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Quotients of trees for arithmetic subgroups of PGL2

over a rational function field
Ralf Köhl, Bernhard Mühlherr and Koen Struyve

Communicated by Pierre-Emmanuel Caprace

Abstract. In this note we determine the structure of the quotient of the Bruhat–Tits tree of
the locally compact group PGL2.Fp/ with respect to the natural action of its S -arithmetic
subgroup PGL2.O¹pº/, where F is a rational function field over a finite field and p is
a place of F .

1 Introduction

Let k be the finite field Fq of order q and F ´ k.t/ the rational function field
over k. Let p be a place of degree d of F corresponding to an irreducible monic
polynomial f , inducing the valuation �p. Let O¹pº be the subring of F consisting
of the elements of F having poles only at p and let O¹p;1º be the subring of F
consisting of elements having poles only at p and at1. Let X be the Bruhat–Tits
tree corresponding to the valuation �p. The vertices of this tree correspond to the
homothety classes of rank two Op-sublattices in F 2.

Serre [8, Chapter II, Section 2.4.2] computed the fundamental domain �nX ,
where � is the arithmetic group PGL2.O¹pº/ for degrees d 2 ¹1; 2; 3; 4º:

d D 1W

d D 2W

d D 3W

d D 4W

q

In this note we compute the fundamental domain �nX for arbitrary degree d ;
in Section 2 we state the main result and depict the fundamental domains up
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62 R. Köhl, B. Mühlherr and K. Struyve

to degree 7. The approach of our proof is to study the action of the arithmetric
group PGL2.O¹p;1º/ on the product of the Bruhat–Tits tree X of PGL2.Fq.t/�p /
and the Bruhat–Tits tree Y of PGL2.Fq.t/�1/. Strong approximation of PSL2
allows us to identify the PGL2.O¹pº/-orbits on X with the PGL2.O¹1º/-orbits
on Y (cf. Section 3). A subsequent detailed analysis of double coset spaces in
Section 4 yields the desired result.

Our approach makes substantial use of the fact that O¹1º Š kŒt � is Euclidean.
Therefore the potential for generalizing our method is limited; we refer to [4] for
other situations in which the ring of functions that are regular on a projective curve
minus a rational point is at least a principal ideal domain.

Partial results for the rational case under consideration can be found in [5]. The
non-rational genus 0 case is studied in [6] and the elliptic curve case in [9].

We point out that, by classical results, the fundamental domain together
with information concerning the (finite) stabilizers provides a presentation of the
group PGL2.O¹pº/ by generators and relations, cf. [3, Section III.C ], [1, Chapter 2]
and [8, Sections I.4 and II.2].

2 Statement of the main result and examples

In this section we state the main theorem and depict the quotients for d up to 7.

Main Theorem. Let �p be a valuation of degree d of the rational function field
Fq.t/ and X be the Bruhat–Tits tree of the locally compact group PGL2.Fq.t/�p /.
Then the orbit space PGL2.O¹pº/nX can be described as follows.
(1) If d is odd, then its set of vertices is ¹Xn j n 2 N0º with

� one edge between Xn and XnCd (n 2 N0),
� one edge between Xn and Xd�n (n 2 N0 and n; d � n � 1),
� q2l�1 C q2l�2 edges between Xn and Xd�n�2l (n; l 2 N0, n; l � 1 and
d � n � 2l � 1),

� q2l�2 edges between X0 and Xd�2l (l 2 N0 and l; d � 2l � 1).
(2) If d is even, then its set of vertices is ¹Xn; X 0n j n 2 2N0º with

� one edge between Xn and X 0
nCd

and between X 0n and XnCd (n 2 2N0),
� one edge between Xn and X 0

d�n
(n 2 2N0 and n; d � n � 2),

� q2l�1 C q2l�2 edges between Xn and X 0
d�n�2l

and between X 0n and
Xd�n�2l (n 2 2N0, l 2 N0, l � 1 and n; d � n � 2l � 2),

� q2l�2 edges between X0 and X 0
d�2l

and between X 00 and Xd�2l (l 2 N0,
l � 1 and d � 2l � 2),

� q.qd�3 C 1/=.q C 1/ edges between X0 and X 00 if d > 2, and one edge
between X0 and X 00 if d D 2.
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Quotients of trees for arithmetic subgroups of PGL2 63

Examples of quotients. We have

d D 1W
X0 X1 X2 X3 X4

d D 2W
X4 X 02 X0 X 00 X2 X 04

d D 3W

X8 X5 X2 X1 X4 X7

X0 X3 X6

d D 4W

q

X 010 X6 X 02 X2 X 06 X10

X8 X 04 X0 X 00 X4 X 08

d D 5W

q2

q C 1

X13 X8 X3 X2 X7 X12

X10 X5 X0 X1 X6 X11

X4 X9 X14

From this point on we depict multi-edges by a label indicating the number of
edges in order to avoid cluttering the picture.

d D 6W

q2

q4q2

q4

q
C
1

q3 � q2 C q

X 014 X8 X 02 X4 X 010 X16

X12 X 06 X0 X 00 X6 X 012

X 016 X10 X 04 X2 X 08 X14
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64 R. Köhl, B. Mühlherr and K. Struyve

d D 7W

q C 1

q C 1

q4

q 3
C
q 2

q2

X19 X12 X5 X2 X9 X16

X14 X7 X0 X3 X10 X17

X15 X8 X1 X4 X11 X18

X20 X13 X6

3 Basics and preliminaries

The trees X and Y and their vertices. Let k be the finite field Fq of order q
and let F ´ k.t/ be the rational function field over k. Let p be a place of
degree d of F corresponding to an irreducible monic polynomial f , inducing
the valuation �p.

Consider the place1 of F , which is a place of degree 1 and corresponds with
a valuation �1.ab / D deg b � deg a for a; b 2 kŒt �. The ring O¹1º of elements
with poles only at1 then equals the ring of polynomials kŒt � in F .

We represent the vertices of the trees X (the Bruhat–Tits tree of PGL2.F�p /)
and Y (the Bruhat–Tits tree of PGL2.F�1/) by giving two generators spanning
a lattice in the homothety class corresponding to the vertex (cf. [8, Chapter II,
Section 1]). We will write these two generators as the columns of a (2 � 2)-matrix
with respect to the standard basis of F 2 together with a subscript indicating
the place.

As an example and for future use we define the vertices

x0´

 
1 0

0 1

!
p

and yi ´

 
1 t i

0 1

!
1

.i 2 N0/:

The first vertex x0 is a vertex of the tree X , the second series yi (i 2 N0) are
vertices in Y .

Lemma 3.1. Let h be an element in PGL2.O¹p;1º/ represented by a matrix M
with entries in kŒt �, not of all of them divisble by f as polynomials. Then the
distance between x0 and h.x0/ equals �p.det.M//.
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Quotients of trees for arithmetic subgroups of PGL2 65

Proof. LetL be a lattice representing the vertex x0. Then the definition of distance
in [8, Chapter II, Section 1.1] implies that the distance between x0 and hx0
equals b � a where b is minimal such that f bL is contained by ML and a maxi-
mal such that f aL contains ML.

Due to the conditions on the entries ofM , we have that L containsML but fL
does not, so a D 0.

In order to calculate b, first note that f bL �ML if and only ifL � f bM�1L.
The entries of M�1 are, up to minus signs and permutations, the entries of M
divided by det.M/ 2 O�

¹p;1º
. Hence, if one wants to multiply the matrix M�1

with a power f b of f such that in this product the entries lie in kŒt �, then the
minimal and sufficient such b is �p.det.M//.

An analogous statement allows one to compute distances in the tree Y . For
instance, the element of PGL2.F / represented by the matrix

�
tn�m 0
0 1

�
maps ym

to yn and, accordingly,

d.ym; yn/ D �1.t
n�m/ D m � n

if m � n.

The group PGL2.F /, its subgroups, and their transitivity properties. The
group PGL2.F / acts faithfully as a group of isometries on both X and Y , where
the action is induced by the canonical action from the left of PGL2.F / on the
2-dimensional lattices. We represent the elements in PGL2.F / by .2 � 2/-matrices
(with respect to the standard basis of F 2).

We will mainly work inside the arithmetic subgroup

…´ PGL2.O¹p;1º/

of PGL2.F /. This group contains the arithmetic groups

� ´ PGL2.O¹pº/ and „´ PGL2.O¹1º/

as subgroups.
Recall that a dense subgroup of a topological group acting on a discrete

set has the same orbits. Hence, by strong approximation (see [7]), the subgroup
PSL2.O¹p;1º/ < … acts edge-transitively, if we restrict the action to either X
or Y . In particular this group has two orbits (corresponding to the types) on the
vertices in either restriction.

A similar fact is true for… D PGL2.O¹p;1º/: If d is odd, then… acts non-type
preservingly on both X and Y , and hence transitively on the vertices of either tree.
If d is even, then … acts transitively on the vertices of X , but type-preservingly,
whence with two orbits on the vertices of Y .
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66 R. Köhl, B. Mühlherr and K. Struyve

The following are further groups of interest to us:

� …x0
D „.

� …y0
DW e� , where e� , in case d is even, acts non-type preservingly on X and

contains � as an index two subgroup and, in case d is odd, equals � .

� „y0
D PGL2.k/ DW H0.

� „yi
D Hi (i 2 N) with

Hi ´

´ 
˛ b

0 ı

! ˇ̌̌̌
ˇ ˛; ı 2 k�; b 2 kŒt �; deg.b/ � i

µ
:

A fundamental domain for the quotient „nY is given by the vertices yi with
i 2 N0 and the edges between these, forming a ray (cf. e.g. [8, Chapter II, Sec-
tion 1.6, Corollary] or the case d D 1 in the introduction).

Maps sending x0 to a neighbor and ym to yn. Let h 2 … such that h.x0/ is
adjacent to x0, represented by a matrix

M ´

 
˛ ˇ


 ı

!
2 O¹p;1º

2�2:

By taking the scalar multiple with the appropriate power of f we may assume
that ˛, ˇ, 
 and ı all lie in kŒt � and are coprime as polynomials.

When this is the case, we have d.x0; h.x0// D �p.det.M// by Lemma 3.1.
Hence f is a divisor of det.M/ 2 kŒt �, but f 2 is not. As det.M/ 2 O¹p;1º

�,
this implies that

det.M/ D �f with � 2 k�: (3.1)

Next we want to determine the set of elements in PGL2.F / which map ym
to yn with m; n 2 N0. Since the stabilizer of y0 in PGL2.F / is PGL2.O1/, this
set can be described as gPGL2.O1/g0 with arbitrary g; g0 2 PGL2.F / that satisfy
g0.ym/ D y0 and g.y0/ D yn; for instance, the element g can be represented by
the matrix

�
tn 0
0 1

�
and the element g0 by the matrix

�
t�m 0
0 1

�
.

Let  
˛ ˇ


 ı

!
´

 
atn�m btn

ct�m d

!

D

 
tn 0

0 1

! 
a b

c d

! 
t�m 0

0 1

!
2 gPGL2.O1/g

0: (3.2)
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Quotients of trees for arithmetic subgroups of PGL2 67

We conclude from the above discussion that the elements
� ˛ ˇ

 ı

�
2 PGL2.F /

which map ym to yn are exactly those that satisfy ˛; ˇ; 
; ı 2 F , �1.˛/ � m � n,
�1.ˇ/ � �n, �1.
/ � m, �1.ı/ � 0 and �1.˛ı � ˇ
/ D m � n.

In the proof of our main result we will make use of the set ‡n;m of elements
of… that map x0 to a neighbor and ym to yn withm; n 2 N0. We want to describe
this set using, as above, matrices

M ´

 
˛ ˇ


 ı

!
2 O¹p;1º

2�2

with entries in kŒt � that are coprime as polynomials and whose determinant equals
a non-zero scalar multiple of f . Since �1.f / D �d , this means we have to mul-
tiply the matrix from equation (3.2) with the scalar matrix 

t
d�nCm

2 0

0 t
d�nCm

2

!
:

Using v1.ab / D deg.b/ � deg.a/ for a; b 2 kŒt �, we arrive at the following de-
scription of the desired set:

Proposition 3.2. The set of elements of… that map x0 to a neighbor and ym to yn
for m; n 2 N0 equals

‡n;m´

´ 
˛ ˇ


 ı

! ˇ̌̌̌
ˇ ˛; ˇ; 
; ı 2 kŒt �; deg.˛/ �

d C n �m

2
;

deg.ˇ/ �
d C nCm

2
; deg.
/ �

d � n �m

2
;

deg.ı/ �
d � nCm

2
; ˛ı � ˇ
 D �f; � 2 k�

µ
: (3.3)

Note that, if d andmC n do not have the same parity, then ‡n;m D ;. Further-
more note that ‡n;m is stable under multiplication with Hm from the right and
with Hn from the left.

Coprime polynomials. At a certain point in the proof we will need to calculate
the number of coprime polynomials in kŒt � with some degree constraints. For this
we use the following result:

Lemma 3.3 ([2, Theorem 3]). Let i; j 2 N, let ˛ be an arbitrary polynomial
in kŒt � of degree i and let ˇ be an arbitrary polynomial in kŒt � of degree j . Then
the probability that ˛ and ˇ are coprime is 1 � 1

q
.
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68 R. Köhl, B. Mühlherr and K. Struyve

Note that the statement of the preceding lemma is also true, if ˇ is an arbitrary
constant polynomial. This has the following immediate corollary.

Corollary 3.4. Let i 2 N, j 2 N0, let ˛ be an arbitrary polynomial in kŒt � of
degree i and let ˇ be an arbitrary polynomial in kŒt � of degree at most j . Then the
probability that ˛ and ˇ are coprime is 1 � 1

q
.

4 The orbit space e�nX

Vertices of e�nX . By the transitivity properties discussed in Section 3 we may
identify the coset space …=„ with the set of vertices of X . Moreover, if we con-
sider the natural left action of … on Y as a right action via inversion, then we may
identify the coset space e�n… with the set of vertices of Y , in case d is odd, and
the set Yeven of vertices of Y with the same type as y0, in case d is even. Hence

e�nX Š e�n.…=„/
D .e�n…/=„
Š

´
Yeven=„; if d is even;
Y=„; if d is odd:

The sets ¹y0; y2; y4; : : : º resp. ¹y0; y1; y2; : : : º from Section 3 form a system
of representatives for the „-orbits on Yeven resp. Y . Hence the above correspon-
dence provides a labeling of each e�-orbit on X as Xi if and only if it corresponds
to the „-orbit containing yi . If d is even, of course, only even indices i occur.

Edges of e�nX . Next we describe the number of edges in the quotient between
the orbits Xn and Xm (where n;m 2 N, m � n and both even if d is even).

Let x be a vertex in the orbit Xn. It corresponds to a double coset e�g„ for
some g 2 … and, by definition, there exists an element g 2 … such that g.x0/ D x
and g�1.y0/ D yn” g.yn/ D y0. Similarly, for each vertex x0 in the orbitXm
there exists an element g0 2 … with g0.x0/ D x0 and g0.ym/ D y0.

Assume x0 2 Xm is adjacent to x. Then z´ g�1x0 is a neighbor of x0
and, moreover, g�1g0.x0; ym/ D .z; yn/, whence h´ g�1g0 2 … is an element
of‡n;m. Two elements h1 D g�1g01 and h2 D g�1g02 of‡n;m determine the same
neighbor of x if and only if they are in the same left coset in ‡n;m=Hm, as Hm is
the stabilizer of the pair .x0; ym/.

Next we have to account for the orbits of the stabilizer of e�x D ….x;y0/ on
the neighbors of x in the orbit Xm. In fact, we will study the orbits on the neigh-
bors of x0 in g�1e�xg D g�1….x;y0/g D ….x0;yn/ D Hn instead: Because of the
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Quotients of trees for arithmetic subgroups of PGL2 69

natural left action of Hn on X two neighbors z and z0 of x0 in Xm are in the
same Hn-orbit if and only if their corresponding left cosets hHm and h0Hm are
contained in the same double coset in Hnn‡n;m=Hm.

We conclude the following:

Proposition 4.1. The number of edges between the orbits Xn and Xm in the
quotient e�nX equals jHnn‡n;m=Hmj.

An alternative approach to Proposition 4.1 can be found in [8, Exercise 2,
p. 116]. From this point on the main difficulty lies in calculating jHnn‡n;m=Hmj.

We will distinguish between three cases in order to determine this number. Note
that we assume thatm � n, and we can additionally assume that d andmC n have
the same parity as otherwise ‡n;m is empty (see Section 3).

Case 1: m C n > d . This assumption implies, using the description from (3.3),
that 
 is zero, whence ˛ı D det.M/ D �f for some � 2 k� by equation (3.1).
As f is irreducible, this is only possible if one of ˛ or ı is of degree d and equals f
times a constant while the other is a constant. Since m � n, the description from
equation (3.3) implies that, in fact, ˛ has degree 0 and ı has degree d and equals f
times a constant. We conclude that m � n D d or otherwise ‡n;m D ;. In partic-
ular, if ‡n;m ¤ ;, then deg.ˇ/ � dCnCm

2
D d C n.

Altogether  
˛ ˇ


 ı

!
D

 
�1 ˇ

0 �2f

!
D

 
�1 qf C r

0 �2f

!
with �1; �2 2 k� and ˇ D qf C r via Euclidean division with deg.r/ < d � m
and deg.q/ D deg.ˇ/ � deg.f / � n. We conclude 

˛ ˇ


 ı

!
D

 
�1 qf C r

0 �2f

!

D

 
1 q

0 �2

! 
1 0

0 f

! 
�1 r

0 1

!
2 Hn

 
1 0

0 f

!
Hm:

Since – as long as ‡n;m ¤ ;” m � n D d – indeed
�
1 0
0 f

�
2 ‡n;m, the

double coset space Hnn‡n;m=Hm consists of a single double coset.

Case 2: m C n D d . Note that
�
0 �f
1 0

�
2 ‡n;m, i.e., this set is non-empty. Again

using the description from equation (3.3), it follows that 
 is in k. If 
 D 0, as in
Case 1 we have  

˛ ˇ


 ı

!
D

 
�1 ˇ

0 �2f

!
;
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70 R. Köhl, B. Mühlherr and K. Struyve

which implies n D 0 via the condition d D deg.�f / � d�nCm
2

from (3.3).
Hence deg.ˇ/ � d D m. We compute 

˛ ˇ


 ı

!
D

 
�1 ˇ

0 �2f

!

D

 
0 1

�1 0

! 
0 �f

1 0

! 
�1 ˇ

0 �2

!
2 Hn

 
0 �f

1 0

!
Hm:

If 
 2 k�, the fact det.M/ D �f for some � 2 k� (cf. equation (3.1)) allows us to
normalize to 
 D 1, so that 

˛ ˇ


 ı

!
D

 
˛ ˛ı � �f

1 ı

!

with deg.˛/ � n, deg.ı/ � m and deg.ˇ/ D deg.˛ı � �f / � d . We compute 
˛ ˇ


 ı

!
D

 
˛ ˛ı � �f

1 ı

!

D

 
� ˛

0 1

! 
0 �f

1 0

! 
1 ı

0 1

!
2 Hn

 
0 �f

1 0

!
Hm:

We conclude that Hnn‡n;m=Hm consists of a single double coset.

Case 3: m C n < d . Define l ´ .d �m � n/=2.
We start by calculating the size of the set ‡n;m using the description of

equation (3.3). The polynomial ˇ is contained in an .l C nCmC 1/-dimensional
subspace V of kŒt �, the polynomial ı in an .l CmC 1/-dimensional subspaceW .
The canonical projection kŒt �! kŒt �=.f / maps the subspaces V , W isomorphi-
cally on subspaces V , W of kŒt �=.f /, because

deg.ˇ/ � l C nCm D
d CmC n

2
< d D deg.f /

and

deg.ı/ � l Cm D
d Cm � n

2
< d D deg.f /:

Multiplications with ˛´ ˛ C .f / and with 
 ´ 
 C .f / in kŒt �=.f / induce
bijective k-linear maps kŒt �=.f /! kŒt �=.f /, as ˛ and f resp. 
 and f are
coprime (for degree reasons, as f is irreducible).
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Quotients of trees for arithmetic subgroups of PGL2 71

We have

dim˛W \ V 
 � dimk.W /C dimk.V / � dimk.kŒt �=.f //

D 2l C 2mC nC 2 � d D mC 2:

It describes the choices of polynomials ˛; ˇ; 
; ı 2 kŒt � subject to the degree
restraints in equation (3.3) that satisfy ˛ı � ˇ
 � 0 mod f . Among those,
precisely the choices with ˛ı � ˇ
 D �f with � 2 k� lead to elements of ‡n;m.
We observe that ˛ı � ˇ
 has degree at most d , i.e., it suffices to exclude the
polynomials ˛, ˇ, 
 , ı satisfying ˛ı � ˇ
 D 0.

In other words, there exists a k-linear map

‰ W ˛W \ V 
 ! k; ˛ı D ˇ
 7!
˛ı � ˇ


f
; (4.1)

which is well-defined as deg.˛/; deg.ˇ/; deg.
/; deg.ı/ < d . We are looking for
choices of polynomials outside ker.‰/.

If ˛ı � ˇ
 D �f for some � 2 k�, then ˛ and 
 are coprime (again for degree
reasons, as f is irreducible). Moreover,

deg.˛/ D l C n D
d �mC n

2
or deg.
/ D l D

d �m � n

2
;

since deg.˛ı�ˇ
/ D d . By Corollary 3.4 there exist .q�1/2.q2lCnCq2lCn�1/
choices of pairs .˛; 
/ satisfying these two conditions.

Let .˛; 
/ be such a pair. If nevertheless ˛ı�ˇ
 D 0” ˛ı D ˇ
 , then ˛ j ˇ
and 
 j ı, as ˛ and 
 are coprime. Reduction of the equality ˛ı D ˇ
 by ˛
 yields

ı



D
ˇ

˛
DW � 2 kŒt �;

i.e., ˇ D ˛� and ı D 
�. Since

deg.˛/ D l C n D
d �mC n

2
or deg.
/ D l D

d �m � n

2
;

we have
deg.�/ D deg.ˇ/ � deg.˛/ D deg.ı/ � deg.
/ � m:

Conversely, any � 2 kŒt � with deg.�/ � m provides suitable ˇ´ ˛� and ı´ 
�

satisfying ˛ı � ˇ
 D 0.
The collection of all these choices of � provides an .mC 1/-dimensional sub-

space U consisting of ˛ı D ˛
� D ˇ
 2 ˛W \ V 
 . Using the linear map ‰
introduced in (4.1), we have U D ker.‰/. Since

1 D .mC 2/ � .mC 1/ � dim.˛W \ V 
=U /

D dim.˛W \ V 
= ker.‰// � dim.k/ D 1;
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we have
dim.˛W \ V 
/ D mC 2:

Therefore for each of the .q � 1/2.q2lCn C q2lCn�1/ viable choices of pairs
.˛; 
/ we obtain qmC2 � qmC1 viable choices of pairs .ˇ; ı/. We conclude that

j‡n;mj D .q � 1/.q
2lCn

C q2lCn�1/.qmC2 � qmC1/

D qnCm.q2lC1 C q2l/.q � 1/2:

Note that we divided by q�1 to take into account the fact that we work in PGL2.F /
and not in GL2.F /, so that for fixed ˛, ˇ, 
 , ı the matrices

� �˛ �ˇ
�
 �ı

�
, � 2 k�, all

describe the same element of ‡n;m.
We will calculate jHnn‡n;m=Hmj by distinguishing the following three sub-

cases.

Subcase 3 (a): m; n > 0. In order to approach this subcase we take a look at
the general form of a double coset in Hnn‡n;m=Hm by considering the following
product:  

� �

0 1

! 
˛ ˇ


 ı

! 
1 �

0 �

!
D

 
�˛ C �
 �


 �ı C �


!
:

Here �; � 2 k� and �; � 2 kŒt � with deg � � n and deg � � m. As we are working
in PGL2, we are able to choose some entries equal to 1.

If the degree of 
 is at least 1, the fact that ˛ and 
 are coprime allows us to
compute � (and subsequently �) via the Chinese Remainder Theorem by consider-
ing �˛ C �
 modulo 
 . If 
 2 k, then necessarily deg.˛/ D l C n > 0. As l > 0
and deg � � n, one can derive � and subsequently � from the leading coefficient
of �˛ C �
 . Analogously, one can compute � and �. (Or one inverts the two, now
known, matrices on the left hand side of the equation in order to obtain the third.)

This implies that the size of a double coset in Hnn‡n;m=Hm is jHnjjHmj and,
hence,

jHnn‡n;m=Hmj D
j‡n;mj

jHnjjHmj

D
qnCm.q2lC1 C q2l/.q � 1/2

.q � 1/qnC1 � .q � 1/qmC1
D q2l�1 C q2l�2:

Subcase 3 (b): m > 0 and n D 0. We adopt a similar strategy as in the previous
subcase, trying to determine the factors of a product of matrices. Here we have to
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consider the product 
a b

c d

! 
˛ ˇ


 ı

! 
1 �

0 �

!
D

 
a˛ C b
 �

c˛ C d
 �

!
with a; b; c; d 2 k such that ad � bc ¤ 0, � 2 k�, and � 2 kŒt � with deg � � m.

As before we can compute c and d from c˛ C d
 and a and b from a˛ C b
 ,
as ˛ and 
 are coprime. The values of � and � are then obtained again by inverting
the two, now known, matrices on the left hand side of the equation in order to ob-
tain the third. We again conclude that the size of a double coset in Hnn‡n;m=Hm
is jHnjjHmj and so

jHnn‡n;m=Hmj D
j‡n;mj

jHnjjHmj
D

qm.q2lC1 C q2l/.q � 1/2

.q � 1/q.q C 1/ � .q � 1/qmC1
D q2l�2:

Subcase 3 (c): n D m D 0. This final subcase will be handled differently from
the previous ones. Note that we necessarily have that d is even.

We first count the total number of orbits of edges containing the vertex x0 under
its vertex stabilizer e�x0

D „y0
D PGL2.k/. This is equivalent to the study of the

PGL2.k/-orbits of points on the projective line P1.Fqd /. One counts

� one orbit of length qC1 (corresponding to the embedding P1.Fq/ � P1.Fqd /),

� one orbit of length q2 � q (corresponding to P1.Fq2/ n P1.Fq/ � P1.Fqd /),

� q C q3 C � � � C qd�3 other orbits of length q.q � 1/.q C 1/ if d � 4.

Indeed, PGL2.Fq/ acts on P1.Fqd / via Möbius transformations z 7! azCb
czCd

.
A fixed point z D azCb

czCd
corresponds to a solution of a quadratic equation, whence

an element z 2 Fqd nFq2 has trivial stabilizer and therefore necessarily lies in an
orbit of length q.q � 1/.q C 1/ D jPGL2.Fq/j.

This leads to a total of two orbits if d D 2, and 2C qC q3C � � � C qd�3 orbits
if d � 4. Each of these orbits corresponds with an edge in the quotient e�nX
containing X0.

As in Case 2 and Subcase 3 (b) above we already have accounted for a total
of 1C 1C q2 C q4 C � � � C qd�4 edges if d � 4, and one edge if d D 2, fromX0
to other vertices, the number of edges from X0 to itself is the difference of both
numbers, which is q.qd�3 C 1/=.q C 1/.

Conclusion. The main result now follows: If d is odd, then � equals e� , so our
claims are immediate from the previously determined quotient e�nX . If d is even,
then �nX is the bipartite double cover ofe�nX , ase� does not preserves types inX
whereas � does, forcing us to introduce the vertices X 0n.
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