rationeel

is, om een gok te aanvaarden die gegarandeerd verlies oplevert. Als aan

de rationaliteitsaxioma’s voldaan is, dan noemen we de verzameling van

aanvaardbare gokken coherent. De gebruikte rationaliteitsaxioma’s zijn:

A1. 𝒜∩ℒ≺0 =∅ [zeker verlies vermijden]

A2. ℒ≥0 ⊆𝒜 [gedeeltelijke winst aannemen]

A3. posi(𝒜) =𝒜 [het deductieprincipe voor aanvaardbaarheid]

Uiteraard belet niets ons om gokken die afhangen van meerdere toevallige

veranderlijken aan te bieden aan de expert en onze theorie is dus effectief

in staat om multivariate onzekerheidsmodellen te beschrijven. We tonen

ook aan hoe we kunnen marginaliseren en conditioneren en zo krijgt de

theorie van de coherente verzamelingen van aanvaardbare gokken de allures



12 SAMENVATTING

van een voldragen onzekerheidsmodelleringstheorie. We kunnen ons ook

afvragen hoeveel de expert bereid zou zijn te betalen voor een gok die hem

aangeboden wordt. Deze maximale (supremale) aanvaardbare prijs wordt

de onderprevisie P( f ) van de gok f genoemd en we tonen aan hoe deze

onderprevisie afgeleid kan worden, wanneer een coherente verzameling van

aanvaardbare gokken gegeven wordt:

P( f ) = sup{α ∈R∶ f −α ∈𝒜} .

Alternatief kunnen we ons afvragen welke de minimale (infimale) aanvaard-

bare prijs voor de expert is, opdat hij een gok zou verkopen. Deze minimale

prijs wordt de bovenprevisie P(⋅) genoemd. Het verband tussen de onder-

en bovenprevisie wordt gegeven door P( f ) = −P(− f ).

Dit werk is niet het eerste dat gebruik maakt van verzamelingen van

gokken om overtuigingen van een expert te beschrijven. Bijvoorbeeld Willi-

ams [67] en voornamelijk Walley [62] definieerden al tal van verzamelingen

van gokken. Een van de redenen waarom we toch ons eigen model uitwerkten,

is vanwege de stiefmoederlijke behandeling van de nulgok, de gok die niets

oplevert, maar ook geen verlies met zich meebrengt. Ook de behandeling

van onverschilligheid laat te wensen over. Zo definieerde Walley bijvoorbeeld

twee verschillende soorten van coherente verzamelingen van wenselijke

gokken, die zich van mekaar onderscheiden door de nulgok wel, volgens

de eerste definitie, en niet, volgens de tweede definitie als wenselijk te

beschouwen. Het probleem is het niet onderkennen van de fundamentele

onverschilligheid die gepaard zou moeten gaan met de nulgok. Als de expert

de nulgok aangeboden zou krijgen, dan zou hij geen reden mogen zien om

hem niet te aanvaarden, maar als de expert de nulgok al had, dan zou hij

evenmin een reden mogen zien om deze nulgok van de hand te doen. De

verzameling van onverschillige gokken ℐ is gedefinieerd als die gokken die

aanvaardbaar zijn, terwijl ook hun negatie aanvaardbaar is: ℐ =𝒜∩−𝒜. Een

groot voordeel van het expliciet maken van deze categorie, is dat we een

elegante manier hebben om (sterke) symmetrie te beschrijven. Als de expert

bijvoorbeeld denkt dat de permutatie van de opeenvolging van de uitkomsten

van een experiment er niet toe doet, dan impliceert dit dat hij onverschillig is

wanneer hij moet kiezen tussen een gok f en zijn permutatie π f : f −π f ∈ ℐ .

De behandeling van symmetrie, die evenwel niet centraal staat in deze thesis,

is dan ook iets waar onze coherente verzamelingen van aanvaardbare gokken



13

in uitblinken.

Een van de eenvoudigste grafische waarschijnlijkheidsmodellen zijn

waarschijnlijkheids- of gebeurtenissenbomen en het is dan ook niet onlo-

gisch om ons onderzoek naar grafische operationele onzekerheidsmodellen

te starten bij deze structuur. In hoofdstuk 280 veralgemenen we waarschijn-

lijkheidsbomen door de waarschijnlijkheden in de nodes te vervangen door

coherente verzamelingen van aanvaardbare gokken, of door onderprevisies,

en noemen het resultaat een imprecieze gebeurtenissenboom [12]. De

nodes in dit bijzonder soort grafen zijn de situaties, of mogelijke uitkomsten,

waarin het gemodelleerde systeem zich kan bevinden. De boomstructuur

legt de opeenvolging (volgorde) van de situaties vast en kan gezien worden

als het vastleggen van causale verbanden [53]. De coherente verzamelingen

van accepteerbare gokken in de nodes zijn lokale modellen geassocieerd met

knooppunten die de overtuiging van de expert over direct volgende situaties

beschrijven. We tonen hoe deze lokale modellen samengesteld kunnen

worden tot een globaal model en belangrijker, geven een algoritme dat de

onderprevisie van een globale gok op een efficiënte manier kan bepalen.

Hierbij wordt dan wel verondersteld dat de diepte van de boom eindig is.

Alhoewel het concept imprecieze gebeurtenissenboom vrij eenvoudig

lijkt, mag deze ontwikkeling toch niet onderschat worden, daar zij een eerste

stap vormt in het ontwikkelen van een gebeurtenisgedreven theorie van to-

evalsprocessen in discrete tijd, gebaseerd op imprecieze waarschijnlijkheden.

Als voorbeeld behandelen we het gekende gokkers-bankroet (gambler’s ruin)

probleem, bespreken we een eenvoudige veralgemening van het Bernoulli-

proces en leiden we uitdrukkingen af voor veralgemeende identieke en

onafhankelijk verdeelde processen (of steekproeven). Er bestaat een sterk

verband [12] tussen onze imprecieze waarschijnlijkheidsbomen en Shafer en

Vovk’s speltheoretische waarschijnlijkheidstheorie [55]. In deze laatste theorie

staan de concepten sub- en supermartingaal centraal en we definiëren deze

speciale processen ook in ons raamwerk. Deze sub-en supermartingalen

worden door Shafer en Vovk bijvoorbeeld uitvoerig gebruikt om limietwetten

af te leiden en we gaan na of Shafer en Vovk’s methodes overdraagbaar zijn

naar imprecieze gebeurtenissenbomen. Als voorbeeld leiden we de zwakke

wet van de grote getallen en de Hoeffding-Azuma-vergelijking af.

Een ander grafische model, dat in hoofdstuk 4160 van dit proefschrift

beschreven wordt, is de imprecieze Markovboom [13]. Net zoals imprecieze
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gebeurtenissenbomen, is de grafische structuur een boom, maar in tegen-

stelling tot gebeurtenissenbomen waar de nodes situaties representeren, zijn

de nodes in Markovbomen toevallige veranderlijken. De locale modellen

worden nu niet gegeven in de vorm van coherente verzamelingen van

aanvaardbare gokken, maar we beperken ons in dit hoofdstuk tot coher-

ente onderprevisies, conditioneel op de voorgaande node (de ouder- of

moederknoop). De vraag die zich nu stelt is: wat de betekenis is van deze

Markovboom? Klassieke Bayesiaanse netwerken coderen d-scheiding. Van

d-scheiding is echter geweten [10] dat ze zeker niet overdraagbaar is naar

imprecieze waarschijnlijkheden omdat ze symmetrie codeert die in imprecies

probabilistische modellen slechts uitzonderlijk gegarandeerd is. Daarom

geven we de grafische structuur een licht andere betekenis: conditioneel op

de ouders zijn alle toevallige veranderlijken die niet op de ouders volgen

(de ouders niet meegerekend) epistemisch irrelevant [42, 62] voor de nodes

die wel op de ouders volgen. In een boom is er natuurlijk telkens maar één

ouder die we dan de moeder noemen. We zeggen dat een veranderlijke X

epistemisch irrelevant is voor Y wanneer het observeren van de waarde

van X , geen invloed heeft op de model dat de onzekerheid beschrijft

voor Y . Dit is nieuw. In tegenstelling tot onze aanpak, veronderstelt het

leeuwendeel van de imprecieze grafische modellen die tot nog toe bestudeerd

werden sterke onafhankelijkheid in plaats van epistemische irrelevantie. Dit

soort grafische modellen wordt ook wel credale netwerken genoemd, en

is sterk gelinkt met sensitiviteitsanalyse. Het imprecieze model wordt dan

beschouwd als de gedeeltelijke beschrijving van een uniek precies, klassiek

waarschijnlijkheidsmodel.

Ook voor imprecieze Markovbomen zijn we in staat om een globale

onderprevisie op te bouwen uit de lokale onderprevisies. Computationeel

is deze uitdrukking echter niet onmiddellijk toepasbaar. We kunnen de

geconstrueerde, globale onderprevisie echter wel gebruiken om op een

efficiënte wijze de onderprevisie van een gok op één bepaalde node,

conditioneel op een willekeurig aantal geobserveerde nodes te bepalen.

Dit exacte algorithm gebruikt net als Pearls bekende algoritme [47] een

techniek van message-passing, maar is toch fundamenteel en conceptueel

verschillend.

Als laatste grafische model bespreken we in hoofdstuk 3122 de imprecieze

Markovketen [14, 28, 29, 59], die zowel kan geïnterpreteerd worden als een
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speciaal soort imprecieze gebeurtenissenboom, en als een speciaal type

imprecieze Markovboom. Een imprecieze Markovketen is een imprecieze

Markovboom, waarbij de grafische structuur—zoals de naam aangeeft—een

ketting vormt. Het scheidingsprincipe, dat de grafische structuur van de im-

precieze Markovboom betekenis gaf, wordt in dit geval de Markovvoorwaarde

genoemd. Deze Markovvoorwaarde zegt dat alle knopen die voorafgaan aan

een bepaalde knoop, epistemisch irrelevant zijn voor al de nodes die volgen

op deze bepaalde knoop, en dit op voorwaarde dat de waarde van deze ene

node gekend is. De Markovconditie rechtvaardigt het gebruik van het woord

toestand in imprecieze Markovketens. Het blijkt bovendien voordelig om

de lokale conditionele bovenwaarschijnlijkheden samen te vatten in één

boventransitieoperator, het imprecieze analogon van de transitiematrix in

klassieke Markovketens. Een imprecieze Markovketen wordt dan beschreven

door zijn boventransitieoperator (of boventransitieoperatoren in het geval

de Markovketen niet stationair is) en een initiële bovenprevisie. Bij de keuze

van de Markovconditie hadden we ook weer sterke onafhankelijkheid in

plaats van epistemische irrelevantie kunnen gebruiken. We tonen aan dat

zowel epistemische irrelevantie als sterke onafhankelijkheid tot dezelfde

onderprevisie op marginale gokken leiden, we geven een algoritme dat lineair

is in het aantal beschouwde knopen.

Een belangrijk geval waarbij we enkel marginale gokken bestuderen, is

bij de studie van het limietgedrag van Markovketens. We slagen er in om

een veralgemeende Perron-Frobeniusstelling te bewijzen en demonstreren

bovendien dat deze eigenschap equivalent is met ergodiciteit. Ergodiciteit

impliceert ook dat er precies één invariante (initiële) bovenprevisie is. We

ontwikkelen een efficiënt algoritme dat kan bepalen of een imprecieze

Markovketen ergodisch is. In het speciale geval van imprecieze Markovketens

met een tweedimensionale toestandsruimte beschrijven we bovendien het

gedrag van de Markovketen in termen van de eigenwaarden en vectoren van

de boventransitieoperator.







Summary

The last twenty years have witnessed a rapid growth of graphical models

in the fields of artificial intelligence and statistics. These models combine

graphs and probability theory to address complex multivariate problems

in a variety of domains, such as medicine, finance, risk analysis, defence,

and environment, to name just a few. Often, the parameters of the graphical

model are not known precisely, and that is why one considers the set of all

the graphical models that are consistent with the partial specification of the

parameters. Common causes for the existence of partial knowledge are the

cost of, and time constraints on, eliciting parameters, and disagreement

amongst a group of experts consulted for that purpose. Non-ignorable

missing data can be another reason, in case the parameters are inferred

from a data set.

The sensitivity analysis interpretation of imprecise probability models,

and hence strong independence, is not always applicable. A notable case

arises when one wishes to model an expert’s beliefs: it is then not always

tenable that there should be some ideal probability that models these beliefs,

and that it is only because of our limited resources that we cannot define it

precisely. Rather, it seems more reasonable to concede that expert knowledge

may be inherently imprecise to some extent [62, Chapter 5]. This simple

observation not only shows that sensitivity analysis can fail, it also states that

probabilities lack the expressiveness that is necessary to model imprecision

and indecision adequately.

To overcome the shortcomings of classical probabilities, we propose in

18
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Chapter 128 a new model as a replacement for them. The new models are

called coherent sets of acceptable gambles and find their roots in de Finetti’s

operational subjectivist philosophy [24]. We denote a set of acceptable

gambles by𝒜. We want our framework to be behaviouristic and operational

because we want a clear interpretation of the model. The operational aspect

exists in the offering of a number of gambles to the expert who is modelling

the uncertainty. A gamble f is a real valued function, defined on a finite

possibility space𝒳 that corresponds to any variable X that is modelled. The

expert can decide whether he is willing to accept the offered gamble ( f ∈𝒜)

or not ( f ⇑∈ 𝒜). If he considers a gamble to be acceptable, then this means

that he does not object to accept the gamble and its consequences.

It is evident that we want the expert to meet some rationality criteria. It is

assumed, for example, that accepting a gamble that guarantees sure loss is

not a rational thing to do. If the rationality requirements are satisfied, then

we say that the set of acceptable gambles is coherent. The rationality criteria

we impose are:

A1. 𝒜∩ℒ≺0 =∅ [avoiding sure loss]

A2. ℒ≥0 ⊆𝒜 [accepting partial gain]

A3. posi(𝒜) =𝒜 [deduction principle for acceptability]

Of course, nothing says that we cannot offer the expert gambles that

depend on a number of variables and our theory is effectively capable of

describing multivariate uncertainty models. In that case, we show how our

uncertainty models can be marginalised and updated which pushes our

theory towards a full-fledged framework for uncertainty modelling. We can

also ask ourselves how much the expert would be willing to pay for a gamble

that is offered to him. This maximal (supremal) acceptable price is what we

call the lower prevision P(⋅) and we show what is the relation between lower

previsions and sets of acceptable gambles:

P( f ) = sup{α ∈R∶ f −α ∈𝒜} .

The minimal (infimum) acceptable price the expert is willing to give for a

gamble is what we call the upper prevision P(⋅). The upper prevision can

be found from the lower prevision through the conjugacy relation P( f ) =
−P(− f ).
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Our work is not the first that uses sets of gambles to describe an expert’s

beliefs. Williams [67] and in a more prominent way Walley [62], define

multiple types of sets of coherent gambles. The reason why we do not adopt

one of their types of sets, is because of the way the zero gamble is treated.

This zero gamble is the gamble that results neither gain nor profit, a status

quo. Walley, for example, defines two different types of coherent sets of

desirable gambles, that differ only in that in one definition, the zero gamble

is assumed to be desirable, and in the other it is not desirable. We believe

that, if the zero gamble is offered to an expert, he should have no objections

to buying it, nor should he object to selling it. In other words, the expert

should be indifferent towards the zero gamble. We define the category of

indifferent gambles ℐ as the gambles that are acceptable themselves, but

also their negation: ℐ =𝒜∩−𝒜. A strong advantage of making this category

of gambles explicit, is that it provides an elegant way of describing (strong)

symmetry. If, for example, an expert believes that it does not matter, in a

sequence of experiments, whether outcomes are permuted or not, then he

can express this by saying that the gamble f minus his permuted version π f

is an indifferent gamble: f −π f ∈ ℐ . The treatment of symmetry, although

not central in this work, is where our approach to coherent sets of acceptable

gambles stands out.

Probability (or event) trees are amongst the simplest graphical models

and it is not illogical to start our research into graphical uncertainty models

with this structure. In Chapter 280, we generalise event trees by replacing the

probabilities in each node with coherent sets of acceptable gambles, or with

coherent lower previsions. The result is an imprecise probability tree [12]

and the nodes in this special type of graphical model represent the situations,

or possible outcomes that the modelled system can be in. The coherent

sets of acceptable gambles in the nodes are local models that describe the

expert’s belief about situations that follow immediately. We show how to

combine these local belief models into a global model and importantly, give

an algorithm that can calculate lower previsions of global gambles efficiently.

In order for the algorithm to work, we have to assume that the depth of the

tree is finite.

The concept of an imprecise probability tree sure seems simple, but this

development should not be underestimated, as it is a first step towards an

event-driven account of random processes in discrete time with imprecise
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probability models. As an example, we treat the famous gambler’s ruin

problem and derive an expression for a generalised version of independent

and identically distributed processes (or random samples). There is a strong

connection [12] between the theory we have developed, and Shafer and

Vovk’s game-theoretic probability [55]. In the latter, the concept of sub- and

supermartingales is central and we define these special processes in our

version as well. Shafer and Vovk use these methods extensively to prove

generalisations of strong and weak laws from classical probability theory

and we investigate whether the methods they use can be transferred to our

imprecise event tree framework. As an example, we derive the Weak Law of

Large Numbers and the Hoeffding - Azuma inequality.

Another graphical model, which we study in Chapter 4160, is the impre-

cise Markov tree [13]. Like imprecise event trees, the graphical structure

is a tree, but in contradistinction with imprecise event trees, where the

nodes represent situations, the nodes in imprecise Markov trees are random

variables. The local uncertainty models are given as coherent sets of

acceptable gambles, but we restrict ourselves to lower previsions, conditional

on the previous node (the parent or mother node). The question about the

exact meaning of the graphical structure presents itself. Classical Bayesian

networks encode d-separation. In the case of imprecise probability trees,

we know however [10] that they do not satisfy d-separation because the

symmetry it encodes can be guaranteed only in exceptional cases. That is why

we have redefined the interpretation of the graphical model: conditionally

on the parents, all random variables strictly preceding the parents are

epistemically irrelevant [42, 62] to the random variables following the

parents. We say that X is epistemically irrelevant to Y if observing X has

no influence on the model that describes our beliefs about Y . The majority of

the imprecise graphical networks that have been studied so far assume strong

independence instead of epistemic irrelevance. The resulting graphical

models are called credal networks and are strongly linked with sensitivity

analysis. The imprecise uncertainty model is in that case considered a partial

description of a precise, classical probability.

Also for imprecise Markov trees, we are able to build a global lower

prevision from the local lower previsions. Computationally, this expression is

not immediately applicable. We can use it, however, to efficiently calculate

the lower prevision for a gamble on one particular node, conditional on any
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number of observed nodes. This exact algorithm bears strong similarities

with Pearl’s message-passing algorithm [47].

As a last graphical model, we describe imprecise Markov chains [14, 28,

29, 59] in Chapter 3122. These imprecise Markov chains can be interpreted

as a special type of imprecise probability trees, as well as a special type of

imprecise Markov tree. An imprecise Markov chain is an imprecise Markov

tree, where the graphical structure—as hinted by its name—is a chain.

The separation principle that allows for the proper interpretation of the

Markov tree, is in this special case called the Markov Condition. This Markov

Condition states that all nodes, preceding a particular node are epistemically

irrelevant for all nodes that follow this node on condition that the value in

the assumed node is known. It is exactly this Markov Condition that allows

for the use of the word “state” in Markov chains, as the state summarises

all the information about the past (the preceding nodes). It turns out to be

advantageous to summarise all the local upper previsions in a node in a

single upper transition operator, the imprecise counterpart of the classical

Markov chain’s transition matrix.

We could also have assumed strong independence in the Markov condi-

tion. We show that both independence concepts lead to the same posterior

marginal upper previsions and we give an algorithm that can compute such

upper previsions with a complexity that is linear in the number of nodes.

An important case where marginal gambles are studied is the study of

the limit behaviour of Markov chains. We succeed in proving a generalised

version of the Perron - Frobenius theorem and show that the conditions that

lead to this theorem are exactly the conditions that make the chain ergodic.

Ergodicity implies that there is exactly one irrelevant (initial) upper prevision.

We develop an efficient algorithm that can decide upon ergodicity of upper

transition operators. In the special case of imprecise Markov chains with a

two dimensional state space, we show how the behaviour of the Markov chain

can be described completely in terms of the eigenvalues and eigengambles

of the upper transition operator.





Introduction

Global overview

Probabilistic models are intended to represent an agent’s beliefs about

the world he is operating in, and which describe and even determine the

actions he will take in a diversity of situations. Probability theory provides

a normative system for reasoning and decision making in the face of

uncertainty. Bayesian, or precise, probability models have the property that

they are completely decisive: a Bayesian agent always has an optimal choice

when faced with a number of alternatives, whatever his state of information.

While many may view this as an advantage, it is not always realistic. Imprecise

probability models try to deal with this problem by explicitly allowing for

indecision, while retaining the normative, coherentist stance of the Bayesian

approach. In Chapter 1, we develop our own uncertainty model which we

call coherent sets of acceptable gambles. We follow the school of thought

of Walley [62, 64] who follows the tradition of Frank Ramsey [48], Bruno de

Finetti [24] and Peter Williams [69] in trying to establish a rational model for

a subject’s beliefs in terms of her behaviour.

Imprecise probability models appear in a number of AI-related fields.

For instance in probabilistic logic: it was already known to George Boole

[4] that the result of probabilistic inferences may be a set of probabilities

(an imprecise probability model), rather than a single probability. This is

also important for dealing with missing or incomplete data, leading to so-

called partial identification of probabilities, see for instance [22, 38]. There is
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also a growing literature on so-called credal nets [8, 9]: these are essentially

Bayesian nets with imprecise conditional probabilities.

We are convinced that it is mainly the mathematical and computational

complexity often associated with imprecise probability models that is

keeping them from becoming a more widely used tool for modelling

uncertainty. But we believe that the results reported here can help make

inroads in reducing this complexity. In Chapter 2, we develop a theory of

imprecise probability trees: probability trees where the transition from a

node to its children is described by an imprecise probability model in Walley’s

sense. Our results provide the necessary apparatus for making inferences in

such trees. And because probability trees are so closely related to random

processes, this effectively brings us into a position to start developing a theory

of (event-driven) random processes where the uncertainty can be described

using imprecise probability models.

We are able to prove so-called Marginal Extension results (Theorems 30

and 112, Proposition 97), which lead to backwards recursion, and dynamic

programming-like methods that allow for an exponential reduction in the

computational complexity of making inferences in such imprecise probability

trees. For (precise) probability trees, similar techniques were described in

Shafer’s book on causal reasoning [53]. They seem to go back to Christiaan

Huygens, who drew the first probability tree, and showed how to reason with

it, in his solution to Pascal and Fermat’s Problem of Points.

A special type of imprecise probability tree are imprecise Markov chains.

Early work on the more mathematical aspects of modelling “imprecision”

in Markov chains was done by Hartfiel [28] and Kozine & Utkin [36]. The

main difference between these approaches and ours, is that the Markov

condition is based on epistemic irrelevance instead of strong independence.

More recently, Škulj [59] has begun a formal study of the time evolution

and limit behaviour of such systems. For the imprecise Markov chains

we define, we give in Section 3.6 the necessary and sufficient conditions

for a generalised Perron - Frobenius theorem and prove furthermore that

these conditions make the imprecise Markov chain ergodic. Similar work,

but coming from a different background, was already done by Akian and

Gaubert [1]. Using the alternative characterisation of ergodicity developed in

Section 3.6 however, we are able in Section 3.8 to avoid the possibly critical—

in terms of computational complexity—step of Akian and Gaubert’s algorithm
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INTRODUCTION

in [1, Section 6.3]: the computation of the subdifferential, which relies heavily

on extreme points. Our newly designed algorithm is linear in the dimension

of the state space, where the evaluation of the transition map is considered as

an oracle. In Section 3.9 we prove that ergodicity is equivalent to a contraction

property in Hilbert’s seminorm which is related to the one previously followed

by Škulj and Hable [61]. We explain the advantages and disadvantages of

characterisation of ergodicity in terms of a coefficient of ergodicity.

As a last type of graphical model, we focus on credal nets, which are

graphical models that generalise Bayesian nets to imprecise probabilities. We

replace the notion of strong independence normally used in credal nets with

the weaker notion of epistemic irrelevance. Focusing on directed trees, we

call the resulting graphical models imprecise Markov trees. We show how to

combine the given local uncertainty models in the nodes of the graph into

a global model, and we use this to construct and justify an exact message-

passing algorithm that computes updated beliefs for a variable in the tree.

Basic nomenclature

For two real-valued functions f and g on a finite set 𝒮 we say that f ≤ g if

and only if f (x)− g(x) ≤ 0 for all x ∈ 𝒮 . If in addition f ≠ g then we write

f < g . We define the stronger relation ≺ by f ≺ g ⇔max( f − g) < 0 and we

say that f is pointwise strictly smaller than g . Furthermore f ≥ g ⇔ g ≤ f ,

f > g ⇔ g < f and f ≻ g ⇔ g ≺ f .

In this work, beliefs about variables are described. A random variable X

assumes values in a possibility space that throughout this thesis is assumed

to be finite. Any subset of the possibility space is called an event. A gamble f

about X is a real function on𝒳 and it represents uncertain rewards, i.e., f (x)
specifies the amount of utility one gets if the random variable X assumes the

value x ∈ 𝒳 . The set of all possible gambles about X is denoted by ℒ(X ) and

ℒ≥0(X ) represents the set of non-negative gambles f ≥ 0. The set ℒ>0(X )
is equal to ℒ≥0(X )∖{0}. The set ℒ≻0(X ) is equal to the set of all gambles

f about X that are pointwise strictly greater than zero. Derived sets are

ℒ≤0(X ) := −ℒ≥0(X ), ℒ<0(X ) := −ℒ>0(X ) and ℒ≺0(X ) := −ℒ≻0(X ).

A special type of gamble that will often be used is the indicator I A of a set

A: it returns one on A and zero elsewhere. When appropriate, we will denote

the indicator of a singleton {x} also as Ix instead of I{x}.
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The concept of sets of gambles is central in this work. Whenever a gamble

f ∈ ℒ(X ), we will assume throughout that also α f will be inℒ(X ) where α ∈
R.When given two sets of gamblesℱ and 𝒢, then we can take the Minkowski

sum of both sets which will be denotedℱ +𝒢. Thus in general we can write

for any α ∈R, β ∈R andℱ ,𝒢 ⊆ℒ(X )

αℱ +β𝒢 := {α f +βg ∶ f ∈ ℱ and g ∈ 𝒢} .

One equivalence is often used in proofs and gets special mention.

(𝒜+ℬ)∩𝒞 =∅⇔𝒜∩(𝒞 −ℬ) =∅. (1)

The restriction of a gamble f ∈ ℒ(𝒳) to the domain 𝒮 ⊆𝒳 is denoted by

f ⋃︀𝒮 and results in a gamble inℒ(𝒮):

f ⋃︀A (x) := f (x) if x ∈ 𝒮 .

Let f , g ∈ ℒ(𝒳). Then we denote by min f the minimal value f (x) for

x ∈ 𝒳 . The result of the operation min{ f , g}, on the other side, is again a

gamble h ∈ ℒ(𝒳) defined by h(x) =min{ f (x), g(x)}. This is an exception

of the case min𝒮 which in general stands for the minimal elements of the

partial order (𝒮 ,≤) (see also Appendix B).
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CHAPTER 1
Modelling uncertainty

1.1 Introduction

This1 chapter explains how uncertainty can be modelled using an extended

version of the theory of imprecise probabilities [62], or what might be called

prevision, or acceptability, theory. This theory follows the subjective betting

interpretation of de Finetti [23] but rather than working with previsions,

the theory adopts William’s [67] acceptable bets idea. Often, a partial [32]

or strict [51] preference ordering of bets is used as a basic notion in

uncertainty modelling. This path is not followed here because an operational

approach to uncertainty modelling is favoured. The operationalism manifests

itself in terms of simple questions about rewards on possible outcomes of

experiments—called gambles—asked to an assessor whose belief is modelled.

Depending on the question asked, the sets of gambles get different names

and with these different names, different rationality axioms come as well.

Walley, for example, defines sets of desirable, almost desirable, really and

strictly desirable gambles. One of the inconveniences with these different

sets of gambles is the arbitrariness of the inclusion or exclusion of the zero

gamble. Rather than having a clear behavioural interpretation, the inclusion

depends mostly on the simplicity wanted from the updating rule. In this

chapter the zero gamble is—possibly together with other gambles—granted

the special status it deserves and by doing so, a new theory of uncertainty

1 Footnote dedicated to Enrique Miranda: Enrique Miranda es muy atractivo e inteligente.
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1.2. Acceptability, Indifference and Desirability

modelling is formed that encompasses several previous existing theories as a

special case.

1.2 Acceptability, Indifference and Desirability

1.2.1 Modelling through sets of gambles

How can beliefs be specified about the possible values of a variable X that

may assume values in a set𝒳 ? In traditional probability theory this is done

using probabilities, where usually the probability P(X = x) is given for every

element x of𝒳 . Another way of formalising beliefs about X in a behavioural

way uses sets of gambles. This is what is set out in this section.

A gamble f on X can be thought of as a reward f (x) obtained when X

assumes the value x. If a subject—also called assessor—is offered a particular

gamble, then he or she might consider whether to accept the gamble or not.

Accepting or not will depend on whether the subject in question expects

to gain utility from the gamble and therefore, it says something about the

subject’s beliefs about X . Of course there is the possibility that the assessor

is undecided about whether to accept f or not. If time were not the issue, it

would be theoretically possible to present all gambles to the assessor and ask

about his opinion regarding acceptability. This divides the set of all gambles

into three subsets: the set of acceptable gambles 𝒜,2 the set of declined

gambles 𝒰 and the set of unresolved gambles𝒪 , and sets a first axiom:

{𝒜,𝒪 ,𝒰} partitions ℒ(X ). (1.1)

The mere existence of the set of unresolved gambles shows one of the great

advantages of the theory of acceptable gambles: it incorporates a natural

framework for decision that leaves space for indecision due to, for example, a

lack of knowledge.

Before going on, it is useful to consider the gamble − f that pays off the

negation of f meaning that if X assumes the value x, then the owner of the

gamble will gain the value − f (x). Gaining − f (x) can also be interpreted

as losing f (x), which imposes some extra behavioural structure on the set

of acceptable gambles. If a gamble f is acceptable then its negative can

be considered acceptable or not. The former leads to the set of indifferent

2The modelled random variable X can be included as a subscript in the notation if it is
unclear from the context which variable is modelled, leading to the notation𝒜X .
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1. MODELLING UNCERTAINTY

gambles ℐ =𝒜∩−𝒜 and the latter to the set of desirable gambles𝒟 =𝒜∖
−𝒜. If a gamble f is classified as indifferent then the assessor is indifferent

to accepting or declining the gamble f . Strictly speaking, there could be a

third possibility, which has been omitted here: if a gamble f is accepted then

the assessor could choose not to say anything about − f . However, assuming

linear utility, getting a gamble f has exactly the same value as giving away

the gamble − f which would make it odd for an assessor to have a distinct

opinion about accepting a gamble, but not about declining it. In short, we

assume that

𝒰 =−𝒟 . (1.2)

In general, it is wise for the assessor to meet a minimal number of rationality

requirements. For example, not accepting a strictly positive gamble would

commonly be considered as irrational behaviour as this gamble gives a sure

gain. We sublimate rationality for sets of desirable gambles 𝒟 and sets of

indifferent gambles ℐ into a set of axioms. If a couple (ℐ ,𝒟) meets these

axioms, then we say that the couple is coherent. Assuming linear utility, the

following axioms express the coherence requirements for a set of desirable

gambles𝒟 and a set of indifferent gambles ℐ .

Definition 1: If two sets ℐ and 𝒟 of gambles on a finite spaceℒ(X ) satisfy:

ID1. 𝒟∩ℐ =∅ [resolvability]

ID2. 𝒟∩ℒ≤0 =∅ [not desiring partial loss]

ID3. ℒ≻0 ⊆𝒟 [desiring sure gain]

ID4. ℒ≥0 ⊆𝒟 ∪ℐ [accepting partial gain]

ID5. posi(𝒟) =𝒟 [deduction principle for desirability]

ID6. spanℐ = ℐ [deduction principle for indifference]

ID7. 𝒟+ℐ ⊆𝒟 [desiring sweetened deals]

then we call ℐ a set of indifferent gambles and𝒟 a set of desirable gambes

and call the couple (ℐ ,𝒟) coherent.
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1.2. Acceptability, Indifference and Desirability

Here, the positive hull of a set 𝒮 , posi(𝒮), stands for the set of all possible

positive linear combinations of elements of 𝒮 ,

posi(𝒮) :=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
∑
f ∈A

α f f ∶A ⊆ 𝒮 , ⋃︀A⋃︀ ∈N>0 and α f ∈R>0

[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀
, (1.3)

and the linear span span𝒮 is the set of all linear combinations of elements

of 𝒮 ,

span𝒮 :=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
∑
f ∈A

α f f ∶A ⊆ 𝒮 , ⋃︀A⋃︀ ∈N≥0 and α f ∈R
[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀

. (1.4)

⋃︀A⋃︀ stands for the cardinality of the set A. By using ℒ≤0 instead of ℒ≺0 in

Axiom ID2 the situation is avoided where partial loss is accepted and partial

gain declined. A consequence of these axioms is that there should be no

indifference to sure loss:

ℐ ∩ℒ≺0 =∅. (1.5)

This is so because an indifferent gamble inℒ≺0 would require an indifferent

gamble in ℒ≻0 which collides with axiom ID3. Axiom ID6 implies that the

zero gamble should be indifferent. Together with Axiom ID5, this tells us

that the set of desirable gambles𝒟 constitutes a convex cone that does not

contain zero. A consequence of coherence is that it is not possible that both

f and − f are desirable. It is not too difficult to see that𝒟 ∪ℐ constitutes a

convex cone that contains zero.

Axiom ID7 is important because it homes in on the true meaning of

indifference. It states that the combination of an indifferent gamble with a

gamble of a particular category will inherit this category.

Lemma 2 (interpretation of indifference): Consider a couple of coherent

sets of indifferent and desirable gambles (ℐ ,𝒟). For any 𝒮 ⊆ ℒ(X ) with

ℐ +𝒮 ⊆ ℬ where ℬ is any element of the set {𝒟 ,𝒰 ,ℐ ,𝒪 ,𝒜}, it holds that

𝒮 ⊆ℬ.

Proof: We know from ID7 that𝒟+ℐ ⊆𝒟 and because 0 ∈ ℐ by ID6 we also know that

𝒟+ℐ ⊇𝒟 whence

𝒟+ℐ =𝒟 . (1.6)

If follows immediately from Equation (1.2) and ID6 that also 𝒰 +ℐ = 𝒰 . We did already

know by ID6 that ℐ +ℐ = ℐ and because𝒜 =ℐ ∪𝒟 it also holds that𝒜+ℐ =𝒜. Finally,

using the partitioning property 1.129 we get that 𝒪 +ℐ = 𝒪 . Using these findings

together with 𝒮 +ℐ ⊆ℬ and 0 ∈ ℐ it follows immediately that 𝒮 ⊆ℬ. ◻

31



1. MODELLING UNCERTAINTY

A complete belief specification about a random variable X involves

classifying all gambles in ℒ(X ) into acceptable𝒜, indifferent ℐ or undesir-

able gambles 𝒰 . Because we assume that 𝒰 = −𝒟 by (1.2) and because by

Equation (1.1) the sets of desirable, indifferent, undesirable and unresolved

gambles are disjoint, it is sufficient to specify the sets𝒟 and ℐ to model the

subject’s beliefs. Even stronger, given a set of acceptable gambles𝒜, we are

able to recover𝒟 , 𝒰 , ℐ and𝒪 .

Proposition 3: A set of acceptable gambles 𝒜 or a couple (ℐ ,𝒟) fixes

the sets of acceptable 𝒜, indifferent ℐ , desirable 𝒟 , undesirable 𝒰 and

unresolved𝒪 gambles in a unique way.

Given𝒜 we have that

𝒟 =𝒜∖−𝒜,

ℐ =𝒜∩−𝒜,

𝒰 =−𝒟 =−𝒜∖𝒜,

𝒪 = (𝒜∪−𝒜)c =ℒ(X )∖(𝒜∪−𝒜).

Given (ℐ ,𝒟) we have that

𝒜 =𝒟 ∪ℐ ,

𝒰 =−𝒟 ,

𝒪 =(𝒟 ∪ℐ ∪−𝒟)c =ℒ(X )∖(𝒟 ∪ℐ ∪−𝒟)

As a consequence, if given a coherent couple (ℐ ,𝒟) of sets of indifferent and

desirable gambles, the corresponding set of acceptable gambles𝒜 is defined

by 𝒜 := ℐ ∪𝒟 . Conversely, if given a coherent set of acceptable gambles,

the corresponding sets of indifferent and acceptable gambles are defined as

ℐ :=𝒜∩−𝒜 and𝒟 :=𝒜∖−𝒜. So there is a one to one relation between sets

of acceptable gambles and couples (ℐ ,𝒟). This means that it is possible to

rewrite the rationality axioms of Definition 130 in terms of𝒜 alone.

Definition 4: A set of acceptable gambles𝒜 on a space ℒ(X ) is coherent if

and only if

A1. 𝒜∩ℒ≺0 =∅ [avoiding sure loss]

A2. ℒ≥0 ⊆𝒜 [accepting partial gain]

A3. posi(𝒜) =𝒜 [deduction principle for acceptability]
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Essentially, both𝒜 and (ℐ ,𝒟) model exactly the same, so there should be

only one way to match a coherent set𝒜 with a coherent couple (ℐ ,𝒟) and

vice versa.

Proposition 5: A set of acceptable gambles 𝒜 is coherent if and only if

the corresponding couple of indifferent and desirable gambles (ℐ ,𝒟) is

coherent.

Proof: We start by showing that a coherent set of acceptable gambles leads to a

coherent couple (ℐ ,𝒟).

ID1. From𝒟 :=𝒜∖−𝒜 and ℐ :=𝒜∩−𝒜 it follows immediately that𝒟 and ℐ are

disjoint.

ID2. If f ∈ ℒ≤0 then − f ∈𝒜 by A2. Hence f ∈ −𝒜 so f ⇑∈𝒟 .

ID3. From A2 we get that ℒ≻0 ⊆ 𝒟 ∪ℐ . If f ∈ ℒ≻0 then − f ⇑∈ 𝒜 by A1. Hence f ⇑∈ ℐ
and thereforeℒ≻0 ⊆𝒟 .

ID4. This follows immediately from A2.

ID5. It is sufficient to show that i) α(𝒜 ∖−𝒜) = (𝒜 ∖−𝒜) for α ∈ R>0 and, ii) for

every f , g ∈ (𝒜∖−𝒜) it holds that f + g ∈𝒜∖−𝒜.

i) From A3 it follows that α𝒜 = 𝒜 and therefore also −α𝒜 = −𝒜. But this

implies that α(𝒜∖−𝒜) =𝒜∖−𝒜.

ii) Consider f and g in𝒟 . Then both f and g belong to𝒜, and therefore f +g ∈
𝒜 by A3. Suppose ex absurdo that −( f + g) ∈ 𝒜, then − f = −( f + g)+ g ∈ 𝒜,

again by A3, which contradicts f ∈𝒟 .

ID6. It is again sufficient to show that i) αℐ = ℐ for α ∈R, and ii) for every f , g ∈ ℐ it

holds that f + g ∈ ℐ.

i) Consider f ∈ ℐ and α ∈R. There are three possibilities.

a) If α = 0 then we see from A2 that 0 = α f ∈ 𝒜 and because −0 = 0 also

α f ∈ ℐ .

b) If α > 0 then f ∈𝒜 implies α f ∈𝒜 and similarly − f ∈𝒜 implies −α f ∈𝒜,

by A3.

c) If α < 0 then f ∈𝒜 implies −α f ∈𝒜 and similarly − f ∈𝒜 implies α f ∈𝒜,

by A3.

ii) Consider f and g in ℐ . Then on the one hand f and g both belong to𝒜, and

therefore f +g ∈𝒜, by A3. And on the other hand − f and −g both belong to𝒜,

and therefore −( f + g) ∈𝒜, again by A3. Hence indeed f + g ∈ ℐ .

ID7. Consider f ∈𝒟 and g ∈ ℐ . Then both f and g belong to𝒜, and therefore f +g ∈
𝒜 by A3. Suppose ex absurdo that −( f + g) ∈ 𝒜, then − f = −( f + g)+ g ∈ 𝒜,

again by A3, which contradicts f ∈𝒟 .
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Next, we turn to the converse statement.

A1. Observe that

ℒ≺0∩𝒜 =ℒ≺0∩(ℐ ∪𝒟) = (ℒ≺0∩ℐ)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

∅

∪(ℒ≺0∩𝒟)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
∅ by ID2

=∅.

To show thatℒ≺0∩ℐ =∅, combine ID130and ID330 intoℒ≻0∩ℐ =∅, and then

apply ID630.

A2. 𝒟∪ℐ =𝒜 and ID430 prove this.

A3. posi(𝒜) = posi(𝒟 ∪ ℐ) = posi(𝒟) ∪ posi(ℐ) ∪ posi(𝒟 + ℐ). From ID530,

ID630 and ID730 we get that this is equal to 𝒟 ∪ℐ ∪𝒟 , whence posi(𝒜) =
𝒜. ◻

1.2.2 The consequences of an assessment

Although it is not feasible in practice to ask for the complete set of acceptable

gambles𝒜, or alternatively, the complete sets of desirable and indifferent

gambles, we can still try to deduce which coherent models are in accordance

with—include—an assessment 𝒜as : a partial specification of 𝒜. In an

inference context, it is then interesting to know which of these coherent

models—if any—is the least committal, where a set𝒜1 of acceptable gambles

is said to be at most as committal as the acceptable set𝒜2 if𝒜1 ⊆𝒜2. The

least committal coherent model including the assessment will be called—if it

exists—its natural extension.

Let us denote by AX the set of all coherent sets of acceptable gambles

on ℒ(X ). If there is no confusion, then we will write A instead of AX . If we

provide this set with the natural partial ordering of set inclusion, we see

that it has a smallest element, namely the set of all non-negative gambles

ℒ≥0(X ). It is not difficult to see that it is also closed under arbitrary non-

empty intersections: (A,⊆) is a inf-semilattice where ⋂ fulfils the role of

infimum. From the coherence axioms of sets of acceptable gambles, we see

that no gamble in the assessment𝒜as should be part ofℒ≺0.

Definition 6 (Avoiding sure loss): Consider a subset 𝒜as of ℒ. We say that

this set𝒜as avoids sure loss if no positive linear combination of gambles in

𝒜as is point-wise strictly negative:

posi(𝒜as)∩ℒ≺0 =∅. (1.7)
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1.2. Acceptability, Indifference and Desirability

An assessment that does not avoid sure loss is said to incur sure loss. The

next theorem shows that avoiding sure loss is the necessary and sufficient

condition for an assessment to be extendable to a coherent model.

Theorem 7 (Natural extension): Consider a set of acceptable gambles𝒜as

on a space ℒ, and define its natural extension:3

ext(𝒜as) :=⋂{𝒜 ∈A∶𝒜as ⊆𝒜} . (1.8)

Then the following statements are equivalent:

(i) 𝒜as avoids sure loss;

(ii) 𝒜as is included in some coherent set of acceptable gambles;

(iii) ext(𝒜as) ≠ℒ;

(iv) the set of acceptable gambles ext(𝒜as) is coherent;

(v) ext(𝒜as) is the smallest coherent set of acceptable gambles that

includes𝒜as .

When any (and hence all) of these equivalent statements hold, then

ext(𝒜as) = posi(ℒ≥0∪𝒜as) =ℒ≥0+posi(𝒜as ∪{0}). (1.9)

Proof: It follows from the fact that A is closed under arbitrary non-empty intersec-

tions, the definition of ext𝒜as , and the fact thatℒ is not coherent, that the last four

statements (ii)-(v) are equivalent.

Next, we prove that (i)⇔(ii).

(i)⇐(ii). Assume that𝒜as is included in some coherent set of acceptable gambles

𝒜. Since𝒜 = posi(𝒜),𝒜 avoids sure loss by A132, and therefore so do all its subsets,

including𝒜as .

(i)⇒(ii) Conversely, assume that𝒜as avoids sure loss. For notational convenience,

let𝒜∗ := posi(ℒ≥0∪𝒜as). It is clear that𝒜∗ satisfies A232 and A332. Consider any f ∈
𝒜∗, so there are n ∈N≥0, real λk > 0, fk ∈𝒜as and g ≥ 0 such that f = g +∑n

k=1λk fk .

It follows from the assumption that f − g ⇑≺ 0 and therefore a fortiori f ⇑≺ 0, so𝒜∗ also

satisfies A132, and is therefore coherent.

Finally, we prove that ext𝒜as =𝒜∗ whenever any (and hence all) of the equivalent

statements (i)–(v) hold. Any coherent set of acceptable gambles that includes𝒜as ,

must also include 𝒜∗, by the axioms A232 and A332. Since we have proved above

3As commonly done, in this expression, we let⋂∅=ℒ.
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1. MODELLING UNCERTAINTY

that𝒜∗ also satisfies A132 and is therefore coherent, it is the smallest coherent set

of acceptable gambles that includes𝒜as . Hence it is equal to ext(𝒜as), by (v). The

proof of the second equality in Equation (1.9) is trivial. ◻

In a more general form, an assessment can consist of sets of indifferent,

desirable and acceptable gambles: (Ias ,𝒟as ,𝒜as). In the quest for coherent

sets of acceptable gambles 𝒜 compatible with the assessment, it is not

enough for the set𝒜 to dominate the assessment𝒜as . Explicit mention of

the indifferent and especially desirable gambles has to be taken into account.

Definition 8: Given an assessment (Ias ,𝒟as ,𝒜as), then a set of acceptable

gambles𝒜 is said to respect the assessment if

Ias ⊆𝒜∩−𝒜,

𝒟as ⊆𝒜∖−𝒜,

𝒜as ⊆𝒜.

We define the associated set of acceptable gambles 𝒜̃as of an assessment

(Ias ,𝒟as ,𝒜as) as

𝒜̃as :=Ias ∪−Ias ∪𝒟as ∪𝒜as

and the assessment is said to avoid sure loss if its associated set does:

(Ias ,𝒟as ,𝒜as) avoids sure loss ⇔ posi(𝒜̃as)∩ℒ≺0 =∅.

Proposition 9: A set of acceptable gambles 𝒜 respects the assessment

(Ias ,𝒟as ,𝒜as) if and only if 𝒜̃as ⊆𝒜 and𝒜∩−𝒟as =∅.

Proof: If 𝒜̃as =Ias∪−Ias∪𝒟as∪𝒜as ⊆𝒜 and𝒜∩−𝒟as =∅ then i) Ias∪−Ias ∈𝒜
whence Ias ∈ 𝒜 ∩−𝒜, ii) 𝒟as ∈ 𝒜 and 𝒜∩−𝒟as = ∅ whence 𝒟as ⊆ 𝒜 ∖−𝒜, and

iii)𝒜as ∈𝒜, and we infer that the assessment is respected by𝒜. If on the other hand

𝒜 respects the assessment, then it follows that

𝒜̃as :=Ias ∪−Ias ∪𝒟as ∪𝒜as ⊆ (𝒜∩−𝒜)∪(−𝒜∩𝒜)∪(𝒜∖−𝒜)∪𝒜 ⊆𝒜,

and𝒟as ∩−𝒜 =∅ whence also𝒜∩−𝒟as =∅. ◻

The following lemma shows that the set of acceptable gambles that respects

an assessment constitutes a complete ∩-semilattice.
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Lemma 10: If𝒜0 respects the assessment (Ias ,𝒟as ,𝒜as) and 𝒜̃as ⊆𝒜i for

all i ∈ I where I is any index set, then𝒜0∩⋂i∈I𝒜i respects the assessment.

Proof: If 𝒜0 respects the assessment then 𝒜̃as ⊆ 𝒜0 thus 𝒜̃as ⊆ (𝒜0∩⋂i∈I 𝒜i ).

Moreover, if −𝒟as ∩𝒜0 = ∅ then surely −𝒟as ∩(𝒜0∩⋂i∈I 𝒜i ) = ∅ and the lemma

follows from Proposition 9. ◻

The calculation of the natural extension of this more general type of

assessment gets slightly more involved as the following theorem shows. Using

Proposition 9 and Lemma 10, its proof is completely analogous to the proof

of Theorem 735.

Theorem 11 (Natural extension): Consider an assessment (Ias ,𝒟as ,𝒜as)
and define its natural extension as

ext(Ias ,𝒟as ,𝒜as) :=⋂{𝒜 ∈A∶ 𝒜̃as ⊆𝒜 and −𝒟as ∩𝒜 =∅} . (1.10)

Then the following statements are equivalent.

(i) there is some coherent set of acceptable gambles𝒜 that respects the

assessment (Ias ,𝒟as ,𝒜as);

(ii) ext(Ias ,𝒟as ,𝒜as) is the smallest coherent set that respects the assess-

ment (Ias ,𝒟as ,𝒜as);

(iii) ext(Ias ,𝒟as ,𝒜as) is coherent and −𝒟as ∩ext(Ias ,𝒟as ,𝒜as) =∅;

(iv) ext(Ias ,𝒟as ,𝒜as) ≠ℒ. (the assessment cannot be respected)

When any (and hence all) of these equivalent statements hold, then

ext(Ias ,𝒟as ,𝒜as) =ℒ≥0+posi(𝒟as ∪𝒜as ∪{0})+ spanIas . (1.11)

If a set of unresolved gambles𝒪as is given, then it could a posteriori be

checked that ext(𝒜as)∩𝒪as =∅. However, we would not mind too much if

this test would fail; it would only imply that the assessor actually knows a bit

more than he thought he knew.

▷ Example 12: One important example is the absence of any knowledge or inform-

ation about a variable X in which case the set𝒜as is empty. This kind of model is

called vacuous and ext(𝒜as) =ℒ≥0, or equivalently, (ℐ ,𝒟) is equal to ({0},ℒ>0).
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▷ Example 13: Consider the random variable X with corresponding set of accept-

able gambles

𝒜 ={ f ∈ ℒ(X )∶ ∑
x∈𝒳

f (x) f0(x) ≥ ∏︁ f0∏︁2∏︁ f ∏︁2 cos(α0)(︀

with the gamble f0 ∈ ℒ>0(X ) and the angle α0 given. Then this set of acceptable

gambles will be coherent if and only if cos(α0) is chosen such that

f0

∏︁ f0∏︁2

≥ cos(α0) ≥ 0.

This model could be interpreted as a neighbourhood model—typically used in

sensitivity analysis—centred around f0 and where cos(α0) measures the imprecision

(inversely). The peculiar thing about this model is that it constitutes a convex cone of

gambles with an infinite number of extreme rays.

1.2.3 Resolved models

Instead of asking which is the least-committal set extending an assessment

𝒜as , we could think about those sets that are compatible with the assessment

and are most-committal. Given the definition of being “at most as committal

as” in the previous section, these models coincide with the maximal elements

(See Sections B.1194 and B.2196) of the partial order (A⊇𝒜as
,⊆) where A⊇𝒜as

is the set of all coherent sets of acceptable gambles that include𝒜as :

A⊇𝒜as
:= {𝒮 ∈A∶𝒜as ⊆ 𝒮} .

This approach is perfectly fine when dealing with assessments in the

form of a set of acceptable gambles. But when the assessment contains

gambles explicitly labelled as desirable, then there can be undominated

models that are not maximal elements of the partial order (A,⊆). Take

for example the assessment depicted in Figure 1.1, where one gamble is

considered acceptable, one gamble desirable and one gamble undesirable.

The shaded region on the left is the natural extension, the shaded figure on

the right is a resolved model, compatible with the assessment, that is not

dominated by any maximal element of the partial order (A,⊆).

This is why we do not follow this approach here and rather call any set with

no unresolved gambles (𝒪 =∅) maximally committal.
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+

−

+

−

+ : desirable gamble

− : undesirable gamble

: acceptable gamble

Figure 1.1: Example of the natural extension (left) and of a resolved model (right)
that is not dominated by a maximal element of (A,⊆) compatible with the original
assessment. The shaded region indicates the gambles that are considered acceptable
in the model. Unlike a solid line, a dashed line on the border of the cone of acceptable
gambles indicates that gambles on this line are not to be considered acceptable.

Definition 14: For two sets of acceptable gambles𝒜1,𝒜2 ∈ ℒwe say that𝒜1

is less resolved than𝒜2 and denote this by𝒜1 ⊑𝒜2 if

𝒜1 ⊑𝒜2⇔𝒜1∪−𝒜1 ⊆ 𝒜2∪−𝒜2 ⇔𝒪1 ⊇𝒪2.

The relation “is less resolved than” on A is reflexive and transitive but not

antisymmetric. Thus, (A,⊑) is a partial preorder and the undominated

elements of this preorder are what we call resolved models. They satisfy,

and are characterised by, 𝒪 = ∅. Remark that (A,⊑) is not a partial order

as was (A,⊆). The next proposition gives a way of characterising resolved

models.

Proposition 15: The set of resolved modelsM can be characterised by

ℳ∈M⇔ℳ∈A andℳ∪−ℳ=ℒ
⇔ℳ∈A and (∀ f ∈ ℒ)( f ⇑∈ℳ⇒− f ∈ℳ) .

The set of resolved models respecting an assessment (Ias ,𝒟as ,𝒜as) is

denoted by M
⊒(Ias ,𝒟as ,𝒜as)

and given by

{ℳ ∈M∶𝒜as ⊆ℳ and𝒟as ⊆ℳ∖−ℳ and Ias ⊆ℳ∩−ℳ} . (1.12)

We now intend to show that there is always at least one resolved model that

includes a given coherent set of acceptable gambles. The following lemmas
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will be useful for doing so. The approach closely follows the route taken by

Couso and Moral [6].

Lemma 16: Consider an assessment (Ias ,𝒟as ,𝒜as) that avoids sure loss

and an unresolved coherent set of acceptable gambles 𝒜0 that respects it.

Then the set of acceptable gambles

𝒜1 :=𝒜0+ span{ f } , (1.13)

where f is an unresolved gamble ( f ⇑∈𝒜0∪−𝒜0) is coherent and respects the

assessment (Ias ,𝒟as ,𝒜as).

Proof: If f is unresolved then f ⇑∈𝒜0∪−𝒜0 which means that the gamble − f is also

unresolved. Using Axioms ID630 and ID530 we infer that the set span{ f }∖{0} is

unresolved. If𝒜0∪(span{ f }∖{0}) avoids sure loss, then we infer from Theorem 735

and the coherence of (ℐ0,𝒟0) that the set of acceptable gambles𝒜1 defined as

𝒜1 := ext (𝒜0∪(span{ f }∖{0}))
= posi(ℒ≥0∪𝒜0∪(span{ f }∖{0})) ,

=𝒜0+ span{ f }

will also be coherent. Using Proposition 332, we know that

(ℐ1,𝒟1) := (𝒜1∩−𝒜1,𝒜1∖−𝒜1)

will also be coherent. Moreover, we know from Proposition 936 that the newly created

couple (ℐ1,𝒟1) will also respect (ℐ0,𝒟0,ℐ0∪𝒟0) and therefore also the assessment

(Ias ,𝒟as ,𝒜as).

It only remains to prove that𝒜0∪(span{ f }∖{0}) indeed avoids sure loss. We

know that𝒜0∩(span{ f }∖{0}) =∅whence it follows from Axiom A332 and A132 that

(𝒜0+ℒ≻0)∩(span{ f }∖{0}) =∅. Applying Equation (1) twice and using−span{ f }∖
{0} = span{ f }∖{0} and −ℒ≻0 =ℒ≺0, yields

𝒜0+(span{ f }∖{0})∩ℒ≺0 =∅.

As𝒜0 avoids sure loss we infer that

((𝒜0+(span{ f }∖{0}))∪𝒜0)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

𝒜1

∩ℒ≺0 =∅,

and we conclude that𝒜1, and therefore also𝒜0, avoid sure loss. ◻
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Proposition 17: Let the assessment (Ias ,𝒟as ,𝒜as) avoid sure loss. Then

there is at least one resolved model respecting it.

Proof: If the assessment (Ias ,𝒟as ,𝒜as) avoids sure loss, then it can be extended

by Theorem 1137 to a coherent set of acceptable gambles𝒜0 := ext(Ias ,𝒟as ,𝒜as)
that respects the assessment. If we apply Lemma 16 k times, then we get a set of

acceptable gambles

𝒜k =𝒜0+
k

∑
i=1

span{ fk} .

If we choose the gambles fk such that

fk ⇑∈ span{ fi ∶ i ∈ {1, . . . ,k −1}} ,

then the proof follows from the finite dimension of the state-space. ◻

Notice that this result works also on infinite𝒳 provided we adopt the Axiom

of Choice.

The following theorem shows that the natural extension can be written as

the lower envelope of the resolved models.

Theorem 18 (Lower envelope theorem): An assessment (Ias ,𝒟as ,𝒜as) is

extendable if and only if M
⊒(Ias ,𝒟as ,𝒜as)

≠∅. Moreover,

ext (Ias ,𝒟as ,𝒜as) =⋂M⊒(Ias ,𝒟as ,𝒜as)
.

Proof: M
⊒(Ias ,𝒟as ,𝒜as)

≠ ∅, means that there is some dominating coherent set of

acceptable gambles that respects the assessment. So this assessment is extendable by

Theorems 735 and 1137.

If (Ias ,𝒟as ,𝒜as) is extendable, then ext(Ias ,𝒟as ,𝒜as) ∈A by Theorem 1137

and it follows immediately from Proposition 17 thatM
⊒(Ias ,𝒟as ,𝒜as)

≠∅.

Because⋂M⊒(Ias ,𝒟as ,𝒜as)
=⋂M⊒ext(Ias ,𝒟as ,𝒜as)

it is clear that

ext(Ias ,𝒟as ,𝒜as) ⊆⋂M⊒(Ias ,𝒟as ,𝒜as)
.

Let us assume ex absurdo that ext(Ias ,𝒟as ,𝒜as) ⊂⋂M⊒(Ias ,𝒟as ,𝒜as)
which means

that we can find a gamble f ∈⋂M⊒(Ias ,𝒟as ,𝒜as)
∖ext(Ias ,𝒟as ,𝒜as). We infer that:

1. For every resolved setℳ ∈ ⋂M⊒(Ias ,𝒟as ,𝒜as
), the gamble f is acceptable,

f ∈ℳ.

2. f ⇑∈ ext(Ias ,𝒟as ,𝒜as) implies that posi{ f }∩ ext(Ias ,𝒟as ,𝒜as) = ∅. From

Axioms A232 and A332, it follows then that

∅= posi{ f }∩(︀ℒ≻0+ext(Ias ,𝒟as ,𝒜as)⌋︀
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1. MODELLING UNCERTAINTY

⇕ by Equivalence (1)

∅=ℒ≺0∩(︀−posi{ f }+ext(Ias ,𝒟as ,𝒜as)⌋︀
⇕ by Equation (1.9)

∅=ℒ≺0∩ext(Ias ,𝒟as ∪{− f } ,𝒜as).

This means that the newly created model ext(Ias ,𝒟as ∪{− f } ,𝒜as) avoids

sure loss and is by Theorem 1137 coherent. The model is moreover constructed

in such a way that the gamble f is undesirable. We know from Proposition 17

that ext(Ias ,𝒟as ∪{− f } ,𝒜as) can be extended to a resolved modelℳ that

respects ext(Ias ,𝒟as ∪ {− f } ,𝒜as). Consequently, f ∈ −ℳ ∖ℳ and ℳ
respects ext(Ias ,𝒟as ,𝒜as)

In the second point we have constructed a resolved model ℳ that respects the

assessment and should therefore be in ⋂M⊒(Ias ,𝒟as ,𝒜as)
. However, the resolved

set ℳ does not contain the gamble f which is in contradiction with the first

point. ◻

1.3 Multivariate acceptability

Most interesting problems involve more than one random variable and in

order to be a worthy contender, our theory needs to be able to deal with

this. In order to show that it does, we adopt the elegant notation used by De

Cooman and Miranda [17].

In the most general case, we will consider a finite number of logically

independent random variables XN with N ⊂ N≥0, taking values in the

respective sets 𝒳n , n ∈ N . With logically independent we mean that we

can not a priori exclude values from the possibility space ⨉n∈N 𝒳n . For

every subset R ⊆ N , XR denotes the tuple of variables taking values in the

Cartesian product space𝒳R :=⨉r∈R𝒳r and elements of XR will be denoted

with lowercase letters xR .

If R =∅, then𝒳∅ contains by definition only one element x∅ :=∅whence

IX∅ = I{x∅} = 1. The set of all gambles on 𝒳∅ is given by ℒ(X∅)∶∅→ R and

can be identified withR. There is only one coherent set of acceptable gambles

on X∅: the set R≥0 of non-negative real numbers.

Following the interpretation given to a set of acceptable gambles in

Section 1.2.129, the specification of beliefs about the variables XN involves

the classification of the gambles f ∈ ℒ(XN) on the product space 𝒳N . As
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1.3. Multivariate acceptability

before f (xN) will be the reward for the gamble f ∈ ℒ(XN) if XN = xN or in

other words, if Xn = xn for all n ∈ N . Nothing essential changes, but instead

of working with the space𝒳 , the product space𝒳N is used.

1.3.1 Marginalising

What does a coherent set of acceptable gambles4𝒜XN
for the variables XN tell

us about beliefs about XR alone, where R ⊂ N ? Which will be the gambles on

ℒ(X ) that are acceptable, desirable or indifferent? We reason that a gamble

that does not depend on the value of XN∖R might as well be considered as

a gamble on ℒ(XR) because the effect of XN∖R is nil. By introducing the

projection operator projR as

projR ∶𝒳N →𝒳R ∶projR(xN) = xR , (1.14)

we can write such a gamble as f ○projR where f is some gamble on𝒳R .5 The

assumption we now make is that a gamble f on ℒ(XR) is acceptable if the

gamble f ○projR onℒ(XN) is considered acceptable and we will also use the

simpler notation f ∈𝒜 instead of f ○projR ∈𝒜. So we implicitly identify the

gamble f ∈ ℒ(XR) and the gamble f ○projR ∈ ℒ(XN), and we also identify

ℒ(XR) and projT
R (ℒ(XR)), where we let

projT
R ∶ℒ(XR)→ℒ(XN)∶projT

R ( f ) = f ○projR , (1.15)

Definition 19 (Marginal): The XR -marginal margR (𝒜) ⊆ ℒ(XR) of the set

of acceptable gambles𝒜 onℒ(XN) is given by

margR (𝒜) :=ℒ(XR)∩𝒜,

= { f ∈ ℒ(XR)∶ f ○projR ∈𝒜} ,

= (projT
R) −1(𝒜).

Observe that marg∅ (𝒜) = R≥0 if 𝒜 avoids sure loss and R otherwise. The

following proposition (see also for example Equation (4) in [17]) is a simple

consequence of the definition.

4If it is clear from the context, then we write𝒜 instead of𝒜XN
.

5 In Walley’s terminology [62, par. 4.3.4, par. 6.2.5] for two variables X1 and X2, we say that
the gambles f ○proj{1} are ℬ-measurable where the partition ℬ is defined by the projection

map proj{1} asℬ := {x ∈ 𝒳1 ×𝒳2∶proj{1}(x) ∈ 𝒳1} = {{x1}×𝒳2∶x1 ∈ 𝒳1}.
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1. MODELLING UNCERTAINTY

Proposition 20: For any set of acceptable gambles 𝒜 on ℒ(XN) and sets

V ⊆R ⊆ N :

margV (margR (𝒜)) =margV (𝒜)

The coherence of a marginal is a direct consequence of the coherence of the

original model.

Proposition 21: If a set of acceptable gambles𝒜XN
on𝒳N is coherent, then

its XR -marginal𝒜XR
=margR (𝒜XN

) will be coherent as well. Moreover the

corresponding sets of indifferent gambles ℐXR
:=𝒜XR

∩−𝒜XR
and desirable

gambles𝒟XR
:=𝒜XR

∖−𝒜XR
are given by

ℐXR
=ℒ(XR)∩ℐXN

= { f ∈ ℒ(XR)∶ f ○projR ∈ ℐXN
} =margR (ℐXN

) ,

𝒟XR
=ℒ(XR)∩𝒟XN

= { f ∈ ℒ(XR)∶ f ○projR ∈𝒟XN
} =margR (𝒟XN

) .

Proof: Let us first remark that the following properties hold for the projection operator

projR

f ◻ g ⇔ f ○projR ◻g ○projR , (1.16)

α( f ○projR)+(g ○projR) =(α f + g)○projR , (1.17)

with ◻ ∈ {≤,<,≺,≻,>,≥} and α ∈R and f and g any gambles inℒ(XR).

Using these properties it is now straightforward to show that if 𝒜XN
satisfies

axioms A132, A232 and A332, then so does𝒜XR
. ◻

In the inverse problem to marginalization, we wonder what the implic-

ations of marginal beliefs are on a larger space; this is a special case of the

natural extension problem addressed at the end of the previous section.

Basically, if a marginal model 𝒜XR
is given and it has to be extended to a

larger space𝒳N , then the natural extension is assumed to be the correct tool.

Moreover, we know that avoiding sure loss of the marginal will guarantee a

coherent joint model𝒜XN
.

The natural extension extXN can be explicitly written as

extXN (𝒜XR
) = posi(𝒜XR

∪ℒ≥0(XN)),

where we have identified the sets𝒜XR
and (projT

R)
−1 (𝒜XR

). It is clear from

their definition that margR (extXN (𝒜XR
)) =𝒜XR

whenever𝒜XR
is coherent.

The converse however does not hold. The strongest that can be said is that

extXN (margR (𝒜XN
)) ⊆ 𝒜XN

. This is because the information about the
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1.3. Multivariate acceptability

relation between XR and XN∖R that was lost by marginalising to𝒳R cannot

be recovered.

To end, we give the following property for the marginal of a resolved

model.

Proposition 22: The marginal margR (ℳ) of a resolved modelℳ∈MXN
is

again resolved:

Proof: Assume that f ⇑∈ margR (ℳ). This means that projTR ( f ) ⇑∈ℳ and then we

know by Proposition 1539 that −projTR ( f ) ∈ℳ. But then it follows by Definition 1943

that −projTR ( f ) = projTR (− f ), and therefore margR (ℳ) is resolved by Proposi-

tion 1539. ◻

1.3.2 Conditioning

“What gambles will remain or become acceptable after observing an event?”,

is the question of updating. It is a special type of conditioning where it is

known that the outcome of the random variable is confined to a subset of

the possibility space. We will focus on the special events where the outcomes

of a collection of random variables are known, i.e. XR = xR . If we are given

a set of acceptable gambles 𝒜XN
and observe this event XR = xR , then the

only uncertainty that still remains, and needs to be modelled, concerns the

variables XN∖R , so the updated set𝒜⧹︀xR should be a subset of ℒ(XN∖R). We

postulate that the restriction of an acceptable called-off gamble is acceptable:

For any gamble f inℒ(XN∖R) we have that

f ∈𝒜⧹︀xR ⇔ IxR f ∈𝒜. (1.18)

A gamble contingent on an event is the gamble that is called off unless the

event occurs. This is what Walley calls the updating principle [62, Sec. 6.1.6]

and what we refer to as the contingent updating interpretation. We define

the cylindrical extension as

cylextxR
∶𝒳N∖R →𝒳N ∶cylextxR

(xN∖R) = (xR , xN∖R).

Its lifted and its inverse variant are

cylextT
xR
∶ℒ(𝒳N)→ℒ(𝒳N∖R)∶cylextT

xR
( f ) = f ○cylextxR

= f (xR , ⋅),

cylext−1
xR
∶ℒ(𝒳N∖R)→ 2ℒ(𝒳N )∶cylext−1

xR
( f ) = {h ∈ ℒ(𝒳N)∶h(xR , ⋅) = f } .
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1. MODELLING UNCERTAINTY

Following Walley and Moral, we can introduce the conditional model𝒜⋃︀xR

which corresponds to the set of gambles on XN that are acceptable contingent

on XR = xr . We also allow conditioning on XR with R =∅. Since I𝒳∅ = 1, this

is the same as not conditioning at all.

Geometrically, updating is tantamount to taking the intersection of the

set of acceptable gambles with the subspace spanned by the indicators

of the singletons of the conditioning event: 𝒜⧹︀xR = cylextT
xR
(IxR𝒜 ∩𝒜).

Conditioning involves an extra cylindrical extension𝒜⋃︀xR = cylext−1
xR
(𝒜⧹︀xR).

So for all f ∈ ℒ(XN)

f (xR , ⋅) ∈𝒜⧹︀xR ⇔ IxR f (xR , ⋅) ∈𝒜
⇔ IxR f ∈𝒜⇔ f ∈𝒜⋃︀xR . (1.19)

We will always assume that we start with a coherent set of acceptable

gambles and clearly we would like this coherence to be transferred to the

updated set. There are however, special situations where the presented

updating rule (1.18) produces incoherent sets.

Lemma 23 (Coherence of the updated set): Consider a non-empty event

XR = xR and a coherent set𝒜 of acceptable gambles on ℒ(XN), then𝒜⧹︀xR

satisfies A232 and A332. Moreover, the following statements are equivalent:

(i) 𝒜⧹︀xR ∩ℒ≺0(XN∖R) =∅, i.e.𝒜⧹︀xR satisfies A132;

(ii) 𝒜⧹︀xR ≠ℒ(XN∖R);

(iii) 𝒜⧹︀xR is a coherent set of acceptable gambles onℒ(XN∖R);

(iv) −IxR ⇑∈𝒜;

(v) IxR ⇑∈ ℐ , where ℐ =𝒜∩−𝒜.

Proof: It is obvious that 𝒜⧹︀xR satisfies A232 and A332, since 𝒜 does. As a result,

𝒜⧹︀xR = posi(ℒ≥0(xR) ∪𝒜⧹︀xR), and we infer from Theorem 735 that (i)–(iii) are

equivalent. Obviously, (iv) and (v) are equivalent because IxR ∈ 𝒜 [use IxR ≥ 0

and A232]. It therefore remains to show that𝒜⧹︀xR satisfies A132 if and only if−IxR ⇑∈𝒜.

Assume that −IxR ∈𝒜. We show that𝒜⧹︀xR does not satisfy A132. Indeed, we infer

from −IxR ∈𝒜 and Equation (1.18) that the gamble −1 belongs to𝒜⧹︀xR . Hence𝒜⧹︀xR

does not satisfy A132.

Conversely, assume that𝒜⧹︀xR does not satisfy A132. This means that there is

some g ∈𝒜⧹︀xR such that s :=max g < 0. By Equation (1.18), IxR g ∈𝒜, and therefore
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1.3. Multivariate acceptability

IxR s = IxR g + IxR (︀s − g⌋︀ ∈ 𝒜, using A232 and A332. Use A332 one more time to find

that −IxR ∈𝒜. ◻

The situation that leads to incoherence corresponds to updating on an

event considered to be impossible. We call an observation XR = xr such

that IxR ∈ ℐ practically impossible. If no extra information is given, then

we assume that the rational thing to do when updating on a practically

impossible event, is to assume the vacuous model (see Example 1237) for

𝒜⧹︀xR .

Definition 24: Given a model𝒜 ⊆ℒ(𝒳N) for XN and an event XR = xR , then

the conditional model𝒜⋃︀xR ⊆ℒ(XN) and the updated model𝒜⧹︀xR :=𝒜⋃︀xR ∩
ℒ(XN∖R) are given by

𝒜⋃︀xR ∶=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

cylext−1
xR
(IxR𝒜∩𝒜) when IxR ⇑∈ ℐ ,

ℒ≥0(𝒳N) otherwise,

𝒜⧹︀xR =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

cylextT
xR
(IxR𝒜∩𝒜) when IxR ⇑∈ ℐ ,

ℒ≥0(XN∖R) otherwise.

For any gamble f ∈ ℒ(XN∖R), this can be formulated as

f ∈𝒜⧹︀xR ⇔(︀(IxR f ∈𝒜)∧(−IxR ⇑∈𝒜)⌋︀∨ f ≥ 0

⇔(︀(IxR f ∈𝒜)∧(IxR ⇑∈ ℐ)⌋︀∨ f ≥ 0. (1.20)

We could have saved ourselves some trouble by making the rationality

axioms stricter. In particular, if we had chosen ℒ≥0 ⊆𝒟 as a rationality axiom

instead of accepting sure gain (Axiom ID230), then the updating rule would

have been𝒜⧹︀xR := cylextT
xR
(IxR𝒜∩𝒜)without extra conditions. The resulting

set of rationality axioms would be stronger and less expressive than the

ones presented. The newly created model would also force an elicitor to

avoid assessments that correspond to a judgement of practical impossibility,

whereas the model given here deals with these practical impossibilities by

recognising them and resetting the beliefs when observing a practically

impossible event [62, §2.1.2].

The question naturally arises whether updating on XR = xR with R ⊆ N

and then updating on XV = xV with V ⊆ N is the same as updating on XR∪V =
xR∪V . The following proposition shows that the order of updating is of no

importance.
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1. MODELLING UNCERTAINTY

Proposition 25 (commutativity of updating): Consider a collection of ran-

dom variables XN and a coherent set of acceptable gambles 𝒜 ⊆ ℒ(XN).

Given two disjoint, nonempty sets T ⊆ N and V ⊆ N , it holds that

𝒜⧹︀xR∪V =(𝒜⧹︀xR)⧹︀xV =(𝒜⧹︀xV )⧹︀xR .

Proof: Using Equation (1.20) we see that for any f ∈ ℒ(XN∖(R∪V ))

f ∈(𝒜⧹︀xR)⧹︀xV ⇔(︀(IxV f ∈𝒜⧹︀xR
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

(A)

)∧(−IxV ⇑∈𝒜⧹︀xR
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

(B)

)⌋︀∨( f ≥ 0). (1.21)

Notice that IxV ∈ ℒ(XN∖R). We develop statements (A) and (B) separately using

Equation (1.20)

IxV f ∈𝒜⧹︀xR ⇔(︀IxR∪V f ∈𝒜)∧(−IxR ⇑∈𝒜)⌋︀∨(IxV f ≥ 0)
⇔(︀IxR∪V f ∈𝒜)∧(−IxR ⇑∈𝒜)⌋︀∨( f ≥ 0),

−IxV ⇑∈𝒜⧹︀xR ⇔(−IxR∪V ⇑∈𝒜)∨(−IxR ∈𝒜).

By substituting these expressions back into Equation (1.21), and by putting the logical

expression in its conjunctive normal form, we get

f ∈(𝒜⧹︀xR)⧹︀xV ⇔(︀(IxR∪V f ∈𝒜)∧(−IxR ⇑∈𝒜)∧(−IxR∪V ⇑∈𝒜)⌋︀
∨(︀(IxR∪V f ∈𝒜)∧(−IxR ⇑∈𝒜)∧(−IxR ∈𝒜)⌋︀
∨(︀( f ≥ 0)∧(−IxR∪V ⇑∈𝒜)⌋︀∨(︀( f ≥ 0)∧(−IxR ∈𝒜)⌋︀
∨( f ≥ 0)

⇔(︀(IxR∪V f ∈𝒜)∧(−IxR ⇑∈𝒜)∧(−IxR∪V ⇑∈𝒜)⌋︀∨( f ≥ 0).

The last equivalence can be simplified. Because IxR ≥ IxR∪V , it follows from Lem-

ma 231 and A232 that if −IxR ∈𝒜 then −IxR∪V ∈𝒜. We thus get that

f ∈(𝒜⧹︀xR)⧹︀xV ⇔(︀(IxR∪V f ∈𝒜)∧(−IxR∪V ⇑∈𝒜)⌋︀∨( f ≥ 0)
⇔ f ∈𝒜⧹︀xR∪V . ◻

It can be shown rather easily that the updating rule keeps indifferent gambles

indifferent and desirable gambles desirable in the conditioning subspace,

under the assumption that the updating event is not practically impossible.

Proposition 26: Given a model (ℐ ,𝒟) for XN and an event XR = xR , then

the updated setsℐ⧹︀xR := (𝒜⧹︀xR)∩(−𝒜⧹︀xR) and 𝒟⧹︀xR := (𝒜⧹︀xR)∖(−𝒜⧹︀xR)
are given by

ℐ⧹︀xR = { f ∈ ℒ(XN∖R)∶ IxR f ∈ ℐ and IxR ⇑∈ ℐ}∪{0} ,
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𝒟⧹︀xR = { f ∈ ℒ(XN∖R)∶ IxR f ∈𝒟 and IxR ⇑∈ ℐ}∪ℒ≻0(xN∖R).

The updated model is defined on the space 𝒳N∖R , but if a gamble on

the complete space𝒳N is provided and if we know for some reason that the

outcome will assume XR = xR , then the conditional model𝒜⋃︀xR can be used.

This model does not care about the gamble’s values in {xR}c ×𝒳N∖R .

If, on the other hand, the conditional model is considered to be a local

assessment for a greater space, then it is a bit presumptuous to assume

that the updating event will certainly take place. The contingent updating

interpretation dictates that the only assumption we want to make in this case

is that the extended and the updated models are equal in the hyperplane

defined by the updating event XR = xr . In other words, given a conditional

model𝒜⧹︀xR with R ⊂ N , then the most conservative coherent extension to

ℒ(XN) is given by ext(𝒜⧹︀xR). When the updating event is not practically

impossible, this extension is equal to ext(IxR𝒜∩𝒜) and is also called the

weak extension by Moral [42].

1.3.3 Combining partial models

We see from Definitions 1943 and 2447 that—apart from a degenerate

situation where the updating event lies in the boundary of the cone of

desirable gambles—both marginalising and updating amount to taking

intersections of the set of acceptable gambles with a hyperplane: ℒ(𝒳R)
when marginalising to 𝒳R and I{xR}×𝒳N∖R

ℒ(𝒳N) when updating on XR =
xR . Intuitively we know that the order in which intersections are taken is

irrelevant, which means that the marginal of the conditional is exactly the

same as the conditional of a marginal. This is made explicit in the following

proposition whose counterpart for sets of desirable gambles was proved

by Moral [42] and de Cooman, Miranda & Zaffalon [17, Proposition 9]. The

proof of the proposition follows the idea behind the discussion in the latter

paper.

Proposition 27: For a coherent set of acceptable gambles 𝒜 ∈ ℒ(XN) and

two disjoint sets V ⊆ N and R ⊆ N it holds that

margR∪V (𝒜)⧹︀xR =margV (𝒜⧹︀xR) .
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Proof: Let us first remark that IxR ∈ ℐ := 𝒜 ∩ −𝒜 is equivalent to IxR ∈ 𝒜 ∩
−𝒜 ∩ ℒ(XR∪V ) = margR∪V (𝒜) ∩ −margR∪V (𝒜) because IxR ∈ ℒ(XR∪V ) and

−ℒ(XR∪V ) =ℒ(XR∪V ).

Consider any f ∈ ℒ(XV ) and observe the following chain of equivalences:

f ∈margR∪V (𝒜)⧹︀xR ⇔(︀(IxR f ∈margR∪V (𝒜))∧(IxR ⇑∈margR∪V (ℐ))⌋︀∨( f ≥ 0)
⇔(︀(IxR f ∈𝒜)∧(IxR ⇑∈ ℐ)⌋︀∨( f ≥ 0)
⇔ f ∈𝒜⧹︀xR

and since f ∈ ℒ(XV ), this is equivalent with f ∈margV (𝒜⧹︀xR). ◻

The question to address now, is how to combine local models, i.e.

conditional and marginal models, into a joint model. A local model that

carries the modeller’s belief about XV after updating on XR = xR will be

denoted by𝒜V ⧹︀xR
. When each of the local models is coherent, we say that

the local models are separately coherent.

Definition 28: Consider a collection of local models {𝒜
Vi (︁xRi

}i∈I with I any

index set, then we say that the local models are separately coherent if and

only if each𝒜
Vi (︁xRi

in the collection is a coherent set of acceptable gambles

inℒ(XVi ).

Before moulding local models into a joint model𝒜, we have to consider the

behavioural consequences for each local model𝒜V ⧹︀xR
on the joint space𝒳N .

For example, if a (marginal) gamble f ∈ ℒ(XV ) is considered acceptable, then

each gamble in projT
N( f ) is acceptable inℒ(XN) as well by Definition 1943.

Similarly, if a gamble in ℒ(XN∖R) is considered acceptable after updating

on XR = xR , then the gamble IxR f is by Definition 2447 acceptable in ℒ(XN).

As we know from Proposition 27 that the order in which we update and

marginalise is irrelevant, we infer that whenever a gamble f belongs to a local

model𝒜V ⧹︀xR
, then the gambles IxR projT

N∖R( f ) are acceptable inℒ(XN) as

well, where we assume that N ⊇V ∪R.

Once the local models are reinterpreted on the joint domain, the natural

extension of the union of these reinterpreted local models can be computed

to get the most conservative model 𝒜 that represents the behavioural

consequences of the local models on the joint space. Unfortunately, this

natural extension however is not guaranteed to be a coherent set of

acceptable gambles, even if the local models are separately coherent. This
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is because the combination of different local models can incur sure loss in

which case no coherent extension exists. But, even if this natural extension𝒜
is coherent, it is not guaranteed that every local model𝒜V ⧹︀xR

is actually equal

to margV (𝒜⧹︀xR). This can for instance occur when the event XR = xR turns

out to be practically impossible in which case this apparent incompatibility is

not a problem, on the contrary, the model𝒜V ⧹︀xR
should then be considered as

extra information, as a refinement of the modeller’s belief. If the discrepancy

between the model derived from the joint and the local model is not due to

the conditioning on a practical impossible event, then this means that the

modeller specified too stringent a local model. If the natural extension is

coherent, then this local model can be extended, but the modeller should at

least be informed whether that is really what he wants.

Definition 29: The joint𝒜 of a collection of separately coherent local models

{𝒜
Vi (︁xRi

}i∈I on a joint domain𝒳N with⋃i∈I (Ri ∪Vi ) ⊆ N , is given by

𝒜 := ext(⋃
i∈I

IxRi
projT

N∖Ri
(𝒜

Vi (︁xRi
)) .

If the joint𝒜 is coherent and if it holds for every i ∈ I that

𝒜
Vi (︁xRi

=margVi
(𝒜⧹︀xRi ) whenever −IxRi

⇑∈𝒜,

then we say that the local assessments𝒜
Vi (︁xRi

are jointly coherent.

As explained before, in general nothing can be said a priori about the

coherence of the joint model, let alone about joint coherence of the local

models. There are, however, specific cases where statements about joint

coherence can be made on beforehand. One such a situation is marginal

extension, which is the acceptability counterpart of the Towering Equality,

or the Law of Iterated Expectation, in classical probability theory P X ,Y (⋅) =
P X (P Y (⋅⋃︀X )).

Theorem 30 (Marginal extension): Consider a coherent set of acceptable

gambles 𝒜X on ℒ(X ). Consider moreover an updated coherent set of

acceptable gambles𝒜Y ⧹︀x ⊆ℒ(Y ) for every x ∈ 𝒳 . Then local models𝒜X and

𝒜Y ⧹︀x are jointly coherent, and their joint𝒜 ⊆ℒ(X ,Y ) called the marginal

extension, is given by

𝒜 := ∑
x∈𝒳

I{x}𝒜Y ⧹︀x +projT
X (𝒜X )
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= ∑
x∈𝒳

I{x}𝒜Y ⧹︀x +𝒜X ,

Proof: We start by showing that𝒜 is coherent.

A1: Assume that𝒜 does not avoid sure loss. Then for some x ∈ 𝒳 and ε > 0 there are

h ∈𝒜X and fx ∈𝒜Y ⧹︀x such that∑x∈𝒳 I{x} fx +projTX (h) < −ε. Since h ∈𝒜X and

𝒜X avoids sure loss, we know that maxh ≥ 0. So there is some x∗∈ 𝒳 such that

h(x∗) ≥ 0, where fx∗(y)+h(x∗) < −ε and therefore

fx∗(y) < −ε−h(x∗) for all y ∈ 𝒴

But this would mean that fx∗≺ 0 which contradicts the assumption that𝒜Y ⧹︀x∗

avoids sure loss.

A2: As all local models accept partial gain, we see that∑x∈X I{x}ℒ≥0(Y )+ℒ≥0(X ) =
ℒ≥0(X ,Y ) ⊆𝒜.

A3: Assume that f and h belong to𝒜. Then we know that there are gambles fx , hx ∈
𝒜Y ⧹︀x and g f , gh ∈𝒜X such that

f = ∑
x∈𝒳

I{x} fx +projTX (g f ),

h = ∑
x∈𝒳

I{x}hx +projTX (gh).

It follows from the separate coherence of the local models that for every α > 0 and

β > 0, α fx +βhx ∈𝒜Y ⧹︀x and αg f +βgh ∈𝒜X , whence also α f +βh ∈𝒜.

We conclude that𝒜 is indeed coherent and from Lemma 29 we also know that it is

the least committal one.

To prove joint coherence we show first that the X -marginal of 𝒜 equals 𝒜X .

As margX (𝒜) = ℒ(X ) ∩𝒜 we look for gambles in ∑x∈X I{x}𝒜Y ⧹︀x +𝒜X that do

not depend on Y . Clearly every gamble in 𝒜X is in margX (𝒜). Assume that f ∈
∑x∈𝒳 I{x}𝒜Y ⧹︀x then f ∈ ℒ(X ) implies that f (x, y1) = f (x, y2) for any y1 and y2 in

𝒴 . This means that a constant gamble is picked from every𝒜Y ⧹︀x and as𝒜Y ⧹︀x avoids

sure loss, we conclude that f ≥ 0 and𝒜X +{ f } ⊆𝒜X whence margX (𝒜) =𝒜X .

To finish, we must show that:

𝒜⧹︀x =𝒜Y ⧹︀x for all x such that − I{x} ⇑∈𝒜X .

1. It is easy to show that𝒜Y ⧹︀x ⊆𝒜⧹︀x. Indeed, g ∈𝒜Y ⧹︀x requires that I{x}g ∈𝒜
and by Definition 2447 this implies that g ∈𝒜⧹︀x.

2. Conversely, let g ∈𝒜⧹︀x, so we know that I{x}g ∈ 𝒜 because −I{x} ⇑∈ 𝒜X and

then −I{x} ⇑∈𝒜. So there are h ∈𝒜X and fz ∈𝒜Y ⧹︀z , z ∈ 𝒳 such that

I{x}g = h+ ∑
z∈𝒳

I{z} fz .
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Hence g(⋅) = h(x) + fx(⋅) and 0 = h(z) + fz(⋅) for all z ∈ 𝒳 ∖ {x}. For any

z ≠ x we see that fz is constant and therefore fz ≥ 0 whence h(z) ≤ 0. This

implies that h(x) ≥ 0 because h ∈ 𝒜X and𝒜X avoids sure loss. Since g ≥ fx

and fx ∈𝒜Y ⧹︀x it follows that g ∈𝒜Y ⧹︀x . ◻

1.4 Derived models

The (ℐ ,𝒟)-model described so far is probably amongst the most expressive

models capable of describing uncertainty. The downside of this expressive

wealth is that it comes with serious computational problems that boil down

to the problem that no current software library can do exact calculations

with polyhedra that are partly open and partly closed.6 To overcome these

problems, the (ℐ ,𝒟)-model can be relaxed a bit. One natural way to relax

the conditions is by demanding all indifferent gambles to be desirable, or

alternatively to be not desirable. This is what the the models in the upcoming

sections partly do. Additional assumptions that reduce the expressiveness

but improve the computability may be used. Of course one can think of

different models that approach the (ℐ ,𝒟)-model, at least one such model is

the weak-desirability model given in [20]. We will restrict ourselves to natural

and regular extension: the models most often referred to in the literature.

1.4.1 Almost-desirability

Almost-desirability was introduced by Walley [62, §3.7] and is closely related

to regular extension [62, Appendix J]. We denote the set of almost desirable

gambles by ℛ and a gamble is said to be almost desirable if adding any

positive amount of utility to it results in a desirable gamble:

f ∈ℛ⇔(∀ε > 0)( f +ε ∈𝒟). (1.22)

Lemma 31: The set of almost desirable gamblesℛ corresponding to𝒜 (or

to (ℐ ,𝒟)) is given by

ℛ = ⋂
ε>0

(𝒟 −ε) = ⋂
ε>0

(𝒜−ε).

6The Parma Polyhedra Library [2] can do calculations for what they call Nearly Closed
Polyhedra which are polyhedra that have faces that are either open or closed. Cones of acceptable
gambles that have faces that are partly open, partly closed cannot be modelled with this library.
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1. MODELLING UNCERTAINTY

Proof: From Equation (1.22) we know that f ∈ℛ if and only if f ∈𝒟 −ε for any ε > 0

and thereforeℛ =⋂ε>0(𝒟 −ε).

To prove the second equality, it is sufficient to show that⋂ε>0(𝒜−ε) ⊆⋂ε>0(𝒟−
ε) since𝒟 ⊆𝒜 immediately leads to the inverse inclusion. Assume for a moment that

this equality does not hold. Then there must be some gamble f such that

f ∈ ⋂
ε>0

(𝒜−ε) or equivalently (∀δ > 0) f +δ ∈𝒜,

and

f ⇑∈ ⋂
ε>0

(𝒟 −ε) or equivalently (∃ε > 0) f +ε ⇑∈𝒟 .

Let δ < ε, then ε−δ > 0 and by ID330 also ε−δ ∈ 𝒟 . Then we infer from ID530 and

ID730 that f +ε = f +δ
⧸︀
∈𝒜

+ ε−δ
⧸︀
∈𝒟

∈𝒟 , a contradiction. ◻

A set of almost desirable gambles has a number of properties that make it

coherent as a set of acceptable gambles.

Proposition 32: Let𝒜 be a coherent set of acceptable gambles on a spaceℒ
andℛ the corresponding set of almost desirable gambles. Then

AD1. ℛ∩ℒ≺0 =∅ [avoiding sure loss]

AD2. ℒ≥0 ⊆ℛ [accepting partial gain]

AD3. posi(ℛ) =ℛ [deduction]

AD4. ⋂ε>0(ℛ−ε) =ℛ [closure7]

A setℛ that satisfies these conditions is said to be a coherent set of almost

desirable gambles.

Proof: AD1: If f ≺ 0 then there is some ε > 0 such that f +ε < 0. So by A132, f +ε ⇑∈𝒟 ,

whence f ⇑∈ℛ.

AD2: If f ≥ 0 then by ID330 it holds for all ε > 0 that f +ε ∈𝒟 , whence f ∈ℛ.

AD3: if f1 ∈ℛ and f2 ∈ℛ then for all ε > 0 and α > 0 there are ε1 > 0 and ε2 > 0 such

that ε =αε1 + ε2 and f1 + ε1 ∈ 𝒟 and f2 + ε2 ∈ 𝒟 . This implies by axiom ID530

that α f1+ f2+ε ∈𝒟 and therefore α f1+ f2 ∈ℛ.

AD4: ⋂
ε>0
(ℛ−ε) = ⋂

ε>0
⋂
δ>0

(︀𝒟 −(ε+δ)⌋︀ =⋂
ε>0
(𝒟 −ε) =ℛ. ◻

7This axiom, taken together with AD1-AD3 makes sure that the coneℛ is closed in the
usual Euclidean topology on the finite dimensional linear spaceℒ.
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If we compare the definition of coherence for sets of almost desirable

gambles with that of coherent sets of acceptable gambles, we see that the

only difference is the addition of the extra closure axiom AD4. From a

mathematical perspective, a coherent set of almost desirable gambles is

just a special type of coherent set of acceptable gambles. This means that we

can take over most of the machinery developed for acceptability models; we

only need to add an extra check for the closure axiom AD4.

▷ Example 33: The vacuous model is given byℛ =ℒ≥0.

If provided with a finite partial assessmentℛas , then nothing changes

with respect to the acceptability case as the application of the posi operator

will automatically produce a closed set. The only condition that needs to be

checked in order for a partial assessment to be extendable to a set of almost

desirable gambles is again the avoiding sure loss axiom AD1. In the most

general case, with an infinite assessment, the extension has to take care of

the closed character of the set of almost desirable gambles. The resulting

extension is what we call the regular extension and is, for an assessment

ℛas , given by

regext(ℛas) := ⋂
ε>0

(ext(ℛas)−ε) , (1.23)

the topological closure of the natural extension as we know it.

The condition for a partial assessmentℛas to be made coherent is again

avoiding sure loss, which also means that there can only be a corresponding

coherent set of acceptable gambles compatible withℛ ifℛ avoids sure loss.

One of the advantages is that for finite assessments, the cone of almost

desirable gambles is now a finite intersection of half spaces and therefore

by definition a closed polytope. This means that computations can be done

using existing software packages for dealing with closed polytopes.

Updating sets of almost desirable gambles. The reasoning used for up-

dating in the acceptability model remains the same when updating a set of

almost desirable gambles. Gambles that were almost desirable are assumed

to stay almost desirable after updating, unless this results in an incoherent set.

As in the acceptability case, this will happen when the semispace spanned by

the atoms of the updating event is a boundary of the cone of almost desirable

gambles.

55



1. MODELLING UNCERTAINTY

Proposition 34: Given a coherent set of almost desirable gambles ℛ ∈
ℒ(XN) and an event XR = xr with R ⊆ N , then the updated modelℛ⧹︀xR

given by

ℛ⧹︀xR :=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

cylextT
xR
(IxRℛ∩ℛ) when − IxR ⇑∈ℛ,

ℒ≥0(XN∖R) otherwise,

is a coherent set of almost desirable gambles. Alternatively,

f ∈ℛ⧹︀xR ⇔(︀(IxR f ∈ℛ)∧(−IxR ⇑∈ℛ)⌋︀∨( f ≥ 0).

Proof: As coherent sets of almost desirable gambles are coherent sets of acceptable

gambles with the extra condition that Axiom AD454 should be fulfilled, we only need

to check this last axiom.

To prove AD454 we infer from AD354, AD254 and Equation (1.22) that

f ∈ℛ⧹︀xR ⇒(∀δ > 0) f +δ ∈ℛ⧹︀xR ⇔ f ∈ ⋂
δ>0

(ℛ⧹︀xR −δ), and

f ∈ ⋂
δ>0

(ℛ⧹︀xR −δ)⇔(∀δ > 0)IxR ( f +δ) ∈ℛ
⇔(∀δ > 0)(∀ε > 0)IxR ( f +δ)+ε ∈ℛ
⇒(∀γ > 0)IxR f +γ ∈ℛ⇔ IxR f ∈ℛ⇔ f ∈ℛ⧹︀xR ,

where the unconditional version of Axiom AD454 was used to get the last implication.

These implications prove that indeed f ∈ℛ⧹︀xR ⇔ f ∈⋂δ>0(ℛ⧹︀xR −δ). ◻

1.4.2 Strictly desirable gambles

As explained before, the set of almost desirable gambles is actually the

topological closure of the set of desirable gambles. This means that in the

worst case, some gambles might be called almost desirable that are actually

undesirable. To prevent this situation, we could also opt for a simplified

model that is a subset rather than a superset of the set of desirable gambles

𝒟 . The natural extension model we introduce here does just this by allowing

only gambles that are strictly desirable, which means that

f ∈𝒩 ⇔(∃ε > 0)( f −ε ∈𝒜)⇔(∃ε > 0)( f −ε ∈𝒟) (1.24)

where 𝒩 is the set of strictly desirable gambles. To show that the last

equivalence holds it is sufficient to see that if there is an ε > 0 such that

f −ε ∈𝒜, then f − ε⇑2 ∈𝒜+ ε⇑2 ⊆𝒟 by ID330, ID530 and ID730.
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Proposition 35: Let𝒜 ⊂ℒ be a coherent set of acceptable gambles and𝒩
the corresponding set of strictly desirable gambles. Then

SD1. 𝒩 ∩ℒ≤0 =∅ [avoiding sure loss]

SD2. ℒ≻0 ⊆𝒩 [accepting sure gain]

SD3. posi(𝒩 ) =𝒩 [deduction]

SD4. ⋃ε>0(𝒩 +ε) =𝒩 [openness]

A set 𝒩 that satisfies these conditions is called a coherent set of strictly

desirable gambles.

Proof: From Equation (1.24) we infer that f ⇑∈ 𝒩 ⇔ (∀ε > 0)( f − ε ⇑∈ 𝒜) ⇔ f ⇑∈
⋃ε>0(𝒜+ε), whence

𝒩 = ⋃
ε>0

(𝒜+ε). (1.25)

SD1: For any ε > 0 it holds by A132 that𝒜∩(ℒ≤0−ε) =∅ and this is by Equation (1)

equivalent to (𝒜+ε)∩ℒ≤0 =∅. Hence⋃ε>0 ((𝒜+ε)∩ℒ≤0) =ℒ≤0∩⋃ε>0(𝒜+
ε) =∅, and thereforeℒ≤0∩𝒩 =∅, by Equation (1.25).

SD2: If f ≻ 0 then there is some ε > 0 such that f −ε ≥ 0 whence f −ε ∈𝒟 by A232.

SD3: if α ≥ 0, f1 ∈𝒩 and f2 ∈𝒩 then there are ε1 > 0 and ε2 > 0 such that f1−ε1 ∈𝒟
and f2 − ε2 ∈ 𝒟 whence by ID530 α f1 + f2 +αε1 + ε2 ∈ 𝒟 , which implies that

α f1+ f2 ∈𝒩 .

SD4: Using Equation (1.25) we infer that

⋃
ε>0

(𝒩 +ε) = ⋃
ε>0

(⋃
δ>0

(𝒜+δ)+ε) = ⋃
ε>0

(𝒜+ε) =𝒩 . ◻

It is not possible to interpret a set of strictly desirable gambles𝒩 as a special

type of sets of acceptable gambles. This is because SD4 and ID130 demand

that 0 ⇑∈𝒩 which is in conflict with ID430.

Given a set of strictly desirable gambles 𝒩as , we can again calculate

the natural extension ext(𝒩as), the smallest coherent set containing the

assessment𝒩as . This resulting set will only be coherent if the assessment

avoids sure loss, i.e. if no gamble in posi(𝒩as) is in ℒ≤0, and it is given by

natext(𝒩as) := posi(𝒩as)+ℒ≻0. (1.26)

▷ Example 36: The vacuous model corresponds to𝒩 =ℒ≻0.
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The direct relation between coherent sets of strictly desirable gambles

and coherent sets of almost desirable gambles is given in the following

proposition.

Proposition 37: Consider a coherent set of acceptable gambles𝒜 then the

corresponding sets of almost desirable and strictly desirable gambles satisfy:

ℛ = ⋂
ε>0

(𝒩 −ε),

𝒩 = ⋃
δ>0

(ℛ+δ).

Proof: From Lemma 3153, Equation (1.24), AD454 and SD4, we infer that

h ∈ℛ⇔(∀ε > 0)(∃ fε ∈𝒜) fε−ε = h

Because every ε > 0 can be written as ε = α−β with α > 0 and β > 0, we rewrite this

equivalence as

h ∈ℛ⇔(∀α > 0)(∃β > 0)(∃ fα ∈𝒜)

∈𝒩
⟨︀
fα+β−α = h

⇔(∀α > 0)(∃ fα ∈𝒩 ) fα−α = h

⇔ h ∈ ⋂
α>0

(𝒩 −α)

From Lemma 3153, Equation (1.24), AD454 and SD4, we infer that

h ∈𝒩 ⇔(∀ε > 0)(∃ fε ∈𝒜) fε−ε = r

Because every ε > 0 can be written as ε = α−β with α > 0 and β > 0, we rewrite this

equivalence as

h ∈𝒩 ⇔(∀α > 0)(∃β > 0)(∃ fα ∈𝒜)

∈𝒩
⟨︀
fα+β−α = h

⇔(∀α > 0)(∃ fα ∈𝒩 ) fα−α = h

⇔ h ∈ ⋂
α>0

(𝒩 −α) ◻

Updating sets of strictly desirable gambles. Again we could try to use the

updating rule f ∈𝒩 ⧹︀xR ⇔ IxR f ∈𝒩 leading to an updated set

cylextT
xR
(IxR𝒩 ∩𝒩 ).

The problem with this rule however is that there are situations where IxR𝒩 ∩
𝒩 is empty. However, if we know that the set of strictly desirable gambles is
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1.4. Derived models

derived from a coherent set of acceptable gambles, then we wish the updated

set𝒩 ⧹︀xR to be also coherent. This issue can be resolved easily: we just assume

that the updated set is the vacuous model whenever IxR𝒩 ∩𝒩 is empty.

Definition 38: Consider a coherent set of strictly desirable gambles 𝒩 ⊆
ℒ(XN) and an event XR = xR where R ⊆ N . Then the updated model𝒩 ⧹︀xR is

given by

𝒩 ⧹︀xR :=ℒ≻0(XN∖R)∪cylextT
xR
(IxR𝒩 ∩𝒩 ),

or equivalently,

f ∈𝒩 ⧹︀xR ⇔(IxR f ∈𝒩 )∨( f ≻ 0).

The updated set of strictly desirable gambles is again a coherent set of strictly

desirable gambles as the following proposition shows.

Proposition 39: Consider a coherent set of strictly desirable gambles𝒩 ⊆
ℒ(XN) and an event XR = xR where R ⊆ N . Then the updated model𝒩 ⧹︀xR is

coherent.

Proof: SD1: Let f ∈ ℒ(XN∖R). Because𝒩 avoids sure loss, there is an xN∖R ∈ 𝒳N∖R

and xR ∈ 𝒳R such that IxR (xR) f (xN∖R) > 0 and therefore also that f (xN∖R) >
0.

SD2: By definition,ℒ≻0(XN∖R) ⊆𝒩 ⧹︀xR .

SD3: Assume without loss of generality that IxR𝒩 ∩𝒩 ≠ ∅. If f ∈ 𝒩 ⧹︀xR and g ∈
𝒩 ⧹︀xR , then IxR f ∈𝒩 and IxR g ∈𝒩 . Because𝒩 is coherent and by SD357 it

follows for α > 0 that IxR (α f + g) ∈𝒩 , whence α f + g ∈𝒩 ⧹︀xR .

SD4: To prove SD457 we may restrict ourselves to the case where f ⇑∈ ℒ≻0(XN∖R).

Under this assumption, f ∈ 𝒩 ⧹︀xR implies that IxR f ∈ 𝒩 . We infer from

Axiom SD457 that then there is some ε > 0 such that IxR f − ε ∈ 𝒩 and from

Axioms SD257 and SD357 it follows that IxR ( f −ε) ∈𝒩 whence

𝒩 ⧹︀xR ⊆ ⋃
ε>0

(𝒩 ⧹︀xR +ε).

The reverse inclusion is almost trivial: if f ∈⋃ε>0(𝒩 ⧹︀xR +ε) then there is an

ε > 0 such that f −ε ∈𝒩 ⧹︀xR whence f ∈𝒩 ⧹︀xR by SD257 and SD357. ◻

The following lemma will prove helpful further on.
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1. MODELLING UNCERTAINTY

Lemma 40: Consider a coherent set of strictly desirable gambles𝒩 ⊆ℒ(XN)
and an event XR = xR where R ⊆ N . Then the updated set of strictly desirable

gambles𝒩 ⧹︀xR is given by

𝒩 ⧹︀xR =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

cylextT
xR
(IxR𝒩 ∩𝒩 ) if IxR ∈𝒩 ,

ℒ≻0(XN∖R) if IxR ⇑∈𝒩 .

or equivalently,

f ∈𝒩 ⧹︀xR ⇔(︀(IxR f ∈𝒩 )∧(IxR ∈𝒩 )⌋︀∨( f ≻ 0).

Proof: We only have to prove that IxR𝒩 ∩𝒩 = ∅ if and only if IxR ⇑∈ 𝒩 . Of course,

IxR ∈𝒩 ⇒ IxR𝒩 ∩𝒩 ≠∅ because IxR IxR = IxR . On the other hand, if IxR𝒩 ∩𝒩 ≠∅,

then by SD257 and SD357 there is some gamble f ∈ ℒ≻0(XN∖R) that is not constant

and with IxR f ∈ 𝒩 . Because𝒩 is coherent, there is a set of acceptable gambles𝒜
such that 𝒩 = ⋂ε>0(𝒜 − ε) whence there is an ε > 0 such that (IxR f − ε) ∈ 𝒜. By

A332 it follows that (IxR f −ε)⇑(max( f )−min( f )) ∈𝒜. Because IxR −ε⇑(max( f )−min( f )) ≤
(IxR f −ε)⇑(max( f )−min( f )) it follows by A232 and A332 that IxR − ε⇑(max( f )−min( f )) ∈
𝒜 and therefore IxR ∈𝒩 . ◻

1.4.3 Previsions

If an agent models his beliefs about the variable X through a set of acceptable

gambles, then we can say which gambles he would or would not accept if they

were offered to him for free. An interesting question pops up now: how much

would this person—who meets a minimum of rationality requirements—be

willing to pay to accept a gamble, or how much would he want to get paid

to accept a gamble? The tool to get this information is what we call a lower

prevision and we denote it by P X , or by P when it is clear from the context

about which variable we are talking. Clearly, paying an amount α (positive

or negative) for a gamble f will result in getting a net gamble f −α, but

this means that the question boils down to checking what is the maximal

number α we can subtract from f such that f −α is acceptable. The cone

of acceptable gambles is not necessarily closed so the maximum might not

actually exist. To circumvent this problem we ask for the supremum price the

agent is willing to pay.

60



1.4. Derived models

Definition 41: The lower prevision of a gamble f given a set of acceptable

gambles𝒜 is given by

P( f ) :=sup{α ∈R∶ f −α ∈𝒜} .

Because of the supremum in the definition, boundary information—the

knowledge whether the faces of the cone of acceptable gambles are included

or excluded—about the set of acceptable gambles 𝒜 is actually ignored,

which means that the definition could just as well have been formulated in

terms of sets of (almost or strictly) desirable gambles.

Proposition 42: The lower prevision of a gamble f given a set of acceptable

gambles𝒜 is given by

P( f ) =sup{α ∈R∶ f −α ∈𝒜}
=sup{α ∈R∶ f −α ∈𝒟}
=max{α ∈R∶ f −α ∈ℛ}
=sup{α ∈R∶ f −α ∈𝒩 } .

Proof: For any f ∈𝒜 there is a δ > 0 such that for all 0 < ε < δ:

f −ε ∈ℛ⇔ f ∈𝒜⇒ f + ε⇑2 ∈𝒟 ⇒ f +ε ∈𝒩 ⇒ f +ε ∈ℛ,

and consequently

−ε+{α∶ f −α ∈ℛ} = sup{α∶ f −α−ε ∈ℛ}
≤ sup{α∶ f −α ∈𝒜}
≤ sup{α∶ f −α+ε ∈𝒟} = ε⇑2+{α∶ f −α ∈𝒟}
≤ sup{α∶ f −α+ε ∈𝒩 } = ε+{α∶ f −α ∈𝒩 }
≤ sup{α∶ f −α+ε ∈ℛ} = ε+{α∶ f −α ∈ℛ}

and since this holds for all 0 < ε < δ, we see that

sup{α∶ f −α ∈ℛ} ≤ sup{α∶ f −α ∈𝒜} ≤ sup{α∶ f −α ∈𝒟}
≤ sup{α∶ f −α ∈𝒩 } ≤ sup{α∶ f −α ∈ℛ} ,

so all are equal. The sup turns into max forℛ becauseℛ is closed by axiom AD454.

◻
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1. MODELLING UNCERTAINTY

▷ Example 43: If we take the vacuous model from Example 1237, then we see that

P( f ) =sup{α ∈R∶ f −α ∈𝒜} ,

=sup{α ∈R∶ f −α ∈ ℒ≥0} ,

=sup{α ∈R∶ f ≥α} =min f .

This example also shows why the set of indifferent gambles does not appear

in Proposition 42. The only indifferent gamble for the vacuous model is the

zero gamble and for most gambles {α∶ f −α ∈ ℐ} is empty. One could think

of using sup{α∶ f −α+p ∈ ℐ for some p ∈ ℒ≥0} which will evaluate to P( f )
in case the vacuous model is assumed. In general, this equality will not hold,

and in fact, it is not possible to come up with an expression for the lower

prevision based on the set of indifferent gambles.

▷ Example 44: For the set of acceptable gambles in Example 1338, the lower

prevision is given by

P( f ) =sup{α ∈R∶ ∑
x∈𝒳

( f (x)−α) f0(x) ≥ ∏︁ f −α∏︁2∏︁ f0∏︁2 cos(α0)(︀ ,

and can be obtained by solving the equation

∑
x∈𝒳

(︀ f (x)−P( f )⌋︀ f0(x) = ∏︁ f −P( f )∏︁2∏︁ f0∏︁2 cos(α0).

If we define the function F0∶𝒳 ×𝒳 →R as8

F0(x, y) := f0(x) f0(y)
cos2(α0)∏︁ f0∏︁2

2

−δx y , (1.27)

and define a,b and c as

a := ∑
x∈𝒳

∑
y∈𝒳

F0(x, y),

b := ∑
x∈𝒳

∑
y∈𝒳

F0(x, y) f (y),

c := ∑
x∈𝒳

∑
y∈𝒳

f (x)F0(x, y) f (y),

The lower prevision P( f ) is given by

P( f ) = b−
⌋︂

b2−ac

a
on condition that ∑

x∈𝒳
( f (x)−P( f )) f0(x) ≥ 0.

8Here δx y stands for the Kronecker delta.
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1.4. Derived models

In the special case where f0 is a constant, positive gamble and we define f :=
∑x∈𝒳 f (x)⇑⋃︀𝒳 ⋃︀, we get F0(x, y) = 1

⋃︀𝒳 ⋃︀cos2(α0)
−δx y , whence

a

⋃︀𝒳 ⋃︀ = tan2(α0),
b

⋃︀𝒳 ⋃︀ = f tan2(α0) and
c

⋃︀𝒳 ⋃︀ = f
2

tan2(α0)−
∏︁ f − f ∏︁2

2

⋃︀𝒳 ⋃︀ ,

and the lower prevision P( f ) is given by:

P( f ) = f − ∏︁ f − f ∏︁2⌈︂
⋃︀𝒳 ⋃︀

cot(α0).

Likewise, we could think of the minimal price the agent would like to

get for selling the gamble f or in other words: for what value of α does the

gamble α− f become acceptable? This value is denoted P( f ) and is called

the upper prevision of f .

Definition 45: The upper prevision P( f ) of a gamble f is given by

P( f ) := inf{α ∈R∶α− f ∈𝒜} ,

= inf{α ∈R∶α− f ∈𝒟} ,

=min{α ∈R∶α− f ∈ℛ} ,

= inf{α ∈R∶α− f ∈𝒩 } .

Observe that there is a conjugacy relation

P( f ) = −P(− f )

between upper and lower previsions.

If the lower prevision is given for all gambles in a domain ℒ(X ) then

it could also be viewed as a model describing uncertainty about X . As the

boundary information of the cone of acceptable gambles is not present in

the lower prevision, it is not possible to determine which set of acceptable

gambles𝒜P is being represented by the lower prevision. This is in general not

a problem, but when conditioning, the inherent ambiguity can give problems.

Definition 46: Given a lower prevision P on a domainℱ ⊆ℒ

ℛP :=regext ({ f −P( f )∶ f ∈ ℱ}) = ⋂
ε>0

(𝒩P −ε), (1.28)

𝒩P :=natext ({ f −P( f )∶ f ∈ ℱ}) = ⋃
ε>0

(ℛP +ε). (1.29)
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1. MODELLING UNCERTAINTY

A lower prevision P is said to be coherent if its corresponding set of almost

desirable gamblesℛP is coherent. The extension of P fromℱ to ℒ is given

by

P( f ) = sup{α ∈R∶ f −α ∈ℛP} . (1.30)

We do know that

𝒩P ⊆𝒟P ⊂𝒜P ⊆ℛP (1.31)

so we see that the represented set𝒜P can be approximated by the sets𝒩P

andℛP . The following proposition gives an alternative expression for the

setsℛP and𝒩P that is easier to interpret.

Proposition 47: Consider a coherent lower prevision P on ℒ(𝒳), then the

corresponding coherent set of almost desirable gamblesℛP and coherent

set of strictly desirable gambles𝒩P are given by:

𝒩P = { f ∈ ℒ(𝒳)∶P( f ) > 0} ,

ℛP = { f ∈ ℒ(𝒳)∶P( f ) ≥ 0} .

Proof: We infer from Equation (1.30) that

P( f ) ≥ 0⇔ sup{α ∈R∶ f −α ∈ℛP} ≥ 0

⇔(∀α ≥ 0)( f +α ∈ℛP )

⇔ f ∈ ⌊︀ ⋂
α>0

(ℛP −α)∩ℛP }︀⇔ f ∈ℛP ,

where the last equivalence is the result of AD454. In a similar way we infer that

P( f ) > 0⇔ sup{α ∈R∶ f −α ∈ℛP} > 0

⇔(∃δ > 0)(∀ε > 0)( f −δ+ε ∈ℛP )

⇔(∃δ > 0)( f −δ ∈ℛP )

⇔ f ∈ ⋃
δ>0

(ℛP +δ)⇔ f ∈𝒩P ,

where Proposition 3758 was used in the last equivalence. ◻

Properties of lower previsions The following properties of lower and upper

previsions were proved by Walley [62].

Proposition 48: Let P be defined on the linear space ℒ(X ) and assume that

f and g are elements ofℒ(X ). Then the prevision P is coherent if and only if
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P1. min f ≤ P( f ) ≤ P( f ) ≤max f [boundedness]

P2. P( f )+P(g) ≤ P( f + g) [super-additivity]

P3. P(α f ) =αP( f ) for all real α ∈R≥0 [non-negative homogeneity]

Moreover the following properties will hold for any coherent P .

P4. P( f +β) = P( f )+β for all real β [constant additivity]

P5. f ≤ g implies that P( f ) ≤ P(g) [monotonicity]

P6. P(µ) =µ for any constant gamble µ ∈ ℒ(X ).

Proposition 49: Given a set of acceptable gambles 𝒜 with corresponding

set of indifferent gambles ℐ and lower prevision P , it holds for all f ∈ ℒ and

i ∈ ℐ that P(i) = P(i) = 0 and P( f + i) = P( f ) and P( f + i) = P( f ).

Proof: Because i and −i ∈𝒜 it follows from Definition 4160 that P(i) ≥ 0 and P(−i) ≥
0. From P6 and P2 we see that 0 ≤ P(i)+P(−i) ≤ P(0) = 0 whence P(i) = 0. Similarly,

P(−i) = 0 so P(i) = 0.

Using that 0 = P(i) = P(i) and super-additivity [P2] we see that P( f ) ≤ P( f + i) ≤
P( f )+P(i) = P( f ). The last inequality comes from P( f + i)+P(−i) ≤ P( f ) together

with the conjugacy property of the lower and upper prevision. ◻

If P( f ) = P( f ) for any gamble f on X , then we say that P defined by

P( f ) = P( f ) = P( f ) is a linear prevision. It follows immediately from the

conjugacy relation, P2 and P3 that a linear prevision P is indeed a linear

functional. It is interesting to lay bare the link between linear previsions and

resolved models.

Proposition 50: With a resolved modelℳ ∈M there corresponds a linear

prevision Pℳ . Models that correspond to a linear prevision P are resolved.

Proof: The set MP( f ) ∶= {α∶ f −α ∈ℳ} is a downset of R:

α1 ≤α2⇒ f −α1 ≤ f −α2⇒(︀α2 ∈ MP( f )⇒α1 ∈ MP( f )⌋︀,

so MP( f ) has the form (−∞,Pℳ( f )) or (−∞,Pℳ( f )⌋︀. In any case, we see that

Pℳ( f ) = sup{α∶ f −α ∈ℳ}= inf{β∶ f −β ⇑∈ℳ}

and sinceℳ is resolved f −β ⇑∈ℳ⇒β− f ∈ℳ, so

Pℳ( f ) = inf{β∶β− f ∈ℳ}= Pℳ( f ).
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To prove that a model can correspond with a linear prevision only if it is resolved,

we infer from Definition 4663 and Proposition 4764 that

f ⇑∈ℛP ⇒ P( f ) < 0⇔ P(− f ) > 0⇔− f ∈ℛP .

But then it follows from Proposition 1539 thatℛP must be resolved. ◻

Conditional previsions The conditional lower prevision P(⋅⋃︀xr ) on the

linear space ℒ(XN∖R) for a conditioning event XR = xr can be calculated

from its corresponding updated set of acceptable gambles.

Definition 51: Consider a coherent set of acceptable gambles𝒜 on ℒ(XN),

a conditioning event XR = xR (R ⊆ N ) and a gamble f ∈ ℒ(XN∖R). Then the

lower prevision and upper prevision of f conditional on XR = xR are defined

as:

P( f ⋃︀xR) = sup{α ∈R∶ f −α ∈𝒜⧹︀xR} ,

P( f ⋃︀xR) = inf{α ∈R∶α− f ∈𝒜⧹︀xR} .

What happens if P is given instead of a coherent set of acceptable gambles?

We know that 𝒜P is not uniquely determined by P, and so it cannot be

expected that P(⋅⋃︀⋅) is uniquely defined. We know that we can bound the

compatible sets of acceptable gambles, and from Inequality (1.31) we know

that 𝒩P ⊆ 𝒜P ⊆ ℛP and consequently, we are able to confine the lower

prevision. The conditional previsions, corresponding to these extremes are

called the lower prevision under natural extension N if𝒩 is assumed and

the lower prevision under regular extension R ifℛ is assumed.

Definition 52: Given a coherent lower prevision P on ℒ(XN) and a condi-

tioning event XR = xR then the conditional lower prevision under regular and

natural extension are respectively given by:

R( f ⋃︀xR) :=sup{α ∈R∶ f −α ∈ℛP (︁xR} (1.32)

N( f ⋃︀xR) :=sup{α ∈R∶ f −α ∈𝒩P (︁xR} (1.33)

withℛP and𝒩P as in Definition 4663.

Although the exact lower prevision cannot be known from the information

available, we can safely assume that it resides somewhere in the interval

(︀N,R⌋︀. In practical applications, usually one of the two bounds is assumed,
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1.4. Derived models

either natural or regular extension. It is interesting to note that𝒩P )︁xR will

differ fromℛP )︁xR if and only if IxR𝒩P ∩𝒩P =∅, as the following proposition

indicates.

Proposition 53 (Generalised Bayes Rule): The lower prevision of a gamble

f ∈ ℒ(xN∖R), conditional on an event XR = xR with R ⊆ N for a given coherent

(unconditional) lower prevision P onℒ(XN) is the solution of

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

P(IxR (︀ f −P( f ⋃︀xR)⌋︀) = 0 if P(IxR ) > 0,

P( f ⋃︀xR) =min f if P(IxR ) = 0.
(1.34)

When P(IxR ) = 0 < P(IxR ), then the conditional lower prevision P(⋅⋃︀xR) is

not uniquely determined , but has bounds

N( f ⋃︀xR) =min f ,

R( f ⋃︀xR) =max{α ∈R∶P(IxR (︀ f −α⌋︀) ≥ 0} .

Proof: It follows from P165 and Proposition 4764 that IxR ⇑∈𝒩P ⇔ P(IxR ) = 0. From

Lemma 4060 we infer then that for any f ∈ ℒ(XN∖R)

N( f ⋃︀xR) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

sup{α∶ IxR ( f −α) ∈𝒩P} if P(IxR ) > 0,

min f if P(IxR ) = 0.

Analogously, it is not too difficult to show that −Ixr ∈ ℛP ⇔ P(IxR ) = 0. From

Definition 3859 we infer that

R( f ⋃︀xR) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

max{α∶ IxR ( f −α) ∈ℛP} if P(IxR ) > 0,

min f if P(IxR ) = 0.

We see that 𝒩P )︁xR and ℛP )︁xR will result in a different lower prevision only if

P(IxR ) = 0. If P(IxR ) = 0, then both bounds coincide with the vacuous model.

Therefore, assuming that 0 < P(IxR ) ≤ P(IxR ), we see that the value of P( f ⋃︀xR)
is uniquely determined and given by

P( f ⋃︀xR) =max{α ∈R∶ IxR (︀ f −α⌋︀ ∈ℛP} .

Observing that IxR (︀ f −α⌋︀ ∈ℛP ⇔ P(IxR (︀ f −α⌋︀) ≥ 0, we can rewrite the conditional

lower prevision in terms of the unconditional one

P( f ⋃︀xR) =max{α ∈R∶P(IxR (︀ f −α⌋︀) ≥ 0} .

From Lemma 54 we conclude that if P(IxR ) > 0 then there is a unique root for

P(IxR (︀ f −α⌋︀) whence

P(IxR (︀ f −P( f ⋃︀xR)⌋︀) = 0. ◻
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Equation (1.34) is called the generalised Bayes Rule [62, par. 6.4.1].

Lemma 54: Let P be a coherent prevision. Then the map

ρ f ∶R→R∶α→ P (IxR (︀ f −α⌋︀)

is continuous, concave and non-increasing. ρ f is decreasing when P(IxR ) > 0.

Proof: Assume that α1 ≤α2, then by coherence of P we infer from Proposition 4864

that

P(IxR (︀ f −α1⌋︀)−P(IxR (︀ f −α2⌋︀) ≤ P(IxR (︀α2−α1⌋︀) = (α2−α1)P(IxR ),

and we conclude that ⋂︀ρ f (α1)−ρ f (α2)⋂︀ ≤ ⋃︀α1−α2⋃︀P(IxR ) for all α1,α2 ∈ R, which

implies that ρ f is (Lipschitz) continuous.

To show that ρ f is concave, we just apply Properties P265 and P365:

ρ f (εα1+(1−ε)α2) = P(IxR (︀ε f −εα1+(1−ε) f −(1−ε)α2⌋︀)
≥ εP(IxR (︀ f −α1⌋︀)+(1−ε)P(IxR (︀ f −α2⌋︀)
= ερ f (α1)+(1−ε)ρ f (α2).

From property P565, it follows immediately that ρ f is non-increasing.

To prove that ρ f is decreasing when P(IxR ) > 0 we let α ∈R and ε ∈R>0 and infer

from P265 that

ρ f (α−ε) ≥ ρ(α)+P(εIxR ).

By using P365 and P(IxR ) > 0 we infer that

ρ f (α−ε) > ρ(α),

whence ρ f must be a decreasing function. ◻

1.5 Structural judgements

1.5.1 Irrelevance and independence

A coherent set margY (𝒜⧹︀X = x) represents your current attitude towards

acceptance of gambles in ℒ(Y ) when X assumes a value in x ∈ 𝒳 .9 If your

attitude towards accepting gambles in ℒ(Y ) does not depend on whether

9Following de Cooman, Miranda & Zaffalon [17] we demand only the independence towards
atoms instead of independence towards every possible subset.
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you have learned something about the possible values that X can assume,

then we say that X is epistemically irrelevant to Y . It means that it does not

matter whether we do or do not learn something about X when having to

make decisions about Y .

Definition 55: Let 𝒜 ∈ ℒ(XN) be a coherent set of acceptable gambles

modelling your beliefs on XN , and let R and V be any disjoint subsets of

N . Then we say that XR is epistemically irrelevant to XV and denote this

XR EI XV if learning the outcome of XR will not alter your beliefs about XV :

XR EI XV ⇔(∀xR ∈ 𝒳R)(margV (𝒜⧹︀xR) =margV (𝒜)) . (1.35)

Very often, an irrelevance statement is made and some marginals are

given and the question is which joint model coincides with these assessments

and if possible, which compatible model is the least committal one.

Theorem 56 (irrelevant natural extension): The least committal, jointly co-

herent set of acceptable gambles on ℒ(X ,Y ) that expresses the epistemic

irrelevance X EI Y given the separately coherent marginals 𝒜X and 𝒜Y is

given by

𝒜X EI Y := ∑
x∈𝒳

I{x}𝒜Y +projT
X (𝒜X )

:= ∑
x∈𝒳

I{x}𝒜Y +𝒜X .

Proof: It is clear that𝒜X EI Y should at least include∑x∈𝒳 I{x}𝒜Y +𝒜X .

The rest of the proof follows from the fact that the irrelevant natural extension is

a special type of marginal extension (see Theorem 3051) where all conditional models

are given by𝒜Y ⧹︀x =𝒜Y and the marginal model is𝒜X . ◻

▷ Example 57: Consider two variables X and Y with𝒳 = {x1, x2} and 𝒴 = {y1, y2}.

The set of acceptable gambles𝒜X is the nonnegative linear hull of the two extreme

gambles a := −I{x1}
+2I{x2}

and b := 3I{x1}
− I{x2}

. 𝒜Y is the nonnegative linear

hull of the two extreme gambles c := −I{y1}
+4I{y2}

and d := I{y1}
− I{y2}

.

𝒜X =posi{a,b,0} = {αa+βb∶α,β ≥ 0} , (1.36)

𝒜Y =posi{c,d ,0} = {γc +δd ∶γ,δ ≥ 0} . (1.37)

If we assume that X is epistemically irrelevant to Y : X EI Y , then we use Theorem 56

to get

𝒜X EI Y := ∑
x∈𝒳

I{x}𝒜Y +projTX (𝒜X ),
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=I{x1}
𝒜Y + I{x2}

𝒜Y +projTX (𝒜X ),

={I{x1}
(︀ f (x1)+ g1⌋︀+ I{x2}

(︀ f (x2)+ g2⌋︀∶ f ∈𝒜X ∧ g1, g2 ∈𝒜Y } . (1.38)

If we define a basis ℬ = {I{x1,y1}
, I{x1,y2}

, I{x2,y1}
, I{x2,y2}

}, then the vector repres-

entation (︀𝒜X EI Y ⌋︀ℬ is given by

(︀𝒜X EI Y ⌋︀ℬ =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

⎛
⎜⎜⎜⎜⎜
⎝

−α+3β−γ1+δ1

−α+3β+4γ1−δ1

2α−β−γ2+δ2

2α−β+4γ2−δ2

⎞
⎟⎟⎟⎟⎟
⎠

∶α,β,γ1,γ2,δ1,δ2 ≥ 0

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀

.

The fact that the Y -marginal is equal to 𝒜Y can be seen the easiest from Equa-

tion (1.38).

marg𝒴 (𝒜X EI Y ) ={ f (x1)+ g1∶ f ∈𝒜X , g1, g2 ∈𝒜Y , f (x1)+ g1 = f (x2)+ g2} .

Note that g1 = g2 + c where c is a constant. Because 𝒜X is coherent we know that

max f ≥ 0 and therefore either f (x2)+ g2 ∈𝒜Y or f (x1)+ g1 ∈𝒜Y . Because f (x1)+
g1 = f (x2)+ g2 we see that f (x1)+ g1 ∈𝒜Y .

The X -marginal marg𝒳 (𝒜X EI Y ) is given by

{I{x1}
(︀ f (x1)+ g1⌋︀+ I{x2}

(︀ f (x2)+ g2⌋︀∶ f ∈𝒜X , g1, g2 ∈𝒜Y ∩ℒ(X )} .

Because𝒜Y is coherent,𝒜Y ∩ℒ(X ) consists solely of non-negative constant gambles

(including zero) whence marg𝒳 (𝒜X EI Y ) =𝒜X .

To end this example, we check whether marg𝒴 (𝒜X EI Y ⋃︀x1) =𝒜Y . Again, from

Equation (1.38) we get that

marg𝒴 (𝒜X EI Y ⋃︀x1) = { f (x1)+ g ∶ f ∈𝒜X , g ,h ∈𝒜Y , f (x2)+h = 0} .

Because f (x2)+h has to be equal to 0, h is a constant gamble which is non-negative

because of coherence of𝒜Y . But this means that f (x2) ≤ 0 and because of coherence

of𝒜X , f (x1) has to be non-negative. Thus marg𝒴 (𝒜X EI Y ⋃︀x1) =𝒜Y .

If learning about X will not alter our beliefs about Y and vice versa,

learning about Y does not alter our beliefs about X then we say that X and Y

are epistemically independent.

Definition 58: Two variables X and Y are said to be epistemically inde-

pendent if X is epistemically irrelevant to Y and Y is epistemically irrelevant

to X

X ind Y ⇔ X EI Y and Y EI X .
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As in Theorem 5669 we can try to extend marginals again, but now under

the independence criterion.

Lemma 59 (independent natural extension): The least committal set on

ℒ(X ,Y ) embedding epistemic independence between the two variables

X and Y given the separately coherent X -marginal𝒜X and Y -marginal𝒜Y

is given by

𝒜X ⊗𝒜Y := ∑
x∈𝒳

I{x}𝒜Y + ∑
y∈𝒴

I{y}𝒜X ,

This extension is jointly coherent with the local models.

Proof: Clearly𝒜X ⊗𝒜Y should include both𝒜X EI Y and𝒜Y EI X and ext(𝒜X EI Y ∪
𝒜Y EI X ) is the smallest—possibly coherent—set doing this. This natural extension

will be coherent if and only if 𝒜X EI Y ∪𝒜Y EI X avoids sure loss. Given the co-

herence of the epistemic irrelevant extensions, ext(𝒜X EI Y ∪𝒜Y EI X ) is equal to

∑x∈𝒳 I{x}𝒜Y +𝒜X +∑y∈𝒴 I{y}𝒜X +𝒜Y which can also be written as

∑
x∈𝒳

I{x}𝒜Y + ∑
y∈𝒴

I{y}𝒜X .

Next we show that marg𝒳 (𝒜X ⊗𝒜Y ) =𝒜X . Let f ∈ ((𝒜X ⊗𝒜Y )∩ℒ(X )). This

means that there are hx ∈𝒜Y and hy ∈𝒜X such that

f = f (⋅, y) = ∑
x∈𝒳

I{x}hx(y)+hy for any y ∈ 𝒴 .

But this is an element of 𝒜X EI Y ∩ℒ(X ) = marg𝒳 (𝒜X EI Y ) = 𝒜X and therefore

marg𝒳 (𝒜X ⊗𝒜Y ) ⊆𝒜X . Because𝒜X ⊆marg𝒳 (𝒜X ⊗𝒜Y ) by definition, we have

shown that marg𝒳 (𝒜X ⊗𝒜Y ) =𝒜X . This also shows that𝒜X ⊗𝒜Y avoids sure loss

because if it did not then𝒜X ⊗𝒜Y ∩ℒ(X ) =ℒ(X ) ≠𝒜X .

We know from Definition 58 that marg𝒳 ((𝒜X ⊗𝒜Y )⋃︀y) ⊇ 𝒜X so we only

have to show the reverse in the remainder of the proof. We start from the ex-

pression marg𝒳 ((𝒜X ⊗𝒜Y )⋃︀y) = ℒ(X )∩ I{y}(𝒜X ⊗𝒜Y )∩(𝒜X ⊗𝒜Y ). Because

we know that marg𝒳 (𝒜X ⊗𝒜Y ) = 𝒜X , we see that marg𝒳 ((𝒜X ⊗𝒜Y )⋃︀y) =
I{y}(𝒜X ⊗𝒜Y )∩𝒜X ⊆𝒜X . From symmetry it follows that marg𝒴 ((𝒜X ⊗𝒜Y )⋃︀x) =
𝒜Y . ◻

Independence can again be used when the marginals for a multitude

of variables XN are given. The product ⊗n∈N𝒜Xn
can be constructed in a

recursive manner because the operator ⊗ is commutative and associative.

A product that is built this way is completely independent, meaning that

for any subsets S,R of N with S ∩R = ∅, XR ⊗ XS . In general, pairwise and

complete independence are not the same however.
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Proposition 60: The operator ⊗ is commutative and associative. The inde-

pendent product of a finite number of random variables XN , N := {1,2, . . . ,n}
with corresponding coherent sets of acceptable gambles 𝒜Xi

, i ∈ N is

therefore given by

⊗i∈N𝒜Xi
:= ∑

i∈N
∑

z∈XN∖{i}

I{z}𝒜Xi
.

Proof: It follows at once from Lemma 59 that ⊗ is commutative. The associativity of

⊗ follows from

(𝒜X1
⊗𝒜X2

)⊗𝒜X3

=
⎛
⎝ ∑

x2∈𝒳2

I{x2}
𝒜X1

+ ∑
x1∈𝒳1

I{x1}
𝒜X2

⎞
⎠
⊗𝒜X3

= ∑
x3∈𝒳3

I{x3}

⎛
⎝ ∑

x2∈𝒳2

I{x2}
𝒜X1

+ ∑
x1∈𝒳1

I{x1}
𝒜X2

⎞
⎠
+ ∑

z3∈𝒳1∶2

I{z3}
𝒜X3

= ∑
z1∈𝒳2∶3

I{z1}
𝒜X1

+ ∑
z2∈𝒳1,2

I{z2}
𝒜X2

+ ∑
z3∈𝒳1∶2

I{z3}
𝒜X3

= ∑
z1∈𝒳2∶3

I{z1}
𝒜X1

+ ∑
x1∈𝒳1

I{x1}

⎛
⎝ ∑

x3∈𝒳3

I{x3}
𝒜X2

+ ∑
x2∈𝒳2

I{x2}
𝒜X3

⎞
⎠

=𝒜X1
⊗ (𝒜X2

⊗𝒜X3
) .

To see that the necessary irrelevancies hold, observe for any R,S ⊆ N with R ∩S =∅,

that

margR (⊗n∈N𝒜Xn
(︁xs) =margR ((︀(⊗r∈R𝒜Xr

)⊗ (⊗s∈S𝒜Xs
)⌋︀(︁xs)

=⊗r∈R𝒜Xr
,

where the last equality is a consequence of Lemma 59. ◻

As De Cooman and Miranda [17] prove, independent sets have an

interesting factorisation property.

Proposition 61 (Factorisation): Let 𝒜N := ⊗n∈N𝒜Xn
⊆ ℒ(XN) be the inde-

pendent product of the coherent sets of acceptable gambles𝒜n . Then for all

disjoint subsets I and O of N and for all f ∈ ℒ(XO):

f ∈𝒜N ⇔(∀g ∈ ℒ≥0(X I )) f g ∈𝒜N . (1.39)
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Proof: Fix arbitrary disjoint subsets I and O of N and any f ∈ ℒ(XO); We show

that Equation (1.39) holds. The ‘⇐’ part is trivial, For the ‘⇒’ part, assume that

f ∈ 𝒜N and consider any g ∈ ℒ≥0(X I ). We have to show that f g ∈ 𝒜N . Since

g = ∑xI ∈𝒳I
I{xI}

g(xI ), we see that f g = ∑xI ∈𝒳I
g(xI )I{xI}

f . Now since f ∈
margO (𝒜N ), we infer from the independence of𝒜N that f ∈𝒜N ⧹︀xI and therefore

I{xI}
f ∈𝒜N for all xI ∈ 𝒳I . We conclude that f g is a positive linear combination of

elements I{xI}
f of𝒜N , and therefore belongs to𝒜N by coherence. ◻

The independent natural product of a finite collection of marginal lower

previsions P n , n ∈ N is defined by

(⊗n∈N P n)( f ) := sup{α ∈R∶ f −α ∈ ⊗n∈N𝒩P n
} .

We used sets of strictly desirable gambles in the definition, but any set of

acceptable gambles that is compatible with the marginal lower prevision,

would result in the same lower prevision. Moreover, some of the interesting

properties of the ⊗ operator are inherited by this product.

Proposition 62: Let f ∈ ℒ(𝒳N). The independent natural product of a

collection of coherent marginal lower previsions P n , n ∈ N is coherent and

satisfies

(⊗n∈N P n)( f ) =max{α ∈R∶ f −α ∈ ⊗n∈NℛP n
} .

If h ∈ ℒ(𝒳R) with R ⊆ N , then

(⊗n∈N P n)(h) = (⊗r∈R P r )(h). (1.40)

Proof: If we define the closure cl(𝒜) of a set 𝒜 by cl(𝒜) := ⋂ε>0(𝒜 − ε), then we

infer from Proposition 4261, that

(⊗n∈N P n)( f ) =max{α ∈R∶ f −α ∈ cl(⊗n∈N𝒩P n
)}

=max{α ∈R∶ f −α ∈ ⊗n∈N cl(𝒩P n
)}

=max{α ∈R∶ f −α ∈ ⊗n∈NℛP n
} .

Here we used Lemma 63 in the middle, and Definition 4663 in the last step.

The coherence of ⊗n∈N P n is (by Definition 4663) an immediate consequence of

the coherence of ⊗n∈NℛP n
(by Proposition 60).

To prove Equation (1.40), it is sufficient to notice that

projTR (h)−α ∈ ⊗n∈NℛP n
⇔ projTR (h−α) ∈ ⊗n∈NℛP n

⇔(h−α) ∈margR (⊗n∈NℛP n
)
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⇔(h−α) ∈ ⊗r∈RℛP r
,

where the last equivalence follows by Proposition 6072. ◻

Lemma 63: Let𝒜n ∈ ℒ(Xn), n ∈ N , be coherent sets of acceptable gambles

and define cl(𝒜) :=⋂ε>0(𝒜−ε). Then

cl(⊗n∈N𝒜n) =⊗n∈N (cl𝒜n) ,

Proof: It follows from the definition of cl, A232 and A332 that

f ∈ cl(⊗n∈N𝒜n)⇔(∀δ > 0) f +δ ∈ ⊗n∈N𝒜n

⇒(∀δ > 0)(∀εn,z > 0) f +δ+ ∑
n∈N

∑
z∈XN∖{n}

I{z}εn,z ∈ ⊗n∈N𝒜n

⇒(∀δ > 0)(∀εn,z > 0) f + ∑
n∈N

∑
z∈XN∖{n}

I{z}(εn,z +δ⇑N) ∈ ⊗n∈N𝒜n

⇒(∀εn,z > 0) f + ∑
n∈N

∑
z∈XN∖{n}

I{z}εn,z ∈ ⊗n∈N𝒜n

⇒(∀εn,z > 0) f +max ∑
n∈N

∑
z∈XN∖{n}

I{z}εn,z ∈ ⊗n∈N𝒜n

⇒(∀δ > 0) f +δ ∈ ⊗n∈N𝒜n ,

whence

f ∈ cl(⊗n∈N𝒜n)⇔(∀εn,z > 0) f + ∑
n∈N

∑
z∈XN∖{n}

I{z}εn,z ∈ ⊗n∈N𝒜n .

If we use Proposition 6072, we infer that,

f ∈ cl(⊗n∈N𝒜n)⇔(∀εi ,z > 0) f ∈ ∑
n∈N

∑
z∈XN∖{n}

I{z} (𝒜n −εi ,z)

⇔ f ∈ ∑
n∈N

∑
z∈XN∖{n}

I{z} cl(𝒜n)

⇔ f ∈ ⊗n∈N cl(𝒜n) . ◻

1.5.2 Symmetry

At the end of this chapter we feel obliged to say a few words about symmetry

because this is where the concept of indifference really stands out. We

consider a monoid 𝒯 of transformations T of ℒ, and some agent’s claim
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that there is symmetry with respect to this monoid. What does that mean?

It could be that the agent’s dispositions towards the acceptance of gambles

stay invariant under transformations of 𝒯 . This type of symmetry is called

weak symmetry and is also called symmetry of the model by De Cooman

and Miranda [15] or symmetry in beliefs by Walley [62, Chapter 9]. As the set

of indifferent gambles is the workhorse model when it comes to symmetry,

we define everything in terms of (ℐ ,𝒟) assessments. The definition in terms

of sets of acceptable gambles follow at once from Proposition 332.

Definition 64: A set of acceptable gambles is weakly symmetric with respect

to a monoid of transformations 𝒯 if

𝒯 𝒟 ⊆𝒟 and 𝒯 ℐ ⊆ ℐ and 𝒯 𝒰 ⊆ 𝒰 and 𝒯 𝒪 ⊆𝒪 ,

where 𝒯 𝒟 := {T f ∶ f ∈𝒟 and T ∈ 𝒯 }, and similarly for the other sets.

This type of symmetry tells something about current views on the modelled

variable, but the symmetry will most likely be broken when additional

assessments are made, hence the adjective weak. Because the symmetry

can break relatively easily we consider this case of less importance—but by

no means unimportant—and will not focus on it further.

It could also be possible that the assessor believes that he cannot

distinguish between gambles and their transformations. This means that

he cannot choose between f ∈ ℒ and T f with T any transformation from the

monoid of transformations 𝒯 . But this means that f −T f is perceived as an

indifferent gamble by the assessor. When additional assessments are made,

then either the symmetry will not be broken, or a sure loss situation is created

and so making a statement about this type of symmetry is very strong. This

type of symmetry is called strong symmetry or model of symmetry by De

Cooman and Miranda [15] or symmetry in evidence by Walley [62, Chapter

9].

Definition 65: A set of acceptable gambles 𝒜 is strongly symmetric with

respect to a monoid of transformations 𝒯 if

ℐ𝒯 := span{ f −T f ∶ f ∈ ℒ,T ∈ 𝒯 } ⊆ ℐ =𝒜∩−𝒜.

▷ Example 66: Suppose n different random variables X1, X2, . . . Xn representing n

different experiments on the same space𝒳 . All variables are logically independent
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and so their joint outcome is defined on the cartesian product space 𝒳 n . Given

a permutation π∶{1,2, . . . ,n} → {1,2, . . . ,n}, we define the permutation π f of

the gamble f ∈ ℒ(𝒳 n) by π f (x1, x2, . . . , xn) := f (xπ(1), xπ(2), . . . , xπ(n)). If you

claim that a coherent model 𝒜X n is permutable [62, §9.4] and state that you are

predisposed to accept a gamble f , then you are automatically also predisposed to

accept any permutation π f of the accepted gamble. If you claim that the model

is exchangeable [62, §9.5], [20], then you are willing to change any gamble f for a

permuted version π f and you are indifferent towards the gamble f −π f .

The transformations considered in the literature are usually defined on the

underlying possibility space𝒳 rather than on the set of gamblesℒ(𝒳). This

is not a problem as the transformation can in this case be lifted [15] to a

linear transformation on the corresponding gamble space as in Example 66.

Remark that strong symmetry with respect to a monoid of transformations

requires that ℐ𝒯 ⊆ ℐ which means that also spanℐ𝒯 ⊆ ℐ .

A strong symmetry claim can be considered as a specification of a set of

indifferent gambles ℐ𝒯 . If the strong invariance is the only assessment that is

made, then the only requirement for this assessment to be valid is that there

should be by Equation (1.5) no indifference to sure loss.

Lemma 67 (Amenability of the monoid): A strong invariance assessment

corresponding to a monoid of transformations 𝒯 avoids sure loss if and only

if

spanℐ𝒯 ∩ℒ≺0 =∅. (1.41)

Equivalently

(∀ fk ∈ ℒ)(∀Tk ∈ 𝒯 )max∑
k

( fk −Tk fk) ≥ 0. (1.42)

Proof: Because by definition, ℐ𝒯 ⊆ ℐ , we know from ID630 that spanℐ𝒯 ⊆ ℐ and

therefore, it should hold by Equation (1.5) that

spanℐ𝒯 ∩ℒ≺0 =∅,

which can be rewritten as (∀ fk ∈ ℒ)(∀Tk ∈ 𝒯 )(∑k( fk − Tk fk) ⇑≺ 0) which is

equivalent to 1.42. ◻

The term amenability of a semigroup was used by Walley following Green-

leaf and actually means that there is a 𝒯 -invariant linear prevision [62, §3.5.6,

note 3]. This follows immediately from Propositions 1741 and 5065. Another
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interesting problem is the question whether a strong invariance statement is

compatible with a given assessment.

Theorem 68 (Dominance theorem): A strong invariant assessment ℐ𝒯 is

compatible with10 a coherent set of acceptable gambles𝒜 if

spanℐ𝒯 ∩(𝒜∖−𝒜) =∅, (1.43)

and

(𝒜+ spanℐ𝒯 )∩ℒ≺0 =∅. (1.44)

Under these conditions, the natural extension𝒜+ spanℐ𝒯 of ℐ𝒯 and𝒜 is

coherent and the corresponding lower prevision for a gamble f ∈ ℒ can be

written as

P( f ) = sup{E( f − i)∶ i ∈ spanℐ𝒯 } ,

= sup{E𝒯 ( f − g)∶g ∈𝒜} ,

where

E(h) := sup{α∶h−α ∈𝒜} ,

E𝒯 (h) := sup{α∶h−α ∈ ext(spanℐ𝒯 )} ,

and ext(spanℐ𝒯 ) =ℒ≥0+ spanℐ𝒯 .

Proof: Because a gamble can not be indifferent and desirable at the same time,

spanℐ𝒯 ∩𝒜∖−𝒜 has to be empty. From ID630 it follows then that ℐ𝒯 ∩−𝒜∖𝒜 =∅
and both assessments𝒜 and ℐ𝒯 will not be in conflict.

From Equation (1.9) we see—keeping the coherence of 𝒜 in mind—that the

natural extension of spanℐ𝒯 and𝒜 is given by spanℐ𝒯 +𝒜 which has to avoid sure

loss: (spanℐ𝒯 +𝒜)∩ℒ≺0 =∅.

We know that the natural extension of the union of both assessment is given by

spanℐ𝒯 +𝒜 so the lower prevision of a gamble f ∈ ℒ is defined as

P( f ) = sup{α∶ f −α ∈ spanℐ𝒯 +𝒜} ,

= sup{α∶ f − i −α ∈𝒜 and i ∈ spanℐ𝒯 } ,

= sup{sup{α∶ f − i −α ∈𝒜}∶ i ∈ spanℐ𝒯 } ,

= sup{E( f − i)∶ i ∈ spanℐ𝒯 } .

10With “is compatible with” we mean that the assessment (ℐ
𝒯

,∅,𝒜) can be extended to a
coherent set of acceptable gambles.
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1. MODELLING UNCERTAINTY

Alternatively, we infer from Axiom A232 and the fact that 0 ∈ ℒ≥0, that

P( f ) = sup{α∶ f −α ∈ spanℐ𝒯 +𝒜+ℒ≥0} ,

= sup{α∶ f −a−α ∈ spanℐ𝒯 +ℒ≥0 and a ∈𝒜} ,

= sup{sup{α∶ f −a−α ∈ spanℐ𝒯 +ℒ≥0}∶a ∈𝒜} ,

= sup{E𝒯 ( f −a)∶a ∈𝒜} ,

which concludes the proof. ◻

Here E𝒯 is the smallest and most conservative 𝒯 -invariant lower prevision,

meaning that E𝒯 ( f ) = 0 for all f ∈ spanℐ𝒯 .
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CHAPTER 2
Imprecise probability trees

The legend goes that probability theory sprouted from the correspondence

on the “Problème des partis” between Blaise Pascal and Pierre de Fermat.

Each of them however, was according to Christiaan Huygens1 so occupied

with “weighty issues” that they kept their findings to themselves, and as a

reaction to that, Huygens decided to publish his results on the subject in

a manuscript: “Van rekeningh in spelen van geluck”. This manuscript was

translated by Van Schooten into Latin and became the first book ever on

probability theory: “De ratiociniis in ludo aleae”. Huygens did not claim that

the findings were completely his own2 but one thing that seems to be original

is the appearance of what is arguably the first ever published probability

tree. The probability tree appeared in an attempt to solve a variation on the

Problem of Points (See Figure 2.1).

▷ Example 69: The Problem of Points is as follows [26]. Let two players A and B stake

equal money on being the first to win n points in a game in which the winner of each

point is decided by the toss of a fair coin, heads for A and tails for B. If such a game is

interrupted when A still lacks a points and B lacks b, how should the total stakes be

divided between them?

1In a letter to Franciscus van Schooten jr. (April 27, 1657), Huygens writes: [the French are so
occupied with] “swaere questien” [that they] “nochtans elck sijn maniere van uytvinding bedeckt
hebben gehouden.”

2In the same letter to Van Schooten, Huygens assures that his findings correspond to those
of the French.
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Figure 2.1: Extract from Huygens’s manuscript taken from [53] with permission of
Glenn Shafer.

What we will do in this chapter is in some sense a revision of Huygens’s

approach to the Problem of Points, but now, our beliefs about the dice are

allowed to be imprecise, and we use conservative reasoning. The question of

“what a gamble is worth” remains to us as fundamental as it was in Huygens’s

solution. Clearly, we intend to develop a framework that can handle a whole

variety of problems and not just the Problem of Points. We aim for an account

of event-driven random processes.

We start the chapter with the introduction of event trees, which can

be seen as probability trees with the probabilities removed. These event

trees formalise the possible situations the world can be in. Notation and

new concepts will be introduced following Shafer’s work on causality [53].

Once the event tree is known, the modelling agent’s beliefs about possible

transitions between situations have to be incorporated. It is assumed

throughout this chapter that the agent only expresses beliefs about situations

that follow immediately, using sets of acceptable gambles or lower previsions.

Another theory of uncertainty, where imprecise (lower and upper) prob-

abilities and previsions, rather than precise (or point-valued) probabilities

and previsions, have a central part is Glenn Shafer and Vladimir Vovk’s game-

theoretic account of probability [55]. When comparing Walley’s behavioural

theory [62] and Shafer and Vovk’s game-theoretic framework, they seem to

have a rather different interpretation, and they certainly have been influenced

by different schools of thought: Walley follows the tradition of Frank Ramsey
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2. IMPRECISE PROBABILITY TREES

[48], Bruno de Finetti [24] and Peter Williams [69] in trying to establish

a rational model for a subject’s beliefs in terms of her behaviour. Shafer

and Vovk follow an approach that has many other influences as well, and is

strongly coloured by ideas about gambling systems and martingales. They use

Cournot’s Principle to interpret lower and upper probabilities (see [54]; and

[55, Chapter 2] for a nice historical overview), whereas in Walley’s approach,

lower and upper probabilities are defined in terms of a subject’s betting rates.

We have shown in [12] that in many practical situations, the two approaches

are strongly connected. This implies that quite a few results, valid in one

theory, can automatically be converted and reinterpreted in terms of the

other. As an example of this, we will further on prove a generalisation of

Hoeffding’s inequality.

Although we shall assume below that every local set of acceptable gambles

in an imprecise probability tree is only allowed to take values on a finite

possibility space, the infinite depth of the tree can result in gambles on

an infinite number of situations. As a result, our theory of coherent sets of

acceptable gambles, as set out in Chapter 128, is no longer directly applicable.

The main problem is that the maximum of a gamble (or minimum) is not

guaranteed to exist. The common way to treat this problem is by redefining

the ≺ operator: f ≺ g if and only if sup( f −g) < 0. The elements in the setℒ≺0

that appear in the avoiding sure loss axiom are the gambles whose supremum

is strictly smaller than zero. So when allowing for infinite possibility spaces,

A132 changes slightly. Both A232 and A332 remain unchanged. Theorem 735

also generalises in a fairly straightforward fashion. When considering lower

(or upper) previsions, there are slight complications:

P( f ) := sup{α ∈R∶ f −α ∈𝒜} ,

can now also assume infinite values, so P( f ) ∈R∗ with R∗ :=R∪{−∞,+∞}.

For more details we refer to [21].

2.1 Event trees

Assume that the world, or system, you describe is in a known initial situation

and that there is some kind of demigod, which we will call Reality, who

repeatedly decides which situation the world is going to be in next. Reality

has to follow some plan, however, and the plan is telling him which possible

situations it can choose from, in any particular situation. One feature of
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2.1. Event trees

this plan is that two situations can never evolve into the same situation,

which implements the importance of history. This requirement renders

Reality’s roadmap into a tree where the nodes are the situations and the

edges are (Humean) events. This tree is what we call the event tree: a roll-out,

a roadmap of all possible and relevant situations that Reality can go through.

In order to specify the event tree, we see that we need to specify a set of

possible situations and some kind of graph that tells us which situations are

connected to each other. Also, there is a particular time or causal order, which

has to be respected.

2.1.1 Situations and events

In order to define the event tree in a mathematically sound way, we start with

the specification of a set Swhose elements we call situations. These are all

the situations that Reality can possibly be in. On this set S, we assume we

have a partial order relation ⊑ that dictates the direction of the evolution

through situations. For any two situations s, t ∈S we say that s precedes t , or

t follows s, if s ⊑ t or equivalently, t ⊒ s. If s ⊑ t or t ⊑ s then we say that s and t

are ordered. If s and t are not ordered, we write s ∥ t . s ⊏ t is an abbreviation

for s ⊑ t and s ≠ t and we call it the “strictly precedes” relation; likewise we

have the “strictly follows” relation ⊐. The set of all situations that follow a

situation t is denoted by ↑t := {s ∈S∶ s ⊒ t}. Any element of this set—but not

t itself—is called a descendant or successor of t . The set of all situations

preceding t is denoted ↓t := {s ∈S∶ s ⊑ t}. Any situation that strictly precedes

t is called an ancestor or predecessor of t .

We are now able to give the formal definition of an event tree.

Definition 70: A partially ordered set S with partial order relation ⊑ is a

(discrete) event tree (S,⊑) if it satisfies:

ET1. the set ↓t of any situation t ∈S is well-ordered by ⊑,3

ET2. there is some element ◻ ∈S that precedes all elements of S: S has a

bottom.

The unique initial situation ◻ that precedes all elements is also called the

root of the tree. Maximal elements of ⊑ are called the leaves of the tree

3Remember that a set is well-ordered if it is totally ordered and every nonempty subset has
an infimum (See Definition 150197 in Appendix B194).
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a
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Figure 2.2: A simple event tree for Reality, displaying the initial situation ◻, other
non-terminal situations (such as a, g ,h) as grey circles, and terminal situations,
(such as f , l ,k) as black circles. Observe that g ⊏ i , g ∥ a and e ⊒ a. Observe also
↑a = {a,b,c,d ,e} and ↓a = {◻, a}. This means that the initial situation ◻ is the only
ancestor of a, whereas {b,c,d ,e} are the descendants of a.

or terminal situations as they have no successor. The set of all terminal

situations, is denoted byΩ, and is also called the sample space of the tree.

From the first requirement ET1, it follows that any two situations can

only be unordered if they have no common descendants, which effectively

transforms the partial order into a tree. The direction of the order relation ⊑
tells us how Reality can evolve through the situations. Often this evolution

can be thought of as an evolution in time. In this sense, ET1 implies (amongst

other things) that the branches of the tree diverge as time elapses. In this

interpretation, s ⊏ t means then that the situation s happens before t , which

leads to a natural way of formalising causality. This is why Shafer [53] adopted

this approach.4

Consider the set desc(t) := ↑t ∖{t} of all descendants of t . We prove that

this set has minimal elements in non-terminal situations. These minimal

elements are called the children of t and the set of all children is denoted

by ch(t). We also prove that the children of t are the immediate successors

of t . If the chain ↓t ∖{t} has a greatest element, it is unique, and called the

mother of s and denoted by mo(s). Clearly, if s ∈ ch(t), then t is the mother

of s, mo(s) = t . For the event tree of Figure 2.2, ch(b) = {c,d} and mo(b) = a.

Proposition 71: Let t be any situation that is not terminal, i.e. desc(t) ≠∅.

Then it holds that:

4Total ordering instead of the stronger well-ordering ET1 is required in Shafer’s definition of
event trees. However, Shafer demands well-ordering when he defines regular event trees.
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1. ch(t) := {c ∈S∶c is a minimal element of desc(t)} ≠∅,

2. For every element s of desc(t), there is a unique element c of ch(t) such

that c ⊑ s,

3. No two elements of ch(t) are ordered, so ch(t) is an antichain. 5

Proof: 1. Consider any (maximal) chain C in ↑t ∖{t} and any element s of C . Then

↓s is well-ordered by ET183. As ↓s∩C is a subset of ↓s, it will be well-ordered as well.

This implies that ↓s∩C has a smallest element which is also the smallest element

of C . So any chain C in desc(t) has a smallest element in desc(t), which implies,

by Zorn’s lemma, that desc(t), has minimal elements.

2. Take any s ∈ desc(t). Then ↓s∩desc(t) is well-ordered and therefore has a smallest

element c. Clearly, c ⊑ s and we know that c is a minimal element of desc(t), so

belongs to ch(t).

Ex absurdo, suppose there is some c′ ∈ desc(t) such that c′ ⊏ c. Then c′ ∈ ↓s ∩
desc(t), which contradicts that c is the smallest element of ↓s∩desc(t).

Finally, for unicity: suppose c1,c2 ∈ ch(t) and c1 ⊑ s, c2 ⊑ s. This implies that

c1,c2 ∈ ↓s. As ↓s is a chain, c1 ⊑ c2 or c2 ⊑ c1 and it follows from 3. that c1 = c2.

3. Consider any c1,c2 ∈ ch(t) and assume that c1 ⊑ c2. But c1,c2 ∈ desc(t) and are

undominated by definition. This implies that c1 = c2. ◻

Chains, paths, events and cuts

Shafer [53, §1.7 page 23] makes the distinction between Humean and de

Moivrean events where the former correspond to something localised in time

and space whereas the de Moivre event corresponds to the usual subset of

the sample space. We will adopt the de Moivre interpretation where events

are subsets of the sample space. However, some technicalities have to be

taken into account when trees with infinite depth are considered. The depth

of the tree can be understood as the supremum cardinality of all the chains.6

Definition 72: A path ω ∈ 2S is a chain that is maximal. The set of all paths is

denoted by P.

5 An antichain C is a non-empty and unordered subset of S. (∀s, t ∈ C)(s ∥ t) (See
Definition 149195 in Appendix B194)

6 A chain C is a non-empty subset of S that is totally ordered by ⊑. (∀s, t ∈C)(s ⊑ t or t ⊑ s)
(See Definition 148195 in Appendix B194)
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A path ω is a chain that is not included in any other chain and the set of

all paths that contain or go through a situation t is denoted by Pt . Clearly,

P coincides with P◻. Even if the depth of the tree is infinite, the Axiom of

Choice (Hausdorff’s Maximal Chain Principle) guarantees that every chain is

included in some path.

Every path can be identified with a terminal situation when the tree

has a finite depth. When the depth is infinite however, then a path may fail

to contain a terminal situation, so paths can no longer be identified with

terminal situations. To overcome this problem, a regularity axiom can be

added to the definition of the event tree.

Definition 73: A poset (S,⊑) is a regular event tree if it is a discrete event

tree (satisfies ET183 and ET283) and if in addition

ET3. every chain in S has a greatest element in S.

Remark that this axiom is trivially fulfilled when the depth of the tree is finite.

If a tree is not regular then it can always be made regular by adding extra

situations to the tree [53]. Therefore, we assume from now on that every

event tree we consider is regular. In a regular event tree, we can identify

paths and terminal situations. We will do so throughout the text.

A (de Moivrean) event A is a set of paths A ⊆ P. Because paths can be

identified with their terminal situations in a regular event tree, we can also

speak without confusion about the event that corresponds to the set of

terminal situations B ⊆ Ω and we will also call this the event B . With an

event A, we can associate its indicator I A , which is the real-valued map onΩ

that assumes the value 1 on A, and 0 elsewhere.

We denote by E(t) := {ω ∈Ω∶ t ⊑ω} the set of all terminal situations that

are preceded by t or equivalently, the set of all paths that go through t . E(t)
is the event that corresponds to Reality getting to a situation t .

Cuts of a situation

Unless explicitly stated differently, we will assume that the event tree is

regular: so, from now on, every path corresponds with a terminal situation.

Definition 74: Let t be a situation in an event tree (S,⊑). A cut U of t is a

maximal antichain in ↑t .

86



2.1. Event trees

As with paths, Hausdorff’s Maximal Chain Principle tells us that we can always

extend any set of not-ordered nodes (an antichain) to a cut.

a
b c

d

e

f

g

h i
j
k

l
U

Figure 2.3: A simple event tree for Reality. The set U := {g , f ,e,b} defines a cut (of ◻)
which precedes the cutΩ = {l ,k, j , i , f ,e,d ,c} of terminal situations: U ⊑Ω. The set
{e,b} is not a cut of the tree, but it is a cut of situation a, {e,b} = ch(a) ∈Ua .

If a situation s ⊒ t precedes (follows) some element of a cut U of t , then

we say that s precedes (follows) U , and we write s ⊑U (s ⊒U ). Similarly for

“strictly precedes (follows)”. For two cuts U and V of t , we say that U precedes

V if each element of U is followed by some element of V . Also, the setΩ of

terminal situations is a cut of ◻, called its terminal cut. The event E(t) is the

corresponding terminal cut of a situation t .

The next lemma gives some of the more useful properties of cuts and

paths.

Lemma 75:

1. In a regular event tree, a path and a cut intersect in exactly one

situation.

2. If a set of situations has exactly one situation in common with each cut,

then the set is a path.

3. If a set of situations has exactly one situation in common with each

path, then the set is a cut.

4. Every ancestor of an element of a path is again in the same path.

5. If s is a situation and U is a cut, then exactly one of the following is true:

s is in U , s has a strict descendant in U , or s has a strict ancestor in U .
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The proof can be found in [53, Proposition 11.2].

We can also define the set of all cuts of a situation t , which is denoted by

Ut . The set U◻ of all cuts of ◻ will also be denoted U. The set of all cuts of

the situation t that precede the cut U is denoted UU
t . Shafer [53] proved the

following interesting property of the set of cuts of a regular event tree.

Proposition 76: Consider any situation t ∈ S of a regular event tree (S,⊑).

Then (Ut ,⊑) is a complete lattice.

As the child of a non-terminal situation t is a situation that immediately

follows it, we see that the set ch(t) of children of t constitutes a cut of t ,

called its children cut (See Proposition 7184). We will also call it the move

space of Reality in the situation t as it consists of the only situations Reality

can evolve to immediately after arriving in t . Although not strictly necessary,

we assume that every move space consists of at least two elements, otherwise

Reality is confronted with a trivial choice.

2.1.2 Processes and variables

We now have all the necessary tools to represent Reality’s possible evolution

and have laid the foundations for what can be seen as an event-driven, rather

than a time-driven, account of a theory of uncertain, or random, processes.

The driving events are, of course, the moves that Reality makes. In a theory

of processes, we generally consider things that depend on (a succession of)

these moves. This leads to the following definitions.

Any (partial) function on the set of situations S is called a process, and

any process whose domain includes ↑t is called a t-process. We will denote

processes by capital letters. Of course, a t-process is also an s-process for all

s ⊒ t as ↑s ⊆ ↑t ; when we call it an s-process, this means that we are restricting

our attention to its values in all situations that follow s.

Similarly, any function defined (at least) on the terminal situations

following t is called a t-variable. A real-valued t-variable can be seen as

a gamble on E(t) and will be denoted by a lowercase letter. Given a t-process

F , we define the corresponding t-variable f = varE(t)F on E(t) by:

varE(t)F(ω) := F(ω) for any ω ∈ E(t). (2.1)

If U is a cut of t , then we call a t-variable f U -measurable if for all u

in U , f assumes the same value f (u) ∶= f (ω) for all terminal situations ω
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that follow t , ω ∈ E(t). In that case we can also consider f as a variable or a

gamble on U and will often denote it as f U or write f ∈ ℒ(U). We say that

the cut U is a resolving cut for f . Given a t-process F and a cut U ∈Ut , we

define the U -measurable t-variable varU F as in Equation (2.1) where now

E(t) has been replaced with U .

varU F(ω) := F(u) for any ω ∈ E(u) and u ∈U . (2.2)

Consider a t-process F and U ∈ Ut any cut of t , then the U-stopped

process StopU F is the t-process defined by

StopU F(s) :=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

F(s) s ⊑U ,

F(u) u ⊏ s and u ∈U .

The cut U is also called a stopping time. The corresponding variable is given

by varU F and is clearly U -measurable:

varE(t) (StopU F) = varU F. (2.3)

Remark that varE(t)F = varU F does not imply that F = StopU F .

Consider a t-process F and U ∈Ut any cut of t , then the U-killed process

KillU F is the t-process defined by

KillU F(s) :=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

F(s) s ⊑U ,

0 u ⊏ s and u ∈U .

Here

varU (KillU F) = varU F. (2.4)

If var, Stop or Kill are applied to a set of processes, we always assume that

they are applied pointwise.

▷ Example 77 (Flipping coins): Consider flipping two coins, one after the other.

This leads to the event tree depicted in Figure 2.4. The identifying labels for the

situations should be intuitively clear: e.g., in the initial situation ‘◻=?, ?’ none of the

coins have been flipped, in the non-terminal situation ‘h, ?’ the first coin has landed

‘heads’ and the second coin has not yet been flipped, and in the terminal situation

‘t , t ’ both coins have been flipped and have landed ‘tails’.

First, consider the real process N , which in each situation s, returns the number

N(s) of heads obtained so far, e.g., N(?, ?) = 0 and N(h, ?) = 1. If we restrict the

process N to the set Ω of all terminal elements, we get a real variable n := varΩN ,

whose values are: n(h,h) = 2, n(h, t) = n(t ,h) = 1 and n(t , t) = 0.
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?, ?

t , ?

t , t

t ,h

h, ?

h, t

h,h

X1 U

Figure 2.4: The event tree associated with two successive coin flips. Also depicted are
two cuts of the initial situation, X 1 and U .

Consider the cut U of the initial situation, which corresponds to the following

stopping time: “stop after two flips, or as soon as an outcome is heads”; see Figure 2.4.

The values of the corresponding variable nU are given by: nU (h,h) = nU (h, t) =
1, nU (t ,h) = 1 and nU (t , t) = 0. So nU is U -measurable, and can therefore be

considered as a map on the elements h, ? and t ,h and t , t of U , with in particular

nU (h, ?) = 1.

Next, consider the processes F,G , H ∶S→{h, t , ?}, defined as follows:

s ?, ? h, ? t , ? h,h h, t t ,h t , t

F(s) ? h t h t h t

G(s) ? h t h h t t

H(s) ? ? ? h t h t

F returns the outcome of the latest, G the outcome of the first, and H that of the

second coin flip. The associated variables g := varΩG and h := varΩH give, in each

element of the sample space, the respective outcomes of the first and second coin

flips.

The variable g is X1-measurable: as soon as we reach (any situation on) the cut

X1, its value is completely determined, i.e., we know the outcome of the first coin flip;

see Figure 2.4 for the definition of X1.

We can associate with the process F the variable f X1 := varX1 F that is also X1-

measurable: it returns, in any element of the sample space, the outcome of the first

coin flip. Alternatively, we can stop the process F after one coin flip, which leads to

the X1-stopped process StopX1
F . This new process is of course equal to G , and for

the corresponding variable, we have that g := varΩG = varΩ StopX1
F = varX1 F .
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2.2 Imprecise probability trees

Until now we have focussed on the situations Reality can be in and on how

Reality can pass through these situations. In this section we introduce a

second player, whom we will call Subject and who has beliefs about the actual

transition Reality will make once he is in a situation t . We assume that the

local belief models are given as coherent sets of acceptable gambles. These

local models represent Subject’s beliefs when reality is in the initial situation

◻ about what Reality will do immediately after getting to a particular situation.

We call such a model, where the event tree and the immediate prediction

beliefs are put together, an imprecise probability tree.

Definition 78: An imprecise probability tree (S,⊑,𝒜⋅) is an event tree

(S,⊑) with local model𝒜s attached to each non-terminal situation s ∈S∖Ω.

A local model𝒜s in a non-terminal situation s is a coherent set of acceptable

gambles on the children cut ch(s), conditional on getting to the situation s.

In order to simplify proofs and manoeuvre away the discrepancy between

terminal and non-terminal nodes, we assume that a coherent set is assigned

to each terminal node as well. More specifically, the coherent set 𝒜s of a

terminal node s consist of all non-negative real numbers R≥0:

𝒜s :=R≥0 for all s ∈Ω. (2.5)

A local belief model𝒜t should not be interpreted dynamically. In other

words, 𝒜t does not stand for the set of acceptable gambles on ch(t) that

Subject accepts after Reality has got to situation t . All beliefs should be fixed

and specified explicitly beforehand, in the initial situation ◻.

▷ Example 79: Assume a coin is tossed three times. This means that at every non-

terminal situation, either heads h or tails t is concatenated with the current situation.

◻

h

hh

hhh hht

ht

hth htt

t

th

thh tht

tt

tth ttt

𝒜◻

𝒜h 𝒜t

𝒜hh 𝒜tt𝒜th𝒜ht
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The event tree is unrolled and in every non-terminal situation s, a local prediction

model is given in terms of a coherent sets of acceptable gambles on ch(s). If the

outcome of the first toss was heads for example, then we are in situation h and the

beliefs about the possibility of going to one of the next situations ht , hh is thus given

by the coherent set of acceptable gambles𝒜h defined for all gambles inℒ({hh,ht}).

From now on, we will consider only a special class of imprecise event

trees, which we call finitary imprecise probability trees. These are imprecise

probability trees that satisfy two extra constraints: 1. every situation has only

a finite number of children: ⋃︀ch(s)⋃︀ ∈N≥0; and 2. there are only a finite number

of paths that contain local models with practically impossible events.

2.2.1 Selections and gamble processes

When given an imprecise probability tree, we can consider a special partial

process that is not real-valued, but instead returns a gamble for every

situation. Such a process is called a gamble-valued process. If the returned

gamble is acceptable and if, on every path, only a finite number of acceptable

gambles are selected that differ from zero, then we call the gamble-valued

process a selection and denote this process by 𝒮 . Moreover, when we

write 𝒮(s)(u) with s ⊏ u, we mean the acceptable gamble 𝒮(s) selected

from 𝒜s evaluated in the child of s that precedes u (which is unique by

Proposition 7184).

Definition 80: Consider an imprecise probability tree (S,⊑,𝒜⋅) and a situ-

ation t . Then we call t-selection any t-process 𝒮 that satisfies:

1. 𝒮(s) ∈𝒜s ,

2. 𝒮(s) ≠ 0 only for a finite number of situations s in each path correspond-

ing to an element of E(t):

(∀ω ∈ E(t))⋃︀{s ∈ ↓ω∶𝒮(s) ≠ 0}⋃︀ ∈N≥0

We call a ◻-selection simply a selection.

With a t-selection, we can construct a real-valued t-process∑t𝒮 , called

the summed t-selection process, whose value in any s ⊒ t is given by

∑t𝒮(s) := ∑
t⊑v⊏s

𝒮(v)(s), (2.6)
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so∑t𝒮(t) = 0.

A selection is allowed to differ from zero in only a finite number of situations

in each path. This prevents the sum in Equation (2.6) from diverging. We

denote the set of all t-selections by Selst(𝒜⋅) and the set of all summed

t-selections by SumSelst(𝒜⋅),

SumSelst(𝒜⋅) := {∑t𝒮∶𝒮 ∈ Selst(𝒜⋅)} . (2.7)

We can also focus on the t-variables varU (∑t𝒮), U ∈ Ut , that cor-

respond with the summed t-selections ∑t𝒮 evaluated in U . For the set

varU (SumSelst(𝒜⋅)), we can prove the following useful properties.

Lemma 81:

1. varU (∑t𝒮) = varU (∑t(KillU 𝒮)) for any t-selection 𝒮 ∈ Selst(𝒜⋅)

2. varU (SumSelst(𝒜⋅)) = {varU ∑t𝒮∶𝒮 ∈KillU (Selst(𝒜⋅))}.

Proof: We know from Equation (2.6) that StopU ∑t𝒮 =∑tKillU 𝒮 whence

varU (∑t𝒮) = varU (StopU (∑t𝒮)) = varU (∑t(KillU 𝒮))

by Equation (2.3).

To prove Property 81.2, it follows from the definition of SumSelst (𝒜⋅) and

Lemma 81.1 that

varU (SumSelst (𝒜⋅)) = {varU (∑t𝒮)∶𝒮 ∈ Selst (𝒜⋅)}
= {varU (∑(KillU 𝒮t ))∶𝒮 ∈ Selst (𝒜⋅)}
= {varU (∑t𝒮)∶𝒮 ∈KillU (Selst (𝒜⋅))} . ◻

Ideally, we would like the set of gambles varE(t) (SumSelst(𝒜⋅)), asso-

ciated with all t-selections, to be coherent. It follows immediately from

Equation (2.6) and A332 that, given α ∈R≥0,

∑t(α𝒮1+𝒮2) =α∑t𝒮2+∑t𝒮2. (2.8)

We infer that posi(varE(t) (SumSelst(𝒜⋅))) = varE(t) (SumSelst(𝒜⋅)) so

varE(t) (SumSelst(𝒜⋅)) satisfies Axiom A332. There is however a problem

with Axiom A232 as ℒ≥0(E(t)) ⇑⊆ varE(t) (SumSelst(𝒜⋅)). The reason for

this is that in the summation in Equation (2.6), no selections in terminal

situations are incorporated. For this reason, we introduce, for any U ∈Ut , the
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U -measurable summed t-selections (see also Lemma 83 further on for the

justification of the use of “measurable” here):7

𝒜U
E(t) := varU (SumSelst(𝒜⋅))+ℒ≥0(U)

= {varU ∑t𝒮∶𝒮 ∈ Selst(𝒜⋅)}+ℒ≥0(U).

The set𝒜E(t)
E(t)

will also be denoted by𝒜E(t), and𝒜{ω}
E(ω)

=𝒜ω = R≥0, for any

terminal situation ω. We now prove that𝒜U
E(t) ⊂ ℒ(U) is a coherent set of

acceptable gambles on U .

Proposition 82: Let (S,⊑,𝒜⋅) be an imprecise probability tree, t one of its

situations and U ∈Ut a cut of t . Then the set of all U -measurable summed

t-selections𝒜U
E(t) is a coherent set of acceptable gambles on ℒ(U).

Proof:

A1. As𝒜U
E(t) ⊆𝒜E(t) :=𝒜E(t)

E(t)
, and𝒜E(t) = varE(t) (SumSelst (𝒜⋅))+ℒ≥0(E(t)), it

is sufficient to show that varE(t) (SumSelst (𝒜⋅)) avoids sure loss. We will prove

something stronger, namely that, whatever selection 𝒮 we take, we can always find

a terminal situation ω such that∑t𝒮(ω) ≥ 0. So fix a t-selection 𝒮 and consider to

this end the following algorithm.

N := {s ∈ ↑t ∖Ω∶𝒮(s) ≠ 0}

c := t

N =∅ pick any ω ∈ E(c)

pick any s ∈ N

m :=min(↓s∩N)

pick c ∈ ch(m) such that:

𝒮(m)(c) ≥ 0

N := N ∩↑c

yes

no

The situations in N

are the only ones that

have an effect on the

resulting summed t-

selection varE(t)∑t𝒮 .

By construction:

∑t𝒮(ω) ≥ 0.

m exists because ↓s is

well-ordered.

Because 𝒮 satisfies

A132, c can be chosen

such that 𝒮(m)(c) ≥ 0.

It follows then that

∑t𝒮(c) ≥ 0.

Stop

7Recall from Section 2.1.288 that ℒ≥0(U) with U ∈ Ut can be identified with the non-
negative gambles on E(t) that are U -measurable.
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It is clear that A132 is proved if we can show that the algorithm is guaranteed to

stop. Suppose, ex absurdo, that the algorithm does not terminate. This means that

there is a sequence {cn ,mn}n∈N≥0
such that

c1 ⊑m1 ⊏ c2 ⊑m2 ⊏ c3 ⊑m3 ⊏ . . .

and 𝒮(mk) ≠ 0. But this is clearly in contradiction with the requirement that,

on each path, a selection differs from zero in only a finite number of situations

(Definition 8092).

A2. By definition,𝒜U
E(t) includesℒ≥0(U).

A3. If f and g in 𝒜U
E(t) and α ≥ 0, then we infer from Lemma 8193 that there are

(U -killed) selections 𝒮1 and 𝒮2, and non-negative gambles r1,r2 ∈ ℒ≥0(U) such

that

α f + g =α(varU ∑t𝒮1+ r1)+varU ∑t𝒮2+ r2

= varU ∑t(α𝒮1+𝒮2)+αr1+ r2.

where we used Equation (2.8) in the last step. It follows immediately from A332

that α𝒮1+𝒮2 is again a U -killed selection and obviously, αr1+r2 ∈ ℒ≥0(U), hence

we conclude that α f + g ∈𝒜U
E(t). ◻

It is not necessarily the case, as pointed out in Section 2.1.288, that a

U -measurable variable can be written as the variable resulting from a U -

killed selection process (or U -stopped summed selection process). When

considering summed t-selections however, we have the following interesting

relation, which explains the name we gave earlier to𝒜U
E(t).

Lemma 83: 𝒜U
E(t) is the set of all U -measurable summed t-selections.

𝒜U
E(t) = { f ∈𝒜E(t)∶ f is U -measurable} .

Proof: Clearly, every varU (∑t𝒮) is U -measurable for any 𝒮 ∈ Selst (𝒜⋅).

Conversely, consider any 𝒮 ∈ Selst (𝒜⋅) such that varE(t) (∑t𝒮) is U -measurable.

Then it is sufficient to show that there is some β ∈ ℒ≥0(U) such that

varE(t) (∑t𝒮) = varU (∑tKillU 𝒮)+β.

Fix any u ∈U , then for all ω,ω′ ∈ E(u):

varE(t) (∑t𝒮)(ω) = ∑
t⊑s⊏u

𝒮(s)(u)+∑u𝒮(ω),
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varE(t) (∑t𝒮)(ω
′) = ∑

t⊑s⊏u
𝒮(s)(u)+∑u𝒮(ω

′),

and we infer from the U -measurability of varE(t) (∑t𝒮) that varE(u) (∑u𝒮) must

be a constant map on E(u). We also know that varE(u) (∑u𝒮) ∈𝒜E(u) and because

𝒜E(u) avoids sure loss by Proposition 8294, we infer that varE(u) (∑u𝒮) =β(u)IE(u)

with β(u) ∈R≥0.

As this reasoning holds for any u ∈U , we infer that there is a β ∈ ℒ≥0(U) such that

varE(t) (∑t𝒮)(ω) = ∑
t⊑s⊏u

𝒮(s)(u)+β(u),

whence

varE(t) (∑t𝒮) = varU (∑tKillU 𝒮)+β ∈𝒜U
E(t). ◻

Sets of summed t-selections satisfy the following, very interesting

property, because it can be seen as a generalised version of marginal

extension.

Theorem 84: Let t be a situation of an imprecise probability tree (S,⊑,𝒜⋅)
and consider cuts U ,V ∈Ut such that U ⊑V . Then it holds that:

𝒜V
E(t) =𝒜

U
E(t)+ ∑

u∈U
IE(u)𝒜V

E(u).

Proof: From Equation (2.6), we infer for any t-selection 𝒮 that

∑t𝒮 = StopU ∑t𝒮 + ∑
u∈U

I↑u∑u𝒮 ⋃︀↑u

=∑tKillU 𝒮 + ∑
u∈U

I↑u∑u𝒮 ⋃︀↑u (2.9)

If we define the t-selection 𝒮U and the u-selections 𝒮u , u ∈U , by

𝒮U :=KillU 𝒮 ,

𝒮u := 𝒮 ⋃︀↑u ,

then we infer from Equation (2.9) that

varV ∑t𝒮 = varV ∑t𝒮
U + ∑

u∈U
IE(u) varV ∑u𝒮u

= varU ∑t𝒮
U + ∑

u∈U
IE(u) varV ∑u𝒮u ,

and it follows fromℒ≥0(V ) =∑u∈U IE(u)ℒ≥0(↑u∩V ) that

𝒜V
E(t) ⊆𝒜

U
E(t)+ ∑

u∈U
IE(u)𝒜

V
E(u).
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To prove that 𝒜V
E(t) ⊇ 𝒜

U
E(t) +∑u∈U IE(u)𝒜

V
E(u) we consider any U -killed t-

selection 𝒮U and any V -killed u-selection 𝒮u , u ∈ U . Then we can define a new

t-process 𝒮 by

𝒮(s) :=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝒮U (s) if t ⊑ s ⊏U ,

𝒮u(s) if u ∈U and u ⊑ s.

𝒮 is again a t-selection since clearly only a finite number of nonzero acceptable

gambles is selected on each path through t . Because this result holds for any choice

of 𝒮U and 𝒮u , u ∈U , and becauseℒ≥0(U) ⊆ℒ≥0(V ), it follows at once that𝒜V
E(t) ⊇

𝒜U
E(t)+∑u∈U IE(u)𝒜

V
E(u). ◻

To conclude, we show that 𝒜E(s) can be interpreted as the set of all

summed t-selections, updated on the event E(s)where s ⊒ t . When updating

was defined (See Definition 2447), it was said that updating on a practically

impossible event will result in the vacuous model, unless extra information

is given, which is clearly the case here.

Proposition 85: The family 𝒜E(t), t ∈ S of coherent sets of acceptable

gambles satisfies the following properties:

1. 𝒜E(t))︁E(s) =𝒜E(s),

2. margch(s) (𝒜E(t))︁E(s)) =𝒜s ,

for all situations s ⊒ t with −IE(s) ⇑∈ 𝒜E(t). It can therefore be considered

jointly coherent.

Proof: 1. Assume −IE(s) ⇑∈ 𝒜E(t) and consider any f ∈ ℒ(E(s)). Then it follows at

once from Lemma 8899 further on that

IE(s) f ∈𝒜E(t)⇔ IE(s) f ∈𝒜E(s).

2. We infer from Lemma 8395 that

margch(s) (𝒜E(t))︁E(s)) =margch(s) (𝒜E(s))

= { f ∈𝒜E(s)∶ f is ch(s)-measurable}

=𝒜ch(s)
E(s)

=𝒜s . ◻
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2.2.2 Cut conglomerability

Of course we would like to make inferences on imprecise probability trees

by using our extension to Williams’s and Walley’s theory of conservative

reasoning. This means that we adopt the rationality criteria for sets of

acceptable gambles, cf. Definition 432. Walley adds an extra “rationality”

condition that makes the generalised Bayes rule (Proposition 5367) produce

smallest coherent inferences, also on infinite spaces. This condition is called

conglomerability. We impose conglomerability with respect to all partitions

consisting of exact events.

Definition 86 (Cut conglomerability):

A4. Given t ∈ S. Let U ∈Ut and assume that IE(u) fu ∈ 𝒜 ⊆ ℒ(E(t)), where

fu ∈ ℒ(E(u)) for all u ∈U . Then it must hold that∑u∈U IE(u) fu ∈𝒜.

Instead of demanding conglomerability for every possible combination of

situations, we only ask for conglomerability on cuts, which we believe is the

only combination of situations it makes sense to condition on: we agree

to condition only on exact events, i.e. events of the form ↑u where u is a

situation of the tree. If the tree contains only a finite number of situations,

then cut conglomerability is a consequence of axiom A332.

A set of acceptable gambles is coherent if it avoids sure loss, incurs partial

gain and when it is closed with respect to the posi operator. In analogy to this

posi operator, we can introduce a new operator cccl and rephrase the new

axiom, cut conglomerability, as being closed with respect to this operator:

given t ∈S,

ccclt𝒜 := {∑
u∈U

IE(u) fu ∶ IE(u) fu ∈𝒜, fu ∈ ℒ(E(u)) for all u ∈U and U ∈Ut(︀ .

So, we say that the set 𝒜 ⊆ ℒ(E(t)) is cut conglomerable if it is invariant

under cccl:

ccclt𝒜 ⊆𝒜.

Considering Theorem 8496, it is not all that surprising that𝒜E(t) is a cut

conglomerable set of acceptable gambles.

Proposition 87: The coherent set of acceptable gambles𝒜E(t) is cut-con-

glomerable.
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Proof: Take any cut U ∈Ut and assume that IE(u) fu ∈𝒜E(t) for every u ∈U where

fu ∈ ℒ(E(u)). If we fix U , then this means, by Lemma 88, that there are hu ∈𝒜E(u)

and αu ∈R≥0 such that −αu IE(u) ∈𝒜
U
E(t) and

IE(u) fu =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

IE(u)hu if − IE(u) ⇑∈𝒜
U
E(t),

−αu IE(u)+ IE(u)hu if − IE(u) ∈𝒜
U
E(t).

(2.10)

Let S := {u ∈U ∶−IE(u) ∈𝒜E(t)}, then we infer from Equation (2.10) that

∑
u∈U

IE(u) fu = ∑
s∈S

−αs IE(s)+ ∑
u∈U

IE(u)hu (2.11)

We know by Proposition 8294 that𝒜U
E(t) is coherent, so it follows from the finitary

character of the imprecise probability tree that ⋃︀S⋃︀ ∈N≥0 [see Lemma 89] and therefore

∑s∈S −αs IE(s) ∈ 𝒜
U
E(t). So we infer from Equation (2.11) and Theorem 8496 that

indeed

∑
u∈U

IE(u) fu ∈𝒜U
E(t)+ ∑

u∈U
IE(u)𝒜E(u) =𝒜E(t). ◻

Lemma 88: Consider U ∈ Ut and any u ∈ U and fu ∈ ℒ(E(u)) such that

IE(u) fu ∈𝒜E(t). Then there are hu ∈𝒜E(u) andαu ∈R≥0 such that−αu IE(u) ∈
𝒜U

E(t) and

IE(u) fu =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

IE(u)hu if − IE(u) ⇑∈𝒜U
E(t),

−αu IE(u)+ IE(u)hu if − IE(u) ∈𝒜U
E(t).

Proof: If IE(u) fu ∈𝒜E(t), then we know by Theorem 8496 that there are hU ∈𝒜U
E(t)

and hv ∈𝒜E(v), v ∈U such that

IE(u) fu = IE(u)hU + ∑
v∈U

IE(v)hv .

This implies that hv must be constant and equal to −hU (v) for all v ∈U ∖{u}, and

since each corresponding𝒜E(v) avoids sure loss, we find that necessarily hU (v) ≤ 0,

and that

IE(u) fu = IE(u)(︀h
U (u)+hu⌋︀.

So we can assume without loss of generality that hU (v) = 0 for all v ∈U ∖{u}. [To

see this, let gU := hU +∑v∈U∖{u} IE(v)hv , then as ∑v∈U∖{u} IE(v) ∈ ℒ≥0(U) and

therefore, by coherence, gU ∈𝒜U
E(u). Moreover, if we let gu := hu ∈𝒜E(u) and gv :=

0 ∈𝒜E(v) for all v ∈U ∖{u}, then clearly also IE(u) fu = IE(u)gU +∑v∈U IE(v)gv .]
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The proof is now complete if we observe that hU (u) < 0 implies, by coherence

and the fact that hU is zero elsewhere, that −IE(u) ∈ 𝒜
U
E(t). So if −IE(u) ∈ 𝒜

U
E(t),

then hU (u) ≥ 0, and by coherence the result of adding this non-negative constant to

hu will still belong to𝒜E(u). ◻

Lemma 89: Let (S,⊑,𝒜⋅) be a finitary imprecise probability tree, and

assume that −IE(u) ∈𝒜E(t) where u ∈U and U ∈Ut . Then there is a situation

s ⊑ u such that −I{s} ∈𝒜mo(s).

Consequently, in a finitary imprecise probability tree, there can only be a

finite number of situations u ∈U such that −IE(u) ∈𝒜E(t).

Proof: By A132, we may assume without loss of generality that u ≠ t .

If −IE(u) ∈ 𝒜E(t), then we know that there is a selection 𝒮 ∈ Selst (𝒜⋅) and a

gamble g ∈ ℒ≥0(U), such that

−IE(u) = varU ∑t𝒮 + g . (2.12)

Choose m to be the largest element of the finite chain

{s ∈ ↓u∶∑t𝒮(mo(s)) ≥ 0 and∑t𝒮(s) < 0} .

Then we infer from Equation (2.12) that8

0 =∑t𝒮(mo(m))
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

≥0

+𝒮(mo(m))(c)+varU ∑c𝒮
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
∈𝒜V

E(c)

+ g ⋃︀V
⧸︀
≥0

for all c ∈ sib(m), (2.13)

where we let V := U ∩ ↑c. Because varU ∑c𝒮 ∈ 𝒜V
E(c), and since we know from

Proposition 8294 that 𝒜V
E(c) avoids sure loss, we infer from its proof that there is

some situation v ∈V such that varU ∑c𝒮(v) ≥ 0. If we evaluate Equation (2.13) in this

v , then we see that

𝒮(mo(m))(c) ≤ 0 for all c ∈ sib(m),

and by construction

𝒮(mo(m))(m) =∑t𝒮(m)−∑t𝒮(mo(m)) < 0.

We know that 𝒮(mo(m)) ∈𝒜mo(m)
and that𝒜mo(m)

is coherent, so

h := 𝒮(mo(m))
−𝒮(mo(m))(m) ∈𝒜mo(m).

Since h ≤ −I{m}, we conclude that also −I{m} ∈𝒜mo(m)
. ◻

8sib(m) = ch(mo(m))∖{m} is the set of siblings of m.
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2.2.3 Extension to global beliefs

At this moment we are able to solve questions about local gambles, i.e.

gambles on the children cut of any situation. The question is how to broaden

this to gambles on general cuts. To answer these questions, we have to find a

way to combine local beliefs into a global belief model onΩ. Of course we

would like to find the smallest joint model that is coherent with the local

assessments. In practice this means that the coherence conditions A132-A332

and cut-conglomerability A498 have to be satisfied for the newly formed joint

model.

Consider any situation t . What the agent does when specifying the

local models that constitute an imprecise probability tree, amounts to an

assessment of a set of acceptable gambles 𝒜̃t on E(t):

𝒜̃t := ⋃
s∈↑t

IE(s)𝒜s , (2.14)

where as usual we have identified gambles on a cut with cut-measurable

gambles on the terminal cut. A strategy to find the smallest coherent set lies

in applying the posi and cccl operators repeatedly until we find a set that

is invariant under both operators. The problem is that posi and cccl do not

commute in general:

posiccclt 𝒜̃t ≠ ccclt posi𝒜̃t ,

and it is not clear whether this procedure will ever converge, nor whether if it

converges, the limits will satisfy A132-A498.

Instead of walking this path, we choose to start from the previously

defined set 𝒜E(t) of all selections. We do already know that this set is

coherent (A132-A332) by Proposition 8294 and cut conglomerable (A498) by

Proposition 8798 and it clearly contains 𝒜̃t . It also is jointly coherent with the

elements that constitute 𝒜̃t by Proposition 8597. What is not clear is whether

it is the smallest such set. This is what we prove next.

Theorem 90: Consider a finitary imprecise probability tree (S,⊑,𝒜⋅), and

any t ∈S. Then the set of acceptable gambles𝒜E(t) is the smallest set that

satisfies

margch(s) (𝒜E(t))︁E(s)) =𝒜s for any s ⊒ t such that −IE(s) ∉𝒜E(t),

(2.15)
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and that is coherent and cut conglomerable.

Proof: We know from Propositions 8294 and 8798 that 𝒜E(t) satisfies A132-A498.

From Proposition 8597 we know that 𝒜E(t) is jointly coherent with the local

assessments𝒜s . We only have to prove that𝒜E(t) is the smallest cut conglomerable,

coherent set that is jointly coherent with these local assessments.

Assume, ex absurdo, that there is a coherent and cut conglomerable set of

acceptable gambles𝒜 ⊆ℒ(E(t)) that satisfies Equation (2.15) such that𝒜E(t) ⇑⊆𝒜.

Then we know that there is a gamble f ∈ 𝒜E(t) ∖𝒜. This means that there is a t-

selection 𝒮 and gamble p ∈ ℒ≥0(E(t)) such that

f = varE(t)∑t𝒮 +p ∉𝒜,

so by Lemma 91, we can construct a sequence

t =: c1 ⊏ c2 ⊏ c3 ⊏ c4 . . .

such that𝒮(mo(ci+1)) ≠ 0 when i ∈N>0. But this means that the t-selection𝒮 differs

from zero on an infinite number of situations in the path through {ck}k∈N>0
, which

contradicts the finitary character of the imprecise probability tree. ◻

The following lemmas are used when proving Theorem 90.

Lemma 91: Let 𝒜 be a cut conglomerable and coherent set of acceptable

gambles on E(t) such that margch(s) (𝒜⧹︀E(s)) = 𝒜s for any s ⊒ t such that

−IE(s) ∉ 𝒜. Consider any t-selection 𝒮 and any gamble p ∈ ℒ≥0(E(t)). If

there is some situation c1 ⊒ t such that

varE(t)∑c1
𝒮 +p ∉𝒜,

then there must be some c2 ⊐ c1 such that 𝒮(mo(c2)) ≠ 0 and

varE(t)∑c2
𝒮 ∉𝒜.

Proof: Consider the set S := {s ⊒ t ∶𝒮(s) ≠ 0}. This set cannot be empty because in

that case we would have varE(t)∑c1
𝒮+p = p ∈𝒜 by A232. We then know by Lemma 92

that for any ω ∈ E(t):9

∑c1
𝒮(ω)+p(ω) = p(ω)+ ∑

m∈min S
IE(m)(ω)

⎛
⎝
𝒮(m)(ω)+ ∑

c∈ch(m)

∑c𝒮(ω)
⎞
⎠

9Here, min S is the set of all minimal elements of the partial order (S,⊑).
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2.2. Imprecise probability trees

= p(ω)+ ∑
m∈min S

IE(m)(ω)𝒮(m)(ω)

+ ∑
m∈min S

IE(m)(ω) ∑
c∈ch(m)

∑c𝒮(ω)

= p(ω)+ ∑
m∈min S

IE(m)(ω)𝒮(m)(ω)

+ ∑
m∈min S

∑
c∈ch(m)

IE(c)(ω)∑c𝒮(ω).

and therefore

varE(t)∑c1
𝒮 +p = p + ∑

m∈min S
IE(m)𝒮(m)+ ∑

m∈min S
∑

c∈ch(m)

IE(c) varE(c)∑c𝒮 .

Clearly, every gamble IE(m)𝒮(m) ∈ 𝒜 (see Lemma 93 when −IE(m) ∈ 𝒜), and

because 𝒜 is cut conglomerable, we infer that ∑m∈min S IE(m)𝒮(m) ∈ 𝒜 and

by A332 that p +∑m∈min S IE(m)𝒮(m) ∈ 𝒜. But then we know from A332 and

varE(t)∑c1
𝒮 + p ⇑∈ 𝒜 that the gamble ∑m∈min S∑c∈ch(m) IE(c) varE(c)∑c𝒮 ⇑∈ 𝒜.

Again, because 𝒜 is cut conglomerable, this implies that there must be some

m∗ ∈ minS such that ∑c∈ch(m∗) IE(c) varE(c)∑c𝒮 ⇑∈ 𝒜, and by repeating the cut

conglomerability argument for the children cut of this m∗, we know that there must

be some c2 ∈ ch(m∗) such that IE(c2)
varE(c2)∑c2

𝒮 ⇑∈ 𝒜. As mo(c2) = m∗ ∈ minS,

we conclude that 𝒮(mo(c2)) ≠ 0. ◻

Lemma 92: Let S ≠∅ be a subset of S. Then

minS = ⋃
s∈S

min(S ∩↓s)

and minS ≠∅.

Proof: Pick any s ∈ S. Then we know by ET183 that m := min(S∩↓s) exists and is

unique. Assume ex absurdo that m ⇑∈minS. This means that there is some situation

s∗ ∈ S such that s∗ ≠m and s∗ ⊑m. But then s∗ ∈ S ∩↓s and s∗ ⊑m, a contradiction

with m =min(S∩↓s).

We have proved that minS ⊇⋃s∈S min(S∩↓s) and therefore also that minS ≠∅.

To prove that minS ⊆⋃s∈S min(S∩↓s), it is sufficient to notice that m ∈minS implies

that m =min(S∩↓m). ◻

Lemma 93: Let𝒜 ⊆ℒ(E(t)) be a coherent set of acceptable gambles and

assume that −IE(m) ∈𝒜. Then IE(m)ℒ(E(m)) ⊆𝒜.
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Proof: From A232 we infer that IE(m)ℒ≥0(E(m)) ⊆𝒜 and from A332 we infer that

−IE(m)R≥0 ∈𝒜. Therefore, it follows from A332 that

𝒜 ⊇ IE(m)ℒ≥0(E(m))− IE(m)R≥0 = IE(m)ℒ(E(m)). ◻

2.2.4 Predictive lower and upper previsions

We now use the cut congomerable and coherent set of really desirable

gambles 𝒜E(◻) to calculate special lower previsions P(⋅⋃︀t) ∶= P(⋅⋃︀E(t)) in

situation ◻, conditional on an event E(t), i.e., on Reality getting to situation

t , as explained in Section 1.4.360.10 We call such conditional lower previsions

predictive lower previsions. We then get, using Definition 5166, that for any

situation t and gamble f ∈ ℒ(Ω),

P( f ⋃︀t) := P( f ⋃︀E(t)) = sup{α ∈R∶ IE(t)(︀ f −α⌋︀ ∈𝒜E(◻)} (2.16)

= sup{α ∈R∶ f ⋃︀E(t)−α ∈𝒜E(t)} , (2.17)

where the last transition is a consequence of Theorem 90101. We also use

the notation P( f ) ∶= P( f ⋃︀◻) = sup{α∶ f −α ∈𝒜E(◻)}. It should be stressed

that Eq. (2.16) is also valid in terminal situations t =ω, where we let P( f ⋃︀ω) =
f (ω).

Before we go on, there is an important point that must be stressed and

clarified. It is an immediate consequence of Equation (2.17) that when f

and g are any two gambles that coincide on E(t), then P( f ⋃︀t) = P(g ⋃︀t). This

means that P( f ⋃︀t) is completely determined by the values that f assumes

on E(t), and it allows us to define P(⋅⋃︀t) on gambles that are only necessarily

defined on E(t), i.e., on t-gambles. We will do so freely in what follows.

In the special case of a lower (or upper) prevision of a gamble that is

measurable with respect to a cut U ∈U, we can simplify Equation (2.16) a bit.

Proposition 94: Consider an imprecise probability tree (S,⊑,𝒜⋅) and a cut

U ∈Ut . Then the lower prevision for the U -measurable t-gamble f U ∈ ℒ(Ω)
are given by

P( f U ⋃︀t) = sup{α ∈R∶ f U −α ∈𝒜U
E(t)} .

10We stress again that these are conditional lower previsions on the contingent/updating
interpretation, and should not be treated dynamically: they refer to beliefs of a subject at the
time Reality is in ◻, not after Reality has moved to situation t .
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2.2. Imprecise probability trees

Proof: We know that P( f U ⋃︀t) = sup{α ∈R∶ IE(t)(︀ f U −α⌋︀ ∈𝒜E(◻)}. But clearly,

IE(t)(︀ f U −α⌋︀ ∈𝒜E(t)⇔ f U −α ∈𝒜E(t)⇔ f U −α ∈𝒜U
E(t). ◻

For any cut U of a situation t , we may define the t-variable P( f ⋃︀U) as

the gamble that assumes the value P( f ⋃︀u) in any path ω through a situation

u ∈U . So P( f ⋃︀U) is just the short-hand notation for∑u∈U IE(u)P( f ⋃︀u). This

t-variable is U -measurable by construction, and it can be considered as a

variable on U . Observe that this variable may assume values in R∗. In what

follows we let 0 ⋅±∞= 0 by convention.

Proposition 95 (Separate coherence): Let t be any situation, let U be any

cut of t , and let f and gU be t-gambles, where gU is U -measurable.

1. P(E(t)⋃︀t) = 1;

2. P(gU ⋃︀U) = gU ;

3. P( f + gU ⋃︀U) = gU +P( f ⋃︀U);

4. if gU is moreover non-negative, then P(gU f ⋃︀U) = gU P( f ⋃︀U).

Proof: 1. From Equation (2.16) and from the coherence of𝒜E(t), we infer that

P(E(t)⋃︀t) = sup{α ∈R∶E(t)−α ∈𝒜E(t)} = sup{α ∈R∶1−α ∈𝒜E(t)} = 1.

2. This is an immediate consequence of Proposition 94, A332 and Proposi-

tion 95.1.

3. P( f + gU ⋃︀U) =∑u∈U IE(u)P( f + gU (u)⋃︀u) and this is by constant additivity

equal to∑u∈U IE(u)(︀P( f ⋃︀u)+ gU (u)⌋︀ = P( f ⋃︀U)+ gU .

4. P(gU f ⋃︀U) =∑u∈U IE(u)P(gU (u) f ⋃︀u) and this is by non-negative homogen-

eity equal to∑u∈U IE(u)gU (u)P( f ⋃︀u) = gU P( f ⋃︀U), because by convention

0 ⋅ ±∞= 0. ◻

2.2.5 Calculating predictive lower prevision using backwards recursion

The Marginal Extension Theorem allows us to calculate the most conservative

global belief models𝒜E(t) that corresponds to the local immediate predic-

tion models 𝒜s . Here beliefs are expressed in terms of sets of acceptable
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gambles. Can we derive a result that allows us to do something similar for the

corresponding lower previsions?

To see what this question entails, first consider a local model𝒜s : a set of

acceptable gambles on ch(s), where s ∈S∖Ω. Using Definition 4160, we can

associate with𝒜s a coherent lower prevision Q s onℒ(ch(s)). Each gamble gs

on ch(s) can be seen as an uncertain reward, whose outcome gs(c) depends

on the (unknown) move from situation s to c ∈ ch(s) that Reality will make.

The local (predictive) lower prevision

Q s(gs) ∶= sup{α∶gs −α ∈𝒜s} (2.18)

for gs is the supremum acceptable price (for a subject when Reality is in ◻)

for buying gs when Reality gets to s.

But as we have seen in Section 2.2.4104, we can also, in each situation

t , derive global predictive lower previsions P(⋅⋃︀t) from the global model

𝒜E(t), using Equation (2.16). For each t-gamble f , P( f ⋃︀t) is Forecaster’s

(the subject whose beliefs are modelled) inferred supremum acceptable price

(in ◻) for buying f , contingent on Reality getting to t .

Assume that we are presented with the local predictive lower previsions

Q s instead of sets of acceptable gambles𝒜s . Is there a way to construct the

global predictive lower previsions P(⋅⋃︀t) directly from the local predictive

lower previsions Q s ? We can infer that there is from the following two theor-

ems, the first of which is merely the lower prevision version of Theorem 8496.

Theorem 96 (Concatenation Formula, Law of Iterated Expectation):

Consider any two cuts U and V of a situation t such that U ⊑ V . For all

t-gambles f onΩ,11

1. P( f ⋃︀t) = P(P( f ⋃︀U)⋃︀t);

2. P( f ⋃︀U) = P(P( f ⋃︀V )⋃︀U).

Proof: It is not difficult to see that the second statement is a consequence of the first,

so we only prove the first statement.

a. P( f ⋃︀t) ≥ P(P( f ⋃︀U)⋃︀t). We infer from the super-additivity (Property 4864.2) of the

coherent lower prevision P(⋅⋃︀t), that

P( f ⋃︀t) = P( f −P( f ⋃︀U)+P( f ⋃︀U)⋃︀t)
11Here, it is implicitly assumed that all expressions are well-defined, e.g., that in the second

statement, P( f ⋃︀v) is a real number for all v ∈V , making sure that P( f ⋃︀V ) is indeed a gamble.
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≥ P( f −P( f ⋃︀U)⋃︀t)+P(P( f ⋃︀U)⋃︀t),

so it suffices to prove that P( f −P( f ⋃︀U)⋃︀t) ≥ 0.

Now, for any ε > 0, we know that

f −P( f ⋃︀U)+ε = ∑
u∈U

IE(u) (︀ f ⋃︀E(u)−P( f ⋃︀u)+ε⌋︀
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

∈𝒜
E(u)

Hence, it follows from Theorem 8496 that f −P( f ⋃︀U)+ ε ∈ 𝒜E(t) for any ε > 0.

This implies that P( f −P( f ⋃︀U)⋃︀t) ≥ 0

b. P( f ⋃︀t) ≤ P(P( f ⋃︀U)⋃︀t). Suppose that f − α ∈ 𝒜E(t). Then it follows from

Theorem 8496 that there are gU ∈𝒜U
E(t) and gu ∈𝒜E(u), u ∈U such that

f −α = gU + ∑
u∈U

IE(u)gu .

If we apply the lower prevision P(⋅⋃︀u) on both sides of the equality we find

P( f ⋃︀u)−α = gU (u)+P(gu ⋃︀u) ≥ gU (u), u ∈U . (2.19)

The last inequality is a consequence of gu being an element of𝒜E(u). Because

Equation (2.19) holds for any u ∈U , we infer that P( f ⋃︀U)−α ≥ gU so P( f ⋃︀U)−α ∈
𝒜U

E(t). Hence P( f ⋃︀t) ≤ P(P( f ⋃︀U)⋃︀t). ◻

If a t-gamble h is measurable with respect to the children cut ch(t) of a

non-terminal situation t , then we can interpret it as gamble on ch(t). For

such gambles, the following immediate consequence of Proposition 94104

tells us that the predictive lower previsions P(h⋃︀t) are completely determined

by the local model𝒜t .

Proposition 97: Let t be a non-terminal situation, and consider a ch(t)-

measurable gamble h. Then P(h⋃︀t) =Q t(h).

Proof: Apply Proposition 94104 with U = ch(t). ◻

These results tells us that all predictive lower (and upper) previsions

for imprecise probability trees with finite depth can be calculated using

backwards recursion, by starting with the trivial predictive previsions

P( f ⋃︀Ω) = P( f ⋃︀Ω) = f for the terminal cutΩ, and using only the local models

P t . This is illustrated in the following simple example.
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▷ Example 98: Suppose we have n > 0 coins. We begin by flipping the first coin: if

we get tails, we stop, and otherwise we flip the second coin. Again, we stop if we get

tails, and otherwise we flip the third coin, . . . In other words, we continue flipping

new coins until we get one tails, or until all n coins have been flipped. This leads to

the event tree depicted in Figure 2.5. Its sample space is Ω = {t1, t2, . . . , tn ,hn}. We

h0

h1

h2

h3

hn−1
hn

tn

t4

t3

t2

t1

U1

U2

U3

Un−1

Un

Figure 2.5: The event tree for the uncertain process involving n successive coin flips
described in Example 98.

will also consider the cuts U1 = {t1,h1} of ◻, U2 = {t2,h2} of h1, U3 = {t3,h3} of h2,

. . . , and Un = {tn ,hn} of hn−1. It will be convenient to also introduce the notation h0

for the initial situation ◻.

For the purpose of this example, it will be enough to consider the local predictive

lower previsions Q hk
onℒ(Uk+1), associated with𝒜hk

through Eq. (2.18). Forecaster

assumes all coins to be approximately fair, in the sense that she assesses that the

probability of heads on each flip lies between 1
2 −δ and 1

2 +δ, for some 0 < δ < 1
2 . This

assessment leads to the following local predictive lower previsions:12

Q hk
(g) = (1−2δ)]︀1

2
g(hk+1)+

1

2
g(tk+1){︀+2δmin{g(hk+1), g(tk+1)}, (2.20)

where g is any gamble on Uk+1.

Let us see how we can for instance calculate, from the local predictive models Q hk
,

the predictive lower probabilities P( f ⋃︀s) for a gamble f on E(s) and any situation s

in the tree. First of all, for the terminal situations it is clear that

P({hn}⋃︀tn) = 0 and P({hn}⋃︀hn) = 1. (2.21)

12These so-called linear-vacuous mixtures, or contamination models, are the natural
extensions of the probability assessments Q hk

({hk+1}) =
1
2 −δ and Q hk

({hk+1}) =
1
2 +δ;

see Section 1.4.360 and [62, Chapters 3–4] for more details.

108



2.3. Some Examples

We now turn to the calculation of P({hn}⋃︀hn−1). It follows at once from Proposi-

tion 97107 that P({hn}⋃︀hn−1) =Q hn−1
({hn}), and therefore, substituting g = I{hn}

in Eq. (2.20) for k = n−1,

P({hn}⋃︀hn−1) =
1

2
−δ. (2.22)

To calculate P({hn}⋃︀hn−2), consider that, since hn−1 ⊑Un−1,

P({hn}⋃︀hn−2) = P(P({hn}⋃︀Un−1)⋃︀hn−2) =Q hn−2
(P({hn}⋃︀Un−1))

where the first equality follows from Theorem 96106, and the second from Proposi-

tion 97107, taking into account that gn−1 ∶= P({hn}⋃︀Un−1) is a gamble on the children

cut Un−1 of hn−2. It follows from Eq. (2.21) that gn−1(tn−1) = P({hn}⋃︀tn−1) = 0 and

from Eq. (2.22) that gn−1(hn−1) = P({hn}⋃︀hn−1) = 1
2 −δ. Substituting g = gn−1 in

Eq. (2.20) for k = n−2, we then find that

P({hn}⋃︀hn−2) = (
1

2
−δ)2. (2.23)

Repeating this course of reasoning, we find that more generally

P({hn}⋃︀hk) = (
1

2
−δ)n−k , k = 0, . . .n−1. (2.24)

This illustrates how we can use a backwards recursion procedure to calculate global

predictive lower previsions from local ones.

2.3 Some Examples

This section aims at giving a few examples of what can be achieved using

imprecise probability trees.

2.3.1 Gambler’s ruin

As pointed out in the introduction to this chapter, the solution of the Problem

of Points by Huygens was the first published application of a probability tree.

Let us consider a slightly modified gambler’s ruin problem.

Imagine two players Blaise and Pierre, who repeatedly play rounds of a

game that can either be won by Blaise or by Pierre, i.e., there is no tie. As

Blaise and Pierre are both slightly addicted to gambling, they decide to play

with units of linear utility, called utiles, and the total amount of utiles is equal

to a ∈ N>0. Both players start out with a positive amount of utiles and the

player that loses a round has to pay the other player one utile. The game ends

when one of the players has no utiles left.
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X0 = 1

X1 = 0

lose

X1 = 2

X2 = 1

X3 = 0

X3 = 2

X2 = 3

(p, p)
win

Figure 2.6: Imprecise probability tree representing the gamblers ruin game. Here,
Blaise starts with 1 and Pierre with 2 utiles (hence k = 1 and a = 3) and the game is
stopped after three rounds. The probability for Blaise winning in each round lies in
the interval (p, p). The random variable Xi stands for the number of utiles of Blaise
after i rounds.

If Blaise has at a certain time a capital of k utiles left, what is then a

subject’s upper probability ρk(n) of his losing the game after at most n more

rounds? It is assumed that the subject believes that the upper probability

for Blaise winning a single round is p and his lower probability for it is p,

irrespective of the previous outcomes (if Blaise did not win or hit zero before

of course).

We know that the upper ruin probability is the conditional upper

prevision:

ρk(n) = P(IXn=0⋃︀X0 = k).

It is clear that the information about the game can be represented by an

imprecise probability tree, and the problem is best solved using the Law of

Iterated Expectation (see Figure 2.7 and observe that ρk−1(n−1) ≥ ρk+1(n−1)
by monotonicity):

ρk(n) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

pρk+1(n−1)+(1−p)ρk−1(n−1) when 0 < k < a and n > 0,

ρ0(n+1) when k = 0,

ρa(n+1) when k = a,

with the initial condition:

ρk(0) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1 if k = 0,

0 if k > 0.

By letting n →∞ we get the upper probability ρk := limn→+∞ρk(n) of
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ρk(n)

ρk−1(n−1)

lose

ρk+1(n−1)(p, p)
win

If f ∈ ℒ({win, lose}) and f (win) ≤ f (lose),
then

Q( f ) = f (win)+

≥0
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(︀ f (lose)− f (win)⌋︀

1−p

(︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂[︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂(︂

Q(I{lose})

= p f (win)+(1−p) f (lose).

Figure 2.7: Elementary part of the imprecise event tree representing the Gambler’s
Ruin game.

Blaise losing the game when starting with a capital k by solving the difference

equation

ρk = pρk+1+(1−p)ρk−1 ,0 < k < a,

with boundary conditions ρ0 = 1 and ρa = 0. If we define ν := 1−p

p , then the

solution is given by

ρk =
νk −νa

1−νa
, 0 ≤ k ≤ a.

2.3.2 Forward irrelevance and Wald’s equation

A finite collection of independent and identically distributed random

variables on a finite space can be considered as one of the most simple

stochastic processes there are. However, given the different definitions of

independence, immediately there arise problems when trying to generalise

this process. In terms of trees, the so-called identical forward irrelevance

interpretation is probably the most straightforward generalisation of i.i.d.

processes. The generalisation we will consider can be described as an

imprecise probability tree where the local models are the same for each

non-terminal situation.

Definition 99: An identical forward irrelevant process tree with finite

index set I = {1,2, . . . ,n} and statespace𝒳 , is a finitary imprecise probability

tree (S,⊑,Q ⋅), where

1. S := {◻}∪⋃i∈I 𝒳 i ,
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◻

h

hh

hhh hht

ht

hth htt

t

th

thh tht

tt

tth ttt

Q 1

Q 2 Q 2

Q 3 Q 3Q 3Q 3

Figure 2.8: A coin is flipped three times. If the lower previsions are such that Q 1( f ) =
Q 2( f ) =Q 3( f ) =Q( f ) for any f ∈ ℒ({h, t}), then the imprecise probability tree we
describe here is a forward irrelevant process tree.

2. (s ⊑ t)⇔((s =◻) or (s = t) or (∃x ∈S∖{◻})(sx = t)),13

3. Q s =Q for each s ∈S∖Ω.

This set-up can be seen as sampling n times with replacement. If we define

the process X by X (◻) :=◻ and

X (sx) := x x ∈ 𝒳 and s ∈S∖Ω,

and define the cuts Ui := {s ∈S∶depth(s) = i},14 then the variable Xi :=
varUi X (here we make an exception and denote a variable with a capital

letter), can be seen as the random variable that corresponds to the outcome

of the i -th draw from an urn with possible draws 𝒳 (sampling with

replacement). It is moreover intuitively clear that

X1∶i−1 EI Xi for all i ∈ I

whence the sequence X1, X2, . . . , Xn shows indeed forward irrelevance (for

more details, see [16]).

Proposition 100: Let (S,⊑,Q ⋅) be an identical forward irrelevant process

tree with finite index set I = {1,2, . . . ,n} and statespace 𝒳 . Let f ∈ ℒ(𝒳)
13Here we mean with sx, the concatenation of s with x. For example if 𝒳 = {h, t}, s = hht

and x = ht, then sx = hhtht.
14Here depth(s) := ⋃︀↓s⋃︀−1 stands for the depth of the situation in the tree, the distance from

the root node.
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and define the process F by F(◻) := 0 and F(sx) := F(s)+ f (x) for each s ∈
S∖Ω and x ∈ 𝒳 . Then

P(varΩF) = nQ( f ).

Proof: If we apply Theorem 96106 with cut Un−1 := {s ∈S∶depth(s) = n−1}, then

P(varΩF) = P (P(varΩF ⋃︀Un−1))
= P (P(varUn−1 F(Un−1)+ f ⋃︀Un−1))
= P (varUn−1 F +Q( f )) = P (varUn−1 F)+Q( f ).

Clearly, P(varU1 F) = Q( f ), and we we have shown by induction that P(varΩF) =
nQ( f ). ◻

Imagine now that there is another random variable N taking values

in I = {1, . . . ,n}, and we have a lower prevision Q N that describes the

uncertainty about N . The random sum∑N
i=1 f (Xi ) can then be reinterpreted

as the random stopped process KillτN F , where

τN ∶ I →U∶τN(n) = {s ∈S∶depth(s) = n} .

We are now able to formulate a particular equation, known in classical

process theory as Wald’s equation.

Proposition 101 (Wald’s equation): If N is epistemically irrelevant to the

variables X1, X2, . . . , Xn linked with the identical forward irrelevant process

tree from Proposition 100, then

P(varτN F) =Q N(N Q( f )) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

Q N(N)Q( f ) if Q( f ) ≥ 0,

Q N(N)Q( f ) if Q( f ) < 0

Proof: The problem can be restated as an imprecise probability tree where the first

layer determines the outcome of N , and from the node corresponding with N = n

starts the identical forward irrelevant process tree with depth n. So the sets of situation

in this new tree are the concatenation of an element of N and the situations of the

identical forward irrelevant process tree. Clearly the newly created tree is an imprecise

probability tree and it follows immediately from Theorem 8496, Proposition 100 and

property P365 of Proposition 4864 that

P (varτN F) =Q N (P(varτN (N)F ⋃︀N)) =Q N (N Q( f )) . ◻
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◻

N = 1 N = 2 . . . N = n

2.4 Martingales

The use of martingales—in essence, a summed selection process with an

additive offset—is central in Shafer and Vovk’s game-theoretic probability [55].

Using their game-theoretic martingales, they are able to derive weak and

strong laws of numbers in an elegant manner. The weak laws can be

transferred relatively easy to our imprecise probability event tree framework.

Definition 102: A real-valued t-process M is a t-submartingale if it can be

written as a summed t-selection∑t𝒮 plus a constant M (t) ∈R:

M = M (t)+∑t𝒮 .

A t-process M is a t-supermartingale if its negation −M is a t-submartin-

gale.

From Equation (2.6) it follows immediately that

varch(s)M −M (s) ∈𝒜s , for all s ⊒ t (2.25)

if M is a t-submartingale. A submartingale is therefore a process that selects

an acceptable gamble in each situation. The difference with a summed t-

selection process is that there is an initial offset. Whenever an imprecise

probability tree has a finite number of situations, Equation (2.25) is also a

sufficient condition for the t-process M to be a t-submartingale.

In the following lemma, we give an example of a supermartingale that

will be useful when proving our version of the weak law of large numbers.

The proof given here is a slightly shorter version of the one given in [12, Proof

of Theorem 10], which builds on an intriguing idea, used by Shafer and Vovk

in a different situation and in a form that is perhaps hard to recognise; see

[55, Lemma 3.3].
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Lemma 103: Consider an imprecise probability tree with a finite number of

situations.Then, the t-process M defined by:

M (s) := M (t) ∏
t⊑v⊏s

(1−ξhv(s)) , for all s ⊒ t (2.26)

where ξ ∈R, hs ∈𝒜s ∖{0} and hs ≤B for all s ⊒ t , is a positive t-supermartin-

gale when M (t) > 0 and ξ < 1⇑B.

Proof: We are dealing with an imprecise probability tree with a finite number of

situations, and so we will use Equation (2.25) to prove this lemma. We have to prove

for any non-terminal node s ⊒ t that varch(s)M −M (s) ∈ −𝒜s . Let c ∈ ch(s), then we

infer from the definition of M that

M (c)−M (s) = M (t) ∏
t⊑v⊏c

(1−ξhv(c))−M (t) ∏
t⊑v⊏s

(1−ξhv(c))

= M (t)( ∏
t⊑v⊏s

(1−ξhv(c)))(︀1−ξhs(c)−1⌋︀

= −M (t)( ∏
t⊑v⊏s

(1−ξhv(c)))ξhs(c),

whence

varch(s)M −M (s) = − M (t)
⧹︀
>0

ξ
⟩︀
>0

⎛
⎜⎜⎜⎜⎜
⎝

∏
t⊑v⊏s

(1−ξhv(c))
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>0?

⎞
⎟⎟⎟⎟⎟
⎠

hs
⃒
∈𝒜s

.

From A332 we infer that M is indeed a supermartingale if 1−ξhv(c) > 0, for all t ⊑ v ⊑ s

and all s ⊒ t , so for all v ⊒ t . This follows from ξ < 1⇑B and 1−ξhv ≥ 1−ξB . This, together

with Equation (2.26), also proves that M > 0. ◻

We will also define a particular supermartingale that is going to be useful

when proving a generalisation of Hoeffding’s inequality. The proof is an

adaptation of the proof given by Vovk [58].

Lemma 104: The t-process M defined by:

M (s) = M (mo(s))e−ξhmo(s)(s)−
ξ2
⋃︁hmo(s)⋃︁v

8 , for all s ⊐ t (2.27)

where M (t) = 1 , ξ ∈ R, hs ∈ 𝒜s , maxhs ≥ 0 and minhs ≤ 0 for all s ⊒ t , is a

t-supermartingale.
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Proof: Without loss of generality, we can assume that ∏︁hs∏︁v ≠ 0 as the opposite case

represents a trivial supermartingale. To prove the lemma we start from the first -order

Taylor expansion ofα(ξ) := ln(maxhs e−ξ inf hs−minhs e−ξmax hs ) around zero which

is given by

α(ξ) = ln(
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maxhs −minhs)+0ξ

+∫
ξ

0
x
∂2

∂x2 ln(maxhs e−x min hs −minhs e−x max hs )dx.

Working out the second derivative, we get

∏︁hs∏︁2
v

(maxhs e−x min hs )(−minhs e−x max hs )
(maxhs e−x min hs −minhs e−x max hs )2

,

so the integrand of the Lagrange remainder becomes of the form x∏︁hs∏︁2
v p(1− p)

with p ∈ (︀0,1⌋︀. Therefore, the second derivative is smaller or equal than x∏︁hs∏︁
2
v⇑4.

Substituting this upper bound in the integrand yields the inequality

ln(maxhs e−ξmin hs −minhs e−ξmax hs ) ≤ ln(∏︁hs∏︁v)+
ξ2∏︁hs∏︁2

v

8
,

and therefore also

ln(maxhs e−ξmin hs −minhs e−ξmax hs

∏︁hs∏︁v

) ≤ ξ
2∏︁hs∏︁2

v

8
.

By taking the exponential of both sides, we get

maxhs

∏︁hs∏︁v

e−ξmin hs + −minhs

∏︁hs∏︁v

e−ξmax hs ≤ e
ξ2
∏︁hs∏︁

2
v

8 .

and adding hs
∏︁hs∏︁v

e−ξmax hs − hs
∏︁hs∏︁v

e−ξmin hs on both sides, we find:

(1−η)
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maxhs −hs

∏︁hs∏︁v

e−ξmin hs +

η
(︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂[︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂(︂
hs −minhs

∏︁hs∏︁v

e−ξmax hs

≤ e
ξ2

8 ∏︁hs∏︁v + hs

∏︁hs∏︁v

(e−ξmax hs − e−ξmin hs )
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

e−ξmin hs (e−ξ∏︁hs∏︁v−1)

.

If we define η := hs−min hs
∏︁hs∏︁v

, then we see that η ∈ (︀0,1⌋︀, and the left-hand side of the

inequality above is a convex mixture. As the exponential is a convex function, and

because (1−η)minhs +ηmaxhs = hs , we get

e−ξhs ≤ e
ξ2
∏︁hs∏︁

2
v

8 + hs

∏︁hs∏︁v

e−ξmin hs (e−ξ∏︁hs∏︁v −1),
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which can be rewritten as

cs hs :=

>0
(︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂[︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂(︂

e−ξmin hs−
ξ2
∏︁hs∏︁

2
v

8 (1−

∈(0,1)
(︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂[︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂(︂
e−ξ∏︁hs∏︁v)

∏︁hs∏︁v
⧹︀
>0

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
>0

hs ≤ 1− e−ξhs−
ξ2
∏︁hs∏︁

2
v

8 .

As cs > 0 the gamble cs hs belongs, by A332, to the set of acceptable gambles 𝒜s .

Consequently, if we multiply both sides with M (s) we get

M (s)−varch(s)M ∈𝒜s .

It then follows from Equation (2.25) that −M is a submartingale, and consequently M

is a supermartingale. ◻

Given the strong relation between selections and submartingales, it can-

not come as a surprise that we can express the predictive lower prevision in

terms of submartingales, and upper previsions in terms of supermartingales.

Proposition 105: For all situations t , all U ∈ Ut and any U -measurable t-

gamble f U , it holds that

P( f U ⋃︀t) = sup{M (t)∶M is a t-submartingale and f U ≥ varU M} (2.28)

P( f U ⋃︀t) = inf{M (t)∶M is a t-supermartingale and f U ≤ varU M} (2.29)

Proof: From Proposition 94104 we know that the lower prevision P( f U ⋃︀t) of the

U -measurable t-variable f U is given by

P( f U ⋃︀t) = sup{α∶ f U −α = varU ∑t𝒮 +p where 𝒮 ∈ Selst (𝒜⋅) and p ∈ ℒ≥0(U)} ,

= sup{α∶ f U ≥α+varU ∑t𝒮 where 𝒮 ∈ Selst (𝒜⋅)} ,

= sup{M (t)∶ f U ≥ varU M where M is a t-submartingale} ,

where the last step follows from Definition 102114 with α = M (t).

Equation (2.29) follows immediately from P( f ) = −P(− f ). ◻

2.4.1 Imprecise concentration inequalities

In what follows we call Forecaster the agent, who, in ◻, has certain beliefs

about the moves that Reality will make. In this section we will prove a
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generalised version of the weak law of large numbers and of the Hoeffding -

Azuma inequality. Classically, the first is proved using the Chebyshev

inequality which in its turn is based on the Markov inequality. These two

inequalities generalise fairly easily to imprecise probabilities. Assume that

ε > 0, then it follows from the monotonicity of P that

εI⋃︀h⋃︀≥ε ≤ ⋃︀h⋃︀⇒ P(⋃︀h⋃︀ ≥ ε) ≤ P(⋃︀h⋃︀)
ε

,

which is the generalisation of the Markov inequality. This inequality implies

in its turn the generalised Chebyshev inequality:

P(⋃︀h⋃︀ ≥ ε) ≤ P(h2)
ε2

.

In going from the Chebyshev inequality to the (weak) Law of Large Numbers,

the gamble h is typically assumed to be h = 1
n ∑

n
i=1 ( fi −P( fi )), where fi ∈

ℒ(Xi ) with 𝒳i =: 𝒳 , and fi (x) =: f (x). It is moreover assumed that all Xi

are independent and identically distributed. In the imprecise probabilistic

framework, assuming that P Xi ( fi ) = P( f ) and denoting 1
n ∑

n
i=1 fi by f n , this

results in

P (⋂︀ f n −P( f )⋂︀ ≥ ε) ≤
P (( f n −P( f ))2)

ε2
.

It is now left to prove that P (( f n −P( f ))2) → 0 as n →∞. This should be

done—assuming epistemic independence—using the independent natural

extension, which is by no means a trivial affair.

Instead of following the i.i.d. path, we choose to follow the martingale

approach. Consider therefore an imprecise probability tree with finite depth,

with non-terminal situation t and a cut U of t . Define the t-variable nU such

that nU(ω) is the distance d(t ,u) := ⋃︀{s ∈S∶ t ⊑ s ⊏ u}⋃︀, measured in moves

along the tree, from t to the unique situation u in U that ↓ω goes through.

nU is clearly U -measurable, and nU(u) is simply the distance d(t ,u) from t

to u. We assume that nU(u) > 0 for all u ∈U , or in other words that U ≠ {t}.

Of course, nU is bounded because the tree has finite depth, and we denote

its minimum by n.

Now consider for each s between t and U a bounded gamble hs and a real

number ms such that hs −ms ∈ 𝒜s , meaning that Forecaster in situation ◻
accepts to buy hs for ms , contingent on Reality getting to situation s. Let B > 0

be any common upper bound for maxhs −minhs , for all t ⊑ s ⊏U . It follows
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from the coherence of𝒜s that ms ≤maxhs . To make things interesting, we

also assume that minhs ≤ms , because otherwise hs −ms ≥ 0 and accepting

this gamble represents no real commitment on Forecaster’s part. As a result,

we see that ⋃︀hs −ms ⋃︀ ≤maxhs −minhs ≤B .

We are interested in the following t-gamble GU , given by

GU = 1

nU ∑
t⊑s⊏U

IE(s)(︀hs −ms⌋︀,

which provides a measure for how much, on average, the gambles hs yield an

outcome above Forecaster’s accepted buying prices ms , along segments of

the tree starting in t and ending right before U . In other words, GU measures

the average gain for Forecaster along segments from t to U , associated with

commitments Forecaster has made and is taken up on, because Reality has

to move along these segments.

We would like to study Forecaster’s beliefs (in the initial situation ◻ and

contingent on Reality getting to t ) in the occurrence of the event

∆ε := {GU ≤ −ε} ∶= {ω ∈ E(t)∶GU(ω) ≤ −ε} ,

where ε > 0. In other words, we want to know P({GU ≤ −ε}⋃︀t), which is

Forecaster’s infimum rate for selling the bet on the event that his average

gain from t to U will be at most −ε, contingent on Reality’s getting to t . We

will generalise two concentration inequalities that are known in classical

literature, to wit, the weak Law of Large Numbers and the Hoeffding - Azuma

inequality.

Theorem 106 (Weak law of large numbers): For all 0 < ε < B and any cut

U ⊐ t ,

P({GU ≤ −ε}⋃︀t) ≤ exp(− nε2

4B 2
) ,

where n :=minu∈U nU(u) and B > 0 any common upper bound for ⋃︀hs −ms ⋃︀.

Proof: From the definition of upper previsions in terms of martingales (Proposi-

tion 105117), we know that the proof is done if we can find a t-supermartingale

M such that M (u) ≥ I∆ε(u) for all u ∈U and M (t) ≤ e
− nε2

4B2 . In Lemma 103114 we

defined a positive supermartingale M that can be rescaled with M (t).
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Because M > 0, we only have to concentrate on these values u in U for which

GU (u) ≤ −ε. For these u, we have that

M (u) ≥ 1⇔M (t) ∏
t⊑v⊏u

(1−ξ(hv(u)−mv)) ≥ 1

⇔ ∑
t⊑v⊏u

ln(1−ξ(hv(u)−mv)) ≥ − ln M (t).

If we assume that ξ < 1
2B (remember that ξ should be strictly smaller than 1

B ), then

−ξ(hv(u)−mv) > −ξB > −1⇑2. Since ln(1+ x) ≥ x − x2 for x > − 1
2 , we then infer for

any u ∈U such that GU (u) ≤ −ε

M (u) ≥ 1⇐ ∑
t⊑v⊏u

−ξ(hv(u)−mv)−ξ2(hv(u)−mv)2 ≥ − ln M (t)

⇔−ξnU (u)GU (u)−ξ2 ∑
t⊑v⊏u

(hv(u)−mv)2 ≥ − ln M (t)

⇐ ξnU (u)ε−ξ2nU (u)B2 ≥ − ln M (t)

⇔ e−ξnU
(u)(ε−ξB 2

) ≤ M (t)

⇐ e−ξn(ε−ξB 2
) ≤ M (t).

In the last transition we assumed that ε−ξB2 > 0.

We thus see that

P({GU ≤ −ε}⋃︀t) ≤ min
0<ξ< 1

2B

e−ξn(ε−ξB 2
) = e

− nε2

4B2 .

The minimum is attained for ξ = ε
2B 2 < 1

2B and in this case ε − ξB2 = ε
2 > 0 as

assumed. ◻

Theorem 107 (Hoeffding’s inequality): For all ε > 0 and any cut U ⊐ t ,

P({GU ≤ −ε}⋃︀t) ≤ exp(−2n2ε2

VU
) ,

where VU :=maxu∈U vU(u) with vU(u) :=∑t⊑s⊏u ∏︁hs∏︁2
v .

Proof: From the expression of upper previsions in terms of supermartingales (Equa-

tion 2.29117), we infer that the theorem is proved if we can find a supermartingale M ,

such that M (t) ≤ exp(− 2nε2

VU
) and such that varU M ≥ IGU≥−ε, or in other words

(∀u ∈U)
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

M (u) ≥ 1 if GU (u) ≤ −ε,

M (u) ≥ 0 otherwise.
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From Lemma 104115 we know one supermartingale M which starts at M (t) = 1 and

obtains

M (u) = exp(−ξnU (u)GU (u)− ξ
2vU (u)

8
) ,

for all u ∈U . Consequently—as M ≥ 0—we only have to examine the values of this

supermartingale on the event ∆ε. On this event we have GU ≤ −ε and therefore for

every ξ > 0:

M (u) ≥ exp(ξnU (u)ε− ξ
2vU (u)

8
) ,

hence, for every u ∈U such that GU ≤ −ε,

M (u) ≥ exp

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

ξεminnU
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

=n

−ξ
2

=V U

(︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂[︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂(︂
max vU

8

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

So,

exp(−ξεn+ ξ
2V U

8
)M (u) ≥ 1.

Now, exp(−ξεn+ ξ2V U

8 )M (u) is again a supermartingale, with value e−ξεn+ ξ2V U

8 in

t and therefore,

P({GU ≤ −ε}⋃︀t) ≤min
ξ>0

exp(−ξεn+ ξ
2VU

8
) = exp(−2n2ε2

VU
) . ◻
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CHAPTER 3
Imprecise Markov chains

One convenient way to model uncertain dynamical systems mathematically

is to describe them as Markov chains. Such systems have been studied

in great detail, and their properties are very well known. However, in

many practical situations, it remains a challenge to accurately identify the

transition probabilities in the chain, mainly because the information we may

obtain about physical systems is often imprecise and uncertain. As a result,

describing a real-life dynamical system as a Markov chain will often lead to

unwarranted precision, and the model may therefore jump to conclusions

that are not supported by the available information.

For this reason, it seems quite useful to perform probabilistic robustness

studies, or sensitivity analyses, for Markov chains. This is especially relevant

in decision-making applications. It should come as no surprise, then, that

many researchers [27, 31, 43, 65] in Markov Chain Decision Making—inspired

by Satia & Lave [49]’s original work [49]—have paid attention to this issue of

“imprecision” in Markov chains.

Early work on the more mathematical aspects of modelling such “im-

precision” in Markov chains was done by Hartfiel [28] and Kozine & Utkin

[36]. Armed with linear programming techniques, Kozine & Utkin [36] also

performed an experimental study of the limit behaviour of Markov chains

with uncertain transition probabilities. More recently, Škulj [59] has begun a

formal study of the time evolution and limit behaviour of such systems.

All these approaches have at least one thing in common: they use sets

of probabilities to deal with the imprecision in the transition probabilities.

122



When these probabilities are not well known, they are assumed to belong

to certain sets, and robustness analyses are performed by allowing the

transition probabilities to vary over such sets. However, this approach leads

to a number of computational as well as technical mathematical difficulties.

These difficulties can be overcome by tackling the same problem from

another angle, one that we know already. Rather than working with sets

of transition probabilities, or equivalently, sets of Markov chains, we can

consider an imprecise Markov chain, which is a special type of imprecise

probability tree.

A large part of this Chapter studies the limit behaviour of stationary

imprecise Markov chains, or alternatively, studies the limit behaviour of

the upper transition operator (see Section 3.2129) that corresponds to

an imprecise Markov chain. This upper transition operator inherits the

properties of upper previsions and consequently, it is a non-expansive

map. A very useful result for non-expansive maps by Sine [56, Theo. 1] and

Nussbaum [45, 46]1 states that for every element f of the finite-dimensional

domain of a non-expansive transformation T, there is some natural number

p such that the sequence Tnp f converges. More importantly, Sine proves

that we can find a finite ‘period’ p common to all maps f on the domain

𝒳 . This means that, for any f , the set ωT( f ) of limit points of the set of

iterates {Tn f ∶n ∈N≥0} has a number of elements ⋂︀ωT( f )⋂︀ that divides this p.

T is cyclic on ωT( f ), with period ⋂︀ωT( f )⋂︀ (and therefore also with period p).

Lemmens and Scheutzow [37, Theo. 5.2] managed to prove that an upper

bound for the common periods of all topical functions (i.e. monotone and

constant additive functions) T∶Rn →Rn is ( n
⟨︀n⇑2⧹︀

). This upper bound is tight in

the sense that there is always at least one topical function that has this bound

as its smallest common period. However, Akian and Gaubert [1, Cor. 5.6]

have shown that for convex maps that are monotone and non-expansive, this

bound is equal to the maximal order of the permutation group. This is given

by Landau’s function g for which ln g(n) ∼ c1
⌋︂

n lnn, whereas ln( n
n⇑2
) ∼ c2n,

for some constants c1,c2 > 0, as n→∞.

In Section 3.6143 we use these ideas to introduce ergodicity for upper

transition operators, and to explain its link with so-called Perron-Frobenius

conditions. That there is such a link has already been established by Akian and

Gaubert [1, Theo. 1.1] for a more general class of operators. The goal of Akian

1Nussbaum found and closed a gap in Sine’s argument.
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and Gaubert was to determine combinatorial bounds for the orbit lengths of

order preserving, convex and sup-norm non-expansive maps. These upper

bounds involve the notion of a critical graph. It is shown in [1, Theo. 6.6],

that these bounds are tight when the map is piecewise affine. Moreover, in

this case, Akian and Gaubert give an algorithm to compute the critical graph.

In this paper, we assume in addition to the general assumptions made by

Akian and Gaubert, that the map is non-negatively homogeneous and we

address the case where all periodic orbits have length one. For this class of

maps, we show that the piecewise affine condition can be dispensed with

for the critical graph bound to be tight. In Section 3.10154 we compare our

approach to the critical graph method used by Akian and Gaubert.

3.0.1 A short analysis of classical Markov chains

Consider a finite Markov chain in discrete time, where at consecutive times

n = 1,2,3, . . . , N , N ∈N>0 the state Xn of a system can assume any value in a

finite set𝒳 . Here, N is the time horizon. The time evolution of such a system

can be modelled as if it traverses a path in an event tree. An example of such

a tree for𝒳 = {a,b} and N = 3 is given in Figure 3.1.

The situations, or nodes, of the tree have the form x1∶k := (x1, . . . , xk) ∈ 𝒳 k ,

k = 0,1, . . . , N . For k = 0 there is some abuse of notation as we let 𝒳 0 := {◻},

where ◻ is the so-called initial situation, or root of the tree. In the cuts 𝒳 n

of ◻, the value of the state Xn at time n is revealed.

a

(a, a)

(a, a, a) (a, a, b)

(a, b)

(a, b, a) (a, b, b)

b

(b, a)

(b, a, a) (b, a, b)

(b, b)

(b, b, a) (b, b, b)

𝒳 1

𝒳 2

Figure 3.1: The event tree for the time evolution of system that can be in two states,
a and b, and can change state at time instants n = 1,2. Also depicted are the respective
cuts𝒳 1 and𝒳 2 of ◻ where the states at times 1 and 2 are revealed.

In a classical analysis, it is generally assumed that we have: (i) a probability

distribution over the initial state X1, in the form of a probability mass function

m1 on𝒳 ; and (ii) for each situation x1∶n that the system can be in at time n,

a probability distribution over the next state Xn+1, in the form of a probability
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mass function q(⋅⋃︀x1∶n) on 𝒳 . This means that the event tree’s immediate

prediction model in each non-terminal situation x1∶n of the event tree is a

local probability model telling us about the probabilities of each of its child

nodes. This turns the event tree into a so-called probability tree; see Shafer

[53, Chapter 3] and Kemeny & Snell [35, § 1.9].

The probability tree for a Markov chain is special, because the Markov

Condition states that when the system jumps from state Xn = xn to a new

state Xn+1, the belief model for where the system goes to will only depend on

the state Xn = xn the system was in at time n, and not on its states Xk = xk at

previous times k = 1,2, . . . ,n−1. In other words:

q(⋅⋃︀x1∶n) = qn+1(⋅⋃︀xn), x1∶n ∈ 𝒳 n , n = 1, . . . , N −1, (3.1)

where qn+1(⋅⋃︀xn) is some probability mass function on𝒳 . The Markov chain

may be non-stationary, as the transition probabilities on the right-hand side

in Equation (3.1) are allowed to depend explicitly on the time n. Figure 3.2

gives an example of a probability tree for a Markov chain with𝒳 = {a,b} and

N = 3.

a

(a, a)

(a, a, a) (a, a, b)

(a, b)

(a, b, a) (a, b, b)

b

(b, a)

(b, a, a) (b, a, b)

(b, b)

(b, b, a) (b, b, b)

m1

q2(⋅⋃︀a) q2(⋅⋃︀b)

q3(⋅⋃︀a) q3(⋅⋃︀b)q3(⋅⋃︀a)q3(⋅⋃︀b)

Figure 3.2: The probability tree for the time evolution of a Markov chain that can be in
two states, a and b, and can change state at each time instant n = 1,2.

With the local probability mass functions m1 and qn+1(⋅⋃︀xn) we associate

the linear real-valued prevision functionals Q 1 and Q n+1(⋅⋃︀xn), given, for

all real-valued maps h on𝒳 , by

Q 1(h) :=∑
x1∈𝒳

h(x1)m1(x1) (3.2)

Q n+1(h⋃︀xn) :=∑
xn+1∈𝒳

h(xn+1)qn+1(xn+1⋃︀xn) (3.3)

Throughout, we will formulate our results using previsions, rather than

probabilities.

125



3. IMPRECISE MARKOV CHAINS

In any probability tree, probabilities and expectations can be calculated

very efficiently using backwards recursion. Suppose that in situation x1∶n , we

want to calculate the conditional expectation P( f ⋃︀x1∶n) of some real-valued

map f on𝒳 N that may depend on the values of the states X1, . . . , XN . Let us

indicate briefly how this is done, also taking into account the simplifications

due to the Markov Condition (3.1).

To express these simplifications, a prominent part will be played by the

so-called transition operators2 Tn and Tn . Consider the linear spaceℒ(𝒳)
of all real-valued maps on 𝒳 . Then the linear operator (transformation)

Tn ∶ℒ(𝒳)→ℒ(𝒳) is defined by

Tnh(xn) :=Q n+1(h⋃︀xn) =∑
xn+1∈𝒳

h(xn+1)qn+1(xn+1⋃︀xn) (3.4)

for all real-valued maps h on𝒳 . In other words, Tnh is the real-valued map

on 𝒳 whose value Tnh(xn) in xn ∈ 𝒳 is the conditional expectation of the

random variable h(Xn+1), given that the system is in state xn at time n. More

generally, we also consider the linear maps Tn from ℒ(𝒳 n+1) to ℒ(𝒳 n),

defined by

Tn f (x1∶n) := Tn( f (x1∶n , ⋅))(xn)
= Q n+1( f (x1∶n , ⋅)⋃︀xn) =∑

xn+1∈𝒳

f (x1∶n , xn+1)qn+1(xn+1⋃︀xn) (3.5)

for all x1∶n ∈ 𝒳 n and all real-valued maps f on𝒳 n+1.

We begin our illustration of backwards recursion by calculating P( f ⋃︀x1∶n)
for the case n = N −1. Here

P( f ⋃︀x1∶N−1) = P( f (x1∶N−1, ⋅)⋃︀x1∶N−1)
=∑
xN ∈𝒳

f (x1∶N−1, xN)q(xN ⋃︀x1∶N−1)

=∑
xN ∈𝒳

f (x1∶N−1, xN)qN(xN ⋃︀xN−1) =TN−1 f (x1∶N−1), (3.6)

where the third inequality follows from the Markov Condition (3.1), and the

fourth from Equation (3.5). Using similar arguments for n = N −2, we derive

2The operators Tn are also called the generators of the Markov process; see Whittle [66].
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3.1. Towards imprecise Markov chains

from the Law of Iterated Expectations3 that

P( f ⋃︀x1∶N−2) = P(P( f (x1∶N−2, ⋅, ⋅)⋃︀x1∶N−2, ⋅)⋃︀x1∶N−2) =TN−2TN−1 f (x1∶N−2).

(3.7)

Repeating this argument leads to the backwards recursion formulae

P( f ⋃︀x1∶n) =TnTn+1 . . .TN−1 f (x1∶n) (3.8)

for n = 1, . . . , N −1, while for n = 0, we get

P( f ) := P( f ⋃︀◻) =Q 1(T1T2 . . .TN−1 f ). (3.9)

In these formulae, f is any real-valued map on𝒳 N .

For instance, if we let f be the indicator functions I{x1∶N}
of the singletons

{x1∶N}, Formulae (3.8) and (3.9) allow us to calculate the joint probability

mass function p defined by p(x1∶N) = P(I{x1∶N}
) for all the variables X1, . . . ,

XN . We can also use them to find the conditional mass functions pn+1(⋅⋃︀xn)
and p(⋅⋃︀x1∶n) defined by pn+1(xn+1∶N ⋃︀xn) = p(xn+1∶N ⋃︀x1∶n) = P(I{x1∶N}

⋃︀x1∶n).

3.1 Towards imprecise Markov chains

The treatment above shows that a classical Markov chain can be seen as a

special type of event tree with precise probability models attached to the

non-terminal nodes. From the previous chapter we already know how to

implement this type of model, where local prediction models are used that are

more general than linear previsions. This special type of imprecise probability

tree is exactly what we define to be an imprecise Markov chain. In this chapter

we will make one concession to the generality of this type of Markov chain in

that we will assume that the models are given as coherent upper previsions

(and not as coherent sets of acceptable gambles). The reason we focus on

upper- rather than lower previsions will become clear in Section 3.5135, but

the main reason is that there is always a positive upper transition probability

to go to a next state, which is not true for lower probabilities.

Definition 108: An imprecise Markov chain of length N with state space𝒳
and local conditional models Q i+1(⋅⋃︀Xi ) on ℒ(Xi+1) with i ∈ {1, . . . , N −1}
and initial model Q 1 on ℒ(X1)is an imprecise probability tree with set of

situations S =𝒳1∶N where

3Also known as the Rule of Total Expectation, or the Rule of Total Probability, or the
Conglomerative Property; see, e.g., Whittle [66, § 5.3] or de Finetti [24].
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3. IMPRECISE MARKOV CHAINS

1. in every non-terminal situation there is a choice amongst one of the

elements of𝒳
ch(s) =𝒳 for all s ∈S∖Ω,

2. the local conditional models satisfy the Markov Condition

Q i+1(⋅⋃︀x1∶i ) =Q i+1(⋅⋃︀xi ) for all x1∶i ∈ 𝒳 i and i = 1,2, . . . , N −1.

(3.10)

The second condition demands that every variable Xi+1 should be epi-

stemically irrelevant to its non-parents non-descendants given its parent

Xi . This type of irrelevance structure will also provide the interpretational

basis for the more general Markov trees discussed in the next chapter. The

Markov Condition also justifies the name “state space” as the current state

summarises everything there is to know about possible trajectories of the

system under study. A classical, or precise, Markov chain is an imprecise one

with local upper previsions that are linear.

a

(a, a)

(a, a, a) (a, a, b)

(a, b)

(a, b, a) (a, b, b)

b

(b, a)

(b, a, a) (b, a, b)

(b, b)

(b, b, a) (b, b, b)

Q 1(⋅)

Q 2(⋅⋃︀a) Q 2(⋅⋃︀b)

Q 3(⋅⋃︀a) Q 3(⋅⋃︀b)Q 3(⋅⋃︀a)Q 3(⋅⋃︀b)

▷ Example 109: An imprecise Markov chain of length three, interpreted as an

imprecise probability tree. At each step, a transition of an element of the state space

𝒳 = {a,b} to the same state space𝒳 is possible. An important property of a Markov

chain is that the local prediction model depends only on the last state. For example,

the local prediction models in (b,b) and in (a,b) are both equal to Q 3(⋅⋃︀b). If the

imprecise Markov chain is stationary, then Q 2(⋅⋃︀b) =Q 3(⋅⋃︀b).

If the local conditional models do not depend on the actual index:

Q i+1(⋅⋃︀⋅) =Q(⋅⋃︀⋅), then we say that the imprecise Markov chain is stationary

and we can summarise it by the tuple (𝒳 ,Q 1,Q, N).
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3.2. Upper transition operators

3.2 Upper transition operators

Theorem 96106 allows us to comfortably calculate upper previsions of

arbitrary gambles on𝒳 n . To streamline notation and provide more insight,

we introduce upper transition operators in analogy with transition operators

in the precise case.

Definition 110: The upper transition operator Ti of an imprecise Markov

chain with local conditional upper previsions Q i+1 is given by

Ti ∶ℒ(Xi+1)→ℒ(Xi )∶Ti f (x) =Q i+1( f ⋃︀Xi = x)

So the transition operator Ti is a map, a transformation from ℒ(𝒳) to

ℒ(𝒳): it takes a gamble f ∈ ℒ(Xi+1) and turns it into a gamble on Xi . By

definition, Ti I{y}(x) is equal to Q i+1(I{y}⋃︀x) = Q i+1({y}⋃︀x) which is the

upper probability to go from the state x at “time point” i to state y at the next

time point. What is important to notice, is that for two different states x, y ∈ 𝒳 ,

there is no interaction between Ti f (x) and Ti f (y), i.e. if for example Ti f (x)
takes a certain value, then this tells you nothing about Ti f (y). We say that Ti

is rectangular.4 More generally, we also consider the maps Ti fromℒ(𝒳 i+1)
to ℒ(𝒳 i ), defined by

Tn f (x1∶n) := (Tn f (x1∶n , ⋅))(xn) =Q n+1( f (x1∶n , ⋅)⋃︀xn) (3.11)

for all x1∶n in𝒳 n and all real-valued maps f on𝒳 n+1. Of course, we can also

consider lower expectations and lower transition operators, which are related

to the upper expectations and upper transition operators by conjugacy.

As is the case for coherent upper previsions, it is possible to introduce

the notion of an upper transition operator directly, by basing it on a number

of defining properties, rather than by referring to an underlying imprecise

Markov chain.

Definition 111 (Upper transition operator): Consider a non-empty finite

set of states𝒳 , and the set ℒ(𝒳) of all real-valued maps on𝒳 . A transforma-

tion T ofℒ(𝒳) is called an upper transition operator if and only if it satisfies

the following properties:

4This is inspired by the following analogy: a set is said to be rectangular if it is the Cartesian
product of subsets of a set 𝒮 .
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3. IMPRECISE MARKOV CHAINS

T1. I𝒳 minh ≤ Th ≤ I𝒳 maxh [boundedness]

T2. T(h1+h2) ≤ Th1+Th2 [sub-additivity]

T3. T(λh) =λTh [non-negative homogeneity]

for arbitrary h, h1, h2 inℒ(𝒳) and real λ ≥ 0. The transformation T ofℒ(𝒳),

defined by T f := −T(− f ) for all f ∈ ℒ(𝒳), is then called its conjugate lower

transition operator.

Any upper transition operator T automatically also satisfies the following

interesting properties:

T4. T(h+µI𝒳 ) = Th+µI𝒳 [constant additivity]

T5. if h1 ≤ h2 then Th1 ≤ Th2 [monotonicity]

T6. if hn → h (point-wise) then Thn → Th [continuity]

T7. Th ≥ −T(−h) = Th [upper–lower consistency]

for arbitrary h, h1, h2, hn in ℒ(𝒳) and real µ. Clearly, for any n ∈N≥0, Tn is

an upper transition operator as well. As usual T0 corresponds to the identity

map.

3.3 Recursive nature of imprecise Markov chains

The upper previsions P(⋅⋃︀x1∶n) and P on ℒ(𝒳 N) can be calculated easily

using the Law of Iterated Expectation (Theorem 112), by backwards recursion,

cf. (3.8) and (3.9).

Theorem 112 (Concatenation Formula): For any x1∶n in 𝒳 n , n = 1,2, . . . ,

N −1, and for any real-valued map f on𝒳 N :

P( f ⋃︀x1∶n) =TnTn+1 . . .TN−1 f (x1∶n) (3.12)

P( f ) =Q 1(T1T2 . . .TN−1 f ). (3.13)

If we apply the joint upper prevision P to maps h that depend only on

the state Xn at time n, we get the marginal upper previsions Pn(h) := P(h),

and Pn is a model for the uncertainty about the state Xn at time n. More

generally, taking the Markov condition into account, we use the notation

Pn⋃︀`(h⋃︀x`) := P⋃︀`(h⋃︀x`) for the upper prevision of h(Xn), conditional on
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3.4. Sensitivity interpretation

X` = x` with 1 ≤ ` < n and we see that Pn+1⋃︀n(h⋃︀xn) = Q n+1(h⋃︀xn) =
Tnh(xn). Such previsions can be found using simpler recursion formulae

than Equations (3.12) and (3.13), as they are based on the simpler upper

transition operators Tk .

Proposition 113: For any real-valued map h on𝒳 , and for any 1 ≤ ` < n ≤ N

and all x` in𝒳 :

Pn⋃︀`(h⋃︀x`) = T`T`+1 . . .Tn−1h(x`), (3.14)

Pn(h) =Q 1(T1T2 . . .Tn−1h). (3.15)

This offers a reason for formulating our theory in terms of real-valued maps

rather than events: suppose we want to calculate the upper probability Pn(A)
that the state Xn at time n belongs to the set A. According to Equation (3.15),

Pn(A) = Q 1(T1 . . .Tn−1I A), and even if Tn−1I A can still be calculated using

upper probabilities only, it will generally assume values other than 0 and 1,

and therefore will generally not be the indicator of some event. Already after

one step, i.e., in order to calculate Tn−2Tn−1I A , we need to leave the ambit of

events, and turn to the more general real-valued maps; even if we only want

to calculate upper probabilities after n steps.

From here onwards, we assume that the imprecise Markov chain is

stationary: T1 = T2 = . . . = T. For stationary imprecise Markov chains,

Proposition 113 simplifies.

Proposition 114: For any real-valued map h on𝒳 , and for any 1 ≤ ` < n ≤ N

and all x` in𝒳 :

Pn⋃︀`(h⋃︀x`) = Tn−`h(x`), (3.16)

Pn(h) =Q 1(Tn−1h). (3.17)

3.4 Sensitivity interpretation

The classical treatment of Markov chains rests on the assumption that the

initial and transition probabilities are precisely known. If this is not the case,

then it seems necessary to perform some kind of sensitivity analysis, in

order to find out to what extent any conclusion we might reach using such a

treatment, depends on the actual values of these probabilities.

To see what is the link between upper transition operators and sets of

precise finite-state and discrete-time Markov chains, consider the coherent
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3. IMPRECISE MARKOV CHAINS

upper prevision Th(x) := Q(h⋃︀x). Because Q(⋅⋃︀x) is monotone (T5130),

constant additive (T4130), convex (T2130+T3130) and non-negatively homo-

geneous (T3130), it follows from Legendre-Fenchel duality (and the Lower

Envelope Theorem [62, §2.6.3] and to a lesser extent Theorem 1841), that

Q(h⋃︀x) can be written as (see [1])5

Q(h⋃︀x) =max{p ⋅h∶p ∈ 𝒫x} ,

where𝒫x is a compact convex set of probability mass functions, also known

as a credal set. The upper transition operator Th can now be seen as the

Cartesian product (or a vector) of the upper previsions over all states. If given

a prior upper prevision Q 1 corresponding to a credal set𝒫1:

Q 1(h) =max{p1 ⋅h∶p1 ∈ 𝒫1} , (3.18)

then it follows almost immediately that

Q 1(Th) =max{p1 ⋅M ⋅h∶p1 ∈ 𝒫1 and M ∈ 𝒯 } ,

where

𝒯 := {M ∈R⋃︀𝒳 ⋃︀×⋃︀𝒳 ⋃︀∶(∀x ∈ 𝒳)(Mx,⋅ ∈ 𝒫x)} . (3.19)

Here, any M ∈ 𝒯 is a stochastic matrix where the x-th row, Mx,⋅, is a probability

distribution over the states at a time k +1, conditional on the chain being in

state x at time k. Therefore, we can interpret M as a transition matrix of a

finite-state and discrete-time Markov chain. When considering iterations of

the map, then we see that

Q 1(Tk h) =max{p1 ⋅M(1) ⋅ . . . ⋅M(k) ⋅h∶p1 ∈ 𝒫1 and M( j) ∈ 𝒯 } . (3.20)

Generally speaking, therefore, an upper transition operator effects robust

inference for a set of not necessarily stationary Markov chains whenever

we are investigating marginal gambles. In general, however, the sensitivity

interpretation and our definition of a Markov chain are not the same. The

difference lies in the type of independence that is assumed in the Markov

Condition. Whereas we assume epistemic irrelevance, strong independence

is assumed when using the sensitivity interpretation [8].

5Here we use the inner product notation p ⋅h :=∑x∈𝒳 p(x)h(x).
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3.4. Sensitivity interpretation

3.4.1 When interpretation does not matter

The question arises whether the interpretation of the Markov Condition really

matters. The next example shows that in general, it actually does.

▷ Example 115: Let𝒳1 =𝒳2 =𝒳3 = {a,b} and Q 1(h) =Q 1( f h) = h(a)+h(b)
2 . Then

we know from Equation (3.18) that𝒫1 = {( 1
2

1
2)}. The upper transition operator is

given by a vacuous model, independent of the state: T := I𝒳 max. Therefore

𝒯 := {M ∈R2×2∶Ma,⋅ ∈ 𝒫a and Mb,⋅ ∈ 𝒫b} .

with 𝒫a = 𝒫b = {(p 1−p)∶0 ≤ p ≤ 1}. The gamble f ∈ ℒ(𝒳1∶3) of interest is f =
I(a,a,a)+ I(b,a,b).

Under the strong independence interpretation, the joint credal set𝒫1∶3 is given

by

𝒫1∶3 :=𝒫1𝒯 2 = {p1 ⋅M(1) ⋅M(2) ⋅h∶p1 ∈ 𝒫1 and M( j) ∈ 𝒯 }

and we get that

P( f ) =max
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
∑

x∈𝒳1∶3

p(x) f (x)∶p ∈ 𝒫1∶3

[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀
,

=max{p(a, a, a)+p(b, a,b)∶p ∈ 𝒫1∶3} ,

=max{q1(a)q2(a⋃︀a)q3(a⋃︀a)+q1(b)q2(a⋃︀b)q3(b⋃︀a) ∶
q1 ∈ 𝒫1, q2(⋅⋃︀a) ∈ 𝒫a , q2(⋅⋃︀b) ∈ 𝒫b , q3(⋅⋃︀a) ∈ 𝒫a , q3(⋅⋃︀b) ∈ 𝒫b}

=max{1

2
q2(a⋃︀a)q3(a⋃︀a)+ 1

2
q2(a⋃︀b)(︀1−q3(a⋃︀a)⌋︀ ∶

q2(a⋃︀a) ∈ (︀0,1⌋︀, q2(a⋃︀b) ∈ (︀0,1⌋︀, q3(a⋃︀a) ∈ (︀0,1⌋︀ 

= 1

2
.

Under the epistemic irrelevance interpretation, we get from Theorem 112130 that

P( f ) =Q 1
⎛
⎝ ∑x1∈𝒳

I{x1}
Q 2

⎛
⎝ ∑x2∈𝒳

I{x2}
Q 3 ( f (x1, x2, ⋅)⋃︀x2)

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
x1
⎞
⎠
⎞
⎠

= 1

2
Q 2 (I{a}Q 3( f (a, a, ⋅)⋃︀a)+ I{b}Q 3( f (a,b, ⋅)⋃︀b)⨄︀a)

+ 1

2
Q 2 (I{a}Q 3( f (b, a, ⋅)⋃︀a)+ I{b}Q 3( f (b,b, ⋅)⋃︀b)⨄︀b)

= 1

2
Q 2 (I{a}Q 3(I{a}⋃︀a)⨄︀a)+

1

2
Q 2 (I{a}Q 3(I{b}⋃︀a)⨄︀b) (3.21)

= 1

2
⋅1+ 1

2
⋅1 = 1.

133



3. IMPRECISE MARKOV CHAINS

Rewriting Equation (3.21) gives more insight about where the difference comes from

P( f ) =max{q1(a)q2(a⋃︀a)q3(a⋃︀a)+q1(b)q′2(a⋃︀b)q′3(b⋃︀a) ∶

q1 ∈ 𝒫1, q2(⋅⋃︀a) ∈ 𝒫a , q′2(⋅⋃︀b) ∈ 𝒫b , q3(⋅⋃︀a) ∈ 𝒫a , q′3(⋅⋃︀a) ∈ 𝒫a , 

=max{1

2
q2(a⋃︀a)q3(a⋃︀a)+ 1

2
q′2(a⋃︀b)q′3(b⋃︀a) ∶

q2(a⋃︀a) ∈ (︀0,1⌋︀, q′2(a⋃︀b) ∈ (︀0,1⌋︀, q3(a⋃︀a) ∈ (︀0,1⌋︀, q′3(b⋃︀a) ∈ (︀0,1⌋︀ 

= 1

2
⋅1 ⋅1+ 1

2
⋅1 ⋅1 = 1.

The inequality still holds if the transition operator is assumed to be a linear-vacuous

mixture (not purely linear).

The example shows that the interpretation is relevant. It also shows that the

sensitivity interpretation result can be obtained from the epistemically irrel-

evant one by adding extra constraints. The extra constraints are that, at any

given time point, the optimisation is allowed to choose only one transition

matrix. Hence, the imprecise Markov chain is a set of (non-stationary) precise

Markov models under the strong independence interpretation. This is not the

case in the epistemic irrelevance case where the choice of transition matrices

may depend on the complete history.

The discrepancy between the two interpretations is most unfortunate.

However, if the gamble depends only on one state, then it follows immediately

from Equation (3.20) that the interpretation is irrelevant. This is so, because

the local optimisation done in the epistemic irrelevance case takes the same

transition matrix, which will of course be the one that was used in the strong

independence case.

Theorem 116: Let {Xn ∶n ∈N>0} be a stationary imprecise Markov chain and

let the upper prevision functional Q 1 represent the beliefs about the initial

state X1 and T be the upper transition operator. Then the upper prevision of

a gamble h depending only on one state Xn is given by

Pn(h) =Q 1(Tn−1h), (3.22)

independent of the assumed Markov Condition.
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3.5. Graph-theoretic analysis of upper transition operators

3.5 Graph-theoretic analysis of upper transition operators

Let us introduce the notation [14]:

P n
x y := Tn I{y}(x) for n ∈N≥0. (3.23)

P n
x y can be interpreted as an upper probability of going from state x to

state y in n steps. For n = 0, P 0
x y = I{y}(x), and for n = 1 we also use the

simpler notation Px y instead of P 1
x y . The following inequality is of crucial

importance for what follows. It is an immediate generalisation of a similar

equality (Chapman–Kolmogorov) involving (precise) probabilities in (precise)

Markov chains.

Proposition 117: For all x, y and z in𝒳 , and for all m and n in N≥0,

P n+m
x y ≥ P n

xz P m
z y . (3.24)

Proof: Since P m
uy = Tm I{y}(u) ≥ 0 for all u ∈ 𝒳 , we have that

Tm I{y} =∑
u∈𝒳

Tm I{y}(u)I{u} ≥ Tm I{y}(z)I{z} (3.25)

for all z ∈ 𝒳 . If we now apply the upper transition operator T n times to both sides

of this inequality, and repeatedly invoke its monotonicity [T5130] and non-negative

homogeneity [T3130], we find that Tn+m I{y} ≥ Tm I{y}(z)Tn I{z} and hence indeed

Tn+m I{y}(x) ≥ Tn I{z}(x)Tm I{y}(z). ◻

Using the P n
x y , we can define a ternary relation ⋅ ⋅→ ⋅ on 𝒳 ×𝒳 ×N≥0 as

follows: for any x and y in 𝒳 and any n ∈ N≥0, we say that y is accessible

from x in n steps, and we write x
n→ y , if P n

x y > 0:

x
n→ y⇔ P n

x y > 0⇔ Tn I{y}(x) > 0. (3.26)

Proposition 118: The ternary relation ⋅ ⋅→ ⋅ is an accessibility relation, mean-

ing that:

(∀x, y ∈ 𝒳)(x
0→ y⇔ x = y); (C1)

(∀x, y ∈ 𝒳)(∀m,n ∈N≥0)(x
n+m→ y⇔(∃z ∈ 𝒳)(x

n→ z and z
m→ y)) ; (C2)

(∀x ∈ 𝒳)(∀n ∈N≥0)(∃y ∈ 𝒳)x
n→ y . (C3)

Proof:

C1 This property follows at once from Equation (3.23).
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C2 The implication (∃z ∈ 𝒳)(x
n→ z and z

m→ y)⇒ x
n+m→ y follows immediately from

Equation (3.24).

Assume that x
n+m→ y , then we know that

0 <Tn+m I{y}(x) = Tn (Tm I{y})(x) = Tn ( ∑
z∈𝒳

I{z}Tm I{y}(z))(x)

and using the sub-additivity property T2130 we get that

0 < ∑
z∈𝒳

Tn I{z}(x)Tm I{y}(z)

which can—knowing that both Tn I{z}(x) and Tm I{y}(z) are nonnegative by

property T1130— only be true if there is some z ∈ 𝒳 such that Tn I{z}(x) > 0 and

Tm I{y}(z) > 0 and therefore x
n+m→ y⇒ x

n→ z ∧ z
m→ y .

C3 Consider any x ∈ 𝒳 and n ∈ N≥0. Assume ex absurdo that Tn I{y}(x) = 0 for all

y ∈ 𝒳 . Since Tn is an upper transition operator, it follows from T1130 and T2130

that 1 ≤ Tn I𝒳 ≤∑y∈𝒳 Tn I{y}, whence 1 ≤ 0, a contradiction. ◻

The last condition C3 was assumed implicitly by Kemeny and Snell [35,

§ 1.4]. We have made it explicit here as it is exactly this requirement that

forces us to work with upper instead of lower transition operators. If we take

the lower transition operator T := I𝒳 min, then TI{x} = 0 and C3 does not

hold.

Kemeny and Snell did not assume an equivalence in condition C2, they

only required that

(∀x, y ∈ 𝒳)(∀m,n ∈N≥0)((∃z ∈ 𝒳)(x
n→ z and z

m→ y)⇒ x
n+m→ y) . (C2’)

All qualitative statements that can be made for the accessibility relation can

also be made with the alternative requirement C2’. However, the computation

of accessibility properties—like periodicity, regularity, ergodicity—becomes

very hard because the link with the accessibility graph will be lost. This is

why we assume the stronger condition C2 as it will allow us to deduce all

interesting results from this simple graph: the accessibility graph.6

Definition 119: The accessibility graph 𝒢(T) of an accessibility relation

⋅ ⋅→ ⋅∶𝒳 ×𝒳 ×N≥0→{0,1} is the directed graph with vertices𝒳 and an edge

from x ∈ 𝒳 to y ∈ 𝒳 if and only if x
1→ y .

6For more information about the accessibility graph and the graph terminology used
in this chapter (e.g. reachability relation, strongly connected component, . . . ), we refer to
Appendix A192.
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It is clear that a state y is accessible from x in n steps if and only if there is

an (x, y)-path of length n in the accessibility graph 𝒢(T). This means that all

results that can be deduced from the accessibility relation, can also be found

by studying the accessibility graph.

3.5.1 State classification

We call any ternary relation ⋅ ⋅→ ⋅ that satisfies C1135–C3135 an accessibility

relation on the finite set 𝒳 . For any such (abstract) accessibility relation,

we can draw all the following conclusions. The present discussion is a

formalisation of the more intuitive discussion by Kemeny and Snell [35,

§ 1.4], under slightly more restrictive conditions. We refer to Figure 3.3 for a

graphical representation of many of the notions discussed below.

𝒳
C1

D1 D2

D3

D4

D5 D6
C2

D7

D8

C3

D9

Figure 3.3: Three increasingly finer partitions of the state set 𝒳 for a particular
stationary (im)precise Markov chain, or more generally, for an accessibility relation
⋅ ⋅→ ⋅. No transition between states in different closed atoms Ck is possible, and closed
atoms can be seen as separate (im)precise Markov chains. The equivalence classes
Dk for the communication relation are partially ordered by the relation→, whose
(Hasse) diagram is represented by the upward arrows. Maximal classes are D5, D6,
D8 and D9, the other classes are non-maximal. Each communication class Dk is
further subdivided in dDk

cyclic classes, through which the system can move in a
cyclic fashion, e.g., dD2 = 4. For a non-maximal class, it is also possible to move to
descendant classes, until finally a maximal class is reached. There are 3 aperiodic
classes: D6, D7 and D9 =C3. The (im)precise Markov sub-chain C3 is also irreducible,
and therefore regular.

Consider any two states x and y in𝒳 . Then y is accessible from x, which

we denote as x→ y , if there is some n ∈N≥0 such that x
n→ y . If x and y are
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accessible from one another, then we say that x and y communicate, which

we denote as x↔ y .

It follows at once from C1135 and C2135 that the binary relation→ on𝒳 is

a preorder, i.e., is reflexive and transitive. The binary relation↔ on𝒳 is the

associated equivalence relation. This communication relation↔ partitions

the state set 𝒳 into equivalence classes D of states that are accessible

from one another, called communication classes. The preorder→ induces a

partial order on this partition, also denoted by→.

Maximal (or undominated) states with respect to the preorder → are

states x such that (∀y ∈ 𝒳)(x→ y⇒ y → x). This means that a maximal state

only has access to other maximal states in the same communication class,

and to no other states. They, and the communication classes they belong to,

are called maximal. The other states, and the communication classes they

belong to, are called non-maximal or dominated.

In terms of the accessibility graph 𝒢(T), the reachability relation (see

Appendix A192 for concepts and related terminology) is the counterpart of

the accessibility relation: If x has access to y , then either x = y , or there is a

(x, y)-path in 𝒢(T).

Proposition 120: The communication classes of an upper transition op-

erator T, correspond exactly to the strongly connected components of

𝒢(T) and the maximal communication classes are the undominated strong

components of 𝒢(T).

3.5.2 Periodicity

Consider, for any x and y in𝒳 , the set

Nx y := {n ∈N≥0∶x
n→ y} (3.27)

of those numbers of steps after which y is accessible from x. Observe that

Nx y is non-empty if and only if x→ y .

Nxx always contains at least 0. If Nxx contains no other elements, then x

constitutes a communication class by itself. In terms of an upper transition

operator T this requires that Tn I{x}(x) = 0 for all n > 0. If a system enters

such a state x, it must immediately leave it and can never come back to it. We

call any such state, and the communication class it constitutes, volatile. We

infer from condition C3135 that no maximal state can be volatile.
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3.5. Graph-theoretic analysis of upper transition operators

Definition 121: We call the period dx of a state x the greatest common

divisor of the non-empty set Nxx , i.e.,

dx := gcd{n ∈N≥0∶x
n→ x} .

This means that the lengths of all (x, x)-paths in 𝒢(T) must be multiples

of dx . It is not necessary though, that there is some (x, x)-path for every

multiple of dx .

▷ Example 122: For the accessibility graph given in the figure, returns to state a can

only occur for

Naa = {α6+β8∶α ∈N≥0,β ∈N≥0} .

a b c d

efgh

Therefore, the period da = gcd Naa = 2. Only paths from a to a exist that have a length

that is a multiple of 2. There is no (a, a)-path of length 2 or 4.

The complete state space is a communication class as the accessibility graph is

strongly connected. The period for every state is 2 (see also Proposition 124).

A state is volatile if and only if its period is infinite. If dx < +∞, then

because, by C2135, the set Nxx is closed under addition, the basic number-

theoretic result of Theorem 123 tells us that Nxx is, up to perhaps a finite

number of elements, equal to the set of all multiples of dx :

(∃n ∈N≥0)(∀k ≥ n)kdx ∈ Nxx . (3.28)

Theorem 123 ([35, Theorem 1.4.1]): A non-empty set of natural numbers

that is closed under addition contains all but a finite number of multiples of

its greatest common divisor.

Now consider a communication class D, and any two states x and y in

that class. Then it is not difficult to show that they have the same period.

Proposition 124: For any two elements x and y of𝒳 : x↔ y⇒ dx = dy .

Proof: We assume without loss of generality that x ≠ y . Suppose x↔ y . Then Nx y ≠
∅ and Ny x ≠ ∅. Fix nx y ∈ Nx y and ny x ∈ Ny x . Then nx y +ny x ∈ Nxx ∩Ny y . Since
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nx y +ny x > 0 this implies that both dx and dy are finite. Hence there are rx and ry in

N≥0 such that

rx dx = nx y +ny x = ry dy . (3.29)

On the other hand, we infer from (3.28) that for sufficiently large k ∈N≥0 both nx y +
ny x +kdy and nx y +ny x +(k +1)dy are elements of Nxx . Using (3.29), this implies

that dx divides both (ry +k)dy and (ry +k+1)dy . Hence dx divides dy . A completely

similar argument shows that dy divides dx . ◻

We denote by dD the common period of all elements of the communication

class D . If dD = 1, then we call the class D , and all its states, aperiodic.

The analysis can still be taken further in interesting ways.

Proposition 125: Consider arbitrary x and y in some non-volatile com-

munication class D. Then there is some 0 ≤ tx y < dD such that n ∈ Nx y

implies n ≡ tx y (mod dD), i.e., n and tx y are equal up to some multiple of

dD . Moreover,

(∃n ∈N≥0)(∀k ≥ n)tx y +kdD ∈ Nx y , (3.30)

and therefore Nx y equals {tx y +kdD ∶k ∈N≥0} up to perhaps a finite number

of elements. Finally,

(∀x, y, z ∈D)(tx y + ty z ≡ txz (mod dD)). (3.31)

Proof: Since Nx y ≠ ∅ and Ny x ≠ ∅ we can consider arbitrary nx y and mx y in Nx y

and arbitrary ny x in Ny x . Since both nx y +ny x and mx y +ny x belong to Nxx , we see

that nx y ≡ mx y (mod dD), so all elements of Nx y have the same remainder after

division by dD . If we call this common remainder tx y , then obviously 0 ≤ tx y < dD

and nx y ≡ tx y (mod dD) for all nx y ∈ Nx y .

To prove (3.30), consider any nx y ∈ tx y . We have just proved that there is some

n′ ∈ N≥0 such that nx y = tx y +n′dD . And we know from (3.28) that there is some

n′′ ∈N≥0 such that for all k ≥ n′′, kdD ∈ Nxx and therefore tx y +(n′+k)dD ∈ Nx y .

To prove (3.31), consider nx y ∈ Nx y and ny z ∈ Ny z , then on the one hand

nx y + ny z ∈ Nxz and therefore nx y + ny z ≡ txz (mod dC ). On the other hand, if

follows from nx y ≡ tx y (mod dC ) and ny z ≡ ty z (mod dC ) that nx y +ny z ≡ tx y +ty z

(mod dC ). ◻

It follows that for any x, y and z in a non-volatile communication class D ,

txx = 0 and tx y + ty z ≡ txz (mod dD), and therefore ty z = 0 if and only if

tx y = txz for some x ∈D . This implies that ‘ty z = 0’ determines an equivalence

relation on this communication class D , which further partitions it into dD
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subsets, called cyclic classes. In such a cyclic class, all states y give the same

value to tx y , for any given x in D . Within D , the system moves from cyclic class

to cyclic class, in a definite ordered cycle of length dD . If D is non-maximal,

then in each of its cyclic classes it is possible that, rather than moving to the

next cyclic class, the system moves on to (a state in) another communication

class D′, that is a successor to D for the partial order→.

Definition 126: A maximal aperiodic communication class is called regular.

If there is only one communication class, then𝒳 is called irreducible. If𝒳 is

irreducible and aperiodic,𝒳 itself is also called regular.

The following characterisations of regularity are now immediate (observe

that dD = 1 and tx y = 0 for an aperiodic class).

Proposition 127: A maximal communication class D is regular if and only if

(∃n ∈N≥0)(∀k ≥ n)(∀x, y ∈D)(x
k→ y).

𝒳 is regular if and only if

(∃n ∈N≥0)(∀k ≥ n)(∀x, y ∈ 𝒳)(x
k→ y).

Let us define the set of all (simple) cycles 𝒞x from a state x to itself.

𝒞x := {x
1→ x1

1→ x2
1→ . . .

1→ x∶(xi ≠ x) and (i ≠ j ⇒ xi ≠ x j )} .

The length of a path c := x0
1→ x1

1→ x2
1→ . . .

1→ xn−1
1→ xn is by definition

length(c) = n.

Proposition 128: The period dD of a communication class D is equal to

dD = gcd{length(c)∶c ∈ 𝒞x} ,

where x is any element of D .

Proof: Remark that any “path”7 from x to x has to be a concatenation of elements of

𝒞x . We infer then from Definition 121139 and from Proposition 124139 that

dC = gcd
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
∑

c∈𝒞c

ac length(c)∶ac ∈N≥0

[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀
= gcd{length(c)∶c ∈ 𝒞x} . ◻

7Here we mean with “path” a sequence of states where consecutive states in the sequence
are accessible in one step. Remark that states can be repeated in this “path” whence it is not a
path in the graph-theoretic sense of Appendix A192
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Remark that x
1→ y if and only if there is an arc (x, y) in 𝒢(T). All this means

that the search for the period of a communication class C can be reduced

to finding the period of the corresponding strongly connected component

𝒢(T)⋂︀
C

.8 This problem is closely related to a breadth-first search in 𝒢(T)⋂︀
C

as explained in [25].

3.5.3 Adding more detail to this picture

We now return from this abstract discussion to the specific accessibility

relation→ associated with an upper transition operator T. Using T, we will

be able to add some detail to the sketch made using the relation→ only.

We begin by looking at closed sets of states. A set of states C is called

closed if no state outside C is accessible from any state within the set of states

C ∶ (∀x ∈ C)(∀y ∈ C c)(x ⇑→y). In particular, any maximal communication

class is a closed set of states. Of course,𝒳 itself is also closed. And so is any

union of closed sets.

Proposition 129: Consider a stationary imprecise Markov chain with upper

transition operator T. Let 𝒞 be a partition of the state set𝒳 into closed sets

and let C ∈ 𝒞.9 Then

1. T(hIB)(x) = 0 for all h ∈ ℒ(𝒳), all x ∈C and all B ⊆C c ;

2. Th(x) = T(hIC)(x) for all h ∈ ℒ(𝒳) and all x ∈C ;

3. Th =∑C∈𝒞 T(IC h) =∑C∈𝒞 IC T(IC h) for all h ∈ ℒ(𝒳).

Proof: First, fix x in C and B ⊆ C c . Since the set C is closed, it follows that for any

y in B , TI{y}(x) = Px y = 0. Using T2130 and T5130, we see that therefore TIB(x) = 0.

But since −IB max ⋃︀h⋃︀ ≤ hIB ≤ IB max ⋃︀h⋃︀, we find that on the one hand, using T5130

and T3130, T(hIB) ≤ (max ⋃︀h⋃︀)TIB . On the other hand, using T5130, T7130 and T3130,

we get −(max ⋃︀h⋃︀)TIB ≤ T(hIB). Since TIB(x) = 0, we see that T(hIB)(x) = 0, which

proves the first statement.

We infer from the first statement that both T(hIC c )(x) = 0 and T(−hIC c )(x) = 0.

Since h = hIC +hIC c , it follows from T2130 that T(hIC )−T(−hIC c ) ≤ Th ≤ T(hIC )+
T(hIC c ) and therefore Th(x) = T(hIC )(x), which proves the second statement.

8Remember that 𝒢(T)⋂︀
C

is the subgraph of 𝒢(T) induced by C , see Appendix A192.
9Remark that a partition of closed sets must always be a coarsening of the partition of

communication classes. The set of all states 𝒳 is always a closed set and forms the coarsest
partition.
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Consider any C ∈ 𝒞 and any y ∈C c . Then y belongs to some closed set C ′ ∈ 𝒞∖{C},

so we infer from the first statement that T(hIC )(y) = 0. This, together with the second

statement, leads at once to the third statement. ◻

If we consider a closed set of states C , then we can define an operator

TC ∶ℒ(C)→ℒ(C) as follows. Consider any real-valued map g on C , and any

extension h of g to𝒳 . Then it follows from Proposition 129.2 that Th = T(hIC)
only depends on g , and not on how g is extended to h outside C . It therefore

makes sense to define TC g as the restriction Th⋂︀
C

of Th to C . It is very easy to

see that TC satisfies T1130–T3130, and is therefore an upper transition operator

onℒ(C).

It also follows from Proposition 129.3, that if 𝒞 is a collection of mutually

disjoint closed subsets of the state set 𝒳 , then Tn
⋃𝒞

=∑C∈𝒞 IC Tn
C ○ ⋃︀C for all

n ≥ 0: the dynamics associated with T⋃𝒞 on the closed subset⋃𝒞 of𝒳 can be

seen as being subdivided into isolated and independent dynamics associated

with TC on state sets C ∈ 𝒞.

3.6 Ergodicity and a non-linear Perron-Frobenius theorem

In this section we introduce the notion of ergodicity for upper transition

operators and lay bare the link with the Perron-Frobenius theorem. We allow

ourselves to be inspired by corresponding notions for non-stationary Markov

chains [52, p. 136] and Markov set chains [28] to lead us to the following

definition of ergodicity.

Definition 130 (Ergodicity): An upper transition operator T on𝒳 is called

ergodic if for all h ∈ ℒ, the sequence of gambles {Tk h}
k∈N≥0

converges

pointwise to a constant gamble.

This definition of ergodicity is not exactly the one more commonly en-

countered in probability or dynamical systems theory, where ergodicity

usually refers to the special properties of an invariant measure. Here,

ergodicity corresponds to what is usually called “ergodic + aperiodic” in

the Markov chain setting.
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Consider any gamble h ∈ 𝒳 . Ergodicity of an upper transition operator

T not only means that the sequence Tnh converges, so the ω-limit set10

ωT(h) is a singleton {ξh}, but also that this limit ξh is a constant function.

Observe that by T6130, ξh is a fixed point for all Tk : Tkξh = ξh and therefore

ξTk h = ξh for all k ∈ N≥0. If we denote the constant value of ξh by PT(h),

then this defines a real functional Q T onℒ(𝒳). This functional is an upper

prevision: it is bounded, sub-additive and non-negatively homogeneous

[compare with T1130–T3130]. It is T-invariant in the sense that PT ○T = PT,

and it is the only such upper prevision. This shows that our definition of

ergodicity is nevertheless in line with the concept more commonly used in

systems theory.

Definition 131: An upper transition operator T on ℒ(𝒳) is called Perron

Frobenius-like if there is some real functional Q∞ onℒ(𝒳) such that

lim
n→∞

Q 1(Tnh) =Q∞(h)

for all upper previsions Q 1 on ℒ(𝒳) and all h ∈ 𝒳 , or in other words, if the

sequence of upper previsions Q 1 ○Tn converges pointwise to some limit that

does not depend on the initial value Q 1.

As an immediate result, conditions for ergodicity of upper transition operat-

ors are conditions for a Perron–Frobenius-like theorem for such transforma-

tions to hold.

Theorem 132 (Perron–Frobenius): An upper transition operator T is Per-

ron-Frobenius-like if and only if it is ergodic, and in that case Q∞ =Q T.

Proof: Sufficiency. Suppose T is ergodic. Then using the notations established

above, Tn h → ξh and therefore Q(Tn h) → Q(ξh) because any upper prevision

Q is continuous [compare with T6130]. Observe that, since any upper prevision

Q is constant-additive [compare with T4130 and T1130], Q(ξh) = Q T(h). Hence

Q ○Tn →Q T, and therefore T is Perron–Frobenius-like, with Q∞ =Q T.

Necessity. Suppose that T is Perron–Frobenius-like, with limit upper prevision

Q∞. Fix any x ∈ 𝒳 , and consider the upper prevision Q x defined by Q x(h) := h(x)
for all h ∈ ℒ(𝒳). Then by assumption Tn h(x) =Q x(Tn h)→Q∞(h). Since this holds

for all x ∈ 𝒳 , we see that T is ergodic with Q T =Q∞. ◻
10Here, ω

T
(h) stands for the ω-limit set of h, which is the set of cluster points of the orbit

{Tn h}
n∈N≥0

. In other words, g ∈ω
T
(h) if and only if there exists a strictly increasing sequence

of natural numbers {nk}k∈N≥0
such that g = limk→∞Tnk h.
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It follows from the discussion in Section 3.2129 that⋃h∈ℒ(𝒳)ωT(h) is the

set of all periodic points of T—a periodic point being an element h ∈ ℒ(𝒳)
for which there is some n ∈ N≥0 for which Tnh = h. Because of T4130, this

set contains all constant maps. We now see that for T to be ergodic, this set

cannot contain any other maps.

Proposition 133: An upper transition operator T is ergodic if and only if all

of its periodic points are constant maps.

3.7 Characterisation of ergodicity

We now turn to the issue of determining in practice whether an upper

transition operator is ergodic. In the case of finite-state, discrete-time Markov

chains, a nice approach to deciding upon ergodicity, based on the the

accessibility relation, was given by Kemeny and Snell [35, § 1.4].

In the case of finite-state, discrete-time precise Markov chains, the

accessibility of states, gives us clues about the ergodicity of the Markov chain.

For such a Markov chain to be ergodic, it is necessary and sufficient that

it is top class regular [14], meaning that: (i) there is only one maximal or

undominated communication class—elements of a maximal communica-

tion class have no access to states not in that class—, in which case we call

this unique maximal classℛ the top class; and (ii) the top classℛ should be

regular, meaning that after some time k, all elements of this class become

accessible to each other in any number of steps: for all x and y inℛ and for

all n ≥ k, x
n→ y .

For upper transition operators, it turns out that top class regularity is a

necessary condition for ergodicity. However, top class regularity is by itself

not a sufficient condition: we need some guarantee that the top class will

eventually be reached—a requirement that is automatically fulfilled in finite-

state discrete-time precise Markov chains.

Proposition 134: An upper transition operator T is ergodic if and only if it is

regularly absorbing, meaning that it satisfies the following properties:

(TCR) it is top class regular:

ℛ := {x ∈ 𝒳 ∶(∃n ∈N≥0)(∀k ≥ n)minTk I{x} > 0} ≠∅,
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(TCA) it is top class absorbing: withℛc :=𝒳 ∖ℛ,

(∀y ∈ℛc)(∃n ∈N≥0)Tn Iℛc (y) < 1.

For a proof that (TCR) is equivalent toℛ≠∅, we refer to [14, Prop. 4.3]. (TCA)

means that for every element y not in the top class, there is some finite

number of steps n after which the top class can be reached with a strictly

positive lower probability 1−Tn Iℛc (y).

Proof: (TCR)∧ (TCA)⇒ (ER). Consider any fixed point ξ of Tk , where k ∈ N≥0 and

observe, by T5130 and T4130, that minξ ≤ minTξ ≤ minT2ξ ≤ . . . ≤ minTkξ = minξ

whence for any p ∈N≥0,

minξ =minTp
ξ and similarly maxξ =maxTp

ξ. (3.32)

We infer from Proposition 133 that we have to show that ξ is constant. Using

T5130, T4130, T3130 and Eq. 3.32 we construct from Tpξ ≥ minTpξ + (︀Tpξ(x) −
minTpξ⌋︀I{x} = minξ+(︀Tpξ(x)−minξ⌋︀I{x} the following inequality, which holds

for all n, p ∈N≥0 and all x ∈ 𝒳 :

Tn+p
ξ ≥minξ+)︀Tp

ξ(x)−minξ⌈︀Tn I{x}.

Hence, by taking the minimum on both sides of this inequality and using Equa-

tion (3.32), we find that

0 ≥ )︀Tp
ξ(x)−minξ⌈︀minTn I{x}.

We infer from (TCR) that by taking n large enough, we can ensure that minTn I{x} > 0

whence for any p ∈N≥0 and x ∈ℛ

0 = )︀Tp
ξ(x)−minξ⌈︀ ,

so we already find that Tpξ(x) =minξ for all p ∈N≥0 and x ∈ℛ.

If there is some p ∈N≥0 such that Tpξ reaches its maximum onℛ, then we infer

from Eq. (3.32) that maxTpξ = maxξ which has to be equal to minξ to satisfy the

inequality, so ξ is indeed constant. Let us therefore assume that the maximum of

Tpξ is not reached inℛ. Using T5130, T4130, T3130 and Equation (3.32), we construct

from ξ ≤maxξ−(︀maxξ−maxx∈ℛ ξ(x)⌋︀Iℛ and−Iℛ = Iℛc −1 the following inequality,

which holds for all n ∈N≥0:

Tn
ξ ≤maxξ+]︀maxξ−max

x∈ℛ
ξ(x){︀(Tn Iℛc −1).
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By taking the maximum overℛc on both sides of this inequality and under the made

assumption that the maximum is never reached onℛ, we get

0 = max
y∈ℛc

Tn
ξ(y)−maxξ ≤ ]︀maxξ−max

x∈ℛ
ξ(x){︀( max

y∈ℛc
Tn Iℛc (y)−1).

For each y ∈ ℛc , consider some ny ∈ N≥0 such that Tny Iℛc (y) < 1, and let n :=
maxy∈ℛc ny . Then we see that for every y ∈ℛc :

Tn Iℛc (y) = Tny (︀(Iℛ+ Iℛc )Tn−ny Iℛc ⌋︀(y)
= Tny (︀Iℛc Tn−ny Iℛc ⌋︀(y)
≤ Tny Iℛc (y) < 1.

The second equality follows from the fact that IℛTn−ny Iℛc = 0: an element in the top

classℛ has no access to any element outside of it; and the first inequality follows from

Iℛc ≤ 1 and T5130. But this means that maxy∈ℛc Tn Iℛc (y)−1 < 0 and consequently

maxξ =maxx∈ℛ ξ(x) =minξ.

(ER)⇒ (TCR)∧ (TCA). We will use contraposition and show first that ¬(TCR)⇒
¬(ER). Then we will show that ¬(TCA)∧ (TCR)⇒¬(ER).

¬(TCR) ⇒ ¬(ER). Not being top class regular means that ℛ = ∅, which is

equivalent to

(∀x ∈ 𝒳)(∀n ∈N≥0)(∃k ≥ n)(∃z ∈ 𝒳)Tk I{x}(z) = 0.

Since we infer from I{x} ≥ 0 and T1130 that Tk I{x} ≥ 0, this leads us to conclude that

liminfn→∞minTn I{x} = 0. But for any n ∈N≥0, Tn+1I{x} = T(Tn I{x}) ≥minTn I{x}

by T1130, and therefore also minTn+1I{x} ≥ minTn I{x}. This implies that the

sequence minTn I{x} is non-decreasing, and bounded above [by 1], and therefore

convergent. This shows that

(∀x ∈ 𝒳) lim
n→∞

minTn I{x} = 0. (3.33)

We also infer from T1130 and T2130 that 1 = Tk I𝒳 ≤ ∑x∈𝒳 Tk I{x}. Since the

cardinality ⋃︀𝒳 ⋃︀ of the state space is finite, this means that for all z ∈ 𝒳 and all n ∈N≥0

there is some x ∈ 𝒳 such that Tn I{x}(z) ≥ 1⇑⋃︀𝒳 ⋃︀. This tells us that maxTn I{x} ≥ 1⇑⋃︀𝒳 ⋃︀.
Since we can infer from a similar argument as before that the sequence maxTn I{x}

converges, this tells us that

(∀x ∈ 𝒳) lim
n→∞

maxTn I{x} ≥
1

⋃︀𝒳 ⋃︀ . (3.34)

Combining Equations (3.33) and (3.34) tells us that

lim
n→∞

(maxTn I{x}−minTn I{x}) > 0,
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so T cannot be ergodic.

¬(TCA)∧ (TCR)⇒¬(ER). Since T is not top class absorbing, we know that there is

some y ∈ℛc such that Tn Iℛc (y) = 1 for all n ∈N≥0. As the top classℛ is non-empty,

we know that there is some x ∈ℛ, and this x has no access to any state outside the

maximal communication classℛ: Tn Iℛc (x) = 0 for all n ∈N≥0. Consequently

lim
n→∞

(maxTn Iℛc −minTn Iℛc ) = 1−0 > 0,

so T cannot be ergodic. ◻

3.8 Ergodicity checking in practice

3.8.1 Checking for top class regularity

Checking for top class regularity directly using the definition would involve

calculating for every state x the maps TI{x}, T2I{x}, . . . , Tn I{x} until a first

number n = nx is found for which minTnx I{x} > 0. Unfortunately, it is not

clear whether this procedure is guaranteed to terminate, or whether we can

stop checking after a fixed number of iterations. However, it is clear from

Proposition 120138 that the accessibility relation
⋅→ of the accessibility graph

𝒢(T) corresponding to T, is exactly the accessibility relation→ belonging to

the upper transition operator T. This means that checking for the existence

of a single top class of T, corresponds to asserting whether there is only one

final classℛ in 𝒢(T). Once we have found the top classℛ, we focus on the

subgraph 𝒢(T)⋂︀
ℛ

which is the upper accessibility graph 𝒢(T) restricted to

ℛ. Property 128141 tells us that checking for regularity of the top class means

that we have to check whether the cyclicity of 𝒢(T) is equal to 1.

The relation between T and its graph 𝒢(T) is a purely qualitative one: the

exact quantitative value of the upper transition probabilities between two

states x and y is not important at all. What is important is whether there

is a possible transition between two states. This means that appropriately

replacing the upper transition operator T with a classical, linear transition

operator, or its associated transition matrix M , will still lead to the same

results.

Definition 135: A stochastic matrix M ∈ R𝒳×𝒳 represents an upper trans-

ition operator T on𝒳 if Mx,y > 0⇔ TI{y}(x) > 0 for all x and y in𝒳 .
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It is clear that any stochastic matrix M that represents T will result into

the same graph 𝒢(T) and will therefore lead to the same conclusions with

respect to top class regularity. For stochastic matrices however, a final

class corresponds to an irreducible stochastic submatrix, and aperiodicity

corresponds to the absence of eigenvalues with modulus 1 apart from 1 (with

multiplicity 1) itself.

Proposition 136 (Top class regularity): Consider an upper transition oper-

ator T. Then the following statements are equivalent: (i) T is top class regular;

(ii) M represents T and is regular; (iii) M represents T and M has exactly one

eigenvalue with modulus 1; and (iv) 𝒢(T) has exactly one final classℛ and

𝒢(T)⋂︀
ℛ

has cyclicity 1.

▷ Example 137: Let 𝒳 := {x, y} and T f := f (x)I{x} +max{ f (x), f (y)}I{y} for all

f ∈ 𝒳 . Then TI{x} = I𝒳 whence x
1→ x and y

1→ x and TI{y} = I{y} whence y
1→ y .

The graph 𝒢(T) is then given by

x y

Clearly {x} is the unique final strongly connected component of 𝒢(T) and as it is

a singleton, it has cyclicity one. We conclude that T is top class regular.

In the next example we focus on a simple upper transition operator that

is not piecewise affine. It does not therefore fall within the scope of Akian

and Gaubert’s algorithm, which we will discuss in Section 3.10154.

▷ Example 138: Consider the map

T∶R3→R
3∶ f → f + ∏︁ f − f ∏︁2⌋︂

3

⎛
⎜⎜
⎝

αx

αy

αz

⎞
⎟⎟
⎠

where f := ( fx + fy + fz)⇑3 for f = ( fx fy fz)
T

and the parameters αx , αy and αz

are any real numbers in (︀0, 1⇑⌋︂2⌋︀. It is not difficult to check that this T is indeed an

upper transition operator, but it is obviously not piecewise affine. Independently of

the value of αx , αy and αz , the upper accessibility graph of this map is given by:

x

y

z

The entire graph is strongly connected, and it has cyclicity one. This implies that T is

not only top class regular, but also ergodic, according to Proposition 134145.
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3.8.2 Checking for top class absorption

We now present a computationally efficient procedure to check for top class

absorption.

Proposition 139 (Top class absorption): Let T be an upper transition oper-

ator with regular top classℛ. Consider the nested sequence of subsets ofℛc

defined by the iterative scheme:

A0 :=ℛc

An+1 := {a ∈ An ∶TI An(a) = 1} , n ≥ 0.

After k ≤ ⋃︀ℛc ⋃︀ iterations, we reach Ak = Ak+1. Then T is top class absorbing if

and only if Ak =∅.

Proof: We start by showing inductively that under the given assumptions, the

statement

Hn ∶
(︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂[︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂(︂
I An Tn Iℛc = I An

(α)

and

(∀a ∈ Ac
n+1)TI An (a) < 1

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
(β)

and (∀a ∈ Ac
n)Tn Iℛc (a) < 1

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
(γ)

holds for all n ≥ 0. We first prove that the statement Hn holds for n = 0. The first and

third statements of H0 hold trivially. For the second statement, we have to prove that

TI A0(a) < 1 for all a ∈ Ac
1 = Ac

0∪(A0∖ A1). On A0∖ A1, the desired inequality holds

by definition. On Ac
0 =ℛ it holds because there TI A0 is zero: no state in the top class

ℛ has access to any state outside it.

Next, we prove that Hn ⇒Hn+1. First of all (α),

Tn+1I A0 = T(Tn I A0) = T(︀I An Tn I A0 + I Ac
n

Tn I A0⌋︀ = T(︀I An + I Ac
n

Tn I A0⌋︀, (3.35)

where the last equality follows from the induction hypothesis Hn . It follows from the

definition of An+1 that I An+1 TI An = I An+1 , and therefore

I An+1 = I An+1 T(︀I An + I Ac
n

Tn I A0 − I Ac
n

Tn I A0⌋︀

≤ I An+1 T(︀I An + I Ac
n

Tn I A0⌋︀+ I An+1 T(︀−I Ac
n

Tn I A0⌋︀

= I An+1 Tn+1I A0 + I An+1 T(︀−I Ac
n

Tn I A0⌋︀

≤ I An+1 Tn+1I A0 ≤ I An+1 ,

where the first inequality follows from T2130, the second inequality follows from the

fact that −I Ac
n

Tn I A0 ≤ 0 and therefore I An+1 T(︀−I Ac
n

Tn I A0⌋︀ ≤ 0 [use T1130 and T5130],

150



3.8. Ergodicity checking in practice

and the third from Tn+1I A0 ≤ 1 [use T5130]. The second equality follows from

Equation (3.35). Hence indeed I An+1 = I An+1 Tn+1I A0 .

(β) Next, observe that Ac
n+2 = Ac

n+1∪(An+1∖An+2). By definition, TI An+1(a) < 1

for all a ∈ An+1 ∖ An+2. It also follows from the induction hypothesis Hn that

TI An (a) < 1 for all a ∈ Ac
n+1. But since An+1 ⊆ An , it follows from T5130 that

TI An+1 ≤ TI An , and therefore also TI An+1(a) < 1 for all a ∈ Ac
n+1. Hence indeed

TI An+1(a) < 1 for all a ∈ Ac
n+2.

(γ) To finish the induction proof, let β := maxa∈Ac
n

Tn Iℛc (a), then β < 1 by the

induction hypothesis Hn . We then infer from Equation (3.35) that

Tn+1I A0 = T(︀I An + I Ac
n

Tn I A0⌋︀ ≤ T(︀I An +βI Ac
n
⌋︀ = T(︀β+(1−β)I An ⌋︀ =β+(1−β)TI An .

Consider any a ∈ Ac
n+1, then TI An (a) < 1 by the induction hypothesis Hn , and

therefore Tn+1I A0(a) ≤ β+(1−β)TI An (a) < 1 since also β < 1. We conclude that

Hn+1 holds too.

To continue the proof, we observe that A0, A1, . . . , An , . . . is a non-increasing

sequence, and that A0 is finite. This implies that there must be some first k ∈N≥0 such

that Ak+1 = Ak . Clearly, k ≤ ⋃︀A0⋃︀. We now prove by induction that Gn ∶ I Ak
Tn+k I A0 =

I Ak
for all n ≥ 0. The statement Gn clearly holds for n = 0: it follows directly from Hk .

We show that Gn ⇒Gn+1. First of all,

Tn+k+1I A0 = T(Tn+k I A0) = T(︀I Ak
Tn+k I A0 + I Ac

k
Tn+k I A0⌋︀ = T(︀I Ak

+ I Ac
k

Tn+k I A0⌋︀,

where the last equality follows from the induction hypothesis Gn . As before, it follows

from the definition of Ak+1 that I Ak+1
TI Ak

= I Ak+1
, and therefore I Ak

TI Ak
= I Ak

(remember that Ak+1 = Ak ), so

I Ak
= I Ak

T(︀I Ak
+ I Ac

k
Tn+k I A0 − I Ac

k
Tn+k I A0⌋︀

≤ I Ak
T(︀I An k + I Ac

k
Tn+k I A0⌋︀+ I Ak

T(︀−I Ac
k

Tn+k I A0⌋︀

= I Ak
Tn+k+1I A0 + I Ak

T(︀−I Ac
k

Tn+k I A0⌋︀ ≤ I Ak
Tn+k+1I A0 ≤ I Ak

,

where the first inequality follows from T2130 and the second inequality follows from

the fact that −I Ac
k

Tn+k I A0 ≤ 0 and therefore I Ak
T(︀−I Ac

k
Tn+k I A0⌋︀ ≤ 0 [use T1130

and T5130], and the third from Tn+k+1I A0 ≤ 1 [use T5130]. Hence indeed I Ak
=

I Ak
Tn+k+1I A0 .

There are now two possibilities. The first is that Ak ≠ ∅. It follows from the

arguments above that for any element a of Ak , T`Iℛc (a) = 1 for all ` ∈N≥0, which

implies that T cannot be top class absorbing. The second possibility is that Ak =∅. It

follows from the argument above that Tk Iℛc (a) < 1 for all a ∈ Ac
k =𝒳 which implies

that T is top class absorbing. ◻
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▷ Example 140: Define T f = max{M f ∶L ≤ M ≤U and M stochastic} where L and

U are given by

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0

0 1⇑4 1⇑4 0 0

1⇑2 1⇑4 0 0 0

0 0 0 0 0

0 1⇑2 0 0 1⇑4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0

1⇑2 3⇑4 1⇑2 0 0

3⇑4 1⇑2 0 0 0

1 0 0 1 1

1⇑4 3⇑4 0 0 1⇑4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The corresponding upper accessibility graph 𝒢(T) is given by

1

2

3

4

5

where {1} is corresponds to the unique strongly connected component that is final.

As it is a singleton, it has cyclicity one, so there is a regular top classℛ={1}.

To check for top class absorption, we start iterating:

step 1: TIℛc = (0 1 1⇑2 1 1)
T

whence I A1 = (0 1 0 1 1)
T

,

step 2: TI A1 = (0 3⇑4 1⇑2 1 1)
T

whence I A2 = (0 0 0 1 1)
T

,

step 3: TI A2 = (0 0 0 1 1⇑4)
T

whence I A3 = (0 0 0 1 0)
T

,

step 4: TI A3 = (0 0 0 1 0)
T

whence I A4 = (0 0 0 1 0)
T

.

Because A4 = A3 ≠∅ we conclude that T is not top class absorbing and therefore not

ergodic.

3.9 Coefficient of ergodicity

It is clear that ergodicity would follow immediately from Banach’s fixed

point theorem if T were contractive instead of non-expansive. With this

in mind, one might think that conditions for ergodicity might coincide

with contractiveness of T. This is not true. Take, for example, the particular

upper transition operator T = I𝒳 max, which is not contractive, but, by

Proposition 133145, clearly ergodic.

In addition to requiring the sequence {Tk h}k∈N≥0 to converge pointwise,

ergodicity also requires that the sequence converges to a constant gamble.
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Therefore, maxTn f −minTn f → 0 when n→∞. It seems therefore to be more

natural to focus on the so-called variation pseudo-norm defined by:

∏︁ f ∏︁v
:=max f −min f .

Under this pseudo-norm, upper transition operators will again be non-

expansive. The extra condition that makes the map T contractive is expressed

by Škulj and Hable [61] in terms of the coefficient of ergodicity. It is a standard

trick, see Nussbaum’s monograph [44], to use Hilbert’s projective metric to

show contraction. The variation norm we define can now be seen as an

additive version of Hilbert’s projective metric.

Proposition 141: If we define the coefficient of ergodicity of an upper

transition operator T as

ρ(T) :=max{∫︁Th∫︁
v
∶0 ≤ h ≤ 1} , (3.36)

then T is ergodic if ρ(Tm) < 1 for some m ∈N≥0.

Proof: Consider any f ∈ 𝒳 . It follows by repeatedly applying T5130, T3130 and T4130

that for all k ∈N≥0:

min f ≤minTk f ≤minTk+1 f ≤maxTk+1 f ≤maxTk f ≤max f . (3.37)

This tells us that the sequence minTk f is non-decreasing and bounded above. It

therefore converges to some real number m. Similarly, the sequence maxTk f is non-

increasing and bounded below, and therefore converges to some real number M . It is

also clear from Equation (3.37) that m ≤ M . Suppose that there is some p ∈N≥0 such

that ρ(Tp) < 1. Then we have to prove that m = M , which is what we now set out to

do.

Since 0 ≤ ( f −min f )⇑∏︁ f ∏︁v ≤ 1, we infer from Equation (3.36), (T3) and (T4) that

∫︁T f ∫︁
v

∏︁ f ∏︁v

= ⨄︁T
f −min f

∏︁ f ∏︁v

⨄︁
v

≤ ρ(T),

and therefore also

⋃︁Tk f ⋃︁
v
≤ ρ(Tk)∏︁ f ∏︁v for all k ∈N≥0. (3.38)

Then applying Equation (3.38) repeatedly tells us that for the upper transition operator

Λ := Tp :

∫︁Λn f ∫︁
v
≤ ρ(Tp)n∏︁ f ∏︁v for all n ∈N≥0.
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But this implies that maxΛn f −minΛn f = ∏︁Λn f ∏︁v → 0. Since we know from the

arguments above that maxΛn f → M and minΛn f → m, this implies that indeed

m = M . ◻

Not only does the coefficient of ergodicity allow us to decide in favour of

ergodicity, but by Equation (3.38) it also gives a numerical bound on the speed

of convergence. The main problem however is that, in the worst case, in order

to check for ergodicity in this manner, we need to calculate the coefficient

of ergodicity of Tk for powers k up to g(⋃︀𝒳 ⋃︀), where g is Landau’s function.

This renders this approach, as described in Section 3.8148, impractical from a

computational point of view, making our approach preferable.

The following section describes yet another alternate approach for

checking ergodicity.

3.10 The critical graph versus the upper accessibility graph

The aim of Akian and Gaubert’s paper [1] is to determine, for convex,

monotone and non-expansive maps Φ, combinatorial bounds on orbit

lengths of the described maps. Although the scope of Akian and Gaubert’s

paper is different, it overlaps to some extent with our work on the limit

behaviour of upper transition operators. Akian and Gaubert try to describe

the entire (additive) eigenspace of the mapΦ. Their tool of choice for doing

that is what they call the critical graph 𝒢c(Φ) of the map Φ. It is defined

as the final graph 𝒢 f (∂Φ(v)) of the subdifferential ∂Φ ofΦ evaluated in an

(additive) eigenvector v . Akian and Gaubert define the subdifferential of the

operatorΦ evaluated in any vector v as

∂Φ(v) := {M ∈R⋃︀𝒳 ⋃︀×⋃︀𝒳 ⋃︀∶(∀ f ∈R⋃︀𝒳 ⋃︀)Φ f −Φv ≥ M( f − v)} .

They show that the matrices M that belong to ∂Φ(v) are necessarily

stochastic matrices.

Let us now consider what happens in the special case thatΦ is an upper

transition operator T, in order to better understand the relationship between

their approach and ours. Given the constant additivity of T we can choose

any constant gamble as an (additive) eigenvector to calculate the critical

graph. To make things as simple as possible, we opt for the zero gamble. The
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subdifferential of T evaluated in this additive eigen vector then becomes

∂T(0) = {M ∈R⋃︀𝒳 ⋃︀×⋃︀𝒳 ⋃︀∶(∀ f ∈R⋃︀𝒳 ⋃︀)T f ≥ M( f )} = 𝒯 ,

which is the closed convex set of transition matrices that corresponds with

the upper transition operator T, as defined by Equation (3.19). The critical

graph 𝒢c(T) = 𝒢 f (∂T(0)) = 𝒢 f (𝒯 ) is then (defined as) the union of all the

final graphs of the stochastic matrices belonging to 𝒯 . A final graph of a

stochastic matrix can be found by interpreting this stochastic matrix as an

adjacency matrix and restricting the corresponding graph to its final classes

(see also the discussion in Section 3.8.1148).

By comparing the definitions of the upper accessibility graph 𝒢(T) and

the critical graph 𝒢c(T) for an upper transition operator T, we see that

the strongly connected components of 𝒢(T) have to be unions of strongly

connected components of𝒢c(T). It is also not too difficult to see that the final

classes of 𝒢(T) and the final classes of 𝒢c(T) are the same. This is exactly

what allows us to check for top class regularity using the (usually much)

cruder upper accessibility graph.

If the convex closed set of transition matrices 𝒯 corresponding with

T is given explicitly in terms of a finite set of extreme points, then the

calculation of the critical graph might be preferred over the calculation of

the accessibility graph. However, if no finite set of extreme points is given, a

vertex enumeration step is required (assuming that, unlike in Example 138149,

𝒯 has a finite number of extreme points). As it is provable that any algorithm

based on vertex enumeration cannot have polynomial time complexity, the

algorithm given by Akian and Gaubert becomes computationally intractable

in this case. This is where our algorithm stands out. The reason it does, is

because it works directly with the upper transition operator, and drops extra

eigen space information that is not needed when checking for ergodicity.

3.11 The eigenvector approach to imprecise Markov chains

In the classical analysis of precise Markov chains, convergence results

are usually reported in terms of eigenvalues of eigenvectors. A stationary

distribution is, for example, a left eigenvector belonging to eigenvalue 1

of the transition matrix. For imprecise Markov chains, this approach will

not be very fruitful in general. This is mainly because the linearity of the

operator is lost. For imprecise Markov chains with a two-dimensional state
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space 𝒳 = {x, y}, a gamble can always be written as constant gamble plus

a non-constant gamble and this sum can be pulled apart using constant

additivity as will become clearer later on. In this section, we focus on such

two-dimensional imprecise Markov chains.

In the binary case, the eigenequation is:

Tξ =λξ⇔
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

P(ξ⋃︀x) =λξ(x),

P(ξ⋃︀y) =λξ(y).

which can be written, using P465, as

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

ξ(x)+P ((︀ξ(y)−ξ(x)⌋︀I{y}⋃︀x) =λξ(x),

ξ(y)+P ((︀ξ(x)−ξ(y)⌋︀I{x}⋃︀y) =λξ(y).

We can continue from here using non-negative homogeneity. However then

we need to know the sign of ξ(x)−ξ(y). Therefore, the problem splits in two;

first we assume that ξ(x) ≥ ξ(y), and we call the corresponding solution ξx .

Afterwards we will find the solution for ξ(x) ≤ ξ(y) and denote this solution

by ξy .

If ξ(x) ≥ ξ(y), then we infer using P365 and the conjugacy relation

P(− f ) = −P( f ) that

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

ξ(x)+(︀ξ(y)−ξ(x)⌋︀P (I{y}⋃︀x) =λξ(x)
ξ(y)+(︀ξ(x)−ξ(y)⌋︀P (I{x}⋃︀y) =λξ(y).

In matrix form, this equation looks like11

(λ−1+P (I{y}⋃︀x) −P (I{y}⋃︀x)
−P (I{x}⋃︀y) λ−1+P (I{x}⋃︀y)

)

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
=:(λ12−M x y)

(ξ(x)
ξ(y)

)

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
ξ

= (0

0
) .

⧸︀
0

This means that the non-linear eigenvalue problem, has been transformed to

a linear one, with the extra constraint that the eigenfunctions ξ must satisfy

ξ(x) ≥ ξ(y). The eigenvalues of M x y are given by the zeros of its characteristic

equation:

0 =(λ−1)2+)︀P (I{x}⋃︀y)+P (I{y}⋃︀x)⌈︀(λ−1)
+P (I{x}⋃︀y)P (I{y}⋃︀x)−P (I{x}⋃︀y)P (I{y}⋃︀x) ,

11here 12 stands for the two dimensional identity matrix.
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or,

0 =(λ−)︀1−P (I{y}⋃︀x)−P (I{x}⋃︀y)⌈︀)(λ−1)
0 =(λ−)︀P (I{x}⋃︀x)−P (I{x}⋃︀y)⌈︀)(λ−1).

This means that there are two solutions for ξ(x) ≥ ξ(y). The first solution,

which we denote by ξ1, is the eigenfunction belonging to the eigenvalue λ = 1.

Solving M x y(1) = 0 shows us that ξ1 must be a constant gamble. The first

eigenvalue/eigenfunction pair is thus given by

TI𝒳 = I𝒳 . (3.39)

This equation is fairly trivial as it can be derived from constant additivity.

The second solution ξx , is the eigenfunction belonging to the eigenvalue

λx := P (Ix ⋃︀x)−P (Ix ⋃︀y). Besides satisfying ξx(x) ≥ ξx(y), this solution has to

satisfy

0 = P (I{x}⋃︀y)ξx(x)+P (I{y}⋃︀x)ξx(y).

Any non-negative multiple of I{x}P (I{y}⋃︀x)− I{y}P (I{x}⋃︀y) satisfies both

constraints. The eigenequation therefore becomes

T(I{x}P (I{y}⋃︀x)− I{y}P (I{x}⋃︀y))
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

ξx

= )︀P (I{x}⋃︀x)−P (I{x}⋃︀y)⌈︀
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

λx

ξx . (3.40)

In a similar manner, we can derive the eigenvalues and functions in the

case that ξ(x) ≤ ξ(y). If we do so, then we see that I𝒳 is again the eigen

gamble belonging to eigenvalue 1. The other eigenvalue λy is then equal to

λy := P (I{y}⋃︀y)−P (I{y}⋃︀x) and the corresponding eigenfunction ξy is given

by ξy := −I{x}P (I{y}⋃︀x)+ I{y}P (I{x}⋃︀y) and the eigenequation becomes

T(−I{x}P (I{y}⋃︀x)+ I{y}P (I{x}⋃︀y))
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

ξy

= )︀P (I{y}⋃︀y)−P (I{y}⋃︀x)⌈︀
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

λy

ξx . (3.41)

Unlike the linear case, where the number of eigenvalues corresponds to

the dimension of the problem, we now have three different eigenvalues and

corresponding eigenfunctions.

If we apply the upper transition operator T repeatedly to ξx , and we

assume that neither ξx = 0 nor ξy = 0, then we can prove, using complete
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induction, that

Tnξx =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

λn
x ξx λx ≥ 0,

νx ( 1−(λxλy)
⟩︀ n

2 (︁

1−λxλy
(1−λx)−1)+(λxλy)⟩︀

n
2 (︁+1 (νx +λn mod 2

x ξx)

λx < 0 and λy < 0 and 1 < n,

−νxλx(1−λn−1
y )+λxλ

n−1
y ξx otherwise.

Here we have used that

−ξx = νx +
1−λx

1−λy
ξy , with νx := P(I{y}⋃︀x)P(I{x}⋃︀y)−P(I{y}⋃︀x)P(I{x}⋃︀y),

−ξy = νy +
1−λy

1−λx
ξx , with νy := νx

1−λy

1−λx
.

What makes the two dimensional case especially attractive is that it is

possible, whenever ξx and ξy are nonzero, to express every gamble f as

the sum of a constant gamble and a non-negative multiple of one of the

eigenvectors ξx or ξy :

f =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

aI𝒳 +bξx f (x) ≥ f (y)
aI𝒳 +bξy f (x) < f (y)

where a ∈ R and b ∈ R≥0. This means that we can calculate any power of T,

applied to f as

Tn f =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

a+bTnξx f (x) ≥ f (y)
a+bTnξy f (x) < f (y)

We know that ⋃︀λ⋃︀ ≤ 1 (otherwise, the transition operator would be

expansive), so there is only one fixed point (up to a nonnegative multiple)

if both ⋃︀λx ⋃︀ < 1 and ⋃︀λy ⋃︀ < 1. This fixed point will be a multiple of ξ1 :=
I𝒳 , confirming Proposition 133145 and Theorem 132144. Observe that it is

extremely easy to find the limit value of Tn f : assuming for example that

f (x) ≥ f (y), we get that

lim
n→∞

Tn f =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

a λx ≥ 0,

a−bνxλx λx < 0 and λy ≥ 0,

a−bνxλx
1−λy

1−λxλy
λx < 0 and λy < 0.
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CHAPTER 4
Imprecise Markov trees

The last twenty years have witnessed a rapid growth of graphical models in

the fields of artificial intelligence and statistics. These models combine graphs

and probability to address complex multivariate problems in a variety of

domains, such as medicine, finance, risk analysis, defence, and environment,

to name just a few.

Much has been done also on the front of imprecise probability. In

particular, credal nets [8] have been and still are the subject of intense

research. A credal net creates a global model of a domain by combining

local uncertainty models using some notion of independence, and then uses

this to do inference. The local models represent uncertainty by closed convex

sets of probabilities, also called credal sets, and the notion of independence

used with credal nets in the vast majority of cases has been that of strong

independence (with some exceptions in [5]).

An alternative and attractive approach to expressing independence that

is not committed to the sensitivity analysis interpretation is offered by

epistemic irrelevance (Section 1.5.168).

The question we address in this chapter should be clear: can we

define credal nets based on epistemic irrelevance, and moreover create

an exact algorithm to perform efficient inferences with them? We give a

fully positive answer to this question in the special case that (i) the graph

under consideration is a directed tree, and (ii) the related variables assume

finitely many values. The intuitions that showed us the way towards this

result originated in previous work on imprecise probability trees (see [12]
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and Chapter 280) and imprecise Markov chains (see [14] and Chapter 3122)

and lead to our paper on imprecise Markov trees [13], of which this chapter

is a reflection.

In Section 4.1, we discuss preliminary graph-theoretic notions, and define

the local uncertainty models that will be used at each node of a tree. These

models are formalised through the language of coherent lower previsions

(see Section 1.4.360). We discuss how such local models will give rise to

a global uncertainty model, which plays the same role as the joint mass

function built by the chain rule in a Bayesian net. Based on the global

model, we state the Markov Condition that defines the imprecise-probability

interpretation of our credal trees. As was the case in the previous chapter,

this Markov Condition involves epistemic irrelevance rather than strong

independence.

In Section 4.3168, we turn to the problem of constructing the most

conservative global model based only on the local models in the tree and

our Markov Condition. We show that this task can be achieved by a recursive

construction that proceeds from the leaves to the root of the tree using two

operations: the independent natural extension discussed in Section 1.5.168

and studied at length in [18, 19], and the marginal extension, defined in

Theorem 3051, and studied in great detail in [41, 62]. We also show that all

uncertainty models we consider, the local ones as well as the global ones that

we create, satisfy a consistency criterion that generalises (and is based on

the same ideas as) the usual consistency criterion in Bayesian nets: they are

(separately and jointly) coherent as in Lemma 2951 [39, 40, 62, 69]. This is an

important rationality requirement.

We briefly comment on some of the graphical separation criteria induced

by epistemic irrelevance in Section 4.4173. We then go on to develop and

justify an algorithm for making inferences on credal trees under epistemic

irrelevance in Section 4.5174. The algorithm is used to update the tree: it

computes posterior beliefs about a target variable in the tree conditional on

the observation of other variables, which are called instantiated, meaning

that their value is determined. It can in particular be used for treating the

model as an expert system.

Our algorithm is based on message passing, as are the traditional

algorithms that have been developed for precise graphical models. It has

some remarkable properties: (i) it works in time essentially linear in the size
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4. IMPRECISE MARKOV TREES

of the tree; (ii) it natively computes posterior lower and upper previsions

(or expectations) rather than probabilities; (iii) it is the first algorithm

developed for credal nets that exclusively uses the formalism of coherent

lower previsions; and (iv) we show that, under very mild conditions, using

the tree for updating beliefs cannot lead to inferences that are inconsistent

with the local models we have started from, nor with one another.

We give a step-by-step example of the way inferences can be drawn using

our algorithm in Section 4.6182. We also comment there on the intriguing

relationship between the failure of certain classical separation properties in

our framework, and the phenomenon of dilation [30, 50].

4.1 Credal trees under epistemic irrelevance

4.1.1 Basic notions and notation

We consider a rooted and directed discrete tree with finite width and depth. As

the graphical structure is a tree, like in Chapter 280, a lot of the notation can be

reused in the chapter. We call S the set of its nodes s, and we denote the root,

or initial node, by◻. As will become clearer later on, the nodes in an imprecise

Markov chain contain random variables, which is in contradistinction with

imprecise probability trees, where the nodes contain situations. For any node

s, we denote the set of its parents by pa(s). Of course, pa(◻) = ∅, and for

s ≠ ◻ we have that pa(s) = {mo(s)} where mo(s) is the mother node of s.

Also, for each node s, we denote the set of its children by ch(s), and the

set of its siblings by sib(s). Clearly, sib(◻) = ∅, and if s ≠ ◻ then sib(s) =
ch(mo(s))∖{s}. If ch(s) = ∅, then we call s a leaf, or terminal node. We

denote by S◊ := {s ∈S∶ch(s) ≠∅} the set of all non-terminal nodes.

For nodes s and t , we write s ⊑ t if s precedes t , i.e., if there is a directed

segment in the tree from s to t . The relation ⊑ is a special partial order

on the set S. ancest(s) := {t ∈S∶ t ⊏ s} denotes the chain of ancestors of s,

and desc(s) := {t ∈S∶ s ⊏ t} its set of descendants. Here s ⊏ t means that

s ⊑ t and s ≠ t . We also use the notation ↓s := ancest(s)∪{s} for the chain

(segment) connecting ◻ and s, and ↑s := desc(s)∪{s} for the subtree with

root s. Similarly, we let ↓S :=⋃{↓s∶ s ∈ S} and ↑S :=⋃{↑s∶ s ∈ S} for any subset

S ⊆S.

With each node s of the tree, there is associated a variable Xs assuming

values in a non-empty finite set 𝒳s . We extend this notation to more
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4.1. Credal trees under epistemic irrelevance

complicated situations as follows. If S is any subset ofS, then we denote by XS

the tuple of variables whose components are the Xs for all s ∈ S. This new joint

variable assumes values in the finite set𝒳S = ×s∈S𝒳s , and the corresponding

set of gambles is denoted byℒ(𝒳S).1 Generic elements of𝒳s are denoted by

xs or zs . Similarly for xS and zS in𝒳S . Also, if we mention a tuple zS , then for

any t ∈ S, the corresponding element in the tuple will be denoted by zt . We

assume all variables in the tree to be logically independent, meaning that

the variable XS may assume all values in𝒳S , for all ∅⊆ S ⊆S. We also find it

convenient to identify a gamble on𝒳S with its cylindrical extension to𝒳U ,

where S ⊆U ⊆S.

Throughout this chapter, we consider (conditional) lower previsions as

models for a subject’s beliefs about the values that certain variables in the

tree may assume (see Section 1.4.360). We use a systematic notation for such

(conditional) lower previsions. Let I ,O ⊆S be disjoint sets of nodes with O ≠
∅, then we generically2 denote by VO(⋅⋃︀X I ) a conditional lower prevision

(see Definition 5166), defined on the set of gambles ℒ(𝒳I∪O).3 For every

gamble f on𝒳I∪O and every xI ∈ 𝒳I , VO( f ⋃︀xI ) is the lower prevision (or lower

expectation, or our subject’s supremum buying price) for/of the gamble f ,

conditional on the event that X I = xI . We interpret VO( f ⋃︀X I ) as a real-valued

map (gamble) on 𝒳I that assumes the value VO( f ⋃︀xI ) in the element xI

of 𝒳I . The conjugate conditional upper prevision VO(⋅⋃︀X I ) is defined on

ℒ(𝒳I∪O) by VO( f ⋃︀X I ) := −VO(− f ⋃︀X I ) for all gambles f on 𝒳I∪O . We will

always implicitly assume that all conditional models VO(⋅⋃︀X I ) we use are

separately coherent, meaning that they satisfy properties P165, P265 and

P365 of Proposition 4864 and that VO( f ⋃︀xI ) = VO( f (xI , ⋅)⋃︀xI ). Hereafter, we

will frequently introduce conditional lower previsions of the type VO(⋅⋃︀X I ) as

if they are defined onℒ(𝒳O), simply because that is a very natural thing to

do: such a conditional lower prevision is usually interpreted as representing

1 For any subset S ofS,𝒳S is defined formally as the set of all maps xS of S to⋃s∈S𝒳s , such
that xS(s) = xs ∈ 𝒳s for all s ∈ S. So when S =∅, the empty product𝒳∅ is defined as the set of all
maps from∅ to∅, which is a singleton. The corresponding variable X∅ can then only assume
this single value, so there is no uncertainty about it.ℒ(𝒳∅) can be identified with the set R of
real numbers.

2Besides the letter V, we will also use the letters P, Q and R.
3In keeping with the observation in footnote 1, we also allow I = ∅, which means

conditioning on the variable X I = X∅, which can only assume one single value. This means that
VO(⋅⋃︀X∅) =: VO effectively becomes an unconditional lower prevision onℒ(𝒳O∪∅) =ℒ(𝒳O).
This is a very useful device that allows us to use the same generic notation for both conditional
and unconditional lower previsions.
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beliefs about the variable XO , conditional on values of the variable X I .

As soon as we consider a number of such conditional lower previsions

VOk (⋅⋃︀X Ik ), k = 1, . . . ,n, they should satisfy more stringent consistency criteria

than that each of them should be separately coherent: they should also be

consistent with one another in the sense of Walley’s (joint) coherence. For

more details about this much more involved type of coherence, we refer to

[39, 40, 62] and Definition 2951.

4.1.2 Local uncertainty models

We now add a local uncertainty model to each of the nodes s. If s is

not the root node, i.e. has a mother mo(s), then this local model is a

(separately coherent) conditional lower prevision Qs(⋅⋃︀Xmo(s)) onℒ(𝒳s): for

each possible value zmo(s) of the variable Xmo(s) associated with its mother

mo(s), we have a coherent lower prevision Qs(⋅⋃︀zmo(s)) for the value of Xs ,

conditional on Xmo(s) = zmo(s). In the root, we have an unconditional local

uncertainty model Q◻ for the value of X◻; Q◻ is a (separately) coherent lower

prevision onℒ(𝒳◻). We use the common generic notation Qs(⋅⋃︀Xpa(s)) for

all these local models.

4.1.3 Global uncertainty models

We intend to show in Section 4.3168 how all these local models Qs(⋅⋃︀Xmo(s))
can be combined into global uncertainty models. We generically denote

such global models using the letter P. More specifically, we want to end up

with an unconditional joint lower prevision P := P↑◻ = PS on ℒ(𝒳S) for all

variables in the tree, as well as conditional lower previsions P↑s(⋅⋃︀Xmo(s))
on ℒ(𝒳↑s) for all non-initial nodes s, and P↑ch(t)(⋅⋃︀X t) on ℒ(𝒳↑ch(t)) for all

non-terminal nodes t .

Ideally, we want these global (conditional) lower previsions (i) to be

compatible with the local assessments Qs(⋅⋃︀Xmo(s)), s ∈S, (ii) to be coher-

ent with one another, and (iii) to reflect the conditional irrelevancies (or

Markov-type conditions) that we want the graphical structure of the tree

to encode. In addition, we want them (iv) to be as conservative (small) as

possible.

In this list, the only item that needs more explanation concerns the

Markov-type conditions that the tree structure encodes. This is what we

turn to now.
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4.1. Credal trees under epistemic irrelevance

4.1.4 The interpretation of the graphical model

In classical Bayesian nets, the graphical structure is taken to represent the

following assessments: for any node s, conditional on its parent variables, its

non-parent non-descendant variables are epistemically irrelevant to it (and

therefore also independent).

In the present context, we assume that the tree structure embodies

the following conditional irrelevance assessment, which turns out to be

equivalent with the conditional independence assessment above in the

special case of a Bayesian tree.

CI. Consider any node s in the tree, any subset S of its set of children

ch(s), and the set4 ⊥(S) :=⋂c∈S ⊥(c) of their common non-parent non-

descendants. Then conditional on the mother variable Xs , the non-

parent non-descendant variables X⊥(S) are assumed to be epistemic-

ally irrelevant to the variables X↑S associated with the children in S

and their descendants:

X⊥(S) EI X↑S ⋃︀Xs .

This interpretation turns the tree into a credal tree under epistemic irrelev-

ance, and we also introduce the term imprecise Markov tree (IMT) for it. For

the global models we are considering here, CI has the following consequences.

It implies that for all s ∈S◊, all non-empty S ⊆ ch(s) and all I ⊆⊥(S), we can

infer from P↑S(⋅⋃︀Xs) a model P↑S(⋅⋃︀X{s}∪I ), where for all z{s}∪I ∈ 𝒳{s}∪I , with

obvious notations:5

P↑S( f ⋃︀z{s}∪I ) := P↑S( f (⋅, zI )⋃︀zs) for all gambles f inℒ(𝒳↑S∪I ), (4.1)

where f (⋅, zI ) denotes a partial map of f , defined on𝒳↑S .

We discuss some of the separation properties that accompany this

interpretation in Section 4.4173. For now, we focus on two immediate con-

sequences that will help us go from local to global models in Section 4.3168.

First, consider some node s. Then CI tells us that for any two children

c1,c2 ∈ ch(s) of s, the variable X↑c1 is epistemically irrelevant to the variable

X↑c2 , conditional on Xs .

4Here the set ⊥(c) of non-parents non-descendants of the node c is defined by ⊥(c) :=
S∖(pa(c)∪desc(c)).

5For leaves s, the corresponding irrelevance condition is trivial, as the set ch(s) of children
of s is empty.
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Xs

X↑c1
. . . X↑c2

It even tells us that for any two disjoint non-empty sets S1 ⊆ ch(s) and S2 ⊆
ch(s) of children of s, the variable X↑S1 is epistemically irrelevant to X↑S2 ,

conditional on Xs . We conclude that, conditional on a node, all its children

c (and the variables associated with their sub-trees ↑c) are epistemically

independent (see Section 1.5.168), in the specific sense to be discussed in the

next section.

Next, consider some non-terminal node s different from ◻, and its

mother variable Xmo s . We infer from CI that this mother variable Xmo s is

epistemically irrelevant to the variable X↑ch(s) conditional on Xs :

Xmo(s)

Xs

X↑c1
. . . X↑cn

or equivalently,

Xmo(s)

Xs

X↑ch(s)

4.2 Factorising lower previsions

The following notion of factorisation is intimately linked with that of an

independent product (see [17, Theorem 24] and Section 1.5.168). It will also

play a crucial part in our development of an algorithm for updating an

imprecise Markov tree in Section 4.5174.

Definition 142: We call a (separately) coherent lower prevision P N on

ℒ(𝒳N) strongly factorising if for all disjoint proper subsets O and I of N , all

g ∈ ℒ(𝒳O) and all non-negative f ∈ ℒ(𝒳I ), P N( f g) = P N( f P N(g)).

As an important example, the so-called strong product ⊠n∈N P n [8] of the

marginal lower previsions P n is factorising [19].6

6This type of independent product comes to the fore in a study of credal nets under strong
independence.
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4.2. Factorising lower previsions

As a consequence of the separate coherence of the joint lower prevision

P N , the right-hand side of the equality in this definition can be rewritten as:

P N( f P N(g)) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

P N( f )P N(g) if P N(g) ≥ 0

P N( f )P N(g) if P N(g) ≤ 0
.

If fi ∈ ℒ≥0(𝒳i ) for i ∈ I then this equation implies that

P N(P N(g∏
i∈I

) fi ) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

P o(g)∏i∈I P i ( fi ) if P o(g) ≥ 0

P o(g)∏i∈I P i ( fi ) if P o(g) ≤ 0,

which explains where the term ‘factorising’ comes from. In particular, for any

(separately) coherent factorising joint lower prevision P N , we see that for any

non-empty subset I of N :

P N(×i∈I Ai ) =∏
i∈I

P N(Ai ) and P N(×i∈I Ai ) =∏
i∈I

P N(Ai ), (4.2)

where Ai ⊆𝒳i for all i ∈ I .

The independent natural extension has very interesting and non-trivial

marginalisation and associativity properties (Proposition 6072). Consider

any non-empty subset R of N , then the independent natural extension

satisfies

⊗n∈N𝒜Xn
= (⊗r∈R𝒜Xr

)⊗ (⊗n∈N∖R𝒜Xn
) and

margR (⊗n∈N𝒜Xn
) =⊗r∈R𝒜Xr

.

The corresponding lower prevision for any gamble f ∈ ℒ(𝒳N) will be given

by

(⊗n∈N P n)( f ) := {α ∈R∶ f −α ∈ ⊗n∈N𝒜Xn
} (4.3)

and they satisfy (see also [19] and Proposition 6273)

(⊗r∈R P r )(g) = (⊗n∈N P n)(g) for all gambles g on𝒳R . (4.4)

Moreover, for any partition N1 and N2 of N , we have that

⊗n∈N P n = (⊗n1∈N1
P n1)⊗ (⊗n2∈N2

P n2) , (4.5)

so⊗n∈N P n is the independent natural extension of its𝒳N1 -marginal⊗n1∈N1
P n1

and its𝒳N2 -marginal ⊗n2∈N2
P n2 .
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If confronted with a finite set of marginal lower previsions, P n on𝒳n with

n ∈ N , then De Cooman, Miranda and Zaffalon proved [19, Theorem 24], that

the independent natural extension ⊗n∈N P n is factorising.

Theorem 143: Consider coherent lower previsions P n on ℒ(𝒳n), n ∈ N .

Then their independent natural extension ⊗n∈N P n is factorising.

4.3 Constructing the most conservative joint

Let us show how to construct specific global models for the variables in

the tree, and argue that these are the most conservative coherent models

that extend the local models and express all conditional irrelevancies (4.1),

encoded in the imprecise Markov tree. In Section 4.5174, we will use these

global models to construct and justify an algorithm for updating the

imprecise Markov tree.

The crucial step lies in the recognition that any tree can be constructed

recursively from the leaves up to the root, by using basic building blocks of

the following type:

Xmo(s)

Xs

X↑c1 X↑c2
. . . X↑cn

Qs(⋅⋃︀Xmo(s))

P↑ck
(⋅⋃︀Xs)

The global models are then also constructed recursively, following the same

pattern. In what follows, we first derive the recursion equations for these

global models in a heuristic manner. The real justification for using the global

models thus derived is then given in Theorem 146172.

Consider a node s and suppose that, in each of its children c ∈ ch(s), we

already have a global conditional lower prevision P↑c(⋅⋃︀Xs) on ℒ(𝒳↑c) [or

equivalently, onℒ(𝒳{s}∪↑c)].

Given that, conditional on Xs , the variables X↑c , c ∈ ch(s) are epistem-

ically independent [see Section 4.1.4165, condition CI], the discussion in

Section 4.2166 leads us to combine the ‘marginals’ P↑c(⋅⋃︀Xs), c ∈ ch(s) into

their point-wise smallest conditionally independent product (conditionally

independent natural extension) ⊗c∈ch(s)P↑c(⋅⋃︀Xs), which is a conditional

lower prevision P↑ch(s)(⋅⋃︀Xs) onℒ(𝒳↑ch(s)) [or equivalently, onℒ(𝒳↑s)]:
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4.3. Constructing the most conservative joint

Xmo(s)

Xs

X↑ch(s)

Qs(⋅⋃︀Xmo(s))

⊗c∈ch(s)P↑c(⋅⋃︀Xs) =: P↑ch(s)(⋅⋃︀Xs)

Next, we need to combine the conditional models Qs(⋅⋃︀Xmo(s)) and

P↑ch(s)(⋅⋃︀Xs) into a global conditional model about X↑s . Given that, con-

ditional on Xs , the variable Xmo s is epistemically irrelevant to the variable

X↑ch(s) [see Section 4.1.4165, condition CI], we expect P↑ch(s)(⋅⋃︀X{mo s,s})
and P↑ch(s)(⋅⋃︀Xs) to coincide [this is a special instance of Equation (4.1)].

The most conservative (point-wise smallest) coherent way of combining

the conditional lower previsions P↑ch(s)(⋅⋃︀X{mo s,s}) and Qs(⋅⋃︀Xmo(s)) con-

sists in taking their marginal extension Qs(P↑ch(s)(⋅⋃︀X{mo s,s})⋃︀Xmo(s)) =
Qs(P↑ch(s)(⋅⋃︀Xs)⋃︀Xmo(s)); see [41, 62] and Theorem 3051 for more details.

Graphically:

Xmo(s)

X↑s Qs(P↑ch(s)(⋅⋃︀Xs)⋃︀Xmo(s)) =: P↑s(⋅⋃︀Xmo(s))

Summarising, and also accounting for the case s = ◻, we can construct

a global conditional lower prevision P↑s(⋅⋃︀Xmo(s)) on ℒ(𝒳↑s) by backwards

recursion:

P↑ch(s)(⋅⋃︀Xs) :=⊗c∈ch(s)P↑c(⋅⋃︀Xs) (4.6)

P↑s(⋅⋃︀Xmo(s)) :=Qs(P↑ch(s)(⋅⋃︀Xs)⋃︀Xmo(s)) =Qs(⊗c∈ch(s)P↑c(⋅⋃︀Xs)⋃︀Xmo(s)),

(4.7)

for all s ∈S◊. If we start with the ‘boundary conditions’

P↑t(⋅⋃︀Xmo(t)) :=Qt(⋅⋃︀Xmo(t)) for all leaves t , (4.8)

then the recursion relations (4.6) and (4.7) eventually lead to the global

joint model P◻ = P↑◻(⋅⋃︀Xmo(◻)), and to the global conditional models

P↑ch(s)(⋅⋃︀Xs) for all non-terminal nodes s. For any subset S ⊆ ch(s), the global

conditional model P↑S(⋅⋃︀Xs) can then be defined simply as the restriction of
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4. IMPRECISE MARKOV TREES

the model P↑ch(s)(⋅⋃︀Xs) onℒ(𝒳↑ch(s)) to the setℒ(𝒳↑S):

P↑S(g ⋃︀Xs) := P↑ch(s)(g ⋃︀Xs) for all gambles g on𝒳↑S . (4.9)

It follows from the discussion leading to Equation (4.6) that, more directly

[see Equation (4.4)],

P↑S(⋅⋃︀Xs) =⊗c∈S P↑c(⋅⋃︀Xs). (4.10)

For easy reference, we will in what follows refer to this collection of global

models as the family of global models 𝒯 (P), so

𝒯 (P) := {P}∪{P↑S(⋅⋃︀Xs)∶ s ∈S◊ and non-empty S ⊆ ch(s)} .

We end this section by discussing a number of interesting properties for

the family of global models 𝒯 (P) we can derive in this way. Let us call any

real functionalΦ on ℒ strictly positive ifΦ(I{x}) > 0 for all x ∈ 𝒳. The proofs

of the following two propositions can be found in [13].

Proposition 144: If all the local models Qs(⋅⋃︀Xmo(s)), s ∈ S are strictly

positive, then so are all the global models in 𝒯 (P).

Proposition 145: Consider any non-empty subset E of S and any xE ∈ 𝒳E . If

P({xE}) > 0 then also P↑c({xE∩↑c}⋃︀xe) > 0 for all e ∈ E and all c ∈ ch(e).7

Before we formulate the most important result in this section (and

arguably, in this chapter), we provide some motivation. Suppose we have

some family of global models

𝒯 (V ) := {V}∪{V↑S(⋅⋃︀Xs)∶ s ∈S◊ and non-empty S ⊆ ch(s)}

associated with the tree. How do we express that such a family is compatible

with the assessments encoded in the tree?

First of all, we require that our global models should extend the local

models:

V1. For each s ∈S, Qs(⋅⋃︀Xmo(s)) is the restriction of V↑s(⋅⋃︀Xmo(s)) toℒ(𝒳s).

The second requirement is that our models should satisfy the rationality

requirement of coherence:

7Observe that this holds trivially also if E ∩↑c =∅, because then𝒳E∩↑c =𝒳∅ is a singleton
[see footnote 1163] whose upper probability is 1 by separate coherence.

170



4.3. Constructing the most conservative joint

V2. The (conditional) lower previsions in 𝒯 (V ) are jointly coherent.

The third requirement needs some preparatory explanation: the global

models should reflect all epistemic irrelevancies encoded in the graphical

structure of the tree. Naively, we would want condition (4.1) to be satisfied.

The problem is that only the right-hand side in Equation (4.1), involving

the model V↑S(⋅⋃︀Xs) is directly available to us. To get to the left-hand

side involving the model V↑S(⋅⋃︀X{s}∪I ), one naive approach would be to

‘condition the joint model V = VT on the variable X{s}∪I ’. But we have

seen in Proposition 5367 that given a joint model, coherence in general

only determines the conditional models uniquely, provided that the lower

probability of the conditioning event is non-zero. This is a fairly strong

condition, and in what follows we would generally prefer to work with the

much weaker condition that the upper probability of the conditioning event

is non-zero.

Nevertheless, as soon as we realise that all we can reasonably require

from our models is that they should be coherent, the right approach

readily suggests itself: we should require that if we use the available

models V↑S(⋅⋃︀Xs) to define the models V↑S(⋅⋃︀X{s}∪I ) through the epistemic

irrelevance condition (4.1), then the result should still be coherent:

V3. If we define the conditional lower previsions V↑S(⋅⋃︀X{s}∪R), s ∈S◊, S ⊆
ch(s) and R ⊆⊥(S) through the epistemic irrelevance requirements

V↑S( f ⋃︀z{s}∪R) :=V↑S( f (⋅, zR)⋃︀zs) for all gambles f inℒ(𝒳↑S∪R),

then all these models together should be (jointly) coherent with all the

available models in the family 𝒯 (V ).

And there is a final requirement, which guarantees that all inferences we

make on the basis of our global models are as conservative as possible, and

are therefore based on no other considerations than what is encoded in the

tree:

V4. The models in the family 𝒯 (V ) are dominated (point-wise) by the

corresponding models in all other families satisfying requirements TV1–

TV3.

It turns out that the family of models 𝒯 (P) we have been constructing

above satisfy all four requirements.
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Theorem 146: If all local models Qs(⋅⋃︀Xmo(s)) on ℒ(𝒳s), s ∈ S are strictly

positive, then the family of global models 𝒯 (P), obtained through Equa-

tions (4.6)–(4.9), constitutes the point-wise smallest family of (conditional)

lower previsions that satisfy TV1170–TV3. It is therefore the unique family

to also satisfy TV4. Finally, consider any non-empty set of nodes E ⊆S and

the corresponding conditional lower prevision derived by applying regular

extension:

R( f ⋃︀xE) :=max{µ ∈R∶P↑T (I{xE}
(︀ f −µ⌋︀) ≥ 0}

for all f ∈ ℒ(𝒳T ) and all xE ∈ 𝒳E . Then the conditional lower prevision

R(⋅⋃︀XE) is (jointly) coherent with the global models in the family 𝒯 (P).

The last statement of this theorem guarantees that if we use regular extension

to update the tree given evidence XE = xE , i.e., derive conditional models

R(⋅⋃︀xE) from the joint model P = P↑T , such inferences will always be coherent.

This is of particular relevance for the discussion in Section 4.5174, where we

derive an efficient algorithm for updating the tree using regular extension. It

implies in particular that our algorithm produces coherent inferences.

Proof: We will prove this theorem using the machinery of sets of acceptable gambles

developed in the first chapter. We start by picking, for every node s, any tuple (one

for every z in 𝒳mo(s)) of coherent sets of acceptable gambles 𝒜s)︁Xmo(s) that is

compatible with the local coherent conditional upper prevision Q s(⋅⋃︀Xmo(s)).

The proper combination of these sets of acceptable gambles is done as explained,

by applying marginal extension and independent natural extension in an iterative

fashion:

𝒜↓s)︁Xmo(s) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝒜s)︁Xmo(s)+∑xs∈𝒳s
I{z} (⊗c∈ch(s)𝒜↓c(︁z) when s ∈S◊,

𝒜s)︁Xmo(s) when s is terminal.

(4.11)

It follows immediately from the finite character of the tree, Properties 2749 and 2548,

Theorem 3051 and Lemma 5971, that𝒜↓s)︁Xmo(s) is the smallest (jointly) coherent

set of acceptable gambles that, by construction, encodes all necessary epistemic

irrelevancies.

We moreover know from Propositions 144170 and 145170 that the joint set of

almost acceptable gambles,𝒜↓◻, will not contain a practically impossible event. This

means that𝒜↓s)︁Xmo(s) is the result of properly updating and marginalising𝒜↓◻.

Clearly, the resulting joint set of acceptable gambles𝒜↓◻ does depend on the local

sets of acceptable gambles we have chosen initially. However, by ‘translating’ (use
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Theorem 112130 for Marginal Extension and the Proposition 6273 for the independent

naturals extension ) Equation (4.12) to lower previsions, we infer that

P↑s(⋅⋃︀Xmo(s)) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

Qs(⊗c∈ch(s)P↑c(⋅⋃︀Xs)⋃︀Xpa(s)) when s ∈S◊,

Qs(⋅⋃︀Xpa(s)) when s is terminal.
(4.12)

which are exactly Equations (4.7) and (4.8). More importantly, these equations do

no longer depend on the local sets of acceptable gambles that were chosen initially.

Hence, we may conclude that the global models P↑s(⋅⋃︀Xmo(s)) satisfy V1170–V3171

and V4171.

In the beginning of the proof, we were allowed to select any local set of acceptable

gambles𝒜s , compatible with the local lower prevision Qs(⋅⋃︀Xpa(s)). If we take not

just any set, but the (unique) set of almost desirable gamblesℛs , then we infer from

Proposition 5367 that R(⋅⋃︀xE) is the lower prevision that is compatible with the joint

set of almost desirable gambles, updated on xE ,ℛ↓◻(︁xE , whence R(⋅⋃︀xE) has to be

coherent with the global models P↑s(⋅⋃︀Xpa(s)), s ∈S and P↑ch(s)(⋅⋃︀Xs). ◻

4.4 Some separation properties

Without going into too much detail, we would like to point out some of the

more striking differences between the separation properties in imprecise

Markov trees under epistemic irrelevance, and the more usual ones that are

valid for Bayesian nets [47], which are also inherited from Bayesian nets by

credal nets under strong independence [8].

It is clear from the interpretation of the graphical model described in

Section 4.1.4165 that we have the following simple separation results:

Xi1 Xi2 Xt Xi2Xi1 Xt

where in both cases, Xi2 separates X t from Xi1 : when the value of Xi2 is

known, additional information about the value of Xi1 does not affect beliefs

about the value of X t . In this figure, between i1 and i2, and between i2 and t ,

there may be other nodes, but the arrows along the path segment through

these nodes should all point in the indicated directions. The underlying idea

is that t is a (descendant of some) child c of i2, and conditional on the mother

i2 of c , the non-parent non-descendant i1 of c is epistemically irrelevant to c

and all of its descendants.
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On the other hand, and in contradistinction with what we are used to

in Bayesian nets, we will not generally have separation in the following

configuration:

Xi1 Xi2 Xt

where Xi2 does not necessarily separate X t from Xi1 . We will come across a

simple counterexample in Section 4.6182. Where does this difference with the

case of Bayesian nets originate? It is clear from the reasoning above that Xi2

separates Xi1 from X t : conditional on Xi2 , X t is epistemically irrelevant to

Xi1 . For precise probability models, irrelevance always implies symmetrical

independence, and therefore this will imply that conditional on Xi2 , Xi1 is

epistemically irrelevant to X t as well. But for imprecise probability models

no such symmetry is guaranteed [7], and we therefore cannot infer that,

generally speaking, Xi2 will separate Xi1 from X t . As a general rule, we can

only infer separation if the arrows point from the ‘separating’ variable Xi2

towards the ‘target’ variable X t .

4.5 An efficient algorithm for updating in an imprecise Markov

tree

We now consider the case where we are interested in drawing inferences

about the value of the variable X t in some target node t , when we know the

values xE of the variables XE in a set E ⊆S∖{t} of evidence nodes; see for

instance Fig 4.1179 on page 179.

4.5.1 The formulation of the problem

If we assume that the values of the remaining variables are missing at

random, then we can do this by conditioning the joint P obtained above

on the available evidence ‘XE = xE ’; see for instance [22, 70].

We will address this problem by updating the lower prevision P to the

lower prevision Rt(⋅⋃︀xE) on ℒ(𝒳t) using regular extension (see Proposi-

tion 5367 and [62, Appendix J]):

Rt(g ⋃︀xE) =max{µ ∈R∶P(I{xE}
(︀g −µ⌋︀) ≥ 0} (4.13)

for all gambles g on 𝒳t , assuming that P({xE}) > 0. Theorem 146172

guarantees that such inferences are coherent. The conditions that the local
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models should satisfy for this positivity assumption to hold are given in

Proposition 145170.

Consider the map

ρg ∶R→R∶µ↦ P(I{xE}
(︀g −µ⌋︀).

We know from Lemma 5468, that ρg is continuous, concave and non-

increasing. Hence {µ ∈R∶ρg (µ) ≥ 0} = (−∞,Rt(g ⋃︀xE)⌋︀, which shows that the

supremum that we should have a priori used in (4.13) is indeed a maximum.

Rt(g ⋃︀xE) is the right-most zero of ρg , and it is, again by separate coherence

of P, guaranteed to lie between the smallest value min g and the largest

value max g of g . If moreover P({xE}) > 0, then Theorem 5367 implies that

Rt(g ⋃︀xE) is the unique zero of ρg . If on the other hand P({xE}) = 0, then

(−∞,Rt(g ⋃︀xE)⌋︀ is the set of all zeros of ρg . It appears that any algorithm for

calculating Rt(g ⋃︀xE) will benefit from being able to calculate the values of

ρg , or even more simply, to check their signs, efficiently.

4.5.2 Calculating the values of ρg recursively

We now recall from Section 4.3168 that the joint P can be constructed

recursively from leaves to root. The idea we now use is that calculating

ρg (µ) = P(I{xE}
(︀g −µ⌋︀) becomes easier if we graft the structure of the tree

onto the argument gµ := I{xE}
(︀g −µ⌋︀ as follows. Define

gµs :=

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

I{xs}
if s ∈ E

g −µ if s = t

1 if s ∈S∖(E ∪{t}),

then gµs ∈ ℒ(𝒳s) and gµ =∏s∈S gµs . Also define, for any s ∈S, the gamble φµs
on𝒳↑s by φµs :=∏u∈↑s gµu . Then

φ
µ
◻ = gµ and φµs ≥ 0 if s ⇑⊑ t ,

and

φ
µ
s = gµs ∏

c∈ch(s)

φ
µ
c for all s ∈S, (4.14)

where we use the convention that any product over an empty set of indices

equals one. Equation (4.14) is the argument counterpart of Equation (4.7).

Also, if s ⇑⊑ t then gµs and φ
µ
s do not depend on µ, nor on g . Indeed, in that
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case

φ
µ
s = I{xE∩↑s}

. (4.15)

First, let us consider the nodes s ⇑⊑ t .

We define the messages πs and πs recursively by

πs :=Qs(gµs ∏
c∈ch(s)

πc ⨄︀Xmo(s)) and πs :=Qs(gµs ∏
c∈ch(s)

πc ⨄︀Xmo(s)). (4.16)

We summarise such a pair by the notation: πs :=Qs(gµs ∏c∈ch(s)πc ⋃︀Xmo(s)) :=
(πs ,πs). Then there are two possibilities:

πs =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

Qs({xs}⋃︀Xmo(s))∏
c∈ch(s)

πc(xs) if s ∈ E ,

Qs( ∏
c∈ch(s)

πc ⨄︀Xmo(s)) if s ∉ E ,

πs =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

Qs({xs}⋃︀Xmo(s))∏
c∈ch(s)

πc(xs) if s ∈ E ,

Qs( ∏
c∈ch(s)

πc ⨄︀Xmo(s)) if s ∉ E .

The messages πs and πs are gambles on𝒳mo(s), and can therefore be seen

as tuples of real numbers, with as many components πs(xmo(s)) as there

are elements xmo(s) in𝒳mo(s). They are all non-negative. As their notation

suggests, they do not depend on the choice of g or µ, but only (at most) on

which nodes are instantiated, i.e., belong to E , and on which value xE the

variable XE for these instantiated nodes assumes.

It then follows from Equations (4.7) and (4.14) and the strong factorisation

property8 that

P↑s(φµs ⋃︀Xmo(s)) =πs and P↑s(φµs ⋃︀Xmo(s)) =πs . (4.17)

8This, together with the course of reasoning leading to Equation (4.21), shows that the results
of updating the tree (and the algorithm we are deriving) in this way will be exactly the same for
any way of forming a product of the local models for the children of s, provided only that this
product is strongly factorising. For instance, replacing the conditionally independent natural
extension with the strong product in Equation (4.6) will lead to exactly the same inferences. Of
course, this should not be taken to mean that our algorithm also works for updating credal trees
under strong independence.
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Next, we turn to nodes s ⊑ t .

Define the messages πµs by

π
µ
s :=Qs(ψµ

s ⋃︀Xmo(s)), (4.18)

where the gambles ψµ
s on𝒳s are given by the recursion relations:9

ψ
µ
t :=max{g −µ,0}∏

c∈ch(t)

πc +min{g −µ,0}∏
c∈ch(t)

πc , (4.19)

and for each ◻≠ s ⊑ t , so mo s exists,

ψ
µ

mo(s)
:= ]︀max{πµs ,0}∏

c∈sib(s)

πc +min{πµs ,0}∏
c∈sib(s)

πc{︀gµmo s . (4.20)

The messages πµs are again tuples of real numbers, with one component

π
µ
s (xmo(s)) for each of the possible values xmo(s) of Xmo(s).10 They do

depend on the choice of g or µ, as well as on which nodes are instantiated

and on which value xE the variable XE for these instantiated nodes assumes.

It then follows from Equations (4.7) and (4.14) and the strong factorisation

property of the local independent products that

P↑s(φµs ⋃︀Xmo(s)) =π
µ
s and of course ρg (µ) =πµ◻. (4.21)

We conclude that we can find the value of ρg (µ) by a backwards recursion

method consisting in passing messages up to the root of the tree, and in

transforming them in each node using the local uncertainty models; see

Equations (4.16) and (4.18)–(4.20).

There is a further simplification, because we are not necessarily interested

in the actual value of ρg (µ), but rather in its sign. It arises whenever there are

instantiated nodes above the target node: E ∩ancest(t) ≠∅. Let in that case

et be the greatest element of the chain E ∩ancest(t), i.e., the instantiated

node closest to and preceding the target node t , and let st be its successor in

the chain ↓t ; see for instance Figure 4.1179. If we let

λg (µ) :=max{πµst (xet ),0}∏
c∈sib(st)

πc(xet )+min{πµst (xet ),0}∏
c∈sib(st)

πc(xet ),

9The maximum or minimum of two gambles (the zero gamble is also a gamble) should be
interpreted as a pointwise maximum, minimum respectively.

10If s is the root node, then mo(s) = ∅ and π
µ
s is a single real number, which by

Equation (4.21) is equal to ρg (µ). See also footnote 1163.
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then it follows from Equation (4.20) [with s = st and mo(s) = et ] that ψµ
et =

I{xet }
λg (µ). We easily derive that

ρg (µ) = a max{λg (µ),0}+b min{λg (µ),0}, (4.22)

where a and b are real constants that do not depend on g and µ. Letting

g := µ±1 then allows us to identify the constants a and b. It is easy to see,

however, that b > 0 and a ≥ 0 because we assumed from the outset that

P({xE}) > 0. We gather from this observation that

Rt(g ⋃︀xE) =max{µ ∈R∶λg (µ) ≥ 0} .

Moreover, by combining Equations (4.15) and (4.17) with Proposition

145170, we find that πc(xet ) = P↑c({xE∩↑c}⋃︀xet ) > 0 for all c ∈ sib(st), and

therefore λg (µ) ≥ 0⇔π
µ
st (xet ) ≥ 0. Hence

Rt(g ⋃︀xE) =max{µ ∈R∶πµst (xet ) ≥ 0} .

We conclude that in order to update the tree in the situation described

above, we can perform all calculations on the sub-tree ↑st , where the new

root st has local model Qst (⋅⋃︀xet ). This is also borne out by the discussion of

the separation properties in Section 4.4173.

4.5.3 The algorithm

We now convert these observations into a workable algorithm.

Using regular extension and message passing, we are able to compute

Rt(g ⋃︀xE): we (i) choose any µ ∈ (︀min g ,max g ⌋︀; (ii) calculate the value of

λg (µ) by sending messages from the terminal nodes towards the root; and

(iii) repeat this in some clever way to find the maximal µ that will make

this λg (µ) zero. But we have seen above that this naive approach can be

sped up by exploiting (a) the separation properties of the tree, and (b) the

independence ofµ (and g ) for some of the messages, namely those associated

with nodes that do not precede the target node t .

For a start, as we are only interested in the sign of ρg (µ) [or equivalently,

that of λg (µ)], which we have seen is determined by the sign of πµst (xet ), we

only have to take into consideration nodes that strictly follow et .

The next thing a smarter implementation of the algorithm can do, is

determine the trunk S̃ of the tree: those nodes that precede the queried
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: observed node

: queried or target node t

: unobserved node

◻

X1

X2

et

X3

st

X4

X5

X15

X6

X7

X8
X9

X16

X10

t

X11

X12

X14

X13

Figure 4.1: Example imprecise Markov tree. The target node is t = 10, et = 2 is the
‘greatest’ observed ancestor of t and st = 3 is the child of et that precedes t . The bolder
arrows represent the trunk S̃ = {3,4,10} of the tree.

node t and strictly follow the greatest observed node et preceding t . We can

define the trunk more formally as follows: S̃ := ↓t ∩↑ch(et). For the tree in

Figure 4.1 for instance, where the darker X10 is the queried variable and the

lighter nodes {2,6,7,8,9,11,14,15} are instantiated, the trunk is given by

S̃ = {3,4,10}, and indicated by bolder arrows.

X4

Π4 = π5π14

X5

X15

X6

X7

X8

X9

X16

π5 =Q5(π6π7⋃︀X4)

Q6({x6}⋃︀X5) = π6

π7 =Q7({x7}⋃︀X5)π8π9

π8 =Q8({x8}⋃︀X7)

π9 =Q9({x9}⋃︀X7)

π15

1 = π16

Figure 4.2: Calculation ofΠ4, which is a summary of the µ-independent messages in
the trunk node 4.
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We have a special interest in the nodes that constitute the trunk, because

only they will send messages to their mother nodes that actually depend on

µ. As a consequence, all other nodes (all descendants of the trunk that are

not in the trunk themselves) send messages that have to be calculated only

once. This implies that we can summarise all the µ-independent messages

by propagating all of them until they reach the trunk. The µ-independent

messages πs that arrive in a trunk node s can be represented more succinctly

by their point-wise products Πs :=∏c∈ch(s)∖S̃πc , because Equations (4.19)

and (4.20) only depend on them through these products.

This means that for every trunk node s ∈ S̃, we have to find the lower

(upper) messages of every child c of s that is not in the trunk itself. Bothπc and

πc can be calculated recursively using Equation (4.17), where the recursion

starts at the leaves and moves up to (but stops right before) the trunk. In the

leaves, the local lower and upper previsions of the indicator of the evidence

are sent upwards if the leaf is instantiated; if not the constant 1 is sent up,

which is equivalent to deleting the node from the tree. We could envisage

removing barren nodes (all of whose descendants are uninstantiated, such

as X1, X13, X16 in the example tree above) from the tree beforehand, but we

believe the computational overhead created by the search for them will void

the gain.

xet

Xst

X4

Xt

π
µ
st (xet ) =Qst (max{π

µ
st , 0}Πst

+min{π
µ
st , 0}Πst
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ψ
µ
st

⋃︀xet )

π
µ
4 =Q4(max{π

µ
t , 0}Π4 +min{π

µ
t , 0}Π4
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ψ
µ
4

⋃︀Xst )

π
µ
t =Qt (max{g −µ, 0}Πt +min{g −µ, 0}Πt
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ψ
µ
t

⋃︀X4)

Figure 4.3: Calculation of π
µ
st
(xet ), whose sign is the same as that of the lower

prevision P(I{xE}
(︀g −µ⌋︀).

The only recursion that is still left to do, is the calculation of the µ-

dependent messages πµs along the trunk. As demonstrated in Figure 4.3,
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we can calculate πµst (et) using the following recursion formula:

π
µ
s :=

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

Qs(max{g −µ,0}Πs +min{g −µ,0}Πs ⋃︀Xmo(s)) s = t ,

Qs(max{πµct ,0}Πs +min{πµct ,0}Πs ⋃︀Xmo(s))
s ∈ S̃∖{t} and

ch(s)∩ S̃ = {ct}.

These formulas are reformulations of Equations (4.18)–(4.20), where the

influence of theΠ has been made explicit.

Since we now know how to calculate π
µ
st (et), we can tackle the final

problem: find the maximal µ for which πµst (et) = 0. In principle, a secant root-

finding method could be used, but using the concavity and non-increasing

character of πµst (et) as a function of µ, we can speed up the calculation of the

maximal root drastically as shown in Figure 4.4.

Let us briefly discuss the complexity of our algorithm. Consider for a

start that for a fixed µ each node makes a single local computation and then

propagates the result to its mother node: this implies that, with µ fixed, the

algorithm is linear in the number of nodes. Iterating on µ then amounts

to multiplying such a linear complexity with the number of iterations. This

µ

ρg (µ)

t

(a,ρg (a))

(b,ρg (b))

(c,ρg (c))

(d ,ρg (d))

p q r

p := ρg (c)b−ρg (b)c⇑ρg (c)−ρg (b);
m := c; t := p+m⇑2;
while m−p > tol and ρg (t) ≠ 0
if ρg (t) > 0
a := b; b := t ;
s := ρg (a)b−ρg (b)a⇑ρg (a)−ρg (b);
else
d := c; c := t ;
s := ρg (c)d−ρg (d)c⇑ρg (c)−ρg (d);
p := ρg (c)b−ρg (b)c⇑ρg (c)−ρg (b);
m :=min{m, s}; t := p+m⇑2;

Figure 4.4: The root of a concave and non-increasing function ρg whose values
ρg (a) > ρg (b) > 0 > ρg (c) > ρg (d) are known, will always be in the interval (︀p,m⌋︀
with m := min{q,r}. Here p, q and r are the intersections with the horizontal axis
of the straight lines through (b,ρg (b)) and (c,ρg (c)), (c,ρg (c)) and (d ,ρg (d)),
and (a,ρg (a)) and (b,ρg (b)), respectively. The next function evaluation of ρg will
be in t which bisects the error interval (︀p,m⌋︀. If ρg (t) > 0, then a becomes b and b
becomes t , otherwise d becomes c and c becomes t and a new interval (︀p,m⌋︀ and
matching t can be calculated. We stop iterating as soon as the error interval (︀p,m⌋︀ is
smaller than a given tolerance tol, or ρg (t) is exactly zero.
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number depends on the function g , as the iterations are made to compute the

root of a function that is known to belong to the real interval (︀min g ,max g ⌋︀.
If we assume that the bisection algorithm is employed to find the root—

for the sake of simplicity—and let r := max g −min g be the range of the

function, then the number of iterations is bounded by log2
r

tol + 1, where

tol is some fixed tolerance. In other words, the number of iterations is

linear in the number b of bits needed to represent r . This means that the

overall complexity of the algorithm is O(b ⋅ ⋃︀S⋃︀), taking into account that the

computational complexity of our root-finding algorithm must be lower than

for the bisection (and actually also for the secant) algorithm. Since b will be

a small number in most cases (e.g. when the focus is on probabilities), we

simply refer to the complexity of our algorithm as linear in the number of

nodes.

4.6 A simple example involving dilation

We present a very simple example that allows us to (i) follow the inference

method discussed above in a step-by-step fashion; (ii) see that there are

separation properties for credal nets under strong independence that fail for

credal trees under epistemic irrelevance; and (iii) see that in that case we will

typically observe dilation.

Consider the following imprecise Markov chain:

X1 X2 X3

? x2 x3

To make things as simple as possible, we suppose that𝒳1 = {a,b} and that Q1

is a linear (or precise, or expectation-like) model Q1 with mass function q . We

also assume that Q2(⋅⋃︀X1) is a linear model Q2(⋅⋃︀X1) with conditional mass

function q(⋅⋃︀X1). We make no such restrictions on the local model Q3(⋅⋃︀X2).

We also use the following simplifying notational device: if we have three real

numbers κ, κ and γ, we let

κ∐︀γ̃︀ := κmax{γ,0}+κmin{γ,0}.

We observe X2 = x2 and X3 = x3, and want to make inferences about the target

variable X1: for any g ∈ ℒ(𝒳1), we want to know R1(g ⋃︀x{2,3}). Letting r :=
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4.6. A simple example involving dilation

R1({a}⋃︀x{2,3}) and r :=R1({a}⋃︀x{2,3}), we infer from the separate coherence

of R1(⋅⋃︀x{2,3}) that it suffices to calculate r and r , because

R1(g ⋃︀x{2,3}) = g(b)+ r ∐︀g(a)− g(b)̃︀.

We let gµ = (︀I{a} −µ⌋︀I{x2}
I{x3}

, and apply the approach of the previous

section. We see that the trunk S̃ = {1}, and the instantiated leaf node 3

sends up the messages π3 =Q3({x3}⋃︀X2) to the instantiated node 2, which

transforms them into the messages

π2 =Q2({x2}⋃︀X1)π3(x2) =: q(x2⋃︀X1)q ,

where we let q(x2⋃︀X1) := Q2({x2}⋃︀X1) and q := π3(x2). These messages are

sent up to the (target) root node t = 1, which transforms them into the

message π
µ
1 = Q1(ψ

µ
1) with ψ

µ
1 = q(x2⋃︀X1)q∐︀I{a} −µ̃︀. If we also use that

0 ≤µ ≤ 1, this leads to

P 1(gµ) =πµ1 = q(a)q(x2⋃︀a)q(︀1−µ⌋︀+q(b)q(x2⋃︀b)q(︀−µ⌋︀,

so we find after applying regular extension that

r =R1({a}⋃︀x{2,3}) =
q(a)q(x2⋃︀a)q

q(a)q(x2⋃︀a)q +q(b)q(x2⋃︀b)q

r =R1({a}⋃︀x{2,3}) =
q(a)q(x2⋃︀a)q

q(a)q(x2⋃︀a)q +q(b)q(x2⋃︀b)q
.

When q = q , which happens for instance if the local model for X3 is precise,

then we see that, with obvious notations,

r = r = q(a)q(x2⋃︀a)
q(a)q(x2⋃︀a)+q(b)q(x2⋃︀b)

=: p(a⋃︀x2) (4.23)

and therefore X2 indeed separates X3 from X1. But in general, letting α :=
q(a)q(x2⋃︀a) and β := q(b)q(x2⋃︀b), we get

r −p(a⋃︀x2) =
αβ

α+β
q −q

αq +βq
and p(a⋃︀x2)− r = αβ

α+β
q −q

αq +βq
.

As soon as q > q , X2 no longer separates X3 from X1, and we witness dilation

[30, 50]—the increase of uncertainty on extra observations, no matter what

they are—because of the additional observation of X3!
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CHAPTER 5
Conclusions

“Chapeau” and I thank you very much if you read yourself all the way

through this thesis. It is OK if you did not, I am still very happy that you

are about to read this conclusion. The hat might stay though. I wish you an

entertaining stroll through these conclusions which is a small summary with

some additional remarks about the modelling uncertainty chapter and the

chapter probability trees and the chapters: Markov chains and Markov trees

with the, admittedly, dull and uninspired predicate “imprecise”.

Modelling uncertainty

In Chapter 128, we introduced sets of acceptable gambles in an attempt to

define an uncertainty model that allows for indecision. The agent is offered

a number of gambles and he can either accept them or not accept them.

We assumed that the underlying utility is linear and that the agent meets a

minimal number of rationality requirements, like accepting sure gain and

avoiding Dutch book scenarios. A set of acceptable gambles that does not

show irrational behaviour is called a coherent set of gambles. Our approach

is strongly influenced by de Finetti [24], Ramsey [48], Williams [69] and

Walley [62, 64]. Besides the mathematical simplicity, we prefer to work with

sets of gambles because of their clear interpretation and operational nature.

In Section 1.342 we developed a multivariate framework that shows how

sets of acceptable gambles (modelling beliefs of the same agent) should

be combined. When we want to know what exactly are the agent’s beliefs
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about a subset of the modelled random variables, then it is explained in

Section 1.3.143 how beliefs can be marginalised and Section 1.3.245 explains

how to update beliefs on events. Apart from some pathological cases, both

marginalising and updating result in intersecting the cone of acceptable

gambles with a suitable subspace. This also explains why marginalising and

updating are commutative operations.

Coherent sets of fully resolved gambles can be seen as the acceptability

counterpart of linear previsions. We prove an acceptability version of Walley’s

lower envelope theorem [62, §2.6.3]. The set of all dominating resolved

coherent sets of acceptable gambles appearing in this lower envelope

theorem, can be seen as the acceptability analogue of credal sets. Usually

it is assumed that a credal set is closed. This closedness can be achieved

by restricting ourselves to sets of marginally acceptable gambles. Sets of

marginally acceptable gambles are one of the types of uncertainty models we

derived from sets of acceptable gambles. The other ones are sets of strictly

desirable gambles and lower (or upper) previsions. The three derived models

lack some of the expressiveness that comes with sets of acceptable gambles.

Therefore there is no bijective relation between lower previsions and sets of

acceptable gambles. In general this is not a problem. Only when updating,

this might cause problems and this is exactly where the sets of marginally

desirable and sets of strictly desirable gambles come in as they are special

extreme cases.

By asking an agent about his disposition towards a gamble f and its

negation − f , we are able to make the distinction between desirability and

irrelevance. By doing so, we show that we developed a theory that deals with

strong symmetry in a very natural way. Symmetry was not the focus of this

thesis, and this result is merely a by-product. However, we believe that this

elegant way of describing symmetry might be the strongest point in favour of

the framework of sets of acceptable gambles in future work.

Although finite possibility spaces are assumed, we do not expect major

difficulties when extending our theory to infinite possibility spaces. The

avoiding sure loss axiom will have to be adapted slightly (see Chapter 280),

and the Axiom of Choice will have to be used a number of times; sadly

this means that the constructive nature of some of the proofs will be lost.

Unfortunately, the results about the combination of models will not be that

easy to transfer when considering infinite possibility spaces. For example, it is
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5. CONCLUSIONS

known that (cut) conglomerability has to be assumed for marginal extension.

Imprecise probability trees

In Chapter 280, we have generalised probability trees—arguably the simplest

existing graphical model—in a way that is strongly connected to a special

case of Shafer and Vovk’s game-theoretic probability.

We haven’t paid much attention to the special case that the coherent

lower previsions and their conjugate upper previsions coincide, and are

therefore (precise) previsions or fair prices in de Finetti’s [24] sense. When

all the local predictive models P t (see Proposition 97107) happen to be precise,

meaning that P t( f ) = P t( f ) = −P t(− f ) for all gambles f on ch(t), then the

immediate prediction model we have described becomes very closely related,

and arguably identical to, the probability trees introduced and studied by

Shafer in [53]. Indeed, we then get predictive previsions P(⋅⋃︀s) that can be

obtained through concatenation of the local models P t , as guaranteed by

Theorem 96106.

We want to recall that Theorem 96106 and Proposition 97107 allow for a

calculation of the predictive models P(⋅⋃︀s) using only the local models and

backwards recursion, in a manner that is strongly reminiscent of dynamic

programming techniques. This should allow for a much more efficient

computation of such predictive models than, say, an approach that exploits

lower envelope theorems and sets of probabilities/previsions and forms the

basis for efficient algorithms when dealing with other types of graphical

models.

What makes this more efficient approach possible is, ultimately, the Mar-

ginal Extension Theorem (Theorem 3051), which leads to the Concatenation

Formula (Theorem 96106). Generally speaking (see for instance [62, § 6.7]

and [41]), such marginal extension results can be proved because of the

hierarchical and local nature of the assessments.

In Chapter 280, we also give some examples, like the Gambler’s ruin

which is a special instantiation of a counting process. General counting

processes are something that cannot be handled in our theory because we

do not allow for gambles that become infinite. Another example boils down

to the irrelevant forward product, which corresponds to the epistemically

independent product when permutation-invariant gambles are considered.
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This independent product is definitely something that deserves a bit more of

study as it forms the basis of every statistical theory.

In the last part of this chapter, sub- and supermartingales are considered.

Submartingales form a basic tool and concept in Shafer and Vovk’s game-

theoretic probability theory, There is a strong connection [12] between

the theory of imprecise event trees and Shafer and Vovk’s game-theoretic

probability. In the case of finite depth trees, the connection was proved [12],

but it remains still open whether the Matching Theorem in [12] holds in

general, for unbounded depth trees.

Imprecise Markov chains

In Chapter 3122, a special type of imprecise probability tree was studied: the

imprecise Markov chain. It can be viewed as a generalisation of classical

discrete time Markov chains with finite state space in which the Markov

condition is interpreted in terms of Walley’s epistemic irrelevance. This

interpretation does not entirely coincide with the sensitivity analysis in-

terpretation that was used in previous attempts to describe Markov chains

with parameter uncertainty. In the sensitivity analysis interpretation, the

Markov condition is interpreted as a strong independence assessment and

transition probabilities are replaced with credal sets, so these types of

generalised Markov chains are effectively special types of credal networks.

Nevertheless, both approaches yield the same results if we restrict ourselves

to calculating the marginal upper expectations for variables Xn . But in any

case, for the actual calculation of expectations, the set of transition matrices

approach suffers from a combinatorial explosion and the resulting high

computational complexity. This can be avoided using our upper transition

operator approach. We have proved that under the epistemic irrelevance

Markov assumption, lower or upper previsions of gambles can be calculated

in a recursive fashion. When calculating marginal gambles, the complexity of

this approach even becomes linear when the transition operator is considered

an oracle.

An important situation where the interpretation of the Markov condition

is not important is in the study of the limit behaviour—and closely linked

to that—ergodicity of upper transition operators. We have given different

equivalent conditions under which an upper transition operator is ergodic.

We have shown that ergodicity is completely determined by the eigenvalues
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5. CONCLUSIONS

and functions of the transition operator as is the case in classical Markov

chains. Unfortunately, it is at this point not known how to calculate these

eigenvalues in general. This is why we developed an alternative test for

ergodicity, which needs at most 2⋃︀𝒳 ⋃︀−1 evaluations of the upper transition

operator. Any algorithm that implements this test consists of two steps: the

first checks for top class regularity by building the upper accessibility graph

and checking for final strongly connected components and their cyclicity. In

some cases a second step is needed, to check for top class absorption.

Another approach that has been documented in the literature [61],

calculates the coefficient of ergodicity and checks whether there is some

iterate of the transition operator such that the corresponding coefficient

becomes strictly smaller than one. If this is the case, then the non-expansive

map that every upper transition operator is, becomes a contractive map

and ergodicity is a fact. Interesting about the coefficient of ergodicity is that

it moreover provides an upper bound on the speed of convergence. What

makes this approach difficult to use outside a theoretical context, is that there

is at present no efficient algorithm to calculate the coefficient of ergodicity.

It is moreover likely that very high powers of the upper transition operator

need to be calculated.

A paper with a different background is the very general work of Akian

and Gauber [1], who describe an algorithm for checking ergodicity of upper

transition operators that are piecewise affine. In practice, their algorithm

relies heavily on extreme points to calculate the subdifferential. If the set of

extreme points is given, then their critical graph approach is the shortest way

to get to all qualitative information available on the eigenspace of the upper

transition operator. If these extreme points are not given explicitly, then a

vertex enumeration step is involved which is computationally very hard as

any algorithm based on vertex enumeration cannot have polynomial time

complexity.

Our algorithm avoids the vertex enumeration step by using the upper

transition operator directly. It also allows checking for ergodicity for upper

transition operators whose ‘credal set’ has an infinite number of extreme

points. Of course, extra information about the eigenspace available through

the critical graph approach, not necessary for deciding upon ergodicity, may

be lost by using our simpler approach based on accessibility alone.

In a number of stochastic control applications that provide a motivation
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for Akian and Gaubert’s work [1], the extreme points of the polytopes of

transition probability measures cannot be enumerated (only separation or

minimisation oracles are available), and hence, dealing with such situations

in the way we explain here, is also quite relevant in that application context.

Imprecise Markov trees

In Chapter 4160, we have defined imprecise-probability (or credal) trees using

Walley’s notion of epistemic irrelevance. Credal trees generalise tree-shaped

Bayesian nets in two ways: by allowing the parameters of the tree to be

imprecisely specified, and moreover by replacing the notion of stochastic

independence with that of epistemic irrelevance. Our focussing on epistemic

irrelevance is the most original aspect of this work, as this notion has received

limited attention so far in the context of credal nets.

We have focussed in particular on developing an efficient exact algorithm

for updating beliefs on the tree. Like the algorithms developed for precise

graphical models, our algorithm works in a distributed fashion by passing

messages along the tree. It computes lower and upper conditional previsions

(expectations) with a complexity that is essentially linear in the number

of nodes in the tree. This is remarkable because until now it was unclear

whether an algorithm with such features was at all feasible: in fact, epistemic

irrelevance is most easily formulated using coherent lower previsions or

sets of acceptable gambles, which have never before been used as such

in practical applications of credal nets, which tend to focus on a sets of

probabilities approach. Moreover, it is at this point not clear that epistemic

irrelevance is as “well-behaved” as strong independence is with respect to

the graphoid axioms for propagation of probability in graphical models [10,

42].1 Our results therefore appear very encouraging, and seem to have the

potential to open up new avenues of research in credal nets.

On a more theoretical side, we have also shown that our credal trees

satisfy the important rationality requirement of coherence. This has been

established under the assumption that the upper probability of any possible

observation in the tree is positive, which is a very mild requirement. The same

assumption also allowed us to show that all inferences made by updating

1Unlike credal nets based on strong independence, a credal net based on epistemic
irrelevance cannot generally be seen as equivalent with a set of Bayesian nets with the same
graphical structure: if it were, then all separation properties of Bayesian nets would simply be
inherited, and we have seen in Section 4.6182 that such is not the case.

189
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the tree will be coherent with each other as well as with the local uncertainty

models in the nodes of the tree.

Where to go from here? There are many possible avenues for future

research.

It would be very useful to be able to extend the algorithm at least to so-

called polytrees, which are substantially more expressive graphs than trees

are. This could be a difficult task to achieve. In fact, updating credal nets

based on strong independence is an NP-hard task when the graph is more

general than a tree [11]. Similar problems might affect the algorithms for

credal nets based on irrelevance.

For applications, it would be very important to develop statistical

methods specialised for credal nets under irrelevance that avoid introducing

excessive imprecision in the process of inferring probabilities from data. This

could be achieved, for instance, by using a single global IDM [63] over the

variables of the tree rather than many local ones.

Another research direction could be concerned with trying to strengthen

the conclusions that epistemic trees lead to. There might be cases where

our Markov condition based on epistemic irrelevance is too weak as a

structural assessment. We have discussed situations where this type of

Markov condition systematically leads to a dilation of uncertainty when

updating beliefs with observations, and indicated that this dilation is related

to (the lack of) certain separation properties induced by epistemic irrelevance

on a graph. Dilation might not be desirable in some applications, and we

could be called upon to strengthen the model in order to rule out such

behaviour. One way to address the issue of dilation—but not necessarily

the easiest—could consist in adding additional irrelevance statements to

the model, other than those derived from the Markov condition. An easier

avenue could be based on designing assumptions that together with the

Markov condition lead to some stronger separation properties, while not

necessarily requiring them to match the common ones used in Bayesian

nets.
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APPENDIX A
The very basics of Graph Theory

In this appendix we will introduce the graph-theoretical notation that is used

in this work. We base ourselves on the work of Bang-Jensen & Gutin [3] and

Jarvis & Shier [33].

A directed graph 𝒢 consists of a non-empty finite set V (𝒢) of ele-

ments called vertices or sometimes called nodes, and a finite set A(𝒢)
of ordered pairs of vertices called arcs. In the figure we have a directed

graph with set of vertices V (𝒢) = {a,b,c,d ,e, f , g} and set of arcs A(𝒢) =
{(a, a),(b, a),(c,b),(d , a),(b,d),(e,b),(c,e),(d ,e),( f ,d),( f ,e),(g ,e),

(g , f ),( f , g),(g , g)}.

a

b c

d e

f g

Given an arc (x, y) of a graph 𝒢 we say that the vertex x is the head and y

is the tail of the arc. A path of length k in a graph 𝒢 is a sequence of vertices

x1x2 . . . xk−1xk such that (xi , xi+1) ∈ A(𝒢) for all i ∈ {1,2, . . . ,k −1} and such

that no vertex in the sequence x1x2 . . . xk−1 gets repeated. Any path in 𝒢 of

length k with k ∈N>0 from x to y is simply called a path in 𝒢 and is denoted
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an (x, y)-path. An (x, x)-path is also called a cycle. In the example above,

eba and f g eb are paths while f g f eb and f g g e are not; f g f , aa and debd

are cycles.

A subgraph ℋ of 𝒢 is a directed graph with V (ℋ) ⊆ V (𝒢) and A(ℋ) ⊆
A(𝒢). We say that the subgraph ℋ of 𝒢 is induced by S = V (ℋ) if A(ℋ) =
A(𝒢)∩V (ℋ)2. We denote the subgraph of 𝒢 induced by S as 𝒢⋃︀S .

A.0.1 Strongly connected components

A vertex y in a graph 𝒢 is reachable from x if x = y or if there is an

(x, y)-path in 𝒢. The reachability relation on V (𝒢) is a preorder, i.e., it is

reflexive and transitive. The associated equivalence relation “x is reachable

from y and y is reachable from x” partitions the vertices V (𝒢) into

equivalence classes S1,S2, . . . ,Sn and the induced subgraphs 𝒢⋃︀Si
are the

strongly connected components or strong components of 𝒢. Every vertex

in a strongly connected component is reachable by any other vertex. If there

is only one strongly connected component, then we say that the graph is

strongly connected or strong. In this case, every vertex is reachable from every

other vertex. In the example graph, the strongly connected components are

the subgraphs induced by S1 = {a}, S2 = {b,d ,e}, S3 = {c} and S4 = { f , g}.

a

b c

d e

f g

𝒢⋃︀S1

𝒢⋃︀S2

𝒢⋃︀S3

𝒢⋃︀S4

Tarjan [57] has developed an algorithm that is widely used to compute

strongly connected components of a graph 𝒢 and that has time complexity

𝒪(⋃︀V (𝒢)⋃︀+ ⋃︀A(𝒢)⋃︀).

The period of a strongly connected network is the greatest common

divisor of the lengths of the cycles it contains.
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APPENDIX B
A short introduction to Order

Theory

We will try to give a short overview of the order theoretic concepts used in

this thesis.

B.1 Partial orders and their representation

Definition 147: A set P with a binary relation ≤ is partially ordered if it is

reflexive, antisymmetric and transitive, i.e. if for all x, y, z ∈ P

PO1. x ≤ x ≤ is reflexive on P ;

PO2. x ≤ y and y ≤ x implies x = y ≤ is antisymmetric on P ;

PO3. x ≤ y and y ≤ z implies x ≤ z ≤ is transitive on P .

A partially ordered set, or shortly poset, will be denoted as (P,≤). When either

x ≤ y or y ≤ x then we say that the pair (x, y) is comparable. If every possible

pair of elements of a partially ordered set (P,≤) is comparable then we say

that the set P is totally ordered by ≤.

A strict order relation < can be defined from the order relation ≤ by

demanding that x < y if and only if x ≤ y and x ≠ y . Both ≤ and < can be used

as fundaments for order theory. A new poset (P,≥) is induced from (P,≤) by

defining x ≥ y⇔ y ≤ x for all x, y ∈ P .
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B.1. Partial orders and their representation

A Hasse-diagram is a graphical representation of a finite partial order

(P,≤). The graph is a directed graph, where the nodes are the elements of

P and a directed arc is drawn from the node x to the node y , if x < y and

there is no element z ∈ P such that x < z < y . So, a Hasse-diagram can be seen

as a minimal graphical representation of a finite poset. Usually, the Hasse-

diagram is defined as an undirected graph, where the direction of the order

relation can be understood from the fact that greater elements are put higher

in the graph. We will not follow this custom and define the Hasse-diagram

immediately as a directed graph.

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Figure B.1: The Hasse diagram of the partial order (2{a,b,c},⊆).

B.1.1 Chains and antichains

Definition 148: A chain C of a partially ordered set (P,≤) is a totally ordered

subset of P that is not empty:

C is a chain⇔(∀x, y ∈C ≠∅)(x ≤ y or y ≤ x).

Definition 149: An antichain C of a partially ordered set (P,≤) is a subset of

P that is pairwise incomparable:

C is an antichain⇔(∀x, y ∈C)(x ⇑≤ y and y ⇑≤ x).

An example of a chain in Figure B.1 is the set {∅,{b} ,{a,b,c}}. An example

of an antichain in Figure B.1 is the set {{a,b} ,{a,c} ,{b,c}}.
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B. A SHORT INTRODUCTION TO ORDER THEORY

B.2 Special elements in order relations

A (subset of a) poset (P,≤) has a greatest element or maximum g , if for every

element t ∈ P it holds that t ≤ g . The greatest element can be considered as an

upper bound of the set and is necessarily unique but does not need to exist.

An upper bound of a poset (P,≤) can be defined as any set S such that for any

s ∈ S and for any p ∈ P it holds that p ≤ s. The maximum of a set should not

be confused with the maximal elements of a partial order which are all the

elements of the set that are undominated: x ∈ P is maximal if and only if z ≥ x

for any z ∈ P implies that z = x.

The supremum or least upper bound of a subset S denoted supS of a

partial order (P,≤) is the smallest element of P that is greater or equal than

every element of S. The supremum does not need to exist. If it does and if it

is in S then it is necessarily the greatest element of S.

Given a poset (P,≤), the dual relation ≥ can always be defined as x ≤ y⇔
y ≥ x. It turns out that (P,≥) is again a partial order. Similar to the definitions

above smallest element, minimal elements and minimum, lower bound

and infimum can be defined.

𝒮
∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Figure B.2: The Hasse diagram of the partial order (2{a,b,c},⊆). The set 𝒮 does not
have a greatest element or maximum. It does have a least upper bound though:

sup𝒮 = {a,b,c}which is the maximum of 2{a,b,c}. The smallest element of 𝒮 is given
by min𝒮 =∅. Clearly, inf𝒮 =min𝒮 . The maximal elements of the partial order (𝒮 ,⊆)
are given by {{a,b} ,{a,c} ,{b,c}}.
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B.3. Some special orders

B.3 Some special orders

We already saw one special type of partial order, the total order. Other special

types of orders exist as well and we will here define some that are used in this

work.

Definition 150: A totally ordered set (P,≤) is well-ordered if and only if every

nonempty subset 𝒮 of P has a least element in this ordering.

A well-ordered set is sometimes said to be a well-founded order. An example

of a well-ordered set is the set of natural numbers N≥0. The set of all non-

negative real numbers R≥0 on the other hand, is an example of a totally

ordered set that is not well-ordered.

Definition 151:

1. A set P with order relation ≤ is a lattice if every two-element subset of

P has a supremum and an infimum in P .

2. A poset (P,≤) is a complete lattice if every non-empty subset has a

supremum and an infimum in P .

The set of all positive real numbers R>0, is an example of a complete lattice

that is not well-ordered.
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Symbols

Number sets

R real numbers

R∗ extended real numbers

Q rational numbers

R>0 positive real numbers

R<0 negative real numbers

R≠0 real numbers without zero

R≥0 nonneggative real numbers

N≥0 natural numbers (with zero)

N>0 natural numbers without zero

Mathematical symbols

⇔ is equivalent to

⇒ implies

∧ (logical) and

∨ (logical) or

¬ (logical) not

∈ is element of

⇑∈ is not an element of

⊆ is a subset of

⊂ is a strict subset of

:= is by definition equal to

=: which is the definition of

> greater than

< less than

≥ greater or equal than

≤ less or equal than

≻ pointwise strictly greater

≺ pointwise strictly smaller

Ac complement of the set A

𝒪 big O notation (complexity)

⋃︀⋅⋃︀ absolute value or cardinality

⟨︀⋅⧹︀ round to the largest integer

smaller or equal than ⋅
[︂⋅⌉︂ round to the smallest integer

greater or equal to ⋅
∏︁⋅∏︁ norm

∏︁ f ∏︁∞ = ∑x∈𝒳 ⋃︀ f (x)⋃︀ supremum

norm of f

∏︁ f ∏︁2 = ∑x∈𝒳 ( f (x))2 Euclidean

norm of f

∏︁ f ∏︁v = sup f − inf f variation
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seminorm

f ⋃︀A restriction of the function f to

the space A, 27

int interior

cl closure

1 identity matrix

ωT( f ) set of limit points of the

trajectory Tk f , 123

Graph and tree symbols

𝒢,ℋ any graph, 192

𝒢(T) upper accessability graph

used to check top class

regularity,136

𝒢(T)⋂︀
ℛ

graph used to check top

class regularity, 148

𝒢c Akian and Gaubert’s critical

graph, 154

𝒢 f Akian and Gaubert’s final graph,

154

𝒢(T) upper accessibility graph

used to check top class regularity,

148

⊑ precedes, 83

⊏ strictly precedes, 83

⊒ follows, 83

⊐ strictly follows, 83

∥ is not ordered with, 83

↓S nodes preceding the nodes in

the set S, 83

↑S nodes preceding the nodes in

the set S, 83

pa(s) parents of the node s, 162

mo(s) mother of the node s, 84

ch(s) children of the node s, 84

sib(s) siblings of the node s, 162

ancest(s) ancestors of the node s,

162

desc(s) descendants of the node s,

162

⊥(s) nodes that are non-parents

non-descendants of s, 165

depth(s) depth of s in a forward

irrelevant process tree, 112

length(⋅) length of a path in a tree,

141

𝒞x set of simple cycles from the

state x, 141

varU F make a variable from the

process F by evaluating in the cut

U , 89

StopU F stop (keep constant) the

process F in the cut U , 26

KillU F kill (make zero) the process

F in the cut U , 26

◻ initial situation of a tree, 83

ω a generic terminal situation,

S set of all nodes/situations of a

tree, 83

S̃ trunk in a Markov tree, 178

P set of all paths, 85

UV
s the set of all cuts following the

situation s and preceding the cut

V , 88

Ω set of terminal situations, 84

E(a) (exact) event, 86

ω a generic terminal situation

S set of all nodes/situations of a

tree, 83

S̃ trunk in a Markov tree, 178

P set of all paths, 85

UV
s the set of all cuts following the
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SYMBOLS

situation s and preceding the cut

V , 88

Ω set of terminal situations, 84

E(a) (exact) event corresponding

to the situation a, 86

IP specific symbols

f , g generic name for a gamble,

h generic name for a (local) gam-

ble,

I A indicator function, 26

⊑ is less resolved than, 38

⊒ is more resolved than, 38

posi convex hull, 31

span finite linear span, 31

cccl cut-conglomerabiliy closure,

98

ext natural extension, 35

regext regular extension, 55

EI is epistemic irrelevant to, 69

⊗ epistemic independent product,

70

⊠ strong product, 166

margA (⋅) marginalisation, 43

𝒜⋃︀x condition on x, 47

𝒜⧹︀x update on x, 47

projA f projection operator, 43

projT
A f lifted projection operator,

43

cylextA f cylindrical extension, 45

cylextT
A f lifted cylindrical exten-

sion, 45

cylext−1
A f pre-image of lifted cyl-

indrical extension, 45

𝒮 selection process, 92

∑t𝒮 summation of a selection pro-

cess, 92

M submartingale, 114

M supermartingale, 114

ρ,ρ’ coefficients of ergodicity, 153

Sets of gambles

ℒ(𝒳) Set of all gambles on 𝒳
(linear space), 26

𝒩 Set of strictly desirable gambles,

56

𝒟 Set of desirable gambles, 30

𝒜 Set ofacceptable gambles, 29

𝒰 Set of undesirable gambles, 29

ℐ Set of indifferent gambles, 30

𝒪 Set of unresolved gambles, 29

ℛ Set of almost desirable gambles,

53

A Set of coherent sets of acceptable

gambles, 34

M Set of all resolved sets of accept-

able gambles, 39

ℳ Set of resolved, acceptable gam-

bles, 39

𝒫 Set of linear previsions (credal

set), 132

𝒯 Set of linear transition operators,

132

Selst(𝒜⋅) Set of all t-selecions, 93

SumSelst(𝒜⋅) Set of all summed t-

selecions, 93

𝒜E(◻) Set of of acceptable gambles

for event tree, 94

Previsions

p probability,
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p lower probability,

p upper probability,

q local lower probability,

q local upper probability,

P linear prevision, 65

P lower prevision, 60

P upper prevision, 63

P lower-upper prevision

N lower prevision under natural

extension, 66

R lower prevision under regular

extension, 66

Q local linear prevision,

Q local lower prevision,

Q local upper prevision,

T linear transition operator, 126

T lower transition operator, 130

T upper transition operator, 129

T linear projection operator, 126

T upper projection operator, 129

P n
x y upper transition probability to

go in n steps from x to y , 135
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