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Abstract

Pseudo-arcs are the higher dimensional analogues of arcs in a pro-
jective plane: a pseudo-arc is a set A of (n−1)-spaces in PG(3n−1, q)
such that any three span the whole space. Pseudo-arcs of size qn + 1
are called pseudo-ovals, while pseudo-arcs of size qn + 2 are called
pseudo-hyperovals. A pseudo-arc is called elementary if it arises from
applying field reduction to an arc in PG(2, qn).

We explain the connection between dual pseudo-ovals and elation
Laguerre planes and show that an elation Laguerre plane is ovoidal if
and only if it arises from an elementary dual pseudo-oval. The main
theorem of this paper shows that a pseudo-(hyper)oval in PG(3n −
1, q), where q is even and n is prime, such that every element induces
a Desarguesian spread, is elementary. As a corollary, we give a char-
acterisation of certain ovoidal Laguerre planes in terms of the derived
affine planes.

Keywords: pseudo-ovals, pseudo-hyperovals, Desarguesian spreads, ovoidal
Laguerre planes

1 Introduction

The aim of this paper is to characterise elementary pseudo-(hyper)ovals in
PG(3n− 1, q) where q is even. We will impose a condition on the considered
pseudo-ovals, namely that every element of the pseudo-oval induces a Desar-
guesian spread. In Subsection 1.1, we provide the necessary background on
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pseudo-arcs and give some motivation for the study of this problem. In Sub-
section 1.2, we will introduce Desarguesian spreads and field reduction and
prove a theorem on the possible intersection of Desarguesian (n− 1)-spreads
in PG(2n− 1, q). In Section 2, we will explain the connection between dual
pseudo-ovals and elation Laguerre planes, meanwhile proving a theorem that
characterises ovoidal Laguerre planes as those elation Laguerre planes ob-
tained from an elementary dual pseudo-oval. Finally, in Section 3, we give
a proof for our main theorem. We end by stating a corollary of our main
theorem in terms of ovoidal Laguerre planes.

1.1 Pseudo-arcs

In this paper, all considered objects will be finite. Denote the n-dimensional
projective space over the finite field Fq with q elements, q = ph, p prime, by
PG(n, q).

Definition. A pseudo-arc is a set A of (n− 1)-spaces in PG(3n− 1, q) such
that 〈Ei, Ej〉 ∩ Ek = ∅ for distinct Ei, Ej, Ek in A.

We see that a pseudo-arc is a set of (n− 1)-spaces such that any 3 span
PG(3n−1, q); such a set is also called a set of (n−1)-spaces in PG(3n−1, q)
in general position.

A partial spread in PG(2n − 1, q) is a set of mutually disjoint (n − 1)-
spaces in PG(2n−1, q). Every element Ei of a pseudo-arc A defines a partial
spread

Si := {E1, . . . , Ei−1, Ei+1, . . . , E|A|}/Ei

in PG(2n− 1, q) ∼= PG(3n− 1, q)/Ei and we say that the element Ei induces
the partial spread Si. Since an element Ei induces a partial spread Si in
PG(2n−1, q), which has at most qn+1 elements, a pseudo-arc in PG(3n−1, q)
can have at most qn + 2 elements. Moreover, we have the following theorem
of Thas, where a pseudo-oval in PG(3n − 1, q) denotes a pseudo-arc of size
qn + 1, and a pseudo-hyperoval denotes a pseudo-arc of size qn + 2. Note
that for n = 1, these statements reduce to well-known and easy to prove
statements.

Theorem 1.1. [13] A pseudo-arc in PG(3n−1, q), q odd, has at most qn +1
elements. A pseudo-oval in PG(3n − 1, q), q even, is contained in a unique
pseudo-hyperoval.

A pseudo-arc is called elementary if it arises by applying field reduction
to an arc in PG(2, qn). Field reduction is the concept where a point in
PG(2, qn) corresponds in a natural way to an (n− 1)-space of PG(3n− 1, q).
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The set of all points of PG(2, qn) then correspond to a set of disjoint (n −
1)-spaces partitioning PG(3n − 1, q), forming a Desarguesian spread. For
more information on field reduction and Desarguesian spreads we refer to
[8]. A pseudo-oval that is obtained by applying field reduction to a conic in
PG(2, qn) is called a pseudo-conic. A pseudo-hyperoval (necessarily in even
characteristic) obtained by applying field reduction to a conic, together with
its nucleus, is called a pseudo-hyperconic.

All known pseudo-ovals and pseudo-hyperovals are elementary, but it is
an open question whether there can exist non-elementary pseudo-ovals and
pseudo-hyperovals. A natural question to ask is whether we can characterise
a pseudo-oval in terms of the partial spreads induced by its elements.

From [3], we know that a partial spread of PG(2n−1, q) of size qn can be
extended to a spread in a unique way, i.e. the set of points in PG(2n− 1, q)
not contained in an element of such a partial spread of size qn, form an
(n− 1)-space. So by abuse of notation, we say that an element of a pseudo-
oval induces a spread instead of a partial spread. Clearly, for an elementary
pseudo-oval every induced spread is Desarguesian. The following theorem
shows that for q odd, a strong version of the converse also holds.

Theorem 1.2. [5] If O is a pseudo-oval in PG(3n − 1, q), q odd, such that
for at least one element the induced spread is Desarguesian, then O is a
pseudo-conic.

The proof of this theorem relies on the theorem of Chen and Kaerlein [6]
for Laguerre planes in odd order, which in its turn relies on the theorem of
Segre [11] characterising every oval in PG(2, q), q odd, as a conic. This clearly
rules out a similar approach for even characteristic. The characterisation of
pseudo-ovals in terms of the induced spreads for even characteristic was posed
as Problem A.3.4 in [14].

In this paper, we will prove that the following holds:

Main Theorem. If O is a pseudo-oval in PG(3n − 1, q), q = 2h, h > 1, n
prime, such that the spread induced by every element of O is Desarguesian,
then O is elementary.

As a corollary, we prove a similar statement for pseudo-hyperovals.

Corollary 1.3. Let H be a pseudo-hyperoval in PG(3n − 1, q), q = 2h,
h > 1, n prime, such that the spread induced by at least qn + 1 elements of
H is Desarguesian, then H is elementary.

It is worth noting that pseudo-ovals in PG(3n − 1, q) are in one-to-one
correspondence with a particular type of generalised quadrangles, namely
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translation generalised quadrangles of order (qn, qn). In particular if O is
elementary, we have that the corresponding generalised quadrangle is iso-
morphic to T2(O), where O is obtained from O by field reduction. For more
information, we refer to [14].

1.2 Field reduction, Desarguesian spreads and Segre
varieties

We recall the André/Bruck-Bose representation of a translation plane of order
qn. Let S be a (n − 1)-spread of the projective space Σ∞ = PG(2n − 1, q)
and embed Σ∞ as hyperplane of PG(2n, q). Consider the following incidence
structure A(S) = (P ,L), where incidence is natural:

P : the points of PG(2n, q) \ Σ∞ (the affine points),

L : the n-spaces of PG(2n, q) intersecting Σ∞ exactly in an element of S.

This defines an affine translation plane of order qn [1, 4]. If the spread S
is Desarguesian, A(S) is a Desarguesian affine plane AG(2, qn). Adding Σ∞
as the line at infinity, and considering the spread elements as its points, we
obtain a projective plane of order qn.

An (n−1)-regulus or regulus R in PG(2n−1, q) is a set of q+ 1 mutually
disjoint (n − 1)-spaces having the property that if a line meets 3 elements
of R, then it meets all elements of R. There is a unique regulus through 3
mutually disjoint (n− 1)-spaces A,B and C in PG(2n− 1, q), let us denote
this by R(A,B,C). Every Desarguesian spread D has the property that for
3 elements A,B,C in D, the elements of R(A,B,C) are also contained in D,
i.e. D is regular (see also [4]). Moreover, every Desarguesian spread D clearly
has the property that the space spanned by 2 elements of D is partitioned
by elements of D, i.e. D is normal.

We will use the following notation for points of a projective space PG(r−
1, qn). A point P of PG(r−1, qn) defined by a vector (x1, x2, . . . , xr) ∈ (Fqn)r

is denoted by Fqn(x1, x2, . . . , xr), reflecting the fact that every Fqn-multiple
of (x1, x2, . . . , xr) gives rise to the point P .

An Fqt-subline in PG(1, qn), where t|n, is a set of qt+1 points in PG(1, qn)
that is PGL-equivalent to the set {Fqn(1, x)|x ∈ Fqt} ∪ {Fqn(0, 1)}. As
PGL(2, qn) acts sharply 3-transitively on the points of the projective line,
we see that any 3 points define a unique Fqt-subline.

We can identify the vector space (Fq)
rn with (Fqn)r, and hence, we can

write every point of PG(rn − 1, q) as Fq(x1, x2, . . . , xr), where xi ∈ Fqn . In
this way, by field reduction, a point Fqn(x1, x2, . . . , xr) in PG(r−1, qn) corre-
sponds to the (n− 1)-space Fqn(x1, x2, . . . , xr) = {Fq(αx1, αx2, . . . , αxr)|α ∈
Fqn} in PG(rn− 1, q).
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We will need a lemma on Desarguesian spreads which has a straightfor-
ward proof, but we include it for completeness.

Lemma 1.4. Let D1 be a Desarguesian (n−1)-spread in a (2n−1)-dimensional
subspace Π of PG(3n − 1, q), let µ be an element of D1 and let E1 and E2

be disjoint (n− 1)-spaces disjoint from Π such that 〈E1, E2〉 meets Π exactly
in the space µ. Then there exists a unique Desarguesian (n − 1)-spread of
PG(3n− 1, q) containing the elements of D1 and R(µ,E1, E2).

Proof. Since D1 is a Desarguesian spread in Π, we can choose coordinates
for Π such that D1 = {Fqn(1, x)|x ∈ Fqn} ∪ {µ = Fqn(0, 1)}. We embed Π in
PG(3n−1, q) by mapping a point Fq(x1, x2), x1, x2 ∈ Fqn , of Π to Fq(x1, x2, 0).
Consider a point P of µ and let `P denote the unique transversal line through
the point P of µ to the regulus R(µ,E1, E2).

We can still choose coordinates for n + 1 points in general position in
PG(3n − 1, q) \ Π. We will choose these n + 1 points such that n of them
belong to E1 and one of them belongs to E2. Consider a set {yi|i = 1, . . . , n}
forming a basis of Fqn over Fq. We may assume that the line `Pi

through
Pi = Fq(0, yi, 0) meets E1 in the point Fq(0, 0, yi). It follows that E1 =
Fqn(0, 0, 1). Moreover, we may assume that `Q with Q = Fq(0,

∑n
i=1 yi, 0)

meets E2 in Fq(0,
∑n

i=1 yi,
∑n

i=1 yi). Since Fq(0,
∑n

i=1 yi,
∑n

i=1 yi) has to be
in the space spanned by the intersection points Ri = `Pi

∩E2, it follows that
Ri = Fq(0, yi, yi) and consequently, that E2 = Fqn(0, 1, 1).

It is clear that the Desarguesian spread D = {Fqn(x1, x2, x3)|x1, x2, x3 ∈
Fqn} contains the spread D1 and the regulus R(µ,E1, E2). Moreover, since a
Desarguesian spread is normal, every element ofD, not in 〈E1, E2〉 is obtained
as the intersection of 〈E1, X〉 ∩ 〈E2, Y 〉, where X, Y ∈ D1, it is clear that D
is the unique Desarguesian spread satisfying our hypothesis.

Theorem 1.5. A set S of at least 3 points in PG(1, qn), q > 2, such that
any three points of S determine a subline entirely contained in S, defines an
Fqt-subline PG(1, qn) for some t|n.

Proof. Without loss of generality, we may choose the points Fqn(0, 1), Fqn(1, 0)
and Fqn(1, 1) to be in S. Put S = {x | Fqn(1, x) ∈ S}, clearly Fq ⊆ S.

Consider x, y ∈ S, where x 6= y and xy 6= 0, then every point of the
Fq-subline through the distinct points Fqn(0, 1), Fqn(1, x) and Fqn(1, y) has
to be contained in S. The points of this subline, different from Fqn(0, 1) are
given by Fqn(1, x + (y − x)t), where t ∈ Fq. This implies that if x and y
are in S, also (1 − t)x + ty is in S for all t ∈ Fq. It easily follows that S is
closed under taking linear combinations with elements of Fq, hence, S forms
an Fq-subspace of Fqn .
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Now consider x′, y′ ∈ S, x′, y′ 6= 0. We claim that (1) x′2/y′ ∈ S and (2)
x′2 ∈ S.

If y′/x′ ∈ Fq, our claim (1) immediately follows from the fact that S is
an Fq-subspace so we may assume that y′/x′ ∈ Fqn \ Fq. Since q > 2, we can
consider an element t ∈ Fq such that t(t − 1) 6= 0. Put z′ := y′ − (t − 1)x′.
Since S is an Fq-subspace, z′ ∈ S. It is easy to check that z′ /∈ {0, x′}. Every
point of the Fq-subline containing distinct points Fqn(1, 0), Fqn(1, x′) and
Fqn(1, z′) has to be contained in S, and the points of this subline, different
from Fqn(1, z′), are given by Fqn(z′ − x′ + t′x′, tx′z′), where t′ ∈ Fq. This
implies that t′x′z′

z′+(t′−1)x′ is in S for every t′ ∈ Fq, so also for t′ = t, which

implies that tx′ − t(t−1)x′2
y′

∈ S. Since tx′ ∈ S and t(t − 1) 6= 0, we conclude

that x′2

y′
∈ S which proves claim (1). Claim (2) follows immediately from

Claim (1) by taking y = 1 ∈ Fq ⊆ S.
Now let v, w ∈ S and first suppose that q is odd, then vw = 1

2
((v+w)2−

v2 − w2), and since S is an Fq-subspace and by claim (2), all terms on the
right hand side are in S, so is vw. If q is even, say qn = 2h, then v = u2

for some u ∈ Fqn , but since u = u2
h

= v2
h−1

, v is contained in S. This

implies that v
w

= u2

w
∈ S by claim (1) and consequently, again by claim (1),

vw = v2

v/w
∈ S. In both cases, we get that S is a subfield of Fqn and the

statement follows.

Corollary 1.6. Let D1 and D2 be two Desarguesian (n − 1)-spreads in
PG(2n− 1, q), q = ph, p prime, q > 2, with at least 3 elements in common,
then D1 and D2 share exactly qt + 1 elements for some t|n. In particular, if
n is prime, then D1 and D2 share a regulus or coincide.

Proof. Let X be the set of common elements of D1 and D2. Since a Desar-
guesian spread D is regular, it has to contain the regulus defined by any three
elements of D, which, since D1 and D2 are Desarguesian, implies that the
regulus through 3 elements of X is contained in X. Now since X is contained
in a Desarguesian spread, X corresponds to a set of points S in PG(1, qn)
such that every Fq-subline through 3 points of S is contained in S. The first
part of the statement now follows from Theorem 1.5. The second part follows
from the fact that the only divisors of a prime n are 1 and n.

An Fq-subplane of PG(2, qn), is a subgeometry PG(2, q) of PG(2, qn),
i.e. a set of q2 + q + 1 points and q2 + q + 1 lines in PG(2, qn) form-
ing an projective plane, where the point set is PGL-equivalent to the set
{Fqn(x0, x1, x2)|(x0, x1, x2) ∈ (Fq × Fq × Fq) \ (0, 0, 0)}. If we apply field
reduction to the point set of an Fq-subplane, we find a set S of q2 + q + 1
elements of a Desarguesian spread D. All elements of S meet a fixed plane
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of PG(3n− 1, q) and form one system of a Segre variety Sn−1,2 (see e.g. [8]).
Note that Sn−1,2 is contained in PG(3n− 1, q) and consists of two systems of
subspaces, one with subspaces of dimension (n− 1) and the other consisting
of planes. Moreover, every point of Sn−1,2 lies on exactly one subspace of
each system.

As PGL(3, qn) acts sharply transitively on the frames of PG(2, qn), we see
that 4 points in general position define a unique Fq-subplane of PG(2, qn).
A similar statement holds for 4 (n − 1)-spaces in PG(3n − 1, q) in general
position. A proof can be found in e.g. [7, Proposition 2.1, Corollary 2.3,
Proposition 2.4].

Lemma 1.7. Four (n − 1)-spaces in PG(3n − 1, q) in general position are
contained in a unique Segre variety Sn−1,2.

2 Laguerre planes

Definition. A Laguerre plane is an incidence structure with points P , lines
L and circles C such that (P ,L, C) satisfies the following four axioms:

AX1 Every point lies on a unique line.

AX2 A circle and a line meet in a unique point.

AX3 Through 3 points, no two collinear, there is a unique circle of C.
AX4 If P is a point on a fixed circle C and Q a point, not on the line through

P and not on the circle C, then there is a unique circle C ′ through P
and Q, meeting C only in the point P .

In a finite Laguerre plane, every circle contains s + 1 points for some s;
this constant s is called the order of the Laguerre plane.

Starting from a point P of a Laguerre plane L = (P ,L, C), we obtain an
affine plane (P ′,L′), where incidence is inherited from L, as follows.

P ′ : the points of P , different from P and not collinear with P ,

L′ : (1) the lines of L not through P ,
(2) the elements of C through P .

The obtained affine plane (P ′,L′) is called the derived affine plane at P .

Definition. A finite ovoidal Laguerre plane with points P , lines L and circles
C is a Laguerre plane that can be constructed from a cone K as follows.
Consider a cone K in PG(3, q) with vertex the point V and base an oval in
a plane H, not containing V . Incidence is natural.
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P : the points of K \ {V },
L : the generators of K, i.e. the lines of PG(3, q), lying on K,

C : the plane sections of K, not containing V .

For later use, we will consider the dual model in PG(3, q) of the definition
of an ovoidal Laguerre plane obtained from the cone K with vertex V and
base an oval A, embedded in PG(3, q). Let H denote the plane which is
the dual of the point V in PG(3, q). Let A denote the dual (in PG(2, q)) of
the oval A contained in H. It is not hard to see that we find the following
incidence structure (P ,L, C):

P : planes different from H and meeting H in a line of A,

L : the lines in H belonging to A,

C : the points of PG(3, q) not contained in H (the affine points).

We will denote the ovoidal Laguerre plane that is obtained in this way by
L(A).

Definition. The classical Laguerre plane of order q is an ovoidal Laguerre
plane, obtained from a quadratic cone K in PG(3, q), i.e. a cone whose base
is a conic.

Remark. A Laguerre plane is called Miquelian if for each eight pairwise
different points A,B,C,D,E, F,G,H it follows from (ABCD), (ABEF ),
(BCFG), (CDGH), (ADEH) that (EFGH), where (PQRS) denotes that
P,Q,R, S are on a common circle. By a theorem of van der Waerden and
Smid a Laguerre plane is Miquelian if and only if it is classical [15] and we,
as well as many others, use the term ‘Miquelian Laguerre plane’ instead of
‘classical Laguerre plane’.

It follows from Segre’s theorem that an ovoidal Laguerre plane of odd
order is necessarily Miquelian.

For later use, we will also introduce the plane model of the Miquelian
Laguerre plane of even order q (for more information we refer to [2]). Consider
a point N in PG(2, q), q even. Since three points together with a nucleus
determine a unique conic, one can easily count that there are exactly q3− q2
conics in PG(2, q), q even, all having the same point N as their nucleus.
The plane model of the Miquelian Laguerre plane is the following incidence
structure (P ,L, C) embedded in PG(2, q), q even, with natural incidence.

P : the points of PG(2, q) different from N ,

L : the lines of PG(2, q) containing N ,
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C : the q2 lines of PG(2, q) not containing to N and the q3 − q2 conics in
PG(2, q) having N as their nucleus.

Remark. One can easily deduce this model from the standard cone model
obtained from a quadratic cone K with vertex V and base a conic C by
projecting the cone K from a point on the line through V and the nucleus of
C on a plane.

The kernel K of a Laguerre plane L is the subgroup of Aut(L) consisting
of all automorphisms which map a point P onto a point collinear with P , for
every point P of L. In other words, K is the elementwise stabiliser of lines
of L.

Lemma 2.1. (see e.g. [12, Theorem 1]) The order of the kernel K of a
Laguerre plane L of order s divides s3(s − 1). Moreover, |K| = s3(s − 1) if
and only if L is ovoidal.

Definition. A Laguerre plane L is an elation Laguerre plane if its kernel K
acts transitively on the circles of L.

We denote the dual of a subspace M or a set of subspaces O of PG(3n−
1, q) by M and O.

A dual pseudo-oval O in PG(3n − 1, q) gives rise to an elation Laguerre
plane L(O) in the following way. Embed H∞ = PG(3n−1, q) as a hyperplane
in PG(3n, q) and define L(O) to be the incidence structure (P ,L, C) with
natural incidence and:

P : 2n-spaces meeting H∞ in an element of O,

L : elements of O,

C : points of PG(3n, q) not in H∞ (the affine points).

It is not hard to check that this incidence structure defines a Laguerre plane
of order qn and that the group of perspectivities with axis H∞ in PΓL(3n, q)
induces a subgroup of the kernel of L(O) that acts transitively on the circles
of L(O). So L(O) is indeed an elation Laguerre plane.

In [12], Steinke showed the converse: every elation Laguerre plane can be
constructed from a dual pseudo-oval.

Theorem 2.2. [12] A finite Laguerre plane L is an elation Laguerre plane
if and only if L ∼= L(O) for some dual pseudo-oval O.

More explicitely, it is shown that a Laguerre plane of order qn with kernel
of order q3n(q−1) can be obtained from a dual pseudo-oval in PG(3n−1, q).

We show in Theorem 2.4 that every elementary dual pseudo-oval gives
rise to an ovoidal Laguerre plane and vice versa. In order to prove this, we
need the following lemma.
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Lemma 2.3. Let L be an ovoidal Laguerre plane of order qn, then there is
a unique subgroup T of order q3n in the kernel K of L.

Proof. Consider the dual model for an ovoidal Laguerre plane. Every per-
spectivity in PΓL(4, qn) with axis H∞ induces an element of K. Since the
group of perspectivities with axis H∞ has order q3n(qn−1), which equals the
order of K by Lemma 2.1, it follows that every element of K corresponds
to a perspectivity. The group Gel consisting of all elations in PG(3, qn) with
axis H∞ is a normal subgroup of the group of all perspectivities with axis
H∞ and has order q3n.

Let S be a subgroup of K of order q3n, q = ph, p prime, then S is a Sylow
p-subgroup and since all Sylow p-subgroups are conjugate and Gel is normal
in K, S = Gel.

Theorem 2.4. A finite elation Laguerre plane L is ovoidal if and only if
L ∼= L(O) where O is an elementary dual pseudo-oval in PG(3n− 1, q).

Proof. Let L be an elation Laguerre plane. By Theorem 2.2, L is isomorphic
to L(O), where O is a dual pseudo-oval in PG(3n − 1, q), for some q and n
such that the order of L is qn. So it remains to show that L(O) is ovoidal if
and only if O is elementary. In view of the definition of an ovoidal Laguerre
plane, using the dual setting, we will show that L(O) is isomorphic to L(A)
if and only if the dual pseudo-oval O in PG(3n − 1, q) is obtained from the
dual oval A in PG(2, qn) by field reduction.

First suppose that the dual pseudo-oval O in PG(3n − 1, q) is obtained
from a dual oval, say A, in PG(2, qn) by field reduction. Apply field reduction
to the points, lines and circles of L(A), then the obtained incidence struc-
ture L∗, contained in PG(4n − 1, q) is isomorphic to L(A). If we intersect
the points, lines and circles of L∗ with a fixed 3n-dimensional subspace of
PG(4n − 1, q), through the (3n − 1)-space containing the field reduced ele-
ments of A, then the obtained structure is clearly isomorphic to the points,
lines and circles from L(O).

Now, let L = (P ,L, C) be a Laguerre plane that on the one hand is
isomorphic to L(O) (call this model 1) and on the other hand isomorphic to
L(A) (call this model 2). As before, the elementwise stabiliser of the lines in
the automorphism group Aut(L) of L (the kernel of L) is denoted by K.

From model 1, we know that the group of elations in PG(3n, q), with axis
the hyperplane H∞ which contains the elements of O, induces a subgroup of
K of order q3n, likewise, from model 2, we know that the group of elations
in PG(3, qn) with axis the hyperplane H which contains the elements of A
induces a subgroup of K of order q3n. By Lemma 2.3 these induced subgroups
are the same, denote this group by T . Consider the stabiliser of a point P
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in T . From model 2, we have that TP has order q2n, the number of elations
with axis H fixing a plane of PG(3, qn), intersecting H in a line of A. In
model 1, the elements of TP correspond to elations of PG(3n− 1, q) fixing a
2n-space intersecting H∞ in an element of O.

The group T corresponds to the elations in PG(3, qn) (model 1), hence
T forms a 3-dimensional vector space over Fqn . Equivalently, the group T
corresponds to the elations in PG(3n − 1, q) (model 2), hence also forms a
3n-dimensional vector space over Fq. Since TP in both models is normalised
by the perspectivities, we see that TP forms a 2-dimensional vector subspace
W = V (2, qn) (model 1) and a 2n-dimensional vector subspace W ′ = V (2n, q)
(model 2) (see also [10]). Clearly, since W and W ′ correspond to the same
vector space, W ′ is obtained from W by field reduction. Choose for every
line `i of L, one point Pi ∈ `i. Since a point Pi lies on a unique line `i of L,
TPi

can be identified with the line `i. Considering this projectively, we get
that for all i = 1, . . . , qn + 1, the subgroup TPi

, which forms a 2-dimensional
vector space over Fqn and a 2n-dimensional vector space over Fq, is identified
on one hand to an element of O (model 1) and on the other hand to a line of
A (model 2). This implies that O is obtained from A by field reduction.

From this we can easily deduce the following corollaries.

Corollary 2.5. A finite elation Laguerre plane L is Miquelian if and only if
L ∼= L(O) where O is a dual pseudo-conic in PG(3n− 1, q).

Corollary 2.6. Let H be a dual pseudo-hyperoval containing an element
E such that L(O), where O = H \ E, is Miquelian, then H is a pseudo-
hyperconic with E as the field reduced nucleus.

Proof. By Corollary 2.5, O is obtained by applying field reduction to a dual
conic C in PG(2, qn). The dual conic C in PG(2, qn) uniquely extends to a
dual hyperconic by adding its dual nucleus line N . This shows that O can
be extended to a dual pseudo-hyperoval by the (2n − 1)-space obtained by
applying field reduction to the line N . Since Theorem 1.1 shows that this
extension is unique, we see that the element E is the (n− 1)-space obtained
by applying field reduction to the nucleus N of the conic C, and hence, H is
a pseudo-hyperconic.

3 Towards the proof of the main theorem

Recall that we will prove the following:
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Main Theorem. If O is a pseudo-oval in PG(3n − 1, q), q = 2h, h > 1, n
prime, such that the spread induced by every element of O is Desarguesian,
then O is elementary.

We know from Theorem 1.1 that a pseudo-oval O in even characteristic
extends in a unique way to a pseudo-hyperoval H and for the proof of our
main theorem, we will work with H, the unique pseudo-hyperoval extending
O.

We will split the proof of the Main Theorem in two cases. In Subsection
3.1 we will consider pseudo-hyperovals having a specific property (P1) and
we will prove that they are always elementary. In Subsection 3.2 we will
consider dual pseudo-hyperovals satisfying a property (P2), and again we
show that they are elementary. Finally, in Subsection 3.3 we see that if
a pseudo-oval O, such that every element induces a Desarguesian spread,
extends to a pseudo-hyperoval H which does not meet property (P1), then
its dual H necessarily meets (P2), which implies that O is elementary.

3.1 Case 1

In this subsection, we will consider a pseudo-hyperovalH having the following
property:

(P1): there exist four elements Ei, i = 1, . . . , 4 of H, such that

(i) the induced spreads S1, S2, S3 are Desarguesian,

(ii) the unique Sn−1,2 through E1, E2, E3 and E4 does not contain q+2
elements of H.

Theorem 3.1. Consider a pseudo-hyperoval H in PG(3n − 1, q), q = 2h,
h > 1, n prime, satisfying Property (P1), then H is elementary.

Proof. Let E1, . . . , E4 be the four elements obtained from the hypothesis that
H satisfies Property (P1). Denote the (n − 1)-space 〈E1, E2〉 ∩ 〈E3, E4〉 by
µ. The spreads S1 and S2 can be seen in 〈E3, E4〉 = PG(2n − 1, q). By
Property (P1), S1 and S2 are Desarguesian. Since by definition E3, E4 and
µ are contained in S1 and S2, and S1 and S2 are Desarguesian and hence
regular, the q+1 elements of the unique regulus R(µ,E3, E4) through E3, E4

and µ are contained in S1 and S2. We claim that S1 = S2.
We see that µ,E1, E2 are elements of the spread S3 considered in 〈E1, E2〉.

By Property (P1), S3 is Desarguesian, hence, regular, so every element of
R(µ,E1, E2) is contained in S3. Because q > 2, we may take an element X
of R(µ,E1, E2), different from E1, E2 and µ.
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Since X ∈ S3, the space 〈X,E3〉 contains an element, say E5, of H.
The (2n − 1)-space 〈E1, E5〉 meets 〈E3, E4〉 in an (n − 1)-space Y , that is
by construction contained in S1. Let D be the unique Desarguesian spread
obtained from Theorem 1.4, through S1 and E1, E2. Since E5 = 〈X,E3〉 ∩
〈Y,E1〉 and a Desarguesian spread is normal, we see that E5 ∈ D. This holds
for every element Ei ∈ H contained in 〈Z,E3〉 with Z ∈ R(µ,E1, E2); let
E5, . . . , Eq+2 be these elements of H.

Now consider the (n − 1)-spaces Ti := 〈E2, Ei〉 ∩ 〈E3, E4〉, with i =
5, . . . , q+2. The spaces Ti by definition belong to S2 (considered in 〈E3, E4〉).
But since E2, Ei, E3, E4 are elements of D, Ti is an element of D and since
D ∩ 〈E3, E4〉 = S1, Ti ∈ S1.

So the spreads S1 and S2 contain R(µ,E3, E4) and all elements Ti. Sup-
pose that all elements Ti, i = 5, . . . , q + 2 are contained in R(µ,E3, E4). Let
P be a point of µ, let ` be the unique transversal line through P to the reg-
ulus R(µ,E1, E2) and let m be the unique transversal line through P to the
regulus R(µ,E3, E4). It is clear that the plane 〈`,m〉 is a plane of the second
system of the unique Sn−1,2, say B, through E1, E2, E3, E4. This implies that
all elements Ti, as well as the elements of R(µ,E1, E2) are contained in B.

The element Ei, i = 5, . . . , q + 2 is obtained as 〈Ti, E2〉 ∩ 〈Z,E3〉, for
some Z ∈ R(µ,E1, E2). Now it is clear that Sn−1,2 has the property that an
(n− 1)-space that is obtained as the intersection of the span of two elements
of Sn−1,2 is contained in Sn−1,2. Since Ti, E2, Z, E3 are (n−1)-spaces of B, Ei

is in B, for all i = 1, . . . , q + 2. This implies that B contains q + 2 elements
of B, a contradiction since H satisfies Property (P1).

Since S1 and S2 have more elements in common than the elements of the
regulus R(µ,E3, E4), using the fact that n is prime, we see that Corollary
1.6 proves our claim.

Since S1 = S2, every element E of H, different from E1, E2, E3, E4 can be
written as 〈E1, U〉 ∩ 〈E2, V 〉, where U, V are elements of S1 = S2. Since the
Desarguesian spread D is normal, it follows that E ∈ D for all E ∈ H. Since
H is contained in a Desarguesian spread, H is elementary.

3.2 Case 2

In this subsection, we will use the following theorem on hyperovals.

Theorem 3.2. [9, Theorem 11, Remark 5] Let O be an oval of PG(2, qn),
q > 2 even. Let N be the unique point extending O to a hyperoval. Then O
is a conic if and only if every triple of distinct points of O together with N
lie in an Fq-subplane that meets O in q + 1 points.
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In the proof of this case we will work in the dual setting, so we need the
following lemma on dual pseudo-(hyper)ovals.

Lemma 3.3. Let O be a pseudo-oval in PG(3n − 1, q) such that every ele-
ment Ei ∈ O, i = 1, . . . , qn + 1 induces a Desarguesian spread Si, then the
dual pseudo-oval O has the property that for every element Ei, the set of
intersections {Ej ∩Ei|j 6= i} forms a partial spread in Ei uniquely extending
to a Desarguesian spread and vice versa. The analoguous statement holds for
pseudo-hyperovals.

Proof. An element of Si, say E1/Ei equals 〈E1, Ei〉/Ei. This space can be
identified with 〈E1, Ei〉 and its dual 〈E1, Ei〉, which equals E1 ∩ Ei. This
implies that the set {E1, . . . , Ei−1, Ei+1, . . . , Eqn+1}/Ei extends to a Desar-
guesian spread of PG(2n− 1, q) if and only if {E1 ∩Ei, . . . , Ei−1 ∩Ei, Ei+1 ∩
Ei, . . . , Eqn+1 ∩ Ei} extends to a Desarguesian spread. The same reasoning
holds for pseudo-hyperovals.

By abuse of notation, we say that an element Ei of a dual pseudo-
hyperoval H = {E1, . . . , Eqn+2} induces the spread S i := {Ej ∩ Ei|j 6= i}.
Then Lemma 3.3 states that Si is Desarguesian if and only if S i is Desar-
guesian. Also, we write Sn−1,2 for the set of (2n− 1)-spaces in PG(3n− 1, q)
that is obtained by dualising the system of (n − 1)-spaces of Sn−1,2. In the
case that n = 3, both systems have spaces of dimension 2, so we dualise the
system of planes that contains the elements E1, E2, E3, E4 used to define the
Segre variety S2,2.

We know that the (n− 1)-spaces of Sn−1,2 correspond to the points of an
Fq-subplane π of PG(2, qn), and are exactly the elements of a Desarguesian
spread meeting a fixed plane. By considering the field reduction of the lines
of the Fq-subplane π we can also see that Sn−1,2 consists of q2+q+1 (2n−1)-
spaces in PG(3n− 1, q) each meeting a fixed plane in a different line of this
plane.

Suppose now the dual pseudo-hyperoval H has an element E1 such that
E1 and H satisfy the following properties:

(P2): (i) E1 induces a Desarguesian spread,

(ii) for any three elements E2, E3, E4 of H \ {E1}, the unique Sn−1,2
through E1, E2, E3 and E4 contains q + 2 elements of H.

Note that in the following lemma, we do not require n to be prime.

Lemma 3.4. Let H be a pseudo-hyperoval in PG(3n− 1, q), q = 2h, h > 1.
Assume that
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• the spread induced by a subset T of qn + 1 elements of H is Desargue-
sian,

• H satisfies Property (P2) for some element E1 of T ,

then the following statements hold:

(i) the elation Laguerre plane L(O) where O = H\{E1} is isomorphic to
the Laguerre plane (P ′,L′, C ′) embedded in π, with natural incidence,
given by

P ′: the lines of π different from `∞,

L′: the points of `∞,

C ′: the q2n point-pencils of π not containing `∞ and q3n − q2n dual
ovals such that `∞ extends all of them to a dual hyperoval,

where π is the Desarguesian projective plane PG(2, qn) obtained from
the André/Bruck-Bose construction obtained from the spread S1 and
`∞ is the line of π corresponding to E1.

(ii) a dual oval A of the set C ′ is a dual conic with `∞ as its nucleus line.

(iii) L(O) is Miquelian.

Proof. (i) Embed the space PG(3n − 1, q), containing O, as a hyperplane
H∞ in PG(3n, q). Recall that L(O) is the incidence structure (P ,L, C), with
natural incidence, embedded in PG(3n, q) as follows:

P : the 2n-spaces meeting H∞ in an element of O,

L : the elements of O,

C : the points of PG(3n, q) not contained in H∞ (the affine points).

Consider a 2n-space Π of PG(3n, q) intersecting H∞ in E1. The elements
of O intersect E1 in the Desarguesian spread S1. It follows that the (projec-
tive) André/Bruck-Bose construction in Π, using S1, defines a Desarguesian
projective plane π ∼= PG(2, qn). The elements of S1 correspond to the points
of a line `∞ of π. By intersecting the elements of L(O) with Π, we find the
representation (P ′,L′, C ′) of the Laguerre plane L(O) in the Desarguesian
plane π as given in the statement. For this, we identify every circle of C with
the qn + 1 elements of P it contains and consider their intersection with Π.
Then, an affine point contained in Π corresponds to a point-pencil of π not
containing `∞. An affine point not contained in Π will also correspond to a
set of qn +1 lines of π, different from `∞. However, since such an affine point
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does not belong to Π, any three of these lines will have empty intersection,
hence they form a dual oval. Moreover, these qn + 1 lines intersect the line
`∞ all in a different point, therefore each dual oval extends uniquely to a
dual hyperoval by adding the line `∞.

(ii) Consider the affine point P of PG(3n, q)\Π corresponding to A. Con-
sider three lines `1, `2, `3 of A. These correspond to three elements of H, say
E2, E3 and E4. Now, since H satisfies Property (P2), we find that the unique
Sn−1,2, say B, through the 4 (2n−1)-spaces E1, E2, E3 and E4 contains q+ 2
elements of H.

The element E1 is contained in B, and the projection from P of the
q2 + q (2n− 1)-spaces of B, different from E1, onto the space Π (used in the
André/Bruck-Bose construction) corresponds to q2 + q lines of the plane π.
Every such projected line intersects `∞ in a point which corresponds to one
of the q + 1 elements of the unique regulus in E1 through E1 ∩ E2, E1 ∩ E3

and E1 ∩ E4. This implies that the set of (2n − 1)-spaces B corresponds to
the set of lines of an Fq-subplane in the Desarguesian plane π, which contains
`∞, `1, `2, `3 and q − 2 other lines of A. Since this is true for every choice of
three distinct lines `1, `2, `3 of A, by Theorem 3.2, A is a dual conic with `∞
as its nucleus line.

(iii) We consider the dual (P ′′,L′′, C ′′) of the incidence structure (P ′,L′, C ′)
and use part (ii) which states that the dual ovals in C are dual conics. Also
note that the dual of the Desarguesian plane π is also Desarguesian. Let the
point N be the dual of the line `∞, then (P ′′,L′′, C ′′) is given by

P ′′: the points of PG(2, qn) different from N ,

L′′: the lines of PG(2, qn) containing N ,

C ′′: the q2n lines of PG(2, qn) not containing N and the q3n − q2n conics in
PG(2, qn) having N as their nucleus.

This is just the standard plane model for a Miquelian Laguerre plane of
even order qn.

3.3 The proof of the main theorem

We will first prove a lemma which gives a connection between Properties
(P1) and (P2).

Lemma 3.5. Let H be a pseudo-hyperoval in PG(3n− 1, q), q = 2h, h > 1,
such that there is a subset O of qn+1 elements of H inducing a Desarguesian
spread. If H does not satisfy Property (P1), then H satisfies (P2) for every
element of O.
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Proof. If the hyperoval H does not satisfy Property (P1), then clearly, it
does not satisfy Property (P1)(ii). So for every 4 elements Ei, i = 1, . . . , 4 of
H, the unique Sn−1,2 through Ei, i = 1, . . . , 4 contains q + 2 elements of H.
This implies that the unique Sn−1,2 through Ei, i = 1, . . . , 4 contains q + 2
elements of H, so H satisfies Property (P2) for all elements of O.

Theorem 3.6. If O is a pseudo-oval in PG(3n − 1, q), q = 2h, h > 1, n
prime, such that the spread induced by every element of O is Desarguesian,
then O is elementary.

Proof. By Theorem 1.1, we may consider the unique pseudo-hyperoval H
extending O. Clearly, H satisfies the conditions of Lemma 3.5. This implies
that either H satisfies Property (P1), and then the statement follows from
Theorem 3.1 (and the fact that a subset of an elementary set is elementary),
or H satisfies Property (P2) for every element of O.

By Lemma 3.4, L(O) is Miquelian, and by Lemma 2.6, H is a pseudo-
hyperconic with E corresponding to the nucleus N of a conic C (hence O is
elementary). Note that only for q = 4 this possibility can occur, since it is
impossible that the set C ∪ {N} \ {P}, where P is a point of C is again a
conic, if q > 4.

As a corollary, we state a similar statement for pseudo-hyperovals.

Corollary 3.7. Let H be a pseudo-hyperoval in PG(3n−1, q), q = 2h, h > 1,
n prime, such that the spread induced by qn+1 elements of H is Desarguesian,
then H is elementary.

Proof. The subset O of elements inducing a Desarguesian spread is an ele-
mentary pseudo-oval by Theorem 3.6, suppose O is the field reduced oval A.
There is a unique element extending O to a pseudo-hyperoval, so H\O must
be the element corresponding the unique point of PG(2, qn) extending A to
a hyperoval.

Remark. Using a substantial amount of effort, the proof of Theorem 3.1
can be extended to hold for all n, and not only for n prime. However, the
conditions (P1) and (P2) become slightly different and hence a modified
version of Lemma 3.4 is necessary. For the proof of this modified lemma, we
require a more general version of Theorem 3.2 which is unfortunately out of
our reach.
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3.4 The consequence of the main theorem for Laguerre
planes

Lemma 3.8. A point P of an elation Laguerre plane L = L(O), where O is
a dual pseudo-oval in PG(3n−1, q), admits a Desarguesian derivation if and
only if the spread S, induced by the line of L(O) through P is Desarguesian.

Proof. Let P be a point of L, then P is a 2n-space through an element E of
O. The derived affine plane of order qn at the point P of L consists of points
P ′ and lines L′ obtained as follows:

P ′ : 2n-spaces in PG(3n, q), not in H∞, through an element of O \ {E},

L′ : points in P not in H∞, together with the elements of O \ E.

Now this affine plane clearly extends to a projective plane of order qn by
adding the qn + 1 elements of S as points and the space E as line at infinity.
This projective plane is the dual of the plane obtained from the (projective)
André/Bruck-Bose construction starting from S and hence, is Desarguesian
if and only if S is Desarguesian.

If L is a Laguerre plane of odd order, then the main theorem of Chen and
Kaerlein [6] states that the existence of one point admitting a Desarguesian
derivation forces L to be Miquelian. The following theorem which is a conse-
quence of our main theorem gives a (much) weaker result in the case of even
order Laguerre planes.

Theorem 3.9. Let L be a Laguerre plane of order qn with kernel K, |K| ≥
q3n(q−1), n prime, q > 2 even. Suppose that for every line of L, there exists
a point on that line that admits a Desarguesian derivation, then L is ovoidal
and |K| = q3n(qn − 1).

Proof. From the hypothesis on the size of K and Lemma 2.1, we find that
q3n divides the order of T , hence, by [12, Theorem 2] L is an elation Laguerre
plane. By Theorem 2.2 L can be constructed from a dual pseudo-oval O in
PG(3n−1, q), n prime. From Lemma 3.8, we obtain that for every element of
O the induced spread is Desarguesian. By Theorem 3.6, O is elementary. By
Theorem 2.4 this implies that L is ovoidal. Finally, this implies by Lemma
2.1 that |K| = q3n(qn − 1).
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