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Abstract

Given the density function or the characteristic function of a random variable, we propose an analytical approx-
imation for its distorted expectation by using the fast Fourier transform algorithm. This approach can be used
in various applications involving distorted expectations.
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1. Introduction
This paper proposes an accurate and efficient numerical method to calculate the distorted expectation of the

following form,

EΨ[X] =

∫ +∞

−∞
xdΨ(FX(x)),

where X is the risk factor of interest with distribution function FX and Ψ is a distortion function.
Distorted expectations arise in different branches in the area of insurance and finance [see e.g. 22, 3, 7, 16,

12, 8, 15, 20, 1, 21, 23, to name a few]. If any, quite few models for the risk factor X admit an analytical
formula for the distorted expectation with respect to a distortion function in the general setting. The Monte
Carlo (MC) method is a standard way to calculate the distorted expectations. If {x1, . . . , xN} is a set of MC
realizations of the risk factor X, or its sample from market data, the value of the distorted expectation EΨ[X]
can be estimated by

EΨ[X]
.
=

N∑
n=1

x(n)

(
Ψ
( n
N

)
−Ψ

(
n− 1

N

))
, (1.1)

where x(1), . . . , x(N) are the values of x1, . . . , xN in the increasing order [7]. To achieve high accuracy, a large
ordered sample of the risk factor is required. This procedure can be time-consuming under complex models
for the risk factor, such as the Heston model [13]. On the other hand, some efficient numerical methods for
the standard expectations, such as the COS method [9] and the Carr–Madan method [5], can hardly be used
to calculate the distorted expectations, because there is no analytical formula for the distorted characteristic
function in most of the realistic cases.

To overcome these difficulties, we propose an analytical approximation method, as an alternative to the MC
method, for a class of distorted expectations. In applications, the parametric model for the risk factor X usually
admits the density function fX or the characteristic function φX in an analytical form. Then, the distribution
function FX can be numerically calculated or recovered from its characteristic function. In this paper, we denote
the distorted density function f̃X by (Ψ′ ◦ FX) · fX with f̃X(x) = Ψ′(FX(x))fX(x), x ∈ R. The fast Fourier
transform (FFT) algorithm is used to set up an approximation for f̃X with a truncated sum of its Fourier-cosine
series expansion on a finite interval. The resulting truncation approximation immediately provides an analytical
approximation for the distorted expectations.

The remainder of this paper is organized as follows. Preliminaries on the distorted expectation and its relation
with coherent risk measures are provided in Section 2. Section 3 introduces the analytical approximation of the
distorted expectations. Numerical examples to calculate the distorted expectation of asset price in the Heston
model are carried out in Section 4, and Section 5 concludes.

2. Preliminaries

Let (Ω,F , (Ft)t∈[0,T ], P ) be a filtered probability space. Denote by L2(Ω,F , P ) the collection of square-
integrable random variables representing the profits and losses of a financial position. The risk of a random
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variable X ∈ L2(Ω,F , P ) can be quantified with a risk measure ρ, a functional defined on L2(Ω,F , P ). Proba-
bility distortion provides a large class of risk measures.

2.1. Distorted Expections

Definition 2.1. Let Ψ : [0, 1] → [0, 1] be a continuous increasing function such that Ψ(0) = 0 and Ψ(1) = 1.
The set function cΨ defined by

cΨ(A) = Ψ(P (A)), A ∈ F ,

is called the distortion of the probability measure P with respect to the distortion function Ψ.

With a probability distortion function Ψ is associated another probability distortion function Ψ̂ given by

Ψ̂(x) = 1−Ψ(1− x), x ∈ [0, 1].

Given a probability distortion Ψ, we can define the Choquet integral EΨ[X] of X ∈ L2(Ω,F , P ) by

EΨ[X] =

∫ ∞
0

(1− cΨ({X ≤ x})) dx−
∫ 0

−∞
cΨ({X ≤ x})dx. (2.1)

We assume that
∫ 1

0
Ψ(y) dy

2y
√
y <∞ and the probability space (Ω,F , P ) is atomless throughout this paper. Then,

according to [17], EΨ[X] is finite for any X ∈ L2(Ω,F , P ) when Ψ is concave and continuous on [0, 1].
Let FX be the distribution of X. We can rewrite EΨ[X] as

EΨ[X] =

∫ +∞

−∞
xdΨ(FX(x)). (2.2)

EΨ refers to a distorted expectation associated with a distortion function Ψ. If Ψ(x) = x, EΨ is the standard
expectation E.

For any X ∈ L2(Ω,F , P ), the distorted expectation EΨ[X] associated with a concave and continuous distor-
tion function Ψ admits a robust representation

EΨ[X] = inf
Q∈QΨ

EQ[X], (2.3)

where
QΨ =

{
Q ∈MP : Ψ̂(P (A)) ≤ Q(A) ≤ Ψ(P (A)) for all A ∈ F

}
,

with MP being the collection of all probability measures absolutely continuous with respect to P [17].

2.2. Coherent risk measures

Definition 2.2. A coherent risk measure on L2(Ω,F , P ) is a map ρ : L2(Ω,F , P )→ R satisfying the following
properties:

1. (subadditivity) for X,Y ∈ L2(Ω,F , P ), ρ(X + Y ) ≤ ρ(X) + ρ(Y );

2. (monotonicity) If X ≤ Y a.s., then ρ(X) ≤ ρ(Y );

3. (positive homogeneity) ρ(λX) = λρ(X) for λ ∈ R+;

4. (translation invariance) ρ(X +m) = ρ(X)−m for m ∈ R;

A coherent risk measure ρ defined on the space L∞(Ω,F , P ) of all bounded random variables (a.s.), has a
robust representation [2]

ρ(X) = sup
Q∈Q

EQ[−X] = − inf
Q∈Q

EQ[X], for X ∈ L∞(Ω,F , P ), (2.4)

where Q is a subset of M1,f (Ω,F), the set of all finitely additive normalized set functions Q : F → [0, 1]. Q
can be chosen as a convex set for which the supremum or infimum is attained [Proposition 4.15 of 10]. This
robust representation can be generalized to the risk measures defined on the space L0(Ω,F , P ) of all random
variables [6]. Recalling the robust representation of the distorted expectation (2.3) defined on L2(Ω,F , P ), we
can identify the relation between risk measures and distorted expectations as follows:

ρ(X) := −EΨ[X], X ∈ L2(Ω,F , P ),

is a coherent risk measure if Ψ is concave and continuous on [0, 1]. The Average Value at Risk (AV@R) is an
example of the distortion risk measures [10].
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Example 2.1 (Average Value at Risk). Let Qλ be the class of all probability measures Q � P whose density
dQ/dP is bounded by 1/λ for some fixed parameter λ ∈ (0, 1). The coherent risk measure

AV@Rλ(X) := sup
Q∈Qλ

EQ[−X]

is so-called the Average Value at Risk. Actually,

AV@Rλ(X) = − 1

λ

∫ λ

0

qX(t)dt,

where qX is the quantile function of X. Induced by a distorted expectation, AV@Rλ(X) = −EΨλ [X] where

Ψλ(x) =
(x
λ

)
∧ 1, x ∈ [0, 1].

To complete this section, we outline some other risk measures induced by their corresponding distortion
functions [7].

Table 1: Distortion risk measures and the corresponding distortion functions

Ψλ(x) (λ > 0) if λ ∈ N+, EΨλ [X] = E[Y ], where Y is a random variable.

MAXMINV@R
(

1− (1− x)
λ+1
) 1

1+λ

max{Y1, . . . , Yλ+1}
law
= min{X1, . . . , Xλ+1},

where {X1, . . . , Xλ+1} are independent draws of X
and {Y1, . . . , Yλ+1} are independent draws of Y .

MINMAXV@R 1−
(

1− x
1

λ+1

)λ+1

Y
law
= min{Z1, . . . , Zλ+1}

max{Z1, . . . , Zλ+1}
law
= X

where {Z1, . . . , Zλ+1} are independent draws of Z.

3. Analytical approximation for distorted expectations
Since the density function of the risk factor X can be estimated with statistical methods or recovered from

its characteristic function, without loss of generality, we assume the density function fX is given in its analytical
form. Then, its distribution function can be calculated either by numerical integration methods or recovered
from its characteristic function [18, 19]. Hence, we actually assume that both the density function and the
distribution function are known when formulating the proposed approach.

Given the distribution function FX and the distortion function Ψ, we can, theoretically, derive the distorted
distribution function F̃X and the distorted density function f̃X as{

F̃X(x) = Ψ (FX(x)) , x ∈ R,

f̃X(x) = Ψ′ (FX(x)) fX(x), x ∈ R.
(3.1)

However, (3.1) can hardly lead to an analytical formula for the distorted expectation (2.2). Inspired by the
COS method [9], we first truncate the integration interval of the distorted expectation into a finite interval [a, b]
such that ∫

(−∞,a)∪(b,+∞)

xf̃X(x)dx < ε, for a given tolerance error ε > 0.

Define f̂X = f̃X1[a,b], where 1[a,b] is an indicator function. The Fourier-cosine series expansion of f̂X is given
by

f̂X(x) =
∑∞

k=0
F̂k · cos

(
kπ
x− a
b− a

)
. (3.2)

We propose to approximate the f̂X by the truncated sum f̄X of a Fourier-cosine series expansion, i.e.,

f̂X(x) ≈ f̄X(x) =
∑K

k=0
F̂k · cos

(
kπ
x− a
b− a

)
. (3.3)

The following two propositions characterize the approximation error and convergence order of the truncation
approximation (3.3). Their proofs can be found in Chapter 2 of [4].
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Proposition 3.1. The error in approximating f̂X(x) (3.2) by the partial sum f̄X(x) (3.3) is bounded by the
sum of absolute values of all the neglected coefficients. That is,∣∣∣f̂X(x)− f̄X(x)

∣∣∣ ≤∑∞

k=K+1
|F̂k|, x ∈ [a, b].

Proposition 3.2. If f̂X is infinitely differentiable with nonzero derivatives on [a, b], its Fourier-cosine series
expansion has geometric convergence, i.e.,

F̂k ∼ O(k−n exp(−γk)),

where γ is determined by the location in the complex plane of the singularities nearest to the expansion interval,
and n is determined by the type and strength of the singularity. Otherwise, the convergence of Fourier cosine
series is algebraic, i.e.,

F̂k ∼ O(1/kn),

where n is at least as large as the highest order of derivative that exists or is nonzero.

Proposition 3.2 implies that the right (left) truncation bound b (a) should not be too large (small). Otherwise,

f̂X may have zero derivatives, and the accuracy of the truncation approximation may be decreased. We suggest
to check the tails of the original density function before selecting the truncation interval [a, b].

The key procedure to set up the truncation approximation (3.3) is to calculate the coefficients F̂k, which can
be calculated with the FFT algorithm as follows (see e.g. [11] for a theoretical derivation).

Algorithm 3.1 (The FFT algorithm for F̂k).

1. Calculate the value Y = (Y0, . . . , YK) of the distorted density function on the interpolation points y =
(y0, . . . , yK), i.e.,

Y = Ψ′ (FX(y)) fX(y), with yk = a+ (b− a)k/K, k ∈ {0, 1, . . . ,K}.

2. Extend Y to Ỹ = (Y0, Y1, . . . , Yk−2, YK−1, YK , YK−1, YK−2, . . . , Y2, Y1).

3. Apply the FFT algorithm to Ỹ, and denote the Fourier transform of Ỹ by Ȳ, a 2K-dimensional vector.

4. Then the coefficients are given by F̂k = Ȳk if k = 1, . . . ,K − 1; F̂0 = 0.5Ȳ0; F̂K = 0.5ȲK .

After (3.3) is set up, the distorted expectation EΨ[X] can be approximated by

EΨ[X] =

∫ ∞
−∞

xf̃X(x)dx ≈
∫ b

a

xf̄X(x)dx =

∫ b

a

x
∑K

k=0
F̂k · cos

(
kπ
x− a
b− a

)
dx =

∑K

k=0
F̂kVk, (3.4)

with

Vk =

∫ b

a

x cos

(
kπ
x− a
b− a

)
dx =

(b− a)2

(kπ)2
(cos(kπ)− 1), 1 ≤ k ≤ K; V0 = 0.5(b2 − a2). (3.5)

We call the truncated approximation (3.4) as the T-COS approximation for the distorted expectation EΨ[X].
The truncation approximation (3.3) can be easily extended to calculate the distorted expectation of a com-

bination of risk factors (X1, . . . , Xn) with joint characteristic function φ(ω),

φ(ω) = E
[
ei(ω1X1+···+ωnXn)

]
, where ω = (ω1, . . . , ωn).

In fact, the characteristic function of a portfolio X = z1X1 + · · ·+ znXn is

φX(z) = E
[
eiz(z1X1+···+znXn)

]
= φ(ω), with ω = (zz1, . . . , zzn). (3.6)

Hence, the density function and the distribution function can be recovered from the characteristic function φX
with the COS method [18, 19].

4. Numerical examples

The Heston model [13] is one of the most popular stochastic volatility models in the equity market, where
the equity price (St)0≤t≤T is modeled by dSt = rStdt+

√
vtSt

(√
1− ρ2dW

(1)
t + ρdW

(2)
t

)
, S0 > 0,

dvt = κ(θ − vt)dt+ σ
√
vtdW

(2)
t , v0 = σ2

0 > 0,
(4.1)
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where W (1) and W (2) are independent Brownian motions defined on (Ω,F , (Ft)t∈[0,T ], P ). Although the Heston
model does not admit the analytical density function or distribution function, the log-asset price has the following
characteristic function [13]

φ(ω, t) := E [exp (iω log(St)) | S0, v0] = exp(A+B + C), (4.2)

where

A = iω (log(S0) + (r − q)t), d =

√
(ρσωi− κ)

2
+ σ2(ωi+ ω2),

B = θκσ−2
(
(κ− ρσωi+ d) t− 2 log

((
1− gedt

)
/(1− g)

))
, g = (κ− ρσωi+ d)/(κ− ρσωi− d),

C = v0σ
−2(κ− ρσωi+ d)(1− edt)/(1− gedt).

Given the model parameters

κ = 1.15, θ = 0.0348, σ = 0.39, r = 0.04, T = 1, v0 = 0.0348, S0 = 10, (4.3)

we first recover the density function flogS1 and the distribution function FlogS1 from the characteristic function
(4.2) with the COS method. The truncation interval is set to be [−10, 5], and 210 terms are used in the
approximation formula for the density function. flogS1

and FlogS1
work as the original density function and the

distribution function, respectively. Sequentially, due to

FS1
(x) = FlogS1

(log x) and fS1
(x) =

1

x
flogS1

(log x), (4.4)

we can calculate the density function fS1 and the distribution function FS1 of S1.
The truncation approximation (3.3) is set up for the distorted density function induced by the distortion

functions listed in Table 1 with λ = 1, respectively. The truncation interval for S1 is set to be [0.01, 40], and
the number (K) of the terms in (3.3) varies among {25, 26, 28}. The computation time and the values of the
distorted expectations are reported in Table 2. On the other hand, ten million paths of the Heston model are
simulated with the balanced Milstein scheme [14] at the step-size 0.01. The simulation costs about 37 seconds.
The ordered sample of the terminal value can be saved and reused to calculate distorted expectations under
different distortion functions. However, it still costs about 0.1 seconds to calculate the distorted expectations
with the saved paths, while the T-COS method costs less than 0.1 milliseconds. It means that the T-COS
method is still far more efficient than the MC method with saved paths, when the distortion function or its
parameters vary. When the number (K) of terms in the truncation approximation (3.3) increases, the increase
in computation time is negligible1. Since the values of the distorted expectations corresponding to K = 26

and K = 28 are the same up to the current accuracy, we recommend to set K = 26 in this setting. In other
applications of the T-COS method, one may do the same test to choose an appropriate value for K. Since
the T-COS method and the MC method provide quite similar values for the distorted expectation, the T-COS
method is recommended for its extraordinary efficiency. The implementations are done in MATLAB (2014b)
(Processor: Intel Core(TM) i7-3770 CPU @ 3.4GHz, RAM: 8GB).

Table 2: Distorted expectations EΨ1 [S1] (DE)

MAXMIN MINMAX
MC T-COS MC T-COS

K = 25 K = 26 K = 28 K = 25 K = 26 K = 28

time 37 s 0.04 ms 0.05 ms 0.07 ms 0.1 s † 0.04 ms 0.04 ms 0.07 ms
DE 8.105682 8.104594 8.105569 8.105569 7.588375 7.587122 7.588247 7.588247
†Calculated with the saved sample in the increasing order

To show the effect of the distortion function, we plot the distorted expectations under the distortion functions
listed in Table 1 with different values of λ. As shown in Figure 1, the distorted expectation decreases with the
distortion parameter λ. The higher the value of λ is, the higher the stress level is. Note that different distortion
functions lead to different approximations for the distorted expectation, especially at high stress levels.

1When the truncation interval for S1 is enlarged to be [0.01, 50], the changes in computation time and the distorted expectations
are also negligible. We do not report them here. These results will be provided on request.
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Figure 1: Distorted expectations EΨλ [S1] associated with MINMAX and MAXMIN distortion functions at different stress levels λ.

5. Conclusion
In this paper, we proposed an analytical approximation, as an alternative to the Monte Carlo method, for

the distorted expectations in the setting where the density function or the characteristic function of the risk
factor is given in its analytical form.

The proposed method is based on a truncated sum of the Fourier-cosine series expansion for the distorted
density function on a finite interval. The coefficients of the terms in the truncation approximation can be
calculated with Algorithm 3.1 based on the FFT algorithm. Then, the resulting approximation for the distort-
ed density function provides an analytical approximation for the distorted expectation. Numerical examples
highlight that the proposed method is highly efficient and accurate.

Distorted expectations are associated with distortion risk measures, which play an important role in risk
management. The proposed method can be used to quantify the risk of portfolios, as well as a single risk factor,
with the risk measures beyond V@R and Expected Shortfall [18]. They also arise in portfolio optimization,
conic finance and so on. The problems involving distorted expectations in these areas can be solved with our
method under realistic model assumptions. Our ongoing research focuses on the application of the truncation
approximation in the dynamic portfolio optimization under distortion risk measures.
Acknowledgements. The authors would like to thank an anonymous referee for the valuable suggestions

and comments to improve the manuscript. Xianming Sun acknowledges the financial support by the China
Scholarship Council under the CSC-grant (No. 201306370129) and by the Ghent University under the BOF-
cofunding for Chinese PhD students holding a CSC-grant. Xianming Sun also acknowledges the support by
NSF of China (No. 11171352) and the Hunan Provincial Innovation Foundation for Postgraduate Students (No.
CX2013B040).

References

[1] Albrecher, H., Guillaume, F., Schoutens, W., 2013. Implied liquidity: model sensitivity. Journal of Empirical Finance 23,
48–67.

[2] Artzner, P., Delbaen, F., Eber, J., Heath, D., 1999. Coherent measures of risk. Mathematical Finance 9 (3), 203–228.

[3] Barberis, N., Huang, M., 2008. Stocks as lotteries: the implications of probability weighting for security prices. American
Economic Review 98 (5), 2066–2100.

[4] Boyd, J. P., 2000. Chebyshev and Fourier spectral methods, 2nd Edition. Dover Publications, Inc., New York.

[5] Carr, P., Madan, D., 1999. Option valuation using the fast Fourier transform. Journal of Computational Finance 2 (1990),
1–18.

[6] Cherny, A., 2006. Weighted V@R and its properties. Finance and Stochastics 10 (3), 367–393.

[7] Cherny, A., Madan, D., 2009. New measures for performance evaluation. Review of Financial Studies 22 (7), 2571–2606.

[8] Dhaene, J., Kukush, A., Linders, D., Tang, Q., 2012. Remarks on quantiles and distortion risk measures. European Actuarial
Journal 2 (2), 319–328.

[9] Fang, F., Oosterlee, C., 2008. A novel pricing method for European options based on Fourier-cosine series expansions. SIAM
Journal on Scientific Computing 31 (2), 826–848.

[10] Follmer, H., Schied, A., 2011. Stochastic finance, 3rd Edition. De Gruyter, Berlin, Newyork.

[11] Gasquet, C., Witomski, P., 1999. Fouier analysis and applications. Springer-Verlag, New York.

6



[12] He, X. D., Zhou, X. Y., 2011. Portfolio choice under cumulative prospect theory: an analytical treatment. Management Science
57 (2), 315–331.

[13] Heston, S. L., 1993. A closed-form solution for options with stochastic volatility with applications to bond and currency options.
Review of Financial Studies 6 (2), 327–343.

[14] Kahl, C., Schurz, H., 2006. Balanced Milstein methods for ordinary SDEs. Monte Carlo Methods and Applications 12 (2),
143–170.

[15] Lv, W., Pan, X., Hu, T., 2013. Asymptotics of the risk concentration based on the tail distortion risk measure. Statistics &
Probability Letters 83 (12), 2703 – 2710.

[16] Madan, D., Cherny, A., 2010. Markets as a counterparty: an introduction to conic finance. International Journal of Theoretical
and Applied Finance 13 (08), 1149–1177.

[17] Madan, D. B., Pistorius, M. R., Stadje, M., 2015. On dynamic spectral risk measures and a limit theorem. working paper,
1–53.

[18] Ortiz-Gracia, L., Oosterlee, C. W., 2014. Efficient VaR and expected shortfall computations for nonlinear portfolios within the
delta-gamma approach. Applied Mathematics and Computation 244, 16–31.

[19] Sun, X., Vanmaele, M., 2015. Model-based and model-free upper bounds for discrete arithmetic Asian options. working paper,
1–27.

[20] Tsukahara, H., 2013. Estimation of distortion risk measures. Journal of Financial Econometrics 12 (1), 213–235.

[21] Wang, R., Ziegel, J. F., 2015. Elicitable distortion risk measures: a concise proof. Statistics & Probability Letters 100, 172–175.

[22] Wang, S., 2002. A universal framework for pricing financial and insurance Risks. ASTIN Bulletin 32 (2), 213–234.

[23] Yin, C., 2015. New class of distortion risk measure and their tail asymptotics with emphasis on VaR. arXiv:1503.08586, 1–35.

7


