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Abstract 21 

Reward enhances stimulus processing in the visual cortex, but the mechanisms through which this 22 

effect occurs remain unclear. Reward prospect can both increase the deployment of voluntary 23 

attention and increase the salience of previously neutral stimuli. In this study we orthogonally 24 

manipulated reward and voluntary attention while human participants performed a global motion 25 

detection task. We recorded steady-state visual evoked potentials (SSVEPs) to simultaneously 26 

measure the processing of attended and unattended stimuli linked to different reward probabilities, 27 

as they compete for attentional resources. The processing of the high rewarded feature was 28 

enhanced independently of voluntary attention, but this gain diminished once rewards were no 29 

longer available. Neither the voluntary attention nor the salience account alone can fully explain 30 

these results. Instead, we propose how these two accounts can be integrated to allow for the flexible 31 

balance between reward-driven increase in salience and voluntary attention. 32 

 33 

Keywords: voluntary attention; attentional control; reward; motivation; EEG; feature-based 34 

attention; steady-state visual evoked potentials; frequency tagging; Bayesian multilevel modeling    35 



SELECTIVE ATTENTION AND REWARD  3 

Introduction  36 

Maximizing rewards and avoiding punishments are among the main determinants of human 37 

behavior. In order to increase the probability of obtaining a reward, reward-related information 38 

needs to be prioritized. Selective attention is crucial for adaptive behavior as it facilitates the 39 

processing of relevant over irrelevant information in the environment (Chun, Golomb, & Turk-40 

Browne, 2011; Desimone & Duncan, 1995). This process depends on our current goals (e.g., 41 

looking for car keys in the living room) and salience of stimuli (e.g., a loud noise; Corbetta & 42 

Shulman, 2002; Posner, 1980; Theeuwes, 2010). Recent research has indicated that motivation can 43 

influence selective attention by impacting both of these factors. Reward expectation can enhance 44 

voluntary selective attention, and reward associations can change the salience of previously neutral 45 

stimuli. In most situations, attention is guided by the combination of both voluntary allocation of 46 

attention and reward history of stimuli (Awh, Belopolsky, & Theeuwes, 2012). For example, while 47 

we are searching for keys (goal-relevant target) our attention can be captured by a cake (goal-48 

irrelevant distractor). These two ways in which rewards influence selective attention have been 49 

commonly studied in isolation and the neural mechanisms through which they jointly guide 50 

attention remain unclear. Specifically, it remains unclear how voluntary selective attention and 51 

reward history interact to determine the processing of goal-relevant and irrelevant stimuli in the 52 

visual cortex.  53 

Voluntary selective attention is enhanced when individuals anticipate that they can earn 54 

rewards for good task performance (Botvinick & Braver, 2015; Krebs & Woldorff, 2017; Pessoa, 55 

2015). A number of fMRI and EEG studies found reward-based increases in attention in 56 

preparation for upcoming target stimuli. These studies have shown that such increases are driven 57 

by enhanced activity in frontoparietal regions involved in attentional control (Krebs, Boehler, 58 

Roberts, Song, & Woldorff, 2012; Pessoa & Engelmann, 2010; Schevernels, Krebs, Santens, 59 

Woldorff, & Boehler, 2014) and by enhanced task-set representations in these regions (Etzel, Cole, 60 
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Zacks, Kay, & Braver, 2016; Wisniewski, Reverberi, Momennejad, Kahnt, & Haynes, 2015). 61 

While these studies suggest that reward influences attentional control via neuronal modulations in 62 

the frontoparietal network, it remains unclear how such modulations translate to affect the 63 

processing of attended and unattended stimuli in visual cortex.  64 

Within a largely independent research line, a set of studies has focused on the processing 65 

of stimuli associated with earning rewards. These studies have demonstrated that stimuli currently 66 

or previously associated with rewards capture attention in an automatic fashion, even when this 67 

conflicts with current goals (Anderson, 2016; Awh, Belopolsky, & Theeuwes, 2012; Chelazzi, 68 

Perlato, Santandrea, & Della Libera, 2013; Failing & Theeuwes, 2017). Behavioral studies have 69 

demonstrated that stimuli predictive of rewards capture attention, and that they can do so in 70 

subsequent trials when rewards are no longer present (Anderson, Laurent, & Yantis, 2011; Della 71 

Libera & Chelazzi, 2009; Failing & Theeuwes, 2014). Event-related potential (ERP) studies have 72 

shown that stimuli related to rewards receive increased sensory processing, and attentional capture 73 

by rewarding stimuli can be related to changes in the early processing of such stimuli in the visual 74 

cortex (i.e., increase in the P1 ERP component; Donohue et al., 2016; Hickey, Chelazzi, & 75 

Theeuwes, 2010; Luque et al., 2017; MacLean & Giesbrecht, 2015). However, other studies have 76 

not found evidence for such early modulations in the visual cortex, and instead reported changes 77 

at later stages of stimulus processing (increased N2pc ERP component and improved decoding in 78 

later processing stages; Qi et al., 2013; Tankelevitch et al., 2020). Similarly, fMRI studies have 79 

also shown reward-related increases in sensory processing (Serences, 2008). More specifically, one 80 

study (Hickey & Peelen, 2015) provided evidence for the simultaneous enhancement in 81 

representation of reward-related stimuli and suppression of stimuli devoid of a specific 82 

motivational value. Using multivoxel pattern analysis and decoding technique, these authors found 83 

a gain increase in object-selective visual cortex for stimuli paired with rewards, while those not 84 

associated with this incentive were suppressed. 85 
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The reviewed findings thus point toward two mechanisms through which rewards influence 86 

selective attention. First, the prospect of earning rewards increases the voluntary allocation of 87 

attention. Second, rewards can increase the salience of previously neutral stimuli leading them to 88 

capture attention in a more automatic fashion. Importantly, the effects of reward history and 89 

voluntary attention are often difficult to disentangle, and they are often confounded in cognitive 90 

tasks (Maunsell, 2004). For example, common paradigms for studying both reward processing and 91 

attention include the association between allocating attention in a specific way (e.g. toward a 92 

location and a feature) and receiving a reward (e.g. a monetary reward, or the intrinsic reward of 93 

following the task instructions and solving the trial correctly). Further, both increases in voluntary 94 

attention and stimulus salience can lead to increased sensory gain in the visual cortex. Thus, it 95 

remains unclear which reward-related changes in stimulus processing in visual cortex occur as a 96 

consequence of voluntary selective attention, and which changes result from alterations in stimulus 97 

salience. Most importantly, reward-driven dynamic interactions between voluntary attention and 98 

changes in stimulus salience remain underexplored.  99 

Theoretical models that focus on the relationship between incentives and attention 100 

commonly focus on either the voluntary attention or the salience aspect of their interaction. 101 

Although not mutually exclusive, these models make different predictions about the way in which 102 

rewards influence attention. One option is that rewards influence stimulus processing by increasing 103 

the amount of voluntary attention deployed toward these stimuli. This hypothesis can be derived 104 

from models that focus on the role of motivation in the allocation of attention and cognitive control 105 

(Brown & Alexander, 2017; Holroyd & McClure, 2015; Shenhav, Botvinick, & Cohen, 2013; 106 

Verguts, Vassena, & Silvetti, 2015). These models propose that the amount of attention allocated 107 

toward stimuli is dependent on the amount of rewards which are expected for doing so. Another 108 

possibility is that rewards increase stimulus salience and thus capture attention automatically, 109 

independently of voluntary attention. This view can be derived from theoretical models 110 
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highlighting the role of reward history in guiding selective attention (Anderson, 2016; Awh et al., 111 

2012; Chelazzi et al., 2013; Failing & Theeuwes, 2017). These models propose that the processing 112 

of stimuli linked to high rewards is facilitated while the processing of other stimuli is suppressed, 113 

and that this effect is long lasting, even when rewards are no longer available. Importantly, although 114 

not explicitly incorporated into the current theoretical frameworks, motivation influences both 115 

voluntary attention and changes stimulus salience. Here we sought to assess the effects of both of 116 

these mechanisms on stimulus processing in visual cortex, and in that way investigate how these 117 

two mechanisms interact to guide stimulus processing and optimize behavior.   118 

In this study, we orthogonally manipulated voluntary attention and reward probability in 119 

order to assess how they interact within a single paradigm. To this end, we adopted an established 120 

feature-based attention paradigm (e.g., Andersen, Müller, & Hillyard, 2009; Andersen & Müller, 121 

2010). On each trial, two superimposed random dot kinematograms (RDKs) of different color (red 122 

and blue) were presented concurrently and participants were instructed, on a trial-by-trial basis, to 123 

attend to one of them in order to detect infrequent coherent motion targets. Thus, these two RDKs 124 

served as goal-relevant (attended) and goal-irrelevant (unattended) stimuli, respectively1. 125 

Critically, after a baseline period used as control condition, these two colors were associated (via 126 

explicit instruction upon completion of the baseline phase) with a low or high probability of earning 127 

a reward in a training phase. We subsequently examined the influence of the previous reward 128 

history in the test phase, in which rewards were no longer available. The two RDKs flickered at 129 

different frequencies, thereby driving separate steady-state visual evoked potentials (SSVEPs). 130 

SSVEPs offer the unique advantage of simultaneously tracking the processing of multiple stimuli 131 

as the specific oscillatory response of each stimulus can be extracted (frequency tagging), and the 132 

two resulting signals can be compared to each other (Andersen & Müller, 2010; Kashiwase, 133 

 

1 Throughout this manuscript we use the terms óattendedô and óunattendedô to refer to the explicit instructions which 

participants received prior to each trial. 
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Matsumiya, Kuriki, & Shioiri, 2012; Müller, Teder-Sälejärvi, & Hillyard, 1998). Voluntary 134 

attention is known to increase SSVEP amplitudes of attended stimuli (Morgan, Hansen, & Hillyard, 135 

1996). Further, SSVEP amplitudes are highly sensitive to changes in the physical salience of 136 

stimuli and are increased for more salient stimuli (Andersen, Müller, & Martinovic, 2012). Thus, 137 

the SSVEP amplitudes capture the changes in sensory gain resulting from either the top-down 138 

influences of voluntary attention, or the bottom up changes in salience. Hence, analyzing SSVEPs 139 

in this design provided us with the ability to simultaneously track the visual processing of attended 140 

and unattended stimuli related to high or low rewards respectively. This design thus enabled us to 141 

experimentally dissociate between the effects of voluntary attention (instructions about which color 142 

to attend to) and reward probability (stimulus-reward pairings).  143 

We tested predictions arising from the theoretical models developed to account for the 144 

effects of rewards on cognitive control (Brown & Alexander, 2017; Holroyd & McClure, 2015; 145 

Shenhav et al., 2013; Verguts et al., 2015) and the effects of reward history on attention (Anderson, 146 

2016; Awh et al., 2012; Chelazzi et al., 2013; Failing & Theeuwes, 2017), respectively. The first 147 

class of models predict that reward influences sensory processing through voluntary attention, and 148 

the second class of models predict that rewards directly modulate stimulus salience. Both groups 149 

of models predict better behavioral performance and enhanced processing (higher SSVEP 150 

amplitudes) of the stimuli related to high rewards. However, the strict reward history view would 151 

predict that the processing of the high reward stimuli will be enhanced irrespective of voluntary 152 

attention (i.e., equally when they are unattended or attended), while the strict voluntary attention 153 

view would predict that the processing of the high reward stimuli will be enhanced only when they 154 

are attended. Finally, the reward history view predicts that these effects will persist when rewards 155 

are no longer available (in our paradigm, during the test phase), while the voluntary attention view 156 

predicts that the processing of both high and low reward stimuli will return to baseline levels. Here 157 

we tested these predictions by independently manipulating voluntary attention and reward, which 158 
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allowed us to assess the contribution of each of these factors and possible interactions. Most 159 

importantly, this design allowed us to investigate how reward-driven changes in voluntary attention 160 

and reward-driven stimulus salience jointly determine stimulus processing in visual cortex leading 161 

to behavioral adaptations and increasing the amount of earned rewards.   162 

Methods 163 

Participants 164 

We tested 48 participants with normal or corrected-to-normal vision and no history of 165 

psychiatric or neurological disorders. Four participants were excluded due to technical problems 166 

during EEG recording and one person was excluded due to noisy EEG data. Thus, the final data 167 

set consisted of 43 participants (29 females, 14 males; median age = 22). Participants received a 168 

fixed payoff of 20 ú, plus up to 6 ú depending on task performance (on average 25.5 ú). The study 169 

was approved by the ethics committee of Ghent University. 170 

Stimuli and task 171 

We used a coherent motion detection task (Andersen & Müller, 2010; Figure 1A), in which 172 

participants were presented with two overlapping circular RDKs of isoluminant colors (red and 173 

blue) on a grey background. Viewing distance was fixed with a chinrest at 55 cm from the 21-inch 174 

CRT screen (resolution of 1024 x 768 pixels, 120 Hz refresh rate). At the beginning of each trial, 175 

participants were instructed which of the two RDKs to attend by a verbal audio cue: ñredò (241 176 

ms) or ñblueò (266 ms). The two RDKs had a diameter corresponding to 20.61 degrees of visual 177 

angle and consisted of 125 randomly and independently moving dots each (0.52 degrees of visual 178 

angle per dot). The two RDKs flickered at different frequencies: 10 Hz (6 frames on / 6 frames off) 179 

and 12 Hz (5 frames on / 5 frames off). 40% of trials contained no coherent motion intervals. The 180 

other 60% of trials contained one, two, or three coherent motion intervals, occurring with equal 181 

probability in the attended and unattended color RDK. This was done to ensure that participants 182 
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maintained attention throughout the trial. During these intervals, dots in one of the RDKs moved 183 

with 75% coherence in one of four cardinal directions (up, down, left, or right) for 300 ms. The 184 

earliest onset of coherent motions was 750ms after onset of the RDKs and subsequent coherent 185 

motions within the same trial were separated by at least 600ms to allow for an unambiguous 186 

assignment of detection responses to preceding coherent motions. Participants had to detect the 187 

occurrence of coherent motion in the attended RDK as fast as possible by pressing the space key 188 

on a standard AZERTY USB keyboard while ignoring such coherent motion in the unattended 189 

RDK. Responses occurring between 275 ms and 875 ms after coherent motion onset of the attended 190 

or unattended dots were counted as hits or false alarms, respectively. Correct responses were 191 

followed by a tone (200 ms sine wave of either 800 or 1,200 Hz, counterbalanced across 192 

participants). Late or incorrect responses were followed by an error sound (200 ms square wave 193 

tone of 400 Hz). 194 

The experiment started with 4 practice blocks of 60 trials in each block. After each block, 195 

participants received feedback on their performance (percentage of correctly identified motions). 196 

During the practice blocks, participants performed the same task as in the main experiment (without 197 

rewards). After finishing the practice phase, participants completed 12 blocks (each consisting of 198 

50 trials) divided into 3 phases (baseline, training, and test; Figure 1B) of 4 blocks each. Each 199 

phase contained 100 trials in which participants were instructed to attend to the red color and 100 200 

trials in which they were instructed to attend to the blue color. Out of those 100 trials, 40 trials 201 

contained no dot motion, while 60 trials contained one, two, or three dot motions. The trials in 202 

which participants attended to one or the other color as well as the trials with different number of 203 

motions were randomly intermixed. Participants executed the coherent motion detection task, as 204 

described above, throughout all three phases (baseline, training, and test). In the training phase, 205 

participants could earn additional monetary rewards (up to 6 ú) based on their actual performance. 206 

After completing the baseline phase, they were instructed that one of the colors would be paired 207 
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with high probability (80%) and the other color with low probability (20%) of earning 10 extra 208 

cents for each correct motion detection. The mapping between color and reward probability was 209 

counterbalanced across participants. Receipt of the reward was signaled by a new tone that replaced 210 

the usual correct tone. If the correct tone was a sine wave of 800 Hz, the reward tone was a sine 211 

wave of 1,200 Hz (counterbalanced across participants). At the end of each of 4 training blocks, 212 

participants received feedback regarding both their performance and the amount of reward earned 213 

within the block (on average 5.5 ú out of the maximal 6 ú across all 4 blocks). The third phase 214 

(test) was identical to baseline and participants were explicitly informed that they would not be 215 

able to earn any more rewards. The entire task lasted for approximately 50 minutes, including short 216 

breaks in between blocks. Afterwards, participants completed two questionnaires aimed at 217 

assessing reward sensitivity (BIS-BAS; Franken et al., 2005) and depression levels (BDI-II; Van 218 

der Does, 2002). The collection of the questionnaire data is not reported here as it was collected 219 

for exploratory purposes in order to form a larger database of neural and self-report measures of 220 

reward processing. The experiment was implemented using Cogent Graphics developed by John 221 

Romaya at the LON at the Wellcome Department of Imaging Neuroscience.  222 
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 223 

 224 

EEG recording and preprocessing 225 

Electroencephalographic activity (EEG) was recorded with an ActiveTwo amplifier (BioSemi, 226 

Inc., The Netherlands) at a sampling rate of 512 Hz. Sixty-four Ag/AgCl electrodes were fitted into 227 

an elastic cap, following the international 10/10 system (Chatrian, Lettich, & Nelson, 1985). The 228 

common mode sense (CMS) active electrode and the driven right leg (DRL) passive electrode were 229 

used as reference and ground electrodes, respectively. Additional external electrodes were applied 230 

to the left and right mastoids, as well as on the outer canthi of each eye and in the inferior and 231 

superior areas of the left orbit (to record horizontal and vertical electrooculogram, EOG). 232 

Data preprocessing was performed offline with custom MATLAB scripts and functions included 233 

in EEGLAB v14.1.1b (Delorme & Makeig, 2004). After subtracting the mean value of the signal 234 

(DC offset), the continuous EEG data were epoched between 0 and 3,250 ms, corresponding to the 235 

beginning and end of the trial, respectively. After referencing to Cz, FASTER v1.2.3b (Nolan, 236 

Figure 1. Depiction of a single trial and the phases of the experiment. A. Each trial started with an audio cue 

(òBlueò or òRedò) which instructed participants which color to attend to in that trial. The trial lasted for 3.25 seconds 

during which dots of either of the colors could move from 0 to 3 times in total. If the participants were instructed to 

attend to the blue dots and the blue dots moved coherently, they had to press the response button. In that case they 

would hear the auditory feedback signaling the correct detection of the motions. B. The experiment started with a 

practice and a baseline block in which the participants heard an audio cue at the beginning of the trial and two types 

of feedback sounds (incorrect or correct). In the training block a third sound was introduced to signal that the 

participants were both correct and received a reward for that response. They would still at times hear the old correct 

feedback which would signal that they were correct, but not rewarded. The test phase was the same as the baseline 

phase.  
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Whelan, & Reilly, 2010) was used for artifact identification and rejection using the following 237 

settings: (i) over the whole normalized EEG signal, channels with variance, mean correlation, and 238 

Hurst exponent exceeding z = ±3 were interpolated via a spherical spline procedure (Perrin, Pernier, 239 

Bertrand, & Echallier, 1989); (ii) the mean across channels was computed for each epoch and, if 240 

amplitude range, variance, and channel deviation exceeded z = ±3, the whole epoch was removed; 241 

(iii) within each epoch, channels with variance, median gradient, amplitude range, and channel 242 

deviation exceeding z = ±3 were interpolated; (iv) grand-averages with amplitude range, variance, 243 

channel deviation, and maximum EOG value exceeding z = ±3 were removed; (v) epochs 244 

containing more than 12 interpolated channels were discarded. Subsequently, automated routines 245 

were used to reject all trials with blinks or horizontal eye-movements exceeding 25 microvolts. For 246 

details, see our commented code at https://osf.io/kjds3/. After preprocessing, the average number 247 

of interpolated channels was 3.61 (SD = 1.23, range 1 ï 6) and the mean percentage of rejected 248 

epochs was 8.77% (SD = 6.71, range 0 ï 27.78). After re-referencing to averaged mastoids, trials 249 

in each condition were averaged separately for each participant, resulting in the following 250 

conditions: (i) baseline, red attended; (ii) baseline, blue attended; (iii) training, red attended; (iv) 251 

training, blue attended; (v) test, red attended; (vi) test, blue attended. 252 

After removing linear trends, SSVEP amplitudes were computed as the absolute of the complex 253 

Fourier coefficients of the trial-averaged EEG in a time-window from 500 ms (to exclude the 254 

typically strong phasic visual evoked response to picture onset) to 3,250 ms after stimulus onset. 255 

Electrodes with maximum SSVEP amplitudes were identified by calculating isocontour voltage 256 

maps based on grand-averaged data collapsed across all conditions. This procedure identified a 257 

cluster consisting of the four electrodes Oz, O2, POz, and Iz, which were chosen for further 258 

analysis. SSVEP amplitudes were normalized (rescaled) for each participant and frequency (10 and 259 

12 Hz) separately by dividing amplitudes by the average amplitude of the two conditions in the 260 

baseline.  261 

https://osf.io/kjds3/
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Statistical analyses 262 

Behavioral and EEG data were analyzed using Bayesian multilevel regressions. We fitted and 263 

compared multiple models of varying complexity to predict observer sensitivity, reaction times for 264 

correct responses, and SSVEP amplitudes. For the behavioral data, mean reaction times of correct 265 

detections (hits) and sensitivity (dǋ) were analyzed. Sensitivity index dǋ (Macmillan & Creelman, 266 

2004) was calculated with adjustments for extreme values (Hautus, 1995) using the psycho R 267 

package (for the method see: Pallier, 2002). When calculating dǋ, responses to the coherent motion 268 

of the attended color were considered as hits, while responses to the coherent motion of the 269 

unattended color were considered as false alarms.  270 

Each fitted model included both constant and varying effects (also known as fixed and random). 271 

Participant-specific characteristics are known to affect both behavioral performance (e.g., response 272 

speed) and EEG signal (e.g., skull thickness, skin conductance, hair); therefore, we accounted for 273 

this variability by adding varying intercepts in our models. Additionally, the studied effects (i.e., 274 

selective attention and reward sensitivity) are known to vary in magnitude over participants, so we 275 

opted for including varying slopes in our models2.  276 

Models were fitted in R using the brms package (Bürkner, 2016) which employs the 277 

probabilistic programming language Stan (Carpenter et al., 2016) to implement Markov Chain 278 

Monte Carlo (MCMC) algorithms in order to estimate posterior distributions of the parameters of 279 

interest (details about the fitted models can be found in the data analysis scripts at 280 

https://osf.io/kjds3/). Each model was fitted using weakly informative prior distributions 281 

(described below) and Gaussian likelihood. Four MCMC simulations (ñchainsò) with 6,000 282 

iterations (3,000 warmup) and no thinning were run to estimate parameters in each of the fitted 283 

 

2 Due to the simultaneous estimation of group-level and participant-level parameters, multilevel models display a 

property called shrinkage. In brief, estimates that strongly deviate from the mean (e.g., a participant performing the 

task much worse than the average of the total sample) will be pulled toward the group mean (McElreath, 2016). This 

advantageous property prevents extreme values from having large effects on the results. 

https://osf.io/kjds3/
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models. Further analyses were done following the recommendations for Bayesian multilevel 284 

modeling using brms (Bürkner, 2016, 2017; Nalborczyk & Bürkner, 2019). We confirmed that all 285 

models converged by examining trace plots, autocorrelation, and variance between chains 286 

(Gelman-Rubin statistic; Gelman & Rubin, 1992). We compared models based on their fit to the 287 

actual data using the Bayesian R2 (Gelman, Goodrich, Gabry, & Ali, 2017), and their out-of-sample 288 

predictive performance using the Widely Applicable Information Criterion (WAIC; Watanabe, 289 

2010). The best model was selected and the posterior distributions of conditions of interest were 290 

examined. Differences between conditions were assessed by computing the mean and the 95% 291 

highest density interval (HDI) of the difference between posterior distributions of the respective 292 

conditions (Kruschke, 2014). Additionally, we calculated the evidence ratios (ERs) for our 293 

hypotheses as the ratios between the percentage of posterior samples on each side of the zero of 294 

the difference distribution between two conditions. ERs represent the ratio between the probability 295 

of a hypothesis (e.g. ñCondition A is larger than condition Bò) against its alternative (ñCondition 296 

B is larger than condition Aò). As a rule of thumb, we interpreted our results as providing 297 

ñinconclusiveò evidence when 1 < ER < 3, ñanecdotalò evidence when 3 < ER < 10, and ñstrongò 298 

evidence when ER > 10. When ER > 12000 (the maximum number of posterior samples), the 299 

posterior distribution was completely on one side of zero, thus providing ñvery strongò evidence. 300 

Behavioral data 301 

 302 

We fitted three models to predict sensitivity (dǋ) and reaction times (in milliseconds) separately 303 

(see Figure 2 for the raw data and Supplementary Table 1 for the descriptive statistics). First, we 304 

fitted the Null model with a constant and varying intercepts across participants. This model was 305 

fitted in order to explore the possibility that the data would be best explained by simple random 306 

variation between participants. To investigate the effect of reward phase (baseline, training, test), 307 

we fitted the Reward phase model which included only reward phase as the constant predictor, as 308 
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well as varying intercepts and slopes across participants for this effect. To investigate the possible 309 

interaction between reward phase and reward, we fitted the Reward phase × Reward Probability 310 

model including the intercepts and slopes of these two effects and their interaction as both constant 311 

and varying effects. All models had a Gaussian distribution as the prior for the intercept (for 312 

sensitivity: centered at 1.8 with a standard deviation of 1; for reaction times: centered at 500 with 313 

a standard deviation of 200). The models with slopes also included a Gaussian distribution as prior 314 

for the slopes (for sensitivity: centered at 0 with a standard deviation of 2; for reaction times: 315 

centered at 0 with a standard deviation of 200). The means for the priors for the intercepts were 316 

selected based on a previous study with a similar task (Andersen & Müller, 2010). The standard 317 

deviations of all of the prior distributions were chosen so that the distributions are very wide and 318 

thus only weakly informative. Note that there are two additional models that, although possible to 319 

fit, are not plausible in the context of our experiment. Specifically, the model including only the 320 

effect of reward probability overlooks the fact that this effect would necessarily be most 321 

pronounced in the training phase, thus interacting with the effect of reward phase. The same logic 322 

applies to the model with additive effects of reward phase and probability (i.e., these effects could 323 

not act independently in our experimental design). 324 

SSVEP amplitudes 325 

We fitted seven models to predict the trial-averaged SSVEP amplitudes (in a.u. due to the 326 

normalization) across conditions (see Figure 2C, Figure 2D, and Supplementary Table 2). The Null 327 

model included one constant and varying intercepts across participants. The Attention model 328 

included attention as predictor; the Reward Phase model included the effect of reward phase; the 329 

Reward Phase + Attention model included the additive effects of reward phase and attention; and 330 

the Reward Phase × Attention model also included the interaction between reward phase and 331 

attention. The Reward probability × Reward phase + Attention model consisted of the effects of 332 
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reward and phase, their interaction, and the independent effect of attention. The last model was the 333 

Reward probability × Reward phase × Attention model which included all predictors and their 334 

interaction. All models, except for the Null model, included varying intercepts and slopes across 335 

participants for all effects. All models included a Gaussian distribution as the prior for the intercept 336 

(centered at 1 with a standard deviation of 1). The mean across both attended and unattended 337 

conditions is approximately 1 in this paradigm (Andersen & Müller, 2010), while the normalized 338 

amplitudes are in the 0-2 range (the normalized amplitude of 2 for the attended stimulus would 339 

equal the physical removal of the unattended stimulus), which is why we opted for the standard 340 

deviation of 1 for the prior distributions. In addition, the models with slopes included a Gaussian 341 

distribution as the prior for the slopes (centered at 0 with a standard deviation of 1). As was the 342 

case for the behavioral data, several models were not fitted because they were not plausible in the 343 

context of our experiment (i.e., models that include both reward phase and probability, but not their 344 

interaction, are implausible because reward probability could not affect the baseline phase as the 345 

reward mapping information was provided upon completion of the baseline). 346 

Results 347 

Behavioral results 348 

Sensitivity d 349 

 350 

The analyses of sensitivity revealed that participants successfully performed the task, as dǋ was 351 

well above chance level across all conditions. Of all the tested models, the Reward phase × Reward 352 

probability model best predicted sensitivity (Table 1). The posterior distributions of the interaction 353 

model (Figure 2A and Table 2) revealed that sensitivity improved in the training phase compared 354 

to the baseline for low reward (M = 0.14; 95% HDI [0.01, 0.27]; ER = 57.82), while the 355 

improvement for the high reward color was in the same direction, but not statistically robust (M = 356 

0.04; 95% HDI [-0.08, 0.17]; ER = 3.10). This improvement was slightly more pronounced for low 357 
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compared to high reward (M = 0.10; 95% HDI [-0.08, 0.27]; ER = 6.25). Conversely, there was no 358 

evidence for a difference between training and test phases in the low reward condition (M = 0.00; 359 

95% HDI [-0.13, 0.13]; ER = 1.09), while there was a reduction in sensitivity in the high reward 360 

condition (M = -0.08; 95% HDI [-0.20, 0.05]; ER = 8.52). These results suggest higher sensitivity 361 

for coherent motion detection in the training phase compared to baseline, which was more 362 

pronounced for the low relative to the high reward color. This somewhat counterintuitive effect 363 

could be explained by the faster reaction times to the high compared to the low reward color, which 364 

we focus on in the following section. Finally, we found very little evidence of a change in 365 

sensitivity from the training to the test phase. Importantly we found a baseline difference between 366 

the high and low reward conditions (Table 2). This result is likely due to random fluctuations 367 

because in the baseline phase participants are not aware of any reward contingencies. While this 368 

result does not affect our interpretation because we analyze the change in each of the two colors 369 

separately across the phases of the experiment, the magnitude of the baseline difference suggests 370 

that the effects of reward on sensitivity are rather small. This is in line with previous work on value-371 

driven attention in which the reward-driven effects are more commonly reflected in reaction times 372 

rather than changes in accuracy (Anderson, 2016; Awh et al., 2012; Chelazzi et al., 2013; Failing 373 

& Theeuwes, 2017).  374 
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 375 

Table 1 

Mean and standard errors (in parenthesis) of WAIC and Bayesian R2 for each model predicting 

sensitivity and reaction times. 

Model WAIC (SE) Bayesian R2 (SE) 

Sensitivity 

Null 533.3 (26.5)  0.27 (0.05) 

Reward phase 541.0 (26.5)  0.27 (0.05) 

Reward phase × Reward probability 202.7 (19.1)  0.84 (0.01) 

Reaction times     

Null 2,500.2 (31.6)  0.50 (0.04) 

Reward phase 2,483.0 (35.3)  0.56 (0.04) 

Reward phase × Reward probability 2,322.5 (30.0)  0.82 (0.02) 

 

Table 2 

Means and 95% HDIs of the posterior distributions of reaction times and sensitivity in each condition. 

Reward phase Reward probability Sensitivity (dǋ) Reaction times (milliseconds) 

Baseline High 1.64 [1.39, 1.87] 546.54 [534.33, 559.30] 

Baseline Low 1.48 [1.25, 1.69] 551.13 [539.34, 563.50] 

Training High 1.69 [1.44, 1.93] 524.91 [512.94, 536.30] 

Training Low 1.62 [1.41, 1.84] 537.99 [526.48, 550.32] 

Test High 1.61 [1.36, 1.84] 528.97 [515.90, 541.99] 

Test Low 1.62 [1.41, 1.84] 539.85 [525.63, 554.34] 
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Reaction times 376 

The Reward phase × Reward probability model best predicted reaction times (Figure 2B and 377 

Table 1). In the training, compared to the baseline phase, participants were reliably faster in 378 

detecting the motions of both the high (M = -21.60 ms; 95% HDI [-29.90, -12.80]; ER > 12,000, 379 

i.e., the whole posterior distribution was below zero thus the ER is larger than the total number of 380 

posterior samples) and the low reward colors (M = -13.10 ms; 95% HDI [-21.70, -4.69]; ER = 381 

999). Moreover, this difference between baseline and training was larger for detecting motions of 382 

high relative to low reward color (M = -8.49 ms; 95% HDI [-18.60, 2.06]; ER = 17.18). We found 383 

weak evidence for changes in reaction times between the training and the test phase. There was a 384 

very small, but not statistically robust, increase in reaction times in the test compared to training 385 

Figure 2. Raw and modelled data. Violin plots displaying raw data for each participant (grey dots), separately for 

each condition. Results from the winning models are presented in blue (dark blue ï 50% HDIs and light blue ï 95% 

HDIs). A. Sensitivity (dǋ) B. Reaction times (ms) C. SSVEP amplitudes (arbitrary units) in response to the color related 

to high reward on trials in which it is attended or unattended. D. SSVEP amplitudes for the color linked to low reward 

on trials when it was attended or unattended. 
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phase for the high reward color (M = 4.07 ms; 95% HDI [-4.52, 13.10]; ER = 4.40), and no 386 

difference for the low reward color (M = 1.87 ms; 95% HDI [-6.93, 10.70]; ER = 1.98). We 387 

confirmed that the reward-induced changes persisted even after rewards were no longer available 388 

by comparing the reaction times in the baseline phase to the test phase. These analyses revealed 389 

that participants responded faster in the test phase relative to the baseline phase to both high (M = 390 

-17.60 ms; 95% HDI [-28.40, -6.23]; ER = 999) and low reward stimuli (M = -11.30 ms; 95% HDI 391 

[-22.60, -0.72]; ER = 44.45). Further, this speeding up was more pronounced for the stimuli 392 

previously related to high compared to low reward probability (M = -6.29 ms; 95% HDI [-16.30, 393 

4.44]; ER = 7.70). These results indicate that participants were faster in detecting coherent motions 394 

in the condition in which they could earn rewards (training), and more so for high than low reward 395 

color. Also, there was a small increase in reaction times for the high reward condition and no 396 

difference in the low reward condition when the rewards were no longer available (test). Crucially, 397 

this increase was limited, and participants were still faster to respond in the test compared to the 398 

baseline phase, and more so for the stimuli related to high compared to low reward probability. 399 

Supplementary analyses carried out to assess possible training effects indicated some evidence for 400 

the presence of training effects in sensitivity and scant evidence for such effects in reaction times 401 

(Supplementary materials). 402 
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SSVEP amplitudes 403 

As shown in Figure 3, SSVEP amplitudes averaged over conditions peaked at central occipital 404 

channels (i.e., Oz, POz, O2, Iz). Also, the amplitude spectra showed the expected pronounced 405 

peaks at the frequencies of 10 and 12 Hz. 406 

The Reward probability × Reward phase + Attention model best predicted SSVEP amplitudes 407 

across conditions (Table 3). However, the Reward probability × Reward phase × Attention had 408 

Figure 3. A) Grand average amplitude spectra (only for visualization purposes, 1 Hz high-pass  FIR filter and zero-

padded to 8 times the length of the data) derived from EEG signals at best four-electrode cluster plotted for the 

different experimental conditions (blue: attended; red: unattended; solid: baseline phase; dotted: rewarded phase; 

dashed: non-rewarded phase). The shaded areas around the means indicate 95% confidence intervals. B) Individual 

and average amplitudes (with 95% confidence intervals) for blue (10 Hz) and red (12 Hz) across task conditions. 

C) Topographies of SSVEP amplitudes, averaged across all participants and conditions, at 10 Hz and 12 Hz. 

Electrodes selected for the analysis are highlighted in white. 


