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Abstract. 1. Old growth temperate broadleaved forests are characterised by a
large proportion of forest specialists with low dispersal capability. Hence, spe-
cies bound to this habitat are expected to be highly susceptible to the effects of
decreasing patch size and increasing isolation.

2. Here, we investigate the relative effect of both factors by genotyping indi-
viduals of a flightless and forest specialist beetle Carabus problematicus from 29
populations, sampled in 21 different forest fragments in Belgium, at eight
microsatellite loci.

3. A high degree of genetic differentiation among fragments was observed,
with populations from smaller forests being considerably more differentiated
and characterised by a lower genetic diversity compared to those of larger
forests.

4. A more detailed study on forest remnants of a former historic continuous
woodland area revealed that population differentiation was high among, but
not within remnants, irrespective of geographical distance. This suggests that
patch fragmentation rather than geographical distance is the ultimate factor
that hampers gene flow in this species.

5. The results indicate that gene flow among suitable habitat patches is
primarily reduced by the inability of this specialised species to traverse the land-
scape matrix. This lack of dispersal may pose a serious threat for the persistence
of C. problematicus and ecologically similar species, and suggests that present
populations can best be protected by securing or increasing the size of existing
habitat patches.

Key words. Genetic differentiation, ground beetle, habitat fragmentation, isola-
tion, microsatellites, population genetics.

Introduction

The fragmentation and destruction of natural habitats is a

key threat to biodiversity and a major issue of conserva-
tion biology (Harris, 1984; Meffe & Caroll, 1997; Streiff
et al., 2005). Fragmentation, deterioration and loss of
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habitat also threaten the survival of many insect species
(Heisswolf et al., 2009), but effects will differ depending
on the trophic level, dispersal ability and habitat speciali-
sation (Ewers & Didham, 2006) of the species under

study. In particular, species with limited dispersal ability
are expected to be the most vulnerable. Metapopulation
theory predicts that habitat size and isolation are the most

critical factors determining the occurrence and survival of
populations in a fragmented landscape (Leisnham &
Jamieson, 2002). If a formerly continuous population is

divided into several isolated fragments, this reduces the
effective size of the populations within each fragment
(Frankham et al., 2002; Keller et al., 2005), which

increases the effect of stochastic local extinctions. When
dispersal is limited, recolonisation of empty patches is
strongly hampered and may ultimately result in the
extinction of an entire metapopulation (Hanski, 1998;

Roland et al., 2000; Frankham et al., 2002).
A well documented example of a landscape that suf-

fered severe fragmentation are forest ecosystems in tem-

perate Europe, which have been subjected to human
influence for more than 7000 years (Bloemers & Van
Dorp, 1991; Verhulst, 1995; Honnay et al., 2005). In Bel-

gium, the transition of natural forests to agricultural land
has decreased forest cover by more than 70% (Bloemers
& Van Dorp, 1991; Tack et al., 1993; Tack & Hermy,
1998). Many forest organisms have been highly affected

by this reduction in forest area, and it most probably led
to the extinction of several species at a national level
(Tack et al., 1993; Ervynck et al., 1994; Desender et al.,

1999). Although habitat fragmentation is known to affect
the long-term survival of many species, most studies in
Belgium are conducted on plants (Bossuyt et al., 1999;

Hermy et al., 1999; Honnay et al., 1999). However, stud-
ies that investigated the population genetic effects of land-
scape fragmentation on animals have shown that

landscape deterioration may strongly affect genetic struc-
turing (Keyghobadi, 2007). In particular, species incapable
of flight and specialised species that are unlikely to find
sufficient suitable habitat patches for dispersal (Brouat

et al., 2004), are expected to be most vulnerable to the
effects of increased patch isolation and decreasing habitat
quality. Furthermore, the reduction in local effective pop-

ulation size may strongly increase genetic structure and
result in an overall decrease in genetic variation (Frank-
ham, 1996). This loss of genetic variation may ultimately

reduce the survival and fitness of affected populations
(Frankham, 1995; Ebert et al., 2002; Reed & Frankham,
2003) and as such pose a threat to the long-term viability
of populations (Frankham, 1996; Saccheri et al., 1996,

1998; Westemeier et al., 1998; Desender et al., 1999).
Given that genetic differentiation among populations is

supposed to be high in species with narrow ecological

niches, low dispersal capability and a lack of behavioural
response to habitat fragmentation (Wiens et al., 1997),
species that share these characteristics are ideal to study

the population genetic consequences of habitat fragmenta-
tion and to develop guidelines for the restoration of

habitat remnants. Such restoration measures may include
the creation of new habitat patches, the enlargement of
existing ones or increasing the connectivity of existing
patches in order to mitigate the effects of fragmentation.

Especially within densely populated and urbanised areas,
there is a strong need for such guidelines among policy
makers, managers and conservation practitioners.

The forest carabid beetle Carabus problematicus occurs
from Finland to Southern France, including the British
Isles (Turin, 2000), with Belgium situated in the centre of

its distribution. Because this ground beetle species is
incapable of flight, long-distance dispersal is not possible,
and it is therefore expected to suffer from isolation and

fragmentation. Here, we investigate the genetic structure
of C. problematicus populations in a fragmented landscape
and evaluate how this can be related to the factors forest
area and geographical distance.

Materials and methods

Study species

Carabus problematicus Herbst, 1786 in our study region
is a strictly nocturnal forest specialist beetle that is incapa-
ble of flight. Movement up to 70–75 m per night has been
observed (Neumann, 1971; Rijnsdorp, 1980). Although it

is capable of dispersal by walking, this species is not able
to cross the forest surrounding matrix.

Study area and sampling

A total of 1221 beetles, distributed over 29 samples,
were obtained from 21 different forest fragments scattered
throughout Belgium, varying in size and degree of isola-

tion (Table 1; Fig. 1). In some larger fragments that for-
merly belonged to the historic and continuous Kolenwoud
forest (see below), multiple samples were taken (Table 1).
About 40 beetles per sample were collected from May to

September 2002 using live pitfall traps or by actively
searching potential hibernation habitats during winter
(e.g. bark of tree trunks). Traps were emptied every fort-

night and up to 19 sampling campaigns were held depend-
ing on the difficulty to reach a sample of 40 individuals
per sample.

Of particular interest was the Brussels Capital Region,
with a range of four old growth forest fragments: Gast-
huisbos, Rodebos, Meerdaalwoud and Soignes (Fig. 2).
The historical ecology of these last forests is well docu-

mented (Van der Ben, 1992; Tack et al., 1993; Verhulst,
1995). All fragments originated from the historic forest
Kolenwoud (Table 1; Fig. 1), which was a mediaeval for-

est, covering the central part of Belgium with a total area
of 12 000 ha. From the 12th century onwards, it was
partly subdivided into smaller fragments and its total area

reduced to 10 382 ha in the 16th century (Van de Velde,
1992). In the 18th century, the largest part, constituting
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mostly of the current Soignes forest, had a total area of
10 800 ha (Lefèbvre, 1997). From 1843 until now the
remaining Soignes forest retained its current area of
4383 ha and forms together with other remnants (Table 1)

the last remains of the former Kolenwoud. A thorough
sampling on a smaller scale was conducted here, so that
several samples per fragment were taken: Soignes (n = 2),

Gasthuisbos (n = 1), Meerdaal (n = 7) and Rodebos
(n = 2; Table 1; Fig. 1). This detailed sampling in the
Brussels Capital Region probably comprises most of the

current Kolenwoud remnants in which the study species is
still present (Gaublomme et al., 2008).

Microsatellite genotyping

A total of eight microsatellite markers was used to

genotype each individual. The loci P44, P40, P97, P98,
P55, P99 have previously been isolated from C. problemat-
icus (Gaublomme et al., 2003), the other two loci,

CV105136CMPG and CV104481CMPG, were selected

from C. violaceus, Linnaeus 1758 (Keller & Largiadèr,
2002; Keller Population Genetics CMPG lab, Bern, Swit-
zerland, unpublished data). DNA was isolated from front
legs of study species using the DNeasy blood and tissue

kit (Qiagen Benelux, Venlo, the Netherlands). PCR reac-
tions were carried out as described in Gaublomme et al.
(2003) and Keller and Largiadèr (2002), and PCR prod-

ucts were resolved on an ABI3130 automated DNA
sequencer (Applied Biosystems, Gent, Belgium) using an
internal size standard (GS500Liz; Applied Biosystems).

Microsatellite allele sizing and binning were conducted
with GENEMAPPER v3.7 (Applied Biosystems).

Statistical analyses

We first tested for deviations from Hardy-Weinberg-

equilibrium (HWE) and linkage disequilibrium using a
Markov chain method implemented in GENEPOP 3.4
(Raymond & Rousset, 1995; Rousset, 2008) for each

locus and for each sample (n = 29). Deviations from

Table 1. Summary of the 29 Carabus problematicus samples, with forest fragment origin (forest fragment), size of the forest fragment in

ha, sample size expressed as number of genotyped individuals (N) and measures of genetic diversity at seven microsatellite loci in 29 C.

problematicus populations. Fragments indicated with (K) were part of the former Kolenwoud, measures of genetic diversity were mean

number of alleles per locus (A), average observed heterozygosity (Ho), average expected heterozygosity (He) and estimated allelic richness

summed over all loci for a subset of 26 individuals (AR).

Sample Forest fragment Fragment size (ha) N A Ho He AR

Brak Brakel 243 44 4.43 0.49 0.51 28.86

Brasin Inslag 394 38 4.43 0.44 0.43 28.29

Bugg Buggenhout 176 61 3.71 0.35 0.37 22.66

Buze Buzenol 16 200 41 4.86 0.50 0.59 33.27

Chanly Chanly 46 199 40 5.71 0.59 0.67 38.28

Fernelm Fernelmont 168 29 3.29 0.44 0.50 22.92

Gasth Gasthuisbos (K) 39 33 3.71 0.49 0.48 25.50

Har Harentbeek 241 38 4.86 0.50 0.53 31.60

HVMuhl Moelenbusch 25 000 39 5.14 0.53 0.54 32.93

HVRuhr Ruhrbusch 15 310 39 5.00 0.53 0.57 33.09

Kalm Withoefse Heide 70 38 4.14 0.43 0.45 26.51

Kluis Kluisbos 274 39 4.29 0.40 0.47 28.46

Make Bruinbos 82 54 4.14 0.46 0.51 25.60

Meerddr Meerdaalwoud (K) 1575 36 5.71 0.57 0.58 37.58

MeerJ +60 Meerdaalwoud (K) 1575 40 6.29 0.54 0.56 39.24

MeerJ-40 Meerdaalwoud (K) 1575 40 5.71 0.57 0.58 36.49

MeerJ-60 Meerdaalwoud (K) 1575 40 6.14 0.55 0.57 39.39

Meerdkl Meerdaalwoud (K) 1575 35 5.57 0.56 0.57 36.55

MeerO +60 Meerdaalwoud (K) 1575 41 5.43 0.50 0.56 35.34

MeerO-115 Meerdaalwoud (K) 1575 37 5.86 0.48 0.52 37.32

Ppame Amerloo-Asbroek 152 39 4.43 0.37 0.47 29.29

Ppeer Peerdsbos 280 31 4.00 0.42 0.44 27.22

Rode Rodebos (K) 104 38 5.29 0.42 0.47 34.28

Roval Rodebos (K) 104 36 5.29 0.45 0.47 34.99

Soree Soree 30 48 4.57 0.49 0.52 29.41

Voer15 Veursbos 1031 37 4.14 0.47 0.47 28.00

Voer7 Alserbos 77 41 3.29 0.38 0.41 22.20

ZONP Soignes (K) 5103 37 5.57 0.53 0.58 36.89

ZONRK Soignes (K) 5103 36 5.14 0.57 0.58 34.28

Overall (±SE) 4.83 (±0.17) 0.515 (±0.01) 0.482 (±0.01) 31.92 (±5.44)
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Hardy-Weinberg proportions were quantified by the unbi-
ased estimator of Wright’s inbreeding coefficient FIS

according to Weir and Cockerham (1984). Significance
levels were adjusted for multiple testing using sequential

Bonferroni corrections (Rice, 1989). Overall FST was cal-
culated in FSTAT ver 2.9.3 (Goudet, 2001).
For each sample (n = 29), genetic diversity was assessed

as allelic richness (AR; El Mousadik & Petit, 1996) as a
sample size independent measure of genetic diversity in
FSTAT ver 2.9.3 (Goudet, 2001) and average expected

heterozygosity (He), average observed heterozygosity (Ho)

and average number of alleles per locus (A) using
POP100GENE 1.1.02. (http://www.montpellier.inra.fr/
URLB/pop100gene/pop100gene.html). To test whether or
not genetic diversity decreased with decreasing fragment

size, these four diversity indices were correlated (Spear-
man rank order correlation coefficient) to log transformed
forest area in STATISTICA 6.0. (StatSoft Inc., Hamburg,

Germany, 1998).
To identify putative recent reductions in effective popu-

lation size, we used the heterozygosity excess test imple-

mented in BOTTLENECK 1.2.02 (Piry et al., 1999) for

(a)

(b)

Fig. 1. Geographical distribution of studied Carabus problematicus populations in Belgium. Forests are indicated in grey and sampling

locations with triangles. The black border lines represent Belgian ecoregions. (a) Detail of the four Kolenwoud fragments with 12 sampled

populations of C. problematicus. (b) For position and location see Fig. 3.
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each sample (n = 29). This software simulates the coales-
cence process for loci at mutation-drift equilibrium,
evolving under a two-phase model of mutation as recom-
mended for microsatellites (Cornuet & Luikart, 1996) with

1000 iterations for significance testing using Wilcoxon
signed rank tests.
Geographical distances between the sampling locations

were obtained using ARCVIEW version 3.1 (ESRI, Red-
lands, CA, USA). The forest layer was based on CO-
RINE land cover 2006 seamless vector data version 13

(02/2010; European Environment Agency, 2010) using
land cover codes 141 (green urban areas), 311 (broad-
leaved forest), 312 (coniferous forest) and 313 (mixed for-

est), the Flemish Forest Inventory (Waterinckx &
Roelandt, 2001) and own digitisation for the forest frag-
ments Brugmanpark and Verrewinkelbos. An isolation-
by-distance model (Slatkin, 1993) was used to assess the

correlation between genetic and geographical distances
among the fragments (n = 21). Significance was evaluated

in GENEPOP using a Mantel test (Mantel, 1976) with
10 000 permutations (Raymond & Rousset, 1995; Rous-
set, 2008) using (FST/1�FST) against the natural logarithm
of geographical distance.

We subsequently focused on the spatially more restricted
set of samples originating from the Kolenwoud remnants
near Brussels to investigate the relative effects of genetic

drift and gene flow among patches in more detail. We
compared the isolation-by-distance pattern among samples
within fragments with the pattern observed among samples

originating from different forest fragments. For this
restricted set of samples, we also quantified the partition-
ing of genetic variation at different hierarchical levels that

is among forests (n = 4); among samples within forests
(n = 12) and among individuals within populations by
means of AMOVA (Excoffier et al., 1992) as implemented in
ARLEQUIN 2.0 (Schneider et al., 2000).

To assess the relative importance of forest size and geo-
graphical isolation on the genetic structure, we used a hier-
archical Bayesian linear model implemented in GESTE

v.2.0 (Foll & Gaggiotti, 2006). Here, sample specific FST’s
are estimated and related to a set of explanatory variables
in a linear model. The estimation of population specific

FST’s is based on the degree of differentiation between the
estimated allele frequencies of each subpopulation with the
estimated allele frequencies of the estimated ancestral pop-
ulation. The program allows a set of nested models to be

entered that can then be compared based on their posterior
model probabilities. By mean of this model, we tested if
population specific FST’s are related to (i) the geographical

location of the sampled fragments by means of the vari-
ables latitudinal and longitudinal distance (Lambert
x-coordinate) (Foll & Gaggiotti, 2006) and (ii) area of for-

est fragment. We also included their two- and three-way
interactions. Model selection was conducted by means of
Bayes Factors. Analyses were run for 300 000 generations,

of which the first 50 000 were treated as burn-in period
and discarded for parameter estimation. To test if there is
spatial autocorrelation in fragment size (i.e. if larger frag-
ments tended to be spatially clustered), we quantified

Moran’s I and tested if it was significantly larger than zero.

Results

Carabus problematicus was never found outside the for-

est fragments along the sampled transects (Fig. 2a; Gau-
blomme et al., 2008). Sampling a transect of old growth
forest that persisted during the past 230 years (i.e. since
the first systematic maps of de Ferraris appeared in

1770–1778), the abundance of C. problematicus declined
drastically when sampling was extended into younger for-
est of 50–150 years old (Fig. 2b). This demonstrates that

its specific habitat requirements, that is strictly bound to
forest and preferably old growth forest, combined with its
inability to disperse by flight, are the more determining

factors that restrict dispersal among forest fragments.
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Fig. 2. Abundance of Carabus problematicus along transects

(a) of young forest extending into old growth forest (b) from

30 m into the matrix to 100 m inside the forest fragment.
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Genetic diversity

The total number of alleles per locus ranged from 7 to 27.
Eleven alleles (of a total of 89 alleles at seven loci) were pres-

ent at all sampling sites, whereas 11 alleles were private and
only found in 10 different samples, originating from seven
different fragments that is Moelenbusch (one allele), Meer-

daalwoud (four alleles), Soignes (one allele), Chanly (two
alleles), Bruinbos (one allele), Withoefse heide (one allele)
and Soree (one allele). The mean number of alleles (A),

expected average heterozygosity (He), observed average het-
erozygosity (Ho) and AR based on 26 individuals (AR)
across samples averaged to 4.83 (±0.17 SE), 0.515

(±0.01 SE), 0.482 (±0.01 SE) and 31.92 (±5.44 SE) respec-
tively (Table 1). Locus P99 showed deviations from HWE
and was withdrawn from further analyses. None of the loci
were in linkage disequilibrium for any of the samples.

BOTTLENECK analysis revealed no excess of hetero-
zygosity in any of the samples, thus, there were no traces
of recent genetic bottlenecks. Inbreeding coefficients were

not significantly different from zero in all samples and for
all loci.
Forest fragment area was significantly and positively

correlated with expected heterozygosity (n = 21, r = 0.574,

P = 0.007; Fig. 3a), observed heterozygosity (n = 21,
r = 0.60; P = 0.007), mean number of alleles (n = 21, r =
0.633, P = 0.0021; Fig. 3b) and AR (n = 21, r = 0.704;
P < 0.001), indicating that samples from larger forest

fragments were genetically more diverse.

Genetic differentiation in response to geographical distance
and forest area

Overall differentiation among samples was relatively high
with FST = 0.12 (P � 0.001). Mantel tests showed a signifi-
cant correlation between genetic distances and geographical

distances when considering all forest fragments (n = 21,
r = 0.440, P = 0.005; Fig. 4a). This pattern emerged primar-
ily because of the small genetic distance between samples
originating from nearby forests. When focusing only on the

Kolenwoud fragments we observe little genetic differentia-
tion between the samples within the fragments (open circles
in Fig. 4b) as compared to samples from different (nearby)

fragments (filled circles in Fig. 4b). This suggests that gene
flow within the often fairly large fragments is significant, in
contrast to gene flow between fragments that are separated

by modest stretches of unsuitable habitat matrix. This was
also shown by AMOVA, where the variance among the four
different forest fragments of the Kolenwoud (6.51%;
P = 0.004) was higher compared to the variance among sam-

ples within forest fragments (0.24%; P = 0.05). Most of the
variations, however, was explained by the variance within
samples (93.39%;P < 0.001).

The linear model approach in GESTE (Foll & Gag-
giotti, 2006) did not support a model that included the
geographical structuring of the fragments. Highest sup-

port was found for a simple regression model that only
included the effect of fragment area(posterior probabil-
ity = 0.837), which had a negative effect on fragment spe-

cific FST-values, indicating that genetic differentiation
decreased with increasing forest size (Fig. 5). Hence, sam-
ples from smaller forest fragments were significantly more
differentiated than those from larger forest fragments.

Only a weak and not significant degree of spatial autocor-
relation in fragment area was observed (Moran’s I = 0.07;
P = 0.16).

Discussion

This population genetic study on the forest specialist and
wingless beetle C. problematicus shows that the genetic
constitution of samples originating from different forest

fragments are, in general, strongly differentiated. Our lin-
ear model approach revealed that overall forest size is the
main factor influencing the genetic structure of C. prob-

lematicus, wherein samples from smaller forest fragments
exhibited a considerably higher genetic differentiation
compared to those from larger forest fragments. This is in

strong accordance with population genetic theory wherein
the intensity of genetic drift in a population is inversely

(a)

(b)

Fig. 3. Relationship between forest area and average expected

heterozygosity (a) and allelic richness based on 26 individuals per

population over all loci (b) in Carabus problematicus
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related to its effective size (Taylor, 2003; Hedrick, 2005).
This demonstrates that at least for our smaller fragments,

drift processes are only counteracted by migration among
fragments to a minor extent. In case of strong genetic

drift, it is expected that particular alleles may become
locally extinct, thus eroding local genetic diversity (Slat-
kin, 1987) and can further lead to decreased heterozygos-
ity and inbreeding depression, which further enhances the

risk of local extinction (Saccheri et al., 1998; Frankham
et al., 2002). That this loss of local genetic diversity is cur-
rently ongoing in our smaller fragments was evidenced by

a positive relationship between all measures of genetic
diversity and forest fragment area. Although higher differ-
entiation among populations may increase genetic varia-

tion at a regional level (Slatkin, 1987; Hanski & Gilpin,
1991), this pattern was not observed in this study. For
example, unique alleles were almost only found in the lar-

ger forest fragments. A comparable result was found for
other ground beetles, albeit in other habitat types (Des-
ender, 2005; Drees et al., 2011) and for other insects
(Knutsen et al., 2000; Williams et al., 2003; Keyghobadi

et al., 2005) Whether or not this loss of genetic diversity
effectively decreases the adaptive potential of these smaller
populations remains, however, elusive as the use of neu-

tral genetic markers only gives an indirect estimate of the
genetic variation at loci under selection.
In Belgium,C. problematicuswas never recorded in forests

smaller than 30 hectares. Recent studies, however, suggested
that observed area effects are driven by edge effects (Ewers
et al., 2007), as smaller fragments undergo proportionally
stronger edge effects as compared to larger fragments (Mur-

cia, 1995; Didham et al., 1998a,b; Ewers & Didham, 2006;
Ewers et al., 2007; Fletcher et al., 2007). This can result in a
lower habitat quality of the smaller fragments and eventu-

ally to a lower genetic diversity. Disappearance of forest spe-
cialist species in fragmented patches is often explained by the
replacement of habitat specialists that are bound to the inte-

rior of the patch with species residing in the matrix habitat
(Halme & Niëmela, 1993; Lövei & Sunderland, 1996; Ås,
1999; Magura et al., 2001, 2010; Summerville & Crist, 2004;

Didham et al., 2007; Ewers et al., 2007; Hendrickx et al.,
2009). Ewers et al. (2007) found evidence of a strong interac-
tion between habitat area and edge effects, changing expo-
nentially with increasing fragment area. A reduced

population size enhances the risk of diversity loss due to drift
processes (Taylor, 2003; Hedrick, 2005) and generates popu-
lations that are genetically more distinct from each other,

thus with a higher differentiation rate (Williams et al., 2003;
Sumner et al., 2004; Noël et al., 2007; Biedrzycka &
Konopinski, 2008).

Although drift processes play a major role in determining
the genetic structure, at least in smaller populations, it is
challenging to quantify and infer the amount of gene flow
and migration among and within fragments. At the larger

geographical scale of Belgium, the clear isolation-by-dis-
tance relationship at first suggests an equilibrium between
drift and gene flow (Hutchison & Templeton, 1999). Yet, it

should be noted that a smaller genetic distance among
nearby samples remains hard to distinguish from a shared
evolutionary history experienced by neighbouring samples.

A more detailed visual inspection on a spatially more
restricted dataset of the Kolenwoud samples, sharing the

(a)

(b)

Fig. 4. Relationship between geographical (km) and genetic

[FST/(1 � FST)] distance for all sampled forest fragment popula-

tions of Carabus problematicus (a) and for Kolenwoud popula-

tions only (b). Open circles represent comparisons of populations

from the same forest fragment filled circles represent population

comparisons from different forest fragments.

Fig. 5. Relationship between population specific FST-values and

forest area in Carabus problematicus.
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same evolutionary history showed that differentiation
among populations originating from different fragments
was significant and considerably higher compared to
genetic differentiation of populations originating from the

same fragment, which was almost absent. This suggests that
the relationship between geographical and genetic distance
was primarily caused by the small genetic distance of a few

neighbouring samples, pointing towards migration events
being restricted to those fragments. This result was con-
firmed with the AMOVA analysis where a higher variance was

found among the different forest fragments compared to
the samples within the same forest fragment, even at rela-
tively large geographical distances.

The restricted dispersal of C. problematicus, is most
probably not simply due to its absence of flight capability
(Neumann, 1971; Rijnsdorp, 1980), but also largely based
on its stringent habitat requirements. Indeed, in a former

study conducted in the same area of Brussels, strict forest
specialists were never found outside forest fragments,
independent of the type of matrix and these species even

avoided edge habitats (Gaublomme et al., 2008). Brouat
et al. (2003) showed that non-forested areas were partial
barriers to gene flow for the forest specialist species

C. punctatoauratus and the forest species C. nemoralis.
The results of our population genetic study are also con-

sistent with previous community level studies where carabid
assemblages of smaller fragments were found to be signifi-

cantly less diverse in number of short winged species (Hend-
rickx et al., 2009). In accordance with these results,
stochastic effects most probably play an important role for

brachypterous species in smaller fragments and may ulti-
mately drive local populations towards extinction. Based on
the genetic results obtained from this study and the fact that

the species has not been observed outside the forest patches
(Gaublomme et al., 2008), it is unlikely that the high fre-
quency of empty patches are caused by metapopulation

dynamics occurring within this set of populations, wherein
local extinctions are compensated by recurrent recolonisa-
tions (Hanski, 1998). Insights into the genetic structure of
threatened populations, particularly those existing in frag-

mented habitats, are thus relevant for the management and
conservation. Our study suggests that an unsuitable matrix
poses a barrier to species with low dispersal capacity and

high habitat specificity. Establishing new forests would
therefore be of only limited use for specialist species, as they
may not colonise new patches readily. A more suitable man-

agement option, derived from our study results, might be to
preserve and enlarge existing forest fragments, while corri-
dors connecting remaining habitat fragments would only be
useful if they were substantial in area and would contain core

old growth habitat.

Acknowledgements

Our special thanks goes to Konjev Desender, who unfor-

tunately passed away during writing this manuscript. He
provided us with his passion and knowledge of carabid

beetles for which we are particularly grateful. We would
like to thank R. Holderegger for the many useful com-
ments on this manuscript as well as two anonymous refer-
ees who provided useful comments. We would also like to

thank A. Drumont and W. Fannes for their assistance in
the field and in the laboratory and V. Versteirt and
T. Adriaens for their help with drawing the maps as well

as graphs and comments on this manuscript. We also
thank the Belgian authorities for their permissions to sam-
ple the forests. This research was funded by a PhD grant

to EG of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-
Vlaanderen) and the Belgian Science Policy (BELSPO,

MO/36/014). This work was partly conducted within the
framework of the Interuniversity Attraction Poles pro-
gramma IAP (SPEEDY) – Belgian Science Policy.

References
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