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Abstract: Anthocyanins from different plant sources have been shown to possess health 

beneficial effects against a number of chronic diseases. To obtain any influence in  

a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively 

absorbed from the gut into the circulation and transferred to the appropriate location within 

the body while still maintaining their bioactivity. One of the key factors affecting  

the bioavailability of anthocyanins is their transport through the gut epithelium.  

The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon 

carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal 

absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells 

report very low absorption of these compounds. However, the bioavailability of 

anthocyanins may be underestimated since the metabolites formed in the course of digestion 

could be responsible for the health benefits associated with anthocyanins. In this review, we 

critically discuss recent findings reported on the anthocyanin absorption and metabolism by 

human intestinal Caco-2 cells. 
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1. Introduction 

Anthocyanins are water-soluble pigments responsible for the blue, purple, and red color of many plant 

tissues [1]. The term anthocyanin is derived from the Greek words anthos, meaning flower,  

and kyanos, meaning blue [2]. Although they also occur in vegetables, roots, legumes, and cereals, these 

pigments are usually associated with fruits. In particular, berry fruits are rich sources of dietary  

anthocyanins [3–6] and can contribute tens to hundreds of milligrams of anthocyanins in a single serving. 

The daily intake of anthocyanins in the USA diet is estimated to be as much as 180–255 mg per day;  

a value that far exceeds the consumption of most other flavonoids [7]. 

Anthocyanins have become increasingly important to the food industry, as their use as natural 

alternatives to synthetic dyes has become widespread [8]. According to the numbering system  

used by the Codex Alimentarius Commission, anthocyanins are listed as a natural colorant by  

the EU (European Union) legislation and coded as E163. With respect to the USA, the FDA (Food and 

Drug Administration) has a different list of “natural” colors that do not require certification,  

and anthocyanins can be obtained either from “grape color extract”, “grape skin extract”, or “fruit or 

vegetable juices” [9]. 

Apart from their colorant features, many studies have associated anthocyanins with antioxidant,  

anti-inflammatory and anticarcinogenic properties, protection against both heart disease and certain 

types of cancer, as well as a reduction in the risk of diabetes and cognitive function disorders [10].  

The potential availability of anthocyanins after gastrointestinal digestion is important, since a poor 

bioavailability of a certain anthocyanin would lead to a limited effect on health. One of the key factors 

affecting the bioavailability of anthocyanins is their transport through the gut epithelium, which can be 

investigated using in vivo studies and in vitro models. The Caco-2 cell line, a human intestinal epithelial 

cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies 

for predicting intestinal absorption of anthocyanins [11]. In this perspective, this review summarizes the 

recent findings reported on the absorption and metabolism of anthocyanins by human intestinal Caco-2 cells. 

2. Chemistry of Anthocyanins 

Anthocyanins belong to a large group of compounds collectively known as flavonoids, which are  

a subgroup of an even larger group of compounds known as polyphenols [7]. Chemically, anthocyanins  

occur as glycosides of flavylium (2-phenylbenzopyrylium) salts but differ from them by structural  

variations in the number of hydroxyl groups, the degree of methylation of these hydroxyl groups,  

the nature and number of sugar moieties attached to the molecule, and the position of the attachment,  

as well as the nature and number of aliphatic or aromatic acids attached to the sugars [12]. 

Anthocyanins are found as glycosides of their respective aglycones, called anthocyanidins [13].  

The anthocyanidins consist of an aromatic ring A bound to a heterocyclic ring C that contains oxygen, 

which is also bound by a carbon–carbon bond to a third aromatic ring B [14]. About 17 anthocyanidins 

have been identified, but only six of them are commonly distributed in nature: cyanidin (Cy),  

delphinidin (Dp), malvidin (Mv), pelargonidin (Pg), peonidin (Pn) and petunidin (Pt) (Figure 1). Despite 

there being only six common anthocyanidins, there are over 600 anthocyanins reported in plants [15]. 

Glucose (Glu), galactose (Gal), arabinose (Ara), rutinose (Rut), rhamnose (Rham), and xylose (Xyl) are  
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the most common sugars that are bound to anthocyanidins as mono-, di-, or trisaccharide forms [16]. 

The most widespread glycoside derivatives in nature are 3-monosides, 3-biosides, 3,5- and  

3,7-diglucosides. The presence of the 3-glucoside derivatives is 2.5 times more frequent than  

the 3,5-diglucosides and the most common anthocyanin is Cy-3-Glu [17]. In many cases, the sugar 

residues are acylated with p-coumaric, caffeic, ferulic, sinapic, p-hydroxybenzoic, malonic, oxalic, 

malic, succinic or acetic acid [18]. 

Anthocyanidin R1 R2 

Cyanidin (Cy) OH H 

Delphinidin (Dp) OH OH 

Malvidin (Mv) OCH3 OCH3 

Pelargonidin (Pg) H H 

Peonidin (Pn) OCH3 H 

Petunidin (Pt) OH OCH3 
 

Figure 1. Anthocyanidin structures. 

Anthocyanins are highly instable and very susceptible to degradation. Oxygen, temperature, light, 

enzymes and pH are among the many factors that may affect the chemistry of anthocyanins and, 

consequently, their stability and color [19]. The hue of anthocyanins may vary according to different 

substituent groups present on the B ring, and color saturation increases with increasing number of 

hydroxyl groups and decreases with the addition of methoxyl groups [20]. In aqueous solution, 

anthocyanins undergo structural re-arrangements in response to changes in pH in four molecular 

structures: quinoidal base (blue), flavylium cation (red), carbinol (colorless) and chalcone (yellowish) 

forms (Figure 2). Anthocyanins are stable in acidic solutions (pH 1–3) where they exist primarily as 

flavylium cations. At pH > 4, anthocyanins adopt the forms of the carbinol and chalcone. Chalcone can 

then undergo chemical degradations to produce phenolic acids [16]. The relative composition of  

the different molecular structures of anthocyanins coexisting in aqueous solution at any given time will 

depend on pH, temperature and time. This is particularly important as anthocyanins are exposed to 

different pH conditions through the gastrointestinal tract, which affects their bioavailability and hence 

their bioactivity [7]. 
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Figure 2. Molecular structures of anthocyanins under different pH conditions. 

3. Bioavailability of Anthocyanins: Absorption and Metabolism by Caco-2 Cells 

Bioavailability is defined by the FDA as “rate and extent to which the active ingredient or moiety is 

absorbed and becomes available at the site of action” [21]. Methods for determination of bioavailability 

of anthocyanins include human (in vivo) or simulated experiments performed in a laboratory (in vitro). 
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In vivo methods provide direct data of bioavailability and have been used for a large variety of nutrients. 

On the other hand, in vitro methods have the advantage of being more rapid, less expensive, less labor 

intensive, and do not have ethical restrictions. In vitro methods simulate gastrointestinal digestion under 

controlled conditions using commercial digestive enzymes, whereas the final absorption process is 

commonly assessed using Caco-2 cell cultures [22]. Here, we will focus on anthocyanin transport and 

metabolism through Caco-2 cells. For a more comprehensive overview on bioavailability aspects of 

anthocyanins, please refer to these other reviews [7,16,19]. 

3.1. Caco-2 Cell Growth and Differentiation 

The Caco-2 cell line has been established by Fogh and co-workers in 1977 from a human colon 

adenocarcinoma, and originally used for the screening of cytotoxic effects of anti-tumor drugs and for 

the study of drug resistance mechanisms [23]. During the past few decades, this cell line has been 

extensively used for cellular permeability studies of polyphenols [24–27]. It has been well established 

that Caco-2 cells can undergo spontaneous differentiation in culture conditions and exhibit  

the characteristics of mature enterocytes. The cell surface facing the top medium develops a brush border 

that resembles the luminal membrane of the intestinal epithelium. The cell surface attaching  

to the permeable membrane and facing the bottom medium develops into the basolateral  

membrane [28,29]. Despite their colonic origin, Caco-2 cells express the morphological and functional 

characteristics of small intestinal cells. The Caco-2 monolayer houses multiple transporters, receptors 

and metabolic enzymes such as cytochrome P450 1A (CYP1A), sulfotransferases (SULTs),  

UDP-glucuronosyltransferases (UGTs), and glutathione S-transferases (GSTs) [30]. 

Transport experiments are generally carried out using filter-based inserts, where cells are seeded and 

allowed to grow and differentiate to confluent monolayers for approximately 21 days post seeding. 

Before performing the transport experiment, the integrity of the Caco-2 monolayer is controlled  

by measuring the transepithelial electrical resistance (TEER), or, more reliably, by examining  

the permeability of paracellular markers such as mannitol, inulin, Dextran, PEG 4000, and lucifer  

yellow [30]. TEER is a non-invasive technique, which measures the impedance between the lumen and 

basolateral tissue. TEER measurements use a constant direct current applied by two electrodes,  

one connected with the lumen side and the other one with the basolateral side. By applying Ohm’s law 

it is possible to measure the related cells resistance [31]. It was reported in the literature that  

an acceptable TEER value for Caco-2 cell monolayers should be from 200 to 1000 ohm per cm2 [32]. 

Since its original isolation, the Caco-2 cell line has been propagated in several laboratories around  

the world, producing Caco-2 cells of different “age”, or number of passages in culture. The expressions 

of typical differentiation markers of intestinal enterocytes were shown to increase from early to late 

passages. Accordingly, the TEER value has also been demonstrated to increase in later passages of  

cell monolayer [33]. 

In order to reduce the heterogeneity of the Caco-2 parental cell line and to improve the performance 

and the stability of this cellular model, some clonal cell lines have been obtained from Caco-2. Among 

them, TC-7 is often used to simulate polyphenol transport [34–36]. The TC-7 clone exhibited similar 

cell morphology to Caco-2 cells, displaying the presence of brush-border membrane and microvilli,  

and the formation of tight junctions. Similarly, on the basis of biochemical attributes and permeability 
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characteristics, the TC-7 subclone appears to be similar to Caco-2 cells and presents a suitable alternative 

to parental cells for intestinal permeability studies [37]. 

The HT-29 cell line is another cell line from colorectal origin with epithelial morphology, and has 

been used as a model for absorption, secretion and transport by intestinal cells. Under standard culture 

conditions, these cells grow as a non-polarized, undifferentiated monolayer. However, altering culture 

conditions or treating the cells with different inducers results in a differentiated and polarized 

morphology, characterized by a redistribution of membrane antigens and development of an apical 

brush-border membrane [38]. Other human intestinal cell lines are less popular for the simulation of  

the human intestinal epithelium, such as the HCT-116 and SW480 cell lines, which are mainly used in 

unraveling cancer-related mechanisms [39], and the HuTu-80 cell line, a model for duodenal cells [40]. 

3.2. Anthocyanin Transport through Caco-2 Cells 

Studies investigating anthocyanin absorption by Caco-2 cells are presented in Table 1 [11,28,29,41–49]. 

The majority of these studies suggest that unlike other flavonoids, anthocyanins could be transported 

through Caco-2 monolayers in intact glycone forms, with the exceptions of black currant and some grape 

anthocyanins. Steinert et al. [41] demonstrated that anthocyanins from black currant, namely Dp-3-Glu, 

Dp-3-Rut, Cy-3-Glu and Cy-3-Rut, were not detected in any serosal solution. However, the authors 

showed that anthocyanins disappeared from the luminal side, not due to the anthocyanin degradation 

process but rather due to physiological actions of the cells. Similarly, Dp-3-Glu from grape extract was not 

transported [48]. Diglucosylated Mv-3,5-DGlu and Pn-3,5-DGlu from grape/blueberry extract were also not 

transported in quantifiable concentrations [49]. On the other hand, studies that observed anthocyanin 

transport, reported very low transport efficiencies. The transport efficiency of anthocyanins from blueberry 

extracts averaged ca. 3%–4% (<1% in Dp-3-Glu) [28]. Similarly, only about 1% of the red grape skin 

anthocyanins passed through a Caco-2 cell monolayer and reached the basolateral side [42].  

The percentage of transported monomeric anthocyanin glycosides from açaí fruit ranged from 0.5%  

to 4.9% [43], whereas according to Cardona et al. [46] the transport rate of açaí anthocyanins was 1.2%. 

Transport efficiencies of Mv-3-Glu and Cy-3-Glu standards were found to be 4% and 0.8%–2.4%, 

respectively [44,45]. Moreover, Cy-3-Glu-Rut recovery from sour cherry fruit and nectar was  

ca. 0.5%–4% [11]. Trace amount of Pg-3-Glu, the predominant anthocyanin from strawberry extract, was 

found on the basolateral side of the epithelium [47]. Transport efficiency of the major grape anthocyanin 

(Mv-3-Glu) was 0.35% [48], while the absorption rates of Mv-3-Glu, Pn-3-Glu, Pt-3-Glu, Dp-3-Glu and 

Cy-3-Glu from grape/blueberry extract were 0.005%–0.06% [49]. These results are in line with in vivo 

studies showing a very low bioavailability of anthocyanins, with <1% of the ingested amount reaching 

the plasma or being excreted in the urine [50–54]. 
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Table 1. Studies investigating anthocyanin absorption by Caco-2 cells. 

Sample Pre-Treatment Anthocyanins 
Anthocyanin 

Concentration 

Cell 

Origin 

Cell 

Differentiation 

Incubation 

Time 
Key Findings Reference 

Blueberry 
Chemical 

extraction 

Dp-3-Glu, Cy-3-Gal, 

Cy-3-Glu, Pt-3-Glu, 

Pn-3-Gal, Pn-3-Glu, 

Mv-3-Glu 

50 μg/mL ATCC 20–26 days 0–120 min 

Transport efficiency of ACNs averaged  

ca. 3%–4% (<1% in Dp-3-Glu);  

Glucose-based ACNs had higher bioavailability than 

galactose-based ACNs 

[28] 

Black currant 

extract 
- 

Dp-3-Glu,  

Dp-3-Rut, Cy-3-Glu, 

Cy-3-Rut 

180 μM DSWZ 19–21 days 0–80 min ACNs were not detected in any serosal solution [41] 

Red grape 

skin 

Chemical 

extraction 

Dp-3-Glu,  

Cy-3-Glu, Pt-3-Glu, 

Pn-3-Glu, Mv-3-Glu 

200 μg/mL ATCC 25 days 

4 days of 

pre-treatment 

+ 6 min 

Only ca. 1% of ACNs are transported;  

ACN transport significantly increased in the presence of 

ethanol; Cells pre-treated with ACNs showed ca. 50% 

increased transport; GLUT2 may be responsible for  

ACN transport 

[42] 

Açaí pulp 
Chemical 

extraction 
Cy-3-Rut, Cy-3-Glu 50–500 μg/mL ATCC 21 days 30–120 min 

Transport efficiency of ACNs was 0.5%–4.9%;  

Presence of polymeric ACNs decreased transport of 

monomeric ACN glycosides (up to 40.3%) 

[43] 

Standard - 
Cat-Mv-3-Glu,  

Mv-3-Glu 
100 μM n/a 21 days 30–120 min 

Transport efficiency of Mv-3-Glu was 4%;  

Absorption efficiency of Cat-Mv-3-Glu was lower than  

Mv-3-Glu (ca. 3%) 

[44] 

Sour cherry  

fruit and 

nectar 

Chemical 

extraction 
Cy-3-Glu-Rut 55 μM ATCC 23–24 days 360 min 

Cy-3-Glu-Rut recovery was ca. 0.5%–4%; Cy-3-Glu-Rut 

transported 3 times more efficiently from nectar than fruit; 

Sucrose and citric acid enhanced the transport of  

Cy-3-Glu-Rut (ca. 5-fold); SPE reduced the transport 

efficiency of Cy-3-Glu-Rut by 5–10-fold 

[11] 

Standard Encapsulation Cy-3-Glu 37.5 μM n/a 20–26 days 60 min Nano-encapsulated Cy-3-Glu with apoferritin was more 

efficiently transported compared to free Cy-3-Glu [29] 
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Table 1. Cont. 

Sample Pre-Treatment Anthocyanins 
Anthocyanin 

Concentration 

Cell 

Origin 

Cell 

Differentiation 

Incubation 

Time 
Key Findings Reference 

Standard - Cy-3-Glu 10–40 μM ATCC 13 days 30–120 min 

Transport efficiency of Cy-3-Glu was 0.8%–2.4%; 

Phloridzin and phloretin inhibited the absorption of  

Cy-3-Glu;  

SGLT1 and GLUT2 are probably involved in the 

absorption of Cy-3-Glu 

[45] 

Açaí 

concentrate 

Chemical 

extraction 
Cy-3-Glu, Cy-3-Rut 500 μg/mL ATCC 18–21 days 0–120 min 

Transport rate of ACNs was 1.22%;  

Phospholipids from soy lecithin and terpenes from cold 

pressed citrus oil increased the transport of ACNs 

[46] 

Strawberry 

Chemical 

extraction + in 

vitro digestion 

Pg-3-Glu,  

Pg-3-Mal-Glu,  

Cy-3-Glu 

16.3 mg/100 g ATCC 21 days 120 min Trace amount of Pg-3-Glu was transported [47] 

Grape 
Chemical 

extraction 

Mv-3-Glu,  

Pn-3-Glu, Pt-3-Glu, 

Cy-3-Glu, Dp-3-Glu 

1766.1 μg/mL ATCC 21 days 30–240 min 

Mv-3-Glu, Pn-3-Glu, Pt-3-Glu and Cy-3-Glu were 

transported, whereas Dp-3-Glu was not transported;  

Transport efficiency of major anthocyanin (Mv-3-Glu)  

was 0.35% 

[48] 

Grape/ 

blueberry 

extract 

- 

Mv-3-Glu,  

Pn-3-Glu, Pt-3-Glu, 

Dp-3-Glu, Cy-3-Glu, 

Mv-3,5-DGlu,  

Pn-3,5-DGlu 

2613 μM ATCC 21 days 0–90 min 

Absorption rates of Mv-3-Glu, Pn-3-Glu, Pt-3-Glu,  

Dp-3-Glu and Cy-3-Glu were 0.005%–0.06%;  

Mv-3,5-DGlu and Pn-3,5-DGlu were not transported in 

quantifiable concentrations 

[49] 

ACN: anthocyanin; ATCC: American type culture collection; Cy-3-Gal: cyanidin-3-galactoside; Cy-3-Glu: cyanidin-3-glucoside; Cy-3-Glu-Rut: cyanidin-3-glucosylrutinoside;  

Cy-3-Rut: cyanidin-3-rutinoside; Dp-3-Glu: delphinidin-3-glucoside; Dp-3-Rut: delphinidin-3-rutinoside; DSMZ: German collection of microorganisms and cell cultures;  

GLUT2: glucose transporter 2; LY: Lucifer yellow; Mv-3-Glu: malvidin-3-glucoside; Mv-3,5-DGlu: malvidin-3,5-diglucoside; n/a: not available; Pg-3-Glu: pelargonidin-3-glucoside; 

Pg-3-Mal-Glu: pelargonidin-3-malonyl-glucoside; Pn-3-Gal: peonidin-3-galactoside; Pn-3-Glu: peonidin-3-glucoside; Pn-3,5-DGlu: peonidin-3,5-diglucoside; Pt-3-Glu:  

petunidin-3-glucoside; SGLT1: sodium-dependent glucose transporter 1; SPE: solid phase extraction; TEER: trans epithelial electrical resistance. 
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Few studies compared the transport efficiency of anthocyanins across Caco-2 cells with other 

polyphenols. The transport of both Mv-3-Glu and catechin through Caco-2 cells was found to be time 

dependent and reached approximately to the same value (4%) after 120 min of incubation [44]. Similarly, 

the recovery of epicatechin in the basolateral side (1%–4%) was also about the same with Cy-3-Glu-Rut 

(0.5%–4%) [11]. Reported transport of some other flavonoids through Caco-2 cells was 30% for 

quercetin, 17% for genistein and 6% for epicatechin [55]. 

The aglycone structure of anthocyanins is one of the many factors influencing their transport. For 

instance, Dp-3-Glu from blueberry extract showed lower transport efficiency compared to Mv-3-Glu 

and Pn-3-Glu. This may be a result of the higher number of hydroxyl groups in Dp or the greater 

hydrophobic structure of Mv that facilitated an increased portioning into cells and tissues. In addition, 

Dp has no OCH3 group, while Pn has one and Mv has two OCH3 groups (Figure 1), indicating that 

hydrophilic and hydrophobic groups affect the absorption of anthocyanins [28]. Similarly, for black 

currant anthocyanins the loss of delphinidins was significantly higher than cyanidins. Thus, the structural 

features might be crucial for anthocyanin stability [41]. 

Sugar moieties and polymeric structures may also have an influence on anthocyanin absorption by 

Caco-2 cells. For blueberry extracts, glucose-based anthocyanins had higher bioavailability than 

galactose-based anthocyanins. [28]. On the other hand, for black currant anthocyanins no differences are 

shown between the respective glucose and rutinose sugar moieties indicating that sugar conjugates may 

have a minor effect on anthocyanin stability [41]. The presence of polymeric anthocyanins in açaí fruit 

decreased the transport of monomeric anthocyanins glycosides in a dose-dependent manner by up  

to 40.3% [43]. Similarly, the absorption efficiency of flavanol-anthocyanin dimer Catechin-Mv-3-Glu, 

an anthocyanin derivative reported in grape skins and red wine, was lower than Mv-3-Glu (ca. 3%) [44]. 

The presence of other food components has been shown to have a major impact on anthocyanin 

transport. Solid phase extraction (SPE) of sour cherry extracts reduced the transport efficiency of  

Cy-3-Glu-Rut by 5–10-fold [11]. Ethanol, one of the main constituents of red wine, improved 

anthocyanin transport through Caco-2 cells [42]. However, this hypothesis is open to debate as there are 

some in vivo reports [56,57] claiming that ethanol has no influence on anthocyanin absorption.  

The ethanol concentration used in the cell culture study (1%), which was non-toxic to Caco-2 cells [42],  

is much lower than the actual ethanol concentration in red wine. Therefore the impact of ethanol on 

anthocyanin absorption and bioavailability may depend on the models as well as the doses used [42]. 

Citric acid also enhanced anthocyanin transfer to the basolateral side of Caco-2 cells [11]. This may be 

linked to the fact that anthocyanins are more stable at low pH values [16,58] (Figure 2). This effect of 

pH on transport across Caco-2 cells may have some physiological relevance. Although the cellular 

interstices and blood have a pH of around 7.4, the pH in the upper gastrointestinal tract under fasting 

conditions ranges from 5.0 to 6.5. In addition, the pH of the acidic microclimate just above  

the epithelial cell layer has been reported to be between 5.8 and 6.3 [11,28]. Furthermore, phospholipids 

from soy lecithin and terpenes from cold pressed citrus oil increased the transport of açaí anthocyanins 

in an in vitro cell monolayer model with Caco-2 cells, and a combination of phospholipids and terpenes 

was found to be the most effective [46]. 

In addition to the factors mentioned above, the physiological pH and temperature conditions (pH 7 

and 37 °C) used in Caco-2 cell culture experiments may have a great influence on the stability of 

anthocyanins. In fact, a study on Cy-3-Glu [59] showed that there was no significant difference between 
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the Caco-2 cell and cell free incubations in terms of the losses of Cy-3-Glu and the appearance of 

degradation products. These findings suggest that the loss of anthocyanins may be the result of 

spontaneous chemical breakdown rather than Caco-2 cell induced enzymatic deglycosylation followed 

by chemical degradation. 

Although the exact mechanism of anthocyanin absorption in the small intestine is still unclear, it has 

been proposed that anthocyanins could interfere with the transporters responsible for their own transport. 

The candidates for anthocyanin transporters were the glucose transporters, since anthocyanins possess  

a sugar moiety, in particular a glucose residue. SGLT1 and GLUT2 are the main hexose transporters 

described in Caco-2 cells. SGLT1 is an energy-dependent and sodium-dependent cotransporter, whereas 

GLUT2 is a facilitated transporter. SGLT1 is only present on the apical membrane and until a few years 

ago, GLUT2 was described to be present only in the basolateral membrane and in some pathologies on 

the apical membrane. Recently, it has been described and accepted that GLUT2 is present on the apical 

side and can be gathered to the membrane in the presence of a large amount of glucose, therefore 

becoming the main transporter responsible for glucose uptake [42,45]. It was found that GLUT2 

expression assessed by RT-PCR was increased in Caco-2 cells pretreated with red grape skin 

anthocyanins, by comparison with controls, indicating that chronic consumption of anthocyanins could 

be favorable for their own bioavailability. In addition, the tested red grape skin anthocyanins interfered 

with glucose uptake resulting in an inhibitory effect (about 60% decrease) [42]. Similarly, Pn-3-Glu 

from strawberry extract was able to influence glucose uptake into the cells and transport to the basolateral 

side by inhibiting activities of the glucose transporters [27]. Another study also confirmed that exposure 

to anthocyanin rich berry extract derived from blueberry, bilberry, cranberry, elderberry, raspberry seeds 

and strawberry significantly reduce SGLT1 and GLUT2 expressions [60]. Inhibition studies conducted 

using the pharmacological agents, phloridzin, an inhibitor of SGLT1, or phloretin, an inhibitor of 

GLUT2, revealed that the absorption of Cy-3-Glu was significantly inhibited in the presence of these 

agents [45]. These data suggest that anthocyanins may prevent hyperglycemia by decreasing glucose 

transporter expressions. 

Since the high instability of anthocyanins has a direct impact on their potential health benefits, food 

processing technologies such as encapsulation may be used to improve their bioavailability [61–63]. 

Accordingly, the nano-encapsulated Cy-3-Glu with apoferritin was more efficiently transported  

through a Caco-2 cell monolayer compared to free Cy-3-Glu [29]. In another study, processing of sour cherry 

fruit into nectar led to three times more efficient transport of Cy-3-Glu-Rut through a Caco-2 cell  

monolayer [11]. 

3.3. Anthocyanin Metabolism by Caco-2 Cells 

Polyphenols undergo Phases I and II transformations in the human body. Phase I transformations 

consist of oxidation, reduction and hydrolysis, but these transformations occur less frequently. Phase II 

biotransformations taking place in the liver and the intestine occur more intensively. These Phase II 

transformations consist of conjugation reactions where different are formed (methyl, glucuronic and 

sulfate derivatives) [64]. Spontaneous transformation of anthocyanins to phenolic acids and aldehydes is 

reported to occur under biological conditions [65]. Confirming that, under cell culture conditions, the main 

metabolites of Cy-3-Glu and Cy are detected as protocatechuic acid (PCA) and phloroglucinaldehyde 
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(PGA), which are derived from the A and B rings of the parental compound (Figure 3). With action of 

enzymes, these metabolites can be further degraded to glucuronide and sulfate conjugates [59]. Another 

important Phase II reaction of anthocyanins is the methylation, which alters the number of hydroxyl  

and methoxyl groups in ring B in comparison with the native compound. Although not so intense as 

genuine anthocyanins, methylated metabolites of Cy-3-Glu, Dp-3-Glu and Pt-3-Glu displayed some 

antiproliferative activity for the Caco-2 cell line [66]. On the other hand, some other anthocyanin 

metabolites including gallic acid, 3-O-methylgallic acid, and PGA reduced cell proliferation in Caco-2 

cells more effectively compared to parental anthocyanins [67]. Therefore when assessing the health 

benefits of anthocyanins, potential effects of such metabolites should be taken into account. 

 

Figure 3. Metabolites (PGA: phloroglucinaldehyde; PCA: protocatechuic acid) of  

cyanidin-3-glucoside (Cy-3-Glu) and cyanidin (Cy). 

3.4. Bioactive Properties of Anthocyanins on Caco-2 Cells 

Although the bioavailability of anthocyanins is very low, anthocyanins from several different food sources 

have been shown to exert health-promoting effects on Caco-2 cells (Table 2). These potential bioactive 

properties included antiproliferative [68–79], antioxidant [79–85] and anti-inflammatory [48,86,87] effects. 

MTT (3-(4,5-dimethylthiazolil-2-yl)-2,5-diphenyl-tetrazoliumbromide) is the most common assay that is 

applied to evaluate the antiproliferative effects of anthocyanins on Caco-2 cells [68,69,73,74,76–78]. This 

assay is based on the conversion of the yellow tetrazolium salt MTT by mitochondrial dehydrogenase  

of live cells to the purple formazan. Trypan blue [70,79], thymidine incorporation [71], CCK-8 (cell 

counting kit 8) [72], LDH (lactate dehydrogenase) [73] and SRB (sulphorhodamine B) [74] are some 

other assays that are used to determine the cell viability after anthocyanin treatment. For the antioxidant 

activity, the formation of intracellular ROS (reactive oxygen species) is often determined using  

a fluorescent probe, DCFH-DA (2′,7′-dichloro-dihydro-fluorescein diacetate) [79–82,84,85]. Prior to 
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anthocyanin treatment, the oxidation is initiated with different compounds including t-BHP (tert-butyl 

hydroperoxide) [79,80,85] and AAPH (2,2′-azobis (2-amidinopropane) dihydrochloride) [81,82].  

Anti-inflammatory activities of anthocyanins included reduction of NF-κB (nuclear factor κB)  

activation [86,87], inhibition of NO (nitric oxide) secretion [87], downregulating the expression of  

pro-inflammatory cytokines (particularly IL-8) and reducing the levels of adhesion molecules [48]. 

4. Conclusions and Future Perspectives 

Currently, the Caco-2 cell line is considered to be the most common in vitro model of the small 

intestine, despite some heterogeneity in its characteristics and some other limitations arising from its 

tumoral origin. A major difference between the Caco-2 cells and the intestinal enterocytes is that  

the Caco-2 cells do not have a mucus layer. Studies have been performed to co-culture a mucin secreting 

cell line (HT-29) with the Caco-2 cell line, but they did not give the expected results. Another limitation 

of using Caco-2 cells is the poor reproducibility of results between different laboratories. Thus,  

a standardization of some important parameters such as cell origin, passage number and incubation time 

is necessary. On the other hand, there are also some benefits of using this cell line while evaluating 

anthocyanin absorption. It is a high throughput model, which allows the screening of a large number of 

samples. Furthermore, the use of the Caco-2 cell model is also important to study molecular mechanisms 

of anthocyanin absorption. When the transport of anthocyanins is assessed using Caco-2 cells as 

intestinal models, in almost all studies cells are treated with pure standards or anthocyanin-rich extracts 

derived from plants and foods and data are reported at concentrations that showed a response. However, 

plasma and tissues are not exposed in vivo to anthocyanins in these forms. In this sense, the use of 

combined in vitro digestion and Caco-2 cells could be a better approach. Also, the anthocyanin 

concentrations tested should be of the same order as the maximum plasma concentrations attained after a 

polyphenol-rich meal, which are in the range of 0.1–10 μmol/L [88]. In future studies, these conditions should 

be taken into account and the methodologies should be adopted accordingly. 

Studies investigating anthocyanin absorption by Caco-2 cells reported very low transport of these 

compounds. The observed trends among different anthocyanins generally agreed with the published  

in vivo results. In spite of convincing observations in Caco-2 cell culture model, extrapolation of these 

in vitro findings for anthocyanins to the in vivo situation is difficult due to the unknown accumulation 

of these compounds at target tissues. Besides, the bioavailability of anthocyanins may be underestimated 

both in vitro and in vivo since the metabolites formed in the course of digestion could be responsible for 

the health benefits associated with anthocyanins. Recently, it was suggested that anthocyanins could also 

be absorbed from the stomach. In cell culture studies, anthocyanins were found to be able to cross  

MKN-28 cell monolayers (differentiated adenocarcinoma stomach cells) [89–91]. Therefore,  

the existing knowledge indicates that the observed low apparent bioavailability of anthocyanins could 

be due to their extensive presystemic metabolism, rather than poor absorption from the intestinal lumen. 

In addition, some anthocyanins can reach the colon in significant amounts and undergo microbial 

fermentation. The resultant microbial metabolites may also contribute to the health effects of 

anthocyanins. Eventually, we suggest that future studies should address the bioavailability of  

the anthocyanin metabolites to establish whether such metabolites could play a part in bioactivity. 
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Table 2. Bioactive properties of anthocyanins on Caco-2 cells. 

Bioactivity Sources Assays/Markers Anthocyanins References 

Antiproliferative 

Arctic bramble, Black currant, Blueberry, 

Bilberry, Chokeberry juice, Cloudberry, 

Lingonberry, Peach, Plum, Potato, Purple rice, 

Red chicory, Standards, Strawberry,  

Strawberry guava 

MTT, Trypan blue, Thymidine 

incorporation, CCK-8, LDH, 

SRB 

Cy, Cy-3-Ara, Cy-3-Gal, Cy-3-Glu,  

Cy-3-Rut, Dp, Dp-3-Gal, Dp-3-Glu,  

Dp-3-Rut, Mv-3-Ara, Mv-3-Gal,  

Mv-3-Glu, Pg, Pn-3-Gal, Pn-3-Glu,  

Pt-3-Gal, Pt-3-Glu 

[68–79] 

Antioxidant 
Bee pollen, Bilberry, Blackberry, Red chicory, 

Red orange, Wine 
ROS, TBARS 

Cy-3-Ara, Cy-3-Gal, Cy-3-Glu, Dp-3-Ara,  

Dp-3-Gal, Dp-3-Glu, Dp-3-Rut,  

Mv-3-Ace-Glu, Mv-3-Ara, Mv-3-Caf-Glu, 

Mv-3-Cou-Glu, Mv-3-Gal, Mv-3-Glu,  

Mv-3-Rut, Pn-3-Ara, Pn-3-Cou-Glu,  

Pn-3-Gal, Pn-3-Glu, Pt-3-Ara, Pt-3-Cou-Glu, 

Pt-3-Gal, Pt-3-Glu, Pt-3-Rut 

[79–85] 

Anti-inflammatory 
Blackberry, Blueberry, Black raspberry,  

Grape, Raspberry 

NF-κB, NO, IL-8, E-selectin, 

ICAM-1, VCAM-1 

Cy-3-Ara, Cy-3-Gal, Cy-3-Glu, Cy-3-Rut,  

Dp-3-Ara, Dp-3-Gal, Dp-3-Glu, Mv-3-Ara, 

Mv-3-Gal, Mv-3-Glu, Pn-3-Gal, Pn-3-Glu, 

Pt-3-Ara, Pt-3-Gal, Pt-3-Glu 

[48,86,87] 

CCK-8: cell counting kit 8; Cy: cyanidin; Cy-3-Ara: cyanidin-3-arabinoside; Cy-3-Gal: cyanidin-3-galactoside; Cy-3-Glu: cyanidin-3-glucoside; Cy-3-Rut: cyanidin-3-rutinoside; 

Dp: delphinidin; Dp-3-Gal: delphinidin-3-galactoside; Dp-3-Ara: delphinidin-3-arabinoside; Dp-3-Glu: delphinidin-3-glucoside; Dp-3-Rut: delphinidin-3-rutinoside; ICAM-1: 

intercellular cell adhesion molecule-1; IL-8: interleukin 8; LDH: Lactate dehydrogenase; MTT: 3-(4,5-dimethylthiazolil-2-yl)-2,5-diphenyl-tetrazoliumbromide; Mv-3-Ace-Glu: 

malvidin-3-acetylglucoside; Mv-3-Ara: malvidin-3-arabinoside; Mv-3-Caf-Glu: malvidin-3-trans-caffeoyglucoside; Mv-3-Cou-Glu: malvidin-3-trans-p-coumarylglucoside;  

Mv-3-Gal: malvidin-3-galactoside; Mv-3-Glu: malvidin-3-glucoside; Mv-3-Rut: malvidin-3-rutinoside; NF-κB: nuclear factor κB; NO: nitric oxide; Pg: pelargonidin;  

Pn-3-Ara: peonidin-3-arabinoside; Pn-3-Cou-Glu: peonidin-3-trans-p-coumarylglucoside; Pt-3-Cou-Glu: petunidin-3-p-coumarylglucoside; Pn-3-Gal: peonidin-3-galactoside;  

Pn-3-Glu: peonidin-3-glucoside; Pt-3-Ara: petunidin-3-arabinoside; Pt-3-Gal: petunidin-3-galactoside; Pt-3-Glu: petunidin-3-glucoside; Pt-3-Rut: petunidin-3-rutinoside;  

ROS: reactive oxygen species; SRB: sulphorhodamine B; TBARS: thiobarbituric acid reactive substances; VCAM-1: vascular cell adhesion molecule-1. 
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