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1.1. Setting 
For many years, river management in Flanders (Belgium) has been conducted at the basin 
level, using instruments such as wastewater treatment plants and enforced effluent standards. 
Although these measures resulted in a significant improvement of the chemical and ecological 
river quality, still about 35 % of the domestic wastewater in Flanders is being discharged in 
the surface waters without any treatment (De Cooman et al., 2007). To meet the aims set by 
the Water Framework Directive (EU, 2000), the Flemish government has planned to reduce 
this discharge to 20 % in 2007 (De Cooman et al., 2007). Moreover, small-scale measures 
such as remeandering, flood plane restoration and fish passages are planned or are being 
implemented. However, most of these restoration measures are being conducted without any 
quantitative prediction of their impact on river ecology. Consequently, efficient allocation of 
these efforts is needed. Since habitat suitability or species distribution models can detect the 
bottlenecks in a river basin, these models can support river managers in this allocation process 
and may therefore be valuable tools for integrated river management (Poff et al., 2003). 
For the development of these decision support tools, there is today a growing interest in 
modelling techniques such as artificial neural networks (Lek and Guégan, 1999), decision 
trees (Džeroski, 2001) and fuzzy logic (Adriaenssens et al., 2004). To allow decision makers 
to assess the uncertainty associated with the model outputs, the model structure should be 
straightforwardly interpretable (Omlin and Reichert, 1999; Elith et al., 2002; Regan et al., 
2002; Brugnach et al., 2003; Borsuk et al., 2004). Fuzzy logic has become an interesting 
technique to address this issue. It takes into account the inherent uncertainty of ecological 
variables during inference and it enables expressing non-linear relations between ecological 
variables in a transparent way (Salski, 1992; Silvert, 2000; Metternicht, 2001; Adriaenssens et 
al., 2006; Van Broekhoven et al., 2006).  
Fuzzy systems use linguistic descriptions such as ‘low’, ‘high’ or ‘moderate’ for the 
quantification of variables and use ecological expert knowledge to transform these 
descriptions into a mathematical framework in which suitable data processing can be 
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performed (Kampichler et al., 2000). This turns fuzzy systems into a popular technique for 
ecological modelling, resulting in numerous applications (Adriaenssens et al., 2004). This was 
illustrated by Adriaenssens (2004) in a previous study, in which an expert knowledge base 
was developed, structuring preferences as well as tolerances of 86 macroinvertebrate taxa for 
a limited set of environmental variables. These variables were selected based on expert 
knowledge and on multivariate analyses. The expert knowledge linked the environmental 
variables with the habitat preferences of the different species and was derived from eight 
information sources described by Adriaenssens (2004). The features of these information and 
knowledge resources differed in the used identification level, the source of this information, 
the geographical region for which this information could be applied, the groups of 
macroinvertebrates covered and the type of coding applied to express the environmental 
preferences. For each invertebrate species, the expert knowledge base was obtained by 
averaging the habitat preferences of this species as described in the eight different information 
sources. Although validation of these expert models on Zwalm river basin data and on data 
from the Overrijsel Province (the Netherlands) showed that many models adequately 
described the invertebrate habitat preferences, a substantial number of models poorly reflected 
the invertebrate habitat preferences. Therefore, Van Broekhoven (2007) applied a data-driven 
genetic algorithm to optimise the fuzzy sets of these models. The results showed that most of 
the optimised models were less relevant because of the loss of interpretability after the 
optimisation. Moreover, this approach assumed that the expert knowledge, and thus the expert 
rule base, is consistent over the different ecological situations described in the Overrijsel 
Province dataset. 
However, several authors contest the consistency of this expert knowledge over different 
ecological situations (Gore and Nestler, 1988; Vismara et al., 2001; Acreman and Dunbar, 
2004; Vilizzi et al., 2004; Moir et al., 2005; Vilizzi and Copp, 2005). Moreover, the 
formalisation of problem-relevant human expert knowledge is often difficult and tedious, and 
thus the main bottleneck in the application of fuzzy logic is the need for ecological expert 
knowledge. Recent research has shown that complementing fuzzy systems by data-driven 
techniques can solve this knowledge acquisition bottleneck (Chen and Mynett, 2003; 
Žnidaršic et al., 2006). For example, the induction of fuzzy rule-based models by heuristic 
search algorithms is often used in the field of fuzzy rule learning (Hüllermeier, 2005). 
This dissertation aims to develop and test a data-driven optimisation method for fuzzy habitat 
suitability models. Specifically, a hill-climbing algorithm was applied to optimise the fuzzy 
expert rules of the model and the impact of different training criteria on the optimisation 
results was analysed. The fuzzy sets were optimised based on their entropy, which quantifies 
the uniformity of the data distribution over the input space. The value of the presented 
approach for integrated river management was tested on 5 datasets which described ecological 
case studies in Belgium, Switzerland and New-Zealand. Although the term ‘species 
distribution model’ may indicate a wider context than the term ‘habitat suitability model’, 
both terms are used as synonyms in this dissertation (see also Section 2.2 for further 
discussion).  
In the first case study, a fuzzy habitat suitability model for macroinvertebrates in rivers is 
developed at the mesohabitat scale level. The ecological expert knowledge needed for this 
model is derived in two different ways in order to compare expert knowledge derived from 
literature to knowledge derived from data using a hill-climbing algorithm. Habitat models 
were generated for the mayfly Baetis rhodani Pictet in the Zwalm river basin (Belgium), 
which is an indicator species for a good ecological quality. This study aims to demonstrate the 
importance of ecological data in the model development process.  
To develop reliable data-driven models, however, a sound comparison of model performance 
is needed to allow reliable model training and evaluation of the final model. A crucial step in 
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the model comparison procedure is the assessment of the model performance (Fielding and 
Bell, 1997; Manel et al., 1999a; Manel et al., 1999b; McPherson and Jetz, 2007). The key 
component of model performance assessment is the performance criterion applied to quantify 
model performance. In the second part of this dissertation, the role of these performance 
criteria in the evaluation process of the final model is reviewed and some empirical 
insights are given which are important for both model training and evaluation. Furthermore, 
the role of performance criteria in model training is analysed theoretically and empirically in 
the second case study. Specifically, a habitat suitability model was developed for spawning 
grayling in the Aare river (Bern, Switzerland) and the effect was analysed of two different 
performance measures, the weighted % Correctly Classified Instances (% CCIw) and Cohen’s 
Kappa (Cohen, 1960), on the training results.  
Although the CCIw allows for prevalence-adjusted model training, this criterion does not 
take into account the specific characteristics of a fuzzy species distribution model. Therefore, 
this dissertation presents the adjusted average deviation (aAD), which is similar to the average 
deviation (AD; Van Broekhoven et al., 2007) but contains a parameter  to account for 
different prevalences of the model training set. Previous research showed that the AD is an 
appropriate performance measure for fuzzy models because it takes into account the fuzzy 
characteristics of the model output (Van Broekhoven et al., 2007). Specifically, the AD takes 
into account the order of the output classes by returning the average deviation between the 
position of the class obtained with the model and the position of the class stored in the data 
set. In contrast to the aAD however, the AD does not distinguish omission from commission 
errors and does not allow prevalence-adjusted model training.  
The aAD is applied on the second and the third case study to analyse the strengths and 
weaknesses of the aAD for ecological modelling. The relation between the parameter  and 
the training set prevalence was analysed for grayling in the Aare River and for three other 
species in different New Zealand river systems: the caddisflies Aoteapsyche spp., large brown 
trout Salmo trutta and rainbow trout Oncorhynchus mykiss. Therefore, the aAD was 
implemented in a hill-climbing algorithm to optimise a fuzzy species distribution model for 
each species.  
The focus of this dissertation is on presence-absence models, but some concepts and problems 
which are being discussed also apply to ecological modelling more generally. Moreover, 
recommendations are given on the application of different performance criteria on model 
evaluation and training. Due to the generality of the developed models, the presented methods 
could be easily applied to other species, communities or ecosystems. Therefore, this 
dissertation may contribute to the development of more reliable species distribution models 
and to the implementation of these models into integrated river management.  

1.2. A road map to this dissertation 
This dissertation consists of three main parts as shown in Fig. 1.1. The first part includes 
introductions to species distribution models, fuzzy rule-based models and data-driven 
optimisation of these models. The second part considers the difference between expert 
knowledge-based and data-driven model development and includes the first case study. The 
third part focuses on prevalence-adjusted model training for data-driven model development 
and contains the second and the third case study. 
The first part consists of three chapters. Chapter 2 starts with an introduction to species 
distribution modelling, which describes the importance and the state-of-the-art of species 
distribution models. Furthermore, the challenges for these models are discussed and the 
knowledge gaps which are significant for this dissertation are highlighted. Specifically, 
Chapter 2 illustrates how fuzzy models could contribute to species distribution modelling. In 
Chapter 3, these fuzzy rule-based models are described into detail. This chapter provides the 
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reader with an introduction to fuzzy set theory, which is followed by a description of the 
fuzzy rule-based model type which is applied in this dissertation: the linguistic fuzzy models, 
including the Mamdani-Assilian models. This chapter aims to familiarise fuzzy modellers 
with the notations used in this dissertation and to provide other readers with a sufficient stock-
in-trade concerning fuzzy modelling. Chapter 4 describes the fuzzy rule-based optimisation 
techniques which were developed and applied in this dissertation. This chapter can be split 
into three main sections: the first section describes the fuzzy set optimisation method which 
was developed in this dissertation, while the second one discusses the data-driven hill-
climbing algorithms for rule base optimisation. This section also presents the performance 
criteria which are being applied most frequently to optimise and evaluate species distribution 
models. The last section considers the input variable selection approach which was developed 
in this dissertation. In contrast with the first two sections which are applied on all further case 
studies, the third one is only applied on the first case study, which is described in Chapter 5.  
Therefore, the last section of Chapter 4 is included in the second part of this dissertation, 
which analyses the difference between expert knowledge-based and data-driven fuzzy rule-
based models. This is illustrated in Chapter 5, in which a fuzzy habitat suitability model for 
macroinvertebrates in rivers is developed. The ecological expert knowledge needed for this 
model is derived in two different ways in order to compare expert knowledge derived from 
literature with knowledge derived from data using a hill-climbing algorithm. In this chapter, 
species distribution models are generated for the mayfly Baetis rhodani in the Zwalm river 
basin (Belgium), which is an indicator species for a good ecological water quality. The 
hypothesis tested hereby is that data-driven models outperform expert knowledge-based 
models. In this chapter, abundance data are being applied, whereas presence-absence data are 
being applied in all other chapters. The reason for this is twofold: first, the ecological expert 
knowledge used in Chapter 5 was developed for abundance data, and second, the modelling 
approach developed in this presentation can deal with any output variable format (abundance, 
presence/absence, ...) due to its flexibility and generality.  

I. BASICS

II. EXPERT KNOWLEDGE 
VERSUS DATA

III. ADAPTIVE MODEL 
TRAINING

Chapter 2
Species distribution 

models

Chapter 3
Fuzzy rule-based

models

Chapter 4
Fuzzy sets and rule
base optimisation

Chapter 5
Knowledge-based versus 

data-driven models

Chapter 6
Theoretical analysis

of performance 
criteria

Chapter 7
Empirical comparison
of performance criteria

Chapter 4
Input variable 

selection

Chapter 8
Adaptive fuzzy model 

training

Chapter 9
Sensitivity analysis
of adaptive model 

training
 

Fig. 1.1. A road map to this dissertation. 
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The third part of this dissertation focuses on the criteria which quantify the performance of 
presence-absence species distribution models. Chapter 6 provides a conceptual description of 
model performance and discusses the state-of-the-art on the performance assessment of 
species distribution models. Furthermore, this chapter theoretically analyses the role of 
performance criteria in the model training and evaluation process. The aim of this chapter is 
to provide the reader with a general introduction to model performance assessment, which is 
essential to comprehend Chapters 7 – 9. The theoretical analysis of Chapter 6 is illustrated in 
Chapter 7 with an empirical analysis of the impact of two of the most frequently applied 
performance criteria, CCI and Kappa, on the model training results. This analysis is 
performed on the second case study, which describes a species distribution model for 
spawning European grayling (Thymallus thymallus) in the Aare river (Switzerland). Chapters 
8 and 9 focus on a new concept in species distribution modelling: prevalence-adjusted model 
training or optimisation. Since the most commonly applied performance criteria do not take 
into account the fuzzy characteristics of the fuzzy species distribution models, Chapter 8 
introduces the adjusted average deviation (aAD). This performance criterion takes the order of 
the fuzzy output classes into account and also allows for prevalence-adjusted model training 
because a parameter  is implemented in the criterion. The relation between this parameter 
and the prevalence of the training data set is illustrated in the second (Chapter 8) and the third 
case study (Chapter 9). In the latter study, species distribution models are being developed for 
three species in different New Zealand river systems: the caddisflies Aoteapsyche spp., large 
brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss. The hypothesis tested 
hereby was that there exists a universal relation between the value of  and the prevalence of 
the training data set. The dissertation concludes with general conclusions and suggestions for 
future research in Chapter 10. 
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2.1 Importance of species distribution models 
Although many studies have assessed the environmental responses of river communities or 
taxa to specific conditions, there is a clear need for models that quantify the species-
environment relationships (Guisan and Zimmermann, 2000). Species distribution models, 
habitat suitability models or ecological niche modelling allow for such quantification because 
these models predict species distributions based on data describing the abiotic environment. 
River management and conservation biology can benefit from these predictive models as 
decision support tools for adaptive management (Guisan and Zimmermann, 2000; Austin, 
2002; Scott et al., 2002). Specifically, habitat suitability models may select the most optimal 
river restoration scenario based on quantitative prediction of river restoration effects. These 
models can also play an important role in basic ecological research, for example by 
quantifying the river status, assessing the anthropogenic impacts or revealing ecological 
networks and knowledge. As such, predictive ecology stimulates the elaboration of scientific 
knowledge, which could lead to better understanding and optimised river monitoring and 
management. As an example of the contribution of habitat models to monitoring, (Guisan et 
al., 2006) apply these models to improve the sampling of rare species. In past decades, habitat 
suitability models have increasingly received attention due to their wide management 
applications in the context of biogeography, conservation biology and climate change studies 
(Guisan and Zimmermann, 2000; Guisan and Thuiller, 2005; Araújo and Rahbek, 2006; 
Dominguez-Dominguez et al., 2006). Consequently, habitat suitability models can contribute 
substantially to society by keeping the cost-efficiency ratio for river management as low as 
possible. 

CHAPTER 2  

Species distribution models



Chapter 2. Species distribution models 
 

8 

2.2 State of the art 
Until 1980, limnology was mainly descriptive and diagnostic, with a limited interest for 
prediction. Subsequently, various research fields arose, which can now be joined under the 
field of ecological modelling: habitat suitability modelling, bio-energetic modelling, 
population dynamics modelling, process modelling, spatial and landscape modelling, 
ecotoxicological modelling and ecological-economical-social modelling (Jørgensen, 2005). 
Although all these models are inherently related and should be combined to create a truly 
predictive ecological model, this dissertation focuses on the field of habitat suitability 
modelling. Habitat suitability models predict species distributions based on data describing 
the abiotic environment. As such, the terms “habitat suitability model” and “species 
distribution model” are treated as synonyms in this dissertation because a habitat is assumed 
to be suitable if a species is observed at this habitat, while a species is assumed to be absent at 
an unsuitable habitat. However, species absence at a specific habitat does not imply that the 
habitat is unsuitable; neither does it indicate that a species will never occur at this habitat. 
This issue is further discussed in Chapter 6.  
Depending on the aquatic subecosystem which is modelled, different types of habitat models 
can be distinguished. Physical habitat models link the physical characteristics of rivers to the 
habitat suitability of an aquatic species of interest. Other models provide a more integrated 
approach since they include chemical water quality or trophic relations between species. 
Finally, fully integrated models consider wider aspects such as economical, social or policy 
issues.  

2.2.1 Two major trends in river species distribution modelling 
Physical habitat suitability models are treated as a separate model category in this 
dissertation because the physical habitat is the key factor which distinguishes running waters 
from other aquatic ecosystems. Since their development in the eighties, physical habitat 
models have become an important tool for river management (Armour and Taylor, 1991; 
Bockelmann et al., 2004). The models allow evaluating habitat suitability for aquatic 
organisms, based on physical variables such as depth, flow velocity and substrate (Bovee, 
1982). The influence of flow changes on biological diversity can be analysed since these 
variables are depending on the water regime (Holm et al., 2001). This is particularly useful for 
impact assessment of hydropower plants or water abstraction on the ecological river status 
and for determining the minimum flow requirements of aquatic populations. Physical habitat 
models can also be used to simulate and evaluate the effect of restoration projects by 
adjusting the state of the input variables (Shuler and Nehring, 1994; Shields et al., 1997).  
Since the late seventies, aquatic habitat simulation models have been used for fish in water 
resource management, particularly in North America (Bovee, 1982). The Instream Flow 
Incremental Methodology (IFIM) (Bovee, 1982; Stalnaker, 1995) and its PHABSIM 
component (Bovee, 1982; Milhous et al., 1989) are considered to be the first of these fish 
habitat models and are now being applied worldwide. In northern Europe for instance, the 
PHABSIM approach has been used for the evaluation of restoration actions in the nineties 
(Huusko and Yrjana, 1997). Other models that were based on PHABSIM include the 
Norwegian River System Simulator (Alfredsen and Killingtveit, 1996), RHYHABSIM 
(Jowett, 1996), and EVHA (Ginot, 1995). (Parasiewicz, 2001) developed the Mesohabitat 
Simulation Model (MesoHABSIM) to address some shortcomings of PHABSIM related to its 
application on larger scales (Parasiewicz, 2007b; Parasiewicz, 2007a; Parasiewicz and 
Walker, 2007). Newer applications of PHABSIM are also including 2D hydrodynamics 
(Katopodis, 2003). 
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The PHABSIM approach was originally developed for the purpose of instream studies with a 
focus on river hydraulics and initially only considered physical and structural variables as 
descriptors of changes in species, at the level of density or biomass (Stalnaker, 1995). 
PHABSIM relates open channel hydraulics with known elements of the fish and 
macroinvertebrate communities. All these models link physical variables such as flow 
velocity, depth or bottom substrate composition to habitat suitability by means of uni- or 
multivariate preference functions (Bovee, 1982). From these descriptors it is possible to 
estimate the ‘Weighted Usable Area’ (WUA) or the ‘Weigthed Usable Volume’ (WUV; 
(Mouton et al., 2007a) of a species in a stretch as a function of flow (Gore and Nestler, 1988). 
These habitat preference functions have two major disadvantages: many possible interactions 
between physical habitat variables are ignored, while the spatial links between habitats are 
neglected (Jorde et al., 2000). Another shortcoming is the fact that macroinvertebrate 
communities in many sites are more affected by water quality than by physical habitat 
conditions (Karr, 1991).  
The Computer Aided Simulation Model for Instream Flow Requirements (CASiMiR; (Jorde 
et al., 2000; Schneider, 2001) uses a new approach, based on fuzzy sets and rules. These 
linguistic rules describe the imprecise information which is often characterising ecological 
data and enable implementing the interactions between physical variables. Although several 
fish species prefer certain types of cover in shallow areas for instance, these cover types can 
be neglected in deeper zones. Furthermore, the knowledge about habitat requirements of fish 
often consists of semi-quantitative data. The habitat selection of several species can be 
predicted adequately based on long-time experience of fish biologists and on analysis of 
monitoring data. However it is observed that habitat requirements of species depend on the 
life stage and river type (Jungwirth et al., 2000). Related to the preference functions of 
PHABSIM, expert rules can be defined in the fuzzy model for different species and life stages 
(Schneider, 2001). 
Since the start of physical habitat modelling, several models have been developed which 
attempt to provide a more integrated approach to habitat modelling. Apart from physical 
habitat variables, these models consider other factors which can affect habitat suitability of 
aquatic species. As such, these models claim to be of greater value for river management than 
physical habitat models since the latter only focus on a specific aspect of the river ecosystem. 
However, the pitfall of these integrated approaches lies in the trade-off between complexity 
and accuracy. For the sake of simplicity, many integrated approaches only include simplified 
environmental processes. For example, they include the oxygen concentration measured at 
one moment in time to represent the availability of dissolved oxygen to the aquatic species. 
Such simplifications can be useful but should be treated with care and should not be 
generalised before sufficient knowledge of the environmental processes is available to test the 
model results. Specifically, a modular habitat suitability model in which each complex 
environmental process is described by a specific module, seems a more promising and more 
reliable approach to support integrated river management.  
The River Invertebrate Prediction and Classification System (RIVPACS; Wright et al., 1984) 
was one of the first integrated models with a predictive capacity for use in river management. 
It was developed for assessing the ecological quality of rivers in the UK and was based on the 
presence of macroinvertebrate communities (Wright et al., 1984). RIVPACS develops 
statistical relationships between the fauna and the environmental characteristics of a large set 
of high quality reference sites. These relationships can be used to predict the 
macroinvertebrate fauna which is expected to occur at any site in the absence of pollution or 
other environmental stresses. The observed fauna at new test sites can then be compared with 
their site-specific expected fauna to derive indices of ecological quality (Clarke et al., 2003). 
Later on, AUSRIVAS (Australian River Assessment System; (Norris and Norris, 1995) and 
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BEAST (Benthic Assessment of Sediment; (Reynoldson et al., 1995) were developed in 
Australia and in North America respectively based on the RIVPACS approach. However, 
RIVPACS cannot be used as a dynamic model to predict the impact of environmental changes 
because data from impaired sites are not included (Clarke et al., 2003).  
Although many detailed studies allow for the prediction of the effectiveness of different 
restoration options for improving ecological river quality (Jowett, 1997; Parasiewicz and 
Dunbar, 2001; Roni et al., 2002; Palmer et al., 2005; Mouton et al., 2007b), the fine scales at 
which these studies are conducted need to be reconciled with the coarse scale at which river 
managers make decisions (Petts et al., 2006). Hence, apart from being integrated, habitat 
models should be communicative tools which allow bridging the gap between the results of 
detailed studies on water systems and the information currently used in water management 
(Roux et al., 2006). Specifically, such tools should implement previous research findings and 
allow for the comparison of different restoration scenarios to support decisions of river 
managers (King et al., 2003).  
The communicative aspect of such tools is one of the key factors for their success. Not only 
should they enable river managers and scientists to justify their decisions to other 
stakeholders, but they should also enhance communication between these groups to extend 
their general knowledge of the river system. Rogers (2006) emphasised that the development 
of this collective understanding and integration within and between scientists, river managers 
and stakeholders is the real challenge in river management. This ‘process of relating’ (Roux et 
al., 2006) should stimulate all partners to learn and avoid prejudices or misunderstandings 
between managers and scientists (Ludwig, 2001).  
The Water Framework Directive-Explorer (WFD-Explorer) is a user-friendly tool which was 
developed for this purpose and successfully implemented in river management in The 
Netherlands (Van der Most et al., 2006; Mouton et al., 2008). The toolbox implements 
ecological knowledge using rules which link variables such as flow velocity and nutrient 
concentrations to the ecological quality of the different water bodies in the river basin of 
interest. The current river status and the effects of different restoration scenarios are analysed 
at the river basin level, thus supporting river managers in the development of the river basin 
management plans needed for WFD implementation (Mouton et al., 2008).  

2.2.2 Conceptual aspects of species distribution modelling 

General features of species distribution models 
The various steps of the development process of predictive modelling were described by 
several authors (Jørgensen, 1999; Manel et al., 1999; Guisan and Zimmermann, 2000; 
Jørgensen, 2000; Olden and Jackson, 2002; Robertson et al., 2003; Jørgensen, 2005). The 
features that are important for the models applied in this dissertation, will be discussed in the 
following paragraphs.  
Apart from the two aforementioned major trends in habitat suitability modelling, habitat 
models can also be categorised based on their conceptual basis. Guisan and Zimmerman 
(2000) posed that all habitat models are based on more or less the same framework, which 
commonly consists of three major components (Austin, 2002). The first one is an ecological 
model, which includes the ecological knowledge and theory to be used and tested in the study, 
while the second one is a data model, describing the decisions to be made regarding how the 
data are collected and how the data will be monitored. The third component is referred to by 
(Guisan and Zimmermann, 2000) as the statistical model and includes the error function and 
significance testing. However, with the rise of new powerful computational techniques and 
GIS tools, the term ‘computational model’ would be more accurate for the third component.  
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Many habitat models relate the geographical distribution of species or communities to their 
actual environment, hereby assuming that the modelled communities are in equilibrium with 
their environment (Guisan and Theurillat, 2000; Guisan and Zimmermann, 2000; Pulliam, 
2000; Tyre et al., 2001; Barry and Elith, 2006). Consequently, most habitat suitability models 
are static, while the accuracy of prediction will depend on the degree to which dynamic 
processes are important in the ecosystem of interest (Austin, 2002). Although oligotrophic 
stream systems are harsh environments containing fewer competitive dominants and therefore 
having less needs for interspecific resource partitioning (Townsend, 1989; Hildrew, 1992), 
biotic interactions in general need to receive more attention (Guisan and Zimmermann, 2000). 
The non-equilibrium concept is thus more realistic in ecology (Pickett et al., 1994; Austin, 
2002; Austin, 2007), because it includes equilibrium as a possible state. Yet, dynamic 
simulation models (Korzukhin et al., 1996) require intensive knowledge of the species 
involved, whereas static models allow large-scale prediction with less effort, and the 
advantage that no detailed knowledge of the physiology and the behaviour of the species is 
necessary (Guisan and Zimmermann, 2000).  
Depending on the overall goal of the modelling effort, habitat suitability models can focus on 
three desirable model features: generality, precision and reality (Levins, 1966). General 
models are robust across different environments or scenarios, while precise models can 
accurately indicate the habitat suitability for a species. The precision of a model is related to 
model uncertainties sensu lato: these uncertainties can be associated with the model output 
(Omlin and Reichert, 1999), but also with other aspects of the modelling process (see 
Brugnach et al. (2007) and Pahl-Wostl et al. (in press) for a full discussion). The reality of a 
model indicates to which extent natural processes are represented in the model. Many habitat 
suitability models sacrifice generality for high reality and precision, although several authors 
argue that precision, generality and reality are not always mutually exclusive (Guisan and 
Zimmermann, 2000).  

Data collection and variable selection 
Austin (1985) and Austin et al. (1984) defined three types of ecological gradients, namely 
resource, direct and indirect gradients. Resource gradients consist of matter and energy which 
is consumed by species (e.g. nutrients, water, light), while direct gradients are environmental 
variables that have physiological importance, but are not consumed, such as temperature, 
water column depth, flow velocity or bottom substrate composition. Whereas an direct 
variable is the most proximal gradient in the chain of processes that link the variable to its 
impact, indirect variables are clearly distant variables, but are linked more closely to the 
causal variable with regard to human impact (Austin, 2007). Different resources and direct 
gradients usually can be replaced in a simple way by one indirect variable (river bank 
condition, river sinuosity, slope, stream order) (Guisan et al., 1999). Although the use of 
direct and resource variables ensures that the model is more general and applicable over larger 
areas, these variables are usually more difficult or more expensive to measure than indirect 
variables (Guisan and Zimmermann, 2000). 
The quality of the habitat model and the sampling design influence each other significantly. 
Consequently, the formulation of the conceptual model can be helpful to design an efficient 
sampling strategy. Several authors argue that, if a quantitative analysis between species 
distribution and environmental variables is the focus, a stratifying sampling approach is most 
useful (Guisan and Zimmermann, 2000; Hirzel and Guisan, 2002). Specifically, one will 
attempt to sample an equal number of replicates per environmental combination. Hirzel and 
Guisan (2002) also stress the effect of sample size on the model performance, especially for 
statistical models due to the relation between sample size and the number of degrees of 
freedom. Moreover, a minimal distance between two sampling sites should be defined prior to 
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sampling to avoid spatial autocorrelation (Legendre, 1993) and a further reduction of the 
number of degrees of freedom.  
The conceptual model may also lead to the choice of an appropriate spatial scale for 
conducting the study (Maddock, 1999; Guisan and Zimmermann, 2000). For running waters, 
different scale levels can be distinguished: the river basin or macrohabitat, the stream, the 
river stretch or mesohabitat, and the microhabitat (Maddock, 1999). Several authors have 
proposed the mesohabitat as an appropriate scale level for assessing the bottlenecks in a river 
system (Maddock, 1999; Parasiewicz, 2007a; Parasiewicz and Walker, 2007) because it 
provides an intermediate approach between the coarse river basin scale and the detailed but 
more time consuming micro scale habitat assessment. Specifically, a mesohabitat is defined as 
a species- and life-stage specific area where the configuration of hydraulic patterns together 
with attributes that provide shelter create favourable survival and development conditions 
(Parasiewicz, 2007b). For many fish species for instance, the shallow fast-flowing river 
patches are referred to as riffle mesohabitats, whereas the deeper, almost stagnant areas are 
specified as pools. Different models operating at the meso scale have been developed such as 
MesoHABSIM (Parasiewicz, 2007b) and MesoCASiMiR (Mouton et al., 2006) which is 
based on fuzzy logic (Zadeh, 1965). Finally, the model performance may also depend on 
temporal scale effects, such as the choice of a sampling period, duration or frequency 
(Mouton et al., submitted). Several physical habitat models use data sampled at different 
flows to allow prediction of the habitat suitability in the whole flow range between base flow 
and peak flow (Parasiewicz and Walker, 2007). Another temporal scale effect is seasonality, 
which may be an important aspect when aquatic species are sampled (MakiPetays et al., 1997; 
Nykänen et al., 2001; Nykänen et al., 2004).  

2.2.3 Habitat suitabilty 

General definition of habitat suitability 
This dissertation focuses on habitat suitability as the biological response of aquatic species to 
environmental conditions because habitat suitability is the key factor explaining species 
distribution. Nevertheless, the biological response can be expressed by many different other 
measures such as species presence, abundance, density, usable area or volume. The use of 
these measures in habitat modelling depends on the model objective and the constitution of 
the available data. Although species presence or absence is the most easily assessable, more 
biological information can be derived from species abundance or density. The application of 
species abundance originates from the niche theory (Hutchinson, 1957) and has been proved a 
good expression of habitat suitability for macroinvertebrates (Statzner et al., 1988; Gore et al., 
2001) and fish (Bovee, 1982). Species density is a less common measure in habitat suitability 
due to its hard and time-consuming assessment in the field and its limited added value for 
river management.  
Species response curves or habitat preference curves show the response of a species to an 
environmental gradient and thus the shape of these curves will vary with the nature of the 
gradient. Although the response to a direct gradient is assumed to be fixed and bell-shaped 
(Hutchinson, 1957), the response to an indirect gradient could take any shape because this 
shape depends on the correlations between the indirect variable and the causal gradient 
(Guisan et al., 1999; Guisan and Zimmermann, 2000; Meentemeyer et al., 2001). Moreover, 
whether the direct effect of a variable on the species response in a specific river stretch can be 
observed is situation-dependent. For instance, the effect of the direct gradient ‘flow velocity’ 
on caddis fly habitat suitability could be clearly observed in rivers with a good chemical water 
quality, whereas the effect of this variable will be far less obvious in polluted rivers. The 
species response at each value of the environmental gradient is referred to as the habitat 
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suitability index (HSI) for this environmental condition (Gore and Nestler, 1988). From these 
HSIs, the Weighted Usable Area (WUA) or the Weighted Usable Volume (WUV) of a 
species can be calculated, as described in Box 1. In literature, ‘species response’, ‘habitat 
preference’ or ‘habitat suitability index’ are often used as synonyms and consequently these 
terms will be referred to in this dissertation as habitat suitability. In addition to univariate 
species response curves, n-dimensional response surfaces can be constructed for combinations 
of variables. Many physical habitat models use two-dimensional surfaces for combinations of 
the most common variables such as depth, flow velocity and bottom substrate (Bovee, 1982; 
Gore and Nestler, 1988; Parasiewicz, 2007b).  

The Physical Habitat Simulation approach 
The most common physical habitat models, such as PHABSIM (Physical HABitat 
SIMulation; Bovee, 1982; Elliott et al., 1999), combine the Usable (habitat) Area (Osborne 
and Suarez-Seoane) with these HSIs in order to define an area of habitat suitable for the 
species of interest, the Weighted Usable Area (WUA) (Waters, 1976). The UA is hereby 
based on two-dimensional (2D) distributions of habitat features in the horizontal plane of the 
river surface or river bed. In practice, the river bed is divided into cells and each cell is 
characterized by specific values of the physical variables. Based on these values, an HSI is 
attributed to each cell. The WUA, as applied in PHABSIM model studies, is then obtained by 
integrating the habitat quality over the cells of the entire studied stretch: 

 )(
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with Ai the horizontal surface of cell i, HSIi the habitat suitability index of cell i and n the 
number of cells in the studied river stretch. A great deal of research has been done on the 
application and adaptation of these physical habitat modelling approaches (Capra et al., 1995; 
Heggenes, 1996; Parasiewicz and Dunbar, 2001; Mouton et al., 2007a; Parasiewicz, 2007b). 
Several aspects of these approaches have been criticised since the eighties and numerous 
specific modelling applications have demonstrated some improvement (Acreman and Dunbar, 
2004). Many authors suggested that microhabitat use of stream fish and invertebrates, and 
hence the HSIs of these species, vary at different spatial and temporal scales (Gore and 
Nestler, 1988; Vismara et al., 2001; Acreman and Dunbar, 2004; Vilizzi et al., 2004; Moir et 
al., 2005; Vilizzi and Copp, 2005). Other critique considers the representation of the three-
dimensional flow environment (Mouton et al., 2007a). Since flow velocity changes with depth 
and consists of different values for each point in the river, all these pseudo 2D approaches use 
the depth averaged flow velocity as an estimation of flow velocity at a single point. However, 
the use of mean velocities to define the fluvial habitat can be misleading as two points may 
have similar depth averaged flow velocities, but sharply contrasting velocity profiles (Beebe, 
1996; Stalnaker et al., 1996; Mouton et al., 2007a).  
Increasingly, the three-dimensionality of habitat hydraulics is being recognised as an essential 
issue for understanding the ecological needs of aquatic species (Ghanem et al., 1996; Bremset 
and Berg, 1999; Newson and Newson, 2000; Rhoads et al., 2003). Several authors have 
suggested that particular water depths are preferred habitats for specific aquatic species or life 
stages (Greenberg et al., 1996; Heggenes, 1996; Bremset and Berg, 1999). Others indicate the 
importance of flow velocity at different depths (Kemp et al., 2003). New methods to quantify 
physical habitat features have been published (Nestler and Sutton, 2000), while greater 
hydraulic process representation may be achieved using 2D and 3D hydrodynamic models 
(Booker, 2003; Pasternack et al., 2004; Stewart et al., 2005). These models quantify flow 
velocities at different depths, allowing linkage with bioenergetic models (Rosenfeld, 2003; 
Booker et al., 2004). Consequently, Mouton et al. (2007a) have defined the physical habitat as 
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a combination of different habitat features based on a three-dimensional characterisation of 
the flow environment. They describe the formulation and testing of a physical habitat model 
which, instead of the UA, calculates the Usable Volume (UV), which is the volume of usable 
habitat for a species of interest (Mouton et al., 2007a). The resulting model generated the 
Weighted Usable Volume of aquatic species and was calibrated and validated in an artificial 
river and in two natural river stretches in Austria and Belgium (Mouton et al., 2007a).  

Conceptual remarks on habitat suitability 
In contrast to the habitat suitability of individual species which is modelled in this 
dissertation, other research focuses on community descriptors such as environmental indices 
(Rosenberg and Resh, 1993; Mouton et al., 2008), biological criteria (Kearns et al., 1992) or 
species richness (Mac Nally et al., 2003). However, modelling species instead of communities 
comes closer to what is believed to meet reality (Gleason, 1926; Guisan and Zimmermann, 
2000). A general consensus has arisen that accepts the continuum concept (Gleason, 1926) in 
preference to the community concept (Clements, 1916). Specifically, the continuum concept 
states that most communities change continuously along environmental gradients, rather than 
forming distinct, clearly separated zones (Whittaker, 1975). This continuous change is 
explained by the individualistic hypothesis of Gleason (1926): each species is distributed in 
its own way because it is affected by its interactions with the physical environment, by 
population-level interactions between species and by disturbance regimes. Ecological 
succession is thus no longer seen as having a stable end-stage called the climax, which has 
also its implications for the definition of reference sites (Austin, 1985). As an extension of the 
species approach, the species traits approach (Resh et al., 1994; Ussegliopolatera, 1994) 
investigates the relation between the abiotic environment and species traits such as size, 
mobility or body form (Townsend et al., 1997). Based on these species traits, non-taxonomic 
aggregations of taxa into behavioural, life historical and functional categories such as 
functional feeding groups (Cummins, 1973) have been used in stream ecological studies.  
The species traits approach is related to the choice of a species-based or genus/family/group-
based prediction. This issue is particularly important for invertebrate species because their 
identification to the species level is much harder than it is for fish. Since the taxonomy of 
aquatic species is often based on morphological features and not on functional characteristics, 
species within a genus may have different ecological requirements and the response of species 
within a genus to different impacts may differ significantly (Schmidt-Kloiber and Nijboer, 
2004). Although some studies that use invertebrates as water quality indicators obtain similar 
results with family or finer (species and genus) level of identification (Wright et al., 1993), 
the concept of the species as the basic biological unit is widely accepted (Schmidt-Kloiber 
and Nijboer, 2004).  
Focusing on the species level, it is important to differentiate between the fundamental and the 
realized niche of an aquatic species (Guisan and Zimmermann, 2000). A niche of an organism 
is the status of an organism within its environment and community, which affects its survival 
as a species. Specifically, the habitat of a species indicates the abiotic conditions in which a 
species occurs, whereas the niche describes how a species interacts with both abiotic and 
biotic conditions (Hutchinson, 1957). The fundamental niche is primarily a function of 
physiological performance and ecosystem constraints, while the realized niche additionally 
includes interactions and competitive exclusion (Malanson, 1997). Consequently, the 
difference between both niches distinguishes whether a simulated distribution is predicted 
from theoretical physiological constraints or rather from field-derived observations (Guisan 
and Zimmermann, 2000). The fundamental niche is also referred to as the habitat preference 
or the habitat suitability, whereas the realized niche is equal to the habitat selection or use. 
There has been much debate on the assumption that the fundamental niche of a species is 
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constant, which is often referred to as ‘niche conservationism’, and was reviewed in Wiens 
and Graham (2005). The models in this dissertation can describe both niches because they can 
deal with either expert knowledge, observed data, or a combination of both.  

2.2.4 Common modelling techniques in species distribution models 
In addition to the aforementioned PHABSIM technique, several other modelling techniques 
have been applied in habitat suitability modelling. These techniques can be subdivided into 
three main categories: data-driven models, expert knowledge approaches, or a combination of 
both, referred to as hybrid models.  
Data-driven models derive the link between abiotic characteristics and habitat suitability from 
data which are collected in the stream of interest. These models apply common data mining 
techniques such as artificial neural networks, decision trees or support vector machines which 
can be either black-box or grey-box techniques. Black-box approaches, such as neural 
networks and support vector machines, deal with structures and associated parameters that 
usually do not have any physical significance (Babuška and Verbruggen, 1997). Artificial 
neural networks, for instance, are created by optimising weights and bias parameters which do 
not represent any physical variable. Although some authors developed networks which are 
more easily interpretable (Jaarsma et al., 2007), the quality of most neural networks can only 
be evaluated by cross-validation and comparison of model inputs and outputs (Fielding and 
Bell, 1997). The more interpretable approach is the white box modelling, which also allows 
evaluation of the model structure because this structure is physically significant. White-box 
models assume that the system’s behaviour is fully known, and that there exists a suitable 
mathematical scheme, for instance a set of differential equations, to represent this behaviour. 
Practical limitations of the white-box approach arise when the underlying phenomena are 
poorly understood, the values of various system parameters are inaccurate, or when the 
resulting model is highly complex (Casillas et al., 2003). Consequently, grey-box models 
create an intermediary third approach which attempts to combine the advantages of the white-
box and the black-box approaches. Specifically, the known parts of the system are being 
modelled using a priori knowledge about the system, whereas the less known parts are 
described with black-box procedures. Decision tree models, for example, may not only 
generate model output, but also a highly interpretable decision tree from which the model 
output is derived.  
The second category of habitat suitability models is based on expert knowledge. This 
knowledge is derived from literature or from experts and stakeholders, and describes the 
relation between the abiotic environment and the habitat suitability. Common techniques 
applied in this model category are fuzzy logic and Bayesian belief networks, but also decision 
trees could be derived from literature. Expert knowledge-based models, or simply expert 
models or knowledge-based models, are meaningful to the broad range of persons involved in 
the modelling process because these models allow a clear presentation of the model structure 
and the inference process (Borsuk et al., 2004). Hence, the model interpretability is one of the 
main features of knowledge-based systems, which can be an excellent basis for collaboration 
between river managers, scientists and other stakeholders (Casillas et al., 2003; Adriaenssens 
et al., 2004). Moreover, neglect of ecological knowledge is still a limiting factor in the 
application of statistical modelling in ecology and conservation planning (Austin, 2002; 
Borsuk et al., 2004).  
Recent research has shown that complementing expert systems by data-driven techniques can 
alleviate the disadvantages of both (Chen and Mynett, 2003; Žnidaršic et al., 2006). Hybrid 
models are thus not only easily interpretable, but also allow the incorporation of available 
data or expert knowledge, which facilitates model development. For example, the induction of 
fuzzy rule-based models by heuristic search algorithms is often used in the field of fuzzy rule 
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learning (Hüllermeier, 2005). This dissertation aims to develop and apply a fuzzy 
optimisation algorithm as a hybrid modelling technique for habitat suitability modelling.  

2.3 Challenges for species distribution models 

2.3.1 Knowledge-based versus data-driven models 
Although expert knowledge and data-driven methods have been described as two separate 
approaches by many authors, there actually is no sharp distinction between both because all 
expert knowledge has been derived from observations or measurements. Knowledge derived 
from data is often quantitative, while most sensory-perceived knowledge is qualitative. 
Furthermore, expert knowledge can describe environmental processes, but also the occurrence 
of species, which integrates several environmental processes. The subject and origin of the 
expert knowledge determine the niche which could be described by the knowledge (Table 
2.1). 
 
Table 2.1. Relation between subject and origin of the expert knowledge and the output of the 
expert model.  

Subject of expert 
knowledge 

Origin of expert 
knowledge Output of expert model 

  Fundamental niche / 
Habitat suitability 

Realized niche / 
habitat use 

Sensory perceptions X  Environmental processes 
Measured data X  
Sensory field perceptions X X Species occurrence 
Measured field data X X 

 
Most aquatic expert knowledge which focuses on species occurrence is derived from sensory 
field perceptions and thus qualitative. An example would be a fisherman saying: ‘At a high 
flow velocity and a low depth you’ll find many brown trout in this river’. Expert models 
translate this quantitative knowledge into linguistic rules (Zadeh, 1965; Van Broekhoven et 
al., 2006) such as ‘if flow velocity is high and depth is low then the habitat suitability for 
brown trout is high’.  

 Expert knowledge-based models may take into account most of the ecological 
knowledge which is available.  

2.3.2 Ecological boundaries 
To construct the linguistic expert rules, the range of the model variables depth, flow velocity 
and habitat suitability is divided into classes such as low, medium and high. Most habitat 
suitability models apply the crisp boundary approach, which states for example that a water 
column depth lower than 0.5 m is low, whereas a depth exceeding 0.5 m is high. 
Consequently, the boundary between two consecutive classes is crisp because it is situated at 
a single value of the variable. However, transitions in ecology are not crisp but gradual, 
resulting in ecological gradients (Cadenasso et al., 2003a; Cadenasso et al., 2003b). 
Specifically, if the class boundary between a low and a high water column depth is set at 0.5 
m, a depth of 0.49999 m will be classified as low, while a depth of 0.50001 m will be high, 
which does not match with ecological boundary theory (Strayer et al., 2003). Fuzzy logic has 
proven to be an appropriate expert model technique to deal with these ecological gradients 
because the boundaries between the classes of the input variables are overlapping in a fuzzy 
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model and thus reflect these gradual transitions between classes (Van Broekhoven et al., 
2006; Mouton et al., 2007b).  

 Fuzzy logic models may be more appropriate for ecological modelling than classical 
modelling techniques because the overlap of the fuzzy classes reflects the ecological 
boundary concept.  

2.3.3 Interdependence of variables 
The fuzzy logic approach is addressing another shortcoming of the widely used PHABSIM 
related habitat models, which is the application of independent habitat suitability curves. 
These curves describe HS inadequately since in reality physical habitat variables are not 
independent (Heggenes, 1996). Since the first application of PHABSIM, different methods 
have been developed to overcome this problem. Several authors suggested that linking 
different habitat variables through simple mathematical operations is not adequate for the 
description of habitat suitability (Bain, 1995; Heggenes, 1996; Sekine et al., 1997). Although 
sensitivity analysis with different sets of univariate preference curves (Bovee, 1986) could 
partially solve this problem, Sekine et al. (1997) proposed the use of weighting factors to 
combine different habitat preferences based on different variables. Another option, the 
multivariate species response curves which were described earlier, are hardly used in practical 
applications due to several mathematical limitations (Bovee et al., 1998). Fuzzy habitat 
models, by contrast, take into account interactions between habitat variables in a multivariate 
habitat suitability (Adriaenssens et al., 2004; Van Broekhoven et al., 2006). 
Other authors propose a more data-driven approach. Lamouroux et al. (1998) combined 
statistical distributions of physical habitat variable classes within river elements with 
statistical hydraulic models to reduce the efforts for field measurements (Lamouroux et al., 
1995). Yet, the method is not transferable over different rivers. The combination of an 
artificial neural network and a generalized additive model for the prediction of density of 
roach (Rutilus rutilus) (Brosse and Lek, 2000) performed better than a multiple linear 
regression model (Gozlan et al., 1999), but many of these methods require large amounts of 
data or are not transferable to different river types (Lamouroux et al., 1998). These data 
requirements significantly restrict applicability of these approaches, even if data collection is 
facilitated by new techniques such as fish tagging. Fuzzy habitat models allow including 
expert knowledge into the calculation of habitat suitability, hence compensating situations 
where little fish data could be collected in the field.  

 Fuzzy logic models may be more appropriate for habitat suitability modelling than 
some PHABSIM-based approaches since these fuzzy models include variable 
interdependence.  

 Fuzzy logic models may be more appropriate for habitat suitability modelling than 
some data-driven models if field data are lacking.  

2.3.4 The knowledge acquisition bottleneck 
More recently, knowledge-based models have become a popular technique for ecological 
modelling, resulting in numerous applications (Adriaenssens et al., 2004). However, the main 
bottleneck in the application of a merely knowledge-driven approach is the need for 
ecological expert knowledge. Although ecological research currently produces a wealth of 
knowledge about the habitat requirements of the various species, the formalisation of 
problem-relevant human expert knowledge is often difficult and tedious (Adriaenssens, 2004; 
Žnidaršic et al., 2006).  
First, most of the available knowledge is species specific, while for example habitat 
preference curves estimated for one species in a given stretch can often not be extrapolated to 
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other communities of which this species forms a part (Karr, 1991). A far greater threat for the 
application of expert models lies in the lack of consistency of the expert knowledge, which is 
reported by several authors (Acreman and Dunbar, 2004; Adriaenssens, 2004; Wiens and 
Graham, 2005; Hernandez et al., 2006; Randin et al., 2006; Fitzpatrick et al., 2007; Strauss 
and Biedermann, 2007). In a study on the transferability of species distribution models for 
butterflies, Vanreusel et al. (2007) observed some transferability of ecological expert 
knowledge, but their study only covers a small study area, which minimises the likelihood of 
different impacts on the realised niche. Boyce et al. (2002) describe a number of biological 
problems that interfere with the niche conservation concept. These results are in line with the 
environmental gradient categorisation which was discussed earlier. Due to their direct impact 
on the habitat suitability of aquatic species, species response curves to direct gradients are 
expected to have constant shapes, whereas the shape of a species response curve to an indirect 
gradient may depend on the situation (Hutchinson, 1957). Consequently, expert knowledge or 
species response curves to a specific variable can only be consistent over two situations if this 
variable is a direct gradient for the species of interest in both situations. However, the same 
variable can be a direct variable in one river and an indirect one in another river because an 
direct variable was defined as the most proximal gradient in the chain of processes that link 
the variable to its impact. Flow velocity, for instance, has been widely accepted as a direct 
gradient for fish presence in rivers with a good chemical water quality, whereas flow velocity 
may be further down the chain of processes that link this variable to its impact in severely 
polluted rivers due to interactions with other variables such as oxygen concentration. 
Specifically, high flow velocities for instance may lead to a higher oxygen concentration due 
to water splashing. This oxygen concentration may thus be a direct variable for fish presence 
in polluted rivers, whereas flow velocity is an indirect gradient in these rivers. A general 
assumption of most knowledge-based habitat suitability models is that only the most direct 
gradients are included in the model, and the species response to these gradients is thus 
consistent and transferable between different rivers (Bovee, 1982). Since the distinction 
between direct and indirect gradients is situation-dependent, however, species response curves 
could take any shape depending on the studied case (Guisan et al., 1999; Guisan and 
Zimmermann, 2000; Meentemeyer et al., 2001; Austin, 2002; Acreman and Dunbar, 2004). 
This has important implications for the applicability of knowledge-based models (Hudson et 
al., 2003). Particular care should be taken in interpreting model results beyond their original 
domain (Boyce et al., 2002).  

 The acquisition of expert knowledge is the key bottleneck for the application of fuzzy 
logic models in habitat suitability modelling.  

2.3.5 Data-driven knowledge acquisition 
Recent research has shown that complementing expert systems by data-driven techniques can 
solve this ‘knowledge acquisition bottleneck’ (Žnidaršic et al., 2006). For example, the 
induction of fuzzy rule-based models by heuristic search algorithms is often used in the field 
of fuzzy rule learning (Hüllermeier, 2005). However, ecological data show some specific 
characteristics which should be taken into account when developing data-driven ecological 
models. These characteristics are being addressed in the next chapters, with a focus on the 
development of reliable models and on the evaluation of these models.  
The development of a reliable data-driven model requires a sound training and validation 
procedure. Model training is the process in which the model parameters are iteratively 
adjusted to increase the agreement between the model predictions and the observations, which 
are referred to as the training data set. Since this agreement is assessed by the performance 
criterion, model training aims to optimise the performance criterion. Cross-validation is often 
applied to assess the robustness of the training results by randomly creating different training 
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data sets. If the number of model parameters is relatively high compared to the number of 
training data points, model training may result in a model which predicts the observations too 
accurately. Specifically, the reliability and the robustness of the resulting model decrease 
during model training because the model increasingly reflects the training data. The model 
predictions would agree poorly with the observations from other data sets because it only 
describes the specific ecological processes included in the original training data. In such 
cases, model training is a trade-off between model specificity and model generality or 
robustness. This situation often occurs when neural networks or decision trees are applied and 
is called overfitting. To avoid overfitting, the available data set is often split in a training set 
and a test set. Model training is then stopped when the model performance on the test set 
decreases (Fielding and Bell, 1997).  
Although several authors emphasized the importance of correct model training and 
evaluation, both procedures are often neglected or applied erroneously (Fielding and Bell, 
1997; Allouche et al., 2006; Goethals et al., 2007). This problem is often related to the 
application of the performance criterion which is used to evaluate the model performance. 
This criterion is the key component of model training and evaluation, and this dissertation 
aims to incorporate both procedures into ecological modelling in an ecologically relevant way 
by analysing different performance criteria and suggesting challenges for their correct 
application. 

 Ecologically relevant model training and evaluation is a crucial step in the 
development process of a data-driven species distribution model. 
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CHAPTER 3  
 
 
 Fuzzy rule-based models

 
 
 
 
 
 
 
 

3.1 Fuzzy set theory 

3.1.1 Crisp sets versus fuzzy sets 
Expert knowledge-based models, or simply expert models or knowledge-based models, are 
meaningful to the broad range of persons involved in the modelling process because these 
models allow a clear presentation of the model structure and the inference process (Borsuk et 
al., 2004). Hence, model interpretability is one of the main features of knowledge-based 
systems, which can be an excellent basis for collaboration between river managers, scientists 
and other stakeholders (Casillas et al., 2003). Moreover, neglect of ecological knowledge is 
still a limiting factor in the application of statistical modelling in ecology and conservation 
planning (Austin, 2002; Borsuk et al., 2004). A common drawback of most standard 
modelling approaches is that they cannot incorporate extra information, such as the 
knowledge of local experts, which is often qualitative and imprecise (Babu�ška and 
Verbruggen, 1997).  
The fuzzy rule-based models applied in this dissertation allow incorporation of such 
qualitative knowledge into the modelling process (Casillas et al., 2003). These models are 
based on fuzzy set theory, which was developed by Zadeh (1965). At the heart of this theory 
lies the assumption that the world consists of complex systems, which are characterised by 
fuzzy transitions between different states of the system such as the transition between a nice 
sunny day and a thunderstorm. As an extension of Boolean logic, fuzzy logic states that a 
system is not constantly in either state A or state B, but can also be in an intermediary state, 
described as �‘partly A and partly B�’ (Zadeh, 1965).  
In a fuzzy rule-based model, each state is described by a fuzzy set, which shows overlapping 
boundaries with its neighbouring sets. River depth, for example, could be expressed in three 
fuzzy sets, to which the linguistic values �‘low�’, �‘medium�’ and �‘high�’ could be assigned. When 
using classical sets with crisp boundaries (hereafter called crisp sets), for instance depths 
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below 1.5 m would be considered �‘low�’, depths between 1.5 and 3 m �‘moderate�’ and depths 
higher than 3 m �‘high�’. A given depth would either belong to a set (it has a membership 
degree of one to this set) or it would not (it has a membership degree of 0 to this set). A fuzzy 
set is described by its membership function, indicating the membership degree for each 
variable value to this set. As the boundaries between these sets are overlapping, an element 
can partially belong to a fuzzy set and thus have a membership degree to this set ranging from 
zero to one. Hence, the linguistic statement �‘the depth is quite low but tending to be moderate�’ 
could be translated into a depth which could have a membership degree of 0.4 to the �‘low�’ 
fuzzy set and of 0.6 to the �‘moderate�’ set.  
Such assignment corresponds much better with reality than when crisp sets would be used. 
Specifically, fish would not differentiate between a depth of 1.49 m and a depth of 1.51 m, 
whereas crisp sets would categorise these depths respectively as �‘low�’ and �‘moderate�’. 
Although most habitat suitability models apply the crisp boundary approach, transitions in 
ecology are not crisp but gradual, resulting in ecological gradients (Cadenasso et al., 2003a; 
Cadenasso et al., 2003b). Fuzzy logic has proven to be an appropriate modelling technique to 
deal with these ecological gradients because the boundaries between the classes of the input 
variables are overlapping in a fuzzy model and thus reflect these gradual transitions between 
classes (Adriaenssens, 2004; Mouton et al., 2007). Consequently, the fuzzy rule-based models 
which were applied in this dissertation allow incorporation of the ecological boundary theory 
(Strayer et al., 2003) in the modelling process. 
From a mathematical point of view, a fuzzy set is a function from the domain X to the unit 
interval [0,1] that maps an element x to A(x): 
A: X  [0,1] : x  A(x) (3.1)

 
The value of the membership function A in x is called the membership degree of x to A and 
ranges from 0 (x does not belong to the fuzzy set) to 1 (x completely belongs to the fuzzy set). 
If the membership degree is between 0 and 1, x partially belongs to the fuzzy set. A crisp set 
is a special case of a fuzzy set with membership degrees restricted to {0,1}. In Fig. 3.1, the 
linguistic values �‘low�’, �‘moderate�’ and �‘high�’ of the linguistic variable depth are defined by 
membership functions in the domain D = [0,5].  
 

 
Fig. 3.1. Defenition of the three linguistic values assigned to depth by means of crisp (a) and 
fuzzy (b) sets.  

3.1.2 Mathemathical description of fuzzy sets 
Although any function of the form A: X  [0,1] can describe a membership function 
associated with a fuzzy set A, in this dissertation all membership functions will have trapezial 
or triangular shapes. A trapezial fuzzy set can be described by four parameters (a1, a2, a3, a4) 
and can be defined as: 
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The membership degree linearly increases between a1 and a2 from 0 to 1, is equal to 1 
between a2 and a3 and linearly decreases from 1 to 0 between a3 and a4. A triangular 
membership function is obtained when a2 equals a3. All membership functions in this 
dissertation form a fuzzy partition (Ruspini, 1969), which guarantees an interpretable 
description of the linguistic values (Jin, 2003; Bodenhofer and Bauer, 2005). A family n

iiA 1  
of n membership functions forms a fuzzy partition of a domain X if for each element x of X 
the sum of its n membership degrees to all membership functions equals one:  

.0

,,

,,1

,,

,0

)(

4

43
34

4

32

21
12

1

1

axif

aaxif
aa
xa

aaxif

aaxif
aa
ax

axif

xA  (3.2)

.1
1

n

i
i xAx X  (3.3)

 
The membership functions defining the three linguistic values �‘low�’, �‘moderate�’ and �‘high�’ of 
the linguistic variable depth in Fig. 3.1 form a fuzzy partition.  
Similar to the operations used in classical set theory, three basic operations of fuzzy set theory 
�– intersection, union and complement �– can be defined. For two fuzzy sets A and B defined in 
a domain X, the intersection of A and B defined by means of a triangular norm or t-norm T:  

., xBxATxBA  (3.4)
 
The union of A and B is defined by means of a triangular co-norm or t-conorm S and defined 
by:  

., xBxASxBA  (3.5)
 
Finally, the complement of A is defined by: 

.1 xAxcoA  (3.6)
 
Although several definitions have been suggested for t-norms and t-conorms, three definitions 
are most commonly applied: the minimum t-norm TM, the product t-norm TP and the 
Lukasiewicz t-norm TL  
TM (a, b) = min (a,b)  (3.7)

 
Likewise, the product t-norm and the Lukasiewicz t-norm can be defined as: 
TP (a, b) = a . b , (3.8)
TL (a, b) = max (0, a + b �– 1) . (3.9)

 
and the corresponding t-conorms, the maximum SM, the algebraic sum SP and the Lukasiewicz 
t-conorm SL as: 
SM (a, b) = max (a, b) , (3.10)
SP (a, b) = a + b �– a . b , (3.11)
SL (a, b) = min (1, a + b) . (3.12)
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3.2 Fuzzy rule-based models 

3.2.1 Fuzzy rules 
The key component of fuzzy rule-based models is the fuzzy rule base, which consists of fuzzy 
rules of the form  
   IF antecedent part THEN consequent part.  
The fuzzy rule base contains the expert knowledge which links the input variables with the 
output variable of the model. The antecedent part of the rules defines when the rule holds and 
the consequent describes the corresponding conclusion of the fuzzy model. A fuzzy habitat 
suitability model for a fish species could for instance contain the following rule: IF depth is 
low AND flow velocity is medium AND substrate is coarse THEN the habitat is highly 
suitable for this species. The knowledge which is incorporated in the model can be described 
linguistically in the fuzzy rule base (Casillas et al., 2003). The term �‘fuzzy�’ is somehow 
misleading because several authors pointed out that fuzzy systems can approximate any 
continuous real function on a compact domain to any degree of accuracy (Buckley, 1993; 
Ying et al., 1999; Perfilieva and Kreinovich, 2002; Campello and do Amaral, 2006). 
Two main types of fuzzy rule-based models can be distinguished based on the structure of the 
rules. In linguistic fuzzy models, both the antecedent and the consequent contain linguistic 
values, whereas in Takagi-Sugeno models, the antecedent contains linguistic values and the 
consequent contains a crisp function of the input variables. This dissertation will focus on 
linguistic fuzzy models. The r rules of a linguistic fuzzy model with m input variables Xl (l 

L = {1, �… , k}) and one output variable Y are of the form 
Rs : IF X1 IS  AND �… AND X1

,1 sjB m IS  THEN Y IS  m
j sm

B
, si

A

where  (resp. ) are linguistic values of variable Xl
j sl

B
, si

A l (resp. Y) in the domain Xl (resp. Y) 
(s S = {1, �… , r}). The input vector is denoted by x = (x1, �… , xm).  

3.2.2 Mamdani-Assilian inference 
Mamdani-Assilian models are linguistic fuzzy models which apply t-norm based inference 
(Assilian, 1974; Mamdani, 1974). For each instance of the input vector x, its membership 
degrees (xl

j sl
B

, l) to the linguistic values in the antecedents of the rules, i.e. to the membership 
functions of each input variable, is determined. In Fig. 3.2 the membership degrees of the 
input variables x1 and x2 (x = (x1, x2)) are: 
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1 xB  75.0)( 1
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2 xB  25.0)( 1

1
3 xB  

33.0)( 2
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1 xB  67.0)( 2
2
2 xB   

 

 
Fig. 3.2. Determining the membership degrees of the model input vector x = (x1, x2) to the 
linguistic values of the input variables X1 and X2. 
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Next, the fulfilment degrees s of the r rules (s  S = {1, �… , r}) are calculated from the 
membership degrees (xl

j sl
B

, l) to the membership functions of each input variable. For the t-
norms TM, TP and TL this results in: 
 

)(min
,1 l

l
j

m

l
xB

sl
 if T = TM ,  

)(
1

, l

m

l

l
j xB

sl
 if T = TP , (3.13)

s  
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j mxB

sl
1

)0),1()(max(
,

if T = TL . 
 

 
In the following step, the same t-norm T as the one used for the fulfilment degrees s is 
applied to compute the adapted membership functions (see Fig. 3.3) )(' yBs

))(,min( yA
sis

 if T = TM ,  
)(. yA
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 if T = TP , (3.14))(, yA

si
 

)0,1)(max( yA
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 if T = TL .  

 
and the global fuzzy output A(y) is determined as follows: 
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1
yAyA

si

r

s
 (3.15)

 
 

 
Fig. 3.3. Adapted membership functions (in black) obtained by applying Eq. (3.14) with TM, 
TP and TL to the membership function in grey.  
 
Finally, the fuzzy output is defuzzified, which results in the crisp model output y*. Two 
defuzzification methods have been applied most commonly: the Center of Gravity (COG) 
defuzzification resulting in the crisp model output  and the Mean of Maxima (MOM) 
defuzzification resulting in the crisp model output (Kruse et al., 1994) 
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The core of A contains the set of elements which have the largest degree of membership to a 
fuzzy set A: 
core (A) = {x1  X | (  x2  X)(A(x2)  A(x1))} . (3.18)

 
If the core of the fuzzy model output A is a set of discrete values, the crisp output  is 
defined as the average of these discrete values. 

*
MOMy

In practice, Eqs. (3.14)-(3.15) are implemented in a slightly different way. A fulfilment 
degree i is calculated for each linguistic output value Ai based on the fulfilment degrees s of 
the r rules, a fulfilment degree i is computed for each linguistic output value Ai, 

i = max{ s | is = i} . (3.19)
 
An adapted membership function  is determined for each linguistic output value with the 
corresponding fulfilment degree 

'
iA

i

))(,min( yAii  if T = TM ,  

)(. yAii  if T = TP , (3.20))(, yA
si

 )0,1)(max( yAii  if T = TL . 
 

and the global fuzzy output A(y) is determined as follows 

)(max)( '

1
yAyA i

n

i
 (3.21)

 
with n the number of linguistic values of the output variable. Van Broekhoven et al. (2006) 
improved the computational efficiency of the COG method by developing a slope based 
method for the calculation of the crisp model output . In this method, the surface 
described by the fuzzy output is partitioned such that the slope of the fuzzy output is constant 
within each part and different in two adjacent parts (Van Broekhoven et al., 2006).  

*
COGy

In Fig. 3.4, the Mamdani-Assilian inference procedure is illustrated for a model with two 
input variables, X1 and X2 and one output variable Y. The membership functions form a fuzzy 
partition and describe the linguistic values of all three variables. These values are �‘low�’ and 
�‘high�’ for X1 and �‘low�’, �‘medium�’ and �‘high�’ for X2 and Y. The fulfilment degree s of each of 
the six presented rules is the minimum of the membership degree of x1 and x2 to the 
corresponding linguistic value in the antecedent of the rule. According to this fulfilment 
degree s, the membership functions of the output variable Y in the consequent part of the 
rules are truncated (T = TM). The union, based on the maximum, of all these truncated fuzzy 
sets is the global fuzzy output. This output can be defuzzified by the COG defuzzification 
method, resulting in the crisp model output . *

COGy
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Fig. 3.4. Illustration of Mamdani-Assilian inference (T = TM, COG defuzzification) applied to 
a model with six rules 
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3.2.3 Fuzzy ordered classification 
In this dissertation, the output of the fuzzy model is calculated by first determining the 
membership degrees of the crisp input values to the linguistic values of the input variables. 
Next, the degree of fulfilment is calculated for each rule as the minimum of the fulfilment 
degrees in its antecedent. Finally, to each linguistic output value a fulfilment degree is 
assigned equal to the maximum fulfilment degree obtained for all rules containing the 
linguistic output value under consideration in their consequent. Up to this point, the procedure 
is the same as the one applied in Mamdani-Assilian models (Assilian, 1974; Mamdani, 1974). 
However, it is not the purpose of a habitat suitability model to predict a precise numerical 
value for the occurrence of a given species. Specifically, ecologists, river managers and 
stakeholders are interested in the magnitude of the abundance and may thus not even trust a 
model stating an occurrence of, e.g. 77 organisms. Moreover, in this dissertation the output 
variable was already defined by crisp sets: four abundance sets in Chapter 5 and two crisp sets 
(present and absent) in Chapters 7 to 9 (Table 3.1). Therefore, a different type of model was 
applied, more specifically a fuzzy classifier, which implies that the model output of the 
developed models was fuzzy. Specifically, if n is the number of fuzzy sets of the output 
variable, the model output ymodel is a set of n values between zero and one and summing up to 
one. These values express the degree to which the considered river site is regarded suitable as 
a habitat for a species. The output is obtained by normalising the fulfilment degrees of the 
output classes. Note that the output values included in the validation dataset are crisp values 
(integers). When comparing the fuzzy model outputs with the information in the validation 
dataset, the membership degrees of the crisp abundance values to the linguistic output values 
are used.  
 
Table 3.1. The crisp sets defining output variable in the different chapters in this dissertation. 
Chapter Label of output variable Labels of crisp sets 
5 Habitat suitability for the mayfly Baetis 

rhodani, expressed as species abundance 
Low, Medium, High, Very high 

7 Habitat suitability for European grayling Absent/Present 
8 Habitat suitability for European grayling Absent/Present 
9 Habitat suitability for the caddisfly 

Aoteapshyche spp. 
Absent/Present 

9 Habitat suitability for Large brown trout Absent/Present 
9 Habitat suitability for Large rainbow trout Absent/Present 
 
To assess the performance of the developed models, different performance criteria were 
applied as described in the next chapters. To take into account the fuzzy characteristics of the 
model output, two performance criteria were applied that can deal with the fuzzy model 
output: the average deviation (AD) and the adjusted average deviation (aAD), as described in 
chapter 4. However, most performance criteria are based on the confusion matrix (Chapter 4) 
and can not deal with the fuzzy model outputs. Therefore, to apply these criteria the model 
output was assigned to the fuzzy set with the highest fulfilment degree, which allowed 
comparison of the modelled output with the observed output and calculation of performance 
measures. If the output variable consists of two sets, this approach is very similar to the 
defuzzification procedures used in Mamdani-Assilian models. 
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CHAPTER 4  
 
 
 Fuzzy rule base training

 
 
 
 
 
 
 
 

4.1 Introduction 
Although linguistic fuzzy rules originally were derived from expert knowledge, more recently 
various techniques were developed to identify the rules and fuzzy sets from data, such as 
fuzzy clustering, neural learning methods or genetic algorithms (Guillaume, 2001; 
Hüllermeier, 2005). These data-driven identification methods for fuzzy models have been 
developed mostly for Takagi-Sugeno models, because these methods focused on the model�’s 
accuracy. Recently, model interpretability also gained importance and several methods have 
been proposed to obtain a balance between both model accuracy and interpretability. Espinosa 
and Vandewalle (2000) improved the interpretability of a model obtained by purely data-
driven identification, while other authors enhanced the interpretability of accurate fuzzy 
models (Casillas et al., 2003a) and improved the accuracy of linguistic fuzzy models with a 
good interpretability (Casillas et al., 2003b). In this dissertation, not only the accuracy of 
interpretable linguistic models will be improved, but a method will be presented which 
guarantees that the increase in accuracy is also ecologically relevant.  

4.2 Fuzzy sets optimisation 
The parameters of the membership functions corresponding to the fuzzy sets of the input 
variables have often been derived from expert knowledge. However, if a fuzzy set of an input 
variable contains very few training instances, rules which involve this fuzzy set will be 
trained inadequately. Therefore, in this dissertation a uniform distribution of the input 
variables over the fuzzy sets was suggested to generate reliable rule bases. The Shannon�–
Weaver entropy (Shannon and Weaver, 1963) quantified this uniformity and was applied to 
optimise the parameters of the membership functions of the input variables. The fuzzy sets 
were converted into crisp ones whose boundaries were the points having a membership 
degree of 0.5 to the corresponding fuzzy set.  
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The entropy E is given by (convention 0 log2 0 = 0): 
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where n is the number of classes and pi is the proportion of data points belonging to class i. 
The algorithm for parameter optimisation starts with n equal to 2, and then the parameters of 
the fuzzy sets are adjusted in steps of r/2s with r the range of the variable of which the fuzzy 
sets are optimised, and s the fixed stepsize. For each variable, parameter optimisation started 
by creating two crisp sets with boundary at r/n with n the number of sets, which equals two. 
The crisp sets were transformed into fuzzy sets by setting the parameters of each set m, am,t, 
bm,t, cm,t and dm,t (Fig. 1) as follows: 
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with t indicating the iteration of the sets optimisation and thus t = 1 in this situation. Next, the 
entropy En,t of this fuzzy set configuration was calculated as described in Eq. (4.1) and this 
entropy was set to Ebest. This entropy Ebest is compared with the entropy fixed threshold Ethres 
and the algorithm was terminated if Ebest > Ethres. 

 
Fig. 1. The parameters of the fuzzy set m of variable X1.  
 
If Ebest < Ethres, the algorithm searched for the fuzzy set of which an expansion of the set 
boundaries could lead to the greatest increase in entropy. For each set m, the upper boundary 
was expanded as follows: 
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The entropy of this new fuzzy set configuration in iteration t+1, En,t+1, was calculated and 
compared to Ebest. If En,t+1 > Ebest, the algorithm continued with this new configuration and the 
upper boundary of the set m was further adjusted according to Eqs. (4.4) and (4.5). The last 
adjustment of the fuzzy set was cancelled and the algorithm continued with adjusting the 
upper boundaries of the next fuzzy set m+1 if En,t+1 < Ebest,.  
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To avoid that the algorithm would generate erroneous fuzzy sets in which the total 
membership degree of a variable value would exceed one, the boundary adjustment of the 
fuzzy sets in each iteration t was limited as follows:  
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If the boundary adjustment of fuzzy set m reached this limit and the entropy was still lower 
than Ethres, the set was split into two symmetric sets. This split was created in the same way as 
the first split of the total variable range into two fuzzy sets, but the variable range was now 
replaced by the range of the fuzzy set m. The entropy of this new set configuration, En+1,1, was 
calculated and compared to Ebest. If En+1,1 < Ebest, the algorithm did not split the sets and 
continued with the next fuzzy set. If En+1,1 > Ebest, the algorithm restarted from this new 
configuration. If an entropy which exceeded Ethres was obtained during sets optimisation, the 
boundaries of the remaining sets were still optimised, but without splitting the sets.  
The applied fuzzy sets optimisation method ensured that the distribution of the training data 
instances over the fuzzy sets was optimal. In a situation with n fuzzy sets, sets which 
contained less than 100/n % of the data would be expanded as far as possible, whereas sets 
which contain more than 100/n % of the data would be reduced to or split into smaller sets. 
This method avoided that empty or poorly represented sets were included in the model and 
increased model efficiency by deleting redundant sets. Several authors have suggested similar 
approaches and demonstrated that such methods significantly improve model performance 
(Casillas et al., 2003a; Casillas et al., 2003b). However, a more uniform distribution of the 
input data over the fuzzy sets does not guarantee that each fuzzy rule is represented uniformly 
in the input data. Water depth values, for instance, can be uniformly distributed over a �‘low�’ 
and a �‘high�’ fuzzy set, but this does not imply that many sampling sites with a high flow 
velocity and a high depth are represented in the training set.  

4.3 Hill-climbing algorithms for rule base training 
The term �‘hill-climbing�’ implies an iterative improvement technique, and thus describes both 
maximisation and minimisation problems. The technique is applied to a single solution, the 
current solution, in the search space. During each iteration, a new solution is selected from the 
neighbourhood of the current solution. If that solution provides a better value in light of the 
evaluation function, the new solution becomes the current solution. Otherwise, some other 
neighbour is selected and tested against the current point. The method terminates if no further 
improvement is possible. Hill-climbing methods are often started from a large variety of 
different starting solutions because these methods can only provide locally optimal values, 
and these values depend on the selection of the starting point. In this dissertation, the initial 
points are chosen at random, and the algorithm is stopped if the best solution is found for the 
fifth time. For problems with many local optima, particularly those where these optima have 
large basins of attraction, it�’s often very difficult to locate a globally optimal solution. 
However, several authors have shown that there is no way to choose a single search method 
that can serve well in every case (Fogel and Ghozeil, 1997; Wolpert and Macready, 1997; 
Michalewicz and Fogel, 2000), which is referred to as the 'no free lunch theorem'.  
There are a few versions of hill-climbing algorithms, which differ mainly in the way a new 
solution is selected for comparison with the current solution. In this dissertation, the steepest 
ascent hill-climbing algorithm is applied. Initially, all possible neighbours vn of the current 
solution are considered, and the one vn that returns the best model performance is selected to 
compete with the current solution, vc. If the model performance of vc is worse than the 
performance of vn, then the new solution vn becomes the current solution. Otherwise, no local 
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improvement is possible and the algorithm has reached a local or a global optimum. In such a 
case, the next iteration of the algorithm is executed with a new current solution selected at 
random (Michalewicz and Fogel, 2000).  
To generate a reliable habitat suitability model, the consequents of the fuzzy rules in this 
dissertation were optimised using a nearest ascent hill-climbing algorithm. First, the fuzzy 
sets were optimised as described in Section 4.2. Once the sets were optimised, they did not 
change during the further training procedure. Starting from these fixed fuzzy sets and a rule 
base with randomly selected rule consequents, the linguistic value in the consequent of one 
randomly selected rule was changed into its neighbouring linguistic value and the impact on 
model performance was calculated. If model performance increased, the algorithm continued 
with the adjusted rule base, if not, it continued with the original one. If a linguistic term had 
two neighbouring linguistic terms (e.g. the linguistic term �‘moderate�’ may have the two 
neighbouring linguistic terms �‘low�’ and �‘high�’), the impact of both neighbouring linguistic 
terms on model performance was calculated and compared. To indicate the robustness of the 
optimisation results, n-fold cross-validation was applied. First, n partitions were constructed 
by randomising the original dataset and assigning each data point to one partition without 
replacement, such that each partition contained 100/n % of the total number of data points of 
the dataset. Ten sets of both a training and a test fold were then created by identifying one 
partition as the test fold and by grouping the n-1 other partitions into the training fold. This 
procedure resulted in n different training and test folds. The species prevalence (i.e. the 
frequency of occurrence) and the fuzzy set configuration was constant for all partitions and 
thus for all training and test folds. 
Different models were trained based on different performance measures as described in the 
next sections. Different training scenarios were created to compare the results of optimisation 
based on the different performance measures (Table 4.2). Each training iteration was stopped 
when no further increase of the performance measure on the test fold was observed. Each 
training iteration was repeated and the obtained rule base was compared to each rule base 
obtained in previous iteration steps. The resulting rule base similarity indicated the percentage 
of rule consequents that was identical for two rule bases. If the rule base with the highest 
performance on the test fold was obtained 5 times, this rule base was selected as the final rule 
base and training continued on another fold as in the following algorithm:  
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Algorithm 4.1: Training algorithm 
t  0 
for each fold do  
 stop  0 
 while stop < 5 do 
  t  t + 1 
  Train rule base based on training fold 
  Perftestt  the performance of the resulting rule base, RBt, on the test fold  
  if t = 1 then 
   Maximal Perftest  Perftestt
   Maximal RB  RBt
  else if Perftestt > Maximal Perftest then 
   Maximal Perftest  Perftestt
   Maximal RB  RBt
   stop  0 
  else if Perftestt = Maximal Perftest then 
   if similarity of RBt and Maximal RB = 100 % then 
    stop  stop + 1 
   end 
  end 
 end 
end 
 
In this work, the fuzzy rule base contained fuzzy rules representing each possible combination 
of input variable sets. However, not every combination of input variable sets was present in 
the studied stretch. To obtain an indication of which rules were relevant, the fuzzy sets were 
turned into crisp ones by assuming that an input value belongs not to a set if its membership 
degree to this set is < 0.5. Each data point could be assigned to one environmental condition, 
resulting in the distribution of the data points over the �‘crisp�’ environmental conditions 
described by the rules. The distribution also gives an indication of the usefulness of the 
obtained rule base over a range of environmental conditions that can be found in the study 
area. The similarity between the rule base of model A and model B was calculated as the % 
CCI, assuming that the rule base of model A equals the observed values and the one of model 
B the predicted output. 

4.4 Performance criteria 
The key component of the model training and validation procedures is the performance 
criterion which evaluates the model performance. Performance criteria can deal with either 
continuous or discrete model outputs, or with both. If a model generates discrete predictions, 
these outputs can be summarized in a confusion matrix (Fielding and Bell, 1997; Manel et al., 
2001) which compares the model predictions to the observations (Table 4.1). No individual 
element of the matrix provides a synoptic view of overall model performance, while 
conventional statistics of association on these confusion matrices are inappropriate for 
assessing model performance (Manel et al., 2001). Therefore, several performance criteria 
have been derived from this confusion matrix, including overall predictive accuracy or the 
percentage of correctly classified instances (CCI; Buckland and Elston, 1993; Fielding and 
Bell, 1997), sensitivity, specificity, the normalized mutual information statistic (NMI; Forbes, 
1995), Kappa (Cohen, 1960), the odds ratio (Fielding and Bell, 1997) and the true skill 
statistic (TSS; Allouche et al., 2006). The latter two criteria range from -1 to 1, whereas all 
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other criteria range from 0, where models are completely inaccurate, to 1, where presence-
absence is perfectly predicted.  
 
Table 4.1. The confusion matrix as a basis for evaluation of observed data. The table cross-
tabulates observed values against predicted values: true-positives, a; false-positives, b; false-
negatives, c; true-negative values, d. 
  Observed 
  Present Absent 

Present a b Predicted 
Absent c d 

 
Table 4.2. Measures of predictive accuracy calculated from a 2x2 error matrix (Table 4.1). 
The percentage of Correctly Classified Instances (CCI) is the rate of correctly classified cells. 
Sensitivity (Sn) is the probability that the model will correctly classify a presence. Specificity 
(Sp) is the probability that the model will correctly classify an absence. NMI quantifies the 
information included in the model predictions compared to that included in the observations. 
The Kappa statistic and TSS normalise the overall accuracy by the accuracy that might have 
occurred by chance alone. In all formulae n= a + b + c + d.  
 
Measure Formula 
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Odds ratio 
cb
ad  (4.12) 

TSS Sn + Sp - 1 (4.13)
 

4.5 Selection of input variables 
The presented knowledge extraction method can also be applied to select the optimal input 
variables of the fuzzy model. Such variable selection not only decreases model complexity, 
but also reduces computational and monitoring efforts (D'heygere et al., 2003; D'heyere et al., 
2006; Gabriels et al., 2007). The variable selection method presented in this dissertation, first 
estimates the contribution of each variable to the global model performance. The contribution 
of an input variable Xi to a model with q input variables is computed according to Algorithm 
4.2. 
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All variables were then ranked based on their q! rankings. Specifically, the variable with the 
highest marginal contribution was the variable which was ranked the most often as the 
variable with the highest contribution.  
Finally, the variable contribution method was applied to select the optimal input variables for 
the habitat suitability model. This selection is based on both model performance, quantified 
by a performance criterion such as the percentage of correctly classified instances (CCI) or 
Kappa (Fielding and Bell, 1997), and on the Akaike information criterion AIC (Akaike, 
1974). The latter measure not only considers model performance, but also model complexity 
and thus avoids overfitting of the training data by the model. Starting from a model A which 
consisted of m variables, this model was first optimised with the hill-climbing algorithm 
described earlier. Then, input variables were selected as described in Algorithm 4.3. 
 
Algorithm 4.2. Computing the contribution of each variable to the model 
c = 0 
initialise P, containing the q! possible permutations Pc of q input variables 
while c < q! 
 c = c + 1 
 create a model A containing all q input variables 
 calculate the performance of model A, perf(A) 
 j = 0 
 contc = 0 
 while the number of variables in model A is greater than one 
  j = j + 1 
  create model Aj by removing the first variable of Pc, Xi,j, from the model A 
  remove the first variable of Pc, Xi,j, from Pc
  calculate the performance of model Aj, perf(Aj) 
  the marginal contribution of Xi,j to model A, conti,j,c, is given by 

   conti,j,c = 
)(
)(

1
Aperf
Aperf

cont j
c  

  contc = contc + conti,j,c
 end 
 for each variable Xi of the q input variables 
 assign a ranking ranki,c to Xi based on its marginal contribution to model A 
end 
 
The variable selection method was a combination of a step-forward and a step-backward 
procedure. Step-forward variable selection starts from a model which contains one variable, 
and then expands this model by adding the other variables one by one (Gabriels et al., 2007). 
A step-backward selection method starts from a model which includes all variables, and then 
reduces this model by removing variables one by one. In both approaches, the contribution of 
each variable is the difference between the performances of the model with and of the model 
without this variable. If the input variables are not independent of each other, the step-forward 
variable contribution to the total model performance differs from the step-backward 
contribution. Specifically, the step-forward procedure considers different correlations between 
variables than the correlations which are included in the step-backward approach. Therefore, 
in this dissertation, the variable selection method applied was a combination of both step-
forward and step-backward procedures. Although this approach is computationally more 
expensive, it considers all possible correlations between variables and thus may generate 
consistent results.  
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The starting point of the algorithm may vary based on the available data or expert knowledge. 
However, the algorithm has been developed such that the starting point does not affect the 
final result of the algorithm. It should be noted that the highest marginal increase of 
performance after at random addition of a variable may be a negative value, but this does not 
affect the result of the algorithm. This variable selection approach was only applied in 
Chapter 5 for two reasons. First the approach is computationally expensive and thus less 
appropriate for the larger datasets which are applied in Chapters 7-9. Moreover, in contrast to 
the dataset applied in Chapter 5, the latter datasets contained only a limited number of input 
variables, and thus variable selection was less necessary.  
 
Algorithm 4.3. Selection of the input variables 
for each variable Xi which is not in model A 
 create a new model Ai by adding Xi to model A 
 optimise model Ai
 compute the performance of model Ai
end 
select the model Ai with the highest marginal increase of performance* 
calculate the contribution of the variables of Ai to perf(Ai) (Algorithm 1) 
if perf(Ai) > perf(A) and AIC(Ai) < AIC(A) 
 if the contribution of the variable Xi last added to the model is the lowest contribution 
  restart the algorithm with model A = model Ai
 else 
  create model Ai’ by removing the variable with the lowest contribution 
  optimise model Ai’ 
  restart the algorithm with model A = model Ai’ 
 end 
else 
 if the contribution of the variable Xi last added to the model is the lowest contribution 
  stop the algorithm; model A contains the most significant variables 
 else 
  create model Ai’ by removing the variable with the lowest contribution 
  optimise model Ai’ 
  if perf(Ai’) > perf(A) and AIC(Ai’) < AIC(A) 
   restart the algorithm with model A = model Ai’ 
  else 
   stop the algorithm;  
   model A contains the most significant variables 
  end 
 end 
end 
* a decrease of model performance is treated as a negative increase of performance 
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5.1 Introduction 
In this chapter, a fuzzy habitat suitability model for macroinvertebrates in rivers is 
developed at the mesohabitat scale level. The ecological expert knowledge needed for 
this model is derived in two different ways in order to compare expert knowledge 
derived from literature with knowledge derived from data using a hill-climbing 
algorithm. Habitat models were generated for the mayfly Baetis rhodani Pictet in the 
Zwalm river basin (Belgium), which is an indicator species for a good ecological water 
quality. The hypothesis tested hereby was that data-driven models outperform expert 
knowledge-based models. Although a case study is presented of the larvae of the mayfly 
Baetis rhodani Pictet in the Zwalm river, the model could be applied on any other 
aquatic species and on any other river. The results in this chapter may support river 
managers to assess bottlenecks in the river basin and thus to efficiently allocate small 
scale restoration efforts. 

5.2 Material and methods 

5.2.1 Study area 
The study area includes the Zwalm river basin (03° 43’ E; 50° 51’ N) which is a 116.5 
km  sub-basin of the Scheldt river basin in Flanders, the northern part of Belgium (Fig. 
5.1). The mean annual flow at the mouth of this 22 km long river is 1.21 m /s, with the 
mean summer low flow being 0.53 m /s and the mean high flow 2.43 m /s. Most of the 
headwaters in the Zwalm river basin are colonised by very rare fish species and several 
vulnerable macro-invertebrates (Dedecker et al., 2004). 

CHAPTER 5  
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Chemical water quality in the Zwalm river basin improved over the last years, due to 
investments in sewer systems and wastewater treatment plants (VMM, 2007). However, 
whereas physical habitat quality is still excellent in the headwaters, it ranges from 
moderate to very poor in the inhabited parts of the river basin due to flood control weirs, 
straightened river channels and artificial embankments. Specifically, these flood control 
weirs obstruct invertebrate and fish migration and are one of the most important 
ecological problems within the river basin (Dedecker et al., 2004). Many restoration 
measures have been proposed and planned by the Flemish government (Belconsulting, 
2006), but the possible impact of these measures on river biology was never 
investigated. This emphasises the need for reliable predictive tools providing decision 
support for integrated river management.  

Belgium
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N 
EW 

S 
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Fig. 5.1. Location of the Zwalm River basin in Flanders, Belgium. 

5.2.2 Data Collection 
Biological data were collected in the Zwalm river at 323 sites during 5 consecutive 
years between August and September (2000-2004) to avoid seasonal bias. The 
macroinvertebrate population was assessed in 10 m of the present habitat at each site by 
means of 5 minutes kick sampling, using a standard hand net with mesh size 500 µm 
(IBN, 1984) and by in situ exposure of artificial substrates (De Pauw and Vanhooren, 
1983). All the collected material was transferred to buckets with cover and afterwards 
samples were sieved and organisms sorted in the laboratory. After separation, Baetis 
rhodani (Pictet, 1843) larvae were identified under a stereoscopic dissection microscope 
(magnification 10-50 times) and abundances were determined. These abundances were 
log(abundance +1) transformed and were assumed to indicate the habitat suitability for 
B. rhodani larvae. 
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Structural and physical variables were measured to describe the different mesohabitats 
(Table 5.1). Flow velocity was determined using a propeller flow velocity meter 
(Höntzsch ZS25GFE). For each 10 m stretch, flow velocity measurements were 
performed at 40 % of depth on 15 points, divided over 5 transects. Each transect 
consisted of 3 equidistant points, forming a uniform grid. The dominating substrate was 
visually assessed and expressed in 4 classes. Water level and width were recorded with 
a measuring tape while field measurements were performed for dissolved oxygen (OXI 
330/SET). Water samples were taken and analysed spectrophotometrically in the 
laboratory to assess the concentrations of ammonium, nitrate and phosphate.  

5.2.3 Fuzzy rule based modelling 
The fuzzy rule-based modelling and the variable selection procedure were applied as 
described in Chapter 4. Adriaenssens (2004) derived an expert knowledge base from 
literature, consisting of fuzzy sets and fuzzy rules. The variables included in this 
knowledge base were stream width, flow velocity, conductivity (C), and concentrations 
of ammonium (A), nitrate (N) and phosphate (P). Four different models were created by 
combining each chemical variable (A, C, N and P) with the two physical variables flow 
velocity and stream width.  
To generate a reliable knowledge base derived from data, the consequents of the 
fuzzy rules were optimised using a nearest ascent hill-climbing algorithm as described 
in Chapter 4. Three-fold cross-validation was applied to indicate the robustness of the 
optimisation results. The folds were constructed by randomising the original data set 
and assigning each data point to one fold without replacement. The species prevalence 
(i.e. the frequency of occurrence) was constant for all three folds and equal to the 
prevalence of the original dataset (0.31 = 99/319).  
First, the same fuzzy sets were used as those of the literature expert knowledge 
approach (Table 5.1). However, if a fuzzy set of an input variable contains very few 
training instances, rules which apply to this fuzzy set will be trained inadequately. 
Consequently, before rule base optimisation, the fuzzy sets were optimised based on the 
Shannon-Weaver entropy (Shannon and Weaver, 1963) to create a uniform distribution 
of the input variables over the fuzzy sets as described in Chapter 4. Since Cohen’s 
Kappa (Cohen, 1960) was assumed to be an appropriate performance measure for rule 
base optimisation, it was applied in this chapter. To further optimise the data-driven 
model, the impact of different variables on model performance was analysed. 
Specifically, the importance of each variable was expressed as the average marginal 
contribution of each variable to the total model output as described in Chapter 4. 
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Table 5.1. Measured variables at each sampled river stretch, the linguistic values assigned to 
the input variables of the habitat suitability models and their corresponding fuzzy sets. The 
expert knowledge-based fuzzy set parameters were derived by Adriaenssens (2004)  
Variable Unit Linguistic 

value 
Expert knowledge-based 
fuzzy set parameters 

Data-driven fuzzy set 
parameters 

Low (0.00,0.00,0.00,0.25) (0.00,0.00,0.09,0.46) 
Medium (0.00,0.25,0.25,0.50) (0.09,0.46,0.55,0.67) Flow velocity m.s-1 
High (0.25,0.50,1.30,1.30) (0.55,0.67,1.22,1.40) 
Low / (0,1,1,2) 

Medium / (1,2,2,3) 

High / (2,3,3,4) 
Dominating 
substrate 

4 classes (from 1 
= pebble to 4 = 
loam/clay) 

Very high / (3,4,4,5) 
Low / (0.00,0.00,0.22,0.55) 
Medium / (0.22,0.55,0.74,0.91) Depth m 
High / (0.74,0.91,1.65,1.82) 
Low (0.0,0.0,0.0,2.0) (0.00,0.00,0.63,1.72) 
Medium (0.0,2.0,2.0,4.0) (0.63,1.72,2.07,3.17) 
High (2.0,4.0,4.0,6.0) (2.07,3.17,4.95,6.05) Width m 

Very high (4.0,6.0,11.0,11.0) (4.95,6.05,11.00,11.55) 
Very low (0.00,0.00,0.00,0.10) / 
Low (0.00,0.10,0.10,0.15) (0.00,0.00,0.63,1.63) 
Medium (0.10,0.15,4.00,5.00) (0.63,1.63,2.25,2.75) 
High (4.00,5.00,8.00,10.00) (2.25,2.75,5.00,5.50) 

Ammonium mg NH4
+-N/l 

Very high (8.00,10.00,30.00,30.00) / 
Very low (0.00,0.00,0.00,0.15) / 
Low (0.00,0.15,0.15,0.30) (0.00,0.00,2.80,4.38) 
Medium (0.15,0.30,0.30,0.40) (2.80,4.38,6.32,9.48) 
High (0.30,0.40,0.40,0.45) (6.32,9.49,15.81,17.39) 

Nitrate mg NO3
--N/l 

Very high (0.40,0.45,20,20) / 
Very low (0.00,0.00,0.00,0.10) / 
Low (0.00,0.10,0.10,0.15) (0.00,0.00,0.28,0.72) 
Medium (0.10,0.15,4.00,5.00) (0.28,0.72,0.99,1.21) 
High (4.00,5.00,8.00,10.00) (0.99,1.21,2.2,2.42) 

Phosphate mg PO4
3--P/l 

Very high (8.00,10.00,30.00,30.00) / 
Very low (0,0,150,250) / 
Low (150,250,450,550) (0,0,340,1019) 
Medium (450,550,750,850) / 
High (750,850,1050,1150) (340,1019,1359,1699) 

Conductivity µS/cm 

Very high (1050,1150,2880,2880) / 
Low / (0.0,0.0,5.4,6.6) Dissolved 

oxygen mg O2/l High / (5.4,6.6,12.0,12.6) 
Low (0.00,0.00,0.00,0.48) (0.00,0.00,0.25,0.65) 

Medium (0.00,0.48,0.48,0.78) (0.25,0.65,0.90,1.10) 

High (0.48,0.78,1.04,1.32) (0.90,1.10,2.00,2.20) 
Habitat 
suitability log(abundance +1) 

Very high (1.04,1.32,2.01,2.01) / 
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5.3 Results 
Fuzzy rule-based models were constructed based on the expert knowledge rules 
described by Adriaenssens (2004). Data-driven fuzzy models were generated using the 
same variables. Each model was labelled according to the variables included in the 
model: depth (D), width (W), flow velocity (V), dominating substrate (S), conductivity 
(C), oxygen (O), nitrate (N), phosphorus (P) and ammonia (A) concentration. 
Consequently, model WVC, for instance, included the variables width, flow velocity 
and conductivity. The performance of both model types was compared by calculating 
the CCI and Kappa of all models (Fig. 5.2). All data-driven models performed better 
than their expert knowledge-based opponents for both CCI and Kappa. Moreover, the 
data-driven models contained fewer degrees of freedom than their expert knowledge-
based opponents (Table 5.2). 
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Fig. 5.2. Performance of the four expert knowledge-based (EK = expert knowledge; 
solid black symbols) and the four data-driven (DD = data-driven; white symbols) 
models quantified by the percentage of correctly classified instances (CCI; triangular 
symbols) and Kappa (K; square symbols). Values of these performance criteria were 
averaged over the three folds for the data-driven models. Each model was labelled 
according to the variables included in the model: depth (D), width (W), flow velocity 
(V), dominating substrate (S), conductivity (C), oxygen (O), nitrate (N), phosphorus (P) 
and ammonia (A) concentration. Consequently, model WVC, for instance, included the 
variables width, flow velocity and conductivity. 
 



Chapter 5. Knowledge-based versus data-driven models 

42 

D
eg

re
es

 o
f f

re
ed

om
 

60
 

36
 

60
 

24
 

60
 

36
 

60
 

36
 

P - - - - - - 

0.
18

0 
2 

0.
37

0 
± 

0.
06

3 
2 

N
 - - - - 

0.
60

5 
1 

0.
24

9 
± 

0.
14

9 
2 - - 

C
 - - 

0.
20

2 
2 

0.
05

1 
± 

0.
02

8 
3 - - - - 

A
 

0.
19

75
 

2 

0.
22

5 
± 

0.
06

5 
3 - - - - - - 

V
 

0.
69

59
 

1 

0.
54

3 
± 

0.
13

6 
1 

0.
56

1 
1 

0.
64

9 
± 

0.
13

5 
1 

0.
36

9 
2 

0.
54

9 
± 

0.
15

6 
1 

0.
71

9 
1 

0.
45

7 
± 

0.
01

6 
1 

W
 

0.
10

66
 

3 

0.
23

2 
± 

0.
07

1 
2 

0.
08

6 
3 

0.
30

0 
± 

0.
10

8 
2 

0.
02

6 
3 

0.
20

2 
± 

0.
10

7 
3 

0.
10

1 
3 

0.
17

3 
± 

0.
05

7 
3 

Ta
bl

e 
5.

2.
 P

ro
po

rti
on

al
 c

on
tri

bu
tio

n 
of

 e
ac

h 
va

ria
bl

e 
to

 t
he

 t
ot

al
 m

od
el

 p
er

fo
rm

an
ce

, 
qu

an
tif

ie
d 

by
 K

ap
pa

 a
nd

 t
he

 r
an

ki
ng

 o
f 

ea
ch

va
ria

bl
e,

 b
as

ed
 o

n 
its

 re
sp

ec
tiv

e 
co

nt
rib

ut
io

n.
 V

ar
ia

bl
e 

co
nt

rib
ut

io
ns

 to
 th

e 
da

ta
-d

riv
en

 m
od

el
s 

w
er

e 
av

er
ag

ed
 o

ve
r t

he
 th

re
e 

fo
ld

s. 
EK

 =
Ex

pe
rt 

kn
ow

le
dg

e-
ba

se
d 

m
od

el
; 

D
D

 =
 d

at
a-

dr
iv

en
 m

od
el

; 
W

 =
 r

iv
er

 w
id

th
; 

V
 =

 f
lo

w
 v

el
oc

ity
; 

A
 =

 a
m

m
on

iu
m

 c
on

ce
nt

ra
tio

n;
 C

 =
co

nd
uc

tiv
ity

; N
 =

 n
itr

at
e 

co
nc

en
tra

tio
n;

 P
 =

 o
rth

op
ho

sp
ha

te
 c

on
ce

nt
ra

tio
n;

 W
V

X
 =

 m
od

el
 in

co
rp

or
at

in
g 

th
e 

va
ria

bl
es

 W
, V

 a
nd

 X
 w

ith
 X

= 
A

, C
, N

 o
r P

. 

M
od

el
 

EK
 W

V
A

 

D
D

 W
V

A
 

EK
 W

V
C

 

D
D

 W
V

C
 

EK
 W

V
N

 

D
D

 W
V

N
 

EK
 W

V
P 

D
D

 W
V

P 



Chapter 5. Knowledge-based versus data-driven models 

43 

The impact of the different variables on the final model performance was quantified by 
the variable importance and the average ranking of each variable (Table 5.2). The 
results show that flow velocity is the most important variable in both expert knowledge-
based and data-driven models. Although all expert knowledge-based models categorise 
river width as the least important variable, 75 % of the data-driven models agree that 
width is the second most important variable for the habitat suitability of mayflies. 
However, this result is only substantial for the model incorporating conductivity, which 
indicates that in general, both expert knowledge-based and data-driven models rank the 
variables similarly. 
The purely data-driven model development approach selected flow velocity as the most 
important variable for the habitat suitability of mayflies (Fig. 5.3). Models were created 
by combining each of the resulting variables with flow velocity and the performance of 
these models was analysed (Figs. 5.3-5.4). This indicated that river width also 
significantly influenced mayfly habitat suitability. Further expansion of the models 
revealed that first adding the river bed substrate (Fig. 5.5) and then the nitrate 
concentration of the river substantially increased model performance (Fig. 5.6). 
However, the model which incorporated the nitrate concentration showed higher AIC 
values than the model which only contained flow velocity, river width and river bed 
substrate (Table 5.3). Consequently, no further variables were added to the model. 
During the whole model development process, the marginal increase in model 
performance decreased while adding variables to the model.  
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Fig. 5.3. Performance of the 9 data-driven habitat suitability models which incorporated 
one variable: the ammonium concentration (A), conductivity (C), river depth (D), nitrate 
concentration (N), dissolved oxygen concentration (O), phosphate concentration (P), the 
dominant river bed substrate (S), flow velocity (V) and river width (W). Model 
performance was averaged over the three folds and quantified by the percentage of 
correctly classified instances (CCI) and by Kappa. 
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Fig. 5.4. Performance of the 8 data-driven habitat suitability models which incorporated 
flow velocity (V) and another variable: the ammonium concentration (A), conductivity 
(C), river depth (D), nitrate concentration (N), dissolved oxygen concentration (O), 
phosphate concentration (P), the dominant river bed substrate (S) and river width (W). 
Model performance was averaged over the three folds and quantified by the percentage 
of correctly classified instances (CCI) and by Kappa. 
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Fig. 5.5. Performance of the 7 data-driven habitat suitability models which incorporated 
flow velocity (V), river width and another variable: the ammonium concentration (A), 
conductivity (C), river depth (D), nitrate concentration (N), dissolved oxygen 
concentration (O), phosphate concentration (P) and the dominant river bed substrate (S). 
Model performance was averaged over the three folds and quantified by the percentage 
of correctly classified instances (CCI) and by Kappa. 
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Fig. 5.6. Performance of the 6 data-driven habitat suitability models which incorporated 
flow velocity (V), river width, the dominant river bed substrate (S) and another variable: 
the ammonium concentration (A), conductivity (C), river depth (D), nitrate 
concentration (N), dissolved oxygen concentration (O) and the phosphate concentration 
(P). Model performance was averaged over the three folds and quantified by the 
percentage of correctly classified instances (CCI) and by Kappa. 
 
The ecological relevance of the different models was analysed by plotting the 
cumulative predicted habitat suitability classes of each model for each input variable. 
Comparison of these plots with the cumulative observed habitat suitability classes 
reveals the extent to which the model is over- or underestimating the observations (Figs. 
5.7-5.9). Moreover, comparison of the shape of these plots may provide an indication of 
the ecological relevance of the model. Specifically, a model is assumed to be 
ecologically more relevant if the shape of its resulting cumulative prediction curve 
resembles the shape of the cumulative observed habitat suitability and if it shows no 
underprediction of this habitat suitability. Indeed, an overpredicting model is 
ecologically irrelevant, whereas overprediction of the observations may not necessarily 
imply a model error, which is discussed into detail in Chapter 6. Models that show no 
underprediction and that result in a cumulative plot which resembles the cumulative 
observations may systematically overpredict the observations. Specifically, if the shape 
of the plots is similar, the magnitude of the overprediction error is similar over the 
whole range of the considered input variable. Consequently, the more similar the shape 
of the cumulative prediction plot is to the shape of the cumulative observation plot, the 
more ecologically relevant the corresponding model is. 
For all variables, the expert knowledge-based model significantly underestimated the 
observations, whereas the model incorporating flow velocity only (model V) was 
overestimating the observations the most. Incorporation of other variables (river width; 
model VW and river bed substrate; model VWS) increased model performance, but 
further extension of the model by including the nitrate concentration (model WVSN) 
did not lead to a significantly better model (Figs. 5.7-5.9). This was also reflected in the 
AIC values (see Section 4.5) of the different models (Table 5.3). 
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Fig. 5.7. Cumulative predicted habitat suitability classes of the models selected in the 
model development process compared to the cumulative observed habitat suitability 
classes as a function of the river width. One out of the five selected models was based 
on expert knowledge (EK), whereas the other four models were data-driven and either 
incorporating flow velocity only (model V), flow velocity and river width (model VW), 
flow velocity, river width and the dominant river bed substrate (model WVS) or flow 
velocity, river width, the dominant river bed substrate and the nitrate concentration 
(model WVSN). The 4 habitat suitability classes of the expert knowledge-based model 
were transformed to the 3 fuzzy sets of the data-driven model output to allow 
visualisation on the same figure. 
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Fig. 5.8. Cumulative predicted habitat suitability classes of the models selected in the 
model development process compared to the cumulative observed habitat suitability 
classes as a function of the flow velocity. One out of the five selected models was based 
on expert knowledge (EK), whereas the other four models were data-driven and either 
incorporating flow velocity only (model V), flow velocity and river width (model VW), 
flow velocity, river width and the dominant river bed substrate (model WVS) or flow 
velocity, river width, the dominant river bed substrate and the nitrate concentration 
(model WVSN). The 4 habitat suitability classes of the expert knowledge-based model 
were transformed to the 3 fuzzy sets of the data-driven model output to allow 
visualisation on the same figure. 
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Fig. 5.9. Cumulative predicted habitat suitability classes of the models selected in the 
model development process compared to the cumulative observed habitat suitability 
classes as a function of the dominant river bed substrate class. One out of the five 
selected models was based on expert knowledge (EK), whereas the other four models 
were data-driven and either incorporating flow velocity only (model V), flow velocity 
and river width (model VW), flow velocity, river width and the dominant river bed 
substrate (model WVS) or flow velocity, river width, the dominant river bed substrate 
and the nitrate concentration (model WVSN). The values of substrate class 4 have been 
expanded to 4.1 to improve visualisation. The 4 habitat suitability classes of the expert 
knowledge-based model were transformed to the 3 fuzzy sets of the data-driven model 
output to allow visualisation on the same figure. 
 
Both model VWS and model VWSN performed similarly for the variables river width, 
flow velocity and nitrate concentration. Specifically, the highest similarity of both 
models occurred in the range of river width, flow velocity and nitrate concentration 
which contained most of the data points (Figs. 5.7-5.9) and the difference between the 
models only increased substantially at extremely high values of these three variables. 
However, model WVSN classified more habitats with a finer river bed substrate 
(dominant substrate class 3 and 4; sand and clay/loam respectively) as suitable for 
mayflies, whereas model WVS classified more habitats with a coarser substrate 
(dominant substrate 1 and 2; pebbles and gravel respectively) as suitable. 
 
Table 5.3. Degrees of freedom and AIC values of the four optimal models obtained after 
addition of variables to the initial one-variable model. 
Model V VW VWS VWSN 
Number of degrees of freedom 3 12 48 144 
AIC 0.998 -60.879 -68.736 96.132 

 



Chapter 5. Knowledge-based versus data-driven models 

48 

5.4 Discussion 
The presented results suggest that data-driven models may perform better than expert 
knowledge-based models. This lack of consistency of the expert knowledge, which is 
confirmed by several authors (Acreman and Dunbar, 2004; Adriaenssens, 2004; Wiens 
and Graham, 2005; Hernandez et al., 2006; Randin et al., 2006; Fitzpatrick et al., 2007; 
Strauss and Biedermann, 2007), may hamper the application of expert models. The 
model development approach in this chapter aims to further contribute to a data-driven 
knowledge acquisition. Specifically, it showed that even if expert knowledge is 
available, data analysis could support modellers to generate more reliable habitat 
suitability models.  
Despite a substantial increase in model performance after addition of each variable, the 
last added variable always was the least important variable in the selected models. 
Consequently, the model development process only followed a limited part of 
Algorithm 4.3. However, the other loops of the algorithm ensure that the algorithm 
reveals the same end point if different starting points are applied. This was tested by 
starting the algorithm from the best expert knowledge-based model, consisting of flow 
velocity, river width and nitrate concentration (WVN). The algorithm selected WVNS 
as the model with the highest marginal increase of performance, and in this model the 
nitrogen concentration appeared to contribute the least to the total model performance. 
This variable was thus removed from the model and the algorithm was restarted with the 
resulting model (WVS), which led to the aforementioned results (Figs. 5.7-5.9). 
Although the presented model selection algorithm showed to generate consistent results, 
care should be taken in selecting an appropriate model. Incorporating more variables 
into a model will most likely increase model performance, but not necessarily model 
reliability. This is illustrated by the difference between model VWS and model VWSN. 
The cumulative model predictions tend to approach the observations increasingly after 
incorporation of a new variable. However, incorporation of a fourth variable results in a 
model which generates better CCI and Kappa values, but the ecological relevance of 
this model has not necessarily increased. Specifically, the gap between the cumulative 
model predictions and the observations increased for the river width, flow velocity and 
the nitrogen concentration, while for the dominating substrate, model WVSN tended to 
overfit the observations.  
The predicted preference of mayfly larvae for higher flow velocities and narrower 
streams is in line with previous research results (Bengtsson, 1988; Fjellheim, 1996; 
Mobes-Hansen and Waringer, 1998; Wagner et al., 2000). Moreover, both nitrate 
concentration and river width may indicate general river degradation because more 
anthropogenicaly disturbed streams often show higher nitrate concentrations and are 
further downstream of the stream source and thus wider (Vannote et al., 1980). Since 
Baetis larvae are known to prefer pristine to moderately polluted streams (Bengtsson, 
1988), the model predictions for river width and nitrate concentration appear to be 
ecologically relevant. 
However, further analysis of the model predictions is needed based on the dominant 
substrate, because these predictions are less similar among different models. Several 
authors showed that Baetis rhodani larvae prefer coarse substrate over finer substrates 
(Bengtsson, 1988; Fjellheim, 1996; Mobes-Hansen and Waringer, 1998; Wagner et al., 
2000). These results are also confirmed by Wood et al. (2005), who revealed that these 
mayfly larvae are unable to excavate themselves from sedimented material and thus 
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avoid dynamical substrates. Another explanation for the coarse substrate selection of 
mayfly larvae may be antipredatory behaviour (Tikkanen et al., 1996; Dahl, 1998; 
Huhta et al., 1999; Kelly et al., 2002). Tikkanen et al. (2000) also reported that a 
majority of Baetis larvae chooses dark substrates over light-colored ones in both 
laboratory and natural streams, although they could not attribute these results to 
antipredatory behaviour.  
Given the general agreement on the preference for coarse substrates of mayfly larvae, 
the predictions of model WVS may be ecologically more relevant than those of model 
WVSN. This leads to a second important issue for the selection of an appropriate 
ecological model, which is the distinction between over- and underestimation of the 
observations. This type of model error describes a consistent under- or overestimation 
of the species prevalence (Pearce and Ferrier, 2000) and is discussed into detail in 
Chapter 2 and in the next chapters. Given the considerations on over- and 
underprediction of the observations, model WVS may be ecologically more relevant 
than model WVSN. This is in line with the characteristics of the Zwalm river basin, 
which is one of the least polluted river basins in Flanders and shows a good to moderate 
chemical water quality. Consequently, the habitat suitability of Baetis larvae in this river 
basin may be quantified reliably by physical habitat variables. Moreover, Baetis larvae 
also occur in rivers with moderate chemical water quality, which supports the 
aforementioned results. Since in the studied area, wider rivers generally show more 
anthropogenic disturbance, river width may also roughly reflect chemical water quality. 
Consequently, the effect of the nitrate concentration may already be partly incorporated 
in the river width variable, which might explain the relatively low importance of the 
nitrate concentration in the habitat model. 
For some variables, such as the dominant river bed substrate, model WVSN appears to 
overfit the training data, although this overfitting is not in line with the aforementioned 
habitat preferences of Baetis larvae. Model WVSN is prone to overfitting due to its 
relatively high number of model parameters (144 parameters for 319 data points). This 
was also reflected by the AIC values of the different models, which quantify the balance 
between model performance and complexity (Akaike, 1974). Although this measure 
assigns an arbitrary weight to both model characteristics, it provides an indication of 
how likely a model will generate overfitted predictions. Moreover, a higher number of 
model parameters compared to the number of sampling points increases the likelihood 
that model training is stopped at a local optimum, and that the global optimum is never 
reached. Finally, the development of reliable but more complex models often requires 
more data, more monitored variables and the incorporation of a wider environmental 
range in the training data, which results in a substantial increase in costs and efforts. 
This chapter shows that data-driven model development may complement the expert 
knowledge approach which is often used in habitat suitability modelling of aquatic 
species. The presented method was applied on a mayfly species in a specific river basin, 
but it could be easily applied to any species, river system and at different spatial and 
temporal scales. The flexibility of the approach allows modellers to select habitat 
variables and to define their classification in terms of fuzzy sets specific to the study 
site, the research objectives or the data availability. The approach in this chapter allows 
quantitative description of expert knowledge, and thus enables comparison of the data-
driven habitat suitability predictions with available expert knowledge. Consequently 
model users could choose the most appropriate model based on the quality of the 
available data and expert knowledge. Data-driven rules may be more reliable if a 
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substantial number of high quality samples is available, whereas expert knowledge 
based rules may reliably predict habitat suitability in study areas which are 
underrepresented in the available dataset. To enable visualisation of the predicted 
habitat suitability, the final fuzzy rules could be implemented in visualisation tools such 
as MesoCASiMiR module of the CASiMiR modelling system (Jorde et al., 2000; 
Schneider, 2001; Mouton et al., 2006; Mouton et al., 2007). As such, the presented 
method may provide a valuable tool for river managers and stakeholders to select 
different restoration options and to implement their management strategies.  
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6.1 Introduction 
The previous chapter suggested that data-driven model development may complement the 
expert knowledge approach which is often used in habitat suitability modelling of aquatic 
species. To develop these data-driven models, however, a sound comparison of model 
performance is needed to allow reliable model training and evaluation of the final model. A 
crucial step in the model comparison procedure is the assessment of the model performance 
(Fielding and Bell, 1997; Manel et al., 1999a; Manel et al., 1999b; McPherson and Jetz, 
2007). Most authors refer to this step as model evaluation (Boyce et al., 2002; Anderson et al., 
2003; Barry and Elith, 2006; Guisan et al., 2007), hereby situating the model evaluation 
procedure at the end of the overall modelling process. However, model performance is also 
assessed during the model development process to compare trained models and select the best 
performing models (Hastie et al., 2001). To avoid misleading terminology in this chapter, the 
term model evaluation will refer to performance assessment of the final model, whereas 
training performance assessment will refer to model performance assessment during model 
training.  
The key component of model performance assessment is the criterion applied to quantify 
model performance. Since Fielding and Bell (1997) reviewed the performance criteria most 
commonly applied in conservation presence/absence methods, the performance assessment of 
models developed from presence-absence data has been a recurrent focus (Pearce and Ferrier, 
2000; Manel et al., 2001; Nielsen et al., 2005; Vaughan and Ormerod, 2005; Allouche et al., 
2006). Estimates of predictive performance have been widely applied to assess final model 
quality, especially in papers that compare the relative performance of different methods 
(Hirzel et al., 2001; Elith et al., 2006; Heikkinen et al., 2007; Meynard and Quinn, 2007; 
Peterson et al., 2007). Most literature on training performance assessment focuses on 
measures such as Akaike�’s information criterion, which facilitates variable selection by 
estimating the relative error rates for alternative models built using the same dataset (Hastie et 
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al., 2001). These papers describe the selection of fitted models, whereas the focus of this 
chapter is on the model performance assessment during model training. An evaluation of a 
sample of species distribution modelling literature between 1998 and 2007 (n = 385), 
indicated that 67 % of the modellers use data for model training or evaluation. Although the 
model fitting procedure is mostly (99 %) based on optimisation of the predictive accuracy of 
the model, a wider range of performance criteria has been used for model evaluation (Table 
6.1). Manel et al. (2001) reviewed a sample (n = 87) of published ecological literature 
between 1989 and 1999, which revealed that many users of presence-absence models made no 
evaluation at all, even in leading ecological journals. A more recent review in this chapter 
shows that not only the number of modellers applying model evaluation increased 
substantially in recent years, but also that more than 82 % of these modellers applied at least 
two different performance criteria for model evaluation (Table 6.1).  
This chapter aims to review the performance criteria most commonly applied in presence-
absence modelling and analyse their function in both the model training and the model 
evaluation process. First, an up-to-date general framework for error quantification in habitat 
models is provided. Then, this framework is related to the role of performance criteria in both 
model evaluation and model training. The role of performance criteria in model evaluation is 
reviewed and some empirical insights are given which are important for both model training 
and evaluation. Furthermore, the role of performance criteria in model training is analysed 
theoretically and some pitfalls are identified. Although the focus of this chapter is on 
presence-absence models, some concepts and problems which also occur across ecological 
modelling more generally, will be discussed. Finally, recommendations are given on the 
application of different performance criteria on model evaluation and training. 

6.2 A framework for evaluating model performance 
Model performance assessment, based on the quantification of error and uncertainty in 
models, has increasingly received attention during the last decade (Vaughan and Ormerod, 
2005; Barry and Elith, 2006). Different authors focused on either the theoretical source of 
modelling errors (Guisan and Zimmermann, 2000; Austin, 2007), the performance criteria for 
model evaluation (Fielding and Bell, 1997; Pearce and Ferrier, 2000; Manel et al., 2001) or 
both (Vaughan and Ormerod, 2005; Barry and Elith, 2006). This chapter represents a further 
contribution to the latter category. Murphy and Winkler (1987; 1992) have developed a 
framework for assessing predictive performance of models that explicitly links model 
reliability and discrimination ability. By partitioning out the different error components, this 
framework may provide more useful information for further improving models (Guisan et al., 
2006). The framework was reviewed in an ecological context by Pearce and Ferrier (2000) 
and has been applied in many other studies on predictive performance of species distribution 
models (Vaughan and Ormerod, 2005).  
The framework, summarised in Fig. 6.1, allows prediction error to be partitioned between a 
number of sources. These model error sources are either based on the observations or on the 
model predictions (Pearce and Ferrier, 2000). Model discriminatory ability and prevalence 
belong to the first category, while model calibration and refinement are included in the latter.  
Refinement relates to the range of predictions produced by the model for a given set of sites. 
Predictions from most distribution models are continuous variables, even if they are fitted to 
presence-absence data. Good refinement indicates that predictions cover the full probability 
range, with predicted values near both zero and one (Pearce and Ferrier, 2000).  
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Fig. 6.1. A framework for evaluating model performance (adjusted from Pearce and Ferrier 
(2000)). 
 
Calibration refers to the numerical accuracy of the predictions (Harrell et al., 1996), which 
reflects the level of agreement between actual observations and model predictions (Pearce and 
Ferrier, 2000). A model shows good calibration if, for instance, sites given predicted 
probability values of 0.8 have an 80 % chance of being occupied and whether this is twice as 
likely for sites given predictive probability values of 0.4 (Vaughan and Ormerod, 2005). The 
source of poor calibration can be partitioned into three components: bias, spread and 
unexplained error.  
Bias describes a consistent under- or overestimation of the species prevalence and is also 
referred to as omission or commission error (Rondinini et al., 2006) or as false-negative or 
false-positive error (Loiselle et al., 2003), respectively. Several authors have addressed this 
issue in ecological modelling and emphasized the significant negative correlation between 
both errors (Fielding and Bell, 1997; Anderson et al., 2003; Loiselle et al., 2003; Rondinini et 
al., 2006; Fitzpatrick et al., 2007). Consequently, conservationists should choose between 
models that minimise one or the other error (Loiselle et al., 2003; Wilson et al., 2005; 
Rondinini et al., 2006). Knowledge on the data which have been used to develop the model 
may substantially influence this choice because these data can inherently contain either more 
commission or omission errors, or both. Data derived from geographic ranges, for example, 
contain large commission errors since these ranges assume homogeneous species 
distributions. Although point locality data obtained from museum collections generally 
contain large omission errors, point locality data from field observations can reduce 
commission errors. False-positive observations are unlikely because these errors can only 
occur if samples are contaminated (Rondinini et al., 2006). Sample contamination could occur 
more easily for smaller species, but in most cases this error could be avoided by applying 
good sampling practice. Sampling inefficiency could lead to false-negative observations, 
which falsely suggest that a suitable habitat is not suitable for a species of interest. If not 
adequately dealt with, false-negative observations are likely to affect both variable selection 
and coefficient estimation in models (MacKenzie et al., 2002; MacKenzie et al., 2003; Tyre et 
al., 2003; Barry and Elith, 2006).  
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Boyce et al. (2002) emphasize that mobile animals may not be using the entire habitat at one 
time and that modelling their habitat thus requires an appropriate modelling technique. 
Specifically, false-positive prediction of the observed situation by a model may not 
necessarily imply a model error. Several factors suggest these false-positive predictions are 
inherent to the classification of ecological data. Monitoring inefficiency is an explanation 
(MacKenzie et al., 2003), but the occurrence of aquatic species may also depend on other 
variables than those included in the habitat suitability model (Gönczi, 1989). For example, if a 
fish species is absent due to the poor water quality at a site with excellent physical habitat, a 
good physical habitat model will predict that this fish is present at this site. Several authors 
suggest that species might be temporarily absent from the site (Lütolf et al., 2006) or the site 
might not yet be colonized (Hirzel et al., 2001). This problem could be solved by including a 
temporal variable such as seasonality or the intensity of past disturbance in the model. Further 
research should provide more insight into this gap between expert knowledge and the 
observed occurrence of aquatic species and into the assessment of the direct gradients which 
determine species occurrence. 
In contrast to the false-positive predictions, only few hypotheses can explain false-negative 
predictions of habitat suitability models. If an aquatic species is present at a specific site, 
models predicting this species to be absent at this site are always false, assuming that the 
biological data contain no errors. Consequently, overpredicting models may be more realistic 
than models which underestimate the actual occurrence of a species. However, the acceptance 
of false-positive predictions should be limited, since models predicting a species to be present 
at all sites are ecologically irrelevant, assuming that the data cover both suitable and 
unsuitable habitats (Manel et al., 2001).  
Loiselle et al. (2003) indicate that conservation decision makers must decide which error is 
most unlikely. They argue that commission errors may lead to failure to conserve a species 
because sites selected as reserves do not contain the target taxa. Omission errors may fail to 
select sites that are of importance to the overall survival of a species, such as those that 
represent viable populations (Loiselle et al., 2003). They suggest to select species distribution 
models that minimise false-positive errors to avoid the selection of reserve areas that do not 
actually contain the target taxa. However, this implies that models with a higher false-
negative error are selected given the significant negative correlation between omission and 
commission errors. As mentioned before, such models may fail to identify sites that are of 
importance to the overall survival of the species, which contrast markedly with the 
precautionary principle that is often applied in ecological decision making (Wilson et al., 
2005). Hence, selection of models minimising underprediction may be a more prudent 
solution. In a modelling study of the potential distribution of two rodents, (Anderson et al., 
2003) reported that the best models were consistently found at low levels of omission and 
moderate-to-high commission values. Applying presence-only data, they suggest to arbitrarily 
set an acceptable level of omission error. In contrast, if the purpose of the species distribution 
model is to select suitable regions for reintroduction of a locally extinct species, commission 
errors should be avoided because these would lead to reintroduction in areas which are not 
suitable for the species of interest (Pearce and Ferrier, 2000).  
The second component of calibration, spread, indicates that the model is systematically 
overestimating and underestimating observed values, depending on whether the predicted 
probabilities are higher or lower than 0.5. Predictions greater than 0.5 are underestimating the 
occurrence of the species and predictions less than 0.5 are overestimating the occurrence of 
the species, or vice versa. If a model has a significant bias or spread error, a predicted value of 
0.5 will not relate to an observed value of 0.5, but to a higher or lower observed value. 
Therefore, choosing a threshold probability without any information on bias and spread will 
greatly reduce the model confidence. Moreover, the presence of spread error and lack of 
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model refinement suggest that important explanatory variables are missing from the model 
(Pearce and Ferrier, 2000).  
Unexplained error, the last component of calibration, describes variation not accounted for by 
the bias and the spread of a model. Some of this variation may arise because variables that 
may influence species occurrence were not included in the model or due to random variation, 
which is increased by error in measurement of species presence and environmental variables 
(Pearce and Ferrier, 2000). 
The second component of model error, which is based on the observations, consists of the 
discrimination of the model and of the prevalence. Discrimination relates to the ability of a 
model to distinguish occupied from unoccupied sites (Harrell et al., 1996; Pearce and Ferrier, 
2000). It is the probability that a model will assign higher predicted values to occupied sites 
compared with those assigned to unoccupied sites. The prevalence indicates how often a 
species is present at a sampled set of sites and therefore provides information on the 
probability of a species being observed as present at a randomly selected site (Murphy and 
Winkler, 1987; Pearce and Ferrier, 2000).  

6.3 Performance criteria in presence-absence modelling 

6.3.1 Selected sources of model error 
Although model error sources based on the model predictions are related to error sources 
based on observations (Pearce and Ferrier, 2000), these two error types reflect different 
aspects of the predictive performance of the model. The relative importance of both error 
types depends on the purpose of the model (Pearce and Ferrier, 2000; Vaughan and Ormerod, 
2005). Pearce and Ferrier (2000) emphasize that a model which has good calibration and 
refinement must also have good discrimination at a constant prevalence, but acknowledge that 
the converse is not necessarily true. This chapter will focus on the model discrimination as a 
source of model error, because this is the fundamental component of prediction accuracy 
(Vaughan and Ormerod, 2005). Although it is necessary to have at least a moderate level of 
refinement in order to be able to examine model performance further, few authors treat it as a 
substantial source of model error (Vaughan and Ormerod, 2005) because adjustment of the 
model structure can easily avoid a low level of refinement. Model calibration is only required 
if predictions are used in a quantitative matter, for instance to generate spatial maps of the 
probability of species occurrence (Johnson et al., 2004). Often, a model may only be required 
to rank sites according to their relative probability of being occupied: treating its predictions 
as being ordinal, rather than quantitative. In such instances, a test of discrimination may be 
deemed sufficient (Vaughan and Ormerod, 2005).  
This chapter distinguishes the prevalence of the training and evaluation dataset from the three 
aforementioned sources of model error because it is the only model error source which cannot 
be reduced by adjusting the model structure (Pearce and Ferrier, 2000). The dependency of 
different performance criteria values on prevalence has been widely acknowledged (Manel et 
al., 2001; McPherson et al., 2004; Luoto et al., 2005; Allouche et al., 2006; Bulluck et al., 
2006). This dependency has a significant impact on the ability to compare accuracy 
meaningfully between the same model in different applications (with different species 
prevalence) or between models developed for different species or with different training or 
evaluation data (Vaughan and Ormerod, 2005). Many authors suggested that the prevalence 
should approximate 0.5 in order for the predictive performance of a model to be examined 
(Pearce and Ferrier, 2000; Liu et al., 2005; Maggini et al., 2006). However, others suggested 
that performance criteria should be either largely independent of, or possibly corrected for 
species prevalence (Miller et al., 1991; Manel et al., 2001; Allouche et al., 2006).  
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6.3.2 Performance criteria 
The key component of the model training and validation procedures is the performance 
criterion which evaluates the model performance. Performance criteria can deal with either 
continuous or discrete model outputs, or with both. All performance criteria which were 
developed to evaluate discrete model predictions can also handle continuous predictions 
because these can be discretised by using threshold values. Generally, suitable sites, where 
species are supposed to be present, are separated from unsuitable sites by one single habitat 
suitability threshold. The many approaches to determining thresholds fall into two categories: 
subjective and objective. Several authors apply the first category, for instance by taking 0.5 as 
the threshold (Manel et al., 1999a; Manel et al., 2001; Bailey et al., 2002; Luck, 2002; 
Stockwell and Peterson, 2002; Woolf et al., 2002; Dedecker et al., 2005). More objective 
approaches choose thresholds to maximise the agreement between observed and predicted 
distributions. Liu et al. (2005) compared 12 different objective approaches to determining 
thresholds and investigated the effect of different prevalence for training and evaluation data. 
They recommend using either the prevalence approach, the average probability approach, or a 
sensitivity and specificity-based approach (Liu et al., 2005). The prevalence approach 
(Cramer, 2003) takes the prevalence of the training data as a threshold, whereas the average 
probability approach (Cramer, 2003) takes the average predicted probability of the training 
data as a threshold. Sensitivity and specificity-combined approaches either maximise the sum 
of both (Cantor et al., 1999; Manel et al., 2001), minimise the absolute value of the difference 
between Sn and Sp (Cantor et al., 1999), or derive the threshold from the Receiver-Operator 
Characteristic (ROC) plot (Cantor et al., 1999). The commonly applied Kappa maximisation 
approach, which chooses the threshold value that maximises Kappa (Guisan et al., 1998; 
Hirzel et al., 2006), appeared to be less appropriate, while the fixed threshold approach turned 
out to be the worst method (Liu et al., 2005). In a smaller comparison of four threshold 
selection methods, Jiménez-Valverde and Lobo (2007) found similar results.  
Despite the aforementioned methods, the choice of an appropriate threshold often remains 
difficult and arbitrary (Fielding and Bell, 1997; Manel et al., 1999b; Manel et al., 2001; Liu et 
al., 2005) and depends on the calibration of the model (Pearce and Ferrier, 2000; Vaughan 
and Ormerod, 2005). Moreover, selection of a threshold often depends on the 
conservationist�’s preferences and can significantly affect reserve selection for conservation 
planning (Liu et al., 2005; Wilson et al., 2005). Therefore, some criteria, such as the average 
deviation (AD; Van Broekhoven et al. (2007)), do not require this arbitrary threshold to 
process continuous data. The receiver operator characteristic (ROC; Miller et al., 1991; 
Fielding and Bell, 1997) approach is another alternative method for assessing the accuracy of 
probabilistic output models (Fig. 6.16). ROC curves are constructed by using all possible 
thresholds to classify the model outputs into confusion matrices, obtaining the sensitivity and 
specificity for each matrix, and then plotting sensitivity against the corresponding proportion 
of false-positives (equal to 1-specificity). The area under the ROC curve (AUC) is often used 
as a single threshold-independent measure for model performance (Manel et al., 2001; 
Thuiller et al., 2003; Brotons et al., 2004; McPherson et al., 2004; Thuiller et al., 2005). AUC 
was shown to be independent of prevalence (Manel et al., 2001; McPherson et al., 2004) and 
is an effective measure of discriminatory ability for probabilistic models (Vaughan and 
Ormerod, 2005). Consequently, AUC is considered to be the current best practice for 
assessing model success for presence/absence data (Pearce and Ferrier, 2000; Thuiller et al., 
2003; Rushton et al., 2004; Austin, 2007). However, the AUC approach cannot be applied to 
dichotomous presence-absence model outputs (Allouche et al., 2006). Moreover, models with 
the same or very similar AUC values may predict very different patterns of distribution (see 
further, Fig. 6.16). Finally, Maggini et al. (2006) found that the AUC is systematically lower 
at extreme prevalence values (prevalence < 0.05 or > 0.70). The AUC appears to be 
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independent of prevalence only in its middle range (Maggini et al., 2006; McPherson and 
Jetz, 2007). Reliance on AUC as a sufficient test of model success needs to be re-examined 
(Termansen et al., 2006; Austin, 2007). 
The most popular measure for the accuracy of presence-absence predictions is Cohen�’s Kappa 
(Manel et al., 2001; Loiselle et al., 2003; Petit et al., 2003; Berg et al., 2004; Parra et al., 
2004; Pearson et al., 2004; Rouget et al., 2004; Segurado and Araújo, 2004; Allouche et al., 
2006). This measure allows an assessment of the extent to which models correctly predict 
occurrence at rates that are better than chance expectation (Fielding and Bell, 1997). 
However, several authors argued that Kappa may be less appropriate for model evaluation 
due to its dependence on the prevalence of the training data from which the model was 
developed (Fielding and Bell, 1997; Manel et al., 2001; Allouche et al., 2006). Three 
performance criteria were proposed to avoid this problem because these criteria were assumed 
to be independent of prevalence (Manel et al., 2001; Allouche et al., 2006): the NMI (Forbes, 
1995; Fielding and Bell, 1997), TSS (Allouche et al., 2006) and AUC (Fielding and Bell, 
1997; Manel et al., 2001). 
Several authors suggested some desirable properties of accurracy statistics for the 
assessement of species distribution model performance (Forbes, 1995; Fielding and Bell, 
1997; Vaughan and Ormerod, 2005). According to Vaughan and Ormerod (2005), the most 
important property is generality, which is defined as the ability to compare accuracy 
meaningfully between the same model in different applications or between models developed 
for different species or with different training and test data. This property has been defined 
from an evaluation perspective: a suitable performance criterion should be independent of the 
prevalence of the data to which the criterion is applied. This generality attempts to avoid that 
two identical models which are evaluated on two different datasets, would show different 
model performance. Vaughan and Ormerod (2005) suggest that, if performance criteria values 
are affected by prevalence, the criteria could also be corrected for this prevalence to assure 
generality. Another desirable property of performance criteria is the ability to weigh omission 
and commission errors. It is generally accepted that conservationists should be able to choose 
between both errors (Loiselle et al., 2003; Wilson et al., 2005; Austin, 2007) and that 
successful recovery of the true model depends more on the ecological insight of the modellers 
than on the particular statistical modelling method used (Austin et al., 2006; Austin, 2007). 
Consequently, suitable performance criteria should allow species distribution modellers to 
take this issue into account. In the next sections, the suitability of the most frequently applied 
performance criteria for both the evaluation and training of species distribution models is 
assessed based on their generality and their distinction between omission and commission 
errors.  

6.3.3 Application of performance criteria for model evaluation 
Recent research on species distribution modelling often compares the predictive performance 
of different habitat suitability models (Manel et al., 1999a; Manel et al., 1999b; Elith et al., 
2006; Meynard and Quinn, 2007). This comparison is based on the assessment of the 
performance of the final model which is obtained after model training. Most authors refer to 
this step as model evaluation (Boyce et al., 2002; Anderson et al., 2003; Barry and Elith, 
2006; Guisan et al., 2007), although the terms model testing and model validation are also 
being used (Anderson et al., 2003; Vaughan and Ormerod, 2005). Both latter terms are less 
appropriate to designate model performance assessment because they may overlap with other 
steps in the modelling process. In neural network applications for instance, model testing is 
applied to stop the supervised learning procedure and to avoid overfitting of the training data, 
which occurs when idiosyncrasies in the training set are modelled in addition to the 
underlying species-environment relationship (Lek and Guégan, 1999). This results in a 
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misleadingly good fit to the data (Geman et al., 1992; Harrell et al., 1996; Gevrey et al., 
2003). Model validation implies the quantification of the model performance on an 
independent dataset. Optimally, this dataset should be completely independent from the data 
used to train or calibrate the model, e.g. collected on other areas (Fielding and Bell, 1997; 
Hastie et al., 2001). However, due to time and money constraints, most studies have only one 
dataset which is split in a training and an evaluation set. Moreover, a truly independent 
validation set is unrealistic because it is impossible to monitor exactly the same ecological 
processes at the same environmental conditions at different moments in time. Consequently, 
models are evaluated by k-fold cross-validation to allow assessment of the robustness of the 
model performance quantification (Vanhouwelingen and Lecessie, 1990; Fielding and Bell, 
1997; Hastie et al., 2001). This resampling approach randomly divides the dataset into k 
independent parts, using k-1 of them to train the model, and calculating the model 
performance on the left-out part. This produces k estimations of the model performance, 
allowing assessment of its mean and variance. The number of parts typically varies between 3 
and n, depending on the number of instances n (Hastie et al., 2001; Hirzel et al., 2006). The 
latter situation is referred to as leave-one-out or jack-knife cross-validation.  
In recent years, model evaluation has increasingly received attention in species distribution 
modelling. The aforementioned sample of ecological literature between 1989 and 1999, which 
was evaluated by Manel et al. (2001), revealed that only 52 % of the modellers (n = 87) 
evaluated model performance. A more recent sample of ecological literature on presence-
absence or presence-only models (n = 385) not only indicated that the number of papers on 
species distribution modelling increased significantly, but also that 97 % of the model users 
evaluates model performance (Table 6.1). Araújo et al. (2005) found similar results for a 
sample of species-climate envelope models under climate change between 1995 and 2004 (n 
= 29), of which 93 % was evaluated. Although 82 % of the modellers applied two or more 
criteria, the percentage of papers applying at least two performance criteria has only increased 
slowly. Table 6.2 shows that almost all papers use CCI, but the application of Kappa and 
AUC is increasing, with AUC being the most widely applied performance criterion for model 
evaluation. In recent years, some papers introduced other performance criteria into species 
distribution modelling, such as the odds ratio, the TSS and the NMI statistic. Current best 
practice in species distribution modelling is to apply at least two different performance 
criteria for model evaluation.  
 
Table 6.1. The number of validation criteria used in the model evaluation process. A sample 
of 385 papers on species distribution modelling was evaluated, of which 67 % used data for 
model training or evaluation. The numbers in the table are percentages of this group (n = 
257). The papers which applied 0 performance criteria did not evaluate model performance. 
 Number of performance criteria applied in model evaluation Total 
 0 1 2 3 4 5  

1998-2002 2 18 61 8 8 3 15 

2003-2007 3 15 64 12 4 2 85 

Total 3 15 64 11 5 2 100 
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Table 6.2. The different validation criteria used in the model evaluation process. A sample of 
385 papers on species distribution modelling was evaluated, of which 67 % used data for 
model training or evaluation. The numbers in the table are percentages of this group (n = 
257). CCI = percentage correctly classified instances; CCI only = papers which only applied 
CCI for model evaluation; Kappa = Cohen�’s Kappa; AUC = Area Under the Curve; Sn = 
Sensitivity; Sp = Specificity. The percentages do not cumulate to 100 % because some papers 
used more than one performance criterion.  
 Performance criteria applied in model evaluation   
 No criterion CCI CCI only Kappa AUC Sn Sp Other 

1998-2002 2 98 18 26 53 16 16 1 

2003-2007 3 97 15 33 61 8 7 3 

Total 3 97 15 32 60 9 8 2 

 
Taxonomic groups most frequently involved in presence-absence models were trees and other 
angiosperms (31 %), birds (26 %), invertebrates (21 %), mammals (17 %), fish (9 %), reptiles 
(4 %) and amphibians (2 %). Less frequent applications were from bacteria, plankton and 
fungi. Model and optimisation techniques included regression techniques such as GLM or 
GAM (84 %), classification trees (17 %), artificial neural networks (14 %), genetic algorithms 
(13 %) and other methods (12 %).  
 
It has been suggested that some of the performance criteria depend on the prevalence of the 
evaluation dataset (Luoto et al., 2005; Vaughan and Ormerod, 2005). Substantial work has 
been done to assess the relation between Kappa and prevalence empirically (Manel et al., 
2001; McPherson et al., 2004) and theoretically (Allouche et al., 2006), but the relation 
between some less frequently used performance criteria and prevalence has received far less 
attention. This chapter attempts to analyse this relation systematically by calculating the 
performance measure values from 100000 randomly generated confusion matrices. First, the 
prevalence of each matrix was generated randomly and then the matrices were constructed 
based on this prevalence. For each matrix, the value of 6 different performance criteria was 
calculated and is plotted in Figs. 6.3-6.8. Fig. 6.2 shows the distribution of the different 
prevalence values among 100 different classes.  
The relation between CCI and prevalence is shown in Fig. 6.3. If the performance criterion 
would be independent of prevalence, the density of confusion matrices would be similar over 
the whole prevalence range. However, selection of the areas (squares of 0.01 x 0.01) in which 
at least x % of the 100000 confusion matrices is situated, reveals that this density is only 
similar for all CCI values at an intermediate prevalence value (P = 0.5). At extreme 
prevalence values, the confusion matrices tend to show either excellent or extremely poor 
predictive accuracy. These findings agree with the results of a species distribution modelling 
study of 18 bird species in Nevada, USA (Bulluck et al., 2006). For CCI values greater than 
0.5, they found a similar relation between the CCI and the prevalences of both the evaluation 
and training sets.  
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Fig. 6.2. Distribution of the randomly simulated prevalence values over 100 prevalence 
classes. A perfectly random process should result in a perfectly uniform distribution. 

 
Fig. 6.3. Relation between CCI and prevalence, obtained after simulation of 100000 confusion 
matrices with random prevalence. To reveal patterns in this plot, areas in which the density of 
confusion matrices exceeded a fixed threshold x were selected. The background of this figure 
is white. Light grey dots indicate all confusion matrices, whereas dark gray and black dots 
indicate the centre of a 0.01 x 0.01 square in which at least 1 % and 2.5 % of the confusion 
matrices is situated, respectively. 
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The same approach confirms that Sn also depends on prevalence (Fig. 6.4). At lower 
prevalence values, more differentiated Sn values occur, whereas at higher prevalences, Sn 
tends to be either minimal or maximal. Similar conclusions were found for Sp, which showed 
the same graph mirrored about the x = 0.5 axis. These findings agree with previously reported 
relations between prevalence and Sn or Sp (Allouche et al., 2006). Bulluck et al. (2006) found 
a significant positive quadratic and linear relationship between sensitivity and the respective 
prevalences of the evaluation data sets and the training sets. Similar results for the training set 
were obtained by McPherson et al. (2004) while modelling 32 bird species endemic to South 
Africa, Lesotho and Swaziland. These relations could be a subset of the relation between 
prevalence and Sn which is shown in Fig. 6.4. However, generalisation of these empirical 
relations may be less appropriate because the prevalence in the study of Bulluck et al. (2006) 
and McPherson et al. (2004) is not distributed uniformly over the different cases, which 
contrasts with the prevalence distribution applied in this section (Fig. 6.2). As will become 
clear, this lack of uniformity in the prevalence distribution may significantly affect the 
relations which are found in studies analysing the relation between performance criteria and 
prevalence.  
 

 
Fig. 6.4. Relation between Sn and prevalence, obtained after simulation of 100000 confusion 
matrices with random prevalence. To reveal patterns in this plot, areas in which the density of 
confusion matrices exceeded a fixed threshold x were selected. The background of this figure 
is white. Light grey dots indicate all confusion matrices, whereas dark gray and black dots 
indicate the centre of a 0.01 x 0.01 square in which at least 1 % and 2.5 % of the confusion 
matrices is situated, respectively. 
 
Plotting the relation between NMI and prevalence (Fig. 6.5) reveals that NMI shows a weak 
dependency on prevalence. However, at intermediate prevalence values, perfect NMI values 
only rarely occur. At these prevalence values, fewer matrices occur which contain zeros, and 
only such confusion matrices can reach maximal NMI values due to the assumption that ln(0) 
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equals zero, which is based on the fact that 0)ln(lim
0

xx
x

. This assumption also explains the 

gap between the maximal NMI values and the other NMI values. This weak theoretical 
dependency of NMI to prevalence agrees with empirical analysis of the relation between NMI 
and prevalence (Manel et al., 2001). A similarly weak prevalence dependency is observed for 
the odds ratio (Fig. 6.7), although lower values occur at extreme prevalence values. 
 

 
Fig. 6.5. Relation between NMI and prevalence, obtained after simulation of 100000 
confusion matrices with random prevalence. To reveal patterns in this plot, areas in which the 
density of confusion matrices exceeded a fixed threshold x were selected. The background of 
this figure is white. Light grey dots indicate all confusion matrices, whereas dark gray and 
black dots indicate the centre of a 0.01 x 0.01 square in which at least 1 % and 2.5 % of the 
confusion matrices is situated, respectively. 
 
The positive Kappa values in Fig. 6.6 show a similar dependency on the prevalence as CCI, 
with Kappa values approaching either 0 or 1 at extreme prevalences. However, the prevalence 
range in which the density of confusion matrices is similar is wider, whereas for CCI this 
range is centred around the 0.5 prevalence value. Allouche et al. (2006) selected three specific 
cases from this graph to show the dependency of Kappa on prevalence. Yet, this graph 
provides a wider and more probabilistic view. Each point could be interpreted as the 
likelihood that, at a certain prevalence level, a specific value of the performance criterion is 
obtained.  
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Fig. 6.6. Relation between Kappa and prevalence, obtained after simulation of 100000 
confusion matrices with random prevalence. To reveal patterns in this plot, areas in which the 
density of confusion matrices exceeded a fixed threshold x were selected. The background of 
this figure is white. Light grey dots indicate all confusion matrices, whereas dark gray and 
black dots indicate the centre of a 0.01 x 0.01 square in which at least 0.5 % and 2.5 % of the 
confusion matrices is situated, respectively. 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Prevalence

O
dd

s 
ra

tio

 
Fig. 6.7. Relation between the odds ratio and prevalence, obtained after simulation of 100000 
confusion matrices with random prevalence. To reveal patterns in this plot, areas in which the 
density of confusion matrices exceeded a fixed threshold x were selected. Gray and black dots 
indicate the centre of a 0.01 x 0.01 square in which at least 0.5 % and 2.5 % of the confusion 
matrices is situated, respectively. For practical reasons, the odds ratio of all confusion 
matrices was not displayed because it ranged from 0 to 2500.  
 



Chapter 6. Theoretical analysis of performance criteria 
 

64 

Another statistic which was claimed to be independent of prevalence, is the true skill statistic 
(Allouche et al., 2006). However, plotting the relation between TSS and prevalence shows that 
at extreme prevalence values, TSS values either tend to be perfect or extremely low (Fig. 6.8). 
This theoretical analysis contrasts substantially with the theoretical analysis by Allouche et al. 
(2006). This might be due to the fact that the latter authors only showed the relation between 
TSS and prevalence for three specific scenarios. However, caution should be made for 
misinterpretation of both results. The graphs of Allouche et al. (2006) display the likelihood 
that, at a fixed Sn and Sp value and at a specific prevalence value, a value of TSS is obtained. 
Fig. 6.8 shows the likelihood that, at a specific prevalence value, independent of the values of 
Sn and Sp, a specific TSS value is obtained. Moreover, these findings do agree with the results 
of Allouche et al. (2006) obtained from variance analysis of TSS, that showed that TSS is 
highly variable for extremely low and high levels of prevalence. Nelson and Cicchetti (1995) 
argue that instability at extreme levels of prevalence seems to be inherent in any model with a 
low number of instances in one of the cells of the confusion matrix.  
 

 
Fig. 6.8. Relation between TSS and prevalence, obtained after simulation of 100000 confusion 
matrices with random prevalence. To reveal patterns in this plot, areas in which the density of 
confusion matrices exceeded a fixed threshold x were selected. The background of this figure 
is white. Light grey dots indicate all confusion matrices, whereas dark gray and black dots 
indicate the centre of a 0.01 x 0.01 square in which at least 1 % and 2.5 % of the confusion 
matrices is situated, respectively. 
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In the previous section, the relation between the evaluation set prevalence and the 
performance criteria has been assessed for prevalence values which were uniformly 
distributed between 0 and 1. In empirical studies, however, not the prevalence but the 
confusion matrix is randomly selected, which may lead to non-uniform prevalence 
distributions (Fig. 6.2 and Fig. 6.9). The corresponding prevalence distribution results in 
prevalence versus performance criterion plots which are much less random than the 
aforementioned ones. This situation was simulated by generating 100000 random confusion 
matrices and calculating both prevalence and the performance criteria values from each 
matrix. The resulting plots are shown in Figs. 6.10-6.15 and show a more distinguished 
relation between prevalence and the performance criteria than the aforementioned plots. 
These relations agree more with the empirical results which were reported in various studies 
(Manel et al., 2001; McPherson et al., 2004; Luoto et al., 2005; Allouche et al., 2006; Bulluck 
et al., 2006).  
 
Algorithm 6.1. Random generation a confusion matrix 
n = 4 
initialise a confusion matrix C 
initialise a random permutation P of 4 
N = 100 
while n > 1 
 n = n - 1 
 select the Pn

th position in the confusion matrix C 
 if n = 1 
  assign N to this position 
 else 
  assign a random number r between 0 and N to this position 
  N = N - r 
 end 
 remove Pn from the random permutation P 
end 
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Fig. 6.9. Distribution of prevalence values over 100 prevalence classes after simulation of 
100000 random confusion matrices.  
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Fig. 6.10. Relation between CCI and prevalence, obtained after simulation of 100000 random 
confusion matrices. To reveal patterns in this plot, areas in which the density of confusion 
matrices exceeded a fixed threshold x were selected. Grey dots indicate all confusion 
matrices, whereas black dots indicate the centre of a 0.01 x 0.01 square in which at least 1 % 
of the confusion matrices occurs. 

 
Fig. 6.11. Relation between Sn and prevalence, obtained after simulation of 100000 random 
confusion matrices.  
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Fig. 6.12. Relation between NMI and prevalence, obtained after simulation of 100000 random 
confusion matrices.  
 

 
Fig. 6.13. Relation between Kappa and prevalence, obtained after simulation of 100000 
random confusion matrices.  
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Fig. 6.14. Relation between the odds ratio and prevalence, obtained after simulation of 
100000 random confusion matrices.  
 

 
Fig. 6.15. Relation between TSS and prevalence, obtained after simulation of 100000 random 
confusion matrices. To reveal patterns in this plot, areas in which the density of confusion 
matrices exceeded a fixed threshold x were selected. The background of this figure is white. 
Grey dots indicate all confusion matrices, whereas black dots indicate the centre of a 0.01 x 
0.01 square in which at least 1 % of the confusion matrices occurs. 
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Another important property of performance criteria for model evaluation is the ability to 
distinguish between omission and commission errors (Loiselle et al., 2003; Wilson et al., 
2005). To assess this ability, 4 different scenarios were defined, of which the confusion matrix 
is given in Table 6.3. In the first scenario, all instances are classified correctly, whereas in the 
second scenario, all instances are classified erroneously. The third scenario is characterized by 
slight overprediction, whereas in the fourth scenario, the model is underpredicting the 
observed data. 
 
Table 6.3. The different scenarios and their corresponding elements of the confusion matrices. 

Element of the confusion matrix a b c d 
Scenario     

1 2 0 0 2 
2 0 2 2 0 
3 2 1 0 1 
4 1 0 1 2 

 
In line with the aforementioned ecological assumptions, an ecologically relevant performance 
measure would classify scenario 1 as the best scenario and scenario 2 as the worst, while 
scenario 3 may be considered ecologically more sound than scenario 4 due to the false-
negative predictions in the latter scenario. Table 6.4 shows the values of 7 different 
performance criteria for the 4 scenarios: the percentage of correctly classified instances (CCI; 
Fielding and Bell, 1997 ), Cohen�’s Kappa (Cohen, 1960 ), the true skill statistic (TSS; 
McBride and Ebert, 2000; Saseendran et al., 2002; Elmore et al., 2003; Allouche et al., 2006), 
the NMI, the specificity (Sp) and the sensitivity (Sn). All measures are optimal at their 
maximum, one, except the odds ratio, which can reach values up to positive infinity.  
 
Table 6.4. The values of the 7 different performance criteria for the 4 scenarios, assuming that 
ln(0)=0. To calculate the odds ratio, a continuity correction was performed by adding 0.5 to 
each of the cells in the confusion matrix (Forbes, 1995; Vaughan and Ormerod, 2005). These 
assumptions have no effect on the characteristics of the presented criteria.  

Criterion CCI Sn Sp NMI Kappa TSS Odds 
ratio 

Scenario        
1 1 1 1 0 1 1 25 
2 0 0 0 0 -1 -1 0 
3 0.75 1 0.5 0.23 0.5 0.5 5 
4 0.75 0.5 1 0.23 0.5 0.5 5 

 
The performance criteria CCI, NMI, Kappa, TSS, and the odds ratio do not distinguish 
between scenarios 3 and 4, whereas Sn and Sp allow differentiation between these two 
scenarios. However, Sn and Sp do not distinguish between scenario 1, and scenarios 3 and 4, 
respectively. Because the presented example is based on dichotomous presence-absence 
model scores, no threshold was applied to generate the confusion matrices. The example 
illustrates that TSS is a special case of Kappa, given that the proportions of presences and 
absences in the training set are equal, which corresponds to a prevalence of 0.5.  



Chapter 6. Theoretical analysis of performance criteria 
 

70 

6.3.4 Application of performance criteria for model training 
The impact of the dependency between the performance criterion and the prevalence differs 
between model training and model evaluation. During the first process, the prevalence is 
constant because only one training dataset is used, whereas during model evaluation, 
prevalence may vary due to the use of different evaluation datasets. Despite the constant 
prevalence during model training, effects of species prevalence on model training results have 
been reported (Hirzel et al., 2001). This chapter suggests that the performance criterion used 
for model training is causing this relation between species prevalence and model training 
results.  
Although numerous papers on performance criteria assessment focus on the application of 
these criteria in model evaluation (Fielding and Bell, 1997; Manel et al., 2001; Vaughan and 
Ormerod, 2005; Allouche et al., 2006) or on the choice of an appropriate method for species 
distribution modelling (Segurado and Araújo, 2004; Elith et al., 2006; McNyset and 
Blackburn, 2006; Stockman et al., 2006), few authors describe the impact of performance 
criteria on model training. From the aforementioned group of papers which used data in the 
modelling process, 99 % applied a training performance criterion which assesses the 
predictive accuracy of the model, such as CCI, Pearson�’s correlation coefficient, or the root 
mean squared error. The application of these criteria for model training is based on the 
assumption that, provided the �‘true�’ model is nested within the model specification, the model 
estimated using predictive accuracy techniques will converge to the true model as the sample 
size increases (Welsh, 1996). However, the true model is rarely nested within the model 
specification due to various factors (Tyre et al., 2001; Barry and Elith, 2006). Moreover, it 
could be shown theoretically that none of the criteria assessing predictive accuracy distinguish 
between omission and commission errors. Less than 1% of the evaluated papers applied 
different performance criteria for model training and compared the results.  
The purpose of this section is to analyse the impact of the performance criteria used for model 
training on the final model which is obtained after training. This impact is based on the two 
aforementioned characteristics of performance criteria: the dependency on prevalence and the 
distinction between omission and commission errors. These characteristics are assumed to be 
independent of each other in model evaluation, whereas this chapter will show that both 
characteristics are related in model training. Indeed, performance criteria which cannot 
distinguish between omission and commission error will generate models which 
underestimate the observations if the prevalence in the training dataset is low, and 
overestimating models at high prevalence. This section attempts to analyse this relation 
between prevalence dependency and omission-commission distinction of performance 
criteria.  
Although all criteria allow evaluation of model performance once the model has been 
developed, some of these criteria are not suitable for model training. An example is the 
Normalized Mutual Information Statistic (NMI; (Forbes, 1995; Manel et al., 2001; Vaughan 
and Ormerod, 2005), which does not distinguish between the aforementioned scenario 1 and 
scenario 2 (Table 6.5). Other criteria, such as the AUC, are too complex to be efficiently 
applied for model training. Moreover, AUC does not distinguish between omission and 
commission errors, which can be easily shown in the following example (Table 6.5). Both 
model B and C are respectively overpredicting and underpredicting one observed value and 
consequently show the same AUC value (Fig. 6.16) of 0.83. Model A shows perfect 
prediction, which is reflected in an optimal AUC value of 1.  
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Table 6.5. Observed classes and predicted values of three different species distribution models 
(A = absent; P = present). Model A shows perfect predictions, whereas model B and D are 
overestimating and model C is underestimating the observations.  

Observations Predictions    
 Model A Model B Model C Model D 
A 0 0 0 0 
A 0 0 0 0.5 
A 0 1 0 1 
P 1 1 0 1 
P 1 1 1 1 
P 1 1 1 1 
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Fig. 6.16. Receiver-operator characteristic curves of the four different species distribution 
models A (grey line), B (solid black line), C (dashed black line) and D (solid black line).  
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Although the AUC does not distinguish between omission and commission errors, the ROC 
plot provides some general insight into the tendency of a model to over- or underestimate the 
observations. Specifically, the ratio of the area under the curve which is above the (0,1) �– 
(1,0) line to the area under the curve below this line gives an indication whether the model is 
overpredicting or not. A model is generally overestimating the observations if this ratio is 
greater than 1, and underestimating if this ratio is between 0 and 1. However, this ratio does 
not indicate the extent to which a model is over- or underpredicting because the shape of the 
ROC plot is affected by the �‘worst�’ over- or underprediction. This is illustrated by the 
identical ROC plots of models B and D, although model D is overestimating the observations 
more than model B. The AUC actually indicates the percentage of predicted values that is 
predicting the observations better that the �‘worst�’ predicted value does.  
In this section, three of the most commonly used performance criteria are analysed 
theoretically: CCI, Kappa and TSS. Specifically, the effect of an increase of the true-positive 
predictions (a) in the confusion matrix ( a) on the performance criterion value is assessed. If 
the training data can be separated into present cases and absent cases by one N-dimensional 
plane, with N the number of input variables, the data are referred to as separable. In this 
chapter, it is assumed that the data are not separable. Consequently, the change of the model 
parameters which results in a increase of the true-positive predictions a, leads to a certain 
decrease of the true-negative predictions, - d. If the data would be separable, d would equal 
zero. Since prevalence remains constant during model training (a + c = a* + c*), the confusion 
matrix will change as described in Table 6.6.  
 
Table 6.6. The confusion matrix after a change of the model parameters which results in an 
increase a of the true-positive predictions a. The table cross-tabulates observed values 
against predicted values: true-positives, a; false-positives, b; false-negatives, c; true-negative 
values, d. 
  Observed 
  Present Absent 

Present a+ a b+ d Predicted 
Absent c- a d- d 

 
The performance criterion based on the confusion matrix of Table 6.1 will be distinguished 
from the original performance matrix by an asterisk. Furthermore, the impact of prevalence on 
the effect of an adjustment of the model parameters which results in a will be discussed. The 
prevalence P of a dataset is defined as the proportion of sites in which the species was 
recorded as present (Manel et al., 1999a; Allouche et al., 2006) and is described as:  

Analysis of CCI 
The change in CCI, CCI, which results from a change a as described in the confusion 
matrix in Table 6.6 is equal to: 
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If CCI exceeds zero, the adjustment of the model parameters will result in a better model 
and the optimisation algorithm will continue with this adjusted model. At low prevalences, a 
tends to be a lot smaller than d, whereas at high prevalences, almost all changes of a model 
parameter will result in a a which is greater than d. Consequently, the likelihood that CCI 
will be greater than zero if the prevalence is high is higher than the likelihood if the 
prevalence is low. This will result in high positive predictions of the model at high 
prevalences and high negative predictions at low prevalences. At high prevalences, 
optimisation of CCI will thus lead to high overprediction errors, whereas at low prevalences, 
optimisation of CCI will result in high underprediction errors.  

Analysis of Kappa 
To assess the effect of a change a as described in the confusion matrix in Table 6.1 on 
Kappa, Kappa can be described as a function of the prevalence P 1,0 , the sensitivity Sn 
and the specificity Sp: 

with 

and 

 
Consequently, the change in Kappa, Kappa, resulting from a change a as described in the 
confusion matrix in Table 6.1 is equal to:  

 
with  

and 

 
Eq. (6.6) can be rewritten as: 
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with  

 
and 

 
and thus 

 
Since  

 
and 

 

U 

)()1()()1()(21
)()1(

)()1()1(21

SpSpPSnSnPPPSpSnTSS
SpSpP

SnSnPPPSpSpSnSn
 (6.10)

V 
SpPSnPPPTSS

SpPSnPPPSpSn
)1()1(21

)1()1()1(21
 (6.11)

Kappa 

))())1(1(

)1(()1(2
))1()(2

)()1()(
))()1((2

)1(()1(2
))1()(4)(2

)1(22()1(
)()1(2)(2
)1()(4)1(²4

2)(2)1(2

2)1(²42()1(

SpSnSpPSnP

SpPTSSSnPTSS
VU

PP
PPSpSnTSS

SpSnSpPSpSnSnP
SpSnPPTSSSpSn

SpPTSSSnPTSS
VU

PP
PPSpSnTSSVSpSn

SpPTSSSnPTSS
VU

PP
SpSpPTSSSnSnPTSS
PPSpSnTSSPPTSS

TSSVSpSnSpPTSS

SnPTSSPPTSSTSS
VU

PP

 

(6.12)

))1(1( SpPSnP
 

,

1

N
cb

db
d

N
db

ca
a

N
ca

 (6.13)

PTSS
 

,
)()(

)()(
)(
)(1

dbN
bcad

dbN
dbccad

N
ca

dbN
cad

N
a

N
ca

db
d

ca
a

 (6.14)



Chapter 6. Theoretical analysis of performance criteria 

75 

and 

 
Eq. (6.12) can be rewritten as: 

 
If Kappa exceeds zero, the adjustment of the model parameters will result in a better model 
and the optimisation algorithm will continue with this adjusted model. To assess in which 
case Kappa exceeds zero, the sign of U and V is examined for all possible values of a and 

d: 
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Eq. (6.10) and Eq. (6.11) can be rewritten as: 

 

 
Since  

 
Eq. (6.21) and Eq. (6.22) can be rewritten as:  

 
and 

 
It can be proven that U always exceeds zero ad absurdum. Indeed,  

 
Now, three cases are distinguished, depending on the sign of the coefficient of P. If the 
coefficient is strictly positive, i.e.  
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then  

 

In this situation, 
)(2 dbaaN

dbaa  is always smaller than zero, because a, b, a and 

d are positive and not all zero. Consequently, P should be smaller than zero, which is 
impossible.  
 
If the coefficient of P is strictly negative, i.e.  

 
then 

 

In this situation, 
)(2 dbaaN

dbaa  is always greater than or equal to one. Indeed, 

 
which is impossible since the maximal values of a and d are c and d, respectively. If 

)(2 dbaaN
dbaa  equals one, a and d should attain their respective maximal 

values c and d. In this situation, Eq. (6.26) shows that  

 
which is impossible. 
 
The last case to be considered is when the coefficient of P is zero, i.e. 

 
and implies that  

 
which is impossible. 
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It can be proven that V always exceeds zero ad absurdum. Suppose that  

 
The latter inequality is again impossible. 
 
Since U and V are strictly positive, Eq. (6.16) shows that 

 
where the last equivalence follows from the fact that ))1(( dPbP  and ))1(( cPaP  
are strictly positive. 
 
If Kappa exceeds zero, the adjustment of the model parameters will result in a better model 
and the optimisation algorithm will continue with this adjusted model. Whether a change in 
the confusion matrix a will lead to a positive Kappa, depends on the prevalence P and on 
the proportions in the confusion matrix. For instance, if P exceeds 0.5 and c << d, a small 
change a will lead to a positive Kappa, even at high d values. This relation between 

Kappa, P and the proportions in the confusion matrix is shown in Table 6.7.  
 
Table 6.7. The effect of the prevalence P and the proportions in the confusion matrix on the 
likelihood that Kappa will exceed zero at a fixed increase of the true-positive predictions, 

a. �‘High�’ indicates that this relative likelihood is high, while �‘low�’ indicates that this 
likelihood is low. 
Prevalence a < b a > b c < d c > d 
P < 0.5 Low High Low High 
P = 0.5 See �‘Analysis of TSS�’ 
P > 0.5 High Low High Low 
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Analysis of TSS 
The change in TSS, TSS, resulting from a change a as described in the confusion matrix in 
Table 6.1 is equal to:  

 
If TSS exceeds zero, the adjustment of the model parameters will result in a better model and 
the optimisation algorithm will continue with this adjusted model. If prevalence is greater 
than 0.5, the difference a – d should be greater than when prevalence is smaller than 0.5. 
In the latter case, TSS could even exceed zero for some situations in which a < d. 
Consequently, a change a in the confusion matrix will more easily lead to adjusted model 
parameters if prevalence < 0.5 and overprediction (b) will be stimulated in this situation. At 
prevalences higher than 0.5, a change a in the confusion matrix will only result in a change 
of the model parameters if a substantially exceeds d. The optimisation algorithm will thus 
stimulate underprediction (c) (Table 6.1). Comparison of Eq. (6.36) and Eq. (6.38) shows that 
TSS is a special case of Kappa, when P equals 0.5. Furthermore, the stimulation of either 
underprediction or overprediction is more complex with Kappa than with TSS, which is 
reflected by the more complex denominators in Eq. (6.36) than in Eq. (6.38). 
 
Table 6.8. The relation between a and d as a function of prevalence. The possible relation 
between a and d given is the relation at which TSS could exceed 0.  
Prevalence 

db
ca  

Possible relations 
between a and d 
such that TSS > 0 

Stimulation of 

P > 0.5 > 1 a >> d underprediction 
P = 0.5 =1 a > d / 
P < 0.5 < 1 a < d or a > d overprediction 
 
Table 6.8 shows that the result of model optimisation based on TSS depends on the prevalence 
of the training data set. This emphasises the difference between model training and validation. 
Although several authors proved that TSS is independent of prevalence when it is used for 
model validation (Allouche et al., 2006), this performance criterion clearly depends on 
prevalence when it is applied in model training. Specifically, model training based on TSS 
attempts to compensate for the prevalence of the training data: if this prevalence is high, 
underprediction is stimulated, whereas low prevalences correspond to the stimulation of 
overprediction.  
This issue is of key importance in ecological modelling studies because it shows the effect of 
the performance criterion used for model training on the resulting model, and thus on the 
decisions which are supported by this model. At the start of the model development process, 
modellers should clearly define the goals of the model and then choose a performance 
criterion which reflects these model purposes.  
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6.4 Towards prevalence-adjusted model evaluation 
The development of a reliable data-driven model requires a sound training and validation 
procedure. The key component of both procedures is the performance criterion which is 
applied to evaluate the model performance. Although several authors emphasized the 
importance of these procedures, model training and validation are often neglected or applied 
erroneously (Fielding and Bell, 1997; Allouche et al., 2006). This dissertation aims to 
incorporate both procedures into ecological modelling in an ecologically relevant way.  
This chapter showed that different performance criteria evaluate a model (or its resulting 
confusion matrix) differently. Several authors attributed this difference to the relation between 
the performance criteria and the prevalence of the validation set (Manel et al., 1999a; Manel 
et al., 2001; McPherson et al., 2004; Allouche et al., 2006). Specifically, if models derived 
from different datasets are being compared, the prevalence of these datasets may affect the 
value of the performance measures and consequently influence the results of the comparison. 
Similar problems rise when the performances of a model on a training set and a validation set 
with different prevalences are compared (Allouche et al., 2006). Some authors suggested that 
this problem would be avoided if validation sets would be collected such that prevalence 
would be around 50 % (Lantz and Nebenzahl, 1996; Hoehler, 2000; McPherson et al., 2004). 
However, various authors agree that this recommendation is of questionable practicability in 
species distribution modelling, particularly for rare species for which a small number of 
presence data is available (Maclure and Willett, 1987; Mackenzie and Royle, 2005; Allouche 
et al., 2006). Moreover, an appropriate performance criterion is meant to be a tool for 
communication (Maclure and Willett, 1987). Consequently, it should be very clear which 
aspect of the model performance is evaluated, and models should be evaluated consistently, 
that is, independent of, or taking into account, species prevalence. Given the questionable 
value of Kappa for distribution modelling (Figs. 6.6 and 6.13; McPherson et al., 2004; 
Allouche et al., 2006), Vaughan and Ormerod (2005) agree that measures other than Kappa 
may thus be preferable to evaluate model predictions.  
This chapter also highlighted the relative importance the performance criteria give to 
omission and commission errors as a possible explanation for the differing evaluation scores 
among performance criteria for the same model. Theoretical analysis revealed that 
performance criteria may value a perfect model equally, but yet focus on very different 
aspects of model performance. An example is the assessment of model discriminatory ability: 
although all performance criteria will attain their optimum for a model with excellent 
discrimination, not all criteria adequately quantify the discriminatory ability of a model 
(Vaughan and Ormerod, 2005). Consequently, model developers should carefully choose an 
appropriate performance criterion for model evaluation which corresponds to the ecological 
objectives of the optimised model. 
The ecological literature has recognised these problems and the ROC technique in particular 
has received considerable attention (Elith et al., 2006; Meynard and Quinn, 2007). However, 
most studies focus on the application of performance measures to model evaluation, whereas 
relatively few authors describe the role of performance measures in model training. Model 
training is the process in which the model parameters are iteratively adjusted to increase the 
agreement between the model predictions and the observations, which are referred to as the 
training data set. Since this agreement is assessed by the performance criterion, model 
training aims to optimise the performance criterion value.  
The previous section showed that the use of different performance criteria for model training 
could lead to different optimal models because different performance criteria focus on 
different aspects of model performance. This may explain differences observed between 
different modelling techniques reported in previous research. Hirzel et al. (2001) compared 
generalised linear models (GLM) to ecological niche factor analysis (ENFA) to predict the 
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habitat suitability of an artificial species. They found that both methods produced equivalent 
results at intermediate prevalence values, whereas the results differed substantially at extreme 
species prevalence levels (Hirzel et al., 2001). These findings are in line with the substantial 
variation in CCI values at extreme prevalences.  
 
Table 6.9. Characteristics of the most frequently applied performance criteria for model 
training and evaluation. NMI = Normalised Mutual Information Statistic; TSS = True Skill 
Statistic; AUC = Area Under the Curve; CCI = Correctly Classified Instances; Sn = 
Sensitivity; Sp = Specificity; x = the characteristic fully applies to the performance criterion; - 
= the characteristic does not apply to the performance criterion; ? = the characteristic may 
apply to the performance criterion. 

Performance criterion Kappa NMI Odds 
ratio 

TSS AUC CCI Sn/Sp 

Characteristic        
o quantifies the extent to which models 

correctly predict occurrence better than 
chance expectation 

x x x x x - - 

o depends on prevalence x ? ? x ? x x 
o takes into account the complete 

information included in the confusion 
matrix 

x x x x n.a. - - 

o does distinguish between omission and 
commission errors 

- - - - - - - 

o compensates for extreme prevalence 
values when applied on model training 

x - - - - - - 

o requires discretisation of model 
predictions by applying threshold values 

x x x x - x x 

o allows zero values in the confusion 
matrix 

x - -* x n.a. x x** 

o is proportional (the same performance is 
found if all elements of the confusion 
matrix are divided by the same constant) 

x - - x n.a. x x 

o is suitable for model training x - x x - x x 
* cannot be applied directly when both the number of false-positive predictions and false-
negative predictions is zero; adding a constant value to each element of the confusion 
matrix changes the relative value of the odds ratio 
** cannot be applied if the prevalence of the evaluation or training set is 0.  
 

The effect of the performance criterion on the optimal model depends on the separability of 
the training data. Training sets which are linearly separable could lead to perfect predictions 
for all performance criteria, as shown in scenario 1 (Table 6.4). However, in ecological case 
studies, an increase of the true-positive predictions a often results in a decrease of the true-
negative predictions d and vice versa because the training data are rarely separable. Even with 
all variables affecting species distribution in the model, prediction is not perfect because of 
demographic variation (Tyre et al., 2001; Barry and Elith, 2006). The balance between a and 
d is affected by the performance criterion which was used to train the model. Consequently, 
the number of false-positive and false-negative predictions of a data-driven species 
distribution model depends on this criterion, which was shown theoretically in the previous 
section. Like for model evaluation, model developers should thus also carefully choose an 
appropriate training performance criterion which reflects the ecological model purpose 
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(Segurado and Araújo, 2004). To assist modellers in this choice, Table 6.9 provides an 
overview of the most important characteristics and restrictions of the most frequently applied 
performance criteria. The final choice of an appropriate performance criterion is based on a 
trade-off between different characteristics and depends on the relative importance that 
modellers attribute to these characteristics. 
Different authors suggest to use quantitative predictions whenever possible and to give both 
threshold independent and dependent measures if nominal predictions need to be derived from 
quantitative ones (Vaughan and Ormerod, 2005; Barry and Elith, 2006). This approach would 
provide both a general assessment of performance and one specific to the particular 
application, threshold and prevalence. However, Vaughan and Ormerod (2005) also point at 
the dangers of using the quantitative predictions which are produced by many distribution 
modelling methods. Although such predictions are often considered as estimates of habitat 
quality or suitability (Buckland and Elston, 1993), this interpretation is only correct if the 
model predictions show good calibration (Vaughan and Ormerod, 2005). Mackenzie and 
Royle (2005) also suggest that modellers should take detection probability into account in the 
statistical inferences. As such, calibration should be considered together with discriminatory 
ability to allow general interpretation of model results. Instead of assessing calibration in the 
model evaluation process, good calibration could be obtained by selection of an appropriate 
performance criterion for model training. Such a criterion should not only focus on the 
discriminatory ability of the model or on its predictive accuracy, but also on the model 
calibration. Stimulating calibration during model training avoids the danger of a posteriori 
misinterpretation of quantitative model results (Vaughan and Ormerod, 2005).  
Since calibration is concerned directly with species prevalence (Vaughan and Ormerod, 
2005), this performance criterion should also contain a parameter that allows adjustment of 
the model training process to the training data prevalence. This chapter showed theoretically 
that training data prevalence may significantly affect the over- or underprediction rate of a 
model, which is a substantial element of model calibration. Several authors agree that the 
relative importance of omission and commission errors may vary among applications (Glas et 
al., 2003; Loiselle et al., 2003; Vaughan and Ormerod, 2005; Wilson et al., 2005). Applying a 
general performance criterion in model training ignores these subtle but significant 
differences between different applications. Consequently, an appropriate performance 
criterion should allow modellers to implement this relative importance in the model training 
process, for example by including a parameter which can be adjusted to the specific situation.  
Although an optimal parameter value could be found by applying sensitivity analysis, a more 
important problem with these flexible performance criteria could be the difficulty to say 
which models are better (Glas et al., 2003; Vaughan and Ormerod, 2005). Differences in 
species�’ dispersal patterns and associated gene flow may lead to subtle variations in habitat 
preferences of some species due to local adaptations (Holt, 2003; McPherson and Jetz, 2007). 
Even in the absence of genetically driven differences in habitat use, species could express 
different realised niches (Hutchinson, 1957) as a result of spatial variation in predators, 
competitors or other biotic factors (Hutchinson, 1957; Osborne and Suarez-Seoane, 2002; 
Holt, 2003; Peterson and Holt, 2003; Hernandez et al., 2006; McPherson and Jetz, 2007). 
Consequently, conservationists should distinguish between models which reliably or less 
reliably predict species distribution (McPherson and Jetz, 2007). 
The problem of selecting the best model is related to the selection of an optimal threshold 
value which divides quantitative predictions into two opposing categories. Liu et al. (2005) 
reported that 4 out of 12 threshold-determining approaches were suitable for reliable threshold 
selection. All these approaches attempt to minimise both overprediction and underprediction 
of the model. The prevalence approach and the average suitability approach (Cramer, 2003) 
adjust the threshold to the training data to avoid over- or underprediction, whereas the 
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sensitivity-specificity equality approach (Cantor et al., 1999) is minimising the distance to the 
(0,1)-(1,0) line, at which both over- and underprediction of the model are zero. The ROC plot-
based approach (Cantor et al., 1999) selects the threshold which corresponds to the point on 
the ROC curve which has the shortest distance to the top-left corner (0,1) in the ROC plot. 
This approach corresponds to the previous approach, but also maximises the likelihood that 
the model predictions differ from chance predictions, which is quantified by the distance to 
the line y=x.  
This may also agree with the results of Maggini et al. (2006), who improved generalised 
regression analysis for the spatial prediction of forest communities. They found that 
weighting absences in the training set to bring the average prevalence to a value of 0.5 
returned models that seemed to perform better than models fitted with the original sample 
prevalence. These results show that applying a training parameter or threshold which 
minimises the difference between over- and underprediction may be a suitable rule of thumb. 
However, sometimes specific knowledge on model selection is available, for example if 
omission errors should be considered more unlikely in the application than omission errors. 
Therefore, it may be more appropriate to apply weights in the training performance criteria 
than to weight absences in the training data because the first approach allows modellers to 
adjust the model training process to the purpose to the application. Jiménez-Valverde and 
Lobo (2006) argue that unbalanced species distribution data are not such a problem from a 
statistical point of view, and that the effects of unbalanced prevalence should not be confused 
with those of low-quality data affected by false absences for example. Consequently, it makes 
more sense to focus on the relation between omission and commission errors during model 
training than to adjust training data to a prevalence of 0.5. Further research should reveal 
whether the same model is obtained after threshold optimisation during model evaluation as 
the model which is obtained by flexible training with a threshold-dependent performance 
criterion. Another aspect worth investigating is whether weighting absences to ensure a 
prevalence of 0.5 (Maggini et al., 2006) results in the same model as the model obtained after 
flexible training. Given the results of Jiménez-Valverde and Lobo (2006), it could be 
expected that the difference between the results of both approaches is negatively correlated 
with the quality of the training data.  
Given the complexity of the modelled ecological relations, the most robust modelling 
approaches are likely to be those in which care is taken to match the model with knowledge in 
ecology. These models should be constrained to be congruent with ecological knowledge, 
with successive improvement in model performance that is driven by increasing knowledge of 
the ecology of the system (Leathwick and Whitehead, 2001; Barry and Elith, 2006). 
Uncertainty in model predictions can thus be viewed from two perspectives: uncertainty as an 
obstacle that needs to be reduced or removed, or uncertainty as a fact of life (Barry and Elith, 
2006). The first approach attempts to change the model structure by seeking more powerful 
modelling techniques or to improve the data by collecting more samples, removing errors or 
selecting variables), whereas the second approach tries to understand, characterise and analyse 
uncertainty by sensitivity analysis, explorations of error or the application of decision 
strategies that aim to be robust to likely errors (Burgman et al., 2001). Both perspectives are 
valid and not necessarily mutually exclusive (Barry and Elith, 2006).  

6.5 Conclusion 
Performance criteria are the key element of the presence/absence model evaluation process 
and assess the performance of both the final model and the model during training. Although 
numerous studies on species distribution modelling focus on the role of performance criteria 
for evaluation of the final model, few authors have addressed the effect of these criteria on 
model training. This chapter provides a theoretical analysis of the impact of the performance 
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criteria applied for model training on the final model. The results show that, like criteria for 
evaluation of the final model, the appropriate performance criteria for model training should 
be chosen carefully and that this choice is dictated by the end-use of the model. For both 
model training and evaluation, it is suggested that prevalence-independent measures should be 
preferred, and that at least some of these measures should allow modellers to distinguish 
between omission and commission errors. The practical implications of this chapter are clear. 
It provides further insight in the evaluation of ecological presence-absence models and 
attempts to assist modellers in their choice of suitable performance criteria. As such, it may be 
an important step towards more reliable species distribution models. 
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7.1 Introduction 
In this chapter, a habitat suitability model was developed for spawning grayling in the Aare 
river (Bern, Switzerland). The model aims at supporting river management in the studied river 
stretch, which contains some of the major spawning grounds for grayling in Switzerland. To 
generate an ecologically relevant fuzzy knowledge base for the prediction of spawning 
grayling presence, a heuristic nearest ascent hill-climbing algorithm was applied. Starting 
from fixed fuzzy sets, the expert rules were optimised using two different performance 
measures during training: the weighted % Correctly Classified Instances (% CCIw) and 
Cohen’s Kappa (Cohen, 1960). The aims of this research were: 1) to assess the impact of 
different performance measures on the optimisation results, 2) to compare the optimised rule 
base with available expert knowledge and 3) to generate an optimal fuzzy habitat suitability 
model for spawning grayling. 

7.2 Material and Methods 

7.2.1 Study area and collected data 
The studied site is a 1300 m stretch of the Aare river in the Bern department, Switzerland, and 
is situated along the city of Thun (Fig. 7.1). Up to this point, the Aare river is draining an area 
of about 2490 km  and is classified as a 7th order stream (Strahler, 1957). The average flow is 
111 m /s, with respective base and peak flows of 23 and 570 m /s. The Aare river at the 
studied site was originally a braided river with large gravel banks. However, since the 
beginning of the 18th century anthropogenic disturbances were introduced for flood control 
and hydropower generation (EAWAG, 2002). Hence, the flow regime is altered and 
controlled by flood control weirs. Nevertheless, the studied site contains some of the major 
spawning habitats for European grayling in Switzerland.  
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Fig. 7.1. Location of the study site in the Aare river at Thun, Switzerland. 
 
To allow for the development of the species distribution model, an intensive monitoring 
campaign was set up. In the studied stretch, 50 cross-sections were defined and water depth 
was measured along each cross-section at equal distances of about 1 m using a Raytheon 760 
depth measuring device (Raytheon, MA, USA). Flow velocity was measured with a Flo-Mate 
2000 flow meter (Marsh-McBirney Inc., MD, USA) at 40 % of the water column height in 14 
of these cross-sections at equal distances of about 25 m, resulting in 63 measurements. The 
substrate composition of the river bed surface was assessed by underwater photography with 
DIN A4 frames. Hence, the dominating substrate of the different patches in the studied stretch 
could be visually assessed. If a patch was covered by macrophytes, both substrate percentages 
were set to 99 %. This substrate combination can not be observed in the river stretch and 
hence the definition of this specific situation will not affect optimisation results. All data were 
collected at a flow of ca. 100 m /s and no significant flow changes were observed during the 
measurements.  
A finite element grid of the studied stretch with 5625 elements and 22500 nodes was 
generated using SMS (surface water modelling system, Brigham Young University) software, 
while the size of the grid cells was adjusted depending on river geometry. Flow velocity and 
depth values were calculated at each node by a 2-dimensional hydraulic model which was 
generated using FESWMS (Finite Element Surface Water Modelling System, U.S. Geological 
Survey). Additional measurements of depth and flow velocity were performed in the whole 
stretch, more specifically in the spawning areas to validate the hydraulic model. The hydraulic 
modelling was conducted by Schneider & Jorde Ecological Engineering in cooperation with 
the Swiss Federal Institute of Aquatic Science and Technology (EAWAG) and is described in 
detail in EAWAG (2002). 
European grayling spawns in faster flowing patches (0.1 – 0.4 m/s) with fine to medium-sized 
gravel substrate. During egg deposition, the trembling female grayling is pushing its abdomen 
in the gravel substrate, hereby creating small grooves (Fabricus and Gustafson, 1955). These 
light-coloured grooves can easily be distinguished from the substrate which is mostly covered 
with dark brown algae. Hence, the spawning grounds of grayling were visually identified and 
localised using GPS (Garmin 12X). Each grid cell in the studied stretch was defined as 
suitable for spawning or not by combining the results of the hydraulic simulations with the 
observations of the spawning grounds. The resulting dataset contained 22510 grid cells, 1 
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output variable indicating whether the habitat was suitable for spawning or not and 4 input 
variables characterising each grid cell (Table 7.1). 

7.2.2 Fuzzy rule-based modelling and rule base training 
Ten-fold cross-validation was applied to indicate the robustness of the optimisation results. 
The folds were constructed by randomising the original dataset and assigning each data point 
to one fold without replacement. The species prevalence (i.e. the frequency of occurrence) 
was constant for all ten folds and equal to the prevalence of the original dataset (0.203 = 
4579/22510).  
The parameters of the membership functions corresponding to the fuzzy sets of the input 
variables were derived from an ecological study of spawning grayling in the Aare river 
(EAWAG, 2002). The parameters of these membership functions are shown in Table 7.1. 
Since a uniform distribution of the input variables over the fuzzy sets was needed to generate 
reliable rule bases. The Shannon–Weaver entropy (Shannon and Weaver, 1963) quantified the 
uniformity and was calculated for the different input variables to assess the quality of the 
fixed fuzzy sets used in this chapter.  
 
Table 7.1. Input variables recorded and the corresponding fuzzy sets of the species 
distribution models. The entropy, indicating the uniformity of the distribution of the values of 
a variable over its fuzzy sets, was calculated for all input variables. 
Input variable Fuzzy set Parameters Entropy 
Depth (m) Shallow (0.0,0.0,0.0, 0.5) 0.808 
 Moderate (0.0,0.5,1.0,2.0)  
 Deep (1.0,2.0,2.0,3.0)  
 Very deep (2.0,3.0,6.6,6.6)  
Flow velocity (m/s) Low (0.00,0.00,0.05,0.25) 0.818 
 Moderate (0.05,0.25,0.25,0.50)  
 High (0.25,0.50,0.68,0.68)  
Percentage of fine gravel  Low  (0,0,10,50) 0.822 
(2 mm-2 cm) (%) Moderate (10,50,50,90)  
 High (50,90,100,100)  
Percentage of medium-sized gravel  Low  (0,0,10,50) 0.940 
(2 cm-5 cm) (%) Moderate (10,50,50,90)  
 High (50,90,100,100)  
 
Different models were trained based on two performance measures: the percentage of 
Correctly Classified Instances (Fielding and Bell, 1997), % CCI, and Cohen’s Kappa (Cohen, 
1960), both based on the confusion matrix (Fielding and Bell, 1997; Manel et al., 2001) and 
ranging from zero to one. However, training based on % CCI may lead to a high number of 
false-negative predictions, due to the relatively low species prevalence. To account for this, a 
weight w was introduced, resulting in the weighted % CCI (% CCIw). The % CCIw equals the 
% CCI if w, ranging from 0 to 1, is zero. For N data points, the % CCIw is given by: 

where a is the number of true-positive predictions, b is the number of false-positive 
predictions, d is the number of true-negative predictions, w is the weight factor and N is the 
number of data points. Due to this weight factor, false positive predictions are considered to 
be true positive predictions. Consequently, overprediction of the observations by the model is 
stimulated with an increasing value of w. Eleven different training scenarios were created by 

100)(%
N

bwdaCCI w  (7.1)
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varying w from 0 to 1 with 0.1 steps, while the 12th scenario consisted of Kappa-based 
training (Table 7.2). Each training iteration was stopped when no further increase of the 
performance measure on the test fold was observed.  
Overall model performance (OP) was obtained by multiplying the average score of three 
performance measures on the test folds: % CCI, Kappa and NMI, the normalised mutual 
information statistic (Manel et al., 2001). The rule base with the highest overall performance 
was selected out of the results of the CCIw optimisation (models 1 to 11). Together with the 
rule base obtained from Kappa optimisation, this rule base was compared with one derived 
from expert knowledge (EAWAG, 2002). In this chapter, the fuzzy rule base contained 108 (= 
3 x 4 x 3 x 3) fuzzy rules representing each possible combination of input variable sets. 
However, not every combination of input variable sets was present in the studied stretch (Fig. 
7.2). To obtain an indication of which rules were relevant, the fuzzy sets were turned into 
crisp ones by assuming that an input value belongs not to a set if its membership degree to 
this set is < 0.5. Each data point could be assigned to one environmental condition, resulting 
in the distribution of the data points over the 108 ‘crisp’ environmental conditions described 
by the rules (Fig. 7.2). The distribution also gives an indication of the usefulness of the 
obtained rule base over a range of environmental conditions that can be found in the Aare 
river. 
 

    % fine gravel 
    low moderate high 
    % medium-sized 

gravel 
% medium-sized 

gravel 
% medium-sized 

gravel 
    low moderate high low moderate high low moderate high

low          
moderate          

high          lo
w

 

D
ep

th
 

very high          
low          

moderate          
high          

m
od

er
at

e 

D
ep

th
 

very high          
low          

moderate          
high          

Fl
ow

 v
el

oc
ity

 

hi
gh

 

D
ep

th
 

very high          
Fig. 7.2. Distribution of the samples in the dataset over the 108 environmental situations 
considered in the fuzzy habitat suitability models. All environmental situations were 
represented by less than 22.9 % of all data points (0 % of instances (  ), 0 – 0.5 % of 
instances (  ), 0.5 – 5 % of instances (  ), > 5 % of instances (  )). 
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7.3 Results 

7.3.1 Rule base training 
The entropy of all 4 input variables was similar and assumed to be sufficiently high for 
reliable training of rule bases (Table 7.1). The distribution of instances over the different 
fuzzy rules was indicated by the entropy of the rule base (0.63). Specifically, this entropy 
quantifies the uniformity of the distribution of the collected data instances over the 
environmental conditions included in the rule base. The high entropy values indicated that the 
fuzzy sets used in this chapter were suitable for rule base optimisation.  
Optimisation based on different folds led to the same optimal rule base for all training 
scenarios and the performance measure values obtained were similar for the training and test 
folds. Moreover, the NMI was higher than the CCI and the CCI was higher than Kappa for 
each model (Fig. 7.3). Different trends were observed in the values of the three performance 
measures based on optimisation with changing weights (Fig. 7.3; models 1 to 11).  
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Fig. 7.3. Average performance of the 12 optimised rule bases on classification of the test 
folds. For all models, the standard deviation of the performance measures based on the test 
folds is higher then the one of the performance measures based on the training folds, and NMI 
> CCI > Kappa. NMI could not be calculated for rule base 11 as this rule base was predicting 
all present cases as present, resulting in a c-value of zero in the confusion matrix. (CCI= the 
percentage of correctly classified instances; NMI= the normalised mutual information 
statistic; test= calculated based on the test fold). 
 



Chapter 7. Empirical comparison of performance criteria 

90 

NMI appeared to be relatively unaffected by changing weight, although NMI could not be 
calculated for model 11 (w = 1) since this model was predicting all present instances as 
present, resulting in a zero c-value in the confusion matrix. Kappa values were situated along 
a bell-shaped curve, with its maximum at model 7 (w = 0.6). CCI was decreasing if w 
exceeded 0.5 due to the increasing number of false-positive predictions obtained after training 
at higher weights. For each model, the standard deviation of the performance measures based 
on the ten folds was lower for the training fold than for the test fold. Standard deviation 
values were all low (maximum 0.03 and 0.01 on average), indicating that robust rule bases 
were found after hill-climbing optimisation. Optimisation based on Kappa (model 12) led to 
very similar results as optimisation based on CCI0.6. Furthermore, the values of the three 
performance measures for this model were particularly high with respect to those resulting 
from the other optimisation methods. 
The overall performance (OP) of the model on the three performance measures was analysed 
by multiplying the average values of these measures based on the ten test folds (Table 7.2). 
This indicated that optimisation based on CCI0.5 produced the rule base with the highest OP, 
while optimisation based on CCI0.3 and CCI0.4 generated similar results. The optimal rule base 
obtained after running all optimisation scenarios based on CCI0.5 (rule base 6) was selected, 
together with the rule base obtained after Kappa optimisation (rule base 12).  

7.3.2 Ecological relevance of the selected rule bases 
To assess the ecological relevance of the rule bases obtained after training, the resulting 
predictions were further investigated. The cumulative predicted presence, based on the 12 
different rule bases obtained from each training scenario, was plotted for all variables and 
displayed for flow velocity and depth (Fig. 7.4). Concerning the location of these cumulative 
distribution curves, similar results were found for all variables (e.g. Fig. 7.4). When 
cumulative distribution curve A was situated below curve B for flow velocity for instance, 
this was also observed for the other three input variables. Results were also similar for all test 
and training folds and for the whole dataset.  
To get insight into the position of the different curves in relation to each other, the example of 
flow velocity, averaged over the ten test sets, was focussed on (Fig. 7.4a). The cumulative 
curve of the observed presences was located below the curve of the presences predicted by the 
expert knowledge rule base. Training based on CCI0 resulted in a rule base predicting the 
most instances as absent. An increasing weight w led to more predictions of present instances, 
but the prediction evolved discontinuous when w was changing. Predictions of models 
obtained from training based on CCI0.1, CCI0.2, CCI0.3 and CCI0.4 were identical. If w 
exceeded 0.8, rule bases obtained from CCIw training were increasingly predicting present 
instances (Fig. 7.4a). The CCI1 rule base was predicting all present instances as present, 
leading to low CCI and Kappa values (Fig. 7.3). 



Chapter 7. Empirical comparison of performance criteria 

91 

0 0.1 0.2 0.3 0.4 0.5 0.6
0

500

1000

1500

2000

2500

Flow velocity (m/s)

C
um

ul
at

iv
e 

pr
es

en
ce

 o
f g

ra
yl

in
g

 

 
CCIw(0)

CCIw(0.5)

CCIw(0.6)

CCIw(0.8)

CCIw(0.9)

CCIw(1)

observed

expert knowledge

Kappa

 
(a) 

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1400

1600

1800

Depth (m)

C
um

ul
at

iv
e 

pr
es

en
ce

 o
f g

ra
yl

in
g

 

 
CCIw(0)

CCIw(0.5)

CCIw(0.6)

CCIw(0.8)

CCIw(0.9)

CCIw(1)

observed

expert knowledge

Kappa

 
(b) 

Fig. 7.4. Cumulative presence of grayling for flow velocity (a) and depth (b), resulting from 
observations (observed), expert knowledge and model predictions. Predictions were done by 
rule bases trained on different performance measures: CCI0 (= CCI or CCIw(0)), CCI0.5 (= 
CCIw(0.5)), CCI0.6 (= CCIw(0.6)), CCI0.8 (= CCIw(0.8)), CCI0.9 (= CCIw(0.9)), CCI1 (= 
CCIw(1)) and Kappa. To improve visualisation, the depth range between 3.45 and 6.60 m is 
not shown.  
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Comparison of performance measures obtained by optimisation based on Kappa with the ones 
obtained by optimisation based on CCI0.6 indicated both optimisation scenarios led to very 
similar rule bases. The slight differences in the crisp outputs of both rule bases disappeared 
when these outputs were transformed into present/absent classes for performance measure 
calculation. The CCI0.5 rule base was approximating the observed curve the closest, but was 
still showing a substantial number of false-negative predictions. In contrast, the rule bases 
derived from optimisation based on Kappa or CCI0.6 produced a cumulative prediction curve 
which was situated between the observed curve and the expert knowledge curve. 
The ecological significance of the model results could be derived from the gradient of the 
cumulative presence curves (Fig. 7.4). This gradient indicated where most spawning grayling 
was observed or predicted, and therefore could be used as measure of the habitat preferences 
of grayling. For flow velocity (Fig. 7.4a), the gradient of the observed grayling curve was the 
highest between 0.27 and 0.43 m/s. The highest gradient of the curve derived from expert 
knowledge was observed in a slightly higher range between 0.31 and 0.45 m/s. This range 
was similar to the range in which the highest gradients were found of the cumulative curves 
derived from all model results. For depth (Fig. 7.4b), most spawning grayling was observed 
between 1.9 and 2.3 m. The depth preferences based on expert knowledge were situated 
between 1.9 and 2.5 m, while preferences derived from all model results were within the same 
range. The cumulative presence curves of the two substrate variables showed that spawning 
grayling preferred coarser substrate. Specifically, the highest gradient of the cumulative 
presence for the percentage of medium-sized gravel was found between 50 and 70 %, while 
for the percentage of fine gravel, this ranged between 0 and 40 %. These ranges were very 
similar for observed data, expert knowledge and model results.  
 
Table 7.2. Overall performance of the 12 rule bases obtained after different training scenarios. 
During training, a rule base is optimised based on its predictive performance, which is 
assessed by a different performance measure for each scenario. For each optimal rule base, its 
overall performance is obtained by multiplying its scores on three performance measures: 
CCI, NMI and Kappa, all ranging from 0 to 1.  

Scenario 
number 

Performance measure 
applied for training 

Weight Overall 
Performance 

1 CCI0 = CCI 0.0 0.19 
2 CCI0.1 0.1 0.19 
3 CCI0.2 0.2 0.19 
4 CCI0.3 0.3 0.23 
5 CCI0.4 0.4 0.24 
6 CCI0.5 0.5 0.24 
7 CCI0.6 0.6 0.21 
8 CCI0.7 0.7 0.20 
9 CCI0.8 0.8 0.17 
10 CCI0.9 0.9 0.10 
11 CCI1 1.0 - 
12 Kappa - 0.21 
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7.4 Discussion 
In the presented study, the habitat preferences derived from field observations or expert 
knowledge were very similar to those predicted by the fuzzy rule-based models. Since only 
few organisms were observed at a depth higher than 2.5 m and a flow velocity higher than 
0.45 m/s, model predictions above these thresholds will be less reliable, as was discussed 
earlier (Fig. 7.2). The predicted flow velocity preferences for spawning grayling were slightly 
higher than the 0.1 – 0.4 m/s range found by Fabricus and Gustafson (1955). This was 
confirmed by Nykänen and Huusko (2002), who found flow velocity preferences between 0.5 
and 0.6 m/s and suggested that these preferences might be transferable between rivers. The 
model results were also supported by the wider flow velocity preferences (0.2 – 0.9 m/s) 
observed in other studies (Gönczi, 1989; Sempeski and Gaudin, 1995).  
Several authors describe depth preferences of spawning grayling which are significantly lower 
(0.1 – 0.5 m) than both the observed and modelled preferences in this study (Gönczi, 1989; 
Sempeski and Gaudin, 1995; Nykänen and Huusko, 2002). However, these deeper spawning 
habitats in the Aare river have been observed for more than 20 years (EAWAG, 2002). 
Possible explanations for the contrasting depth preferences may be differences in topology of 
the sampled rivers or ecological factors such as competition or predation. Specifically, the 
shallower spawning areas in the Aare rivers are regularly disturbed by swans, which might 
cause a shift in depth preferences (EAWAG, 2002).  
Unlike the depth preferences, the modelled and observed substrate preferences strongly 
correspond to previous research, since several authors agree that spawning grayling prefers 
medium-sized gravel (Gönczi, 1989; Sempeski and Gaudin, 1995; Nykänen and Huusko, 
2002). Gönczi (1989) suggests that gravel thickness may also affect spawning preferences. 
Although this variable was not considered in this chapter because field data were lacking, the 
presented fuzzy rule-based approach would allow fast and easy implementation of such expert 
knowledge in the fuzzy knowledge base.  
The expert knowledge rule base (EAWAG, 2002) predicted spawning grayling to be present 
for several instances where no spawning grayling was observed (Fig. 7.4). However, the 
expert knowledge in this rule base was based on the judgment of local fish experts and is 
similar to previous findings (Gönczi, 1989; Sempeski and Gaudin, 1995; Nykänen and 
Huusko, 2002; Nykänen et al., 2004; Riley et al., 2006). Hence, false-positive prediction of 
the observed situation by the expert knowledge rule base may not necessarily imply a model 
error. Several factors suggest these false-positive predictions are inherent to the classification 
of ecological data as discussed in Chapter 6.  
Although few hypotheses can explain false-negative predictions by the optimised rule bases, 
the acceptance of false-positive predictions should be limited, because models predicting 
spawning grayling to be present at all sites are ecologically irrelevant (Manel et al., 2001). 
The expert knowledge rule base could be an appropriate limit of acceptable false-positive 
predictions since it is based on literature. The cumulative predicted presence curve of any 
correct solution (Fig. 7.4) should thus be situated in the area delimited by the cumulative 
curves of the expert knowledge model and of the observed presence of grayling. Hence, the 
four correct models which could be selected in this chapter were the models obtained after 
optimisation based on Kappa, CCI0.6, CCI0.7 and CCI0.8. If the weight w used in CCIw 
optimisation was lower than 0.6, the resulting rule bases are all showing a substantial number 
of false-negative errors due to the dependency of the % CCIw on the prevalence of the dataset 
(Manel et al., 2001). For instance, the rule base obtained after training based on CCI0.5 had the 
highest OP but it was showing a substantial number of false-negative predictions and 
therefore it may not be an optimal habitat suitability model. Although the weight w 
compensated the low prevalence of the training folds, values of w exceeding 0.8 led to 
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overcompensation and a questionably high number of false-positive predictions. Further 
research and validation with new data could point out which model is the most accurate. 
Model accuracy might also be improved by applying different weights during CCIw training, 
but this could lead to similar results due to the discontinuous evolution of model predictions 
with changing weights.  
Comparison of the results from different optimisation scenarios and folds indicated the hill-
climbing method generated consistent results. This consistency is enhanced by the size of the 
dataset used with respect to the relatively small sampling area and by the uniform distribution 
of the training instances over the different rules. However, Fig. 7.2 indicates that some rules 
apply to environmental conditions which are not present in the dataset, which was also 
reflected in the lower entropy of the rule base compared to the entropy of the individual input 
variables. Since the consequent of these rules cannot be reliably predicted, the optimised rule 
bases only apply to environmental conditions which are covered by the data (Van Broekhoven 
et al., 2006).  
Optimisation based on Kappa resulted in the same cumulative plot as optimisation based on 
CCI0.6. Specifically, the rule bases and the crisp predictions were slightly different but the 
final fuzzy output was the same. Similarity between both rule bases was indeed increasing 
from 75 % to 100 % if the number of rules included in the similarity calculation was reduced 
from 108 to 54. This led to slight differences between the predictions of both models, but 
these differences disappeared when the predictions were transformed into present/absent 
classes. Analysis of CCI0.6 versus Kappa did not reveal any clear relation between both 
measures or between both performance measures and global data characteristics. Further 
research should point out if relations between different performance measures exist and 
indicate how these could be taken into account during the optimisation process.  
Overall, the results suggest that the performance measure used for training has a significant 
impact on the resulting optimised rule base (Fig. 7.3). The results indicate Kappa might be a 
better option for rule base training then CCIw as the latter requires fine tuning of the w 
parameter. Hence, further research should reveal which performance measure is the most 
appropriate for model training, depending on the classification problem and on the model 
purpose. The presented selection of an appropriate performance measure for model training 
based on the cumulative predicted presence of this model might also be applied to training of 
other data-driven models such as artificial neural networks (Lek and Guégan, 1999), decision 
trees (Džeroski, 2001) and Generalised Linear Models (Brotons et al., 2004). 
The inconsistent performance measure values evaluating the optimised models (Fig. 7.3) also 
indicate that different measures should be compared to evaluate model performance after 
training, which is reflected in previous research findings (Manel et al., 2001; Hirzel et al., 
2006). In line with the performance measure selection for model training, the optimal 
performance measure for model evaluation should be chosen depending on the classification 
problem and on the model purpose. The presented case suggests Kappa might be an 
appropriate measure to evaluate model performance, which is supported by the acceptance of 
Kappa as a model performance measure by several authors (Manel et al., 2001; Hirzel et al., 
2006). These results also reinforce the view that categorisation of performance indicated by 
Kappa into classes from fair to almost perfect is arbitrary. Hence, the value of Kappa should 
be interpreted by comparison with other Kappa values derived from models classifying the 
same dataset (Manel et al., 2001). 
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8.1 Introduction 
The literature review in Chapter 6 indicated that most studies apply a training performance 
criterion which assesses the predictive accuracy of the model, such as the percentage of 
correctly classified instances CCI (Fielding and Bell, 1997) or the root mean squared error. 
However, Chapter 7 showed that model training based on different performance criteria may 
result in different final models, while the prevalence of the training set (i.e. the frequency of 
occurrence) may affect the training performance criterion and hence the results of the model 
training. Specifically, Chapter 6 showed theoretically that model training based on Kappa at 
low prevalences tends to result in models that overestimate the observations, whereas high 
prevalences may lead to underestimating models.  
Consequently, modellers should compare the results of various model training procedures 
based on different performance criteria and then select the final model which corresponds the 
most to the study objectives, as was suggested in Chapter 7. Although models could be 
trained differently by varying the training performance criterion, another option is to train 
models based on a prevalence-adjusted performance criterion, which could be adjusted to the 
training data prevalence and to the model objectives. In the previous chapter, a first 
prevalence-adjusted performance criterion, the CCIw, was introduced. However, this criterion 
does not take into account the specific fuzzy characteristics of a fuzzy species distribution 
model, which will be illustrated in this chapter. Therefore, this chapter presents the adjusted 
average deviation (aAD), which is similar to the average deviation AD (Van Broekhoven et 
al., 2007) but contains a parameter  to account for different prevalences of the model training 
set. Previous research showed that the AD is an appropriate performance measure for fuzzy 
models because it takes into account the fuzzy characteristics of the model output (Van 
Broekhoven et al., 2007). In contrast to the aAD however, the AD does not distinguish 
omission from commission errors and does not allow prevalence-adjusted model training.  

CHAPTER 8  

Prevalence-adjusted fuzzy model training 
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This study aims to analyse the strengths and weaknesses of the aAD for ecological modelling. 
First, the relation between the training set prevalence and the  parameter of the aAD and the 
impact of this prevalence on the results of model training based on the aAD was analysed by 
developing models from training sets with different prevalences. The final models obtained 
after training based on the aAD were then compared with those obtained from training based 
on more frequently applied performance criteria. Finally, the presented procedure was applied 
on ten artificial datasets to assess the consistency of the dependency between the training set 
prevalence and the  parameter of the aAD. 

8.2 Material and methods 

8.2.1  Study area and collected data 
The fuzzy model quantified the habitat suitability for spawning European grayling (Thymallus 
thymallus L.) in a 1300 m stretch of the Aare river in the Bern department, Switzerland. The 
study area, the sampling procedure and the resulting dataset were described in Chapter 7. 

8.2.2  Fuzzy rule-based modelling and rule base training 
The parameters of the membership functions corresponding to the fuzzy sets used in this work 
are given in Table 8.1 and were optimised to create a uniform distribution of the input 
variables over the fuzzy sets. The Shannon–Weaver entropy (Shannon and Weaver, 1963) 
quantified this uniformity and was used as an optimisation criterion to increase the quality of 
the fuzzy sets as described in Chapter 4. The fuzzy rule-based modelling procedure was 
described in Chapters 4 and 7. 
 
Table 8.1. The input variables and the corresponding fuzzy sets of the species distribution 
models. The entropy, indicating the uniformity of the distribution of the values of a variable 
over its fuzzy sets, was calculated for all input variables. 
Input variable Fuzzy set Parameters Entropy 
Depth (m) Shallow (0.0,0.0,0.82, 2.46) 0.94 
 Moderate (0.82,2.46,3.26,3.33)  
 Deep (3.26,3.33,6.59,7.41)  
Flow velocity (m/s) Low (0.00,0.00,0.17,0.50) 1 
 High (0.17,0.50,0.67,0.83)  
Percentage of fine gravel  Low  (0,0,40,60) 0.99 
(2 mm-2 cm) (%) High (40,60,100,100)  
Percentage of medium-sized gravel  Low  (0,0,30,69) 1 
(2 cm-5 cm) (%) High (30,69,99,100)  

8.2.3 Training performance criteria 
Different models were trained based on five performance criteria: the percentage of Correctly 
Classified Instances CCI (Fielding and Bell, 1997), Cohen’s Kappa (Cohen, 1960), the true 
skill statistic TSS (Allouche et al., 2006), the average deviation AD (Van Broekhoven et al., 
2007) and the adjusted average deviation aAD. The first three criteria are based on the 
confusion matrix (Fielding and Bell, 1997; Manel et al., 2001) and range from zero (CCI and 
Kappa) or minus one (TSS) to one. Although the TSS has been applied less frequently than 
CCI and Kappa, it was included in this chapter because Allouche et al. (2006) argue that this 
criterion is independent of prevalence.  
The AD (Van Broekhoven et al., 2007) was applied because it incorporates the specific 
characteristics of fuzzy classifiers with an ordered set of classes and can deal with the fuzzy 
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outputs of these models. Specifically, several performance criteria have been developed to 
evaluate and train presence-absence models, but most of these criteria are based on the 
confusion matrix which requires a threshold to distinguish between present and absent 
predictions. Since these criteria cannot deal with the fuzzy output of a fuzzy classifier, 
valuable information may be lost by transferring this fuzzy output to the crisp output which is 
needed to generate the confusion matrix. Performance measures which are derived from the 
confusion matrix, for instance, are not sensitive to the position of the classes where the wrong 
classification occurs (Van Broekhoven et al., 2007).  
Therefore, Van Broekhoven et al. (2007) introduced the AD, which returns the average 
deviation between the position of the output class obtained with the model and the position of 
the output class stored in the training set. The AD varies from 0 to n-1 and is calculated as 
follows: 

 
(8.1) 

 
 

with N the number of data points, n the number of output classes, Ak(ydata,j) the membership 
degree of the jth observed output to the kth output class and Ak(ymodel,j) the membership degree 
of the jth model output to the kth output class. 
Although the AD incorporates the fuzzy characteristics of fuzzy habitat models, it depends on 
the prevalence of the training set and it does not consider the ecological difference between 
overestimation and underestimation of the observations by the model. Therefore, in this 
chapter, the aAD is introduced. This performance criterion includes a parameter  which 
ranges between 0 and 1 and allows stimulation of overprediction or underprediction, 
depending on the prevalence of the training set. To define the aAD, the cumulative deviation 
Di,j between the position of the class i obtained with the model and the position of the 
observed class i is described as 

 
(8.2) 

 
The aAD is then defined as: 

 
(8.3) 

 
 

Given a set of ordered output classes, the model shows overprediction if Di,j is negative, 
whereas the model underestimates the observed outputs if Di,j is positive. Note that the AD 
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equals its maximal value 1, whereas the aAD equals  if the model is completely 
overpredicting. If, in this situation,  is lower than 1, overprediction is stimulated. 
Consequently, the lower the value of , the more the model is trained to overpredict the 
observed data. 
 
Table 8.2. Seven fuzzy classification examples and their corresponding performances 
expressed by CCI, AD and aAD. For each fuzzy set Ai of the output variable, the deviation Di,j 
is calculated based on the membership degrees of the output value to the membership 
functions of the fuzzy sets.  

 ydata ymodel     
 A1 A2 A3 A1 A2 A3 D1,j D2,j D3,j CCI AD aAD 
a 0 0.8 0.2 0 0.8 0.2 0 0 0 1 0 0 
b 0 0.8 0.2 0.3 0.4 0.3 0.3 -0.1 0 1 0.4 0.3 + 0.1  
c 0 0.8 0.2 0.6 0.2 0.2 0.6 0 0 0 0.6 0.6 
d 0 0.8 0.2 0 0.2 0.8 0 -0.6 0 0 0.6 0.6  
e 0 0.8 0.2 0.4 0.2 0.4 0.4 -0.2 0 0 0.6 0.4 + 0.2  
f 0 1 0 1 0 0 1 0 0 0 1 1 
g 0 1 0 0  0  1 0 -1 0 0 1  

 
Both AD and aAD can be applied to present-absent model outputs and thus to the confusion 
matrix. This is illustrated in Table 8.3, in which a fuzzy model output consisting of an absent 
and a present class is converted to a crisp output based on a threshold of 0.5.  
 
Table 8.3. Application of the AD and aAD to presence-absence predictions and thus to the 
confusion matrix (0 = absent, whereas 1 = present).  
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 Absent Present  Absent Present   
0 1 0 1 0 1 1 1 
1 0 1 0 1 0 -1  
0 1 0 0 1 0 0 0 
1 0 1 1 0 1 0 0 
      AD = 0.5 AD = 0.25 +  / 4 

 
Consequently, it can be shown that, for presence-absence predictions with crisp outputs,  

while 
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Here A1(ymodel,j) is the normalised degree of fulfilment of the crisp output class ‘absent’ 
corresponding to the jth data point, and A1(ydata,j) is one in case of absence in the dataset, zero 
in case of presence, for the same data point. The aAD is then defined as: 

 
Consequently, if Dj is positive, the model underestimates the jth observation and the 
corresponding term in aAD is simply Dj. However, if Dj is negative, the model overestimates 
the jth observation and the corresponding term in aAD is given by ·|Dj|, a fraction of |Dj|, and 
therefore contributing less to aAD.  

8.2.4 Training sets and scenarios 
To analyse the dependency of the  parameter on the prevalence of the training set, present 
and absent instances of the original dataset were selected randomly to create 21 new datasets 
with a prevalence varying from 0 to 1 in steps of 0.05. For example, if the prevalence of the 
new dataset was lower than the prevalence of the original dataset (0.203 = 4579/22510), fewer 
present instances were selected than the number of present instances included in the original 
dataset, whereas all absent instances from the original dataset were selected. This resulted in a 
new dataset with a lower prevalence than the original dataset.  
To assess the consistency of the relation between  and the training set prevalence, the 
aforementioned procedure was repeated with ten artificial datasets. These datasets were 
created based on the distribution of the environmental conditions in the original dataset 
because not every environmental condition occurred equally in the studied stretch. Therefore, 
the distribution of the original data points over the 24 environmental conditions described by 
the fuzzy rules was calculated. Specifically, the fuzzy sets were turned into crisp ones by 
assuming that an input value belongs not to a set if its membership degree to this set is < 0.5 
and then each data point could be assigned to one environmental condition. Artificial datasets 
with the same distribution of environmental conditions as the original dataset were created by 
randomly generating data points which could be assigned to a specific environmental 
condition. The habitat suitability for spawning grayling was linked to these environmental 
conditions by a fixed fuzzy rule base R. Consequently, the training procedures based on 
different performance criteria can be compared better based on these artificial data than based 
on real data because the true model is known. The original dataset and the 10 artificial 
datasets are referred to as the initial datasets. 
For each of the 11 initial datasets, 21 new datasets were created with a prevalence ranging 
from 0 to 1 according to the aforementioned procedure. On each of these new datasets, ten-
fold cross-validation was applied to estimate the robustness of the optimisation results. The 
folds were constructed by randomising the new dataset and assigning each data point to one 
fold without replacement. The species prevalence (i.e. the frequency of occurrence) was 
constant for all ten folds and equal to the prevalence of the new dataset. The habitat suitability 
models were trained based on 25 different training scenarios (Table 8.6). The models were 
trained based on the aAD in the first 21 scenarios, with  varying from 0 (scenario 1) to 1 
(scenario 21) in steps of 0.05. In the last four scenarios, the models were trained based on CCI 
(scenario 22), Kappa (scenario 23), the TSS (scenario 24) or the AD (scenario 25). 
Consequently, 57750 (11 x 21 x 10 x 25) different simulations were performed on a Linux 
cluster containing 14 nodes, containing 72 Dual-Core Intel® Xeon® CPU 3.00 GHz processors 
in total, 1 Gb of RAM and running a 2.6.5 kernel. 
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8.3 Results 
Based on the original dataset, 21 new sets with different prevalences were created and rule 
base training on these sets, based on the aAD with varying , resulted in different final rule 
bases at a specific training set prevalence (Fig. 8.1). Although general agreement among these 
rule bases was observed, some rule bases showed slight differences at different prevalence 
values. This result could be explained by the presence of ‘core rules’ and ‘ghost rules’ in the 
trained rule base. Specifically, the fuzzy rules in a trained rule base represented each possible 
combination of input variable sets, but some rules may describe a combination of input 
variable sets which was absent in the studied stretch. These rules are referred to as ghost rules, 
whereas core rules describe a environmental condition which is present in the studied stretch. 
In contrast to the core rule consequents, the ghost rule consequents could not be trained based 
on the available data and could thus randomly take any linguistic value of the output variable. 
However, these ghost rules did not affect the model predictions because they did not represent 
the studied stretch. Consequently, rule base training in this chapter sometimes resulted in rule 
bases with different ghost rule consequents, but equal core rule consequents and thus equal 
model predictions. The trained rule bases in this chapter could therefore be joined in 11 
clusters (Fig. 8.1) based on the consequents of their core rules.  
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Fig. 8.1. The 11 different rule base clusters obtained from rule base training based on aAD 
with varying . Training was performed based on 21 training sets with a prevalence ranging 
between 0 and 1 in 0.05 steps, which were derived from the original dataset. Areas with the 
same shade represent the same rule base cluster, while the brightness of an area reflects the 
number of ‘absent’ consequents in the core rules of the rule base. The light area (left top) 
contains the rule base with no ‘present’ consequents, whereas the darkest area (right down) 
represents the rule base with no ‘absent’ consequents. The left boundary of each area is 
referred to as the  curve of this cluster and connects the maximum values of  at which the 
rule base of this cluster was obtained. These values of  were averaged over the ten training 
folds at each prevalence. The bold black boundary between two clusters indicates the 
maximum  at which the first rule base is obtained that overestimates the observations.  



Chapter 8. Prevalence-adjusted fuzzy model training 

101 

In Fig. 8.1, the left boundary of each cluster is referred to as an  curve and connects the 
maximum values of  at which a rule base of this cluster was obtained. The results were 
consistent across the different folds, with the standard deviation of the values of  of the  
curves averaging 0.006 and ranging between 0 and 0.066. Not all 11 rule base clusters were 
obtained at all prevalence values, while most of the clusters were obtained at intermediate 
prevalence values (approximately between P = 0.1 and P = 0.7).  
The number of ‘present’ relevant rule consequents in the final rule base was negatively 
correlated with the value of the  parameter at each prevalence (Fig. 8.1). Consequently, at a 
fixed training prevalence,  represents the likelihood that a rule base is obtained which 
underestimates the observations: the lower , the higher the likelihood that an overestimating 
rule base is found. The fifth cluster (starting from the top left corner in Fig. 8.1) contains the 
first rule base which overestimates the observations (Fig. 8.2). The upper boundary of this 
cluster (the solid black line in Fig. 8.1) represents the maximum values of  at which the 
overestimating rule base is obtained. If at a specific prevalence,  is lower than or equal to the 
corresponding  on this line, the final rule base will overestimate the observations. The solid 
black line (Fig. 8.1) represents the transition from an underestimating rule base to an 
overestimating one. Consequently, the rule base which approximates the observations most 
accurately, could be found at values of  ranging between the solid black line and the upper 
boundary of the first rule base cluster above this line. 
This is also reflected in the cumulative plots of the predictions of the habitat suitability of 
spawning grayling by the different rule bases for the input variables flow velocity and depth 
(Fig. 8.2 a-b). Not only do these plots provide an indication of the ecological relevance of the 
optimised rule bases, they also show the similarity between the different rule bases. Although 
the rule base obtained with  = 0.35 approximates the total number of observed occurrences 
relatively accurately, this rule base is still underestimating the occurrence of spawning 
grayling. Since the rule base obtained with  = 0.30 does overestimate the grayling presence 
substantially, the most accurate rule base might be found at values of  between 0.35 and 
0.30.  
Further analysis of both rule bases revealed that four consequents differed between both rule 
bases (Table 8.5). Consequently, the transition between both rule bases consists of 14 
different rule bases, one of which may be the most accurate rule base (Table 8.5). The 
cumulative predictions of these rule bases (Fig. 8.3) show that 12 rule bases are 
approximating the observations more accurately (all except A and K). However, the rule bases 
which approximate the observations the best (D, G, I, J, K, L, M), show some substantial 
differences with the observations. For flow velocity, for instance, the gradient of the observed 
curve was the highest between 0.27 m.s-1 and 0.43 m.s-1, whereas for these 7 rule bases, this 
gradient is the highest between 0.27 m.s-1 and 0.33 m.s-1. Similar results were found for depth, 
where most spawning grayling was observed between 1.9 and 2.3 m, but these 7 rule bases 
predict grayling to occur the most between 1 and 1.7 m. In contrast to these 7 rule bases, the 
shape of the cumulative predictions of the other rule bases (A, B, C, E, F, H, N) is much more 
similar to the shape of the cumulative observations. This indicates that, even though these rule 
bases are substantially overestimating the observations, they may be ecologically more 
relevant than the first 7 rule bases. Similar results were obtained for the other two input 
variables. 
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(b) 

Fig. 8.2. Cumulative plots of the observations and of the rule base predictions obtained after 
training based on aAD with  varying between 0 and 1 in 0.05 steps. Predictions were 
averaged over the ten folds and cumulated according to their corresponding flow velocity (a) 
or depth (b) values. Training was performed on the original dataset with a prevalence of 0.20. 
Values of  resulting in the same core rule base, are indicated by the same line type. 
Cumulative predictions based on the other two input variables showed similar results but are 
not displayed since these plots are harder to interpret due to the ordinal nature of these 
variables. 
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Fig. 8.3. Cumulative plots of the observations and of the predictions of the 14 rule bases 
which are situated between the rule base obtained with  = 0.30 and the one obtained with  = 
0.35 (Table 8.5). Predictions were averaged over the ten folds and cumulated according to 
their corresponding flow velocity (a) or depth (b) values. Training was performed on the 
original dataset with a prevalence of 0.20. Rule bases with the same core rule base are 
indicated by the same line type. Cumulative predictions based on the other two input variables 
showed similar results but were not shown since these plots are harder to interpret due to the 
ordinal character of these variables.  
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Table 8.4. The 4 rule consequents (a, b, c and d) which distinguish the rule base obtained with 
 = 0.30 from the one obtained with  = 0.35 (A = absent, P = present). 

    % fine gravel 
    low high 
    % medium-sized gravel % medium-sized gravel 
    low high low high 

low P P P A 
moderate a A c A lo

w
 

Depth 
high A A A A 
low P P P A 

moderate b A d A 

Fl
ow

 v
el

oc
ity

 

hi
gh

 

Depth 
high A A A A 

 
Table 8.5. The 14 rule bases which are situated between the rule base obtained with  = 0.30 
and the one obtained with  = 0.35. The four consequents that differ between these two rule 
bases were labelled a to d. The values of these consequents are given for the 14 rule bases, 
while all other consequents remained constant (A = absent; P = present). 

 Consequent values 
Rule base a b c d 

 = 0.30 P P P P 
A A P P P 
B P A P P 
C P P A P 
D P P P A 
E A A P P 
F A P A P 
G A P P A 
H P A A P 
I P A P A 
J P P A A 
K P A A A 
L A P A A 
M A A P A 
N A A A P 

 = 0.35 A A A A 
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Comparison of the training based on aAD with training based on four other performance 
criteria revealed that the latter four criteria produced rule bases which underestimated the 
observations (Fig. 8.4). However, the shape of the cumulative predictions obtained by training 
based on Kappa and on the TSS was more similar to the shape of the cumulative observations 
than it was for the underestimating rule bases derived based on CCI and AD. This may 
indicate that the rule bases obtained from Kappa and TSS training may be ecologically more 
relevant than those obtained after training based on aAD with a value of  that leads to 
underestimating rule bases (Fig. 8.2). Nevertheless, the shape of the cumulative predictions 
obtained from training based on aAD with a value of  of 0.30 (Fig. 8.4) still corresponds the 
most to the observations. Moreover, other performance criteria indicate that model 
performance is acceptable for this training scenario (Table 8.6). 
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Fig. 8.4. The cumulative predictions of grayling for the variable flow velocity obtained after 
training based on the percentage of correctly classified instances (CCI), Kappa, the average 
deviation (AD), the true skill statistic (TSS), and the adjusted average deviation (aAD) with  
= 0.30. Training was performed on the original dataset. 
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Table 8.6. The values of 4 performance criteria (the percentage of correctly classified 
instances CCI; Cohen’s Kappa; the true skill statistic TSS and the average deviation AD), 
calculated from the predictions which were obtained based on the 25 training scenarios. The 
scenarios are indicated by the value of  if aAD is applied for model training and by their 
performance criterion if another performance criterion is applied for model training. The 
value of the aAD is not given because it depends on  and thus cannot be compared across 
different training scenarios. 

Scenario description CCI Kappa TSS AD 
0 0.1999 0 0 0.8001 

0.05 0.3851 0.1075 0.2312 0.6179 
0.1 0.3860 0.1074 0.2311 0.6142 
0.15 0.6421 0.2771 0.3337 0.4008 
0.2 0.6667 0.2982 0.3492 0.3702 
0.25 0.6667 0.2982 0.3492 0.3702 
0.3 0.6667 0.2982 0.3492 0.3702 
0.35 0.7854 0.3123 0.3044 0.2386 
0.4 0.7961 0.2893 0.2591 0.2270 
0.45 0.7961 0.2893 0.2591 0.2270 
0.5 0.7961 0.2893 0.2591 0.2270 
0.55 0.8010 0.2732 0.2349 0.2146 
0.6 0.8010 0.2732 0.2349 0.2146 
0.65 0.8010 0.2732 0.2349 0.2146 
0.7 0.8010 0.2732 0.2349 0.2146 
0.75 0.8010 0.2732 0.2349 0.2146 
0.8 0.8037 0.1983 0.1539 0.2080 
0.85 0.8037 0.1983 0.1539 0.2080 
0.9 0.8001 0 0 0.1999 
0.95 0.8001 0 0 0.1999 

1 0.8001 0 0 0.1999 
Kappa 0.7903 0.3240 0.3063 0.2632 
CCI 0.8041 0.2027 0.1495 0.2133 
AD 0.8001 0 0 0.1999 
TSS 0.8037 0.2769 0.3580 0.2135 

 
Similar results were obtained for the 10 artificial datasets as for the original dataset. Rule base 
optimisation based on CCI, Kappa, TSS and AD resulted in the true model after model 
training, whereas optimisation based on the aAD led to different final models at different 
values of . This reflected the results obtained from training on the original rule base. At each 
prevalence, the true model was obtained at the same value of  for all artificial datasets. Fig. 
8.5 compares these values of  with the values of  at which the first rule base is obtained that 
overpredicts the observations. At each prevalence value, the latter values of  are lower than 
or equal to the first values of . This indicates that overprediction should be stimulated more 
for the original dataset, which contains data noise, than for the artificial datasets. 
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Fig. 8.5. Comparison of the values of  at which the true model is obtained after training on 
the artificial datasets and the values of  at which the first rule base is obtained that 
overpredicts the observations. The latter values of  are obtained from training based on the 
original dataset. 

8.4 Discussion 
Although an optimal parameter value could be found by applying sensitivity analysis, a more 
important problem with these flexible performance criteria could be the difficulty to say 
which models are better (Glas et al., 2003; Vaughan and Ormerod, 2005). The results 
presented in this chapter showed that comparison of the shapes of the cumulative prediction 
curves may provide an indication of the ecological relevance of the different optimised 
models. Specifically, observations may be more appropriate than expert knowledge to 
evaluate model prevalence because differences in species’ dispersal patterns and associated 
gene flow may lead to subtle variations in habitat preferences of some species due to local 
adaptations (Holt, 2003). Even in the absence of genetically driven differences in habitat use, 
species could express different realised niches (Hutchinson, 1957) as a result of spatial 
variation in predators, competitors or other biotic factors (Hutchinson, 1957; Osborne and 
Suarez-Seoane, 2002; Holt, 2003; Peterson and Holt, 2003; Hernandez et al., 2006; 
McPherson and Jetz, 2007). Consequently, conservationists should distinguish between 
models which reliably or less reliably predict species distribution (McPherson and Jetz, 2007). 
Maggini et al. (2006) show that applying a training parameter or threshold which minimises 
the difference between over- and underprediction may be a suitable rule of thumb. Applied to 
the results of this chapter, this suggests that the optimal rule base could be obtained by 
applying a value of  between 0.35 and 0.30.  
However, sometimes specific knowledge on model selection is available, for example if 
omission errors should be considered more ‘dangerous’ in the application than omission 
errors. The parameter  in the aAD allows to incorporate a certain degree of this knowledge in 
the data-driven model development process because this parameter allows modellers to focus 
on underprediction or overprediction during model training. If, for instance, the modellers 
know that the training set has an artificially low prevalence, they could choose to stimulate 
overprediction because such low prevalence could be the result of inefficient monitoring, 
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missing data, ecological effects such as competition and predation, or temporal effects such as 
seasonality and migration barriers. Another, but more intensive option for  setting is 
selecting certain field observations which should be predicted as present or absent by the 
model, based on ecological expert knowledge. As such, the modeller could assess the 
consistency between the available ecological expert knowledge and the observed data.  
Consequently, it may be more appropriate to apply weights in the training performance 
criteria than to weight absences in the training data because the first approach allows 
modellers to adjust the model training process to the purpose to the application. Jiménez-
Valverde and Lobo (2006) argue that unbalanced species distribution data are not such a 
problem from a statistical point of view, and that the effects unbalanced prevalence should not 
be confused with those of low-quality data affected by false absences for example. 
Consequently, it makes more sense to focus on the relation between omission and commission 
errors during model training than to adjust training data to a prevalence of 0.5. Further 
research should reveal whether the same model predictions are obtained after threshold 
optimisation during model evaluation as the predictions which are obtained by flexible 
training with a threshold-dependent performance criterion. Another aspect worth investigating 
is whether weighting absences to ensure a prevalence of 0.5 (Maggini et al., 2006) results in 
the same predictions as the predictions obtained after flexible training. Given the results of 
Jiménez-Valverde and Lobo (2006), it could be expected that the difference between the 
results of both approaches is negatively correlated with the quality of the training data.  
The results of this chapter show that the four common performance criteria may be less 
appropriate for model training. Not only do the results of all four model training scenarios 
based on the four criteria appear to depend on the prevalence of the training set, the shapes of 
the cumulative prediction curves also differ substantially from the shape of the cumulative 
observations (Fig. 8.4). Moreover, none of these criteria allows comparison of different 
training results to select the optimal model. However, model developers should be able to 
carefully choose an appropriate training performance criterion which reflects the ecological 
model purpose (Segurado and Araújo, 2004).  
Surprisingly, the results of model training based on Kappa differ substantially from those 
from the previous study in Chapter 7. In Chapter 7, rule base training based on Kappa resulted 
in a rule base that overestimated the observations, whereas in this chapter the final rule base 
obtained after Kappa training underestimated the observations. A possible explanation may be 
the different fuzzy sets which were applied in both studies. Specifically, the fuzzy sets in 
Chapter 7 were derived from expert knowledge, whereas the sets in this chapter were obtained 
from the entropy-based approach. This led to a different distribution of the training samples 
over the environmental conditions which were represented by the fuzzy sets. Consequently, 
the distribution of the present and absent instances over the environmental conditions also 
differed between both chapters. This may have resulted in a different focus of Kappa during 
rule base optimisation as was described in Chapter 6. Specifically, Chapter 6 showed that the 
focus of Kappa depends on the relations between the elements of the confusion matrix, and 
these relations may be affected by the distribution of the present and absent instances over the 
input space. This assumption is supported by the similarity of the results obtained from rule 
base optimisation based on CCI in Chapter 7 and 8. Chapter 6 showed indeed that the focus of 
CCI only depends on the prevalence of the training set and thus the results in Chapter 7 and 8 
based on CCI optimisation should agree because the prevalence is equal in both chapters.  
Based on the aforementioned distinction between omission and commission errors and on the 
similarity between the shape of the cumulative predictions curve with that of the cumulative 
observation curve, the optimal rule bases appear to be C and H (Fig. 8.3, Table 8.5). The 
predictions of these rule bases are in line with those obtained from the same dataset in 
Chapter 7 and thus may show substantial ecological relevance. Further analysis also indicated 
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that the training set prevalence also had an effect on the results of the Kappa training (Fig. 
8.4). The similar results for CCI, AD and TSS suggest that these criteria may also be less 
appropriate for model training. However, Table 8.6 confirms the value of TSS and Kappa for 
the evaluation of the performance of the final model. Specifically, the rule bases from the first 
21 training scenarios which showed acceptable ecological relevance (  between 0.15 and 
0.35), were also characterised by relatively high TSS and Kappa values. Both accuracy-based 
measures, CCI and the AD, appeared to be less suitable for model evaluation because their 
values were correlated with the value of  (R  = 0.58 and 0.65 respectively). 
This chapter confirms the results of Chapter 7 by showing that the performance criteria which 
are applied for model training may significantly affect the results of the training process. 
Consequently, these findings suggest that model developers should use training scenarios 
based on different performance criteria or on an adjustable parametrised criterion. As such, 
they should carefully select an appropriate training performance criterion or parameter which 
reflects the ecological model purpose. Although this approach is illustrated in this chapter by 
applying the adjusted average deviation to train a fuzzy habitat suitability for spawning 
grayling, the presented methods could be applied to any ecosystem or species. Therefore, this 
chapter may contribute to improve the reliability of ecological models in general and thus 
provide valuable insights for ecosystem management. 
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9.1 Introduction 
The previous chapter showed that prevalence-adjusted training performance criteria should 
enable model developers to adjust the training procedure to the training set prevalence. 
Chapter 7 demonstrated that such criteria may provide insight in the focus of the training 
procedure and in the ecological relevance of the fitted models. Specifically, the model training 
procedure of a habitat suitability model for European grayling (Thymallus thymallus) in a 
Swiss river was adjusted to the training set prevalence by varying the parameter  of an 
prevalence-adjusted performance criterion, the adjusted average deviation (aAD). 
This chapter aims to analyse the relation between the parameter  and the training set 
prevalence for three other species in different New Zealand river systems: the caddisflies 
Aoteapsyche spp., large brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss. 
Like in the previous study, the aAD was implemented in a hill-climbing algorithm to optimise 
a fuzzy species distribution model for each species. Specifically, the hypotheses were tested 
that (1) similar relations between the parameter  and the training set prevalence would be 
obtained, (2) training based on the aAD would lead to more accurate model predictions than 
training based on more frequently applied performance criteria such as CCI, and that (3) the 
final fuzzy model would produce a realistic model of habitat suitability. 

CHAPTER 9  

Sensitivity analysis of prevalence-adjusted training
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9.2 Material and methods 

9.2.1  Study area and collected data 
Benthic invertebrate data were collected by Surber sampling in six New Zealand rivers: the 
Mangles, Mohaka, Waingawa, Clutha (Jowett et al., 1991), Waitaki (Stark and Suren, 2003) 
and Tongariro (Collier, 1993) rivers. From each of the 692 samples, caddis fly larvae 
Aoteapsyche spp. were selected. Aoteopsyche is a net-spinning caddis fly and is typically 
found in rivers where the substrate is relatively stable. Larvae were found in 488 samples, 
which resulted in a prevalence of 0.71. Samples were collected from as wide a range of water 
depths, velocities and substrate types as possible in each river. Mean water column velocity 
(at 60 % of the depth) and water depth were measured at each sampling point with a current 
meter on a calibrated rod. The substrate composition was estimated visually with a modified 
Wenthworth particle size scale. The substrate composition was converted into a single index 
(s) by summing weighted percentages of each substrate type (Jowett et al., 1991). To allow 
for a fine-gravel category, the weighting values used were a slightly modified form of the 
original instream flow incremental methodology substrate codes (Bovee, 1982):  
s = 0.08 . bedrock + 0.07 . boulder + 0.06 . cobble + 0.05 . gravel + 0.04 . fine gravel + 0.03 . 
sand.  
The habitat use by trout was measured in the Lake Wanaka outlet of the Clutha river in 
February 2005. The Clutha river is one of New Zealand’s largest rivers and supports a very 
high density of large brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss 
(Teirney and Jowett, 1990). At the time of the survey, the river flow was 226 m  s-1 (mean 
flow = 195 m  s-1), the average width was about 90 m, and the maximum depth was 7 m. 
Black disk visibility was 9.5 m and thus a diver could observe fish in what were considered 
undisturbed locations. Specifically, fish that used the entire water column for feeding would 
move laterally or, more often, move closer to the bottom as the diver approached. Fish were 
identified as brown trout or rainbow trout and as large-sized (> 40 cm) or medium-sized (20-
40 cm) fish. This study only focused on large brown trout and rainbow trout. Large brown 
trout was observed less frequently than large rainbow trout, resulting in respective 
prevalences of 0.03 and 0.11. While the diver located and counted fish, an accompanying boat 
recorded water depths and flow velocities with an acoustic Doppler current profiler (ADCP; 
Teledyne RD Instruments, Poway, California). Although precise locations of individual fish 
could not be located accurately, the river channel was straight and had few abrupt variations 
in depth, either longitudinally or laterally, so that ADCP measurements of depth and velocity 
could be assumed to apply at fish locations. For each fish location, a measurement of depth 
and depth-averaged velocity was randomly selected from the relevant ADCP file. 
Examination of the ADCP data confirmed that there was little variation in depth and velocity 
in the ADCP measurement, and only two measurements (1.5 %) were excluded because the 
depth and velocity at the fish location could not be ascertained with sufficient certainty. 
Substrate throughout the reach was generally a mixture of boulder, cobble and gravel; cobbles 
were usually the most common substrate. Substrate was not considered further because it was 
relatively constant and appeared to have little functional relevance for the trout. Fish locations 
were recorded with equal effort in all habitat types and were supplemented by some bank 
observations of trout in water near the shore in areas where the diver or boat team was unable 
to operate. Habitat availability data were collected at an average of 2.9 m intervals across 15 
randomly selected cross-sections at a flow of about 170 m  s-1. Water surface profile 
modelling (RHYHABSIM; Jowett, 1996) was used to predict depths and velocities at 226 m  
s-1, the flow at which the habitat use data were collected. Additional cross-sectional data were 
collected at a flow of 226 m  s-1 with the ADCP. The modelling approach in this chapter was 
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identical to the procedure described in Chapter 8. However, only 5250 (21 x 10 x 25 different 
simulations were performed because no artificial datasets were created.  
 
Table 9.1. Input variables recorded and the corresponding fuzzy sets of the species 
distribution models. The entropy, indicating the uniformity of the distribution of the values of 
a variable over its fuzzy sets, was calculated for all input variables. 
Species Input variable Fuzzy set Parameters Entropy
Aoteapsyche spp. Depth (m) Shallow (0.00,0.00,0.31,0.79) 0.74 
  Moderate (0.31,0.79,1.08,1.32)  
  Deep (1.08,1.32,2.40,2.64)  
 Flow velocity (m/s) Low (0.00,0.00,0.45,1.34) 0.85 
  High (0.45,1.34,1.78,2.23)  
 Substrate index (-) Low (0.00,0.00,1.73,5.18) 0.30 
  High (1.73,5.18,6.90,8.63)  
Large brown trout Depth (m) Low (0.00,0.00,0.89,2.31) 0.93 
  Medium (0.89,2.31,3.20,3.91)  
  High (3.20,3.91,7.11,7.82)  
 Flow velocity (m/s) Low (0.00,0.00,0.62,1.85) 0.91 
  High (0.62,1.85,2.46,3.08)  
Large rainbow trout Depth (m) Low (0.00,0.00,1.73,5.18) 0.86 
  High (1.73,5.18,6.91,8.63)  
 Flow velocity (m/s) Low (0.00,0.00,0.62,1.85) 0.91 
  High (0.62,1.85,2.46,3.08)  

9.3 Results 

9.3.1 Caddis fly 
Based on the original dataset, 21 new sets with different prevalences were created and rule 
base training on these sets, based on the aAD with varying , resulted in different final rule 
bases at a specific training set prevalence (Fig. 9.1). Although general agreement among these 
rule bases was observed, some rule bases showed slight differences at different prevalence 
values. This result could be explained by the presence of ‘core rules’ and ‘ghost rules’ in the 
trained rule base. Specifically, the fuzzy rules in a trained rule base represented each possible 
combination of input variable sets, but some rules may describe a combination of input 
variable sets which was absent in the studied stretch. These rules are referred to as ghost rules, 
whereas core rules describe a environmental condition which is present in the studied stretch. 
In contrast to the core rule consequents, the ghost rule consequents could not be trained based 
on the available data and could thus randomly take any linguistic value of the output variable. 
However, these ghost rules did not affect the model predictions because they did not represent 
the studied stretch. Consequently, rule base training in this paper sometimes resulted in rule 
bases with different ghost rule consequents, but equal core rule consequents and thus equal 
model predictions. The trained rule bases in this paper could therefore be joined in 5 clusters 
(Fig. 9.1) based on the consequents of their core rules. 
Most of the values of  which delimited the clusters were increasing monotonously with the 
prevalence, but at higher prevalence values some irregularities occurred (Fig. 9.1). The 
number of ‘present’ consequents in the final rule base was negatively correlated with the 
value of the  parameter at each prevalence (Fig. 9.1). Consequently, at a fixed training 
prevalence,  represents the likelihood that a rule base is obtained which underestimates the 
observations: the lower , the higher the likelihood that an overestimating rule base is found. 
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The fourth cluster (starting from the top left corner in Fig. 9.1) contains the first rule base 
which overestimates the observations. The upper boundary of this cluster (the solid black line 
in Fig. 9.1) represents the maximum values of  at which an overestimating rule base is 
obtained. If at a specific prevalence,  is lower than or equal to the corresponding value of  
on this line, the final rule base will overestimate the observations. The solid black line (Fig. 
9.1) represents the transition from an underestimating rule base to an overestimating one. 
Consequently, the rule base which approximates the observations most accurately, could be 
found at values of  ranging between the solid black line and the upper boundary of the first 
rule base cluster above this line. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prevalence

A
lfa

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
Fig. 9.1. The 5 different rule base clusters obtained from rule base training based on aAD with 
varying , averaged over the ten training folds at each prevalence of Aoteapsyche spp. 
Training was performed based on 21 training sets with a prevalence ranging between 0 and 1 
in steps of 0.05, which were derived from the original dataset. Areas with the same shade 
represent the same rule base cluster, while the brightness of an area reflects the number of 
‘absent’ consequents in the rule base. The light area (left top) contains the rule base with no 
‘present’ consequents, whereas the darkest area (right down) represents the rule base with no 
‘absent’ consequents. The left boundary of each area connects the maximum values of  at 
which the rule base of this area was obtained. The black line indicates the maximum values of 

 at which the first rule base was obtained that overestimated the observations. 
The results were identical across the different folds, but not all 5 rule base clusters were 
obtained at each prevalence value. Consequently, plotting the cumulative predicted presence 
of the original dataset (with prevalence 0.71), revealed only two possible solutions, which is 
illustrated for the flow velocity in Fig. 9.2. The effect of the  parameter on the training 
results therefore becomes more clear by plotting the cumulative predicted presences at a lower 
prevalence value (Fig. 9.3). The cumulative plots provide an indication of the ecological 
relevance of the optimised rule bases and show the similarity between the different rule bases. 
Since the rule bases obtained with  = 0.25 and  = 0.20 respectively underestimate or 
overestimate the caddis fly presence substantially, the most accurate rule base may be found 
at values of  between 0.25 and 0.20 (Fig. 9.3). 
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Fig. 9.2. Cumulative plots of the observations and of the rule base predictions of Aoteapsyche 
spp. obtained after training based on aAD with values of  varying between 0 and 1 in steps of 
0.05. Predictions were averaged over the ten folds and cumulated according to their 
corresponding flow velocity values. Training was performed on the original dataset with a 
prevalence of 0.71. Values of  resulting in the same core rule base, are indicated by the same 
line type. The lines show the predictions based on the rule bases obtained after training with  
varying between 0 and 0.60 (bold grey line) and between 0.65 and 1 (thin black line). 
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Fig. 9.3. Cumulative plots of the observations and of the rule base predictions of Aoteapsyche 
spp. obtained after training based on aAD with  varying between 0 and 1 in steps of 0.05. 
Predictions were averaged over the ten folds and cumulated according to their corresponding 
depth (a), flow velocity (b) or substrate index (c) values. Training was performed on a 
modified version of the original dataset with a prevalence of 0.20. Values of  resulting in the 
same core rule base, are indicated by the same line type. 
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Fig. 9.4. The cumulative predictions of Aoteapsyche spp. for the variables flow velocity (a), 
depth (b) and substrate index (c) obtained after training based on the percentage of correctly 
classified instances (CCI), Kappa, the average deviation (AD), the true skill statistic (TSS), 
and the adjusted average deviation (aAD) with  = 0.65. Training was performed on the 
original dataset. 
 
Comparison of the training based on aAD with training based on four other performance 
criteria revealed that at the original prevalence, all criteria but Kappa produced rule bases of 
which all consequents were ‘present’ (Fig. 9.4). Training based on Kappa underestimated the 
observations, especially in the 0.2 – 0.5 m depth range and the 0.1 – 0.7 m/s flow velocity 
range. Although false classifications appeared to occur over the whole substrate index range, 
similar results were found as those of the other input variables (Fig. 9.4). Comparison of the 
five performance criteria at a lower prevalence (0.20) of the training set, indicated that the 
aAD was the only criterion resulting in overestimating rule bases, whereas AD and TSS led to 
identical results at this lower prevalence (Fig. 9.5). Moreover, this similarity between AD and 
TSS is in line with the results obtained at a higher prevalence of the training set (Fig. 9.4). To 
calculate the aAD at both prevalences, the maximal value of  was chosen which resulted in 
the first rule base that overestimated the observations. Consequently, this maximal value of  
was 0.65 at a prevalence of 0.71 and 0.2 at a prevalence of 0.2, which could also be observed 
in Fig. 9.1. 
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Fig. 9.5. The cumulative predictions of Aoteapsyche spp. for the variables flow velocity (a), 
depth (b) and substrate index (c) obtained after training based on the percentage of correctly 
classified instances (CCI), Kappa, the average deviation (AD), the true skill statistic (TSS), 
and the adjusted average deviation (aAD) with  = 0.20. Training was performed on a 
modified version of the original dataset with prevalence 0.20 

9.3.2 Large brown trout and large rainbow trout 
For large brown trout and rainbow trout, the number of model parameters was lower and the 
results were more consistent than for caddis fly. Consequently, fewer rule bases were obtained 
after training and no clustering was needed (Fig. 9.6). For both species, 6 different rule bases 
were found, although for large rainbow trout, some rule bases were only obtained within some 
limited  ranges. For large rainbow trout, all values of  which delimited the rule bases were 
increasing monotonously with the prevalence, whereas for brown trout some oscillations 
occurred (Fig. 9.6) at higher prevalence values. The number of ‘present’ consequents in the 
final rule base was negatively correlated with the value of the  parameter at each prevalence 
of both species (Fig. 9.6). For large brown trout, the second rule base (starting from the top 
left corner in Fig. 9.6a) first overestimated the observations, whereas for rainbow trout, three 
different rule bases first overestimated the observations, depending on the value of  (Fig. 
9.6b). 
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Fig. 9.6. The 6 different rule bases obtained from rule base training based on aAD with 
varying , averaged over the ten training folds at each prevalence of large brown trout (a) and 
large rainbow trout (b). Training was performed based on 21 training sets with a prevalence 
ranging between 0 and 1 in steps of 0.05, which were derived from the original dataset. Areas 
with the same shade represent the same core rule base, while the brightness of an area reflects 
the number of ‘absent’ consequents in the rule base. The light area (left top) contains the rule 
base with no ‘present’ consequents, whereas the darkest area (right down) represents the rule 
base with no ‘absent’ consequents. The left boundary of each area connects the maximum 
values of  at which the rule base of this area was obtained. The black line indicates the 
maximum values of  at which the first rule base was obtained that overestimated the 
observations. 
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Fig. 9.7. Cumulative plots of the observations and of the rule base predictions of large brown 
trout obtained after training based on aAD with values of  varying between 0 and 1 in steps 
of 0.05. Predictions were averaged over the ten folds and cumulated according to their 
corresponding depth (a) or flow velocity (b) values. Training was performed on the original 
dataset with a prevalence of 0.03. Values of  resulting in the same core rule base, are 
indicated by the same line type. 
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Fig. 9.8. Cumulative plots of the observations and of the rule base predictions of large 
rainbow trout obtained after training based on aAD with values of  varying between 0 and 1 
in steps of 0.05. Predictions were averaged over the ten folds and cumulated according to their 
corresponding depth (a) or flow velocity (b) values. Training was performed on the original 
dataset with a prevalence of 0.11. Values of  resulting in the same core rule base, are 
indicated by the same line type. 
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Fig. 9.9. The cumulative predictions of large brown trout for the variables depth (a) and flow 
velocity (b) obtained after training based on the percentage of correctly classified instances 
(CCI), Kappa, the average deviation (AD), the true skill statistic (TSS), and the adjusted 
average deviation (aAD) with  = 0.05. Training was performed on the original dataset.
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Fig. 9.10. The cumulative predictions of large rainbow trout for the variables depth (a) and 
flow velocity (b) obtained after training based on the percentage of correctly classified 
instances (CCI), Kappa, the average deviation (AD), the true skill statistic (TSS), and the 
adjusted average deviation (aAD) with  = 0.15. Training was performed on the original 
dataset. 
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The plots of the cumulative predictions of large brown trout indicated that the most accurate 
rule base might be found at values of  between 0.05 and 0.10 (Fig. 9.7), and between 0.15 
and 0.20 for large rainbow trout (Fig. 9.8). For both species, model training based on the AD 
and CCI led to identical underestimating rule bases, while training based on TSS, aAD or 
Kappa resulted in rule bases that overestimated the observations (Figs. 9.9 and 9.10). For 
large brown trout, the same core rule bases are obtained after training based on TSS and on 
aAD (Fig. 9.9), whereas for rainbow trout, the rule base obtained after training based on TSS 
was overestimating the observations more than the one obtained after aAD training (Fig. 
9.10). In contrast to the caddis fly results, training based on Kappa led to the most accurate 
rule bases for both species (Figs. 9.9 and 9.10). 

9.3.3 Comparison of different values of  
The first values of  at which an overestimating rule base was obtained after model training 
were represented by a solid black line in Fig. 9.6. To analyse whether an universal relation 
between the value of  and the prevalence exists, Fig. 9.11 compares these values with values 
from a previous study on European grayling (Thymallus thymallus L.) in the Aare River in 
Switzerland. The three fish species show similar curves, whereas the value of  of caddis fly 
are significantly lower than those of the fish species.  
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Fig. 9.11. The values of  at which the first rule base which overestimated the observations 
was obtained after model training for caddis fly, large brown trout, large rainbow trout and 
grayling. The results of grayling were derived from a previous study. All values were 
obtained by model training on the original datasets. 
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9.4 Discussion 
The dependency between  and the training set prevalence also illustrates the effect of the 
training criterion on the final model. These results are in line with Chapters 6 to 8, which 
indicate that different training performance criteria could lead to different final models. An 
optimal parameter value or training performance criterion could be found by applying 
sensitivity analysis, but a more important problem with these flexible performance criteria 
could be the difficulty to say which models are better (Glas et al., 2003; Vaughan and 
Ormerod, 2005). The results in this chapter showed that comparison of the shapes of the 
cumulative prediction curves may provide an indication of the ecological relevance of the 
different optimised models.  
The adjusted average deviation allows modellers to implement the balance between omission 
and commission errors in their models, while the  parameter indicates the extent to which a 
model is trained to overestimate or underestimate the observations. However, the caddis fly 
results show that the  parameter may be unable to prevent a trained model from 
overestimating the observations at high prevalence values of the training set. Therefore, 
further research should indicate if values of  higher than one may lead to underestimating 
models and thus improve the flexibility of the aAD training. Specifically, it could be shown 
theoretically that values of  higher than one stimulate underprediction. Another aspect that 
may affect model results is the  step size which is applied in the sensitivity analysis. The 
presented results show that there may be a substantial difference between two consecutive 
rule bases, especially between the last underestimating rule base and the first overestimating 
rule base. Previous research showed that applying smaller  step sizes may decrease this gap. 
However, this approach may only be appropriate if the number of model parameters allows 
sufficient fine tuning of model results. In this study, the number of model parameters was 
relatively low, which may have restricted the accuracy of the final model.  
For all studied species, the results suggest that the optimal value of  for model training 
depends on the prevalence of the training set. However, this relation might depend on the 
prevalence of the original dataset from which the different training sets are derived. 
Specifically, this prevalence may reflect the ‘true’ model which is embedded in the original 
dataset. The prevalence of the caddis fly dataset is much higher than that of the two trout 
datasets, and thus the values of  needed to obtain an overestimating rule base may be lower 
for caddis fly than for trout. Moreover, the prevalence of the original dataset also affects the 
size of the training sets with adjusted prevalences which are derived from the original dataset. 
For the trout species, the training sets with a high prevalence were significantly smaller than 
those with a low prevalence, whereas for caddis fly, the training sets with higher prevalences 
were larger than those with a low prevalence. Previous studies indicated that the sample size 
of the training set may affect the results of the training procedure (Welsh, 1996). 
Consequently, further research should reveal if the size of the training set also affects the 
relation between the optimal  and the prevalence.  
The strong selection of coarse substrata by Aoteapsyche concurs with earlier studies (Jowett 
and Richardson, 1990; Jowett et al., 1991) and is observed for many other benthic invertebrate 
species (Minshall, 1984). Although many invertebrates have an upper velocity tolerance limit, 
above which velocity exceeds the swimming or holding ability of the organism or mobilises 
the substrate on which the organism lives, individuals may be able to tolerate high mean water 
column velocities if friction and coarse substrata provide lower-velocity conditions near the 
bed. Despite the overestimation of the observations, the predictions of the models obtained 
after training based on aAD are similar to the observations of Aoteapsyche at the prevalence 
of the original dataset. Specifically, these models indicate that caddis fly approximately 
prefers depths between 0.2 and 0.5 m, flow velocities between 0.3 and 1.1 m.s-1 and a 
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substrate index between 5 and 6. These results are in line with previous results from a model 
study on the same datasets by Jowett and Davey (2007), who applied generalised additive 
models to predict the occurrence of the same species as those in this study. The model results 
obtained from training based on aAD and Kappa at lower prevalences (Fig. 9.5) show similar 
trends as those at the original prevalence (Fig. 9.4). However, training based on the other 
three criteria led to ecologically less relevant models at lower prevalences. For instance, 
training based on AD and TSS resulted in a model which predicted Aoteapsyche to occur only 
at depths higher than 1.2 m and at flow velocities higher than 1 m.s-1 (Fig. 9.5). Consequently, 
even though different training performance criteria may result in similar model predictions 
within the same prevalence ranges, they may lead to diverging model predictions at 
prevalence values outside these ranges (Fig. 9.5). Jowett and Davey (2007) also suggested 
that the relation between depth and Aoteapsyche occurrence may vary among different rivers, 
but this effect was not considered in this chapter since the number of samples available for 
each river was limited. Further research could reveal if this river effect is significant by 
applying the presented approach to larger datasets of different rivers.  
For large brown trout, the CCI and AD model predicted brown trout to be absent in the 
studied stretch, whereas the Kappa, TSS and aAD model significantly overestimated the 
observations. However, Kappa predicted large brown trout to occur in a narrower depth 
range, whereas the TSS and aAD models predicted brown trout occurrence in a wider depth 
range than the observed range (Fig. 9.9). More similar results were obtained for flow velocity, 
where the Kappa, TSS and aAD models all predict brown trout to occur in the observed range, 
with the TSS and aAD models overestimating the observations more than the Kappa model. 
Jowett and Davey (2007) argue that the 29 large brown trout observed in the Clutha River 
were too few to produce a robust habitat suitability model but were probably sufficient to 
allow a qualitative comparison with existing habitat suitability curves. Although no habitat 
suitability criteria have been developed for brown trout in other large (> 100 m /s) New 
Zealand rivers, the results of this study reflected the range of preferred velocities (0.35 – 0.6 
m.s-1) reported in smaller New Zealand rivers (Hayes and Jowett, 1994). The preference for 
water deeper than 1.5 m was consistent with the habitat preferences reported by Hayes and 
Jowett (1994), who considered any depths greater than 0.5 m to be ideal brown trout habitat. 
Similar to the large brown trout results, model training based on CCI and AD led to identical 
rule bases that predict large rainbow trout to be absent in the studied river. However, in 
contrast to brown trout, different results were obtained after training based on TSS and aAD. 
Both Kappa and aAD predicted rainbow trout to occur in a narrower flow velocity range than 
the observed range, while Kappa also predicted the preferred depth range to be narrower than 
the observed range. However, all three models reflected the preferred water velocity of large 
rainbow trout in the Clutha river (0.7 – 1.3 m.s-1). This range was considerably higher than 
that reported in North American studies (Bovee, 1978; Leclerc, 1983; Baltz and Moyle, 1984; 
Raleigh et al., 1984; Suchanek et al., 1984; Hill and Hauser, 1985; Moyle and Baltz, 1985; 
Cochnauer and Elms-Cockrum, 1986; Lambert and Hanson, 1989; Thomas and Bovee, 1993; 
Pert and Erman, 1994). Most of these studies indicated optimal suitability at low velocities (< 
0.4 m.s-1), probably because the rivers (flows < 5 m .s-1) and fish (typically 15 – 30 cm) were 
relatively small. Higher preferred velocities were reported in studies of adult rainbow trout in 
larger rivers such as the South Platte River, in which fish preferred flow velocities of 0.5 – 0.6 
m.s-1 when actively drift feeding through a wide range of depths and velocities at flows of 7 – 
17 m .s-1 (Thomas and Bovee, 1993). Similarly, adult rainbow trout in the Tongariro River 
(flow = 30 m .s-1) preferred velocities of 0.5 – 0.7 m.s-1 (Jowett et al., 1996). In large rivers in 
Quebec, preferred velocities for rainbow trout ranged between 0.5 and 0.9 m.s-1 (Leclerc, 
1983). The minimum preferred velocity in these three studies (0.5 m.s-1) concurs with the 
observations in the Clutha river and with the results of the TSS, aAD and Kappa models. The 
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maximum preferred velocity is more variable, however, and the upper limit in the Clutha river 
was the highest reported to date, as were the preferred depths for large rainbow trout in the 
Clutha river (Jowett and Davey, 2007). Preferences for depth in the aforementioned studies 
were more variable than for flow velocity, but generally were greater than 1 m (Leclerc, 1983; 
Thomas and Bovee, 1993; Jowett et al., 1996), which was also reflected in the results of the 
TSS, Kappa and aAD models.  
Given the trout habitat preferences reported in this study, the previous section showed that 
similar criteria can be found in other rivers for trout of similar size and activity. In addition, 
the size and gradient of the river may also influence the habitat preferences by influencing the 
available habitat types. Specifically, if higher velocities and the associated energetic 
advantages were available, trout in low-velocity rivers may prefer these conditions (Jowett 
and Davey, 2007). Habitat preferences should thus be determined from observations of habitat 
use in a variety of habitats and rivers to guarantee the applicability of these preferences to a 
broad range of conditions. Jowett and Davey (2007) provide an example of Salmonids, which 
display three main feeding behaviours in rivers: cruise feeding, benthic browsing and drift 
feeding. They argue that piscivory and habitat requirements for these behaviours differ, which 
is illustrated by the predominant drift feeding in high- to moderate-gradient river reaches, 
whereas benthic browsing and cruise feeding occur in low-gradient, slow reaches. 
Consequently, one would ideally develop and use drift feeding, benthic browsing and resting 
habitat preferences. However, Jowett and Davey (2007) highlight that focus usually is on the 
habitat use known to have the highest flow requirements. They agree that in trout rivers, this 
will be adult drift-feeding habitat in combination with benthic invertebrate (food-producing) 
habitat (Jowett and Davey, 2007).  
The presented results suggest that Kappa may be an appropriate performance criterion for 
robust model training, as was already assumed in Chapter 5. Model training based on Kappa 
leads to results which are relatively accurate, whereas the results of model training based on 
TSS may be more variable. Due to their strong dependency on the training set prevalence, the 
results in this chapter suggests that AD and CCI may be less appropriate for model training. 
Despite its user-friendliness, Kappa does not allow the model developers to focus on certain 
aspects of model performance and thus provides less control on the model training process 
than an adjustable performance criterion such as the aAD. This chapter may thus contribute to 
the transparency of the model training process and to an increasing awareness of the strengths 
and weaknesses of the final model. Not only could this improve the reliability of ecological 
models in general, but also enhance the application of these models in ecosystem 
management. 
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10.1 General conclusions 
This section gives an overview of the main conclusions of the research concerning expert 
knowledge-based versus data-driven fuzzy models, the performance criteria applied to train 
and evaluate models, and the strengths and weaknesses of prevalence-adjusted model 
performance assessment.  

10.1.1 Expert knowledge-based versus data-driven fuzzy models 
Over the past decades, aquatic habitat suitability models have increasingly received attention 
due to their wide management applications in the context of biogeography, conservation 
biology and climate change studies. Ecological expert knowledge has been applied frequently 
in such models to link environmental conditions to the habitat suitability of aquatic species. 
Since the formalisation of problem-relevant human expert knowledge is often difficult and 
tedious, data-driven machine learning techniques may be helpful to derive expert knowledge 
from ecological datasets.  
In Chapter 5, both fuzzy expert knowledge-based and data-driven habitat suitability models 
were developed and the performance of these models was compared. The results suggested 
that data-driven models may perform better than the expert knowledge-based models. This 
lack of consistency of ecological expert knowledge may hamper the application of expert 
models. Therefore, data-driven model development may complement the expert knowledge 
approach which is often used in habitat suitability modelling of aquatic species.  
A habitat suitability modelling study of spawning European grayling in the Aare river 
(Switzerland) in Chapter 7 confirms these findings. The results showed a substantial gap 
between the data-driven and the expert knowledge-based predictions, while the first 
predictions approximated the observations more accurately. Moreover, the spawning habitats 
of grayling in the Aare river appeared to be deeper than those reported in previous studies. 
Possible explanations for the contrasting depth preferences may be differences in topology of 
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the sampled rivers or ecological factors such as competition or predation. Specifically, the 
shallower spawning areas in the Aare rivers are being disturbed regularly by swans, which 
may have caused a shift in depth preferences. Chapter 7 thus provides an example in which 
ecological expert knowledge should be complemented by observed data to develop reliable 
ecological models.  
The presented method was applied on a mayfly species in a specific river basin, but could be 
easily applied to any species, river system and at different spatial and temporal scales. The 
flexibility of the model allows modellers to select habitat variables and to define their 
classification in terms of fuzzy sets specific to the study site, the research objectives or the 
data availability. The approach in this dissertation allows for a quantitative description of 
expert knowledge, and thus enables comparison of the data-driven habitat suitability 
predictions with available expert knowledge. Consequently model users could choose the 
most appropriate model based on the quality of the available data and expert knowledge. 
Data-driven rules may be more reliable if a substantial number of high quality samples is 
available, whereas expert knowledge based rules may reliably predict habitat suitability in 
study areas which are underrepresented in the available dataset. To enable visualisation of the 
predicted habitat suitability, the final fuzzy rules could be implemented in tools such as the 
MesoCASiMiR module of the CASiMiR modelling system (Mouton et al., 2006; Mouton et 
al., 2007). As such, the presented method may provide a valuable tool for river managers and 
stakeholders to select different restoration options and to implement their management 
strategies. 

10.1.2 Performance criteria 
Although Chapter 5 showed that data-driven model development may complement the expert 
knowledge approach in species distribution modelling of aquatic species, these data-driven 
models should be developed with great care. Specifically, this dissertation emphasized the 
crucial role of the assessment of model performance during model training and the evaluation 
of the final model. Although numerous studies on species distribution modelling focus on the 
role of performance criteria for evaluation of the final model, few authors have addressed the 
effect of these criteria on model training. Moreover, a systematic overview was lacking 
because most analyses of performance criteria have been empirical and only focused on 
specific aspects of these criteria. Chapter 6 provides such an overview which showed that 
different performance criteria evaluate a model (or its resulting confusion matrix) differently, 
which may be explained by the dependency of these criteria on the prevalence of the 
validation set. Specifically, if models derived from different datasets are being compared, the 
prevalence of these datasets may affect the value of the performance measures and 
consequently manipulate the results of the comparison. Similar problems may arise when the 
performances of a model on a training set and a validation set with different prevalences are 
compared. Chapter 6 showed theoretically that these effects only occur if the data are 
inseparable by an n-dimensional hyperplane, with n the number of input variables. Given this 
inseparability, different performance criteria focus on different aspects of model performance 
during model training, such as sensitivity, specificity or predictive accuracy. These findings 
have important consequences for ecological modelling because ecological data are mostly 
inseparable due to data noise and the complexity of the studied system. Consequently, it 
should be very clear which aspect of the model performance is evaluated, and models should 
be evaluated consistently, that is, independent of, or taking into account, species prevalence.  
Chapter 6 also highlighted the relative importance which the performance criteria give to 
omission and commission errors as a possible explanation for the differing evaluation scores 
among performance criteria for the same model. Theoretical analysis revealed that 
performance criteria may value a perfect model equally, but yet focus on very different 
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aspects of model performance. To guarantee reliable quantification of the model performance, 
it is suggested that prevalence-independent measures should be preferred, and that at least 
some of these measures should allow modellers to distinguish between omission and 
commission errors for both model training and evaluation. The appropriate performance 
criteria for evaluation of the final model and for model training should be chosen carefully 
corresponding to the ecological objectives of the optimised model. The practical implications 
of this chapter are clear. It provides further insight in the evaluation of ecological 
presence/absence models and attempts to assist modellers in their choice of suitable 
performance criteria.  
The results of the theoretical analysis were confirmed in a first experimental analysis in 
Chapter 7. A heuristic nearest ascent hill-climbing algorithm for rule base optimisation was 
applied to construct a fuzzy rule-based habitat suitability model for spawning European 
grayling (Thymallus thymallus L.) in the Aare river (Bern, Switzerland). Optimisation of the 
fuzzy rule-based model was based on two different training criteria, the weighted Correctly 
Classified Instances (CCIw) and Cohen’s Kappa. The ecological relevance of the results was 
assessed by comparing the optimised rule bases with a rule base derived from ecological 
expert knowledge. The results showed that model training based on CCIw and based on Kappa 
lead to different final models and thus confirmed the theoretical analysis described in Chapter 
6. Specifically, in Chapter 6 it could be shown that these different final models could be 
attributed to the inseparability of the data. If the data would have been separable, all 
optimisation criteria would have led to the same results. Optimisation based on Kappa 
appeared to generate acceptable results and was easier to use than optimisation based on CCIw 
because the latter required fine tuning of a weight parameter which accounted for the species 
prevalence. However, this parameter provided more transparency in the model training 
process by quantifying the degree to which overprediction had to be stimulated to result in 
accurate models. Specifically, this approach allowed modellers to adjust the model training 
process to the model objectives and to gain insight into this process due to the quantification 
of the adjustment.  

10.1.3 Prevalence-adjusted model performance quantification 
Although the CCIw applied in Chapter 7 provided a first step towards prevalence-adjusted 
model performance quantification, this performance criterion cannot deal with the fuzzy 
output of a fuzzy classifier because it is based on the confusion matrix. Such performance 
criteria, for instance, are not sensitive to the position of the fuzzy sets where the wrong 
classification occurs, and valuable information may thus be lost by transferring this fuzzy 
output to the crisp output which is needed to generate the confusion matrix. Therefore, in 
Chapter 8 the adjusted average deviation (aAD) is introduced. This performance measure 
includes a parameter  which ranges between 0 and 1 and allows stimulation of 
overprediction or underprediction, depending on the prevalence of the training data set. 
To analyse the strengths and weaknesses of this approach, it was applied on model training 
and the results were compared to those obtained after model training based on some of the 
most frequently applied performance criteria: Kappa, CCI, average deviation (AD) and true 
skill statistic (TSS). The results suggest that the CCI, AD and TSS criteria may be less 
appropriate for model training at extreme prevalence values. However, TSS and Kappa 
showed to be valuable criteria for the evaluation of the performance of the final model. Both 
accuracy-based measures, CCI and the AD, appeared to be less suitable for model evaluation 
because their values were correlated with the value of . In Chapter 8 the results of Chapter 7 
are confirmed by showing that the performance criteria which are applied for model training 
may significantly affect the results of the training process.  
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Finally, in Chapter 9 the relation was analysed between the parameter  and the training set 
prevalence for three other species in different New Zealand river systems: a caddis fly, large 
brown trout and rainbow trout. Like in Chapter 8, the aAD was implemented in a hill-
climbing algorithm to optimise a fuzzy species distribution model for each species. For all 
studied species, the results proved that the optimal  value for model training depends on the 
prevalence of the training set. The results in Chapter 9 also confirmed that AD and CCI may 
be less appropriate for model training due to their strong dependency on the training set 
prevalence. Moreover, these results agreed that Kappa may be an appropriate performance 
criterion for robust model training. Model training based on Kappa led to results which were 
relatively accurate, whereas the results of model training based on TSS were more variable. 
Despite its user-friendliness, however, Kappa does not allow the model developers to focus 
on certain aspects of model performance and thus provides less control on the model training 
process than an adjustable performance criterion such as the aAD. Finally, Chapter 9 suggests 
that model training based on accuracy-based performance criteria may produce unrealistic 
models at extreme prevalences of the training dataset, whereas the aAD allows identification 
of more accurate and well-founded models. Moreover, comparison of the relation between the 

 parameter and the prevalence of the training data set for different species revealed this 
relation might be consistent for similar data sets and may depend on data or model 
characteristics.  
An optimal parameter value or training performance criterion could be found by applying 
sensitivity analysis, but a more important problem with these flexible performance criteria 
could be the difficulty to say which models are better. Although applying a training parameter 
which minimises the difference between over- and underprediction may be a suitable rule of 
thumb, there is no straightforward answer to this question, because the quality of a model 
depends on its purpose and the context in which the model will be applied. Conservationists 
should thus distinguish between models which reliably or less reliably predict species 
distribution. Given inseparable ecological data, each performance criterion will focus on 
different aspects of model performance, and these aspects are reflected in the final model 
which is obtained after training based on this performance criterion. Moreover, in Chapter 6 it 
was shown theoretically that the aspects on which these criteria focus may vary with the 
prevalence of the training dataset. Consequently, conservationists and model developers 
should be aware of the different focus of the training performance criteria, and thus of the 
final model.  
This dissertation may thus contribute to the transparency of the model training process and to 
an increasing awareness of the strengths and weaknesses of the final model. Specifically, the 
adjustable parameter in this criterion enables modellers to situate the optimised models in the 
heuristic search space and thus provides an indication of the ecological model relevance. 
Consequently, it may support modellers and river managers in the decision making process by 
improving model reliability. The habitat suitability models optimised in this dissertation are 
able to predict the effect of different impacts on the river system and to select the optimal 
restoration option. These models could thus be a valuable decision support tool for river 
managers and ease the discussion between stakeholders. As such, they may be a small step on 
the road towards more reliable species distribution models. Due to the universality and the 
flexibility of the approach, it could be applied to any other ecosystem or species, and may 
therefore be valuable to ecological modelling and ecosystem management in general. 

10.2 Indications for further research 
Fuzzy species distribution modelling  
The input variables of the habitat suitability models in this dissertation were defined by fuzzy 
sets. This approach allowed the implementation of the ecological gradient theory into the 
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models. Specifically, the transition between two consecutive variable classes was gradual and 
reflected the transition between different environmental conditions. This approach has 
particular advantages if the model is applied in new situations as was described in this 
dissertation. Although the membership functions of these fuzzy sets are often defined based 
on expert judgement, this dissertation described a fuzzy set optimisation procedure to ensure a 
uniform distribution of the input variables values over the fuzzy sets. However, these 
membership functions may influence the final model predictions. Therefore, further research 
could reveal the degree to which the model predictions are sensitive to the membership 
functions and thus enhance model robustness. Moreover, field validation or the creation of 
artificial species with data noise addition could indicate which fuzzy set approach leads to the 
most reliable habitat suitability model. 
 
Role of expert knowledge in species distribution modelling  
Although the implementation of expert knowledge in habitat suitability models may be useful, 
this dissertation showed that ecological data may significantly improve the reliability of the 
models. As mentioned in Chapter 2, these findings may be explained by the characteristics of 
the variables which affect habitat suitability. Depending on the situation, these variables may 
be an indirect or a direct gradient and thus the species response to these variables may change. 
Moreover, recent studies in aquatic habitat suitability modelling focus on the appropriate 
spatial and temporal scale level at which a model should be developed. Further research may 
also reveal whether ecological expert knowledge is consistent across these various scale 
levels. Although expert knowledge has often been referred to as static, the results in this 
dissertation demonstrate the dynamical character of expert knowledge. Therefore, this 
knowledge should be treated flexibly and should be adjusted for different species life stages, 
seasons, sampling sites, ... As such, temporal, population dynamical and spatial aspects may 
be incorporated in species distribution models and thus lead to more reliable models. A 
possible limitation of this approach is the reduction in model transparency due to the increase 
in model elements such as different modules for different seasons for example. However, the 
methods presented in this dissertation provide an appropriate framework for elaboration of 
knowledge which can easily be exchanged between experts. First, an initial rule base could be 
created based on the available data and on the fuzzy methodology in this dissertation. This 
rule base can then be inspected, used and modified by human experts applying expert 
knowledge or new insights to cover a wider range of environmental conditions.  
 
Performance criteria in species distribution modelling  
The forelaying dissertation is only a small step in the search towards prevalence-adjusted 
performance quantification and suitable performance criteria. Depending on the modelling 
purpose, new performance criteria could be created or appropriate performance criteria could 
be selected. The presented performance measure selection for model training based on the 
cumulative predicted presence of this model might also be applied to training of other data-
driven models such as artificial neural networks, decision trees and generalised linear models. 
This could reveal whether similar relations between performance criterion values and training 
set prevalence are found for both fuzzy and other modelling techniques. Moreover, different 
performance measures should be compared to evaluate model performance after training. In 
line with the performance measure selection for model training, the optimal performance 
measure for model evaluation should be chosen depending on the classification problem and 
on the model purpose. The results in this dissertation also reinforce the view that 
categorisation of performance criterion values into classes from fair to almost perfect is 
arbitrary. Hence, the value of such criteria should be interpreted by comparison with other 
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criteria values derived from models classifying the same data set or data sets with similar 
characteristics. 
 
Relation between performance criteria and data characteristics In this dissertation, it was 
demonstrated that prevalence-adjusted performance quantification may be an appropriate 
technique to develop reliable habitat suitability models. However, fine tuning of the parameter 
in the prevalence-adjusted performance criterion is needed. Although this adjustment could be 
performed easily by sensitivity analysis, the results of this dissertation suggest that there may 
be a general relation between the value of the  parameter in the aAD and the prevalence of 
the training data set. However, further research should indicate whether this relation also 
holds for other species in other ecosystems. Moreover, the relation between the parameter and 
other data or model characteristics should be analysed to gain insight into the model 
development process. Finally, future research should reveal which performance measure is the 
most appropriate for model training, depending on the classification problem and on the 
model purpose.  
 
Variable selection in fuzzy species distribution modelling  
The approach in this dissertation allows selection of an appropriate performance criterion for 
model training and this criterion reliably quantifies the performance of the fuzzy species 
distribution model. Based on this performance, the importance of the different input variables 
in the model could be calculated with the procedure described in Chapter 4. Although this 
procedure was designed to generate a consistent ranking of the input variables, several factors 
may influence the variable selection results, such as the membership functions of the fuzzy 
sets, data characteristics or the modelling technique. Further research could indicate whether 
these factors affect the variable selection significantly and lead to further fine-tuning of the 
procedure.  

10.3 Main contributions of this dissertation 
The aim of this dissertation was to develop reliable species distribution models for aquatic 
species. Fuzzy modelling has proved to be an appropriate technique for incorporation of 
ecological aspects into these models. Therefore, several procedures were developed to 
improve the applicability of fuzzy models on species distribution modelling. As such, this 
dissertation contributed to both the species distribution modelling and the fuzzy modelling 
domain. These contributions are the following:  
 

 the strengths and weaknesses of expert knowledge in species distribution modelling 
were illustrated and compared with those of a data-driven approach;  

 
 a computational method to select variables in a fuzzy species distribution model was 

developed and applied;  
 
 a fuzzy set optimisation method was developed and applied to improve the uniformity 

of the distribution of the input variable values over the fuzzy sets; 
 
 a data-driven rule base optimisation procedure was introduced and applied for species 

distribution modelling on two benthic invertebrate and three fish species; 
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 an overview was provided of the different assets and pitfalls of the most frequently 
applied performance criteria in species distribution modelling. This overview was 
illustrated with both theoretical and empirical analyses; 

 
 a new performance criterion was presented taking into account the fuzzy 

characteristics of the models and the difference between omission and commission 
errors. 
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Chapter 6 provided a theoretical analysis of the effect of the training set prevalence on the 
final model for model training based on the most frequently applied performance criteria. In 
this appendix, this analysis is also performed for the average deviation AD and the adjusted 
average deviation aAD.  
The change in AD and aAD, respectively AD and aAD, resulting from a change a as 
described in the confusion matrix in Table 6.6, can be calculated based on the AD and aAD 
which are transformed to confusion matrix-based performance measures as described in 
Chapter 4. Since in this situation, AD is the inverse of CCI, the change in AD, AD, resulting 
from a change a, can be calculated as 
 

 
If AD is smaller than zero, the adjustment of the model parameters will result in a better 
model and the optimisation algorithm will continue with this adjusted model. Consequently, 
the relation between AD and prevalence is exactly the same as the relation between CCI 
and prevalence.  
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AD
 

N
ad

N
bc

N
dbac

ADAD

)(

)()(

*

 (A.1)



Appendix A. Analysis of AD and aAD 

142 

The change in aAD, aAD, resulting from a change a, can be calculated as 

 
If aAD is smaller than zero, the adjustment of the model parameters will result in a better 
model and the optimisation algorithm will continue with this adjusted model. In this situation, 

 
At high prevalences (P 1), the likelihood that a exceeds d is relatively high, and thus the 
upper limit of  will be equal to or greater than one. If the prevalence is decreasing towards 
zero, the change that a exceeds d is also decreasing, which results in a decreasing upper 
limit of . Specifically, the lower the prevalence, the lower  has to be to ensure that a change 

a will lead to a better model.  
Table A.1 shows the values of 9 different performance criteria for the 4 scenarios: the 
percentage of correctly classified instances (CCI; Fielding and Bell, 1997 ), Cohen�’s Kappa 
(Cohen, 1960 ), the true skill statistic (TSS; McBride and Ebert, 2000; Saseendran et al., 2002; 
Elmore et al., 2003; Allouche et al., 2006), the NMI, the specificity (Sp), the sensitivity (Sn). 
Based on the theoretical analysis described in this appendix, Table 6.4 could be extended by 
the Average Deviation (AD; Van Broekhoven et al., 2007) and the adapted Average Deviation 
(aAD) as follows: 
 
Table A.1. The values of the 9 different performance criteria for the 4 scenarios, assuming 
that ln(0)=0. To calculate the odds ratio, a continuity correction was performed by adding 0.5 
to each of the cells in the confusion matrix (Forbes, 1995; Vaughan and Ormerod, 2005). 
These assumptions have no effect on the characteristics of the presented criteria.  

Criterion CCI Sn Sp NMI Kappa TSS Odds 
ratio 

AD aAD 

Scenario          
1 1 1 1 0 1 1 25 0 0 
2 0 0 0 0 -1 -1 0 1 1+0.5  
3 0.75 1 0.5 0.23 0.5 0.5 5 0.25 0.25  
4 0.75 0.5 1 0.23 0.5 0.5 5 0.25 0.25 

 
The performance criteria CCI, NMI, Kappa, TSS, odds ratio and AD do not distinguish 
between scenarios 3 and 4, whereas Sn and Sp allow differentiation between these two 
scenarios. However, Sn and Sp do not distinguish between scenario 1, and scenarios 3 and 4, 
respectively. The aAD is the only criterion which distinguishes between all four scenarios, 
given an appropriate value of the  parameter. Because the presented example is based on 
dichotomous presence-absence model scores, no threshold was applied to generate the 
confusion matrices. In this situation, AD equals 1-CCI. Consequently, Table 6.9 could be 
extended as follows: 
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Table A.2. Characteristics of the most frequently applied performance criteria for model 
training and evaluation. NMI = Normalised Mutual Information Statistic; TSS = True Skill 
Statistic; ADdiscr = Average Deviation calculated from dichotomised predictions; AUC = Area 
Under the Curve; CCI = Correctly Classified Instances; Sn = Sensitivity; Sp = Specificity; 
ADcont = Average Deviation calculated from continuous predictions; x = the characteristic 
fully applies to the performance criterion; - = the characteristic does not apply to the 
performance criterion; ? = the characteristic may apply to the performance criterion. 

Performance criterion Kappa NMI Odds 
ratio 

TSS ADdiscr AUC CCI Sn/Sp ADcont 

Characteristic          
o quantifies the extent to 

which models 
correctly predict 
occurrence better than 
chance expectation 

x x x x - x - - x 

o depends on prevalence x ? ? x x ? x x ? 
o takes into account the 

complete information 
included in the 
confusion matrix 

x x x x - n.a. - - n.a. 

o does distinguish 
between omission and 
commission errors 

- - - - - - - - - 

o compensates for 
extreme prevalence 
values when applied 
on model training 

x - - - - - - - - 

o requires discretisation 
of model predictions 
by applying threshold 
values 

x x x x x - x x - 

o allows zero values in 
the confusion matrix 

x - -* x x n.a. x x** n.a. 

o is proportional (the 
same performance is 
found if all elements 
of the confusion 
matrix are divided by 
the same constant) 

x - - x x n.a. x x n.a. 

o is suitable for model 
training 

x - x x x - x x x 

* cannot be applied directly when both the number of false-positive predictions and false-
negative predictions is zero; adding a constant value to each element of the confusion 
matrix changes the relative value of the odds ratio 
** cannot be applied if the prevalence of the evaluation or training set is 0. 
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For many years, river management across the world has focused on the improvement of the 
chemical water quality, using instruments such as wastewater treatment plants and enforced 
effluent standards. Although these measures resulted in a significant improvement of the 
ecological river quality, many streams still show a poor physical habitat quality and the 
ecological quality is often stagnating. To meet the aims set by the European Water 
Framework Directive, small-scale measures such as remeandering, flood plane restoration and 
fish passages are needed and are now being planned or implemented across Europe. However, 
efficient allocation of these small scale efforts requires thorough analysis of their possible 
impact on river ecology. Since habitat suitability models enable this analysis and in particular 
the identification of the bottlenecks in a river basin, these models are valuable tools for 
integrated river management. 
To allow decision makers to assess the uncertainty associated with the model outputs, the 
model structure should be straightforwardly interpretable. Fuzzy logic has become an 
interesting technique to address this issue. It takes into account the inherent uncertainty of 
ecological variables during inference processing and it enables expressing non-linear relations 
between ecological variables in a transparent way. Fuzzy systems use linguistic descriptions 
such as ‘low’, ‘high’ or ‘moderate’ for quantification of variables and use ecological expert 
knowledge to transform these descriptions into a mathematical framework in which data 
processing can be performed. Specifically, the expert knowledge is embedded in fuzzy if-then 
rules such as 'IF the depth is low AND the flow velocity is high THEN the habitat suitability 
is high for a rheophilic fish species'. Fuzzy models use fuzzy sets to implement the 
uncertainty in the definition of the linguistic values 'low', 'high' and 'high' of the linguistic 
variables 'depth', 'flow velocity' and 'habitat suitability'. Since the boundaries of two fuzzy sets 
are overlapping, an object (e.g. a real value) may partially belong to two consecutive sets and 
thus a vague linguistic description such as 'the depth is quite low but tending to be moderate' 
can be incorporated into the model. This approach contrasts markedly with classical set 
theory, where an object either fully belongs to a set or not.  
Fuzzy species distribution models allow incorporation of ecological aspects, such as the 
ecological gradient theory, into the modelling process. This turns fuzzy modelling into an 
appropriate technique for species distribution modelling because this approach may reflect the 
specific characteristics of the ecological problem. However, the main bottleneck in the 
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application of fuzzy logic is the need for ecological expert knowledge. Not only is the 
formalisation of problem-relevant human expert knowledge often difficult and tedious, but 
several authors also contest its consistency. Recent research has shown that complementing 
fuzzy systems by data-driven techniques can solve this knowledge acquisition bottleneck. For 
example, the induction of fuzzy rule-based models by heuristic search algorithms is often 
used in the field of fuzzy rule learning. This dissertation aimed to develop and test a data-
driven optimisation method for fuzzy habitat suitability models. Specifically, a hill-climbing 
algorithm was applied to optimise the fuzzy expert rules of the model and the impact of 
different training criteria on the optimisation results was analysed. The fuzzy sets were 
optimised based on their entropy, which quantifies the uniformity of the data distribution over 
the input space. The value of the presented approach for integrated river management was 
tested on 5 datasets which described ecological case studies in Belgium, Switzerland and 
New-Zealand. 
First, the strengths and weaknesses of an expert knowledge-based approach was analysed by 
comparing it to a data-driven method in a case study in the Zwalm river (Flanders, Belgium). 
Based on the available ecological expert knowledge and on biological samples from the 
Zwalm river basin, habitat models were generated for the mayfly Baetis rhodani, which is an 
indicator species for a good ecological water quality. Both fuzzy expert knowledge-based and 
data-driven habitat suitability models were developed and the performance of these models 
was compared. For the data-driven fuzzy models, a hill-climbing optimisation algorithm was 
applied to derive ecological knowledge from the available data. Data-driven models appeared 
to outperform expert knowledge-based models significantly, while a step forward model 
selection procedure indicated that physical habitat variables such as flow velocity, river width 
and the dominant river bed substrate adequately described the mayfly habitat suitability in the 
studied area. This study has important implications on the application of expert knowledge in 
ecological studies, especially if this knowledge is extrapolated to other areas. The results 
suggest that data-driven models can complement expert-knowledge based approaches and 
hence improve model reliability.  
To develop reliable data-driven models, however, a sound model training and evaluation 
procedure is needed. A crucial step in these procedures is the assessment of the model 
performance. The key component of model performance assessment is the applied 
performance criterion. Therefore, this dissertation reviewed the performance criteria most 
commonly applied in presence-absence modelling and analysed their function in both the 
model training and evaluation process. Although estimates of predictive performance have 
been used widely to assess final model quality, an extended literature review in this 
dissertation showed that the model training procedure has been mostly based on optimisation 
of the predictive accuracy of the model. Moreover, a systematic overview was lacking 
because most analyses of performance criteria have been empirical and only focused on 
specific aspects of the performance criteria. This dissertation provides such an overview 
which showed that different performance criteria evaluate a model (or its resulting confusion 
matrix) differently and that this difference may be explained by the dependency of these 
criteria on the prevalence of the validation set. Specifically, if models derived from different 
datasets are being compared, the prevalence of these datasets may affect the value of the 
performance measures and consequently manipulate the results of the comparison. Similar 
problems may arise when the performances of a model on a training set and a validation set 
with different prevalences are compared. This dissertation showed theoretically that these 
effects only occur if the data are inseparable by an n-dimensional hyperplane, with n the 
number of input variables. Given this inseparability, different performance criteria focus on 
different aspects of model performance during model training, such as sensitivity, specificity 
or predictive accuracy. These findings have important consequences for ecological modelling 
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because ecological data are mostly inseparable due to data noise and the complexity of the 
studied system. Consequently, it should be very clear which aspect of the model performance 
is evaluated, and models should be evaluated consistently, that is, independent of, or taking 
into account, species prevalence.  
This dissertation also highlighted the relative importance which the performance criteria give 
to omission and commission errors as a possible explanation for the differing evaluation 
scores among performance criteria for the same model. Theoretical analysis revealed that 
performance criteria may value a perfect model equally, but yet focus on very different 
aspects of model performance. To guarantee reliable quantification of the model performance, 
it is suggested that prevalence-independent measures should be preferred, and that at least 
some of these measures should allow modellers to distinguish between omission and 
commission errors for both model training and evaluation. The appropriate performance 
criteria for evaluation of the final model and for model training should be chosen carefully 
corresponding to the ecological objectives of the optimised model. The practical implications 
of these findings are clear. They provide further insight in the evaluation of ecological 
presence/absence models and attempt to assist modellers in their choice of suitable 
performance criteria.  
The results of the theoretical analysis were confirmed in a first experimental analysis in this 
dissertation. A heuristic nearest ascent hill-climbing algorithm for rule base optimisation was 
applied to construct a fuzzy rule-based habitat suitability model for spawning European 
grayling (Thymallus thymallus) in the Aare river (Bern, Switzerland). Optimisation of the 
fuzzy rule-based model was based on two different training criteria, the weighted Correctly 
Classified Instances (CCIw) and Cohen’s Kappa. The ecological relevance of the results was 
assessed by comparing the optimised rule bases with a rule base derived from ecological 
expert knowledge. The results showed that model training based on CCIw and based on Kappa 
lead to different final models and thus confirmed the theoretical analysis. Specifically, this 
dissertation showed that these different final models could be attributed to the inseparability 
of the data. If the data would have been separable, all optimisation criteria would have led to 
the same results. Optimisation based on Kappa appeared to generate acceptable results and 
was easier to use than optimisation based on CCIw because the latter required fine tuning of a 
weight parameter which accounted for the species prevalence. However, this parameter 
provided more transparency in the model training process by quantifying the degree to which 
overprediction had to be stimulated to result in accurate models. Specifically, this approach 
allowed modellers to adjust the model training process to the model objectives and to gain 
insight into this process due to the quantification of the adjustment.  
Although the CCIw provided a first step towards adaptive model performance quantification, 
this performance criterion cannot deal with the fuzzy output of a fuzzy classifier because it is 
based on the confusion matrix. Such performance criteria, for instance, are not sensitive to the 
position of the fuzzy sets where the wrong classification occurs, and valuable information 
may thus be lost by transferring this fuzzy output to the crisp output which is needed to 
generate the confusion matrix. Therefore, the adjusted average deviation (aAD) was 
introduced. This performance measure includes a parameter  which ranges between 0 and 1 
and allows stimulation of overprediction or underprediction, depending on the prevalence of 
the training data set. 
To analyse the strengths and weaknesses of this approach, it was applied on model training 
and the results were compared to those obtained after model training based on some of the 
most frequently applied performance criteria: Kappa, CCI, the average deviation (AD) and the 
true skill statistic (TSS). The results suggest that CCI, AD and TSS criteria may be less 
appropriate for model training at extreme prevalence values. However, TSS and Kappa 
showed to be valuable criteria for the evaluation of the performance of the final model. Both 
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accuracy-based measures, CCI and the AD, appeared to be less suitable for model evaluation 
because their values were correlated with the prevalence of the evaluation set. These findings 
confirm the results of the previous analysis on CCIw and Kappa by showing that the 
performance criteria which are applied for model training may significantly affect the results 
of the training process.  
Finally, this dissertation analysed the relation between the parameter  and the training set 
prevalence for three other species in different New Zealand river systems: the caddisflies 
Aoteapsyche spp., large brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss. 
The aAD was implemented in a hill-climbing algorithm to optimise a fuzzy species 
distribution model for each species. For all studied species, the results proved that the optimal 

 value for model training depends on the prevalence of the training set. These results 
confirmed that AD and CCI may be less appropriate for model training due to their strong 
dependency on the training set prevalence. Moreover, these findings agreed that Kappa may 
be an appropriate performance criterion for robust model training. Model training based on 
Kappa led to results which were relatively accurate, whereas the results of model training 
based on TSS was more variable. Despite its user-friendliness, however, Kappa does not allow 
the model developers to focus on certain aspects of model performance and thus provides less 
control on the model training process than an adjustable performance criterion such as the 
aAD. Finally, this dissertation suggests that model training based on accuracy-based 
performance criteria may produce unrealistic models at extreme prevalences of the training 
dataset, whereas the aAD allows identification of more accurate and well-founded models. 
Moreover, comparison of the relation between the  parameter and the prevalence of the 
training data set for different species revealed this relation might be relatively general and 
may depend on data or model characteristics.  
An optimal parameter value or training performance criterion could be found by applying 
sensitivity analysis, but a more important problem with these flexible performance criteria 
could be the difficulty to say which models are better. Although applying a training parameter 
which minimises the difference between over- and underprediction may be a suitable rule of 
thumb, there is no straightforward answer to this question, because the quality of a model 
depends on its purpose and the context in which the model will be applied. Conservationists 
should thus distinguish between models which reliably or less reliably predict species 
distribution. Given inseparable ecological data, each performance criterion focuses on 
different aspects of model performance, and these aspects are reflected in the final model 
which is obtained after training based on this performance criterion. Moreover, this 
dissertation showed theoretically that the aspects on which these criteria focus may vary with 
the prevalence of the training dataset. Consequently, conservationists and model developers 
should be aware of the different focus of the training performance criteria, and thus of the 
final model.  
This dissertation may thus contribute to the transparency of the model training process and to 
an increasing awareness of the strengths and weaknesses of the final model. Specifically, the 
adjustable parameter in the aAD enables modellers to situate the optimised models in the 
heuristic search space and thus provides an indication of the ecological model relevance. 
Consequently, it may support modellers and river managers in the decision making process by 
enhancing model foundations. The habitat suitability models optimised in this dissertation are 
able to predict the effect of different impacts on the river system and to select the optimal 
restoration option. Hence, they could be a valuable decision support tool for river managers 
and ease the discussion between stakeholders. As such, they may be a small step on the road 
towards more reliable species distribution models. Due to the universality and the flexibility 
of the approach, it could be applied to any other ecosystem or species, and may therefore be 
valuable to ecological modelling and ecosystem management in general. 
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Het rivierbeheer in Vlaanderen en de rest van de wereld was lange tijd gericht op de 
verbetering van de chemische waterkwaliteit, aan de hand van rioolwaterzuiveringsinstallaties 
of opgelegde effluentnormen. Deze ingrepen leidden wel tot een significante verbetering van 
de waterkwaliteit, maar desondanks is de fysische habitatkwaliteit vaak nog ontoereikend en 
stagneert de ecologische kwaliteit van vele rivieren. Kleinschalige ingrepen, zoals 
hermeandering, herstel van overstromingsgebieden en visdoorgangen zijn bijgevolg 
aangewezen om de streefdoelen van de Europese Kaderrichtlijn Water te halen en worden 
momenteel gepland of uitgevoerd in Europa. Om deze kleinschalige inspanningen efficiënt te 
verdelen is echter een grondige analyse vereist van de impact van deze ingrepen op de 
rivierecologie. Aangezien deze analyse en de identificatie van knelpunten in een rivierbekken 
kan gebeuren aan de hand van habitatgeschiktheids- of soortenverspreidingsmodellen, zijn 
deze modellen waardevolle instrumenten voor integraal rivierbeheer.  
De structuur van dergelijke modellen moet ondubbelzinnig interpreteerbaar zijn zodat de 
gebruikers de onzekerheden van de modelresultaten eenvoudig kunnen nagaan. Vaaglogica is 
bijgevolg bijzonder geschikt om deze voorwaarden in te vullen. Deze theorie houdt enerzijds 
rekening met de inherente onzekerheid van de ecologische variabelen in het 
modelleringproces en biedt anderzijds een transparante weergave van niet lineaire verbanden 
tussen ecologische variabelen. Vage systemen kwantificeren variabelen aan de hand van 
linguïstische omschrijvingen zoals ‘laag’, ‘hoog’ of ‘matig’ en gebruiken ecologische 
expertkennis om deze omschrijvingen om te zetten in een mathematisch kader waarbinnen 
dataverwerking mogelijk is. Deze expertkennis is omvat in vage als-dan regels zoals ‘ALS de 
stroomsnelheid hoog is EN de diepte laag is DAN is de habitatgeschiktheid hoog voor een 
rheofiele vissoort’. Vage modellen gebruiken vaagverzamelingen om de onzekerheid in de 
omschrijving van de linguïstische waarden ‘hoog’, ‘laag’ en ‘hoog’ van de respectievelijke 
variabelen ‘stroomsnelheid’, ‘diepte’ en ‘habitatgeschiktheid’ te incorporeren in het model. 
Aangezien de grenzen tussen twee vaagverzamelingen overlappen, kan een object (bijv. een 
reëel getal) gedeeltelijk tot twee opeenvolgende verzamelingen behoren en kan een vage 
linguïstische omschrijving zoals ‘de diepte is redelijk laag maar eerder matig’ in het model 
worden verwerkt. Deze aanpak verschilt grondig met de klassieke verzamelingenleer waarin 
een object ofwel volledig ofwel niet tot een verzameling behoort.  
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Vage soortenverspreidingsmodellen kunnen ecologische aspecten, zoals de ecologische 
gradiënttheorie, implementeren in het modelleringproces. Aangezien deze aanpak de 
specifieke kenmerken van een ecologisch probleem weerspiegelt, zijn vage modellen 
bijzonder geschikt voor het modelleren van soortenverspreiding. De nood aan expertkennis is 
echter het grootste knelpunt bij de toepassing van vage modellen. Enerzijds is het vastleggen 
van relevante menselijke expertkennis vaak moeilijk en tijdrovend, terwijl anderzijds 
verschillende auteurs de consistentie van deze expertkennis betwisten. Recent onderzoek heeft 
aangetoond dat de combinatie van vage systemen met datagebaseerde technieken een 
oplossing kan bieden voor dit probleem. In het domein van de vage regelontwikkeling 
bijvoorbeeld worden vage regelgebaseerde modellen vaak opgesteld met behulp van 
heuristische zoekalgoritmes. Dit proefschrift wil een datagebaseerde optimalisatiemethode 
voor vage habitatgeschiktheidsmodellen ontwikkelen en testen. Hiervoor werd een hill-
climbing algoritme toegepast om de vage expertregels van het model te optimaliseren, terwijl 
de impact van verschillende trainingscriteria op het optimalisatieresultaat werd geanalyseerd. 
De vaagverzamelingen werden geoptimaliseerd op basis van hun entropie, die de uniformiteit 
van de dataverdeling over de invoerruimte kwantificeert. De waarde van de voorgestelde 
methode voor integraal waterbeheer werd nagegaan aan de hand van 5 datasets die 
ecologische gevallenstudies beschrijven in België, Zwitserland en Nieuw-Zeeland.  
De sterke en zwakke punten van een expertgebaseerde aanpak werden eerst geanalyseerd door 
vergelijking van deze aanpak met een datagebaseerde methode in een gevallenstudie in de 
Zwalm (Vlaanderen, België). Op basis van de beschikbare ecologische expertkennis en van 
biologische stalen uit het Zwalmbekken werden habitatmodellen opgesteld voor de 
eendagsvlieg Baetis rhodani, die een indicatorsoort is voor een goede ecologische kwaliteit. 
Zowel vage kennisgebaseerde als datagebaseerde habitatgeschiktheidsmodellen werden 
ontwikkeld en de performantie van deze modellen werd vergeleken. De datagebaseerde 
modellen steunden op een hill-climbing algoritme dat ecologische expertkennis afleidde uit de 
beschikbare data. Datagebaseerde modellen bleken significant beter te presteren dan de 
expertgebaseerde modellen, terwijl een step forward modelselectieprocedure aantoonde dat de 
habitatgeschiktheid voor de eendagsvlieg in het studiegebied het best werd verklaard door 
fysische habitatvariabelen zoals stroomsnelheid, rivierbreedte en het dominante 
rivierbodemsubstraat. Dit onderzoek heeft belangrijke gevolgen voor de toepassing van 
expertkennis in ecologische studies, vooral als deze kennis geëxtrapoleerd wordt naar andere 
gebieden. De resultaten suggereren dat datagebaseerde modellen kennisgebaseerde modellen 
kunnen aanvullen en zo de modelbetrouwbaarheid kunnen verbeteren.  
Om betrouwbare datagebaseerde modellen te ontwikkelen is echter een correcte 
modeltraining en -evaluatie vereist. Het bepalen van de modelperformantie is een cruciale 
stap in deze procedures. Het performantiecriterium dat de modelperformantie kwantificeert, is 
de kern van deze performantiebepaling. Daarom geeft dit proefschrift een overzicht van de 
meest toegepaste performantiecriteria in de aan- en afwezigheidsmodellering van een soort. 
Bovendien werd de rol van deze criteria in de training en de evaluatie van het model 
geanalyseerd. Schatters van de voorspellingsperformantie worden algemeen aangewend om 
de kwaliteit van het finale model te bepalen, maar een uitgebreid literatuuroverzicht in dit 
proefschrift toonde aan dat de modeltraining meestal gebeurt met het oog op optimalisatie van 
de voorspellingsnauwkeurigheid van het model. Bovendien ontbreekt een systematisch 
overzicht omdat de meeste analyses van performantiecriteria empirisch werden uitgevoerd en 
zich enkel richten op specifieke kenmerken van de performantiecriteria. In dergelijk overzicht 
toonde dit proefschrift aan dat verschillende performantiecriteria een model (of zijn 
resulterende verwarringsmatrix) verschillend evalueren en dat dit verschil kan verklaard 
worden door de relatie tussen deze criteria en de prevalentie van de validatieset. Meer bepaald 
kan, bij de vergelijking van modellen afgeleid van verschillende datasets, de prevalentie van 
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deze datasets de waarde van de performantiecriteria beïnvloeden en bijgevolg de resultaten 
van de vergelijking manipuleren. Gelijkaardige problemen kunnen optreden wanneer de 
performanties van een model worden vergeleken op basis van een trainingsset en een 
validatieset met verschillende prevalenties. Dit proefschrift toont theoretisch aan dat deze 
effecten zich enkel voordoen wanneer de data onscheidbaar zijn door een n-dimensioneel 
hypervlak, waarbij n het aantal invoervariabelen is. Door deze onscheidbaarheid richten 
verschillende performantiecriteria zich tijdens de modeltraining op verschillende aspecten van 
de modelperformantie, zoals sensitiviteit, specificiteit of voorspellingsaccuratesse. Deze 
bevindingen hebben belangrijke gevolgen voor het ecologisch modelleren aangezien 
ecologische data meestal onscheidbaar zijn door dataruis en de complexiteit van het 
bestudeerde systeem. Bijgevolg zouden gebruikers duidelijk moeten weten welk aspect van de 
modelperformantie gekwantificeerd wordt, en zouden modellen consistent moeten 
geëvalueerd worden, meer bepaald onafhankelijk van, of in functie van de prevalentie van de 
bestudeerde soort.  
Dit proefschrift gaf ook aan dat de verschillende evaluatiescores van performantiecriteria voor 
hetzelfde model mogelijks veroorzaakt worden door het relatieve belang dat 
performantiecriteria hechten aan omissie- en commissiefouten. Een theoretische analyse 
leerde dat verschillende criteria een perfect model gelijk kunnen evalueren, maar tegelijkertijd 
toch kunnen focussen op sterk verschillende aspecten van de modelperformantie. Om een 
betrouwbare kwantificatie van de modelperformantie te garanderen, wordt het gebruik 
voorgesteld van criteria die onafhankelijk zijn van of rekening houden met de prevalentie. 
Bovendien zouden sommige criteria de modelontwikkelaars moeten toelaten om een 
onderscheid te maken tussen omissie- en commissiefouten, zowel tijdens training als tijdens 
modelevaluatie. De geschikte performantiecriteria voor de evaluatie van het finale model en 
voor de modeltraining zouden nauwgezet moeten gekozen worden in overeenstemming met 
de ecologische doelstellingen van het geoptimaliseerde model. De praktische implicaties van 
deze bevindingen zijn duidelijk. Ze verlenen dieper inzicht in de evaluatie van ecologische 
aan-/afwezigheidsmodellen en kunnen modelleerders helpen bij de keuze voor een geschikt 
performantiecriterium.  
De resultaten van de theoretische analyse werden bevestigd in een eerste experimentele 
analyse in dit proefschrift. Een vaag regelgebaseerd habitatgeschiktheidsmodel voor 
kuitschietende Europese vlagzalm (Thymallus thymallus) in de Aare (Bern, Zwitserland) werd 
opgesteld met behulp van een heuristisch hill-climbing algoritme voor regelbankoptimalisatie. 
De optimalisatie van het vage regelgebaseerde model was gebaseerd op twee verschillende 
trainingscriteria: de gewogen Correctly Classified Instances (CCIw) en Cohens Kappa. De 
ecologische relevantie van de resultaten werd bepaald door vergelijking van de 
geoptimaliseerde regelbank met een regelbank die werd afgeleid van ecologische 
expertkennis. De resultaten gaven aan dat modeltraining op basis van CCIw en op basis van 
Kappa resulteert in verschillende finale modellen, wat de theoretische analyse bevestigde. 
Meer bepaald toonde dit proefschrift aan dat de onscheidbaarheid van de trainingsdata de 
geobserveerde verschillen veroorzaakt. Als de data scheidbaar waren, zouden alle 
optimalisatiecriteria tot hetzelfde resultaat geleid hebben. De optimalisatie op basis van 
Kappa bleek aanvaardbare resultaten op te leveren en was eenvoudiger toe te passen dan de 
optimalisatie gebaseerd op CCIw omdat bij dit laatste criterium de gewichtsparameter, die de 
prevalentie in rekening bracht, moest worden afgestemd. Toch zorgde deze parameter voor 
meer duidelijkheid in de modeltraining aangezien deze de mate kwantificeerde waarin 
overpredictie moest gestimuleerd worden om tot accurate modellen te leiden. Meer bepaald 
liet deze aanpak modelleerders toe om het modeltrainingsproces aan te passen aan de 
doelstellingen van het model en om inzicht te krijgen in dit proces aan de hand van de 
kwantificatie van deze aanpassing.  
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De CCIw vormt een eerste stap naar adaptieve kwantificatie van de modelperformantie, maar 
dit criterium kan de vage uitvoer van een vaag classificatiemodel niet verwerken omdat de 
CCIw gebaseerd is op de verwarringsmatrix. Dergelijke performantiecriteria houden geen 
rekening met de positie van de vaagverzameling waar de foutieve classificatie plaatsvindt, en 
zo kan waardevolle informatie verloren gaan bij de omzetting van de vage uitvoer naar de 
scherpe uitvoer, die nodig is om de verwarringsmatrix op te stellen. Bijgevolg werd de 
aangepaste average deviation (aAD) ontwikkeld in dit proefschrift. Deze performantiemaat 
bevat een parameter  die varieert tussen 0 en 1 en die het stimuleren van overpredictie of 
onderpredictie toelaat, afhankelijk van de prevalentie van de trainingsdataset.  
De sterke en zwakke punten van deze aanpak werden geanalyseerd door toepassing op 
modeltraining en vergelijking van de resultaten met deze die werden bekomen na 
modeltraining gebaseerd op een aantal algemeen toegepaste performantiecriteria: Kappa, CCI, 
de average deviation (AD) en de true skill statistic (TSS). De resultaten gaven aan dat CCI, AD 
en TSS minder geschikt zijn voor modeltraining bij uiterste prevalentiewaarden. TSS en 
Kappa bleken echter waardevolle criteria voor de evaluatie van de performantie van het finale 
model. De twee criteria die gericht zijn op nauwkeurigheid, CCI en AD, bleken minder 
geschikt te zijn voor modelevaluatie omdat hun waarden gecorreleerd waren met de 
prevalentie van de evaluatieset. De resultaten bevestigen dat de performantiecriteria voor 
modeltraining de resultaten van de modeltraining significant kunnen beïnvloeden en komen 
dus overeen met deze van de eerste analyse op basis van CCIw en Kappa.  
Ten slotte analyseerde dit proefschrift het verband tussen de parameter  en de prevalentie 
van de trainingsset voor drie andere soorten in verschillende riviersystemen in Nieuw-
Zeeland: de kokerjuffers Aoteapsyche spp., grote beekforel Salmo trutta en regenboogforel 
Oncorhynchus mykiss. De aAD werd geïmplementeerd in een hill-climbing algoritme dat een 
vaag soortenverspreidingsmodel optimaliseerde voor elke soort. De resultaten toonden voor 
alle bestudeerde soorten aan dat de optimale  waarde voor modeltraining afhankelijk is van 
de prevalentie van de trainingsset. Deze resultaten bevestigden dat AD en CCI minder 
geschikt zijn voor modeltraining door hun afhankelijkheid van de prevalentie van de 
trainingsset. Bovendien bekrachtigen deze bevindingen dat Kappa mogelijks een geschikt 
performantiecriterium is voor een verkennende modeltraining. Modeltraining gebaseerd op 
Kappa resulteerde in relatief accurate resultaten, terwijl de resultaten van model training 
gebaseerd op TSS meer varieerden. Ondanks zijn gebruiksvriendelijkheid laat Kappa echter 
niet toe om te focussen op bepaalde aspecten van de modelperformantie en biedt bijgevolg 
minder controle over de modeltraining dan een aanpasbaar performantiecriterium zoals aAD. 
Dit proefschrift suggereert tenslotte dat modeltraining gericht op modelnauwkeurigheid kan 
leiden tot onrealistische modellen bij extreme prevalenties van de trainingsset, terwijl training 
op basis van de aAD kan resulteren in meer accurate en beter onderbouwde modellen. Een 
vergelijking van het verband tussen de parameter  en de prevalentie van de trainingsset voor 
de verschillende soorten in dit proefschrift wees bovendien uit dat dit verband mogelijks 
relatief algemeen is en afhankelijk van data- en modelkenmerken.  
Een optimale parameterwaarde of een geschikt performantiecriterium kan gevonden worden 
aan de hand van sensitiviteitsanalyse. Hierbij kan het echter moeilijk zijn om aan te geven 
welke modellen beter zijn. Kiezen voor een parameterwaarde die het verschil tussen de over- 
en onderpredicties minimaliseert zou een gepaste vuistregel kunnen zijn, maar eigenlijk 
bestaat er geen eenduidig antwoord op deze vraag aangezien de kwaliteit van een model 
afhankelijk is van de doelstellingen en de context waarin het model zal worden toegepast. 
Beheerders zouden dus onderscheid moeten maken tussen soortenverspreidingsmodellen op 
basis van de betrouwbaarheid van hun voorspellingen. Gezien de onscheidbaarheid van de 
ecologische data, richt elk performantiecriterium zich op andere aspecten van de 
modelperformantie, en zijn deze aspecten weerspiegeld in het finale model dat bekomen 
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wordt na training op basis van dit performantiecriterium. Bovendien toonde dit proefschrift 
theoretisch aan dat de aspecten waarop deze criteria zich richten kunnen variëren afhankelijk 
van de prevalentie van de trainingsdataset. Beheerders en modelontwikkelaars zouden 
bijgevolg rekening moeten houden met de verschillende focussen van de performantiecriteria 
voor modeltraining, en dus van het finale model.  
Samengevat kan dit proefschrift bijdragen tot de transparantie van het modeltrainingsproces 
en tot een toenemende aandacht voor de sterke en zwakke punten van het finale model. De 
aanpasbare parameter in de aAD laat modelleerders toe om het geoptimaliseerde model te 
situeren in de heuristische zoekruimte en geeft een indicatie van de ecologische relevantie van 
het model. Door het versterken van de modelonderbouwing kan dit criterium bijgevolg 
modelleerders en rivierbeheerders helpen bij het beslissingsproces. De geoptimaliseerde 
habitatgeschiktheidsmodellen in dit proefschrift kunnen het effect van verschillende ingrepen 
op het riviersysteem voorspellen en zo de optimale hersteloptie selecteren. Op die manier 
kunnen ze bijgevolg een waardevol beslissingsondersteunend instrument vormen voor 
rivierbeheerders en kunnen ze de dialoog tussen verschillende belangengroepen 
vereenvoudigen. Dankzij het universele karakter en de flexibiliteit van deze modellen kunnen 
ze eenvoudig worden toegepast op andere soorten of ecosystemen, en zijn ze bijgevolg 
waardevol voor het ecologische modelleren en het ecosysteembeheer in de brede zin. 
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