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Disorders of the mitochondrial energy metabolism are clinically and genetically
heterogeneous.An increasingly recognizedsubgroup iscausedbydefectivemitochondrial
iron–sulfur (Fe–S) cluster biosynthesis, with defects in 13 genes being linked to human
disease todate. Mutations in three of them, NFU1, BOLA3,and IBA57, affect the assembly
of mitochondrial [4Fe–4S] proteins leading to an impairment of diverse mitochondrial
metabolic pathways and ATP production. Patients with defects in these three genes
present with lactic acidosis, hyperglycinemia, and reduced activities of respiratory chain
complexes I and II, the four lipoic acid-dependent 2-oxoacid dehydrogenases and
the glycine cleavage system (GCS). To date, five different NFU1 pathogenic variants
have been reported in 15 patients from 12 families. We report on seven new patients
from five families carrying compound heterozygous or homozygous pathogenic NFU1
mutations identified by candidate gene screening and exome sequencing. Six out of eight
different disease alleles were novel and functional studies were performed to support
the pathogenicity of five of them. Characteristic clinical features included fatal infantile
encephalopathy and pulmonary hypertension leading to death within the first 6 months
of life in six out of seven patients. Laboratory investigations revealed combined defects
of pyruvate dehydrogenase complex (five out of five) and respiratory chain complexes
I and II+III (four out of five) in skeletal muscle and/or cultured skin fibroblasts as well
as increased lactate (five out of six) and glycine concentration (seven out of seven).
Our study contributes to a better definition of the phenotypic spectrum associated with
NFU1 mutations and to the diagnostic workup of future patients.
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Introduction

Combined defects of mitochondrial respiratory chain com-
plexes are in the majority of cases associated with defects in the
maintenance of the mitochondrial DNA, mitochondrial repli-
cation and translation, mitochondrial homeostasis and cofac-
tor metabolism (Smits et al., 2010; Sperl et al., 2014). In case
enzyme complexes beyond those in the oxidative phosphoryla-
tion (OXPHOS) system are impaired, it is unlikely that primary
defects in mitochondrial DNA are responsible. Most likely, the
enzyme impairment involves either synthesis or distribution
defects of essential cofactors (Mayr et al., 2014; Desbats et al.,
2015; Mayr, 2015). Iron–sulfur (Fe–S) clusters are one exam-
ple of such a cofactor whose dysfunction results in multiple
enzyme defects. A complex synthesis and distribution machinery
is located within the mitochondria to sequester the various classes
of Fe–S clusters to the enzymes which harbor them as essential
cofactors (Lill et al., 2012). This machinery is called ISC (iron–
sulfur cluster) assembly machinery. Two major types of ISC are
assembled, the [2Fe–2S]- and [4Fe–4S]-clusters. The many steps
involved in ISC assembly can be structured in three major steps:
step 1 is the core ISC synthesis on a scaffold protein, step 2 is the
release of the [2Fe–2S] clusters from the scaffold protein, and step
3 is the ISC targeting to the apoproteins with eventual transfor-
mation into [4Fe–4S] clusters. ISC are present in several essential
protein complexes located in mitochondria. In the respiratory
chain, complexes I, II, and III all contain subunits with ISC (Lill
and Muhlenhoff, 2005). Furthermore, aconitase and lipoic acid
synthetase (LIAS) contain ISC. LIAS is necessary for the synthe-
sis of lipoic acid, a cofactor of the E2 subunit of the 2-oxoacid
dehydrogenases such as pyruvate dehydrogenase (PDH) and the
H-protein of the glycine cleavage system (GCSH; Mayr et al.,
2014).

Experiments in yeast and human cell lines defined at least
17 components in the mitochondrial ISC assembly system
(Figure 1). Associations with human disease have recently been
reviewed by Stehling et al. (2014) and 13 of the ISC components
have been linked to human disease presentations, including the
core ISC assembly factors [FXN (Campuzano et al., 1996), ISCU
(Mochel et al., 2008; Olsson et al., 2008), ISCA2 (Al-Hassnan
et al., 2015), FDX1L (Spiegel et al., 2014), LYRM4 (Lim et al.,
2013), and NFS1 (Farhan et al., 2014)] and factors involved in
cluster transfer [GLRX5 (Camaschella et al., 2007; Baker et al.,
2014)], the export of ISC [ABCB7 (Stehling and Lill, 2013)], mat-
uration of mitochondrial complex I [NUBPL (IND1; Calvo et al.,
2010)], mitochondrial iron import [SLC25A37 (MFRN1)], and
three proteins necessary for targeting of the [4Fe–4S] clusters
into apoproteins [IBA57 (Ajit Bolar et al., 2013), NFU1 (Cameron
et al., 2011; Navarro-Sastre et al., 2011), and BOLA3 (Cameron
et al., 2011; Haack et al., 2013)].

Genetic defects in NFU1 (causing MMDS1, OMIM #605711),
BOLA3 (causing MMDS2, OMIM #614299), and IBA57 (causing
MMDS3, OMIM #615330), all factors acting in the final step of
the assembly of [4Fe–4S] proteins, have been designated multi-
ple mitochondrial dysfunction syndromes (MMDSs). Functional
experiments led to the hypothesis that NFU1 is involved in dis-
tribution of [4Fe–4S]-clusters to a subset of proteins including

subunits of mitochondrial respiratory complexes I and II, and
of LIAS (Navarro-Sastre et al., 2011). To our knowledge, at
least 15 patients from 12 families carrying mutations in NFU1
have been reported (Cameron et al., 2011; Navarro-Sastre et al.,
2011; Invernizzi et al., 2014; Nizon et al., 2014). Key pheno-
typic features included failure to thrive, pulmonary hypertension,
infantile encephalopathy, and neurological regression. Age of
onset was 0–9 months and only two patients survived beyond
the age of 15 months. A common founder mutation, c.622G>T,
p.Gly208Cys, has been observed in ten Spanish and French
patients and another four disease alleles have been reported in
the remaining cases.

Here, we report the identification of clinically relevant com-
pound heterozygous and homozygous DNA variants in NFU1 in
seven additional patients, and associated clinical and biochemical
features.

Patients, Materials, and Methods

Case Reports
Written informed consent was obtained from all patients inves-
tigated or their guardians and the local ethics committees of the
recruiting centers approved the study. Clinical and biochemical
findings of NFU1 mutation-positive patients are summarized in
Table 1 and abnormal MRI findings are shown in Figure 2.

Patient 1 (g.[69400462C>A];[69592691_69648327del], p.[Gl
y208Cys];[?]), a girl, was the first child born to healthy non-
consanguineous parents from Germany. After a normal preg-
nancy, she was born at 28 weeks of gestation with age-appropriate
birth measurements (weight 1170 g, length 37 cm, head circum-
ference 26.5 cm). She presented soon after birth with brady-
cardia and apnea requiring artificial ventilation. A persistent
arterial duct was treated with Indomethacin. Her clinical con-
dition thereafter stabilized although she continued to suffer
from episodes of bradycardia and apnea. Echocardiogram per-
formed at the age of 3 months revealed pulmonary arterial
hypertension. At the age of 4 months she was re-admitted due
to respiratory insufficiency. Serum lactate levels were persis-
tently increased [up to 25 mmol/L; normal range (NR) 0.5–
2.2 mmol/L] and her clinical condition worsened. Glycine was
elevated in both urine (43734 μmol/L; NR <1240 μmol/L)
and plasma. Biochemical analysis of skeletal muscle speci-
men showed decreased citrate synthase (CS)-adjusted activi-
ties of respiratory chain complexes II (0.09 mU/mU CS; NR
0.18–0.41 mU/mU CS), II+III (0.13 mU/mU CS; NR 0.30–
0.67 mU/mU CS), and pyruvate dehydrogenase complex (PDHc;
0.018 mU/mU CS; NR 0.026–0.079 mU/mU CS). She died
aged 4 months due to respiratory insufficiency and metabolic
decompensation.

Patient 2 (c.[565G>A];[568G>A], p.[Gly189Arg];[Gly190
Arg]), a boy, was the second child born to healthy non-
consanguineous German parents. An older sister was similarly
affected, a younger brother was healthy. After a normal preg-
nancy, he was born at 38 weeks of gestation with normal birth
measurements (weight 3446 g, length 55 cm, head circumfer-
ence 35 cm). Primary adaptation (Apgar 9/10/10) and the early
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FIGURE 1 | Simplified schematic view of iron–sulfur cluster assembly
machinery in mitochondria of human cells. Known protein components are
inticated in green, described according to its encoding gene.

Disease-associated components are indicated in bold. Yellow spots represent
sulfur molecules and red spots iron molecules. The molecules are assembled in
[2Fe–2S]-cluster and [4Fe–4S]-clusters by the ISC machinery.

development were normal. At the age of 23 weeks, muscular
hypotonia and swallowing difficulties were noticed and subse-
quent diagnostic workup revealed pulmonary arterial hyperten-
sion. His further development was delayed and he developed
spastic tetraparesis. At the age of 2 years he suffered from
hematemesis and episodes of apnea. Ophthalmological exami-
nation revealed bilateral atrophy of the optic nerve. Laboratory
investigations documented high normal lactate levels in serum
(2.4 mmol/L; NR 0.6–2.4 mmol/L) and increased lactate con-
centration in capillary blood (4.0 mmol/L) and cerebrospinal
fluid (CSF, 3.3 mmol/L; NR 1.2–2.1 mmol/L). Glycine levels were
increased in both plasma (670μmol/L; NR 120–386μmol/L) and
urine (6158μmol/L; NR 110–645μmol/L). BrainMRI performed
at the age of 1 2/12 showed discrete signal T2-weighted hyper-
intense signal alterations in the peritrigonal region and in the
right centrum semiovale (Figures 2A,B). Strikingly, brain MRI
performed 1 year later at the age of 2 2/12 years showed marked
symmetric T2-weighted hyperintensity in the white matter with
partially necrotic regions (Figures 2C,D). The cerebellum, basal
ganglia, and brainstem were unremarkable. Biochemical analy-
sis in skeletal muscle showed decreased activities of all measured
respiratory chain complexes (complex I: no detectable activ-
ity; NR 0.17–0.56 U/U CS; Complexes II+III: 0.02 U/U CS;

NR 0.08–0.45 U/U CS; Complex IV: 0.6 mU/mU CS; NR 1.1–
5.0 U/U CS) as well as PDHc (0.5 U∗100/U CS; NR 1.5–5.6
U∗100/U CS). His clinical condition declined with progres-
sive neurological deterioration and he died aged 2 years and
5 months.

Patient 3 (c.[544C>T];[?], p.[Arg182Trp];[?]), a girl, was
the first child of healthy non-consanguineous parents from
Serbia and Romania. After a normal pregnancy, she was born at
33 weeks of gestation with normal birth measurements (weight
2270 g, length 45 cm). Primary adaptation (Apgar 9/9/10) and
early development were normal with visual contact and social
smiling at the age of 8 weeks. From the age of 10 weeks failure
to thrive, muscular hypotonia and episodes of intermittent
bradycardia and apnea were noticed. A further diagnostic
workup revealed pulmonary arterial hypertension as well as
increased lactate concentration in plasma (up to 11 mmol/L,
NR 1–1.8 mmol/L), urine (>10000 mmol/mol creatinine; NR
57–346 mmol/mol creatinine), and CSF (2.5 mmol/L; NR
1.1–1.7 mmol/L). In addition, glycine levels were markedly
increased in plasma (636 μmol/L; NR 166–330 μmol/L) and
CSF (39 μmol/L; NR 0.7–14 μmol/L). Brain MRI performed
at the age of 3 months showed a leukodystrophy affecting the
capsula interna and brainstem as well as diffuse hypomyelination
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FIGURE 2 | Continued
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FIGURE 2 | Continued

Brain MRI studies in NFU1-mutant patients 2 [T2-weighted axial scans at age 1 2/12 years (A,B) and 2 2/12 years (C,D)], 3 [axial T2-weighted (E)
and diffusion tensor image (F) at age 3 months], and 5 [T2-weighted coronar scans (G,H) and MR spectroscopy (I) at age 3 months]. A marked
difference is seen in the extent and localization of the lesions ranging from progressive symmetric white matter lesions with necrotic regions in patient 2 (C,D) to
reduced volume of supratentorial white matter (E) and diffusion restriction on DTI (F) and alterations in brainstem (G) and upper spinal cord (H).

and alterations of diffusion-weighted sequences (Figures 2E,F).
Diffuse punctate bleeding was observed predominantly in the
vermis. Biochemical analysis in a skeletal muscle specimen
showed decreased CS-adjusted activities of respiratory chain
complexes I (0.04 mU/mU CS; NR 0.14–0.28 mU/mU CS) and
II (no detectable activity; NR 0.14–0.36 mU/mU CS). PDHc
activity was not determined due to insufficient amount of biopsy
material. Progressive neurological deterioration and respiratory
insufficiency necessitated artificial ventilation and she died aged
3.5 months.

Patients 4, 5, and 6 (c.[302+3A>G];[302+3A>G], p.[Val56
Glyfs∗9];[Val56Glyfs∗9])

Patient 4 was the female child of first cousin consanguineous
parents of Pakistani origin. She started showing failure to thrive
at age of 9 weeks. She exhibited elevated lactate concentrations
[highest 14 mmol/L in serum (NR 0.6–2.4 mmol/L), 7.3 mmol/L
in CSF] and glycine was elevated in plasma (576 μmol/L; NR
166–330 μmol/L). Acute dilated cardiomyopathy was present
which was progressive and had a fatal outcome at the age of
3 months due to severe pulmonary hypertension and right ven-
tricular failure. Mildly increased intrafiber lipid was seen in post-
mortem microscopic examinations of muscle and microvesicular
steatosis was seen in liver. Liver transaminases were elevated
(ALT 192 iU/L; NR 5–45, AST 358 iU/L; NR 0–80) but syn-
thetic function was normal. Investigations in cultured fibroblasts
demonstrated reduced PDH activity and abnormal long- and
medium-chain fatty acid oxidation.

Patient 5 was the male first cousin of patient four. He pre-
sented first with poor feeding, vomiting, mild lactate concen-
tration elevation (up to 3.0 mmol/L in plasma and CSF), and
failure to thrive. He also showed developmental delay, muscu-
lar hypotonia, and apnea. Glycine was elevated significantly in
plasma (1247 μmol/L; NR 166–330 μmol/L). The brain MRI
showed abnormal signal in the upper cervical cord, the dorsal
medulla and inferior cerebellar peduncles as well as stippled sig-
nal change in the central hemispheric white matter and lack of
normal myelination of the posterior limb of the internal capsule
(Figures 2G,H). He died suddenly from an acute encephalopathy
and respiratory failure at the age of 3 months. As seen in patient
four, investigations in cultured fibroblasts demonstrated reduced
PDH activity and abnormal long- and medium-chain fatty acid
oxidation.

Patient 6 was the later-born sibling of patient 5. She showed
perinatal poor feeding, vomiting, lactic acidosis, and failure to
thrive. In addition she showed developmental delay, muscular
hypotonia, and apnea similar to her brother (patient 5). Invasive
investigations were declined but glycine was elevated significantly
[1356 μmol/L in plasma (NR 166–330 μmol/L), >3158 mmol/L
in urine] and an early brain MRI showed increased signal on
diffusion-weighted images in the posterior brainstem, internal

and external capsules and lentiform nuclei. She had palliative care
from birth and showed a rapid progression of disease, similar to
her brother, dying aged 3 months.

Patient 7 (c.[62G>C];[622G>T], p.[Arg21Pro];[Gly208
Cys]), a boy, was born to non-consanguineous parents from
Belgium. Although presentation at birth was normal, at 10 weeks
of age he presented with failure to thrive, lethargy, intermittent
apnea, and stridor. He was hospitalized at the pediatric intensive
care where initial evaluation revealed right ventricle heart
decompensation, signs of tubulopathy, and hepatopathy with
slight increase of liver enzymes. Biochemical workup showed
elevated serum lactate (up to 15 mmol/L, NR 1–1.78 mmol/L),
elevated glycine and lactate (4.8 mmol/L, NR 1.11–2.78 mmol/L)
in CSF. Brain MRI performed shortly after hospitalization
showed no abnormalities. Biochemical analysis of mitochon-
drial respiratory chain complexes normalized to CS activity
(expressed as the logarithm of OXPHOS activity divided by the
logarithm of CS activity. Deficient activities are considered when
z-score: < −3.0) showed clear complex II deficiency in cultured
skin fibroblast (z-score: −8.63), skeletal muscle homogenate
(z-score −4.91), isolated mitochondria from skeletal muscle
(z-score: −5.15), lymphocytes (z-score: −2.92), and liver tis-
sue (z-score: −6.10). Additionally, activity of complex I was
decreased in liver tissue (z-score: −3.58). PDHc activity has
not been analyzed. Genetic workup for mtDNA alterations in
skeletal muscle showed absence of MELAS (A3243G), MERRF
(A8344G), NARP (T8993C/G)mutations. The patient’s condition
deteriorated further and he died aged 4.5 months.

Genetic Studies
Exome Sequencing
Exome sequencing and variant prioritization of patients 2 and 4
was essentially performed as described previously (Haack et al.,
2014). A SureSelect Human All Exon 50 Mb V5 Kit (Agilent)
was used for enrichment of coding DNA fragments. Sequencing
was performed on a HiSeq2500 system (Illumina). BWA (ver-
sion 0.5.87.5) was used for read alignment to the human reference
assembly (hg19). Genetic variation was detected using SAMtools
(v 0.1.18), PINDEL (v 0.2.4t), and ExomeDepth (v1.0.0). The
average coverage was 128-fold and more than 97% of the target
region was covered at least 20-fold allowing for high-confidence
variant calls. Filtering of DNA variants was based on the assump-
tion of a recessive mode of inheritance and focused on rare,
non-synonymous and splice site variants affecting genes coding
for mitochondrial proteins (Elstner et al., 2008).

Sanger Sequencing
Sanger sequencing was used to analyze the coding sequences
and flanking intronic regions of NFU1 in genomic DNA
from patients 1, 3, and 7 and to confirm variants prioritized
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by exome sequencing (patients 2, 4, 5, and 6). Amplicons
were stained with Serva DNA stain G (SERVA electrophoresis,
Heidelberg) in 1% agarose gels, cycle-sequenced using BigDye
chemistry 3.1, and run on an ABI 3130XL automatic sequencer
(Applied Biosystems). Primer sequences and PCR conditions
are available upon request. As reference sequence for NFU1
cDNA we used NM_001002755.2 [the transcript containing a
mitochondrial targeting sequence (predicted by http://ihg.gsf.
de/ihg/mitoprot.html)] and for genomic DNA NC_000002.11.

Biochemical Investigations
The enzymatic activities of respiratory chain complexes I–IV,
PDHc, and CS were determined in muscle biopsy material from
patients 1 and 3 as described previously (Strassburg et al., 2006;
Feichtinger et al., 2010).

In patient 2 biochemical analyses were performed as described
in the Supplemental Methods.

Biochemical investigations for patients 4, 5, and 7 were
performed as described by Kirby et al. (2007) and Ajit Bolar et al.
(2013).

Quantification of Protein Levels
Immunofluorescence Studies
For double immunofluorescence staining the following anti-
bodies were used: mouse monoclonal anti-complex II subunit
SDHA (1:200; Abcam, Cambridge, UK), mouse monoclonal anti-
VDAC1 (1:200; MitoSciences, Eugene, OR, USA), rabbit poly-
clonal anti-VDAC1 (1:200; Abcam, Cambridge, UK) and rabbit
polyclonal anti-lipoic acid (1:200; Merck, Darmstadt, Germany).
All primary antibodies were diluted in Dako antibody dilu-
ent with background reducing components (Dako, Glostrup,
Denmark). The following secondary antibodies were used: anti-
mouse Alexa Fluor 488 (1:500, Invitrogen, Eugene, OR, USA)
and anti-rabbit Alexa Fluor 594 (1:1000, Invitrogen, Eugene, OR,
USA). Secondary antibodies were diluted in PBS containing 0.5%
Tween 20 (PBS-T, pH 7.4).

Cultured skin fibroblasts were grown on chamber slides
overnight and washed in PBS twice the next day. Fixation was
performed overnight at room temperature in 4% neutral buffered
formaldehyde (VWR, Darmstadt, Germany) and washed in
dH2O, followed by heat-induced epitope retrieval in EDTA-T
buffer (1 mmol/L EDTA, pH 8.0, 0.05% Tween 20) for 40 min
at 95◦C. Sections were equilibrated with PBS-T before primary
antibodies were applied for 1 h at room temperature. Afterward
sections were washed three times in PBS-T and incubated for 1h
with secondary antibodies. Specimens were again washed three
times in PBS-T and incubated with 0.5 μg/ml DAPI (Sigma,
St. Louis, MO, USA) for 10 min. Slides were washed twice in
dH2O and mounted in Fluorescent Mounting Medium (Dako,
Glostrup, Denmark).

Western Blot and BN-PAGE Analyses
Western blotting was performed as described by Ajit Bolar et al.
(2013). Mitochondrial fractions were isolated from skeletal mus-
cle and cultured skin fibroblasts. Proteins were solubilized and
subsequently separated by tricine SDS PAGE. Western blotting
was performed using a mixture of antibodies directed against

one subunit in each of the five respiratory complexes: NDUFB8
for complex I, SDHB for complex II, core2 for complex III
(UQCRC2), MT-CO2 for complex IV and subunit alpha for com-
plex V (ATP5A1; MS601 Mito-Profile human total OXPHOS
complexes detection kit, 1.5 mg/ml, MitoSciences, Eugene, OR,
USA). Lipoic acid-containing proteins were detected by western
blotting using an antibody against protein-bound LA (ab58724,
Abcam, Cambridge, UK). Detection was achieved by using
ECL PlusTM enhanced chemiluminescence kit (GE Healthcare,
Diegem, Belgium), as described previously (van der Westhuizen
et al., 2010). A ChemiDoc charge-coupled device camera and
Quantity One software was used for imaging (Bio-Rad, Nazareth,
Belgium).

Blue native-PAGE was used to separate and visualize the res-
piratory chain complexes in mitochondria isolated from skeletal
muscle. Solubilization of the complexes, BN-PAGE and stain-
ing of their in-gel catalytic activities were performed as reported
(Van Coster et al., 2001). Patient and control samples were loaded
in duplicate using equal amounts of mitochondrial proteins
(∼50 μg).

Results

Genetic and Biochemical Results
Exome sequencing and candidate gene sequencing identified a
total of seven different disease alleles (Figure 3) in five families
and one yet to be fully defined change leading to a lack of mature
mRNA expression. The observed mutations include two pre-
viously described missense mutations (c.565G>A, p.Gly189Arg
and c.622G>T, p.Gly208Cys), three novel missense mutations
(c.62G>C, p.Arg21Pro; c.544C>T, p.Arg182Trp and c.568G>A,
p.Gly190Arg), one splice site mutation predicting a truncated
protein (c.302+3A>G, p.Val56Glyfs∗9), and one contiguous
gene deletion including coding exons 4–8 of NFU1. Carrier test-
ing of available parental samples confirmed a biallelic localization
of the identified NFU1 variants.

In patient 1 the previously reported founder mutation
c.622G>T, p.Gly208Cys in exon 7 was identified in apparently
homozygous state. However, further experiments showed that
the other allele carried a 55.6 kb deletion (hg 19, chromo-
some 2:69592691 – 69648327) affecting exons 4–8 of NFU1
and exons 1–3 of neighboring GFPT1 (Figure 4). Mutations in
GFTP1, coding for glutamine:fructose-6-phosphate amidotrans-
ferase, have been associated with an autosomal-recessive congen-
ital myasthenic syndrome with tubular aggregates, 1 (CMSTA1;
OMIM #610542). We found no evidence of another potentially
pathogenic GFPT1 allele for patient 1, suggesting that the iden-
tified biallelic NFU1 mutations are likely to underlie his clinical
presentation.

Patient 2 carried a previously reported missense vari-
ant (c.565G>A, p.Gly189Arg) compound heterozygous with a
novel missense variant affecting the neighboring amino acid
c.568G>A, p.Gly190Arg. Both amino acids are conserved in sev-
eral species (Figure 3) and are predicted to have a pathogenic
impact on protein function by several programs (PolyPhen2,
SIFT, MutationTaster).
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FIGURE 3 | Gene structure of NFU1 and position of the identified pathogenic variants (reference cDNA sequence NM_001002755.2 and genomic DNA
of chromosome 2 NC_000002.11). Bold script indicates newly identified pathogenic variants. Introns are not drawn to scale.

FIGURE 4 | Genetic analysis of patient 1. (A) Electropherogram of the strand of cDNA of NFU1. The box indicates the position of pathogenic variant c.622G>T.
(B) Break point analysis of the deletion on the non-expressed allele of NFU1.The box above the electropherogram indicates the breakpoint; below illustrates the
position of the deletion in the chromosome.

In patient 3, a single novel missense mutation (c.544C>T,
p.Arg182Trp) was identified in the heterozygous state lead-
ing to a change affecting a highly conserved residue in the

polypeptide chain (Figure 5B). The same amino acid is affected
by the reported variant c.545G>A, p.Arg182Gln and has been
shown to affect mRNA splicing (Cameron et al., 2011). Further
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FIGURE 5 | Genetic analysis of patient 3. (A) Electropherogram of the strand of cDNA of NFU1. The box indicates the position of the pathogenic c.544C>T
variant. (B) Conservation of the amino acid residue at position 182 affected by the pathogenic c.544C>T, p.Arg182Trp variant in the indicated species. The box
marks the changed position.

investigations showed that in the processed mRNA only the
c.544C>T was detectable in cultured skin fibroblasts from the
patient (Figure 5A). These findings suggest a yet to be defined
loss-of-function mutation on the second allele.

Patients 4–6 from consanguineous family 4 carried the
same homozygous mutation c.[302+3A>G];[302+3A>G],
p.[Val56Glyfs∗9];[Val56Glyfs∗9]. In silico splice-site prediction
tools predicted that the c.302+3A>G substitution is likely to
significantly reduce the efficiency of the consensus donor splice
site of intron 3, with the most likely effect being skipping of exon
3 during splicing. Total RNA was isolated from patient fibrob-
lasts and RT-PCR performed using primers designed to flank
exon 3. We observed a significant increase in the proportion of
NFU1 transcripts (both cytosolic- and mitochondrial-specific
isoforms) lacking exon 3 as compared to tissue-matched normal
controls, confirming that the c.302+3A>G substitution leads
to aberrant splicing of NFU1 transrcipts (data not shown).
The predicted effect of exon 3 skipping at the protein level
is an out-of-frame deletion leading to the introduction of
a premature termination codon 8 positions downstream,
p.Val56Glyfs∗9.

Patient 7 carried a previously described missense (c.622G>T,
p.Gly208Cys) mutation compound heterozygous with a novel
mutation c.62G>C. This mutation predicts an amino acid
change p.Arg21Pro in the translated protein. However, as it
affects the last base pair of exon 1 and is predicted to sig-
nificantly reduce the efficiency of the consensus donor splice
site of exon 1, it may also cause a splice defect. This vari-
ant underlines the functional relevance of the long isoform
(NM_001002756.2) containing a predicted mitochondrial target-
ing sequence over the shorter isoform (NM_015700.3) resulting

from an alternative start codon located in exon 2. All NFU1
variants are very rare and absent from the ExAC browser with
exception of the c.622G>T, p.Gly208Cys change which has been
detected 16 times in the heterozygous state in 122,946 control
alleles (MAF 0.013%; Exome Aggregation Consortium (ExAC),
Cambridge, MA, USA (URL: http://exac.broadinstitute.org)
[11/2014]).

In patients 3 and 7 functional studies were performed to inves-
tigate the cellular consequences of NFU1 deficiency. Defective
[4Fe–4S] incorporation is expected to impair proper assembly
of respiratory chain complexes and LIAS. In fibroblast cell lines
from patient 3 (c.[544C>T];[?], p.[Arg182Trp];[?]) we therefore
performed immunohistochemical staining for a subunit of com-
plex II and lipoic acid. Levels of both were found to be severely
decreased in NFU1-mutant cell lines as compared to controls
(Figure 6).

In patient 7, we investigated the amount and function of lipoic
acid-containing enzyme complexes in skeletal muscle, cultured
skin fibroblasts and liver. The E2 subunit of PDHc and E2 sub-
unit of α-ketoglutarate dehydrogenase were virtually absent in
all patient tissues analyzed (Figure 7A). BN-PAGE separation
of OXPHOS complexes followed by in-gel activity staining in
skeletal muscle and liver tissue revealed a clear complex II defi-
ciency (Figure 7B). Evaluation of protein amount in skeletal
muscle and liver tissue were concordant with BN-PAGE findings,
with absence of cross-reacting material for Fe–S and Fp subunit
of complex II (Figure 7C) as well as lowered abundance of com-
plex I. These findings could also be demonstrated in cultured
patient skin fibroblasts. Together, these findings are consistent
with a pathogenic role of NFU1 mutations identified in patients
3 and 7.
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FIGURE 6 | Immunofluorescence studies of cultured skin fibroblast cells
from patient 3 and a control showing reduced lipoic acid content and
reduced amount of SDHA in the patient cells as compared to controls.
(A,B) Staining on lipoic acid; A = control cells, B = patient cells.

Blue = DAPI-stain (nuclei), green = porin, red = lipoic acid. (C,D) Staining on
SDHA; C = control cells, D = patient cells. Blue = DAPI-stain (nuclei),
red = porin, green = SDHA. In all (A–D) the lower-right picture shows the
merge of the other three pictures.

Discussion

The phenotypic spectrum associated with NFU1 mutations has
been recently reviewed by Invernizzi et al. (2014). Key phenotypic
features observed in the 15 reviewed patients included failure to
thrive, pulmonary hypertension, infantile encephalopathy, and
neurological regression. Age of onset was 0–9 months and only
two patients survived beyond the age of 15 months. Notably,
these two patients reported by Invernizzi et al. (2014) and Nizon
et al. (2014) carried the c.565G>A, p.Gly189Arg missense muta-
tion on one allele. The same mutation has been also identified in
patient 2 who survived until the age of 30 months while all other
six patients in our cohort died within the first half year of life. It
can be speculated that, besides being the second most common
NFU1 mutation, the c.565G>A, p.Gly189Arg change might be
associated with a slightly milder course of the disease.

By far the most common mutation in NFU1 is a c.622G>T,
p.Gly208Cys founder mutation observed in ten Spanish and
French patients and in compound heterozygosity with other
mutations in patients 1 and 7 in this present work. It has a MAF

of 0.013% in the ExAC Browser [Cambridge, MA, USA (URL:
http://exac.broadinstitute.org) [11/2014]) and is therefore likely
to be amongst the more common causes of mitochondrial genetic
disease at least in certain populations.

The c.62G>C, p.Arg21Pro mutation found in patient 7 pro-
vides an evidence that the mitochondrial form of NFU1, repre-
sented by the transcript NM_001002755.2, is the relevant isoform
for NFU1 deficiency, which is biochemically and functionally
clearly a mitochondriopathy.

All seven patients presented with infantile encephalopathy
characterized by muscular hypotonia, psychomotor developmen-
tal delay, and neurological regression. Additional clinical features
included episodes of apnea and bradycardia. Pulmonary hyper-
tension has been documented in four out of seven patients and
two patients died from acute cardiac decompensation. Additional
findings included poor feeding, vomiting and signs of renal and
hepatic involvement.

In 5 out of 15 published cases neuroimaging data were avail-
able and it has been suggested that signs of leukoencephalopathy
in the periventricular white matter and corpus callosum with
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FIGURE 7 | Lipoic acid loading and OXPHOS complex expression in
patient 7. (A) Western blot showing expression levels of lipoic acid residues of
subunit E2 of PDH (PDH E2) and subunit E2 of αKGDH (αKGDH-E2) in skeletal
muscle, liver, and cultured skin fibroblast for patient 7 (p) compared to a control
sample (c). The mitochondrial protein VDAC1 (porin) was used as loading
control. Together with both skeletal muscle samples of control and patient, a
patient with a pathogenic mutation in IBA57 (cIBA) was loaded in parallel to
illustrate the similarity of defective lipoylation. (B) Western blot showing
expression levels of different subunits of all five OXPHOS complexes (NDUFB8
for complex I, Ip for complex II, core2 for complex III, COXII for complex IV, and
Valpha for complex V) in skeletal muscle, liver, and cultured skin fibroblasts in
patient 7 (p) and a control sample (c). There is absence of CRM-signal for

complex II subunit in skeletal muscle and cultured skin fibroblasts. In liver the
CRM-signal for complex II is almost equal to the control loaded at 25% (c25%).
CRM-signal for complex I is undetectable (skin fibroblasts) or lower than c25%
(skeletal muscle and liver). For skeletal muscle a patient with a pathogenic
mutation in IBA57 (cIBA) was loaded in parallel to illustrate the similarity of
lowered OXPHOS subunit expression. (C) Blue native-PAGE with in-gel activity
staining is shown for liver (left side) and skeletal muscle (right side) in patient 7
(p) and a control sample (c) illustrating severely decreased complex I in liver and
complex II activity in both tissues. Complex I activity in skeletal muscle is
partially decreased. Samples are loaded in duplo and one gel is used for in-gel
activity staining of complex I, III and IV (left panel) while the other is used for
complexes V and II (right panel).

partial cystic degeneration and cavitations, described in more
detail in two patients, could be a specific MRI pattern related to
MMDS1 (Invernizzi et al., 2014; Nizon et al., 2014). In the latter
two patients, the basal ganglia, cerebellum, and brain stem were
normal.

BrainMRI data were available from five patients in this cohort.
Four of them had a leukodystrophy in the course of the dis-
ease while in patient 7 no abnormalities had been observed at
the age of 10 weeks. The extent and localization of the observed
lesions was variable. In patient 2, the first MRI performed at the
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age of 1 2/12 years showed only mild alterations while a second
MRI performed 1 year later showed severe leukoencephalopathy
with involvement of the periventricular white matter and corpus
callosum with partial necrotic changes. Together with the normal
appearance of other structures including brainstem, cerebellum
and basal ganglia, this neuroimaging pattern is in line with the
findings of the two patients reported by Invernizzi et al. (2014)
and Nizon et al. (2014). However, the documented progress of
the brain lesions observed within 1 year in patient 2 also demon-
strates that even in clinically severely affected individuals MRI
lesions can be mild at an early stage of the disease and that
cystic degeneration might only evolve at a later stage in longer-
surviving patients. Furthermore, our findings in the three other
patients indicate marked differences in extent and localization
of the lesions. Besides central hemispheric white matter, affected
structures included capsula interna and externa, lentiform nuclei,
brainstem, upper cervical cord, and inferior cerebellar peduncles.

The signature of abnormal metabolites in published cases
included increased levels of lactate and glycine in plasma, urine,
and CSF as well as increased urinary excretion of TCA cycle
intermediates. Variable lactic academia was observed in all seven
patients of our cohort as well as elevation of glycine in plasma
(7/7), CSF (2/2), and urine (3/3).

Pyruvate dehydrogenase complex activity so far had been
assessed in frozen muscle of two patients (Invernizzi et al., 2014;
Nizon et al., 2014) and showed clear reduction to <50% of the
lower control value. This corresponds to the measurements of
PDHc activity in skeletal muscle of patients 1 and 2 showing
a reduction to 30 and 69% of the lowest control value, respec-
tively. Activities of mitochondrial respiratory chain complexes
have so far been investigated in four published cases. Only one
out of three patients investigated by Navarro-Sastre et al. (2011)
had an abnormal finding with activities for complex II+III just
below the control range and in one patient reported by Invernizzi
et al. (2014), complex II was decreased to 67% of the lowest con-
trol value and complex I was just below normal. Skeletal muscle
specimen analyzed in four patients in the present cohort demon-
strated a consistent decrease of complex II and complexes II+III
activity to 0–60% of the lowest control value. Complex I activity
was decreased in skeletal muscle of patients 2 and 3 to 0–58% of
controls and in a liver biopsy of patient 7. Furthermore, complex
IV activity was found below the normal range in two out of four
individuals. Investigation in fibroblasts performed in patients 3
and 7 showed the similar patterns as in skeletal muscle for com-
plex I (patient 3) and complex II (patients 3 and 7) while the
analysis in fibroblast of patient 5 indicated normal activities.
Taken together, in NFU1 patients analyses of mitochondrial res-
piratory chain complexes I–IV showed variable findings even for

the same tissues being analyzed. However, investigation of PDHc
activity showed a clear decrease in both NFU1-mutant fibroblasts
(13 out of 13) and skeletal muscle (four out of four) and thus
seems to be a consistent marker in NFU1 deficiency.

In summary, we report the clinical, biochemical and genetic
data on seven new patients with MMDS1 caused by NFU1muta-
tions, six of which were novel genetic variants. The fact that
one of them was a deletion of several exons underlines the
necessity for deletion screening in molecular diagnostics of sus-
pected NFU1 deficiency. The observed phenotypic hallmarks of
increased glycine concentrations in plasma and PDHc deficiency
confirm findings of previous studies and may point toward a
targeted analysis of potential causes of Fe–S clusters/lipoic acid
biosynthesis defects. Although not necessarily persistent and only
observed in 50% of cases, pulmonary hypertension in infancy
might be an additional clinical feature to prioritize testing of
NFU1 amongst several other candidate genes.
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