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Highlights (for review)

Highlights:

e The acoustic summary of a place is a collection of representative sounds

e Acoustic summaries of several urban and quiet area locations are constructed using an
automated procedure

e A validation test with local residents assesses the quality of the acoustic summaries

e Local residents can easily identify the acoustic summary extracted at the location of their
own dwelling

e A group of sounds describes the uniqueness of a place, rather than single sounds by
themselves
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1 Introduction

[EEN

2 Livability of the urban environment has always been a compelling issue for urban
3 planners. Citizen well-being is related to the quality of the urban environmefieredi ways.
4  Person-environment mismatch at the dwelling may lead to stress and retdtednhpeacts
5 (Lazarus, 1991) but also the quality of the public space is of utmost importance. High qualit
6 public spaces stimulate social cohesion, recreation, and physical a&eatyn0-Rung, Mowen,
7 & Cohen, 2005)The role of urban green areas in particular has been investigated exyansive
8 this respect. Several studies from the last decades indicate that people&qeggal restoration
9 and well-being is enhanced by direct access to nature and restorativ@Harntigs BOOKk,
10  Garvill, Olsson, & Garling, 1996; Kaplan, 1983, 1985; Ulrich, 1981; Ulrich et al., 1991), by
11 visual access to such areas from the dwelling (Kaplan, 1993, 2001; Ulrich, 1984) and by their
12 perceived availability (Gidlof-Gunnarsson & Ohrstréom, 2007). The positive rolecpbaysuch
13 areas has mainly been studied from the perspective of visual diversitylmessrand aesthetics.
14  However, the role of the soundscape and in particular quietness and tranquilitgasimgly
15  being stressed (Gidlof-Gunnarsson & Ohrstrém, 2007). Therefore, there is asimgre
16  awareness of the fact that the sonic environment forms an essential compohenirbén
17  environment that requires as careful planning as the landscape (Carles, 8dgilLucio, 1999;
18  Liu, Kang, Behm, & Luo, 2014; Liu, Kang, Luo, Behm, & Coppack, 2013; Zhang & Kang,
19  2007). However, it is also shown that landscape and soundscape planning should not be tackled
20 independently, as landscape indicators have a non-negligible impact on the soundsoatpe (Li

21 al., 2013, 2014).


http://ees.elsevier.com/land/viewRCResults.aspx?pdf=1&docID=6445&rev=1&fileID=344180&msid={669B5BEF-F05D-4B6A-8C93-6F4C70A428A3}
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Classically, urban sound has been treated as a waste product to be tackledakith suit
noise control policies, for which the most popular and visible tool has been extensive noise
mapping. However, the final goal of planning and designing urban environments is not only
noise abatement, but the creation of spaces with matching positive acoustiesgual
(Botteldooren, De Coensel, Van Renterghem, Dekoninck, & Gillis,)200fs approach,
typically referred to as th@undscape approach, is getting increasing multidisciplinary attention
and is the subject of several projects and studidar(is et al., 2006; Brown, Kang & Gjestland,

2011; Pijanowski et al., 2011a; Pijanowski et al., 20Zhang & Kang, 2007). As the

soundscape concept extends beyond the sonic or acoustic environment and includes tee way it i

perceived and understood by a typical user of the space and within a particulet;, toat®ols

at the disposal of the urban sound planner and soundscape designer should account for human

auditory perception (Oldoni et al., 2013).

Today, physical registration of relevant acoustical parameters imonly accepted as a
first soundscape analysis step (Schulte-Fortkamp, Brooks, & Bray, 2008), flbywnan
evaluation of the perceptual effects by techniques such as targeted intenviegusestionnaires,
preferably involving community members who live at the location under study (Brooks, 2006;
Axelsson, Nilsson, Hellstrém, & Lundén, 201Zhe combination of these two approaches is
calledcombined soundscape analysis (Adams et al., 2006; Schulte-Fortkamp et al., 2008) and it
is often deployed by means of soundwalks, in which sound measurements and perception
interviews are conducted simultaneously. In a research perspective ulteeasscombined in
order to find quantitative relationships between physical sound indicators and pedrceptu
attributes Berglund & Nilsson, 2004.iu et al., 2014). Soundwalks are a popular methodology

for understanding outdoor soundscapes (Adams et al., 2008), but they are inherentéyrshort-t
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and typically include only daytime. For this reason, several long-teategtes have been

developed, mainly based on mobile sound measurements and community involvement, e.g. with

public workers such as local police officers (Schulte-Fortkamp et al., 2008)apiioach is
surely more detailed and complete, but requires a considerable organizttmmand regular
and constant participation, resulting in feasibility and reproducibility ssdnéoth short and
long term approaches, a methodology for systematically selecting amdingca
comprehensive collection of sounds that is representative for the sonic enviramthenvay
that it is perceived and understood by so-called “local experts” — inhabitehtssgors — would

mean a significant step forward in soundscape methodology.

In this paper a neural-network-based model is proposed that automaticalhycisresh
acoustic summary, i.e. a collection of sounds that are likely to be noticed at a particular location
and together represent the sonic environment at that location. The acoustic suamuaoyicle
a quick overview of the sounds present at a specific location, thus being a useful to®l for t
urban planner and the soundscape designer. In contrast to most of the computationgl auditor
scene analysis (CASA) models (8&ang & Brown (2006for an overview), the major interest
here does not lie in extracting as clean as possible sound samples for all cospbitent
auditory scene. On the contrary, the intention is to summarize the sonic environmegmnigi
those sounds that a human observer, not particularly focusing its attention to envirbonmenta
sound, would notice. Note this explicit limitation of the acoustic summary to bhdiggning
only. Listening is a process that can develop at different cognitive lendl#, @uld be
attentive and analytic rather than holistic. However, within attentive andtiariegyening, top-
down information is taken into account, which is much harder to implement in a computational

model.
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The proposed model partly takes inspiration from specific CASA techniques for
extracting salient fragments of the auditory scene but it is also inspireédhanisms
underlying human bottom-up attention (Duangudom & Anderson, 2007; Kalinli & Narayanan,
2007; Kayser, Petkov, Lippert, & Logothetis, 2005). Moreover, most CASA techniques are not
context dependent. Distinguishing between frequently occurring sounds and out-of-oontex
rarely occurring sounds is a crucial aspect in constructing an acoustic surRorahis reason,
besides a biologically inspired auditory processing model, learning is a veryampagpect in
the presented model. It is implemented by means of a neural networkSsHH@dganizing
Map (SOM) or Kohonen Map (Kohonen, 2001) and a specifically tailored learning technique.
Furthermore, the model attempts to create a compromise between biologurakcs and
computational efficiency as the model is to be integrated in equipment for lomgaédoor
measurement and the data processing underlying the decision whether or ravttpaeecular

sound events has to be performed in real-time.

The structure of this paper is as follows: Section 2 describes the neuratnbased
model to construct the acoustic summary. Section 3 is dedicated to the resultsd#temrnakst
performed by local residents in order to assess how accurately the @asanstary is
representing the sound environment in their neighborhood. Section 4 discusses the results and

future developments. Finally, in Section 5 conclusions are presented.

2 Methods

2.1 Overview
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Constructing the acoustic summary requires a computational analysisaoidibay
scene that mimics how a human observer would split this auditory scene in itatreleva
components. Considering the application of the model in long-term outdoor measurement
stations, computational efficiency has to be considered. For this reasomgedettiled
auditory processing models for loudness (Glasberg & Moore, 2002), maskingei@l&s
Moore, 2005) and auditory saliency (Kayser et al., 2005) are replaced by suingtifsgons.
The proposed model is comprised of two main stages, illustrated in Fig. 1: (I) theilggrning
phase, a self-organizing map (SOM) is tuned to the typical sounds at the given loaséidron
the sound level and its spectrum, and (II) during the acoustic summary formationfphaaeh
class of sounds thus obtained, prototypes are recorded to compile the acoustic sunahary. Re
time operation is required in the second stage due to the limited sound buffer of typioal out
measurement stations. In both stages, the sound signal recorded by the microfpisbreaed
in a similar way as in the human peripheral auditory system (l.a and lhajely both a set of
acoustical features is extracted and a measure of auditory safieratgulated. The learning
stage classifies the acoustical features based on co-occurrehcsifigthe incremental SOM
algorithm and a training technique call@adntinuous Selective Learning (CSL) that was
developed specifically for this purpose. Once the learning has ended, the traMes0e
used for automatically triggering the recording of typical and salient soumtig) ¢his way
incrementally forming a library of prototypical sounds (ll.b). The acoustic sugni® then
compiled by selecting a small number of sounds from this sound library, based on a ranking

method (1l.c). In this paper three different ranking methods will be presented andedalida

2.2 Sound feature extraction
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The sound feature extraction stage of the proposed model is highly inspired bgla mod
for auditory attention that was developed earlier by the authors (Oldoni et al., 2Q¥3). A
octave band spectrum with a temporal resolution of 0.125 s is calculated staririydrraw
audio signal. This temporal resolution was chosen based on the typical temporal eofvelope
urban environmental sounds (De Coensel & Botteldooren, 2006; De Coensel, Botteldooren, &
De Muer, 2003), and allows to capture the temporal dynamics of most of the typical urba
environmental sound sources. To account for energetic masking, a simplified ccanls@gr
is then calculated based on the Zwicker loudness madetKer & Fastl, 1999covering the
complete audible frequency range (0 to 24 Bark) with a spectral resolution ofrR, 5eBalting
in 48 spectral values at each time step. The auditory system is, in addition toesinsensity,
also sensitive to spectro-temporal irregularit®sif, Arnott, & Picton,2001;Bregman, 1994;
Houtgast, 1989; Yost, 1992). The proposed model therefore calculates measures fty,intensi
spectral and temporal modulation using a center-surround mechanism (Schreade& Re
Sutter, 2000), based on auditory saliency models (Duangudom & Anderson, 2007; Kalinli &
Narayanan, 2007; Kayser et al., 2005). More in detail, a convolution of the cochleogram with 16
2D Gaussian and difference-of-Gaussian filters is performed in paredath time step,
resulting in a set of multi-scale features calledstund feature vector, consisting of 16 x 48 =
768 values. This set of values characterizes the loudness, spectral and temyotued ®f the
sound at each time step. The corresponding 768-dimensional vector space willirbd tefas
the sound feature space. More technical details about the sound feature extraction can be found
in Oldoni et al. (2010). Finally, a scalar value calledaverall auditory saliency is calculated
from the sound feature vector, according to the algorithm developed by De Coensel and

Botteldooren (2010).
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23 Learning

The feature vector provides extensive information about the sonic environment at a give
time step. Analysis of the sonic environment should usually last for a long pergig&om a
few days to several weeks, depending on the richness in sounds of the sonic envirorimaent at t
given location. The crucial point is how to use such a large amount of data to construcsex conc
but exhaustive acoustic summary. In this paper a neural-network-based hppmaposed,
which makes use of a self-organizing map. Several topographic maps have beesddhgee/
visual and auditory cortex (Heil, Rajan, & Irvine, 1994; Kayser, Petkov, Augath, &thetis,
2007; Morel & Kaas, 1992; Yin, 2008) and the SOM has been originally conceived as an abstract
mathematical model of such topographic mapping. Moreover, the SOM is typicaltbdedsas
an unsupervised learning-based method for clustering and visualizing high-dimengi@anal da
(Kohonen, 1998), another important aspect to take into account due to the high-dimensionality of
the sound feature space. In the framework of the present model, the SOM should eveatually |
which features belong to the same auditory object based on co-occurrencenteughthe size
of a representational area of a sound in the primary auditory cortex is clelsédyl to its
importance Rutkowski & Weinberger, 200%nd the strength of the memory effdgigszczad
& Weinberger, 201)) an aspect of auditory learning that is very well modeled by a SOM and the
CSL algorithm which will be described later in this section. As mentioned ir8dgtcontext
dependency should be considered while selecting sounds for constructing an aconsicysum
Knowing the context can entail familiarity with the sonic environment andibbBan shown that
familiarity with the sound to be detected makes the detection easier (DaNkmgton, Puce,

Engel, & Frum, 2011). The extensive training on sound feature vectors at the microphone
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location tunes the SOM to the typical sounds composing the local sound environment and thus

makes the system “familiar” with them.

The SOM used in our model is a 2D network of 3750 equal-spaced units in a regular
hexagonal lattice. Each unit has an associated reference vector in thenégisidnal sound
feature space. The initial values of the reference vectors are calcuylatezhbs of principal
component analysis on an input data subset as in Kohonen (1998). After initializationceefere
vector coordinates are modified during a first training phase which is based originalOr
Incremental SOM Algorithm (Kohonen, 2001). For this, sound feature vectors steifnommg
particular recording location are presented to the SOM. At each time step,tthvttuneference
vector that most closely matches the current sound feature vector isgétechmonly called
the best-matching unit or BMU). The reference vector of the BMU, and to a lesser extent the
reference vectors of the neighboring units in the 2D lattice, are then moveadtalteeinput
feature vector. After this initial training phase, the reference vestdah® SOM units can be
seen as a non-linear discrete 2D mapping of the probability density functionsoiuting: feature
vectors used for training. In particular, some regions of the sound featueeceyaiain more
reference vectors than others, thus preserving the high-dimensional relatiamgtgdging the
input feature vectors (Kohonen, 2001). When positioning a new sound feature vector with
respect to the trained SOM, the distance to the BMU gives an indication of theigjrof the
current sound to earlier encountered sounds. When the distance to the BMU is small, a very

similar sound was encountered before, during the training phase.

The learning algorithm described above is purely based on frequency of ocelwaneh
does not take into account the fact that human perception and retrospective assé¢sssw@nit

environment also depends on the saliency of the sounds. Salient sound events would be better



179  noticed and remembered than less salient ones (Ranganath & Rainer, 2003), eyatvoihtite
180  occur that often. Therefore, the SOM trained with the original incrementdl &gorithm is

181 used as a starting point for a second much longer training phase which implemetinsi¢cis)
182  selective learning (Oldoni, 2015; Oldoni et al. 2013). The instantaneous overall auditory
183  saliency, scaled as a number between zero and one, is used for modulating the bgarning r
184  parameter during the selective learning phase (Oldoni, 2015): the learngéagdmasound

185 feature vectors whose related saliency values are higher than 0.5 is enfgnoeving the

186  reference vector of the BMU and neighboring units closer to the input feature lvgetgreater
187  amount), while learning based on feature vectors corresponding to sounds witedbarey is
188 somewhat suppressed (by moving the reference vector of the BMU and neighbyotsncloser
189  to the input feature vector by a lesser amount). The second goal of usang\sali selective
190 learning is to reduce the number of SOM units whose reference vectoratae t@ often

191  occurring but non-relevant sounds, such as the urban background hum, and to increase the
192  number of SOM units that are related to sound events. At each time step, the BMU issfound a
193  before. However, not all input sound feature vectors are used as inputs during thesselec
194 learning: a learning phase is triggered only if the distance to the BMghertthan an

195  activation threshold , (indicating the presence of a sound that has not been encountered
196  before). All subsequent input vectors are then selected as inputs for training, unstaheedto
197 the BMU drops below a deactivation thresholgyk Furthermore, sound feature vectors

198  occurring a few seconds before the triggered learning period are inclodbi. paper, a 2-

199  second pre-trigger period is used, corresponding to 16 time steps. The threghaitdb Town
200 are chosen in such a way that less than 10% of all sound feature vectors aranmseda@s

201  selective learning. After some weeks of running the CSL, it is observeth¢h@OiM can
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202 identify — in terms of distance to the BMU — most of the sounds occurring in the acoustic

203  environment for which the SOM was trained (Oldoni, 2013).

204 In order to visualize the effects of training on the SOM reference vecterspitalled U-
205  matrix (Ultsch, 1993) is used. This matrix shows the distances between teacefeectors

206 related to each pair of neighboring SOM units. The effects of the CSL on theictusfecsOM
207 units can be seen in Figure 2 where the U-matrix after the first traising the original

208 incremental SOM algorithm is shown next to the U-matrix of the final SOdf tife CSL phase.
209 By means of a color coding, the U-matrix allows to distinguish groups of SOM utlitsimilar
210 reference vectors (small distances between neurons, in white) fornmareagh variability

211 (large distances between neurons, in black). After the first initiainigithe SOM is generally
212 still characterized by large distances between all neurons. The contours oferixalley” are
213  visible at the left side, related to background hum. In contrast, after the CSI_thieaS©M

214  shows much more structure, various valleys are visible, corresponding terdiffategories of

215  sounds.

216 24 Sound sampleretrieval and selection

217 The reference vectors associated to the trained SOM units can be seeasentafve

218 abstract sound prototypes, encoded by their sound feature vectors. Once a S@kEUdisitiEan
219  be used for constructing a library of sounds, whereby sound samples that aremtersinsine

220 sound feature space to the sound prototypes within the SOM are recorded. As shown in the
221 schematic overview in Figure 1, the first step in constructing the acousticasyns calculating
222 feature vectors for the sound observed at each time step as explained in SectionBMUT$e
223  then selected, and the distance between its reference vector and the currergstaumedctor

224 is calculated. Based on this distance, sound recording is triggered if tHed&&d unit has
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not been the BMU before (meaning that the encountered sound has not occurred before during
the sound sample retrieval phase), or if the distance to the BMU is smallenyhearker

distance for this BMU (meaning that a better matching sound sample is encduritbese

steps have to be taken with low latency due to the limited audio recording buffprcaf

acoustical measurement equipment. Sound samples are recorded from 3 seconds Befor
seconds after the recording trigger, for a total sound sample duration of 5s. Thanchaati

been heuristically found to be sufficient for producing an overall impression of the daund a
particular instant in time. It turns out that, for typical urban soundscapes, for the thgkSDM

units a representative audio sample is found after a few days of sound sangplal rdtnis set

of sounds can be seen as a sound library describing the sound environment at the measurement

location.

The large number of audio samples that is gathered through the procedure diescribe
above is unpractical for easy exploration of the given sound environment by listeriigis
reason, three ranking criteria are presented, which can be used to select af shsets that is
most representative for the given sound environment; this subset is then callexlittie ac
summary. The first proposed ranking criterion is based on saliency: the highaligheys the
more likely the sound sample will be representative and the higher its rankingplamed in
Section 2.2, a measured overall saliency value can be calculated at eachgifransthe sound
feature vector. The SOM reference vectors lie in the sound feature spaderéhsakency
values can be calculated for each of the units, resulting in a saliency avetlay SOM. A
second criterion is based on how often each of the SOM units was selected as tderBigla
given time interval, typically one day or more, resulting in a frequency of recme overlay on

the SOM. As mentioned in Section 2.3, the frequency of occurrence of sounds is nob lidely t
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248  a sufficient criterion to represent the sounds that will be noticed and rememlartds F
249  reason, a third intermediate method is proposed, in which a linear combination between both
250 saliency and frequency of occurrence of each SOM unit is performed:

log(o; +1)

C; = + *S;,
i occ logN ﬁsal i

251  whereg; is the combined ranking value of the SOM unit (and thus the associated sgisthe o
252 number of time steps for which the SOM ung the BMU,N is the total number of samples
253  used for calculating the frequency of occurrescis, the saliency of unitandfocc andfsy are

254  two positive weighting coefficients between 0 and 1 sofhatfsa=1. In casefocc =1 is chosen,
255  selection is performed purely on the basis of frequency of occurrence; ifsgakés chosen,

256  selection is performed purely on the basis of saliency. Any intermedilaite represents a trade-

257  off between both extremes.

258  The number of sounds to be selected depends on the envisaged use of the acoustic summary. In
259 the validation test that will be discussed in Section 3, 32 sounds for each criterion have been
260 selected based on their ranking. An a posteriori justification for selectiotjyettas number of

261 sounds is given in Section 4.

262 3 Validation test

263 3.1 Overview

264 A validation test has been designed to check the representativeness of the ealtpmati
265 generated acoustic summaries for an urban sound environment. Sound recording dexices we
266 installed at 6 locations in and around the Belgian city of Ghent, that will beagtteras Bi, Ko,

267 Bu, Sp, Be, and Dr. In Table 1 the day-evening-night equivalent soundUgyegnd a
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268 qualitative description of the sonic environment for each location is given. FotioiscBi, Ko,
269 Bu and Sp are situated in urbanized areas, Be is located in the very heart of thieileitir is

270  in the suburbs. Sound recording devices were installed on a windowsill along the front facade o
271 dwellings. Such a configuration is not standard for environmental noise level nmeastge

272 where microphones are usually placed at 1m from the fagade, in order to removieidémeendf
273 facade reflection on the sound level. However, for the purpose of audio recording, tessis a
274  important issue, and simply placing the devices on the windowsill is much morffeasitse.

275  Sixteen people living in the surroundings of the sound recording devices placed in By Ko, B
276  and Sp were contacted for participating in the test as local residemtpefdacation, based on
277  the proximity of their dwelling to the microphone positions. Recruitment wagdaruat by

278  putting flyers with an invitation to participate in a listening experimertiemtailbox; the

279  reward was one movie ticket. In Table 2 the gender and age of the participisieslid/ery few
280 people were living in the direct surroundings of the devices placed in Be and Dr, s§ naisod
281  contacted from these two locations. The acoustic summaries from these timkesere

282  therefore exclusively used as confounders and their quality was not assessedabgdtens

283  test. For this reason, Bi, Ko, Bu and Sp will be referred to as group 1 in the remaitiger of

284  paper, while locations Be and Dr will be referred to as group 2.

285 For each participant, three locations were selected at the beginning ot thi&éefirst

286  selected location was always the location from group 1 where the paitioiean The two

287  other locations were randomly selected: one location was chosen among the ajhaup af

288 and one among the two locations of group 2. The validation test itself was composed of four
289  consecutive experiments, followed by a small questionnaire in which comments could be

290 formulated. The test duration was not fixed and varied among the participants from 3sminut
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up to one hour, as participants could listen to all sounds presented as much as wanted.or neede
A portable computer with high quality sound card and a closed-type Sennheiser HD@80 PR
headphone were used for the experiment. The complete experiment, including display of
instructions, audio presentation, data collection and timing, was automated usiphieatjeser
interface in Matlab. A preliminary test was performed in order to selecbthect sound level

for the experiment and to ascertain the absence of hearing loss with daxthaper The

experiment took place either at the home of the participants or in a listenirgptasatrthe

university laboratory, depending on the availability of the participants. intbhagest was

performed at the participant’s home, quietness and the absence of distractersnsalered a
prerequisite. Before starting the experiment, the participants werenigd about the general

aim of the study; a verbal informed consent was provided by the participants.

3.2 Experiment 1

In the first experiment, the participants explored the sounds of the acousticrsesmwha
the three selected locations and had to select the one that they thought correspondicktd the
surroundings of their home (see Appendix A for a snapshot of the experiment). Thisnerper
was repeated three times, with acoustic summaries constructed usirgf teecthree criteria —
saliency, frequency of occurrence and combined criterion — in randomized order. &asticac
summary was visualized as a panel of 32 buttons, each corresponding to a different sound
sample. A color map spanning from yellow to red was used to color the different buttons.
Depending on the three different ranking criteria, the color encoded (1)itregaalues, (2)
the frequency of occurrence or (3) the combined valwg of the corresponding SOM unit. To
stress color differences, yellow was assigned to the smallest valuadaondhre highest value

among the 32 values fer, 0, andc;. Participants could listen to each of the sound samples as
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314 much as they wanted, by clicking the respective button, before selectingusti@summary

315 from the three candidates shown in randomized order.

316 In Figure 3 the results of the first experiment are shown. In total 13 parisiput of 16
317  correctly selected the acoustic summary that corresponded to the direahdings of their

318 home for summaries constructed on the basis of saliency and on the basis of the combined
319  criterion. Only 11 participants selected the correct acoustic summaryeiit @&ss constructed
320 on the basis of frequency of occurrence. The few errors are not equally divided amioog the
321 locations included in this test. All participants at the locations Bi and Sp dpmembgnized the
322  acoustic summaries; at the location Bu only one error for both saliency anceoceucriteria
323  occurred. The acoustic summaries from Ko were hardly recognized. Theettsrieft by the
324 participants suggest an overall lack of representativeness of the sunforattéslocation. This
325 may be due to a combination of both site characteristics (e.g. the soundscapleedtibatmay
326 be more diverse than at the other locations) as well as model and recordinteokticade.g.
327 soundmarks were missed at that location). The overall representativertessurhimaries will
328  be further discussed in Section 3.5 and Section 4. Overall, most errors were made for the
329  acoustic summary formed by frequency of occurrence, followed by the combitezmrand

330 then the saliency criterion.

331 In general, the high and similar number of correct answers for all three ressteaging
332  criteria indicates that the sound library from which the sounds are selectedpssed of

333 typical and representative sounds for the given location. To further explorblpaiBerences
334 between the three criteria, the number of sounds to which each participant listemed be
335 making a choice is analyzed. From Figure 4 it is clear that participantieddaster in case of

336 acoustic summaries based on saliency, while on average they needed to listéngtoetite
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number of sounds for frequency of occurrence-based acoustic summaries. This could be due to
the on average higher information content within the sounds, when they are selected based on
saliency. In order to check if the differences in number of sounds played betwdae¢he t
selection criteria are statistically significant, a linear regogsmodelY = ax + b was

constructed, withY the number of played soundss (a;,a2) the coefficients of the regression
model,b the constant term of the regression armdiwo-dimensional dummy variable encoding

the different selection criteria, such thlat (0,0) for the acoustic summary based on saliency,
andx = (1,0) andx = (0,1) for the frequency of occurrence and the combined criterion
respectively. After excluding the outliers in Figure 4, the null hypott&sia; = a, = 0 is

rejected based on an overall F-test for regressi(h40) = 3.42p = 0.04. This means that the
selection criterion has a significant influence on the number of sounds pleyédqb). In this
regard, it should be noted that, although randomized, the order in which the summaries based on
each of the three criteria were presented could have influenced the nurplagredfsounds,

even given that the acoustic summaries constructed using the differenoselattria

contained different sounds. The order, also coded as a two-dimensional dummy varthbke, i
added to the above regression model, and the null hypolhesis= a, = b, = b, = 0 cannot be
rejected this time, witk(4,38) = 1.82p = 0.14. This implies that the order of presentation does
not have a significant influence on the number of played sounds. Moreover, the agffuisted

the highest when the criterion is the only explanatory varidtfie=(0.10) and it decreases if the
order of presenting the three criteria is added to the regression rRéde0(07). The same

holds if such order is included in the regression equation as the only explanatdsieV@&ria

0.02). A further indication that the number of sounds is only influenced by the acousticryumma

criterion and not by the order of presentation is given by-tst comparing the two regression
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360 models. The extended regression model with the order added does not provide a significantl

361  better fit:F(2,38) = 0.34p = 0.72.

362 3.3 Experiment?2

363 In the second experiment, three acoustic summaries, all calculated faratieriavhere
364 the participant lives, but either formed by the saliency, the frequency of eeceror the mixed
365 criterion were presented. The participants were asked to rank the presageenfis based on
366  perceived accuracy in representing the surroundings of the participant’s owridseme

367 Appendix B for a snapshot of the experiment). The results of this experiment areishow

368  Figure 5 where frequency of the given ranks (1, 2, or 3) is depicted per asousthary. The

369 acoustic summary based on frequency of occurrence is clearly considerbsthe |

370 representative: its cumulative distribution, shown in Figure 5 (b), lies under thaate

371  distributions related to the other two criteria. Moreover, the cumulative disbritnatiated to the
372 combined criterion shows that the acoustic summary related to this criteréorkél first or

373  second by 15 out of 16 participants. In order to reject the null hypothesis of a distiete

374  distribution over the ranking, a Pearsoyfsest has been performed for each criterion, rejecting
375  this hypothesis for both the frequency of occurregte .13, p = 0.95) and the combined

376  criterion (* = 6.13, p = 0.95). The same cannot be said about the ranking distribution related to
377  the saliency-based criteriogf = 0.88, p = 0.35), due to the non-negligible group of people

378  considering it the least appropriate. A possible reason for it will be discusSedtion 4.

379 34 Experiment 3
380 In the third experiment, participants were asked to construct their own coiletti
381  sounds that represented the direct surroundings of their home, by selecting souradsdtain

382 64 sounds (see Appendix C for a snapshot of the experiment). Half of the sounds from which the
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participants could choose were recorded at their home location, the other lealée@ded at

two other randomly chosen locations: 16 sounds at a location of group 1 and 16 sounds at a
location of group 2. The participants were not told about such subdivision. All sounds belonged
to acoustic summaries based on the combined criterion. This inclusion/exclusion of sobads in t
final sound collection can be seen as a binary classification task; thetefaiees sense to

define true and false positives or negatives. The sounds coming from the parsdgzatton

that were rightly selected by the participant are called true pas{fi\es), while selected sounds
recorded at other locations are called false positives (FPs). The truveg(BNS) are the

sounds from other locations correctly not selected and the false negativean@Ne sounds

from the surroundings of the participant’s home that were not selected. Thetheghember of

TPs and TNs, the better the acoustic summary model has captured the pesubftiite sound

environment at each location.

An overview of the results for all participants is shown in Figure 6. The high Jayiabi
among participants was to be expected. Nevertheless, 10 of the 16 participaud Bsoand
TNs both greater than 16, with 16 being the expected result of a random gudsalsghe
Positive Ratio (FPR) and thd@rue Positive Ratio (TPR) are calculated and shown in Figure 7.
The FPR is defined as the ratio between the FPs and the number of sounds from oitres,locat
i.e. 32, while the TPR is the ratio between the TPs and the number of sounds from the
participant’s location, again 32. The higher the TPR and the lower the FPR are, the more
convincing the acoustic summary. In Figure 7 one can see that all parti@peeps one score
better than a random guess (which would give a point along the diagonal line, tHedbtrza
of no-discrimination). Moreover, the participant called Ko2 in Figure 6 is veffydar this line

too, showing that this participant was completely misled by the proposed sounds. fhoriac
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Figure 6 it can be seen that he/she only selected sounds from the two other locaticesulihe
of the third experiment support the findings from the first experiment. Partisifrant Bi and

Sp —not making any mistake in the first experiment— scored on average better ticgrapey
from Bu, who, in turn, scored better than participants in Ko, as shown in Figure 8 where the
accuracy, defined as (TPs+TNs)/64, is plotted. In addition, the participamdy show the
highest variability: the first and second participant respectively have shai the worst

accuracy among all participants.

It can be noted that the accuracy of the participants from Ko follow the resyits the
obtained during the first experiment: the first participant got the bes srtre first
experiment, making only one mistake, the third participant made two mistakes outpfhite
the other two participants could never select their own acoustic summargish isorthwhile
checking whether accuracy was influenced by the number of sounds playedeoaihe s
experiment. Participants listened exclusively to sounds coming from their orearsdings just
before performing the third experiment. So it could have been possible that cdettrsén
the third experiment was enhanced if more sounds had been listened to in the seconérmxperim
An F-test on the simple linear regression model between accuracy and numbgedfgnunds
in the second experiment does not reject the null hypothesis of unrelated variabdeslope
equal to zeroK = 2.18,p = 0.16). The same conclusion holds if precision, defined as

TPs/(TPs+FPs), instead of accuracy is considdred1.13,p = 0.31).

35 Experiment 4
In the last experiment, participants were asked to label 20 sounds that were yandomi
selected from the 32 sounds composing the saliency-based acoustic summangifrdmelling

location (see Appendix D for a snapshot of the experiment). This experiment lwagibby a
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small questionnaire in which each participant was asked to leave free corabuttthe
experiment (see Appendix D). In an open question, it was asked whether theseuvete not
heard in the labeling experiment that should have been included in order to bettszethe
surroundings of the participant’s home. The comments, summarized in Table 3, aranimport
hints to better understand the obtained results. For example, the commentsbyritte
participants from Ko can explain their errors in the first experimente thue of four were
expecting the typical sounds of the market held each Sunday morning in their neighborhood.
Those sounds were not present in the acoustic summaries because the sound sawgdlevestri
not running during any Sunday, thus missing the very specific so-salledmarks of that

location (Schafer, 1977). The same could be said about the comment of participant Ko2: the
construction works referred to were a very recent activity, which startgcfvat the sound
sample retrieval stage was completed. In addition, the participants fromsBed the typical
sound of the elementary school located at the backside of their dwelling. These s&avadena
not recorded because the microphone was placed at the front facade of the divislimgrth
noting that the main remarks came from the participants living in Ko and Bu, whichhgere

only ones making errors during the first experiment.

4 Discussion

The main rationale behind this work was to introduce a new way of investigating the
acoustic environment at a particular location based on sounds instead of visual maps or other
visually-based methods. The first idea emerging from this study is tleetampe of soundmarks
in describing a soundscape: any acoustic summary which lacks soundmarks woulddezrexbnsi
to be less representative, as occurred in Ko or, to a lesser extent, in Bu.l{¥ypoecaddmarks

have a very specific temporal pattern and occurrence, thus sound samplal ne¢eels to run
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continuously in order to include also these potentially less frequent, but highly relevant
soundmarks. In Ko, for example, the sounds produced on Sunday by the music bands and by
visitors of the flower market are important soundmarks, not captured by sound sargalret
and therefore not included in the acoustic summary. This lack is the principabtéusevrong

answers for experiment 1.

Together with soundmarks, spatiality also plays an important role in defining the
soundscape. The present research focused on the front facade, where one would hadg@ssum
find the majority of characteristic sounds, but it can happen that soundmarks can only be
observed at the other side of the dwelling, as occurred in Bu. Participants appezapalie of
taking these spatial differences into account when judging the acoustic sesmespite the
lack of typical school sounds, participants from Bu scored quite well thanks td qicels
from the front facade. The results from the third experiment demonstrata thahdral,
participants can identify “their” sounds better than random guessing. Mordw/eesults from
the first and the third experiment suggest that the representativeness of aic anousary is a
direct consequence of the representativeness of each sound composing it: theesuthatari
were composed of non-representative sounds were also not recognized. Nevgttieetesaber
of false negatives and false positives cannot be neglected in general: the squled sam
composing an acoustic summary can, most of the time, be associated to more thaatmme |
if they are considered separately from the other sounds. Therefore, oéshiksexperiment
confirm the validity of using an acoustic summary for representing or evalsngndscape.
Considered as a whole, such a collection of sounds can be much more representative of the
uniqueness of a sonic environment than each single sound on itself that is part of the acousti

summary.
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475 The finding that most participants were able to answer correctly giedmtited number
476  of sounds played, suggests that 32 is a sufficient number of sounds for an acoustic sammary t
477  characterize a location. Thus, selecting such a limited set of sounds isialsastize sound

478  sample retrieval itself: it would make no sense to continuously retrieve sauptesaf the

479  soundmarks and other typical sounds would not be selected for the acoustic sumnveaydsiter
480 In this work, the number of sounds composing the acoustic summary was heuristically

481 determined and was the same for all locations. However, the richness of a souddpeapls

482 intrinsically on the considered location. Our model could therefore be improved in future,
483  considering acoustic summaries composed by a variable number of sounds. For,example
484  measure of the overall similarity among the SOM reference vectors coukttdo determine
485  the richness of the sonic environment at a given location, and consequently the numoibwed of s

486  samples that should be selected.

487 The second experiment confirms that frequency of occurrence is not the bashdidte
488  selecting the sounds composing the acoustic summary. In many locations the saates sel
489  based on this criterion are typically very quiet, especially in residentias ar parks, thus

490 missing the less often occurring but much more salient sounds. Hence, saliendyeis a be
491  criterion for constructing the acoustic summary, but there is still a norgitdglgroup of

492  people considering it the least appropriate. Selecting only highly salient sgpiwddly comes
493  down to selecting loud sounds, and an excessive number of such fragments is no longer
494  representative of the sound environment in urban residential areas. Thereforbiratomof
495 frequency of occurrence and saliency was conceived and tested. The secomaegexperi

496 demonstrates that such a combination is a simple and valid strategy for reépgesent

497  soundscape in the way a human would. Based on these results, more advanced processing
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498  models could be tested in the future, for example, adding human-like top-down attention

499  mechanisms in the model as in Boes, Oldoni, De Coensel, and Botteldooren (2013, 2014). In the
500 present work, a fixed sound sample duration of 5s was used; however, every sound etgent has i
501 own typical duration and it should be preserved in order to better represent the sound events

502 composing the acoustic summary. The model presented by Boes et al. (2013, 2014) could help to

503 solve this issue.

504 5 Conclusions

505 This work presents a computational model for constructing a comprehensive and

506 representative collection of sounds that are present at a given location. Suehtecptalled

507 an acoustic summary, can be a useful tool for quickly presenting and analyzsogitide

508 environment at a given location. The model consists of two stages: in a firstes&agé

509  Organizing Map is tuned to the typical sounds at the given location, and, in a secondhstage, a
510 acoustic summary is constructed by first collecting and then selsg@uific sound samples

511 based on the trained map. The model takes into account aspects of human auditory perception,

512  such as bottom-up selective attention and learning.

513 A listening test involving local residents has been performed to evaluate lihecdibhe

514 model to produce acoustic summaries representative of the sound environment at a number of
515 urban locations. The test demonstrated that the model can construct repvesacaistic

516 summaries. In particular, the model produces broad and satisfactory soundsliiooanievhich

517 the acoustic summary can be extracted. In general, satisfactory resaltganed from all the

518 three tested criteria used for selecting representative audio sdropiede sound library to

519 compose the acoustic summary. However, the acoustic summary criteriomicgnsaiiency
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and frequency of occurrence of the sound events generally produces the best siwoustry.

The saliency-based criterion produces good acoustic summaries as wiskdoverweighing

highly informative and salient sounds. In addition, participants judged the acousti@asam

based on frequency of occurrence alone to be the least representative due talteceref

quiet sounds, which are much less informative of the given soundscape, even though they occur
very often in residential areas. Finally, the test demonstrated that favlysmunds are needed to
represent the sound environment of an urban area, confirming the choice of 32 sounds for each

location.

The procedure for calculating acoustic summaries introduced in this work halyalrea
been automated and implemented in low-cost sound measurement hardware (Batteldalore
2013), such that a plug-and-measure device can be put outside, and after a few westlaf the
sounds comprising the acoustic summary at that location is available onlinethlags;, the
potential of the acoustic summary tool for representing and analyzingsiimgsound
environment would still be sensibly improved by wrapping it in a user-friendly agiplcat the
disposal of urban planners or any other interested end users. Furthermore, the appiadh outl
in this work allows to compile an acoustic summary for a virtual acoustic envinbimige
same way as it would for any existing one. Although the challenge of acdesiin of urban
space has attracted sporadic attention since long, during the past decad# ireteeast has
risen considerably, partly driven by the advent of realistic environmentalagiorumodels,
such as auralization. Substantial progress in this field can be expected kerogiing years;
increasingly efficient and accurate physics-based methods may soeritrpaksible to render
virtual acoustic scenes that cannot be distinguished from real auditory ersmtsni@ombining

computational models of auditory perception of environmental sound, such as the acoustic
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summary presented in this paper, with state-of-the-art auralization woultepesults of this
work on the cutting edge of this field, promoting a multisensory approach imgréa

soundscape of future cities.
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surroundings of their home. The concepts are linked to the participants who wrote them.
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Coordinates, ken(dBA) and qualitative description of the sonic environment at the six locations

where the acoustic summary model has been tested. All the locations ard sittizeGhent

municipality, five of them in the city, one in a suburban area a few kilometersHeaity

center. A KML file with the locations is available with the online version opteer.

due

inly

e
e

D

e of
|

Location Coordinates Lgen Description
(dBA)
Ko 51°2'59.6142" N,| 71.4 | Urban square in the city center. Road traffic noise
3°43'26.0544" E to private and public transportation, noise from
pedestrians and a music fanfare on Sunday.
Microphone placed on a windowsill at the 3rd floor.
Bi 51°3'26.7588" N, | 61.3 | Urban no-through street in the center of Ghent, m3
3°43'44.6880" E used for parking. Limited road traffic noise due to
private transportation, noise from pedestrians and
children playing from a recreational area in the
neighborhood. Microphone placed on a windowsill
the 1st floor.
Sp 51°2'30.5262" N,| 65.5 | Urban street in a residential area. Road traffic nois
3°42'26.4852" E due to private and public transportation. Microphon
placed on a windowsill at the 2nd floor.
Bu 51°1'54.7176" N, | 73.3 | Urban street parallel to a railway. Road traffic nois
3°43'38.0064" E due to private and public transportation, train noise|
Microphone placed on a windowsill at the 3rd floor.
Be 51°3'15.6384" N,| 65.2 | Urban street in a restricted traffic zone in the very
3°43'31.0080" E heart of Ghent. Limited road traffic noise due to the
transit of taxi and trucks for restaurant and shop
delivery, noise from pedestrians due to the presenc
the most important tourist attractions of the city andg
very distinct bell melodies from the nearby belfry.
Dr 51°3'14.4216" N, | 56.4 | Quiet rural place, about 500 meters from a railway

3°38'37.4640" E

Microphone placed in the backyard of a house in a

countryside village.
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Participant Gender Age
Kol M 33
Ko2 M 31
Ko3 F 31
Ko4 M 44
Bil F 27
Bi2 M 39
Bi3 M 42
Bi4 M 34
Sp1 M 28
Sp2 M 30
Sp3 F 20
Sp4 F 21
Bul M 34
Bu2 M 22
Bu3 F 51
Bu4 M 23
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Main concepts expressed in the comments written by the participantssaéi@nh to and

labeling 20 sounds randomly selected from the 32 sounds composing the acoustic summary

based on saliency. In particular, the participants were asked whether ¢éhersownds not heard

in the labeling experiment that should have been included in order to better represent the

surroundings of their home. The concepts are linked to the participants who wrote them.

Participant Comment

Kol, Ko3, Ko4 It would be nice to include sounds of the music bands playing on Sunday
morning and during flower market on Sunday.

Ko2 | didn't hear noise samples of the construction works going on in the square
where we live. Otherwise it was very representative. Ninety-five peofe
the audio samples were traffic noises: it corresponds well to the amount of
traffic we have in front of our apartment.

Bil1, Bi2, Bi3 No comment or positive remarks as “good representation, typical sounds
and ambience”

Bi4 | would include some sounds from the music school at the other side af the
street

Sp1l, Sp3, Sp4 The sounds represent our street, especially the buses.

Sp2 More calm situations are needed.

Bul, Bu2, Bu3 I miss the sounds of the back of the house, e.g. the children playing in the
playground.

Bu4d Most of the sounds are present.
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List of figures

Figure 1. Schematic overview of the proposed computational model: (I) learning stage)and (Il
acoustic summary formation stage. Both stages start with a simplifiedl foopgeripheral
auditory processing (l.a, Il.a). During the learning stage, the output of sumdsping is used for
training a self-organized map of acoustical features (1.b). During the ecsuistmary formation
stage, the trained map is used for retrieving sound samples and thus forming a sand libr
(Il.b). Finally, an acoustic summary is formed by selecting a limited nuafs®unds from the

library based on a ranking method (ll.c).

Figure 2. U-matrix showing the distance between the reference vectors of neighBQivig
units (in arbitrary units), by means of a color coding, (left) after thietfaming session using
the original Incremental SOM algorithm and (right) after the continudastse learning has

been performed.

Figure 3. Correctness of the answers given by the 16 participants from the fouothscati
group 1 (Ko, Bi, Sp, Bu), when being asked to select the acoustic summary thgtaratessto

the surroundings of their home.

Figure 4. Histogram of the number of sounds the participants played before deciding which

acoustic summary best represented the surroundings of their home.

Figure 5. Overview of the results of the second experiment. Participants were asked toeank t
acoustic summaries, compiled from sounds recorded in the surroundings of their ovwmgdwell
according to their representativeness. The three acoustic summariesleeted by means of

three different criteria: saliency, frequency of occurrence andaaurethat combines both. The
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ranking (a) and its cumulative distribution (b) are shown. Rank 1 means that thécacoust

summary is considered “the most representative”, while rank 3 means ‘shecl@a@sentative”.

Figure 6. Overview of the results of the third experiment. Participants were asked taheake

own acoustic summary that represented the direct surroundings of their homechggel
appropriate sounds among 64 sounds. The participants are denoted by a location acrenym and
progressive number. The sounds from the participant’s location correctly selatiestifroe

positives (TP), are shown in black; the sounds from a different location wrongiieselealled

false positives (FP), are shown in dark grey; the sounds from the participaatish not

selected, called false negatives (FN), are shown in light grey; the sounds frotmocdtiens

correctly not selected, called true negatives (TN), are shown in white.

Figure 7. Scatter plot of the True Positive Rate versus the False Positive Rategtedlan the
basis of the results shown in Figure 6. Different markers are chosen for the &diamnisdrom
which the participants were recruited. The line of no-discrimination is alsonslaonandom

guess would give on average a point on this line.

Figure 8. Accuracy in selecting one’s own acoustic summary, for all participaridjsded by

location.

Figure Al. Snapshot of the first experiment.

Figure B1. Snapshot of the second experiment.

Figure C1. Snapshot of the third experiment.

Figure D1. Snapshot of the fourth experiment.

Figure D2. Snapshot of the comment page.
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Appendix A. Title: Snapshot of the first experiment

In the first experiment the participants were asked to perform the foljcask:

In the pictures below you will discover a collection of sounds by clicking on different areas of
these pictures. Each picture corresponds to a particular place in Ghent. The intensity of red
color indicates how frequently each sound would be noticed at this place. One of the pictures
corresponds to the direct surroundings of your home. Select the button below the one you think it

is.

In figure Al a snapshot of the first experiment is shown.
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Appendix B. Title: Snapshot of the second experiment

In the second experiment the participants were asked to perform the follogkng ta

In the pictures below you will discover a collection of sounds by clicking on different areas of
these pictures representing the direct surroundings of your home. The intensity of red color
indicates how frequently each sound would be noticed. Now please rank these pictures according
how appropriate they are to the direct surroundings of your home. Type 1 for the most

appropriate one, 3 for the least appropriate one.

In figure B1 a snapshot of the second experiment is shown.



Appendix C. Title: Snapshot of the third experiment
In the third experiment the participants were asked to perform the follovekyg ta

Now we would like you to make your own collection of sounds that represents the direct
surroundings of your home. For this, select the appropriate sounds in the table below and

indicate how frequently you hear them using the color scale.

In figure C1 a snapshot of the third experiment is shown.

43
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Appendix D. Title: Snapshot of the fourth experiment
In the fourth experiment the participants were asked to perform the folloagkyg t

Finally, could you please name in your own language the following sounds recorded in the

surroundings of your home?

In figure D1 a snapshot of the fourth experiment is shown. Afterwards, thapzartgwere

asked to leave free comments:

Thanks for your participation. Would you like to leave any comment about the experiment? In
particular, are there sounds not heard in the last experiment which should have been included in

order to represent the surroundings of your home?

In figure D2 a snapshot of the final comment page is shown.
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