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Abstract. Understanding runoff processes in a basin is of

paramount importance for the effective planning and man-

agement of water resources, in particular in data-scarce re-

gions such as the Upper Blue Nile. Hydrological models rep-

resenting the underlying hydrological processes can predict

river discharges from ungauged catchments and allow for an

understanding of the rainfall–runoff processes in those catch-

ments. In this paper, such a conceptual process-based hy-

drological model is developed and applied to the upper Gu-

mara and Gilgel Abay catchments (both located within the

Upper Blue Nile Basin, the Lake Tana sub-basin) to study

the runoff mechanisms and rainfall–runoff processes in the

basin. Topography is considered as a proxy for the variabil-

ity of most of the catchment characteristics. We divided the

catchments into different runoff production areas using to-

pographic criteria. Impermeable surfaces (rock outcrops and

hard soil pans, common in the Upper Blue Nile Basin) were

considered separately in the conceptual model. Based on

model results, it can be inferred that about 65 % of the runoff

appears in the form of interflow in the Gumara study catch-

ment, and baseflow constitutes the larger proportion of runoff

(44–48 %) in the Gilgel Abay catchment. Direct runoff rep-

resents a smaller fraction of the runoff in both catchments

(18–19 % for the Gumara, and 20 % for the Gilgel Abay) and

most of this direct runoff is generated through infiltration ex-

cess runoff mechanism from the impermeable rocks or hard

soil pans. The study reveals that the hillslopes are recharge

areas (sources of interflow and deep percolation) and direct

runoff as saturated excess flow prevails from the flat slope

areas. Overall, the model study suggests that identifying the

catchments into different runoff production areas based on

topography and including the impermeable rocky areas sep-

arately in the modeling process mimics the rainfall–runoff

process in the Upper Blue Nile Basin well and yields a use-

ful result for operational management of water resources in

this data-scarce region.

1 Introduction

The Upper Blue Nile Basin, the largest tributary of the Nile

River, covers a drainage area of 176 000 km2 and contributes

more than 50 % of the long-term river flow of the Main Nile

(Conway, 2000). The basin (Fig. 1a) drains the central and

southwestern highlands of Ethiopia. The Ethiopian govern-

ment is pursuing plans and programs to use the water re-

source potential of the basin for hydropower and irrigation

in an effort to substantially reduce poverty and increase agri-

cultural production. The Grand Ethiopian Renaissance Dam

near the Ethiopian–Sudan border is currently under construc-

tion and several other water resource development projects

are underway in its sub-basins.

Owing to such rapidly developing water resource projects

in the basin, there is an increasing need for the management

of the available water resources in order to boost agricultural

production and to meet the demand for electrical power. Sus-
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tainable planning and development of the resources depend

largely on the understanding of the interplay between the hy-

drological processes and the availability of adequate data on

river discharges in the basin. However, the available hydro-

logical data are limited (for example, presently about 42 %

of the Lake Tana sub-basin, the source of the Blue Nile,

is gauged by the Ministry of Water Resources of Ethiopia).

Furthermore, research efforts performed so far in the Upper

Blue Nile Basin with respect to the basin characteristics, hy-

drology and climatic conditions are scanty and fragmented

(Johnson and Curtis, 1994; Conway, 1997; Mishra and Hata,

2006; Antar et al., 2006). Hydrological models that allow for

a description of the hydrology of the region play an impor-

tant role in predicting river discharges from ungauged catch-

ments and understanding the rainfall–runoff processes in the

catchments in order to enhance hydrological and water re-

sources analysis. As such, a number of models have been

developed and applied to study the water balance, soil ero-

sion, climate and environmental changes in the Blue Nile

Basin (e.g., Johnson and Curtis, 1994; Conway, 1997; Mishra

and Hata, 2006; Kebede et al., 2006; Kim and Kaluarachchi,

2008; Collick et al., 2009; Steenhuis et al., 2009; Tekleab et

al., 2011; Tilahun et al., 2013).

The Soil and Water Assessment Tool (SWAT) and the Hy-

drologiska Byråns Vattenbalansavdelning Integrated Hydro-

logical Modelling System (HBV-IHMS) models have been

applied in the basin (Setegn et al., 2008; Wale et al., 2009;

Uhlenbrook et al., 2010). The SWAT model is based on the

Soil Conservation Service (SCS) runoff curve number ap-

proach, where the parameter values are obtained empirically

from plot data in the United States with a temperate climate.

Liu et al. (2008) studied the rainfall–runoff relationships for

the three Soil Conservation Research Project (SCRP) water-

sheds (Hurni, 1984) in the Ethiopian highlands and showed

the limitations of using such models, developed in temper-

ate climates, in monsoonal Ethiopia. Adjusted runoff curve

numbers for steep slopes with natural vegetation in northern

Ethiopia were reported by Descheemaeker et al. (2008).

Using a simple runoff-rainfall relation to estimate inflows

to the Lake Tana from ungauged catchments, Kebede et

al. (2006) computed the water balance of Lake Tana. How-

ever, hills and floodplains were not differentiated in their sim-

plified runoff-rainfall relations. Mishra et al. (2004) and Con-

way (1997) developed grid-based water balance models for

the Blue Nile Basin, using a monthly time step, to study the

spatial variability of flow parameters and the sensitivity of

runoff to climate changes. In both models, the role of to-

pography was not incorporated, and in the model of Con-

way (1997), soil characteristics are assumed spatially invari-

ant. Very few of the model studies discussed above classi-

fied the catchments into different hydrological regimes based

on the relevant landscape characteristics to study the runoff

mechanisms and the hydrological processes in the basin.

Landscape characteristics can lead into conceptual struc-

tures and relationships or the conceptual hydrological mod-

els can benefit from them (Beven, 2001). Istanbulluoglu and

Bras (2005) considered topography as a template for various

landscape processes that include hydrologic, ecologic, and

biologic phenomena. This is more appealing to the Ethiopian

highlands, in particular to the Upper Blue Nile Basin, as

farming and farm drainage methodologies, soil and water

conservation works, soil properties, vegetation, drainage pat-

terns and density, and even rainfall, are much linked to topog-

raphy in the Ethiopian highlands. Therefore, it remains nec-

essary to investigate the hydrological processes in the Blue

Nile Basin taking topography as a proxy for the variability

of most of the catchment characteristics. The objective of

this paper is to study runoff mechanisms in the Upper Blue

Nile Basin using topography as the dominant landscape com-

ponent and classify a catchment (as steep, medium and flat

slope areas) into different runoff production areas. The study

tries to identify the dominant rainfall–runoff mechanism on

the hillslopes (steep and medium slop areas) and the valley

bottoms (flat areas). A considerable portion of the mountain-

ous areas in the Upper Blue Nile Basin consists of imperme-

able rocks and hard soil pans, leading to a different runoff

process. This paper further investigates the contribution of

such landscapes in the rainfall–runoff process by including

a class for these impermeable rock and hard soil surfaces in

the conceptual hydrological model. This approach has not yet

been tested in the Upper Blue Nile Basin. However, similar

methodologies to the conceptual hydrological model devel-

opment are discussed by Savenije (2010). Furthermore, it is

necessary to obtain better quality river discharge data in the

basin. In this paper, we will face all these challenges. The

conceptual hydrological model for the rainfall–runoff stud-

ies of the basin is calibrated using good-quality discharge

data obtained from recently established measurement sta-

tions. These outcomes positively add to the existing knowl-

edge and contribute to the development of water resources

plans and decision making in the basin.

2 Description of study catchments

The study catchments (Fig. 1b) where the model developed

is applied are located in the Lake Tana Basin, the source of

the Blue Nile River. The Lake Tana Basin, located in the

northwestern Ethiopian highlands, with a catchment area of

15 077 km2 (including the lake area), consists predominantly

of the Gilgel Abay, Gumara, Rib and Megech rivers. About

93 % of the annual inflow to Lake Tana is believed to come

from these rivers (Kebede et al., 2006), and better under-

standing of the hydrology of these rivers plays a crucial role

in efficient management of the lake and its basin. Two of the

sub-catchments (Gumara and Gilgel Abay) were selected for

this study in order to represent the hilly and mountainous

lands of the southern and eastern parts of the sub-basin as

the bulk of it is located here (Fig. 1b), as well as to optimally

use the available data. For both sub-catchments, large parts
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of their territory are intensively cultivated. The lower flood-

plains in these catchments with their buffering capacity are

not considered by this study, but were discussed by Dessie et

al. (2014).

The Gilgel Abay catchment (Fig. 1b) covers an area of

1659 km2 at the gauging station near Picolo, with elevations

ranging between 1800 and 3524 m a.s.l. Soils are character-

ized by clay, clay loam and silt loam textures, each texture

sharing similar proportions of the catchment area (Bitew and

Gebremichael, 2011). The majority of the catchment is a

basalt plateau with gentle slopes, while the southern part has

a rugged topography.

The Gumara catchment covers part of the eastern side of

the Lake Tana Basin. At its upper and middle portion, it has

mountainous, highly rugged and dissected topography with

steep slopes. The lower part is a valley floor with flat to

gentle slopes. Elevation in the catchment varies from 1780

to 3700 m a.s.l. At the upper gauging station (Fig. 1b), the

catchment area is 1236 km2. Two independent studies found

very homogeneous textures of the soils in this catchment.

BCEOM (1998) described it as dominantly clay with sandy

clay soil at some places in the catchment, while soil data col-

lected by Miserez (2013) show that texture is clay and clay

loam. In the hilly catchments, clay soils are essentially Niti-

sols, which do not present cracking properties as opposed to

lowland Vertisols (Miserez, 2013).

Based on rainfall data from the Dangila and Bahir Dar sta-

tions, observed in the period 2000 to 2011, mean annual rain-

fall is ca. 1500 mm, with more than 80 % of the annual rain-

fall concentrated from June to September. Geologically, the

catchments consist of Tertiary and Quaternary igneous rocks,

as well as Quaternary sediments. The rivers in the hilly areas

are generally bedrock rivers, whereas in the floodplain the

rivers meander and sometimes braid (Poppe et al., 2013).

3 Model development

The model developed is based on a simple water balance

approach and the studies by Jothityangkoon et al. (2001),

Krasnostein and Oldham (2004) and Fenicia et al. (2008).

The setup of this model is shown in Fig. 2. In this model-

ing approach, the catchment is first split into soil surface and

impermeable surface (these are areas with little or no soil

cover and bedrock outcropping in the catchment as well as

soils with well-developed tillage pans). The runoff from the

presumed impermeable areas is modeled as infiltration ex-

cess (Hortonian flow) runoff and is represented as QSe2. The

other component of the catchment, recognized as the soil sur-

face, is further divided into three using topographic criteria

(slope), considering topography as a proxy for the variabil-

ity of most of the catchment characteristics. Here, two reser-

voirs are introduced (the soil reservoir and the groundwater

reservoir). The slow-reacting reservoir (or the groundwater

reservoir) is set to be common to all of the three slope-based

divisions of the catchment as it is quite inconsistent to sepa-

rate the groundwater system in the catchment. The catchment

buckets (reservoirs) and the conceptual runoff processes are

depicted in Fig. 2b and c.

Jothityangkoon et al. (2001) conceptualized the upper soil

layer (further referred to as the soil reservoir) as a “leaky

bucket”. By adding a groundwater reservoir (Krasnostein

and Oldham, 2004), the conceptual model for modeling the

runoff at the catchment outlet was developed.

In Fig. 2, Q1 [mm day−1] is the sum of direct runoff and

interflow in the soil reservoir;Q2 [mm day−1] is the baseflow

from the groundwater reservoir; QSe2 is the direct runoff

from impermeable surface of the catchment; and the sum

of Q1 , Q2 and QSe2 forms the total river discharge, Q

[mm day−1], at the outlet of a catchment.

The water storage at any time t within the soil reser-

voir, S(t) in mm, is determined by the precipitation (P , in

mm day−1), evapotranspiration (Ea, in mm day−1), and other

catchment-controlled outputs (Fig. 2c (i–iii)). When the stor-

age depth exceeds the field storage capacity (Sf, in mm),

precipitation is assumed to be partly transformed into sub-

surface runoff, to represent inter- or subsurface flow (Qss,

in mm day−1), and partly into deep percolation or recharge

(R, in mm day−1) to the groundwater (Fig. 2c (ii)). When

the soil reservoir fills completely, and the inflows exceed the

outflows, surface runoff (Qse1, in mm day−1) is generated.

Quantitatively, the depth of water stored in the soil, S(t),

evolves over time using the water balance

S(t)= S(t −1t)+ (P −Ea−Qss−Qse1−R)1t, (1)

where P is the precipitation [mm day−1], Ea is the ac-

tual evapotranspiration [mm day−1], S(t −1t) is the previ-

ous time step storage [mm], Qss is the interflow or subsur-

face runoff [mm day−1], Qse1 is the direct or overland flow

from the soil reservoir [mm day−1], R is deep percolation or

recharge to the substrata and groundwater [mm day−1] and

1t is the time step equal to 1 day.

Different studies show that part of the interflow water from

the steep hills appears at the hill bottoms during wet periods

in the form of increased moisture content or overland flow

(Frankenberger et al., 1999; Bayabil et al., 2010; Mehta et

al., 2004; Tilahun et al., 2013). These findings reveal that

the hill bottoms receive additional inputs to the soil reser-

voir from the steep upper parts of the hills besides the rain-

fall. In this modeling approach, it is assumed that steep hills

first recharge the medium slope sections, and consequently

the medium slope surfaces recharge the flat regions (valley

bottoms). The magnitude of the recharge (Qr, in mm d−1) is

modeled as

Qr = αQss, (2)

where α (-) is interflow partitioning parameter and Qss is as

defined above. Equation (1) is, therefore, modified for the
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Figure 1. The Upper Blue Nile Basin and the Lake Tana sub-basin (a) and the study catchments and the gauging stations in the Lake Tana

sub-basin georeferenced on the SRTM DEM (b).

Figure 2. The modeling approach showing (a) divisions of a catchment into different runoff production areas; (b) conceptual model configu-

ration of the soil surface at an outlet of a catchment; and (c) inflows and outflows for the soil reservoir when the soil water storage capacity is

(i) below field storage capacity (ii) greater than field storage capacity and (iii) greater than the maximum soil water storage (after Krasnostein

and Oldham, 2004).

medium slope and flat surfaces as

S(t)= S(t−1t)+ (P +Qr−Ea−Qss−Qse1−R)1t. (3)

3.1 Actual evapotranspiration

During wet periods, when the depth of available water ex-

ceeds the maximum available soil storage capacity (Sb, in

mm), the actual evapotranspiration is equal to the potential

evapotranspiration (Ep, in mm day−1). When S(t) is lower

than Sb, Ea is assumed to decrease linearly with moisture

content as follows (Steenhuis and van der Molen, 1986):

Ea = Ep(
S(t)

Sb

), (4)

Sb =Dφ, (5)

where D is the soil depth [mm] and φ is the soil porosity (-).

3.2 Subsurface runoff

Subsurface runoff, Qss [mm day−1], occurs only when the

storage depth exceeds the field storage capacity (Sf, in mm).

It is calculated as the difference between the storage and the

field storage capacity, divided by the response time (Tr) of the

catchment with respect to subsurface flow (Jothityangkoon et

al., 2001):

Qss =
S(t)− Sf

Tr

when S(t) > Sf, (6)

Qss = 0 when S(t)≤ Sf. (7)

The field storage capacity of the soil reservoir, Sf [mm], is

calculated using

Sf = FcD, (8)

where Fc (-) is the field capacity of the soil (dimensionless).
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The catchment response time is the time taken by the ex-

cess water in the soil to be released from the soil and drained

out from the catchment. This response time depends on the

properties of the soil and the topography of the system, and

the subsurface flow velocity (Vb, in mm day−1) can be ex-

pressed as

Vb =
L

Tr

, (9)

where L is the average slope length of the catchment [mm].

From Darcy’s law in saturated soils, Vb is also given as

Vb =Ksi, (10)

where Ks is the saturated hydraulic conductivity of the soil

[mm day−1] and i is the hydraulic gradient, which is approx-

imated by the average slope gradient (G) of the catchment.

Brooks et al. (2004) analyzed the variability of saturated

hydraulic conductivity with depth and found large Ks values

near the surface or root zone layer and the transmissivity that

decreases exponentially with depth. Accordingly, a variation

is made between the upper soil layer (which affects inter-

flow) and deep soil layer (percolation to groundwater) hy-

draulic conductivities. The permeability (K , in mm day−1)

of the upper soil layer for the interflow under different soil

water conditions is modeled as

K =Ks,u(1− e
−β

S(t)
Sb ), (11)

where β is a dimensionless parameter and Ks,u [mm day−1]

is the saturated hydraulic conductivity of the upper soil layer,

both of which are to be calibrated.

The response time (Tr) in Eq. (6) is hence approximated

from Eqs. (9), (10) and (11) as

Tr =
L

G K
, (12)

where L and K are as defined in Eqs. (9) and (11) and G is

average slope gradient of the catchment.

The deep percolation or recharge to groundwater (R, in

mm day−1) under varying soil water content conditions is

modeled as

R =Ks,e(1− e
−γ

S(t)
Sb ), (13)

where γ a dimensionless parameter, and Ks,e [mm day−1] is

the saturated hydraulic conductivity of the deep soil layer,

which is to be estimated from the aquifer properties of the

catchments. This equation is identical to Eq. (11); therefore

in both cases it is assumed that conductivities vary exponen-

tially under varying soil water content conditions but with

different magnitudes.

3.3 Saturated excess runoff

Saturated excess runoff or surface runoff (Qse1, in

mm day−1) is calculated as the depth of water that exceeds

Figure 3. Typical surfaces with poor infiltration on hillslopes in

the Gumara catchment: (a) shallow soil overlying bedrock and (b)

plough pan with typical plough marks. The occurrence of high

runoff response on these surfaces is evidenced by the presence of

rill erosion (photos: Elise Monsieurs).

the total water storage in the soil reservoir at each time

step (Jothityangkoon et al., 2001; Krasnostein and Oldham,

2004).

Qse1 =
S(t)− Sb

1t
when S(t) > Sb

Qse1 = 0 when S(t)≤ Sb

(14)

3.4 Surface runoff from the impermeable areas

Field visits on the Upper Blue Nile Basin (including the study

catchments) revealed the existence of exposed surfaces that

cause strong runoff response. These are areas with little or

no soil cover and bedrock outcropping in some parts of the

catchment as well as soils with well-developed tillage pans

(Temesgen et al., 2012a, b) (Fig. 3). Hence, runoff from these

almost impermeable areas is modeled as infiltration excess

(Hortonian flow) runoff with a very small amount of reten-

tion before runoff occurs (Steenhuis et al., 2009). The surface

runoff from these areas (QSe2, in mm day−1) is calculated as

QSe2 = P −Ep when P > Ep

QSe2 = 0 when P ≤ Ep,
(15)

where P and Ep [mm day−1] are as defined above. The im-

permeable portion of the catchment area (Ar, in km2) is mod-

eled from the total catchment area (At, in km2) as

Ar = λAt, (16)

where λ is the fraction of impermeable surface within the

catchment.
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3.5 Groundwater reservoir and baseflow

The introduction of a deep groundwater storage (Fig. 2b)

helps to improve low-flow predictions. This baseflow reser-

voir is assumed to act as a nonlinear reservoir (Wittenberg,

1999) and its outflow,Q2 [mm day−1], and storage, Sg [mm],

are related as

Q2 =
Sk1
g(t)

1t
, (17)

where k1 is a dimensionless model parameter. The water bal-

ance of the slow-reacting reservoir (groundwater reservoir)

is given by

Sg(t) = Sg(t−1t)+ (R−Q2)1t, (18)

where Sg(t) [mm] is the groundwater storage at the given time

step, Sg(t−1t) [mm] is the previous time step groundwater

storage and R [mm day−1] is the deep percolation, as given

by Eq. (13).

In total the model has seven parameters:

i. Parameters for the recharge (α1 and α2): in the three

slope classifications, α1 is to consider for the recharge

from the steep slope into the medium slope surface and

α2 is for the recharge from the medium slope surface

into the flat surface. There is no parameter for the steep

slope surface since there is no surface that recharges it.

Therefore, there are two parameters for the three slope

classifications.

ii. Parameter for the impermeable surface of the catchment

(λ): the catchment is divided into two surfaces (imper-

meable surface with no or little soil cover and the soil

surface). The parameter λ is introduced to represent the

fraction of impermeable surface within the total catch-

ment and this part of the catchment is not classified as

steep, medium slopes and flat surfaces since the classi-

fication of this part of the catchment into such classes is

not important. Thus we have one parameter.

iii. The parameters β, γ , k1 and Ks,u: the parameters β and

γ are introduced to account variability of permeability

and deep percolation of soil with soil water storage. k1

relates discharge and storage for the ground water and

Ks,u is the saturated hydraulic conductivity in the upper

soil layer. We assumed that these parameters are less

influenced by topography and each model parameter is

assumed to be same for each slope classification of the

catchment. Moreover, it is quite inconsistent to sepa-

rate the groundwater system in the catchment. There-

fore, all the three slope-based classified sub-catchments

share the same groundwater reservoir.

In this modeling approach, stream–groundwater interactions

are assumed to be minimal and the groundwater is assumed

to recharge the streams from deep percolation of rainfall on

the catchments that produces baseflow of the rivers/streams.

The storage effect of the streams when considered on the ba-

sis of average daily flows of the streams is assumed to be

negligible and hence streamflow routing was not considered

for such smaller streams.

3.6 Total river discharge

The total river discharge (Qt, in mm day−1) at the outlet of

the catchments is given by

Qt =Qss+Qse1+QSe2+Q2. (19)

4 Data inputs

The data needed for the model are classified into three types:

topographical, soil and hydrological data.

4.1 Topographical data

Steenhuis et al. (2009) found that overland flow in the Blue

Nile Basin is generated from saturated areas in the relatively

flatter areas and from bedrock areas, while in the rest of

the catchment all the rainfall infiltrates and is lost subse-

quently as evaporation, interflow or baseflow. Topographical

processes have been found to be the dominant factors in af-

fecting runoff in the Blue Nile Basin (Bayabil et al., 2010).

We used topography of catchments as the main criterion to

divide the catchment into different runoff production sur-

faces. Based on slope criteria (FAO, 2006), each study catch-

ment was divided into three sub-catchments as steep (slope

gradient > 30 %), hilly or medium (slope gradient between

8 and 30 %) and flat (slope gradient < 8 %) to consider spa-

tial variability in catchment properties and runoff generation

mechanisms (Fig. 4).

The 30 m×30 m resolution global digital elevation model

(GDEM) was used to define the topography (downloaded

from the ASTER website, http://earthexplorer.usgs.gov/).

The GDEM (Fig. 1b) was used to delineate and calculate the

average slope gradient and average slope length of the catch-

ments (topography-related inputs to the model).

4.2 Soil data

The model requires data on depth, porosity and field capacity

of the soils. Soil depth and soil types data (Figs. 5 and 6)

were obtained from the Abay River basin integrated master

plan study BCEOM (1998).

In this modeling philosophy, the soil depth is meant to rep-

resent the depth of water stored in the topmost layer (root

zone) of the soil (Fig. 2). The porosity and field capacity

of the soils were derived from the soil texture based on the

work of McWorter and Sunada (1997). From this, we deter-

mined the soil textures of the study catchments (Table 1).

Hydrol. Earth Syst. Sci., 18, 5149–5167, 2014 www.hydrol-earth-syst-sci.net/18/5149/2014/
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Figure 4. The three slope categories for the Gilgel Abay and Gumara catchments.

Figure 5. Major soil types in the Lake Tana Basin and the study

catchments (source: BCEOM, 1998).

The saturated hydraulic conductivity for the deep percola-

tion (Eq. 12) was estimated using ranges of conductivities

given by Domenico and Schwartz (1990) for the saturated

hydraulic conductivities of a deep soil layer (colluvial mantle

on top of the igneous rock). A summary of the topographic,

soil and saturated hydraulic conductivity data for the study

catchments is provided in Table 1.

4.3 Weather data

Daily precipitation is the key input meteorological data for

the model. Other meteorological data like minimum and

maximum air temperature, humidity, wind speed and dura-

tion of sunshine hours were also used to calculate the poten-

tial evapotranspiration, the other input variable to the model.

All weather data were obtained from the Ethiopian Na-

tional Meteorological Agency (NMA) for 13 stations located

Figure 6. Soil depth in the Lake Tana Basin and the study catch-

ments (source: BCEOM, 1998).

within and around the catchments (www.ethiomet.gov.et).

The location map of the rain gauge stations used for this

study is depicted in Fig. 7. The data for most of the stations

are consistent and continuous, particularly for the first-class

stations like Dangila, Adet and Debretabor. However, we en-

countered gaps in some stations like Sekela station for some

periods in the year. In such instances, only the rainfall data

from the other stations were considered. Most of the rainfall

stations in Gilgel Abay catchment are installed at the water

divides, and there is no station in the middle of the catchment.

In this regard, the Gumara catchment has a higher density of

rainfall stations. The areal rainfall distribution over the catch-

ments was calculated using the Thiessen polygon method,

and the potential evapotranspiration was calculated using the

FAO Penman–Monteith method (Allen et al., 1998).
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Table 1. Input data on topography, soil and saturated hydraulic conductivities for the study catchments as classified into different hydrological

regimes using topography.

Coverage Average Saturated

from the soil Dominant hydraulic

Slope Average total area depth soil Field conductivity

Catchment class slope (%) (%) (m) texture Porosity capacity Ks,e (m s−1)

Gilgel Abay

level (≤ 8 %) 3.4 54 0.92 clay 0.46 0.36

9.26× 10−8hilly (8 %< slope≤ 30 %) 15.9 38 1.29 clay to clay loam 0.42 0.32

steep (> 30 %) 41.4 8 1.49 clay loam to silt loam 0.4 0.26

Gumara

level (≤ 8 %) 4.0 24 1.5 clay 0.46 0.36

1.16× 10−8hilly (8 %< slope≤ 30 %) 17.2 60 1.24 loam , silty clay 0.42 0.26

steep (> 30 %) 41.5 16 1.2 sandy loam 0.25 0.1

Figure 7. Location map of rainfall stations for the study catchments.

4.4 River discharge

Starting from July 2011, water level was measured at the

Wanzaye station (11.788073◦ N, 37.678266◦ E) on the Gu-

mara River and from December 2011 at the Picolo station

(11.367088◦ N, 37.037497◦ E) on the Gilgel Abay River. The

water level measurements were made using mini-divers, au-

tomatic water level recorders (every 10 min), and manual

readings from a staff gauge (three times a day, at 07:00, 13:00

and 18:00), following the procedures described by Amanuel

et al. (2013).

Discharges were computed from the water levels using

rating curves (Eqs. 21 and 22) for each station. The rating

curves (Fig. 8) were calibrated based on detailed surveys of

the cross sections of the rivers and measurements of flow ve-

locity at different flow stages, using the following commonly

used expression:

Q= ahb, (20)

where a and b are fitting parameters and Q [m3 s−1] and h

[m] are discharge and water level, respectively. The result-

ing rating curve equation for the Gumara catchment at the

gauging station (Wanzaye station) is

Q= 44.1h1.965(R2
= 0.997,n= 12), (21)

and that of the Gilgel Abay catchment at the Picolo station is

Q= 70.39h2.105(R2
= 0.985,n= 14) . (22)

Compared to the discharge data that have been gathered in

the past, the discharge data that are acquired for this study

are of superior quality, since a high time resolution during

the measurement has been used. This minimizes the risk of

missed peaks, particularly during the night. Furthermore, fre-

quent supervision was also conducted during the data collec-

tion campaign. Hence, these data were used for the model

calibration. Discharge data collected before December 2011

were obtained for nearby stations from the Hydrology De-

partment of the Ministry of Water Resources of Ethiopia,

which has a long data record (since 1960) for these sta-

tions. However, the latter measurements were made using

staff gauge readings twice a day, with many data gaps and

discontinuities, particularly at the end of the observation win-

dow. The discharge data from 2000 to 2005 are relatively bet-

ter and are used to validate the model.

The 2012 discharge data for Dirma catchment (outlet at

12.427194◦ N, 37.326209◦ E), collected in the same way as

those of Gilgel Abay and Gumara, were used to assess the

transferability of the model parameters.

5 Calibration and validation

The model calibration and validation were performed at a

daily time step, and the hydrological data sets of 2012 and

2011–2012 were used to calibrate the Gilgel Abay and Gu-

mara catchments, respectively. Discharge data of 2000–2005

were used for validation. There are seven calibration pa-

rameters in this model (Table 2), and the calibration was

performed using the particle swarm optimization (PSO) al-

gorithm. PSO is a population-based stochastic optimization

Hydrol. Earth Syst. Sci., 18, 5149–5167, 2014 www.hydrol-earth-syst-sci.net/18/5149/2014/



M. Dessie et al.: Analyzing runoff processes through conceptual hydrological modeling 5157

Figure 8. Stage–discharge relationship (rating curves) for Gilgel Abay at Picolo and Gumara at Wanzaye stations.

technique inspired by social behavior of bird flocking or fish

schooling (Kennedy and Eberhart, 1995). The advantages of

PSO are that the algorithm is easy to implement and that it is

less susceptible to getting trapped in local minima (Scheer-

linck et al., 2009). We carried out 50 iterations and 50 repeti-

tions, in total 2500 runs for each catchment to search for the

optimal value of the model parameters (Table 2) and 30 parti-

cles were used in the PSO. The criterion in the search for the

optimal value was to minimize the root-mean-squared error

(RMSE) as the objective function, given by

RMSE=

√√√√√ n∑
i=1

(Qobs,i −Qsim,i)
2

n
, (23)

whereQobs is observed discharge [mm day−1],Qsim is simu-

lated or modeled discharge [mm day−1] and n is the number

of data points. The parameter values corresponding to the

minimum “RMSE” were considered as optimum. From the

optimal model parameters, the performance of the model was

also evaluated using (i) the Nash–Sutcliffe efficiency (NSE)

according to Nash and Sutcliffe (1970) and (ii) the coefficient

of determination (R2):

NSE= 1−

n∑
i=1

(Qsim,i −Qobs,i)
2

n∑
i=1

(Qobs,i −Qobs)2
, (24)

R2
=


n∑
i=1

(Qsim,i −Qsim)(Qobs,i −Qobs)√
n∑
i=1

(Qsim,i −Qsim)2

√
n∑
i=1

(Qobs,i −Qobs)2


2

, (25)

where Qobs [mm day−1] and Qsim [mm day−1] are the mean

observed and simulated discharges, respectively.

Percent bias (PBIAS) is used as an additional model per-

formance indicator. It measures the average tendency of the

simulated data to be larger or smaller than the observa-

tions (Gupta et al., 1999). The optimal value of PBIAS is

0, with lower absolute values indicating better model simu-

lation (positive values indicate overestimation, whereas neg-

ative values indicate model underestimation bias).

PBIAS=

n∑
i=1

(Qsim,i −Qobs,i)

n∑
i=1

Qobs,i

∗100% (26)

The impacts of model parameters on the output of the

model when their values are different from the calibrated op-

timal values were evaluated with respect to the RMSE for

Gumara catchment. The sensitivity analysis was made by

randomly selecting parameter values in the region of the opti-

mal values obtained from PSO and calculating NSE for each

selected value. The applicability of the model to other un-

gauged catchments outside the study catchments in the Lake

Tana Basin was also tested using direct parameter transfer-

ability.

6 Soil and Water Assessment Tool (SWAT) and (FlexB)

models as benchmarks for comparison with

Wase–Tana model

The two models are used as benchmark models to assess the

performance of the model of this paper (hereafter referred to

as the Wase–Tana model, in favor of the project name that

funded this study), which tries to use all available informa-

tion and considers topography as a good proxy for the vari-

ability of most of the catchment characteristics in the Upper

Blue Nile Basin.

6.1 SWAT model

SWAT is a basin-scale and continuous-time model used to

simulate the quality and quantity of surface and ground water

and predict the environmental impact of land use, land man-

agement practices and climate change (Arnold et al., 1998).

The hydrological model is based on the water balance equa-

tion

SWt = SW0+

t∑
i=1

(Ri −Qi −ETi −Pi −QRi)1t, (27)
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Table 2. Model parameters, their ranges, and calibrated values found in 2500 iterations in the PSO calibration.

Parameter Explanation Units Minimum Maximum Calibrated values Average value of

Gumara Gilgel Abay both catchments

β parameter to account variability of per-

meability of soil with soil water storage

– 1 3 2.445 2.314 2.380

k1 relates discharge and storage for the

ground water

– 0.1 2 0.971 1.012 0.992

Ks,u Saturated hydraulic conductivity in the

upper soil layer

m s−1 0.001 0.1 0.016 0.05 0.033

γ parameter to account variability of

deep percolation with soil water

storage

– 0.5 2 1.409 0.9 1.155

λ coefficient that represents part of catch-

ment that is impermeable

– 0.05 0.5 0.149 0.173 0.161

α1 interflow partitioning coefficient for

the steep slope surface

– 0.05 0.8 0.653 0.575 0.614

α2 interflow portioning coefficient for the

medium slope surface

– 0.05 0.8 0.065 0.152 0.109

where SWt is the soil water content at time t [mm]; SW0 is

the initial soil water content [mm]; 1t is the time step (day)

and Ri , Qi , ETi , Pi and QRi are the daily amounts of pre-

cipitation, runoff, evapotranspiration, percolation and return

flow [mm day−1], respectively.

In SWAT, a watershed is divided into homogenous hy-

drologic response units (HRUs) based on elevation, soil,

management and land use, whereby a distributed parameter

such as hydraulic conductivity is potentially defined for each

HRU. Hence, an analyst is confronted with the difficult task

of collecting or estimating a large number of input parame-

ters, which are usually not available for regions like the Up-

per Blue Nile Basin. Details of the model can be accessed at

the SWAT website (http://swatmodel.tamu.edu).

Automatic calibration and validation of the model was

made using SWAT-CUP. It is an interface that has been devel-

oped for SWAT automatic calibration and model uncertainty

analysis (Abbaspour et al., 2007). R2 and NSE were used

as objective functions during the calibration process of the

search for the optimal value.

6.2 FlexB model

This model is a lumped conceptual type and is character-

ized by three reservoirs as described by Fenicia et al. (2008):

the unsaturated soil reservoir (UR), the fast-reacting reser-

voir (FR) and the slow-reacting reservoir (SR). The model

has eight parameters: a shape parameter for runoff genera-

tion β [-], the maximum UR storage Sfc [mm], the runoff

partitioning coefficient D [-], the maximum percolation rate

Pmax [mm h−1], the threshold for potential evaporation Lp

[-], the lag times of the transfer functions Nlag [h], and the

timescales of FR and SR: Kf [h] and Ks [h]. Details of the

model and the various equations of the model can be found

in Fenicia et al. (2008).

Calibration of this model was made using the PSO tech-

nique, following similar procedures of the Wase–Tana model

calibration algorithm. The same objective function, RMSE,

is also used in the search for the optimal value.

7 Results and discussion

7.1 The daily hydrograph and model performance

7.1.1 Wase–Tana model performance

Figures 9 and 10 show a comparison of the modeled with the

observed discharge data for the two study catchments and for

both the calibration and validation periods.

Despite the possible spatial variability of some input data

(average soil and rainfall data are considered) and the sim-

plicity of the model, discharge is reasonably well simulated

during both the calibration and validation periods. This can

be seen from the visual inspection of the hydrographs and

from the model performance indicators (Table 3).

The NSE of the model is high for both catchments. In

the calibration period, NSE equals 0.86 for Gumara catch-

ment and 0.84 for Gilgel Abay catchment, while they are

0.78 and 0.7, respectively, during the validation period. Fig-

ures 9 and 10 also show that the model simulates the over-

all behavior of the observed streamflow hydrographs well.

However, an overestimation of the large flood peaks for the

Gilgel Abay catchment is found for the validation period. In

the calibration period for this catchment, the model errors

tend to increase during wetting-up periods for almost all the
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Figure 9. Comparison of predicted and observed discharge and precipitation of the Gumara and the Gilgel Abay catchments for the calibration

period.

Figure 10. Predicted and observed discharges and precipitation of the Gumara and the Gilgel Abay catchments for the validation period.

models. Initially, the soils are relatively dry and most of the

rainfall during the beginning of the rainy season is not ef-

fective to produce runoff in the model as the soil reservoir

has to be filled first to generate the faster component of the

runoff. Besides model uncertainties, the rainfall data quality

can also affect the model performance, mainly in the case of

the Gilgel Abay catchment. The R2 values for the time series

of daily streamflow between simulated and observed values

were from 0.80 to 0.86 for the Gumara catchment, and from

0.79 to 0.85 for the Gilgel Abay catchment, for the validation

and calibration periods, respectively. Generally, the modeled

discharges appear to be less variable over time than the ob-

servations, as shown by the standard deviations in Table 3.

This is likely due to the fact that data used in the model are

averaged over the year, while observed river discharges are

highly seasonal. We used average daily rainfall data, average

soil data (e.g., porosity, field capacity and soil depth), aver-

age catchment characteristics data (e.g., slope, slope length)
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Table 3. Statistical comparison and model performance of the modelled and observed river discharge (Q) for the two catchments.

Model performance indicators

Standard

Mean Q Deviation RMSE1

[mm day−1] [mm day−1] [mm day−1] NSE2∗ R2 PBIAS3

Observed

data

Gumara

calibration (2011–2012) 2.31 3.79 – – – –

validation (2000–2005) 2.3 3.75 – – – –

Gilgel Abay

calibration (2012) 3.89 5.05 – – – –

validation (2000–2005) 2.33 3.4 – – – –

Wase-Tana

model

Gumara

calibration (2011–2012) 2.37 3.56 1.34 0.86 0.86 3.30

validation (2000–2005) 1.95 3.05 1.37 0.78 0.8 −11.75

Gilgel Abay

calibration (2012) 3.85 4.7 1.85 0.84 0.85 −21.61

validation (2000–2005) 3.14 3.71 1.67 0.7 0.8 34.06

SWAT

model

Gumara

calibration (2011–2012) 1.91 3.33 1.55 0.77 0.78 −17.50

validation (2000–2005) 1.62 3.11 1.63 0.72 0.75 −29.48

Gilgel Abay

calibration (2012) 2.02 3.20 1.40 0.60 0.79 −44.01

validation (2000–2005) 2.45 3.86 2.30 0.55 0.63 5.45

FlexB

model

Gumara

calibration (2011–2012) 2.43 3.64 1.54 0.82 0.82 5.30

validation (2000–2005) 2.01 3.35 1.47 0.80 0.81 −12.67

Gilgel Abay

calibration (2012) 3.81 4.03 1.62 0.80 0.84 5.64

validation (2000–2005) 4.13 4.33 2.15 0.50 0.75 77.67

1. RMSE: Root Mean Squared Error as defined in Eq. (23). 2*. NSE: Nash–Sutcliffe Efficiency as defined in Eq. (24). 3. PBIAS: Percentage Bias as

defined in Eq. (26).

to mention some for the model inputs. Hence, this averaged

condition may be one source of error such that the model

may not exactly mimic extremes like peak discharges.

7.1.2 Performance in comparison with the

benchmark models

For the calibration period, almost all the three models per-

formed quite well (Table 3). However, an appreciable de-

crease in model performance has been noticed for the vali-

dation period in Gilgel Abay catchment for the benchmark

models. SWAT is a physically based complex model, requir-

ing extensive input data, which is a challenge for data-scarce

regions like the Upper Blue Nile Basin. The model simu-

lations can only be as accurate as the input data. This sug-

gests that the coarser data input used for the model in the

study catchments might have significantly affected the cali-

bration and consequently the validation simulations. On the

other hand, the likely reason for decreased performance of

the FlexB model for the Gilgel Abay catchment is the over-

simplification of the catchment heterogeneity, since it is a

lumped one and the impact is greater when the catchment be-

comes larger (Gilgel Abay catchment is larger than Gumara

catchment).

A look at the flow duration curves (Figs. 11 and 12) in-

dicates the higher uncertainty of the two benchmark models

(mainly SWAT model) with respect to low-flow predictions.

In relative terms, Wase–Tana model offers more flexibility

in adapting the model to the catchments based on the vali-

dation simulation performances. This can be attributed to the

consideration of topography-driven landscape heterogeneity

analysis and catchment information extraction for the model,

which strengthens the hypothesis that the topography-driven
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Figure 11. Predicted and observed flow duration curves of the Gumara and the Gilgel Abay catchments for the calibration period.

Figure 12. Predicted and observed flow duration curves of the Gumara and the Gilgel Abay catchments for the validation period.

model structure and use of all available information on hy-

drology based on topography is a good choice for the Upper

Blue Nile Basin. From a comparison of four model structures

on the Upper Heihe in China, Gao et al. (2014) also con-

firmed that topography-driven model reflects the catchment

heterogeneity in a more realistic way.

7.2 The hydrograph components and hydrological

response of the catchments

This hydrological model (the Wase–Tana model) is based on

the generation of direct runoff from saturated and imperme-

able (degraded surfaces and rock outcrops with little or no

soil cover) areas, interflow from the soil storage in the root

zone layer and baseflow from the deeper layer as groundwa-

ter storage. The understanding of the relative importance of

these processes on the hydrological response of each catch-

ment is still unknown. The mean annual surface runoff (Qse,
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sum of Qse1 and QSe2), interflow or subsurface flow (Qss)

and baseflow (Q2) components of the total daily hydrograph

computed by the model for the calibration and validation pe-

riods are given in Table 4.

The total mean annual runoff generated by the model is

in line with the observations for both catchments in the cal-

ibration period (Table 4), while an appreciable difference is

noticed in the values for the Gilgel Abay catchment in the

validation period. One of the problems in accurate model-

ing of the discharge is that precipitation measurements do

not cover well the catchments. This is particularly the case

for the Gilgel Abay catchment, where the rainfall stations

are poorly distributed as most of the meteorological stations

lie near the water divides. The calibration results are better,

since the data from the recently established precipitation sta-

tions (e.g., Durbetie) could be used. There are also doubts

about the representativeness of the discharge data used for

the validation of the model, because the water level measure-

ments were made manually and twice daily (in the morning

and late afternoon), leading to the possibility of missing flash

floods at other moments of the day as the stream discharge is

very variable. This can be clearly seen from the mean annual

observed flows during the calibration and validation periods

for Gilgel Abay. The mean annual observed flow in the val-

idation period was found to be much smaller than the cor-

responding flow during the calibration period (Table 4). The

closer total mean annual runoff values and the better model

performance indicators for the Gumara catchment during the

calibration period suggest that the model can perform satis-

factorily with better input discharge and precipitation data.

From PBIAS results (Table 3), the FlexB model showed

overestimated bias and the SWAT model behaved the oppo-

site for both catchments during the calibration period.

Despite the variations in mean annual runoff generated by

the Wase–Tana model, the partitioning of the total runoff into

the different components (Table 4) in each period is almost

identical for each catchment, as expected. About 65 % of the

runoff appears in the form of interflow for the Gumara catch-

ment, and baseflow takes the larger proportion for Gilgel

Abay catchment (44–48 %). Uhlenbrook et al. (2010) found

the baseflow to be about 32 % from similar model study re-

sults for Gilgel Abay catchment. Vogel and Kroll (1992) have

shown that baseflow is a function of catchment area, and ge-

omorphological, geological and hydrogeological parameters

of the catchment have a linear incidence on the discharges.

The difference between the baseflow of the two catchments

is high, despite their comparable catchment sizes, suggesting

rather the different structure, functioning and hydrodynamic

properties of the two catchments. Hence, the model results

reveal that the groundwater in the Gilgel Abay catchment

receives more recharge and makes a greater contribution to

the river flow. This is in line with Kebede (2013) and Poppe

et al. (2013), who showed that the largest part of the Gilgel

Abay catchment consists of pumice stones and fractured qua-

ternary basalts with a high infiltration capacity and hydraulic

Figure 13. One of the springs in Gilgel Abay catchment used as a

water supply source for Bahir Dar.

properties, which clarifies the large groundwater potential. In

line with this, several large springs exist in the catchment, in-

cluding one that is used as a source of water supply for the

city of Bahir Dar (Fig. 13).

The other interesting result is that direct runoff is the

smallest fraction of the total runoff for both catchments (18–

19 % for Gumara and 20 % for Gilgel Abay) and almost all

peak flow incidences are associated with direct runoff. More

than 90 % of this direct runoff is found to be from the rel-

atively impermeable (degraded areas, plough pans or rock

outcrops with little or no soil cover) surfaces. The calibrated

result shows that this type of runoff production area covers

15 % of the Gumara and 17 % of the Gilgel Abay catchments,

respectively. In a similar study, Steenhuis et al. (2009) men-

tion that the rock outcrops occupy 20 % of the total catch-

ment area in the Abay (Blue Nile) catchment at the Ethiopia–

Sudan border upstream of the Rosaries Dam, which is very

similar to the result of Gilgel Abay catchment in this study.

The remaining direct runoff is generated from the flat

slopes of the catchments as saturated excess runoff, prob-

ably near the valley bottoms. The hillslopes (medium and

steep slope source areas in this paper) generated almost no

direct runoff as saturated excess flow. Similar results were

obtained by different researchers in the Blue Nile Basin, who

identified hillslopes as main recharge areas (Steenhuis et al.,

2009; Collick et al., 2009; Tilahun et al., 2013). Our results

contribute to the debate on the relative importance of sat-

urated excess runoff versus infiltration excess runoff (Hor-

tonian overland flow) mechanisms in the Upper Blue Nile

Basin, showing that the rainfall–runoff processes are better

represented by the soil reservoir methodology. However, fur-

ther research is necessary that involves rainfall intensity and

event-based analysis of hydrographs.
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Table 4. Model results on the hydrograph components of the catchments.

Runoff components Unit For the calibration period For the validation period

Gumara Gilgel Abay Gumara Gilgel Abay

Total mean annual runoff predicted (Qpr) mm year−1 864 1405 713 1146

Total mean annual runoff observed (Qob) mm year−1 843 1420 841 938

Mean annual surface runoff (Qse) mm year−1 161 280 129 234

% from the total Qpr 19 20 18 20

Mean annual interflow (Qss) mm year−1 574 508 458 369

% from the total Qpr 66 36 64 32

Mean annual baseflow (Q2) mm year−1 128 617 126 548

% from the total Qpr 15 44 18 48

Figure 14. Local model parameter sensitivity analysis for Gumara

catchment. Parameters are explained in Table 2.

7.3 Transferability of model parameters to other

ungauged catchments and sensitivity

The sensitivity analysis was performed on model parameters

for Gumara catchment with respect to the RMSE.

The parameters β, α1 and γ show poor sensitivity for a

wide range of values with respect to the local sensitivity anal-

ysis. The local sensitivity analysis shows the sensitivity of a

variable to the changes in a parameter if all other parameters

are kept constant at some value (optimal value in this case).

An increase in the value of β beyond 1.4 showed almost no

sensitivity, while the model efficiency decreased slightly af-

ter an increase in the value of γ from the optimum. This

means that there is little confidence in the model’s correspon-

dence with these parameters and that the parameters can be

reduced without appreciable impact on the model (Fenicia

et al., 2008). k1, Ks,u and λ are very sensitive parameters in

this model and the model performance drops abruptly if the

parameters exceed a particular threshold value (Fig. 14).

The global sensitivity analysis (Fig. 15), however, shows

interactions among all the input parameters of the model. Al-

though global sensitivity analysis reveals details of the model

behavior in a more general sense through random parame-

ter sampling and that the parameters are all sensitive, the lo-

cal sensitivity analysis indicates that moderate variations in

the parameter values for some parameters can still drastically

change the model performance.

The model parameter transferability to other ungauged

catchments in the basin has been tested by analyzing the

variability among the calibrated parameters of the two catch-

ments. Table 2 shows that the calibrated parameters are

nearly identical for both catchments, except for γ and λ,

which are related to deep percolation and impermeable frac-

tion of the catchment, respectively. As described above, they

affect the baseflow and direct runoff contributions to the to-

tal river flow. However, we showed that the contributions of

these components to the total runoff are relatively small and

γ is poorly sensitive to a wide range of values. Thus the in-

fluence of these parameters is expected to be minimal. This

is verified by generating flows using the average of the cal-

ibrated parameters of the two catchments and analyzing the

effect on the model performance indicators (Table 5). The

model performance obtained using the average model param-

eter values is similar to the results found using the optimal

model parameters (Table 3). To further verify the adaptabil-

ity of the average calibrated model parameter values outside

the study catchments and see the impacts of scale, we applied

the average parameter values to another catchment (Dirma

catchment in the northern part of the Lake Tana sub-basin,

Fig. 1) with an area of 162.6 km2. Encouraging model effi-

ciency could be obtained, with NSE and R2 values of 0.58

and 0.6, respectively (Table 5). This is to be elaborated fur-
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Figure 15. Global model parameter sensitivity analysis results for Gumara catchment. Parameters are explained in Table 2.

Table 5. Comparison of model performance between the optimal and average model parameters of the three catchments.

Model performance for the

Model performance for the average of the parameters of

Catchment optimal model parameters optimal model the two catchments

RMSE RMSE

[mm day−1] NSE R2 [mm day−1] NSE R2

Gumara calibration period 1.34 0.86 0.86 1.48 0.84 0.86

validation period 1.37 0.78 0.80 1.82 0.76 0.77

Gilgel Abay calibration period 1.85 0.84 0.85 1.98 0.83 0.84

validation period 1.67 0.70 0.80 1.93 0.68 0.78

Dirma for the 2012 discharge – – – 1.79 0.58 0.60

ther in the future, involving more catchments and more years

of data.

In general, transferability results showed good perfor-

mance of the daily runoff model in the two study catchments

and an average performance in the test catchment (Dirma

catchment). This can be explained by the fact that effort was

made to incorporate more knowledge in the model structure

to increase model realism. We based our model strongly on

the soil storage characterization of the soil reservoir in the

rainfall–runoff process and representation of the maximum

storage of the unsaturated reservoir at the catchment scale,

which is closely linked to rooting depth and soil structure

and strongly depends on the ecosystem. Transferability of

the model has benefited from this in that we were able to

derive most of the input data from the test catchments. The

consideration of topography-driven landscape heterogeneity

analysis and catchment information extraction based on to-

pography (slope) for the model is another reason for the bet-

ter performance of the model transferability. The role of to-

pography in controlling hydrological processes and its link-

age to geology, soil characteristics, land cover and climate

through coevolution have been indicated in different stud-

ies (Sivapalan, 2009; Savenije, 2010; Gao et al., 2014). The

results suggest the possibility of directly using the average

model parameter values for other ungauged catchments in

the basin, even though further tests on such catchments are

still recommended. However, we believe that this is a useful

result for operational management of water resources in this

data-scarce region.

8 Conclusions

In this paper, a simple conceptual semi-distributed hydrolog-

ical model was developed and applied to the Gumara and

Gilgel Abay catchments in the Upper Blue Nile Basin, Lake

Tana sub-basin, to study the runoff processes in the basin.

Good-quality discharge data were collected through a field

campaign using automatic water level recorders with high

time resolution. We used the topography and soil texture data

of the catchments as the dominant catchment characteris-

tics in the rainfall–runoff process. In the model, a distinc-

tion is made between impermeable surfaces (degraded sur-

face or exposed rock with little or no soil cover) and per-

meable (soil) surfaces as different types of source areas for
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runoff production. The permeable surfaces were further di-

vided into three subgroups using topographic criteria such as

flat, medium, and steep slope areas. The rainfall–runoff pro-

cesses were represented by two reservoirs (soil and ground-

water reservoirs) and the water balance approach was used to

conceptualize the different hydrological processes in each of

the two reservoirs. Such a detailed form of modeling, using

topography as a dominant landscape characteristic to classify

a catchment into different hydrological regimes, has not been

applied yet in the Upper Blue Nile, Lake Tana sub-basin.

We demonstrated that the model performs well in simulat-

ing river discharges, irrespective of the many uncertainties.

Model validation indicated that the Nash–Sutcliffe values for

daily discharge were 0.78 and 0.7 for the Gumara and Gilgel

Abay catchments, respectively.

We were able to partition the total runoff into a fast com-

ponent (direct runoff and interflow) and a slow component

(baseflow) and estimated the contributions of each compo-

nent for the catchments. About 65 % of the runoff appears in

the form of interflow for the Gumara catchment, and base-

flow is responsible for the larger proportion of the discharge

for the Gilgel Abay catchment (44–48 %). Direct runoff gen-

erates the lower fraction of runoff components in both catch-

ments (18–19 % for the Gumara and 20 % for the Gilgel

Abay) and almost all peak flow incidences are associated

with direct runoff. More than 90 % of this direct runoff is

found to be from the relatively impermeable (plough pan

or rock outcrops with little or no soil cover) source areas.

The hillslopes (medium and steep slope source areas) are

recharge areas (sources of interflow and deep percolation)

and generated almost no direct runoff as saturated excess

flow.

The results of this study, with comparisons to two bench-

mark models, clearly demonstrate that topography is a key

landscape component to consider when analyzing runoff pro-

cesses in the Upper Blue Nile Basin. Generally, runoff in the

basin is generated both as infiltration and saturation excess

runoff mechanisms. A considerable portion of the landscape

in the Upper Blue Nile Basin consists of impermeable rock

outcrops and hard soil surfaces (15–17 % of the total catch-

ment area as per the results of this study) and they are the

sources of most of the direct runoff. This conceptual model,

developed to study the runoff processes in the Upper Blue

Nile Basin, may help to predict river discharge for ungauged

catchments for a better operation and management of wa-

ter resources in the basin, owing to its simplicity and parsi-

monious nature with respect to parameterization. The runoff

processes in the basin are also found to be affected much by

the rainfall, as the performance of the model was better for

those study catchments where coverage of rainfall stations

was good. Hence a better spatial and temporal resolution of

rainfall data is required to further improve the model perfor-

mance and to further enhance the understanding of the runoff

processes in the basin.
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