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Quotients of trees for arithmetic subgroups of PGL,
over a rational function field

Ralf Kohl, Bernhard Miihlherr and Koen Struyve

Communicated by Pierre-Emmanuel Caprace

Abstract. In this note we determine the structure of the quotient of the Bruhat-Tits tree of
the locally compact group PGL,(F},) with respect to the natural action of its S-arithmetic
subgroup PGL;(Oyp)), where F is a rational function field over a finite field and p is
a place of F.

1 Introduction

Let k be the finite field F, of order ¢ and F := k() the rational function field
over k. Let p be a place of degree d of F corresponding to an irreducible monic
polynomial f, inducing the valuation v,. Let Oy, be the subring of F' consisting
of the elements of F' having poles only at p and let Oy, ) be the subring of F
consisting of elements having poles only at p and at co. Let X be the Bruhat-Tits
tree corresponding to the valuation v,. The vertices of this tree correspond to the
homothety classes of rank two ©,-sublattices in F2.

Serre [8, Chapter II, Section 2.4.2] computed the fundamental domain I\ X,
where I' is the arithmetic group PGL> (O} ) for degrees d € {1,2,3,4}:

d=1: o o o o
d=2: —o— o e o o o —
d =3 o—o0—0—

In this note we compute the fundamental domain '\ X for arbitrary degree d ;
in Section 2 we state the main result and depict the fundamental domains up
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to degree 7. The approach of our proof is to study the action of the arithmetric
group PGL2(0Oy,,00}) on the product of the Bruhat-Tits tree X of PGL2(IF4(2)v,,)
and the Bruhat-Tits tree ¥ of PGLy(Fy4(?)y., ). Strong approximation of PSL,
allows us to identify the PGL>(O¢y)-orbits on X with the PGL2 (O} )-orbits
on Y (cf. Section 3). A subsequent detailed analysis of double coset spaces in
Section 4 yields the desired result.

Our approach makes substantial use of the fact that Oy = k[] is Euclidean.
Therefore the potential for generalizing our method is limited; we refer to [4] for
other situations in which the ring of functions that are regular on a projective curve
minus a rational point is at least a principal ideal domain.

Partial results for the rational case under consideration can be found in [5]. The
non-rational genus 0 case is studied in [6] and the elliptic curve case in [9].

We point out that, by classical results, the fundamental domain together
with information concerning the (finite) stabilizers provides a presentation of the
group PGL2 (0} ) by generators and relations, cf. [3, Section III.€], [1, Chapter 2]
and [8, Sections 1.4 and I1.2].

2 Statement of the main result and examples
In this section we state the main theorem and depict the quotients for d up to 7.

Main Theorem. Let v, be a valuation of degree d of the rational function field
[y (¢) and X be the Bruhat-Tits tree of the locally compact group PGLy(IF4(1)y,,).
Then the orbit space PGL2(O,y)\ X can be described as follows.
(1) Ifd is odd, then its set of vertices is { X, | n € Ngo} with
* one edge between X, and X, 14 (n € Np),
* one edge between X,, and X4_, (n € Ngoandn,d —n > 1),
° q21_1 + qzl_2 edges between Xy, and Xg_,_»; (n,l € No, n,l > 1 and
d—n-2[>1)
o q272 edges between Xo and X 4_5; (1 € No and l,d —21 > 1).
(2) Ifd is even, then its set of vertices is { X, X,, | n € 2Ng} with
e one edge between X, and X;H_d and between X, and Xy, +q (n € 2Ny),
* one edge between X, and X;l—n (n € 2Ngandn,d —n > 2),
o g2V 4 42172 edges between X, and X} _,_, and between X, and
Xg_n_oy(me2Ny,l €Ny, >1andn,d —n -2l >2),
o ¢2172 edges between X and X),_,; and between X and X4 _5; (I € N,
[ >1andd —2] = 2),
e (¢ +1)/(q + 1) edges between X and X if d > 2, and one edge
between Xo and X| if d = 2.
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Examples of quotients. We have

d=2 ——o—0o—o0 —0o—0o—
d=3 )'(0 X3 Xe

q

X X, X Xy X Xg

d = 4 s & 0 0 X4 R

X, X X} X2 X Xio

X X X

d=>5 X4 9 14
2
q

X10 X5 Xo X1 Xe X111

qg+1

X13 Xg X3 X5 X7 X12

From this point on we depict multi-edges by a label indicating the number of

edges in order to avoid cluttering the picture.

d=6 o X0 K X Ay X
k=4
q* <, q*
X_lz {é Xo Xo {6 X_iz
> — g \+q
q* q*

X, X8 X} Xa X{, Xis
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X0 X1z Xs
d=17 —60——o0—9
X_15 X;S X1 qg+1 X4 X_11 X_ls
2
4 X
q S0
X.14 .{7 Xo X3 X.IO X.l7
o o 5 o o
q
q+1
X19 X122 X5 X2 X9  Xi6

3 Basics and preliminaries

The trees X and Y and their vertices. Let k be the finite field I, of order ¢
and let F := k(¢) be the rational function field over k. Let p be a place of
degree d of F corresponding to an irreducible monic polynomial f, inducing
the valuation vj,.

Consider the place oo of F, which is a place of degree 1 and corresponds with
a valuation voo(%) = degh —dega for a,b € k[t]. The ring Oy of elements
with poles only at oo then equals the ring of polynomials k[t] in F.

We represent the vertices of the trees X (the Bruhat-Tits tree of PGL2(F),))
and Y (the Bruhat-Tits tree of PGL2(F,.,)) by giving two generators spanning
a lattice in the homothety class corresponding to the vertex (cf. [8, Chapter II,
Section 1]). We will write these two generators as the columns of a (2 x 2)-matrix
with respect to the standard basis of F? together with a subscript indicating
the place.

As an example and for future use we define the vertices

/i

110 1
X0 = d = i € Np).
(1)) e (1]1) vew
p [e’e)

The first vertex xg is a vertex of the tree X, the second series y; (i € Ng) are
vertices in Y.

Lemma 3.1. Let h be an element in PGL2(Op 0}) represented by a matrix M
with entries in k[t], not of all of them divisble by f as polynomials. Then the
distance between xo and h(xo) equals vy (det(M)).
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Proof. Let L be alattice representing the vertex xg. Then the definition of distance
in [8, Chapter II, Section 1.1] implies that the distance between x¢ and /xg
equals b — a where b is minimal such that f?L is contained by M L and a maxi-
mal such that f¢L contains M L.

Due to the conditions on the entries of M, we have that L contains M L but fL
does not, soa = 0.

In order to calculate b, first note that be C MLifandonlyif L D fbM_1 L.
The entries of M ! are, up to minus signs and permutations, the entries of M
divided by det(M) € (QXP o0y- Hence, if one wants to multiply the matrix M~ !
with a power f? of f such that in this product the entries lie in k[f], then the
minimal and sufficient such b is v, (det(M)). |

An analogous statement allows one to compute distances in the tree Y. For
instance, the element of PGLy(F) represented by the matrix (" 9) maps y,
to y, and, accordingly,

d(Vmsyn) = Voo (" ™) =m —n

ifm>n.

The group PGL(F), its subgroups, and their transitivity properties. The
group PGL,(F) acts faithfully as a group of isometries on both X and Y, where
the action is induced by the canonical action from the left of PGL(F) on the
2-dimensional lattices. We represent the elements in PGL, (F) by (2 x 2)-matrices
(with respect to the standard basis of F?).

We will mainly work inside the arithmetic subgroup

IT := PGL2(0Oyp,00})
of PGL, (F). This group contains the arithmetic groups
[ :=PGL2(O¢py) and E := PGL2(Oo0})

as subgroups.

Recall that a dense subgroup of a topological group acting on a discrete
set has the same orbits. Hence, by strong approximation (see [7]), the subgroup
PSL2(0(p,00)) < IT acts edge-transitively, if we restrict the action to either X
or Y. In particular this group has two orbits (corresponding to the types) on the
vertices in either restriction.

A similar fact is true for IT = PGL2(O¢p, o0}): If d is odd, then IT acts non-type
preservingly on both X and Y, and hence transitively on the vertices of either tree.
If d is even, then IT acts transitively on the vertices of X, but type-preservingly,
whence with two orbits on the vertices of Y.
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The following are further groups of interest to us:
e IIy, = B.

e Iy, =: T, where T, in case d is even, acts non-type preservingly on X and
contains I" as an index two subgroup and, in case d is odd, equals I.

° EYO = PGLz(k) = H().
« 8y, = H; (i € N)with

(i)

A fundamental domain for the quotient E\Y is given by the vertices y; with
i € Ny and the edges between these, forming a ray (cf. e.g. [8, Chapter II, Sec-
tion 1.6, Corollary] or the case d = 1 in the introduction).

a,8 € k*, b € k[t], deg(b) < i}.

Maps sending x¢ to a neighbor and y,, to y,. Let h € II such that h(xg) is
adjacent to xg, represented by a matrix

o p
M = ()/ 8) € (9{p’oo}2X2.

By taking the scalar multiple with the appropriate power of f we may assume
that o, 8, y and § all lie in k[¢] and are coprime as polynomials.

When this is the case, we have d(xq, (x0)) = vp(det(M)) by Lemma 3.1.
Hence f is a divisor of det(M) € k[t], but f?2 is not. As det(M) Ofp.oo} >
this implies that

det(M) = Af with A € k*. (3.1)

Next we want to determine the set of elements in PGL,(F) which map y,,
to y, with m,n € Ny. Since the stabilizer of yg in PGL,(F) is PGL;(O«), this
set can be described as gPGL,(Oo0)g’ with arbitrary g, g’ € PGL,(F) that satisfy
&' (ym) = yo and g(yo) = yn; for instance, the element g can be represented by
the matrix (/) 9) and the element g’ by the matrix (*;;" 9).

0 1
Let
a B\ fat™™ bt"
y 8 N 4
t" 0\ fa b\ [tT O
= PGL>(Ox0)g . 3.2
(£ (1) (7 ) ermaon o
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We conclude from the above discussion that the elements (‘; g ) € PGLy(F)
which map y,, to y, are exactly those that satisfy «, 8, ¥, € F, voo(et) > m —n,
Voo(B) = —1, Voo (y) = m, voo(8) = 0 and veo (a8 — By) = m —n.

In the proof of our main result we will make use of the set Y, , of elements
of IT that map x¢ to a neighbor and y,, to y, with m,n € Ny. We want to describe
this set using, as above, matrices

a p x
M = (y 8) € Op.ocy”?

with entries in k[¢] that are coprime as polynomials and whose determinant equals
a non-zero scalar multiple of f. Since veo(f) = —d, this means we have to mul-
tiply the matrix from equation (3.2) with the scalar matrix

A 0
0 [d_g+m .

Using voo () = deg(b) —deg(a) for a,b € k[t], we arrive at the following de-
scription of the desired set:

Proposition 3.2. The set of elements of I1 that map x¢ to a neighbor and y,, to y,
for m,n € Ny equals

d _
Yo =" p . B. 7.6 € k1], deg(@) < L
y 6 2
d+n+m d—n—m
deg(ﬁ)§—2 ,deg(uf)f—2 ,
d_
deg(&)g#,as—ﬂy=xmek*}. 3.3)

Note that, if d and m + n do not have the same parity, then Y}, ,,, = 9. Further-
more note that Y}, ;, is stable under multiplication with Hj, from the right and
with Hj, from the left.

Coprime polynomials. At a certain point in the proof we will need to calculate
the number of coprime polynomials in k[¢] with some degree constraints. For this
we use the following result:

Lemma 3.3 ([2, Theorem 3]). Let i, j € N, let o be an arbitrary polynomial
in k[t] of degree i and let B be an arbitrary polynomial in k(t] of degree j. Then
the probability that a and B are coprime is 1 — é. |
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Note that the statement of the preceding lemma is also true, if B is an arbitrary
constant polynomial. This has the following immediate corollary.

Corollary 34. Let i € N, j € Ny, let o be an arbitrary polynomial in k[t] of
degree i and let B be an arbitrary polynomial in k[t] of degree at most j. Then the

probability that « and B are coprime is 1 — %. o

4 The orbit space T\ X

Vertices of f\X . By the transitivity properties discussed in Section 3 we may
identify the coset space I1/E with the set of vertices of X. Moreover, if we con-
sider the natural left action of IT on Y as a right action via inversion, then we may
identify the coset space F\H with the set of vertices of Y, in case d is odd, and
the set Yeven Of vertices of Y with the same type as yy, in case d is even. Hence

T\X =~ T\(TI/E)
= (T\I)/E

N Yeven/ &, if d is even,
~|Y/E, if d is odd.

The sets {yo, ¥2, V4, ...} resp. {yo, ¥1, 2, ...} from Section 3 form a system
of representatives for the E-orbits on Yeven resp. Y. Hence the above correspon-
dence provides a labeling of each I"-orbit on X as X; if and only if it corresponds

to the E-orbit containing y;. If d is even, of course, only even indices i occur.

Edges of F\X . Next we describe the number of edges in the quotient between
the orbits X, and X,, (where n,m € N, m > n and both even if d is even).

Let x be a vertex in the orbit X,,. It corresponds to a double coset FgE for
some g € I and, by definition, there exists an element g € I1 such that g(xo) = x
and g7 (y9) = yn <= g(¥n) = yo. Similarly, for each vertex x’ in the orbit X,
there exists an element g’ € IT with g’(xo) = x" and g’ (ym) = yo.

Assume x’ € X,, is adjacent to x. Then z := g~ !x’ is a neighbor of xq
and, moreover, g~ 'g’(xo, Ym) = (z, yn), whence h := g~ g’ € Il is an element
of Yy m. Two elements iy = g_1 g’1 and hy, = g_1 g/2 of Y} ;» determine the same
neighbor of x if and only if they are in the same left coset in Yy, n/Hyp, as Hy, is
the stabilizer of the pair (xo, ym)-

Next we have to account for the orbits of the stabilizer of Fx = [(x,y,) on
the neighbors of x in the orbit X,,. In fact, we will study the orbits on the neigh-
bors of x¢ in g_lfxg = g_IH(x,yo)g = I (xy,y,) = Hn instead: Because of the
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natural left action of H, on X two neighbors z and z’ of x¢ in X,, are in the
same Hpy-orbit if and only if their corresponding left cosets 1 Hy, and h' Hy, are
contained in the same double coset in Hy\ Yy, n/Hp.

We conclude the following:

Proposition 4.1. The number of edges between the orbits X, and X in the
quotient '\ X equals |Hy\ Yy m/Hm|.

An alternative approach to Proposition 4.1 can be found in [8, Exercise 2,
p. 116]. From this point on the main difficulty lies in calculating | H,\ Yy m/Hm|.

We will distinguish between three cases in order to determine this number. Note
that we assume that m > n, and we can additionally assume that d and m + n have
the same parity as otherwise Y}, ;; is empty (see Section 3).

Case 1: m + n > d. This assumption implies, using the description from (3.3),
that y is zero, whence ad = det(M) = Af for some A € k* by equation (3.1).
As f isirreducible, this is only possible if one of « or § is of degree d and equals f
times a constant while the other is a constant. Since m > n, the description from
equation (3.3) implies that, in fact, & has degree 0 and § has degree d and equals f
times a constant. We conclude that m —n = d or otherwise Y, ,, = 9. In partic-
ular, if Ty m # 0, then deg(f) < 4H4FM — g 4 p.

Altogether
« BY_ (w1 B ) _[m gaf +r
y 8 0 paf 0 waf

with w1, 2 € k* and B = gf + r via Euclidean division with deg(r) < d < m
and deg(q) = deg(B) — deg( f) < n. We conclude

(aﬂ)zmqurr

y & 0 wuaf
(1 g \(1 O ereHIOH
“\o w)\o £J\o 1 "\o )™

Since — as long as Y, m # 0 < m —n =d - indeed ( 102) € Yp.m, the
double coset space H,\ Yy, m/Hm, consists of a single double coset.

Case2:m +n =d. Notethat (9 _Of) € Yy m,i.e., this set is non-empty. Again

using the description from equation (3.3), it follows that y is in k. If y = 0, as in

Case 1 we have
a By _[(m B
y ¢ 0 paf)’
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which implies n = 0 via the condition d = deg(Af) < d_"% from (3.3).
Hence deg(f) < d = m. We compute

(0= 2
o [ [ (O A (R 8

If y € k*, the fact det(M) = Af for some A € k* (cf. equation (3.1)) allows us to
normalize to y = 1, so that

[ )-( )

with deg(a) < n, deg(§) < m and deg(B) = deg(ad — Af) < d. We compute
a B [a ad—Af
y §) \1 8
GC D6
0 1)\l O 0 1 1 0

We conclude that H,\ Y, »/Hp, consists of a single double coset.

Case3:m +n <d. Definel :=(d —m—n)/2.

We start by calculating the size of the set Y}, using the description of
equation (3.3). The polynomial 8 is contained in an (/ + n + m + 1)-dimensional
subspace V of k|[t], the polynomial § in an (/ + m + 1)-dimensional subspace W .
The canonical projection k[t] — k[t]/(f) maps the subspaces V', W isomorphi-
cally on subspaces V, W of k[t]/(f), because

d+m+n

deg(B) <l +n+m= 5

<d =deg(f)

and J
$ < d = deg(f).

Multiplications with @ := o + (f) and withy :=y + (f) in k[¢]/(f) induce
bijective k-linear maps k[t]/(f) — k[t]/(f), as « and f resp. y and f are
coprime (for degree reasons, as f is irreducible).

deg(§) <l +m =
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‘We have
dimaW N 77 > dimy (W) + dimy, (7) —dimg (k[t]/(f))
=2l4+2m+n+2—d=m+2.

It describes the choices of polynomials «, B, y,8 € k[t] subject to the degree
restraints in equation (3.3) that satisfy ad — fy =0 mod f. Among those,
precisely the choices with a6 — fy = Af with A € k* lead to elements of Yy, p,.
We observe that «d — By has degree at most d, i.e., it suffices to exclude the
polynomials «, B, y, § satisfying a6 — fy = 0.
In other words, there exists a k-linear map
- _ §—

U aWNVy >k, @ =p7r %
which is well-defined as deg(w), deg(f), deg(y), deg(8) < d. We are looking for
choices of polynomials outside ker(W).

If «§ — By = Af for some A € k*, then & and y are coprime (again for degree
reasons, as f is irreducible). Moreover,

d— d—m—
deg(a) =1 +n = ++n or deg(y)=1[1= #

since deg(a§ — By) = d. By Corollary 3.4 there exist (g — 1)2(g2/ " 4 g2/ +n—1)
choices of pairs («, y) satisfying these two conditions.

Let («, y) be such a pair. If nevertheless a6 —fy = 0 <= aé = By, thena | B
and y | 8, as @ and y are coprime. Reduction of the equality «§ = By by ay yields

@.1)

)
—=é=:e€k[t],
Yy o«
i.e., B = ae and § = ye. Since
d— d—m—
deg(a) =1+n = +—i—n or deg(y)=1[1= #,

we have
deg(e) = deg(p) — deg(a) = deg(d) —deg(y) < m.
Conversely, any € € k[t] with deg(e) < m provides suitable 8 := ae and § := ye
satisfying a6 — By = 0.
The collection of all these choices of € provides an (m + 1)-dimensional sub-
space U consisting of @8 = aye = By € aW N VY. Using the linear map ¥
introduced in (4.1), we have U = ker(W). Since

l=m+2)—@m+1) <dim@W NVy/U)
= dim@W N Vy/ker(¥)) < dim(k) = 1,
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we have
dim@W NVy) =m + 2.

Therefore for each of the (¢ — 1)2(¢?/ " + ¢?'*"~1) viable choices of pairs
(cr, ) we obtain g2 — g1 viable choices of pairs (8, §). We conclude that

|Tn,m| — (q _ 1)(q21+n +q21+n—1)(qm+2 _qm+l)
— qn+m(q21+l +q2l)(q _ 1)2

Note that we divided by ¢—1 to take into account the fact that we work in PGL, (F)
and not in GL,(F), so that for fixed o, B, y, § the matrices (ﬁg ’}Lg ). A € k*, all
describe the same element of Y}, ;.

We will calculate |H,\Yy,n/Hm| by distinguishing the following three sub-
cases.

Subcase 3(a): m,n > 0. In order to approach this subcase we take a look at
the general form of a double coset in H,\ Yy, ;n/Hm by considering the following

product:
kK ¢\ fa B\ (1 n\ _ [ka+&y *
o 1/\y s)\o A) y AS+ny)

Here k, A € k™ and ¢, n € k[t] with deg¢ < n and degn < m. As we are working
in PGL,, we are able to choose some entries equal to 1.

If the degree of y is at least 1, the fact that o and y are coprime allows us to
compute « (and subsequently ¢) via the Chinese Remainder Theorem by consider-
ing ka + ¢y modulo y. If y € k, then necessarily deg(e) =1 +n > 0. Asl >0
and deg ¢ < n, one can derive x and subsequently ¢ from the leading coefficient
of ko + ¢y. Analogously, one can compute A and 7. (Or one inverts the two, now
known, matrices on the left hand side of the equation in order to obtain the third.)

This implies that the size of a double coset in H,\ Yy, 1/ Hp is | Hp|| Hpm| and,
hence,

| Ynm|
| Hn|| Hml

B R 0 (Rl LY N
T @—Dg (g =gt 1 1

|Hn\Tn,m/Hm| =

212

Subcase 3(b): m > 0and n = 0. We adopt a similar strategy as in the previous
subcase, trying to determine the factors of a product of matrices. Here we have to
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consider the product

a b)(a BY[(1 n\ _([ax+by x*
c d ySOA_ca+dy*

witha,b,c,d € k such thatad — bc # 0, A € k*, and n € k[t] with degn < m.
As before we can compute ¢ and d from co + dy and a and b from ao + by,
as o and y are coprime. The values of A and 7 are then obtained again by inverting
the two, now known, matrices on the left hand side of the equation in order to ob-
tain the third. We again conclude that the size of a double coset in H,\ Yy 1n/Hm
is |Hy,||Hm| and so
he® g™ (" +¢*)(g - 1) 22

| Hy\ Vo / Hm| = : = =q
P  Hy || H| (@ — (g + 1) - (g — Hgm+!

Subcase 3(c): n = m = 0. This final subcase will be handled differently from
the previous ones. Note that we necessarily have that d is even.

We first count the total number of orbits of edges containing the vertex xo under
its vertex stabilizer Fxo = B, = PGLy(k). This is equivalent to the study of the
PGL, (k)-orbits of points on the projective line P! (IFga ). One counts

« one orbit of length g+ 1 (corresponding to the embedding P! Fy P 1 (Fga))s
« one orbit of length g2 — g (corresponding to IF’I(Iqu) \P1(F,) C ]P’l(]qu)),
o ¢ +q>+ -+ q?%3 other orbits of length (¢ — 1)(¢ + 1) if d > 4.

Indeed, PGL,(IF;) acts on IP’I(Iqu) via Mobius transformations z +—> ?51'3
A fixed point z = ?Z ig corresponds to a solution of a quadratic equation, whence

an element z € F a\F,2 has trivial stabilizer and therefore necessarily lies in an
orbit of length g(¢ — 1)(¢ + 1) = |[PGL2(FFy)|.

This leads to a total of two orbits if d = 2, and 2 + ¢ + ¢ + - -- 4+ ¢ 3 orbits
if d > 4. Each of these orbits corresponds with an edge in the quotient F\X
containing Xp.

As in Case 2 and Subcase 3 (b) above we already have accounted for a total
of 1 + 14+ g2+ ¢*+---+ g% *edgesifd > 4, and one edge if d = 2, from X
to other vertices, the number of edges from X to itself is the difference of both
numbers, which is ¢(¢? 3 + 1)/(q + 1).

Conclusion. The main result now follows: If d is odd, then I" I" equals T, so our
claims are immediate from the previously determined quotient F\X If d is even,
then "\ X is the bipartite double cover of F\X as T does not preserves types in X
whereas I' does, forcing us to introduce the vertices X,.
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