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Historical Notes: Why the Quadratic Equation has
Only One Root (according to abbaco masters)

Albrecht Heeffer∗

E ver since the first treatise on algebra by al-Khwārizmı̄
(c. 800) it was recognised that certain quadratic problems
could lead to double solutions. Early Arabic algebra used

six canonical rules for solving problems, one for linear problems
and five for quadratic problems. These rules were numbered 1 to
6. In order to avoid negative terms, quadratic problems with three
terms were solved by three separate rules: (4) squares and roots
equal number, (5) squares and number equal roots and (6) roots
and number equal squares, corresponding with the modern-day
equations: ax2 + bx = c, ax2 + c = bx and bx + c = ax2. A
negative term within a polynomial expression was considered a
defect which had to be ‘restored’ [1] (in Arabic al-jabr     �����������ر 

 

 
 

from which the name ‘algebra’ is derived). Negative solutions to
quadratic problems were never considered, not to mention imagi-
nary roots. However, for the fifth case, squares and number equal
roots, al-Khwārizmı̄ describes a rule which can lead to two pos-
itive solutions. He gives the example of x2 + 21 = 10x which
leads to the solutions 3 and 7. Through three Latin translations
of al-Khwārizmı̄’s treatise in the twelfth and thirteenth centuries,
double solutions to certain type of quadratic problems became
known in Europe. Also Fibonacci comes to double solutions in
the fifteenth chapter of his Liber Abbaci (1228). However, during
the abbaco period, a tradition of mathematical practice between
1300 and 1500 in Northern Italy, the Provençe and Catalan re-
gions [2], double solutions to quadratic problems silently disap-
pear. For an answer to the curious question why this is the case
we have to look at the specific rhetorical way of solving algebraic
problems by abbaco masters.

There exist about 250 extant manuscripts of the abbaco pe-
riod, mostly preserved in Italian libraries. About one third of
them deal with algebra. All treatises on algebra follow a strict,
repetitive and almost formalised structure for solving problems.
After an enunciation of the problem (1), the solution always starts
with a hypothetical reformulation of the problem text by use of
an unknown, called a cosa or thing (2). Then, by manipulating
some polynomial expressions one arrives at an equation for which
a standard rule applies (3). This rule is applied to the problem
values, such as the extraction of the root for quadratic problems
(4). In an optional final step, the arrived solution is used in the
problem enunciation to verify that it leads to the given values (5).
Let us look at an example from the earliest treatise on algebra, on
a problem of dividing 10 into two parts given that their product
equals 20 [3, p. 313]:

1. And I want to say thus, make two parts of 10 for me, so that
when the larger is multiplied against the smaller, it shall
make 20. I ask how much each part will be.

2. Do thus, posit that the smaller part was a thing.
3. Hence the larger will be the remainder until 10, which will

be 10 less a thing. Next one shall multiply the smaller,
which is a thing, by the larger, which is 10 less a thing. And
we say that it will make 20. And therefore multiply a thing
times 10 less a thing. It makes 10 things less one censo,
which multiplication is equal to 20. Restore each part, that

is, you shall join one censo to each part, and you will get
that 10 things are equal to one censo and 20 numbers.

4. Bring it to one censo, and then halve the things, from which
5 results. Multiply by itself, it makes 25. Remove from it
the number, which is 20, 5 remains, of which seize the root,
which it is manifest that it does not have precisely. Hence
the thing is 5, that is, the halving less root of five. And we
posited that the part, that is, the smaller, was a thing. Hence
it is 5 less root of 5.

Figure 1: A similar problem from an early 15th century
manuscript solved in an early form of symbolism (Used with

permission, © British Library Board, Add 10363, f. 60r)

In modern symbolism the problem can thus be defined by two
conditions {

a+ b = 10
a.b = 20

in which the x of the quadratic equation takes the place of the
smaller number a. Then b = 10 − x or x(10 − x) = 20. This
leads to an equation of the fifth Arabic type: 10x = x2 + 20. In
abbaco algebra equations are always normalised by dividing by
the coefficient of the square term (‘bring it to one censo’). As
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can be seen, the values a and b correspond with the two roots of
this quadratic equation

x1, x2 =
10

2
±

√(
10

2

)2

− 20.

However, while the author knows that this equation can have two
positive solutions he only subtracts the square root. The reason
for this is that the cosa or x was chosen for the smaller number
(‘posit that the smaller part was a thing’). One particular value of
the problem is thus represented by the unknown. The unknown
can therefore not be considered an indeterminate value as in later
algebra; it is an abstract representation for one specific quantity of
the problem. Given that this recurring rhetoric structure, which is
so important for the abacus tradition, commences by posing one
specific value, it makes no sense to end up with two values for the
unknown. If one starts an argumentation that the cosa represents
the smaller part, one does not expect to end up with the value of

the larger part. The concept of an unknown in the abacus tradition
is so closely connected with a rhetorical structure that the choice
of the unknown excludes double solutions by definition. Through
the emergence of symbolism in the fifteenth century (as shown in
the middle section of Figure 1) algebra became liberated from
this rhetorical constraint and developed into a more abstract way
of dealing with equations.
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Baumgartner’s fall from Grace

I f only the helium balloon that carried Felix Baumgartner to
his drop-off point at an altitude of about 39,000m had been
named ‘Grace’, then perhaps the record-breaking news of his

fall would have provided some very colourful material indeed for
those with an interest in the promotion of mathematical and sci-
entific matters.

The news certainly reached the mathematical community and
the two very interesting letters from Alan Stevens CMath FIMA
and Ray Neve FIMA in response to the call from the Letters Ed-
itor, Graham Hoare CMath FIMA, aroused my interest. Both re-
sponses addressed the issue, but in different ways. The response
by the former adopted what I would call a smooth approach,
which involved the use of a computer package (Mathcad) to solve
coupled differential equations for input values that were assumed

to vary smoothly. The suggestion from the latter prompted me
to examine what I would term a more discrete approach wherein
the associated differential equations are solved explicitly before-
hand in closed form to facilitate the matching of results across a
discrete spectrum of input values. It is the purpose here to report
that this approach can also be driven to produce results that are
more or less similarly in accordance with data known from the
fall. This approach lends itself naturally to the process of manip-
ulations on a spreadsheet and serves to complement the approach
that was employed successfully in the first response.

The simple differential equations that govern the motion are
well known and are essentially the same as those employed ear-
lier, but the medium now is assumed to be stratified so that such
equations are repeated in each layer of the strata and output from
one layer provides input data to the next layer. There are two such
equations, a distance equation and a time equation.

Layer Dn Total D kn knDn Un Vn−1 Vn (1) Tn (2) Total T
n (m) (m) (m.s−1 ) (m.s−1 ) (m.s−1 ) (secs) (secs)

1 2800 2800.00 0.000001 0.003 3130.495 0.000 233.937 23.916 23.92
2 2800 5600.00 0.000002 0.006 2213.594 233.937 329.683 9.933 33.85
3 2800 8400.00 0.000030 0.084 571.548 329.683 377.359 7.905 41.75
4 2800 11200.00 0.000300 0.840 180.739 377.359 230.474 9.859 51.61
5 2800 14000.00 0.000450 1.260 147.573 230.474 155.883 15.664 67.28
6 2800 16800.00 0.000450 1.260 147.573 155.883 148.259 18.591 85.87
7 2800 19600.00 0.000650 1.820 122.788 148.259 123.524 21.605 107.47
8 2800 22400.00 0.000650 1.820 122.788 123.524 122.807 22.767 130.24
9 2800 25200.00 0.000800 2.240 110.680 122.807 110.825 24.703 154.94
10 2800 28000.00 0.000800 2.240 110.680 110.825 110.681 25.291 180.23
11 2800 30800.00 0.000850 2.380 107.375 110.681 107.404 25.911 206.14
12 2800 33600.00 0.000900 2.520 104.350 107.404 104.370 26.679 232.82
13 2800 36400.00 0.001000 2.800 98.995 104.370 99.015 28.015 260.84

Table 1: Spreadsheet of results
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