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Highlights: 

 The acoustic summary of a place is a collection of representative sounds 

 Acoustic summaries of several urban and quiet area locations are constructed using an 

automated procedure 

 A validation test with local residents assesses the quality of the acoustic summaries 

 Local residents can easily identify the acoustic summary extracted at the location of their 

own dwelling 

 A group of sounds describes the uniqueness of a place, rather than single sounds by 

themselves 

 

Highlights (for review)
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1 Introduction 1 

Livability of the urban environment has always been a compelling issue for urban 2 

planners. Citizen well-being is related to the quality of the urban environment in different ways. 3 

Person-environment mismatch at the dwelling may lead to stress and related health impacts 4 

(Lazarus, 1991) but also the quality of the public space is of utmost importance. High quality 5 

public spaces stimulate social cohesion, recreation, and physical activity (Bedimo-Rung, Mowen, 6 

& Cohen, 2005). The role of urban green areas in particular has been investigated extensively in 7 

this respect. Several studies from the last decades indicate that people’s psychological restoration 8 

and well-being is enhanced by direct access to nature and restorative areas (Hartig, Böök, 9 

Garvill, Olsson, & Gärling, 1996; Kaplan, 1983, 1985; Ulrich, 1981; Ulrich et al., 1991), by 10 

visual access to such areas from the dwelling (Kaplan, 1993, 2001; Ulrich, 1984) and by their 11 

perceived availability (Gidlöf-Gunnarsson & Öhrström, 2007).  The positive role played by such 12 

areas has mainly been studied from the perspective of visual diversity, naturalness and aesthetics.  13 

However, the role of the soundscape and in particular quietness and tranquility is increasingly 14 

being stressed (Gidlöf-Gunnarsson & Öhrström, 2007). Therefore, there is an increasing 15 

awareness of the fact that the sonic environment forms an essential component of the urban 16 

environment that requires as careful planning as the landscape (Carles, Barrio, & de Lucio, 1999; 17 

Liu, Kang, Behm, & Luo, 2014; Liu, Kang, Luo, Behm, & Coppack, 2013; Zhang & Kang, 18 

2007). However, it is also shown that landscape and soundscape planning should not be tackled 19 

independently, as landscape indicators have a non-negligible impact on the soundscape (Liu et 20 

al., 2013, 2014). 21 

Manuscript (with references and tables)
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Classically, urban sound has been treated as a waste product to be tackled with suitable 22 

noise control policies, for which the most popular and visible tool has been extensive noise 23 

mapping. However, the final goal of planning and designing urban environments is not only 24 

noise abatement, but the creation of spaces with matching positive acoustic qualities 25 

(Botteldooren, De Coensel, Van Renterghem, Dekoninck, & Gillis, 2008). This approach, 26 

typically referred to as the soundscape approach, is getting increasing multidisciplinary attention 27 

and is the subject of several projects and studies (Adams et al., 2006; Brown, Kang & Gjestland, 28 

2011; Pijanowski et al., 2011a; Pijanowski et al., 2011b; Zhang & Kang, 2007). As the 29 

soundscape concept extends beyond the sonic or acoustic environment and includes the way it is 30 

perceived and understood by a typical user of the space and within a particular context, the tools 31 

at the disposal of the urban sound planner and soundscape designer should account for human 32 

auditory perception (Oldoni et al., 2013). 33 

Today, physical registration of relevant acoustical parameters is commonly accepted as a 34 

first soundscape analysis step (Schulte-Fortkamp, Brooks, & Bray, 2008), followed by an 35 

evaluation of the perceptual effects by techniques such as targeted interviews and questionnaires, 36 

preferably involving community members who live at the location under study (Brooks, 2006; 37 

Axelsson, Nilsson, Hellström, & Lundén, 2014). The combination of these two approaches is 38 

called combined soundscape analysis (Adams et al., 2006; Schulte-Fortkamp et al., 2008) and it 39 

is often deployed by means of soundwalks, in which sound measurements and perception 40 

interviews are conducted simultaneously.  In a research perspective, the results are combined in 41 

order to find quantitative relationships between physical sound indicators and perceptual 42 

attributes (Berglund & Nilsson, 2006; Liu et al., 2014). Soundwalks are a popular methodology 43 

for understanding outdoor soundscapes (Adams et al., 2008), but they are inherently short-term 44 
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and typically include only daytime. For this reason, several long-term strategies have been 45 

developed, mainly based on mobile sound measurements and community involvement, e.g. with 46 

public workers such as local police officers (Schulte-Fortkamp et al., 2008). This approach is 47 

surely more detailed and complete, but requires a considerable organizational effort and regular 48 

and constant participation, resulting in feasibility and reproducibility issues. In both short and 49 

long term approaches, a methodology for systematically selecting and recording a 50 

comprehensive collection of sounds that is representative for the sonic environment in the way 51 

that it is perceived and understood by so-called “local experts” – inhabitants and visitors – would 52 

mean a significant step forward in soundscape methodology. 53 

In this paper a neural-network-based model is proposed that automatically constructs an 54 

acoustic summary, i.e. a collection of sounds that are likely to be noticed at a particular location 55 

and together represent the sonic environment at that location. The acoustic summary can provide 56 

a quick overview of the sounds present at a specific location, thus being a useful tool for the 57 

urban planner and the soundscape designer. In contrast to most of the computational auditory 58 

scene analysis (CASA) models (see Wang & Brown (2006) for an overview), the major interest 59 

here does not lie in extracting as clean as possible sound samples for all components of the 60 

auditory scene. On the contrary, the intention is to summarize the sonic environment using only 61 

those sounds that a human observer, not particularly focusing its attention to environmental 62 

sound, would notice. Note this explicit limitation of the acoustic summary to holistic listening 63 

only. Listening is a process that can develop at different cognitive levels, and it could be 64 

attentive and analytic rather than holistic. However, within attentive and analytic listening, top-65 

down information is taken into account, which is much harder to implement in a computational 66 

model. 67 
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The proposed model partly takes inspiration from specific CASA techniques for 68 

extracting salient fragments of the auditory scene but it is also inspired by mechanisms 69 

underlying human bottom-up attention (Duangudom & Anderson, 2007; Kalinli & Narayanan, 70 

2007; Kayser, Petkov, Lippert, & Logothetis, 2005). Moreover, most CASA techniques are not 71 

context dependent. Distinguishing between frequently occurring sounds and out-of-context or 72 

rarely occurring sounds is a crucial aspect in constructing an acoustic summary. For this reason, 73 

besides a biologically inspired auditory processing model, learning is a very important aspect in 74 

the presented model. It is implemented by means of a neural network called Self-Organizing 75 

Map (SOM) or Kohonen Map (Kohonen, 2001) and a specifically tailored learning technique. 76 

Furthermore, the model attempts to create a compromise between biological accuracy and 77 

computational efficiency as the model is to be integrated in equipment for long-term outdoor 78 

measurement and the data processing underlying the decision whether or not to record particular 79 

sound events has to be performed in real-time. 80 

The structure of this paper is as follows: Section 2 describes the neural-network based 81 

model to construct the acoustic summary. Section 3 is dedicated to the results of a validation test 82 

performed by local residents in order to assess how accurately the acoustic summary is 83 

representing the sound environment in their neighborhood. Section 4 discusses the results and 84 

future developments. Finally, in Section 5 conclusions are presented. 85 

2 Methods 86 

2.1 Overview 87 

 88 
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Constructing the acoustic summary requires a computational analysis of the auditory 89 

scene that mimics how a human observer would split this auditory scene in its relevant 90 

components.  Considering the application of the model in long-term outdoor measurement 91 

stations, computational efficiency has to be considered. For this reason, existing detailed 92 

auditory processing models for loudness (Glasberg & Moore, 2002), masking (Glasberg & 93 

Moore, 2005) and auditory saliency (Kayser et al., 2005) are replaced by simplified versions. 94 

The proposed model is comprised of two main stages, illustrated in Fig. 1: (I) during the learning 95 

phase, a self-organizing map (SOM) is tuned to the typical sounds at the given location based on 96 

the sound level and its spectrum, and (II) during the acoustic summary formation phase, for each 97 

class of sounds thus obtained, prototypes are recorded to compile the acoustic summary. Real-98 

time operation is required in the second stage due to the limited sound buffer of typical outdoor 99 

measurement stations. In both stages, the sound signal recorded by the microphone is first treated 100 

in a similar way as in the human peripheral auditory system (I.a and II.a), whereby both a set of 101 

acoustical features is extracted and a measure of auditory saliency is calculated. The learning 102 

stage classifies the acoustical features based on co-occurrence (I.b) using the incremental SOM 103 

algorithm and a training technique called Continuous Selective Learning (CSL) that was 104 

developed specifically for this purpose. Once the learning has ended, the trained SOM can be 105 

used for automatically triggering the recording of typical and salient sounds, and in this way 106 

incrementally forming a library of prototypical sounds (II.b). The acoustic summary is then 107 

compiled by selecting a small number of sounds from this sound library, based on a ranking 108 

method (II.c). In this paper three different ranking methods will be presented and validated. 109 

2.2  Sound feature extraction 110 
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The sound feature extraction stage of the proposed model is highly inspired by a model 111 

for auditory attention that was developed earlier by the authors (Oldoni et al., 2013). A 1/3-112 

octave band spectrum with a temporal resolution of 0.125 s is calculated starting from the raw 113 

audio signal. This temporal resolution was chosen based on the typical temporal envelope of 114 

urban environmental sounds (De Coensel & Botteldooren, 2006; De Coensel, Botteldooren, & 115 

De Muer, 2003), and allows to capture the temporal dynamics of most of the typical urban 116 

environmental sound sources. To account for energetic masking, a simplified cochleogram s(f,t) 117 

is then calculated based on the Zwicker loudness model (Zwicker & Fastl, 1999) covering the 118 

complete audible frequency range (0 to 24 Bark) with a spectral resolution of 0.5 Bark, resulting 119 

in 48 spectral values at each time step. The auditory system is, in addition to absolute intensity, 120 

also sensitive to spectro-temporal irregularities (Alain, Arnott, & Picton, 2001; Bregman, 1994; 121 

Houtgast, 1989; Yost, 1992). The proposed model therefore calculates measures for intensity, 122 

spectral and temporal modulation using a center-surround mechanism (Schreiner, Read, & 123 

Sutter, 2000), based on auditory saliency models (Duangudom & Anderson, 2007; Kalinli & 124 

Narayanan, 2007; Kayser et al., 2005). More in detail, a convolution of the cochleogram with 16 125 

2D Gaussian and difference-of-Gaussian filters is performed in parallel at each time step, 126 

resulting in a set of multi-scale features called the sound feature vector, consisting of 16 x 48 = 127 

768 values. This set of values characterizes the loudness, spectral and temporal structure of the 128 

sound at each time step. The corresponding 768-dimensional vector space will be referred to as 129 

the sound feature space. More technical details about the sound feature extraction can be found 130 

in Oldoni et al. (2010). Finally, a scalar value called the overall auditory saliency is calculated 131 

from the sound feature vector, according to the algorithm developed by De Coensel and 132 

Botteldooren (2010). 133 
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2.3 Learning 134 

The feature vector provides extensive information about the sonic environment at a given 135 

time step. Analysis of the sonic environment should usually last for a long period ranging from a 136 

few days to several weeks, depending on the richness in sounds of the sonic environment at the 137 

given location. The crucial point is how to use such a large amount of data to construct a concise 138 

but exhaustive acoustic summary. In this paper a neural-network-based approach is proposed, 139 

which makes use of a self-organizing map. Several topographic maps have been observed in the 140 

visual and auditory cortex (Heil, Rajan, & Irvine, 1994; Kayser, Petkov, Augath, & Logothetis, 141 

2007; Morel & Kaas, 1992; Yin, 2008) and the SOM has been originally conceived as an abstract 142 

mathematical model of such topographic mapping. Moreover, the SOM is typically described as 143 

an unsupervised learning-based method for clustering and visualizing high-dimensional data 144 

(Kohonen, 1998), another important aspect to take into account due to the high-dimensionality of 145 

the sound feature space. In the framework of the present model, the SOM should eventually learn 146 

which features belong to the same auditory object based on co-occurrence. Furthermore, the size 147 

of a representational area of a sound in the primary auditory cortex is closely related to its 148 

importance (Rutkowski & Weinberger, 2005) and the strength of the memory effect (Bieszczad 149 

& Weinberger, 2010), an aspect of auditory learning that is very well modeled by a SOM and the 150 

CSL algorithm which will be described later in this section. As mentioned in Section 1, context 151 

dependency should be considered while selecting sounds for constructing an acoustic summary. 152 

Knowing the context can entail familiarity with the sonic environment and it has been shown that 153 

familiarity with the sound to be detected makes the detection easier (Lewis, Talkington, Puce, 154 

Engel, & Frum, 2011). The extensive training on sound feature vectors at the microphone 155 
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location tunes the SOM to the typical sounds composing the local sound environment and thus 156 

makes the system “familiar” with them. 157 

The SOM used in our model is a 2D network of 3750 equal-spaced units in a regular 158 

hexagonal lattice. Each unit has an associated reference vector in the high-dimensional sound 159 

feature space. The initial values of the reference vectors are calculated by means of principal 160 

component analysis on an input data subset as in Kohonen (1998). After initialization, reference 161 

vector coordinates are modified during a first training phase which is based on the Original 162 

Incremental SOM Algorithm (Kohonen, 2001). For this, sound feature vectors stemming from a 163 

particular recording location are presented to the SOM. At each time step, the unit with reference 164 

vector that most closely matches the current sound feature vector is selected (commonly called 165 

the best-matching unit or BMU). The reference vector of the BMU, and to a lesser extent the 166 

reference vectors of the neighboring units in the 2D lattice, are then moved closer to the input 167 

feature vector. After this initial training phase, the reference vectors of the SOM units can be 168 

seen as a non-linear discrete 2D mapping of the probability density function of the sound feature 169 

vectors used for training. In particular, some regions of the sound feature space contain more 170 

reference vectors than others, thus preserving the high-dimensional relationships underlying the 171 

input feature vectors (Kohonen, 2001). When positioning a new sound feature vector with 172 

respect to the trained SOM, the distance to the BMU gives an indication of the similarity of the 173 

current sound to earlier encountered sounds. When the distance to the BMU is small, a very 174 

similar sound was encountered before, during the training phase. 175 

The learning algorithm described above is purely based on frequency of occurrence and 176 

does not take into account the fact that human perception and retrospective assessment of a sonic 177 

environment also depends on the saliency of the sounds. Salient sound events would be better 178 
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noticed and remembered than less salient ones (Ranganath & Rainer, 2003), even if they do not 179 

occur that often. Therefore, the SOM trained with the original incremental SOM algorithm is 180 

used as a starting point for a second much longer training phase which implements (continuous) 181 

selective learning (Oldoni, 2015; Oldoni et al. 2013). The instantaneous overall auditory 182 

saliency, scaled as a number between zero and one, is used for modulating the learning rate 183 

parameter during the selective learning phase (Oldoni, 2015): the learning based on sound 184 

feature vectors whose related saliency values are higher than 0.5 is enhanced (by moving the 185 

reference vector of the BMU and neighboring units closer to the input feature vector by a greater 186 

amount), while learning based on feature vectors corresponding to sounds with lower saliency is 187 

somewhat suppressed (by moving the reference vector of the BMU and neighboring units closer 188 

to the input feature vector by a lesser amount). The second goal of using saliency in selective 189 

learning is to reduce the number of SOM units whose reference vectors are related to often 190 

occurring but non-relevant sounds, such as the urban background hum, and to increase the 191 

number of SOM units that are related to sound events. At each time step, the BMU is found as 192 

before. However, not all input sound feature vectors are used as inputs during the selective 193 

learning: a learning phase is triggered only if the distance to the BMU is higher than an 194 

activation threshold Tup (indicating the presence of a sound that has not been encountered 195 

before). All subsequent input vectors are then selected as inputs for training, until the distance to 196 

the BMU drops below a deactivation threshold Tdown. Furthermore, sound feature vectors 197 

occurring a few seconds before the triggered learning period are included. In this paper, a 2-198 

second pre-trigger period is used, corresponding to 16 time steps. The thresholds Tup and Tdown 199 

are chosen in such a way that less than 10% of all sound feature vectors are used as input for 200 

selective learning. After some weeks of running the CSL, it is observed that the SOM can 201 
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identify – in terms of distance to the BMU – most of the sounds occurring in the acoustic 202 

environment for which the SOM was trained (Oldoni, 2013). 203 

In order to visualize the effects of training on the SOM reference vectors, the so-called U-204 

matrix (Ultsch, 1993) is used. This matrix shows the distances between the reference vectors 205 

related to each pair of neighboring SOM units. The effects of the CSL on the clustering of SOM 206 

units can be seen in Figure 2 where the U-matrix after the first training using the original 207 

incremental SOM algorithm is shown next to the U-matrix of the final SOM after the CSL phase. 208 

By means of a color coding, the U-matrix allows to distinguish groups of SOM units with similar 209 

reference vectors (small distances between neurons, in white) form areas with high variability 210 

(large distances between neurons, in black). After the first initial training, the SOM is generally 211 

still characterized by large distances between all neurons. The contours of only one “valley” are 212 

visible at the left side, related to background hum. In contrast, after the CSL phase, the SOM 213 

shows much more structure, various valleys are visible, corresponding to different categories of 214 

sounds. 215 

2.4 Sound sample retrieval and selection 216 

The reference vectors associated to the trained SOM units can be seen as representative 217 

abstract sound prototypes, encoded by their sound feature vectors. Once a SOM is trained, it can 218 

be used for constructing a library of sounds, whereby sound samples that are most similar in the 219 

sound feature space to the sound prototypes within the SOM are recorded. As shown in the 220 

schematic overview in Figure 1, the first step in constructing the acoustic summary is calculating 221 

feature vectors for the sound observed at each time step as explained in Section 2.2. The BMU is 222 

then selected, and the distance between its reference vector and the current sound feature vector 223 

is calculated. Based on this distance, sound recording is triggered if the selected SOM unit has 224 
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not been the BMU before (meaning that the encountered sound has not occurred before during 225 

the sound sample retrieval phase), or if the distance to the BMU is smaller than any earlier 226 

distance for this BMU (meaning that a better matching sound sample is encountered). These 227 

steps have to be taken with low latency due to the limited audio recording buffer of typical 228 

acoustical measurement equipment. Sound samples are recorded from 3 seconds before to 2 229 

seconds after the recording trigger, for a total sound sample duration of 5s. This duration has 230 

been heuristically found to be sufficient for producing an overall impression of the sound at a 231 

particular instant in time. It turns out that, for typical urban soundscapes, for the bulk of the SOM 232 

units a representative audio sample is found after a few days of sound sample retrieval. This set 233 

of sounds can be seen as a sound library describing the sound environment at the measurement 234 

location. 235 

The large number of audio samples that is gathered through the procedure described 236 

above is unpractical for easy exploration of the given sound environment by listening. For this 237 

reason, three ranking criteria are presented, which can be used to select a subset of sounds that is 238 

most representative for the given sound environment; this subset is then called the acoustic 239 

summary. The first proposed ranking criterion is based on saliency: the higher the saliency, the 240 

more likely the sound sample will be representative and the higher its ranking. As explained in 241 

Section 2.2, a measured overall saliency value can be calculated at each time step from the sound 242 

feature vector. The SOM reference vectors lie in the sound feature space, therefore saliency 243 

values can be calculated for each of the units, resulting in a saliency overlay on the SOM. A 244 

second criterion is based on how often each of the SOM units was selected as the BMU during a 245 

given time interval, typically one day or more, resulting in a frequency of occurrence overlay on 246 

the SOM. As mentioned in Section 2.3, the frequency of occurrence of sounds is not likely to be 247 



12 

 

a sufficient criterion to represent the sounds that will be noticed and remembered. For this 248 

reason, a third intermediate method is proposed, in which a linear combination between both 249 

saliency and frequency of occurrence of each SOM unit is performed: 250 

�� � ���� ∙
log���  1�

log�
	���� ∙ ��, 

where ci is the combined ranking value of the SOM unit (and thus the associated sound), oi is the 251 

number of time steps for which the SOM unit i is the BMU, N is the total number of samples 252 

used for calculating the frequency of occurrence, si is the saliency of unit i and βocc and βsal are 253 

two positive weighting coefficients between 0 and 1 so that βocc+βsal=1. In case βocc =1 is chosen, 254 

selection is performed purely on the basis of frequency of occurrence; in case βsal=1 is chosen, 255 

selection is performed purely on the basis of saliency. Any intermediate value represents a trade-256 

off between both extremes. 257 

The number of sounds to be selected depends on the envisaged use of the acoustic summary. In 258 

the validation test that will be discussed in Section 3, 32 sounds for each criterion have been 259 

selected based on their ranking. An a posteriori justification for selecting exactly this number of 260 

sounds is given in Section 4. 261 

3 Validation test 262 

3.1 Overview 263 

A validation test has been designed to check the representativeness of the automatically 264 

generated acoustic summaries for an urban sound environment. Sound recording devices were 265 

installed at 6 locations in and around the Belgian city of Ghent, that will be referred to as Bi, Ko, 266 

Bu, Sp, Be, and Dr. In Table 1 the day-evening-night equivalent sound level, Lden, and a 267 
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qualitative description of the sonic environment for each location is given. Four locations Bi, Ko, 268 

Bu and Sp are situated in urbanized areas, Be is located in the very heart of the city, while Dr is 269 

in the suburbs. Sound recording devices were installed on a windowsill along the front façade of 270 

dwellings. Such a configuration is not standard for environmental noise level measurements, 271 

where microphones are usually placed at 1m from the façade, in order to remove the influence of 272 

façade reflection on the sound level. However, for the purpose of audio recording, this is a less 273 

important issue, and simply placing the devices on the windowsill is much more cost-effective. 274 

Sixteen people living in the surroundings of the sound recording devices placed in Bi, Ko, Bu 275 

and Sp were contacted for participating in the test as local residents, four per location, based on 276 

the proximity of their dwelling to the microphone positions. Recruitment was carried out by 277 

putting flyers with an invitation to participate in a listening experiment in the mailbox; the 278 

reward was one movie ticket. In Table 2 the gender and age of the participants is listed. Very few 279 

people were living in the direct surroundings of the devices placed in Be and Dr, so nobody was 280 

contacted from these two locations. The acoustic summaries from these two locations were 281 

therefore exclusively used as confounders and their quality was not assessed by the validation 282 

test. For this reason, Bi, Ko, Bu and Sp will be referred to as group 1 in the remainder of the 283 

paper, while locations Be and Dr will be referred to as group 2. 284 

For each participant, three locations were selected at the beginning of the test. The first 285 

selected location was always the location from group 1 where the participant lived. The two 286 

other locations were randomly selected: one location was chosen among the others of group 1, 287 

and one among the two locations of group 2. The validation test itself was composed of four 288 

consecutive experiments, followed by a small questionnaire in which comments could be 289 

formulated. The test duration was not fixed and varied among the participants from 30 minutes 290 
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up to one hour, as participants could listen to all sounds presented as much as wanted or needed. 291 

A portable computer with high quality sound card and a closed-type Sennheiser HD-280 PRO 292 

headphone were used for the experiment. The complete experiment, including display of 293 

instructions, audio presentation, data collection and timing, was automated using a graphical user 294 

interface in Matlab. A preliminary test was performed in order to select the correct sound level 295 

for the experiment and to ascertain the absence of hearing loss with each participant. The 296 

experiment took place either at the home of the participants or in a listening test room at the 297 

university laboratory, depending on the availability of the participants. In case the test was 298 

performed at the participant’s home, quietness and the absence of distracters were considered a 299 

prerequisite. Before starting the experiment, the participants were informed about the general 300 

aim of the study; a verbal informed consent was provided by the participants. 301 

3.2 Experiment 1 302 

In the first experiment, the participants explored the sounds of the acoustic summaries of 303 

the three selected locations and had to select the one that they thought corresponded to the direct 304 

surroundings of their home (see Appendix A for a snapshot of the experiment). This experiment 305 

was repeated three times, with acoustic summaries constructed using each of the three criteria – 306 

saliency, frequency of occurrence and combined criterion – in randomized order. Each acoustic 307 

summary was visualized as a panel of 32 buttons, each corresponding to a different sound 308 

sample. A color map spanning from yellow to red was used to color the different buttons.  309 

Depending on the three different ranking criteria, the color encoded (1) the saliency value si, (2) 310 

the frequency of occurrence oi, or (3) the combined value ci of the corresponding SOM unit. To 311 

stress color differences, yellow was assigned to the smallest value and red to the highest value 312 

among the 32 values for si, oi and ci. Participants could listen to each of the sound samples as 313 
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much as they wanted, by clicking the respective button, before selecting an acoustic summary 314 

from the three candidates shown in randomized order. 315 

In Figure 3 the results of the first experiment are shown. In total 13 participants out of 16 316 

correctly selected the acoustic summary that corresponded to the direct surroundings of their 317 

home for summaries constructed on the basis of saliency and on the basis of the combined 318 

criterion. Only 11 participants selected the correct acoustic summary in case it was constructed 319 

on the basis of frequency of occurrence. The few errors are not equally divided among the four 320 

locations included in this test. All participants at the locations Bi and Sp correctly recognized the 321 

acoustic summaries; at the location Bu only one error for both saliency and occurrence criteria 322 

occurred. The acoustic summaries from Ko were hardly recognized. The comments left by the 323 

participants suggest an overall lack of representativeness of the summaries for this location. This 324 

may be due to a combination of both site characteristics (e.g. the soundscape at that location may 325 

be more diverse than at the other locations) as well as model and recording characteristics (e.g. 326 

soundmarks were missed at that location). The overall representativeness of the summaries will 327 

be further discussed in Section 3.5 and Section 4. Overall, most errors were made for the 328 

acoustic summary formed by frequency of occurrence, followed by the combined criterion and 329 

then the saliency criterion. 330 

In general, the high and similar number of correct answers for all three ranking-selecting 331 

criteria indicates that the sound library from which the sounds are selected is composed of 332 

typical and representative sounds for the given location. To further explore possible differences 333 

between the three criteria, the number of sounds to which each participant listened before 334 

making a choice is analyzed. From Figure 4 it is clear that participants decided faster in case of 335 

acoustic summaries based on saliency, while on average they needed to listen to the highest 336 
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number of sounds for frequency of occurrence-based acoustic summaries. This could be due to 337 

the on average higher information content within the sounds, when they are selected based on 338 

saliency. In order to check if the differences in number of sounds played between the three 339 

selection criteria are statistically significant, a linear regression model Y = ax + b was 340 

constructed, with Y the number of played sounds, a = (a1,a2) the coefficients of the regression 341 

model, b the constant term of the regression and x a two-dimensional dummy variable encoding 342 

the different selection criteria, such that x = (0,0)  for the acoustic summary based on saliency, 343 

and x = (1,0) and x = (0,1) for the frequency of occurrence and the combined criterion 344 

respectively. After excluding the outliers in Figure 4, the null hypothesis H0: a1 = a2 = 0 is 345 

rejected based on an overall F-test for regression: F(2,40) = 3.42, p = 0.04.  This means that the 346 

selection criterion has a significant influence on the number of sounds played (α < 0.05). In this 347 

regard, it should be noted that, although randomized, the order in which the summaries based on 348 

each of the three criteria were presented could have influenced the number of played sounds, 349 

even given that the acoustic summaries constructed using the different selection criteria 350 

contained different sounds. The order, also coded as a two-dimensional dummy variable, is thus 351 

added to the above regression model, and the null hypothesis H0: a1 = a2 = b1 = b2 = 0 cannot be 352 

rejected this time, with F(4,38) = 1.82, p = 0.14. This implies that the order of presentation does 353 

not have a significant influence on the number of played sounds. Moreover, the adjusted ��� is 354 

the highest when the criterion is the only explanatory variable (��� = 0.10) and it decreases if the 355 

order of presenting the three criteria is added to the regression model (��� = 0.07). The same 356 

holds if such order is included in the regression equation as the only explanatory variable (��� = 357 

0.02). A further indication that the number of sounds is only influenced by the acoustic summary 358 

criterion and not by the order of presentation is given by an F-test comparing the two regression 359 
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models. The extended regression model with the order added does not provide a significantly 360 

better fit: F(2,38) = 0.34, p = 0.72. 361 

3.3 Experiment 2 362 

In the second experiment, three acoustic summaries, all calculated for the location where 363 

the participant lives, but either formed by the saliency, the frequency of occurrence, or the mixed 364 

criterion were presented. The participants were asked to rank the presented fragments based on 365 

perceived accuracy in representing the surroundings of the participant’s own home (see 366 

Appendix B for a snapshot of the experiment). The results of this experiment are shown in 367 

Figure 5 where frequency of the given ranks (1, 2, or 3) is depicted per acoustic summary. The 368 

acoustic summary based on frequency of occurrence is clearly considered the least 369 

representative: its cumulative distribution, shown in Figure 5 (b), lies under the cumulative 370 

distributions related to the other two criteria. Moreover, the cumulative distribution related to the 371 

combined criterion shows that the acoustic summary related to this criterion is ranked first or 372 

second by 15 out of 16 participants. In order to reject the null hypothesis of a discrete uniform 373 

distribution over the ranking, a Pearson’s χ
2 test has been performed for each criterion, rejecting 374 

this hypothesis for both the frequency of occurrence (χ
2 = 6.13, p = 0.95) and the combined 375 

criterion (χ2 = 6.13, p = 0.95). The same cannot be said about the ranking distribution related to 376 

the saliency-based criterion (χ2 = 0.88, p = 0.35), due to the non-negligible group of people 377 

considering it the least appropriate. A possible reason for it will be discussed in Section 4. 378 

3.4 Experiment 3 379 

In the third experiment, participants were asked to construct their own collection of 380 

sounds that represented the direct surroundings of their home, by selecting sounds from a set of 381 

64 sounds (see Appendix C for a snapshot of the experiment). Half of the sounds from which the 382 
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participants could choose were recorded at their home location, the other half were recorded at 383 

two other randomly chosen locations: 16 sounds at a location of group 1 and 16 sounds at a 384 

location of group 2. The participants were not told about such subdivision. All sounds belonged 385 

to acoustic summaries based on the combined criterion. This inclusion/exclusion of sounds in the 386 

final sound collection can be seen as a binary classification task; therefore it makes sense to 387 

define true and false positives or negatives. The sounds coming from the participant’s location 388 

that were rightly selected by the participant are called true positives (TPs), while selected sounds 389 

recorded at other locations are called false positives (FPs). The true negatives (TNs) are the 390 

sounds from other locations correctly not selected and the false negatives (FNs) are the sounds 391 

from the surroundings of the participant’s home that were not selected. The higher the number of 392 

TPs and TNs, the better the acoustic summary model has captured the peculiarities of the sound 393 

environment at each location. 394 

An overview of the results for all participants is shown in Figure 6. The high variability 395 

among participants was to be expected. Nevertheless, 10 of the 16 participants scored TPs and 396 

TNs both greater than 16, with 16 being the expected result of a random guess. The False 397 

Positive Ratio (FPR) and the True Positive Ratio (TPR) are calculated and shown in Figure 7. 398 

The FPR is defined as the ratio between the FPs and the number of sounds from other locations, 399 

i.e. 32, while the TPR is the ratio between the TPs and the number of sounds from the 400 

participant’s location, again 32. The higher the TPR and the lower the FPR are, the more 401 

convincing the acoustic summary. In Figure 7 one can see that all participants except one score 402 

better than a random guess (which would give a point along the diagonal line, the so-called line 403 

of no-discrimination). Moreover, the participant called Ko2 in Figure 6 is very far from this line 404 

too, showing that this participant was completely misled by the proposed sounds. In fact, from 405 
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Figure 6 it can be seen that he/she only selected sounds from the two other locations. The results 406 

of the third experiment support the findings from the first experiment. Participants from Bi and 407 

Sp –not making any mistake in the first experiment– scored on average better than participants 408 

from Bu, who, in turn, scored better than participants in Ko, as shown in Figure 8 where the 409 

accuracy, defined as (TPs+TNs)/64, is plotted. In addition, the participants from Ko show the 410 

highest variability: the first and second participant respectively have the best and the worst 411 

accuracy among all participants. 412 

It can be noted that the accuracy of the participants from Ko follow the results they 413 

obtained during the first experiment: the first participant got the best score in the first 414 

experiment, making only one mistake, the third participant made two mistakes out of three, while 415 

the other two participants could never select their own acoustic summary. It is also worthwhile 416 

checking whether accuracy was influenced by the number of sounds played in the second 417 

experiment. Participants listened exclusively to sounds coming from their own surroundings just 418 

before performing the third experiment. So it could have been possible that correct selection in 419 

the third experiment was enhanced if more sounds had been listened to in the second experiment. 420 

An F-test on the simple linear regression model between accuracy and number of played sounds 421 

in the second experiment does not reject the null hypothesis of unrelated variables, i.e. a slope 422 

equal to zero (F = 2.18, p = 0.16). The same conclusion holds if precision, defined as 423 

TPs/(TPs+FPs), instead of accuracy is considered (F = 1.13, p = 0.31). 424 

3.5 Experiment 4 425 

In the last experiment, participants were asked to label 20 sounds that were randomly 426 

selected from the 32 sounds composing the saliency-based acoustic summary from their dwelling 427 

location (see Appendix D for a snapshot of the experiment). This experiment was followed by a 428 
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small questionnaire in which each participant was asked to leave free comments about the 429 

experiment (see Appendix D). In an open question, it was asked whether there were sounds not 430 

heard in the labeling experiment that should have been included in order to better represent the 431 

surroundings of the participant’s home. The comments, summarized in Table 3, are important 432 

hints to better understand the obtained results. For example, the comments written by the 433 

participants from Ko can explain their errors in the first experiment: three out of four were 434 

expecting the typical sounds of the market held each Sunday morning in their neighborhood. 435 

Those sounds were not present in the acoustic summaries because the sound sample retrieval was 436 

not running during any Sunday, thus missing the very specific so-called soundmarks of that 437 

location (Schafer, 1977). The same could be said about the comment of participant Ko2: the 438 

construction works referred to were a very recent activity, which started only after the sound 439 

sample retrieval stage was completed. In addition, the participants from Bu missed the typical 440 

sound of the elementary school located at the backside of their dwelling. These soundmarks were 441 

not recorded because the microphone was placed at the front façade of the dwelling. It is worth 442 

noting that the main remarks came from the participants living in Ko and Bu, which were the 443 

only ones making errors during the first experiment. 444 

4 Discussion 445 

The main rationale behind this work was to introduce a new way of investigating the 446 

acoustic environment at a particular location based on sounds instead of visual maps or other 447 

visually-based methods. The first idea emerging from this study is the importance of soundmarks 448 

in describing a soundscape: any acoustic summary which lacks soundmarks would be considered 449 

to be less representative, as occurred in Ko or, to a lesser extent, in Bu. Typically, soundmarks 450 

have a very specific temporal pattern and occurrence, thus sound sample retrieval needs to run 451 
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continuously in order to include also these potentially less frequent, but highly relevant 452 

soundmarks. In Ko, for example, the sounds produced on Sunday by the music bands and by 453 

visitors of the flower market are important soundmarks, not captured by sound sample retrieval 454 

and therefore not included in the acoustic summary. This lack is the principal cause of the wrong 455 

answers for experiment 1. 456 

Together with soundmarks, spatiality also plays an important role in defining the 457 

soundscape. The present research focused on the front façade, where one would have assumed to 458 

find the majority of characteristic sounds, but it can happen that soundmarks can only be 459 

observed at the other side of the dwelling, as occurred in Bu. Participants appear to be capable of 460 

taking these spatial differences into account when judging the acoustic summaries; despite the 461 

lack of typical school sounds, participants from Bu scored quite well thanks to typical sounds 462 

from the front façade. The results from the third experiment demonstrate that, in general, 463 

participants can identify “their” sounds better than random guessing. Moreover, the results from 464 

the first and the third experiment suggest that the representativeness of an acoustic summary is a 465 

direct consequence of the representativeness of each sound composing it: the summaries that 466 

were composed of non-representative sounds were also not recognized. Nevertheless, the number 467 

of false negatives and false positives cannot be neglected in general: the sound samples 468 

composing an acoustic summary can, most of the time, be associated to more than one location, 469 

if they are considered separately from the other sounds. Therefore, results of this experiment 470 

confirm the validity of using an acoustic summary for representing or evoking a soundscape. 471 

Considered as a whole, such a collection of sounds can be much more representative of the 472 

uniqueness of a sonic environment than each single sound on itself that is part of the acoustic 473 

summary. 474 



22 

 

The finding that most participants were able to answer correctly given the limited number 475 

of sounds played, suggests that 32 is a sufficient number of sounds for an acoustic summary to 476 

characterize a location. Thus, selecting such a limited set of sounds is as crucial as the sound 477 

sample retrieval itself: it would make no sense to continuously retrieve sound samples if the 478 

soundmarks and other typical sounds would not be selected for the acoustic summary afterwards. 479 

In this work, the number of sounds composing the acoustic summary was heuristically 480 

determined and was the same for all locations. However, the richness of a soundscape depends 481 

intrinsically on the considered location. Our model could therefore be improved in future, 482 

considering acoustic summaries composed by a variable number of sounds. For example, a 483 

measure of the overall similarity among the SOM reference vectors could be used to determine 484 

the richness of the sonic environment at a given location, and consequently the number of sound 485 

samples that should be selected. 486 

The second experiment confirms that frequency of occurrence is not the best criterion for 487 

selecting the sounds composing the acoustic summary. In many locations the sounds selected 488 

based on this criterion are typically very quiet, especially in residential areas or parks, thus 489 

missing the less often occurring but much more salient sounds. Hence, saliency is a better 490 

criterion for constructing the acoustic summary, but there is still a non-negligible group of 491 

people considering it the least appropriate. Selecting only highly salient sounds typically comes 492 

down to selecting loud sounds, and an excessive number of such fragments is no longer 493 

representative of the sound environment in urban residential areas. Therefore, a combination of 494 

frequency of occurrence and saliency was conceived and tested. The second experiment 495 

demonstrates that such a combination is a simple and valid strategy for representing a 496 

soundscape in the way a human would. Based on these results, more advanced processing 497 
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models could be tested in the future, for example, adding human-like top-down attention 498 

mechanisms in the model as in Boes, Oldoni, De Coensel, and Botteldooren (2013, 2014). In the 499 

present work, a fixed sound sample duration of 5s was used; however, every sound event has its 500 

own typical duration and it should be preserved in order to better represent the sound events 501 

composing the acoustic summary. The model presented by Boes et al. (2013, 2014) could help to 502 

solve this issue. 503 

5 Conclusions 504 

This work presents a computational model for constructing a comprehensive and 505 

representative collection of sounds that are present at a given location. Such a collection, called 506 

an acoustic summary, can be a useful tool for quickly presenting and analyzing the sound 507 

environment at a given location. The model consists of two stages: in a first stage, a Self-508 

Organizing Map is tuned to the typical sounds at the given location, and, in a second stage, an 509 

acoustic summary is constructed by first collecting and then selecting specific sound samples 510 

based on the trained map. The model takes into account aspects of human auditory perception, 511 

such as bottom-up selective attention and learning. 512 

A listening test involving local residents has been performed to evaluate the ability of the 513 

model to produce acoustic summaries representative of the sound environment at a number of 514 

urban locations. The test demonstrated that the model can construct representative acoustic 515 

summaries. In particular, the model produces broad and satisfactory sound libraries from which 516 

the acoustic summary can be extracted. In general, satisfactory results are obtained from all the 517 

three tested criteria used for selecting representative audio samples from the sound library to 518 

compose the acoustic summary. However, the acoustic summary criterion combining saliency 519 
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and frequency of occurrence of the sound events generally produces the best acoustic summary. 520 

The saliency-based criterion produces good acoustic summaries as well but risks overweighing 521 

highly informative and salient sounds. In addition, participants judged the acoustic summaries 522 

based on frequency of occurrence alone to be the least representative due to the prevalence of 523 

quiet sounds, which are much less informative of the given soundscape, even though they occur 524 

very often in residential areas. Finally, the test demonstrated that only a few sounds are needed to 525 

represent the sound environment of an urban area, confirming the choice of 32 sounds for each 526 

location. 527 

The procedure for calculating acoustic summaries introduced in this work has already 528 

been automated and implemented in low-cost sound measurement hardware (Botteldooren et al., 529 

2013), such that a plug-and-measure device can be put outside, and after a few weeks the set of 530 

sounds comprising the acoustic summary at that location is available online. Nevertheless, the 531 

potential of the acoustic summary tool for representing and analyzing an existing sound 532 

environment would still be sensibly improved by wrapping it in a user-friendly application at the 533 

disposal of urban planners or any other interested end users. Furthermore, the approach outlined 534 

in this work allows to compile an acoustic summary for a virtual acoustic environment in the 535 

same way as it would for any existing one. Although the challenge of acoustic design of urban 536 

space has attracted sporadic attention since long, during the past decade, research interest has 537 

risen considerably, partly driven by the advent of realistic environmental simulation models, 538 

such as auralization. Substantial progress in this field can be expected during the coming years; 539 

increasingly efficient and accurate physics-based methods may soon make it possible to render 540 

virtual acoustic scenes that cannot be distinguished from real auditory environments. Combining 541 

computational models of auditory perception of environmental sound, such as the acoustic 542 
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summary presented in this paper, with state-of-the-art auralization would put the results of this 543 

work on the cutting edge of this field, promoting a multisensory approach in creating the 544 

soundscape of future cities. 545 
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Table 1 

Coordinates, Lden (dBA) and qualitative description of the sonic environment at the six locations 

where the acoustic summary model has been tested. All the locations are situated in the Ghent 

municipality, five of them in the city, one in a suburban area a few kilometers from the city 

center. A KML file with the locations is available with the online version of the paper. 

Location Coordinates Lden 
(dBA) 

Description 

Ko 51° 2' 59.6142" N, 
3° 43' 26.0544" E 

71.4 Urban square in the city center. Road traffic noise due 
to private and public transportation, noise from 
pedestrians and a music fanfare on Sunday. 
Microphone placed on a windowsill at the 3rd floor. 

Bi 51°3'26.7588" N, 
3°43'44.6880" E 

61.3 Urban no-through street in the center of Ghent, mainly 
used for parking. Limited road traffic noise due to 
private transportation, noise from pedestrians and 
children playing from a recreational area in the 
neighborhood. Microphone placed on a windowsill at 
the 1st floor. 

Sp 51°2'30.5262" N, 
3°42'26.4852" E 

65.5 Urban street in a residential area. Road traffic noise 
due to private and public transportation. Microphone 
placed on a windowsill at the 2nd floor. 

Bu 51°1'54.7176" N, 
3°43'38.0064" E 

73.3 Urban street parallel to a railway. Road traffic noise 
due to private and public transportation, train noise. 
Microphone placed on a windowsill at the 3rd floor. 

Be 51°3'15.6384" N, 
3°43'31.0080" E 

65.2 Urban street in a restricted traffic zone in the very 
heart of Ghent. Limited road traffic noise due to the 
transit of taxi and trucks for restaurant and shop 
delivery, noise from pedestrians due to the presence of 
the most important tourist attractions of the city and 
very distinct bell melodies from the nearby belfry. 

Dr 51°3'14.4216" N, 
3°38'37.4640" E 

56.4 Quiet rural place, about 500 meters from a railway. 
Microphone placed in the backyard of a house in a 
countryside village. 
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Table 2 

Gender and age of the participants in the experiment. The participants are identified by their 

location and a progressive number. 

Participant Gender Age 

Ko1 M 33 

Ko2 M 31 

Ko3 F 31 

Ko4 M 44 

Bi1 F 27 

Bi2 M 39 

Bi3 M 42 

Bi4 M 34 

Sp1 M 28 

Sp2 M 30 

Sp3 F 20 

Sp4 F 21 

Bu1 M 34 

Bu2 M 22 

Bu3 F 51 

Bu4 M 23 
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Table 3 

Main concepts expressed in the comments written by the participants after listening to and 

labeling 20 sounds randomly selected from the 32 sounds composing the acoustic summary 

based on saliency. In particular, the participants were asked whether there were sounds not heard 

in the labeling experiment that should have been included in order to better represent the 

surroundings of their home. The concepts are linked to the participants who wrote them. 

Participant Comment 

Ko1, Ko3, Ko4 It would be nice to include sounds of the music bands playing on Sunday 
morning and during flower market on Sunday. 

Ko2 I didn't hear noise samples of the construction works going on in the square 
where we live. Otherwise it was very representative. Ninety-five percent of 
the audio samples were traffic noises: it corresponds well to the amount of 
traffic we have in front of our apartment. 

Bi1, Bi2, Bi3 No comment or positive remarks as “good representation, typical sounds 
and ambience” 

Bi4 I would include some sounds from the music school at the other side of the 
street 

Sp1, Sp3, Sp4 The sounds represent our street, especially the buses. 

Sp2 More calm situations are needed. 

Bu1, Bu2, Bu3 I miss the sounds of the back of the house, e.g. the children playing in the 
playground. 

Bu4 Most of the sounds are present. 
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List of figures 
 

Figure 1. Schematic overview of the proposed computational model: (I) learning stage and (II) 

acoustic summary formation stage. Both stages start with a simplified  model for peripheral 

auditory processing (I.a, II.a). During the learning stage, the output of such processing is used for 

training a self-organized map of acoustical features (I.b). During the acoustic summary formation 

stage, the trained map is used for retrieving sound samples and thus forming a sound library 

(II.b). Finally, an acoustic summary is formed by selecting a limited number of sounds from the 

library based on a ranking method (II.c). 

Figure 2. U-matrix showing the distance between the reference vectors of neighboring SOM 

units (in arbitrary units), by means of a color coding, (left) after the first training session using 

the original Incremental SOM algorithm and (right) after the continuous selective learning has 

been performed. 

Figure 3. Correctness of the answers given by the 16 participants from the four locations of 

group 1 (Ko, Bi, Sp, Bu), when being asked to select the acoustic summary that corresponded to 

the surroundings of their home. 

Figure 4. Histogram of the number of sounds the participants played before deciding which 

acoustic summary best represented the surroundings of their home. 

Figure 5. Overview of the results of the second experiment. Participants were asked to rank three 

acoustic summaries, compiled from sounds recorded in the surroundings of their own dwelling, 

according to their representativeness. The three acoustic summaries were selected by means of 

three different criteria: saliency, frequency of occurrence and a measure that combines both. The 
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ranking (a) and its cumulative distribution (b) are shown. Rank 1 means that the acoustic 

summary is considered “the most representative”, while rank 3 means “the least representative”. 

Figure 6. Overview of the results of the third experiment. Participants were asked to make their 

own acoustic summary that represented the direct surroundings of their home, by selecting 

appropriate sounds among 64 sounds. The participants are denoted by a location acronym and a 

progressive number. The sounds from the participant’s location correctly selected, called true 

positives (TP), are shown in black; the sounds from a different location wrongly selected, called 

false positives (FP), are shown in dark grey; the sounds from the participant’s location not 

selected, called false negatives (FN), are shown in light grey; the sounds from other locations 

correctly not selected, called true negatives (TN), are shown in white. 

Figure 7. Scatter plot of the True Positive Rate versus the False Positive Rate, calculated on the 

basis of the results shown in Figure 6. Different markers are chosen for the four locations from 

which the participants were recruited. The line of no-discrimination is also shown; a random 

guess would give on average a point on this line. 

Figure 8. Accuracy in selecting one’s own acoustic summary, for all participants, subdivided by 

location. 

Figure A1. Snapshot of the first experiment. 

Figure B1. Snapshot of the second experiment. 

Figure C1. Snapshot of the third experiment. 

Figure D1. Snapshot of the fourth experiment. 

Figure D2. Snapshot of the comment page.  
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Appendix A. Title: Snapshot of the first experiment 

In the first experiment the participants were asked to perform the following task: 

In the pictures below you will discover a collection of sounds by clicking on different areas of 

these pictures. Each picture corresponds to a particular place in Ghent. The intensity of red 

color indicates how frequently each sound would be noticed at this place. One of the pictures 

corresponds to the direct surroundings of your home. Select the button below the one you think it 

is. 

In figure A1 a snapshot of the first experiment is shown. 

  



42 

 

Appendix B. Title: Snapshot of the second experiment 

In the second experiment the participants were asked to perform the following task: 

In the pictures below you will discover a collection of sounds by clicking on different areas of 

these pictures representing the direct surroundings of your home. The intensity of red color 

indicates how frequently each sound would be noticed. Now please rank these pictures according 

how appropriate they are to the direct surroundings of your home. Type 1 for the most 

appropriate one, 3 for the least appropriate one. 

In figure B1 a snapshot of the second experiment is shown. 
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Appendix C. Title: Snapshot of the third experiment 

In the third experiment the participants were asked to perform the following task: 

Now we would like you to make your own collection of sounds that represents the direct 

surroundings of your home. For this, select the appropriate sounds in the table below and 

indicate how frequently you hear them using the color scale. 

In figure C1 a snapshot of the third experiment is shown. 
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Appendix D. Title: Snapshot of the fourth experiment 

In the fourth experiment the participants were asked to perform the following task: 

Finally, could you please name in your own language the following sounds recorded in the 

surroundings of your home? 

In figure D1 a snapshot of the fourth experiment is shown. Afterwards, the participants were 

asked to leave free comments: 

Thanks for your participation. Would you like to leave any comment about the experiment? In 

particular, are there sounds not heard in the last experiment which should have been included in 

order to represent the surroundings of your home? 

In figure D2 a snapshot of the final comment page is shown. 
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