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Abstract

Seahorses, pipefish and their syngnathiform relatives are considered unique amongst fishes in using elastic recoil of post-
cranial tendons to pivot the head extremely quickly towards small crustacean prey. It is known that pipefish activate the
epaxial muscles for a considerable time before striking, at which rotations of the head and the hyoid are temporarily
prevented to allow energy storage in the epaxial tendons. Here, we studied the motor control of this system in seahorses
using electromyographic recordings of the epaxial muscles and the sternohyoideus-hypaxial muscles with simultaneous
high-speed video recordings of prey capture. In addition we present the results from a stimulation experiment including the
muscle hypothesised to be responsible for the locking and triggering of pivot feeding in seahorses (m. adductor arcus
palatini). Our data confirmed that the epaxial pre-activation pattern observed previously for pipefish also occurs in
seahorses. Similar to the epaxials, the sternohyoideus-hypaxial muscle complex shows prolonged anticipatory activity.
Although a considerable variation in displacements of the mouth via head rotation could be observed, it could not be
demonstrated that seahorses have control over strike distance. In addition, we could not identify the source of the
kinematic variability in the activation patterns of the associated muscles. Finally, the stimulation experiment supported the
previously hypothesized role of the m. adductor arcus palatini as the trigger in this elastic recoil system. Our results show
that pre-stressing of both the head elevators and the hyoid retractors is taking place. As pre-activation of the main muscles
involved in pivot feeding has now been demonstrated for both seahorses and pipefish, this is probably a generalized trait of
Syngnathidae.
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Introduction

Constraints on muscular power generation have led to the

evolution of mechanisms relying on elastic recoil to perform

movements that are fast and powerful enough to capture

exceptionally elusive prey. Examples of elastic energy storage

and release during prey capture can be found in tongue-projection

mechanisms in chameleons [1–3], salamanders [4] and toads [5],

hyoid motions during intra-oral prey processing in knifefish [6],

raptorial appendage strikes in mantis shrimps [7,8]), carnivorous

terrestrial plants employing trap-snapping [9] or tentacle-snapping

[10], and aquatic carnivorous plants generating a sudden trap

inflation to produce suction [11]. Since these movements rely on

the same mechanical principles as catapults (i.e., a slow increase in

strain in an elastic material during preparation, followed by a

triggered release of the stored elastic energy during the launch),

they are sometimes referred to as biological catapults [12].

Syngnathid fishes (pipefishes, seahorses, and seadragons) use

movements driven by catapult-like mechanics to rapidly capture

elusive prey such as small crustaceans [13–16]. This action

involves a very fast dorsal rotation of the head that brings the

mouth close to the prey [13,17–19]. Subsequently, suction is

produced to draw the prey into the mouth cavity [18]. This dual-

phase mechanism (i.e., head rotation followed by suction) is called

pivot feeding [17]. Syngnathids can generate very high angular

accelerations of the head because this motion is powered by the

recoil of the epaxial tendons [14]. The latter study showed that the

epaxial muscle of the pipefish Syngnathus leptorhynchus is active
for at least 200 milliseconds prior to the start of head rotation,

allowing the storage of energy by stretching these tendons.

Afterwards, the head is suddenly rotated over more than 20

degrees in less than 5 milliseconds, leaving prey almost no chance

to react.

Despite the recent advances in our understanding of the feeding

mechanics of syngnathid fishes, several hypotheses related to

motor control remain untested. Firstly, the timing of activation of

the epaxial musculature in syngnathids has only been studied in a

single species of pipefish. Still, as considerable variation exists

within the Syngnathidae in cranial and post-cranial morphology

[20] as well as in the kinematics of head rotation [19], data from

sister taxa of this pipefish species are needed to confirm whether

the same pattern of epaxial muscle activity is widespread within

Syngnathidae. Secondly, while muscle activation patterns have

only been measured for the epaxial muscle [14], a similarly long

tendon is present on the ventral side of the head: the tendon of the

sternohyoideus-hypaxial muscle [14,16] which inserts on the

PLOS ONE | www.plosone.org 1 October 2014 | Volume 9 | Issue 10 | e109068

http://creativecommons.org/licenses/by/4.0/
www.fwo.be
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0109068&domain=pdf


hypohyals and ceratohyals of the hyoid via the urohyal (Figure 1A,

B). Consequently, we hypothesised that an activation pattern

comparable to that measured for the epaxial muscles may also

occur in the sternohyoideus-hypaxials. In addition, two aspects of

the prey-capture kinematics suggest a pre-activated state: (1) we

argued that the absence of dorsal bending of the trunk during the

loading phase suggests that the stress in the epaxial region is

countered by forces at the ventral (i.e. hypaxial) side of the

vertebral column [14], and (2) the initial angular acceleration of

the hyoid is extremely fast compared to other fish [18].

Previous analyses of kinematics showed a considerable amount

of variation in the magnitude of head rotation within the seahorse

Hippocampus reidi [18,21]. We therefore hypothesised that

seahorses are capable of active control over the distance they

rotate their head as a function of prey distance. If so, this should be

reflected in the recruitment and/or activation characteristics of the

epaxials (head rotation accelerators) and/or the sternohyoideus-

hypaxials (which theoretically can act as head decelerators in the

final phase of cranial rotation; [16,17]). Consequently, to increase

the magnitude of head rotation, we predict an increased level of

epaxial muscle activation and/or a decreased level of sternohy-

oideus-hypaxial activation.

Finally, the current hypothesis on the triggering mechanism of

pivot feeding in syngnathids suggests that the head is prevented

from rotating dorsally as long as the hyoid is prevented from

rotating ventrally in between the preopercular bones [16,17]

(Figure 1C, D). The coupled motion of the hyoid and neurocra-

nium results from a four-bar linkage involving these two elements

[13,17,21,22]. Since the preopercula are adducted by the adductor

arcus palatini muscle (Figure 1A, B), activation offset in this

muscle coupled with activity onset of its antagonist, the levator

arcus palatini, may trigger release of the hyoid and neurocranium

for rotation. So far, however, no experimental data have been

collected to evaluate this hypothesis.

The goal of this study was to test the following hypotheses by

means of simultaneous recording of electromyography and high-

speed video in the seahorse Hippocampus kuda: (1) epaxial pre-
activation is not restricted to pipefish; (2) sustained pre-activation is

also present in the sternohyoideus-hypaxial muscle complex; (3)

seahorses display control of mouth displacement distance in

relation to prey distance, and if so (4) this motor control is reflected

Figure 1. Anatomy of the head and illustration of the hyoid locking hypothesis in Hippocampus reidi. Left lateral view of the CT-
reconstruction of the cranium with addition of the stimulated muscles based on histological sections (A), a medial view of the left side of the head
with the opercular bone removed (B). Below, a detailed view on the hyoid and suspensorium illustrate the morphological configuration hypothesised
to be responsible for locking of hyoid and head rotation where the posteriolateral part of the anterior ceratohyals lies dorsally of one of the medial
grooves of the adducted preopercular bones (C), and the unlocked configuration where the ceratohyals are free to rotate ventrally after slight
abduction of the preopercula (D). Orange lines in (A) and (B) represent tendinous connections. The arrows indicate the most likely contact region
between the ceratohyals and the preopercula. Abbreviations: m-aap, adductor arcus palatini; m-epax, epaxial muscle; m-hypax, hypaxial muscle; m-st,
sternohyoideus muscle; o-ch-a, anterior ceratohyal bone; o-ch-p, posterior ceratohyal bone; o-cl, cleithrum; o-den, dentary bone; o-fr, frontal bone; o-
hm; hyomandibular bone; o-ih, interhyal bone; o-iop, interopercular bone; o-meth, mesethmoid bone; o-mx, maxillary bone; o-op, opercular bone; o-
para, parasphenoid bone; o-pop, preopercular bone; o-prmx, premaxillary bone; o-q, quadrate bone; o-uh, urohyal bone. Scale bar, 5 mm.
doi:10.1371/journal.pone.0109068.g001
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in the electromyographic patterns of the epaxials and/or the

sternohyoideus-hypaxials. Finally, we evaluate the proposed

mechanism of the relaxation of preopercular adduction as the

trigger of the pivot feeding catapult system via a muscle

stimulation experiment in Hippocampus reidi.

Materials and Methods

Ethics statement
All experiments were approved by the animal ethics committee

at the University of Antwerp (Ethische Commissie Dierproeven,

Permit Number: 2011-69, approved 11/2011), under the condi-

tion of strictly minimizing the number of individuals used in the

experiments.

Study animals
Seahorses of the species Hippocampus kuda Bleeker, 1852

(electromyography analysis; 2 individuals) and Hippocampus reidi
Ginsburg, 1933 (electric stimulation experiment; 2 individuals plus

1 individual for a fatigue test) were used. These species were

chosen based on availability in captive-bred stocks of local

commercial aquarium trade. The animals were housed in a large

aquarium (200l) with a constant temperature (24uC), salinity (35

ppt) and photoperiod (12:12) and were fed daily with freely

suspended, defrosted Neomysis vulgaris. The H. kuda individuals

had head lengths ( = snout tip to back of the coronet) of 14.1 mm

(individual 1) and 15.2 mm (individual 2); head lengths of the H.
reidi individuals were measured 31.9 mm, 32.4 mm and

34.8 mm.

Electromyography (EMG) and high-speed video
recordings
The seahorses were anaesthetized with tricaine methanesulfo-

nate (MS222) prior to insertion of bipolar stainless steel (Advent

Research Materials Ltd, Halesworth, England) twisted-hook,

quadruple Teflon-insulated electrodes with cross-sectional diam-

eters of 75 mm via hypodermic needles. The approximately

0.5 mm long uncoated tips of the electrodes were inserted into

two muscles: the epaxial muscle at the level of the second anterior

bony ring of the trunk, and mid-belly in the sternohyoideus-

hypaxial muscle (Figure 2). Electrode positions were verified by

lateral view radiographs (Ajex 9020H X-ray generator, Ajex

Meditech, Seoul, Korea; EVA digital sensor, Imageworks, New

York, USA) overlaid on graphical reconstructions of the anatomy

(Figure 1A, B). Since no other muscles are present in the close

proximity of the insertion positions, correct electrode placement

could be safely confirmed. These radiographs also showed that the

final pole spacing varied between 0.4 to 0.8 mm (Figure 2). Next,

the animal was transferred to a small aquarium (30l), which

contained a narrow section to restrict the movement during the

recording session (Figure 3A). The electrode signals were ampli-

fied by a factor of 10 using Gould Universal preamplifiers (Gould

Electronics, Eichstetten, Germany; filter bandpass 1 to 10 000 Hz)

and Honeywell Accudata 117DC amplifiers (Honeywell Interna-

tional Inc., Morristown, USA) before being recorded digitally on

tape using a TEAC 145 T DAT recorder (TEAC Corporation,

Tokyo, Japan). EMG data was monitored and exported to ASCII

files using TEAC QuickVu software, and further analyzed in

Microsoft Excel. All EMGs were recorded within 36 hours from

the start of the anaesthesia.

Dual view high-speed videos were recorded simultaneously with

EMG: a Redlake MotionPro HR1000 camera (IDT, Tallahassee,

USA) filmed in lateral view at 1000 frames per second, and a

Redlake Motionscope M3 camera filmed in frontal view at 500

frames per second (Figure 3A). The camera views were orthogonal

and perpendicular to the aquarium walls, which minimizes the

distortion of the imaging volume. To allow synchronization

between the EMG and the videos, LEDs in view of each camera

were powered by a Grass S48 squared wave pulse generator (Grass

Technologies, West Warwick, USA), of which the output was

connected to an amplifier channel that was recorded on the DAT.

Three infrared 140-LED (Scene Electronics, Shenzhen, China)

arrays provided the necessary illumination.

Time zero was set as the time of the video image in which the

first feeding motion, depression of the hyoid, was visible. Since the

signal-to-noise ratios of the EMGs were relatively low due to the

small size of the muscles, the following calculation steps had to be

performed to determine the onset and offset times of the activity

bursts of the muscles. After rectification (Figure 4A), a period of

about 1 s only containing noise and occurring well before the

strike (.1 s) was selected. Signal threshold was set at the 99%

confidence limit (mean +2.576 standard deviations) of the voltage

amplitude of this noise period. Next, the EMG amplitudes were

averaged for 25 ms intervals. This interval length was selected as

shorter intervals regularly yielded multiple crossings of the signal

threshold within one burst of EMG. Falsely identified signal or

noise intervals were corrected if they were neighbored by two

intervals of an opposite result. The onset time then corresponded

to the start of the first 25 ms interval value exceeding this noise

voltage treshold (Figure 4B). The offset time was the end of the

latest 25 ms interval exceeding this treshold (Figure 4B). For the

onset-to-offset interval, the following variables were calculated

(Figure 4C): duration, mean amplitude, peak amplitude, time of

peak amplitude, and time integral. The latter variable was

included since the time integral of EMG bursts has shown to

correlate particularly well with muscle force during feeding

movements [23,24]. EMGs were analysed from 12 successful

feeding sequences of individual 1, and 13 successful feeding

sequences of individual 2.

Video analysis
To study whether motor patterns are related to prey distance in

Hippocampus kuda, two variables were quantified based on the

dual view high-speed video images: prey distance and mouth travel

distance. The three-dimensional prey distances were calculated

from video stills at a single frame before the start of the movement

(Figure 5). This distance runs from the centre of the mouth

(position in between a dorsal and ventral landmark at the mouth in

the lateral images; Figure 5) to the centre of the prey (centroid of

ten approximately equally spaced landmarks along the contours of

both the lateral and frontal view video images). The three-

dimensional mouth travel distances were calculated between video

stills at one frame before the start of the feeding motion and at one

frame after the capture of the prey (Figure 5), using the

coordinates of the mouth centre. Two-dimensional landmark

coordinates were obtained using Didge (version 2.2.0, A. Cullum,

Creighton University, USA) for the lateral view (xy-axes) and

frontal view (yz-axes) to determine 3D coordinates (xyz). As the

scaling factor increases with the distance of object away from the

camera lens, this distance was measured from the other camera

view. Next, scale factors were calculated for the front and the back

of the camera view, and linear interpolations using the relative

position of the mouth and prey in between front and back view

planes yielded the scaling factor used in the further analyses. Prey

distances could be determined for 9 (individual 1) and 12

(individual 2) prey captures. Mouth travel distances could be

determined for 11 (individual 1) and 12 (individual 2) prey

captures. All variables (i.e. EMG, prey distance, mouth travel

Mechanics of Pivot Feeding by Seahorses
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distance) could be gathered for 9 (individual 1) and 10 (individual

2) prey captures.

Stimulation experiment
Three Hippocampus reidi specimens were sacrificed using an

overdose of MS222 just prior to each stimulation experiment.

Nickel-chrome thin wire bipolar electrodes (diameter 50 mm) were

implanted in the epaxial, sternohyoideus-hypaxial and adductor

arcus palatini muscles (Figure 1A, B) on each side (a total of six

electrodes). Single trains of electric pulses were given with a Grass

S48 stimulator [25]. Train duration was 0.3 s (corresponding to

the minimal burst durations measured in the current study), pulse

frequency and duration were respectively 330 Hz and 0.15 ms,

and the stimulation voltage was 5 V. Because we wanted to

prevent damage to the muscles, we choose a relatively low

stimulation voltage. Consequently, it is likely that not all motor

unit pools of the muscles under study were maximally activated,

resulting in a decreased performance relative to in vivo observa-

tions. Muscle fatigue was avoided by waiting at least 5 minutes

between the stimulation events.

During the stimulation experiments the seahorse was placed in a

dissection tray with sea water and positioned on its side, with the

trunk touching the bottom of the tray but the head free to move. A

Redlake Motionscope M3 camera was used to record the

movements of the head in lateral view together with an on- and

offset indicator of the stimulator (Figure 6B). Five stimulation

events were recorded in two individuals (10 events in total). Next,

the electrodes leading to the left and right adductor arcus palatini

muscle were cut and an additional five stimulation events for each

animal were recorded.

Two video landmarks were digitized frame by frame using

Didge: 1) the tip of the snout and 2) transition of the mesethmoid

and the frontal bone, located just anterior to the eye. With these

two variables, the head angle relative to the horizontal axis was

calculated. Since the reference frame of this angle is earthbound,

the head angle is expressed as this angle minus the initial head

angle.

The third animal was used to validate whether head rotation

characteristics remained unaffected by the increasing number of

stimulation trials. The six muscles of this animal were stimulated

for fifteen consecutive trials using the same stimulation parameters

and rest times as described above, while movement of the head

was recorded. Regressing (ordinary least squares) the maximal

head velocity calculated in each trial to trial number gave a slope

of 0.12, and no relation between maximal head velocity and the

trial number was observed (R2=0.002, P=0.87).

Statistics
To test whether the EMG onset and offset times and durations

differ between the two muscles within each individual, two-tailed

Figure 2. X-ray images showing the placement of the electrodes for both individuals in the electromyography analysis. The uncoated
electrode tips are indicated by white circles. Scale bars, 10 mm.
doi:10.1371/journal.pone.0109068.g002

Figure 3. Experimental set-up for electromyography (A) and for the stimulation experiment (B).
doi:10.1371/journal.pone.0109068.g003
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paired Student T-tests were performed. Unpaired T-tests are used

to test whether there are differences between individuals within

muscle. To test whether a correlation exists between prey distance

and mouth travel distance, and between prey distance or mouth

travel distance and the EMG variables, reduced major axis (RMA)

models were used (RMA add-in for Excel; University of Ottawa,

LPC Freeware). This type of analysis is recommended when the

samples of both co-dependent variables include a comparable

Figure 4. Calculation steps in the analysis of the recorded EMGs. The rectified EMG signal with the duration of the prey capture phase
(narrow grey bar) is shown in (A). In (B) noise range selection is illustrated, with determination of the onset and offset times for 25 ms intervals
exceeding the signal threshold of the 99% confidence limit of the noise. In (C), the six EMG variables are shown.
doi:10.1371/journal.pone.0109068.g004

Figure 5. Example of the calculation of prey distance and
mouth travel distance. The formulae

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2preyzDy2preyzDz2prey

q
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx2mouthzDy2mouthzDz2mouth

q
were used to calculate these two respec-

tive variables via digitization of landmarks at the mouth and at the
contours of the prey on video images shot with two perpendicular
cameras. In the lower panels, ‘‘+’’ indicates the position of the centre of
the mouth at one frame before the start of head rotation. See text for
further information.
doi:10.1371/journal.pone.0109068.g005

Figure 6. Activation patterns for the epaxial muscle (m-epax)
and the sternohyoideus-hypaxial muscle (m-st-hyp). The start of
the prey-capture movement equals time= 0 s with a grey bar indicating
the duration of the head rotation phase. Boxes (mean6s.e.) and
whiskers (mean6s.d) denote the onset and offset times. Black profiles
represent the within-individual means of the integrated rectified EMGs
above or below the noise level. Mean profile amplitudes are separately
scaled to improve clarity.
doi:10.1371/journal.pone.0109068.g006

Mechanics of Pivot Feeding by Seahorses

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e109068



degree of natural variation, and the XY and YX line fittings are

presumed to display symmetry [26].

Five kinematic variables of the stimulation trials in which the

adductor arcus palatini muscles were stimulated, and of the trials

in which the adductor arcus palatini muscles were not stimulated,

were compared using within each individual using two-tailed T-

tests. These variables were (1) the total head rotation, (2) the time

between the onset of head rotation and the instant of maximal

head rotation, (3) the mean velocity of head rotation, (4) the timing

of the instant of maximal velocity, and (5) the time between the

first visible movement and the onset of the stimulation.

Results

Onset and offset times
The onset times of the epaxial muscle (m-epax) and sternohy-

oideus-hypaxial muscles (m-st-hyp) did not differ significantly

within each individual (ind.1, P=0.16; ind.2, P=0.63) (Figure 6).

Activation onset of the epaxial muscle preceded the start of head

and hyoid rotation by minimally 0.19 s (average6s.d. =2

0.5560.24 s) and 0.23 s (average6s.d. =20.3660.24 s) for indi-

vidual 1 and 2, respectively. Onset of the hypaxial muscle

preceded the first motion by a minimum of 0.30 s (avera-

ge6s.d. =20.4360.14 s) and 0.12 s (average6s.d. =2

0.3560.10 s). Activation lasted until shortly after completion of

head rotation (Figure 2). Offset times were significantly greater for

the m-epax compared to the m-st-hyp for individual 2 (P=0.005),

but this difference was not detected for individual 1 (P=0.77). The

second individual showed a later onset and offset time for m-epax

only compared to individual 1 (P=0.016, onset; P=0.0005,

offset) suggesting individual differences in electrode position within

the muscles or control strategies between individuals.

Kinematic modulation
Prey distance varied between 3.9 mm and 6.1 mm (avera-

ge6s.d. = 5.360.6 mm), and mouth travel distance ranged from

3.2 mm to 4.7 mm (average6s.d. = 4.060.4 mm). No significant

correlation was found between prey distance and mouth travel

distance when pooling the data from the two individuals (RMA

regression slope = 0.6760.14; R=0.35; P=0.14; data corrected

for head length difference between the individuals) (Figure 7).

Although both individuals separately showed similar slopes (slope

individual 1 = 0.5360.15, R=0.48; slope individual

2 = 0.9060.28; R=0.12), these relationships were also not

significant (P=0.19 and 0.48 respectively) (Figure 7).

Motor control as a function of prey distance
No significant correlations were detected between prey distance

and any of the variables describing the EMG pattern of the m-

epax and m-st-hyp within each individual. The only noteworthy

trends were a tendency of later onset and longer time to peak m-

epax amplitude with more distant prey in individual 1 (P=0.07

and 0.053, respectively), and a tendency for higher mean

amplitudes of m-st-hyp with more distant prey in individual 2

(P=0.053). However, these trends were not found in the other

individual.

Variation in mouth travel distance was also not significantly

related to the variables describing the EMG pattern of the m-epax

and m-st-hyp within each individual. Although the predicted

pattern of increased mean EMG amplitude of the m-epax (more

powerful dorsal head rotation) combined with a decrease in the

mean amplitude of the m-st-hyp (later or less powerful head

deceleration) for increased head rotation was indeed observed for

both individuals, the correlations were not significant (P always.

0.12). This predicted pattern could not be observed for the EMG

time integral.

Muscle stimulation
A clear difference was observed in the kinematics of head

rotation with and without adductor arcus palatini muscle (m-aap)

stimulation inHippocampus reidi (Figure 8). The average maximal

head angle observed when the m-aap was stimulated in

conjunction with the m-epax and m-st-hyp is 34.162.8 deg

(mean6s.d.). This angle is significantly larger than the angle of

19.161.9 deg, observed when the adductor muscles were not

activated (P,0.0001 for both individuals). However the average

time between the onset of head rotation to maximal head rotation

did not differ statistically between both treatments (P.0.05 for

both individuals).

Figure 7. Relationship between prey distance and mouth travel
distance. Note that no significant correlations were calculated for each
of the individuals (individual 1, filled circles; individual 2, open circles).
doi:10.1371/journal.pone.0109068.g007

Figure 8. Results of the stimulation experiment. The figure shows
the time-dependent kinematic profile of head rotation (mean6s.d.)
when the epaxial, hypaxial and adductor arcus palatine muscles are
stimulated, and when only the epaxial and hypaxial muscles are
stimulated. The grey zone represents the time of stimulation. N= 2
individuals, five repetitions per individual and stimulation treatment.
doi:10.1371/journal.pone.0109068.g008
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After the m-aap were activated the resulting average angular

head velocity was 584640 deg s21, which was significantly higher

than the angular head velocity of 210624 deg s21 when the

adductor muscles were not stimulated (P,0.00001 for both

individuals). The average timing at which maximal head velocity

was reached was also different in both situations (P,0.0001). This

timing was 0.01260.003 ms and 0.1260.03 ms in the stimulated

and non-stimulated situation of the m-aap, respectively.

There was a clear difference between stimulation treatments in

timing between the first visible movement and the onset of

stimulation (P,0.00001 for both individuals) (Figure 8). When the

m-aap were stimulated, no movement occurred until an average of

48.9062.11 ms before the end of stimulation. This means that no

movement was observed for approximately 250 ms of stimulation.

When the adductor arcus palatini muscles are not stimulated,

visible movement occurs after 59617 ms of stimulation.

Discussion

Our results indicate that seahorses activate the epaxial muscles a

considerable time before (i.e. .0.3 s) the start of the first visible

prey capture movement (Figure 6). This finding matches results

from pipefish [14], suggesting that this is a generalized syngnathid

trait. Epaxial pre-activation allows the animal to strain the left and

right epaxial tendons and store elastic energy which can later be

used to power the rotation of the head during pivot feeding. The

presence of such a power amplification system in seahorses was

already suggested by inverse dynamic modelling in juvenile

seahorses, which showed an instantaneous peak power of over

3000 W per kg of epaxial muscle required to accelerate the head

as observed on high-speed videos [15]. Such high values of

instantaneous power output inevitably call for the use of recoil of

pre-stressed elastic tissues, as the maximal instantaneous value

reported for vertebrate skeletal muscle is 1120 W per kg [27,28].

The current EMG results confirm the presence of such a

mechanism in adults of the species Hippocampus kuda.
The hypothesis that the ventral series of muscles inserting on the

hyoid (i.e. a complex formed by the sternohyoideus and the

hypaxial muscle) would show a sustained pre-activation compa-

rable to that of the epaxial muscles [14] was also confirmed

(Figure 6). Since white muscle used for suction feeding in teleost

fish (without significant series elastic element) generally need

activation times of less than 20 ms to reach half the maximum

isometric force upon in-vitro tetanus stimulation [29,30], the

observed delay between activation onset and the first hyoid motion

of generally over 300 ms (Figure 2) means that considerable

retraction force will be exerted on the hyoid prior to the start of

the strike at the prey. This inevitably implies some stretching of the

sternohyoideus tendon, and elastic recoil and power amplification

in the ventral muscle-tendons causing the extremely fast rotation

of the hyoid [21] seems likely. Yet, empirical evidence for this can

only be given by in-vivo strain measurements (e.g. wallabee

hopping [31]; frog jumping [12]).

The observed activation patterns of the sternohyoideus-hypaxial

muscle rule out the option that this muscle would work as the

trigger of the pivot-feeding system of Syngnathidae. This

triggering function was proposed by [13] by assuming that the

line of action of the sternohyoideus muscle differs from the straight

line between the ceratohyal symphysis and the pectoral girdle

muscle attachment site formed by the urohyal-sternohyoideus

compex. A closer morphological inspection of this system in the

seahorse Hippocampus reidi [21] and the pipefish Syngnathus acus
[17] failed to reveal such a system: like in other teleosts, the

urohyal typically ossifies within the tendon of the sternohyoideus

and will therefore be positioned in the working line of

sternohyoideus muscle-tendon. The EMG pattern observed here,

confirms that the force from the sternohyoideus does not result in a

subtle configuration change in the hyoid-neurocranium four-bar

linkage causing the ‘‘quick-release’’ of the system. In addition, no

correlations between EMG timing and amplitude variables with

the motion onset were found.

The presented kinematic data could not prove that a feed-

forward control mechanism is involved in H. kuda to fine-tune the

amount of head rotation to the distance of the prey. Similar to

previous studies on other syngnathid fishes [18,19], we have shown

that there is a considerable strike-to-strike variation in the

magnitude of head rotation, but it could not be confirmed for

H. kuda that this variation is related to the distance from the

mouth to the prey at the onset of the strike (Figure 7). Yet, as

suction is only effective to draw prey into the mouth from a

relatively short distance in stationary predators (e.g. [32]), an

accurate positioning of the mouth close to the prey is critical to

improve prey capture success. Alternatively, being able to

modulate head rotation magnitude would reduce the time and

energy spent in pursuing the prey by broadening the range head

positions with respect to the prey from which successful strikes can

be initiated. Motor control to adjust the degree of head rotation

during suction feeding has been shown previously for catfish [33].

The reason why we assume that this would require a feed-forward

mechanism in sygnathids, rather than feed-back control as

described for other fishes [34,35], is the extremely short time

(generally ,5 ms) between the onset of the movement and the

actual ingestion of the prey. This time is shorter than the range of

reaction latencies measured for fish, which vary from 5 to 40 ms

among different species as illustrated for escape responses by

Eaton and Hackett [36]. However, our data were not conclusive

on the existence of such a feed-forward mechanism during pivot-

feeding in H. cuda.
In addition, no indication of an active control of the epaxial and

sternohyoideus-hypaxial muscles in function of prey distance or

mouth travel distance was detected in our EMG data. In other

words, it remains unclear how syngnathids manage to vary their

head rotation amplitude. We hypothesised that either an increased

activation of the epaxials for farther-reaching strikes would occur,

or that that tension would build faster in the ventral series of

muscles, tendons and ligaments by altered activation patterns of

the sternohyoideus-hypaxial muscles. Neither of these hypotheses

could be confirmed with our data. However, the signal-to-noise

ratio of our measurements may have been too low due to the

relatively small size of the muscles (Figure 4A). This may have

introduced error in the electromyographic variables preventing us

from detecting correlations between muscle activation patterns

and the relatively small kinematic changes. Alternatively, control

may be manifested in other regions of these muscles (only a single

electrode per muscle was used), or in other muscles (e.g.,

protractor hyoidei, adductor arcus palatini).

The results from the stimulation experiment are in line with the

current hypothesis [17] that the main muscle responsible for

locking and triggering the release of the hyoid is the adductor

arcus palatini muscle (m-aap). Activation of the m-aap blocks the

hyoid from moving ventrally for a considerable time, which upon

release increased the acceleration, peak velocity and head rotation

magnitude (Figure 8). Although the precise in-vivo behaviour

could not be reproduced in this artificial stimulation experiment, it

clearly points to an important role of suspensorium abduction in

the locking and triggering process. Electromyographic data of the

m-aap during prey capture would be extremely informative in this

respect, but the small size of this muscle and its position medial of
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the suspensorium make this measurement untractable. Previous

work has shown that the mass of the m-aap is considerably higher

than needed if its role during feeding would be limited to

reposition the abducted suspensorium by compressing the buccal

cavity to its resting state after feeding [37]. Combined with this

observation, our stimulation experiments support the role of the

m-aap as the lock and trigger of the elastic recoil mechanism

during pivot feeding in seahorses.

In conclusion, the hypothesis that fast head rotation during

pivot feeding is driven by catapult-like mechanics of the

musculoskeletal system [13] was confirmed for seahorses. The

pre-activated state of the head-rotator muscles for generally more

than 0.3 s prior to the onset of the strike allows storage of energy in

the epaxial tendons (Figure 6). As this is similar to previous results

on pipefish [14], this suggests that this type of feeding mechanics is

probably widespread among syngnathid species. The present study

is the first to show that a pre-activated state is also present in the

hyoid-retractor muscles at the ventral side of the head (Figure 6).

As long as the rotation of the hyoid is prevented by suspensorium

adduction (Figure 1C, D) while experiencing retraction force, the

dorsal and ventral pre-activated muscles will work antagonistically,

the head remains static, and elastic elements in series with these

muscles can be strained. The adductor arcus palatini muscles are

probably of crucial importance in locking and release triggering of

this mechanism, as shown by our stimulation experiment

(Figure 8). After the release of the hyoid, quick dorsal rotation of

the head will bring the mouth close to the prey. The present study

could not demonstrate that prey located farther away from the

mouth elucidated a higher magnitude of head rotation (Figure 7),

and neither did our data show altered muscle activity patterns that

could be causing the observed kinematic variation.
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