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In this paper we provide strong evidence that there is no ambiguity in the choice of the horizon
function underlying the Gribov-Zwanziger action. We show that there is only one correct possibility
which is determined by the requirement of multiplicative renormalizability. As a consequence, this
means that relations derived from other horizon functions cannot be given a consistent interpretation
in terms of a local and renormalizable quantum field theory. In addition, we also discuss that the
Kugo-Ojima functions u(p2) and w(p2) can only be defined after renormalization of the underlying
Green function(s).
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I. INTRODUCTION

In 1977, Gribov [1] showed, in a saddle point approx-
imation, that the restriction of the Euclidean functional
integral to the Gribov region Ω has far reaching implica-
tions for the infrared behavior of the ghost and the gluon
propagator. We recall that the region Ω is defined as
the set of field configurations fulfilling the Landau gauge
condition and for which the Faddeev-Popov operator,

Mab = −∂µ
(
∂µδ

ab + gfacbAc
µ

)
, (1)

is strictly positive. Therefore,

Ω ≡ {Aa
µ, ∂µA

a
µ = 0, Mab > 0} . (2)

Later on, in a series of works, Zwanziger [2–5] elaborated
on Gribov’s approximation, being able to extend the
previous results order by order at the quantum level.
This resulted in an improvement of the Faddeev-Popov
action which is now called the Gribov-Zwanziger action.
In particular, the Gribov-Zwanziger action leads to a
ghost propagator which is enhanced in the infrared
region, a feature which has been confirmed by explicit
two loop calculations in [6, 7], which constitute a non-
trivial check of the predictions of the Gribov-Zwanziger
formalism.

Recently, it has been claimed [8–10] that the Gribov-
Zwanziger action is plagued by a certain ambiguity.
Depending on the choice of the so called horizon function
[2], different results for the ghost propagator might be
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found, namely: an enhanced or a non-enhanced ghost,
according to [8–10]. Also, the recent lattice results seem
to point towards a non-enhanced ghost[42] [11–15]. A
natural conclusion would seem to be that one should take
the horizon function which leads to the non-enhanced
ghost. However, this does not agree with the original
results by Gribov and Zwanziger and therefore asks for
an explanation.

In this paper, we would like to clear the situation.
We shall show that there is no ambiguity in the choice
of the horizon function. The correct form of the horizon
function is the one originally constructed by Zwanziger
[4], and is clearly dictated by the renormalization
properties of the Gribov-Zwanziger action. We stress
that renormalization is of paramount importance for
defining meaningful Green functions. A dynamical
improvement of this Gribov-Zwanziger action, consistent
with the renormalization, consequently allows to obtain
the non-enhanced ghost, as discussed in previous work
[21, 22], giving results compatible with other analytical
approaches [18, 23–26], based on the Schwinger-Dyson
formalism, see also [27].

As a corollary of the present analysis, we shall elaborate
on the meaning of the Kugo-Ojima functions u(p2) and
w(p2) defined as follows [28, 29]

∫

ddxddyeip(x−y)
〈
(gfabcA

b
µc

c)(x)(gfakℓA
k
νc

ℓ)(y)
〉

1PI

= gµνu(p
2) +

pµpν

p2
w(p2) (3)

and their meaning at the level of renormalization, shed-
ding more light on certain claims in [8–10]. We shall also
discuss about several results obtained in the literature
[8–10], where the other choice of the horizon function
was investigated. As we shall show that this particular
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choice cannot be consistently introduced within a local
and renormalizable framework, it follows that its con-
nection with the ghost propagator’s behaviour, encoded
in the quantities u(p2) and w(p2), cannot be properly
defined at the quantum level.

The paper is organized as follows. In section II,
after giving a detailed account of the aforementioned
claims [8–10] about the existence of a possible ambi-
guity in the choice of the horizon term, we shall show
that there is only one possible horizon function which
is dictated by the renormalization properties of the
Gribov-Zwanziger action. This shall be extensively dis-
cussed in sections III and IV, thereby showing that there
is in fact no such ambiguity. In section V, we shall spend
some words on the Kugo-Ojima Green function (3) and
on an alternative one which, in contrast with expression
(3), turns out to be renormalizable and closely related
to the horizon function. We shall end this paper with
a discussion, by emphasizing our possible explanation
for the recent lattice results. In the Appendix A, we
have provided the complete proof of the renormalization
of the Gribov-Zwanziger action, needed for the analysis
performed in sections III-V, whereby we have also taken
the opportunity to correct a small mistake concerning
a minor statement in our previous works [22, 30, 31].
However, none of our results [21, 22, 31] are affected by
this.

II. SURVEY OF THE ISSUE CONCERNING A
POSSIBLE AMBIGUITY IN THE CHOICE OF

THE HORIZON FUNCTION

In [4], it has been shown that the restriction to the Gri-
bov region Ω can be established by adding the following
nonlocal term

Sh =

∫

ddxh(x) , (4)

to the standard Yang-Mills action.

SYM + Sgf , (5)

with SYM the classical Yang-Mills action and Sgf the Lan-
dau gauge fixing

SYM =
1

4

∫

ddxF a
µνF

a
µν ,

Sgf =

∫

ddx
(
ba∂µA

a
µ + ca∂µD

ab
µ cb

)
. (6)

The nonlocal expression h(x) is called the horizon func-
tion. In [8], it has been argued that there are in fact two
possible choices for the horizon functions, namely

h1(x) = γ4

∫

ddyg2fakcAk
µ(x)(M

−1)ab(x, y)f bℓcAℓ
µ(y) ,

(7)

or

h2(x) = γ4

∫

ddy Dac
µ (x)(M−1)ab(x, y)Dbc

µ (y) , (8)

with M the Faddeev-Popov operator

Mad = −∂µD
ad
µ , (9)

and

Dab
µ = ∂µδ

ab + gfakbAk
µ (10)

the covariant derivative. The parameter γ is not free,
but is fixed by a gap equation, known as the horizon
condition, which reads

〈h(x)〉 = d(N2 − 1) , (11)

with d the number of space-time dimensions. This condi-
tion ensures that the domain of integration in the Feyn-
man path integral has been restricted to field configura-
tions belonging to the Gribov horizon Ω. In this paper,
we shall motivate that there is only one possible hori-
zon function, the one which was originally intended by
Zwanziger[43] [4], given by

Sh = lim
θ→0

∫

ddxh3(x) = lim
θ→0

∫

ddx

∫

ddy

×
(
Dac

µ (x)γ2(x)
)
(M−1)ab(x, y)

(
Dbc

µ (y)γ2(y)
)
, (12)

whereby γ(z) is defined through

γ2(z) = eiθzγ2 . (13)

The limθ→0 operation corresponds to replacing the
space time dependent γ2(z) with the constant Gribov
parameter γ2. We observe that this horizon function
shares a great resemblance with h1(x) and h2(x). It
is worth to point out here that the limit, limθ→0, in
expression (12) is meant to be taken after an appropriate
localization of the horizon function, a point which we
shall outline in detail in what follows.

Let us try to explain here how it is possible that
some doubts have arisen about which horizon function
is the correct one. Firstly, one can easily see that
setting γ(x) in h3(x) immediately equal to a constant
parameter, γ(x) ≡ γ, which agrees with switching the
limit limθ→0 and the integration signs, we obtain the
horizon function h1(x). One can therefore appreciate
that the difference between h1(x) and h3(x) is very
subtle. Comparing h2(x) with h3(x), it is apparent that
the space time dependent function γ2(y) has been pulled
out of the horizon function, an operation which is not
completely justified, due to the nonlocal character of
the kernel (M−1)ab(x, y). A second source of a possible
ambiguity can also arise when we try to localize the
horizon function h3(x). Indeed, we can localize the
action SYM + Sgf + Sh by introducing some extra fields.
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Looking at the following standard formula for Gaussian
integration for bosonic fields

C detA−1 exp

∫

ddxddy Ja
ϕ(x)(A

−1)ab(x, y)Jb
ϕ(y)

=

∫

[dϕ][dϕ] exp
[∫

ddxddy − ϕa(x)Aab(x, y)ϕb(y)

+

∫

d4x (ϕaJa
ϕ(x) + ϕa(x)Ja

ϕ(x))
]

, (14)

we observe that we can get rid of the inverse of the
Faddeev-Popov operator in h3(x) by introducing new
fields. For every index i, defined by . . .ai = . . .acµ , we
can write for h3(x)

exp

(

−

∫

ddxh3(x)

)

=

d(N2+1)
∏

i=1

det(−M)

∫

[dϕ][dϕ]

exp

(

lim
θ→0

[∫

ddx

∫

ddyϕa
i (x)M

ab(x, y)ϕb
i (y)

+

∫

ddx
(
Da

i (x)γ
2(x)

)
ϕa
i (x) +

(
Da

i (x)γ
2(x)

)
ϕa
i (x)

]
)

,

(15)

whereby we have introduced a pair of complex conju-
gate bosonic fields

(
ϕac
µ , ϕac

µ

)
= (ϕa

i , ϕ
a
i ). We can then

also lift the determinants det(−M) into the exponential
by introducing a pair of Grassmann fields

(
ωac
µ , ωac

µ

)
=

(ωa
i , ω

a
i ). Making use of the standard Gaussian formula

for Grassmann variables

C (detA) exp

(

−

∫

ddxddy Ja
ω(x)(A

−1)ab(x, y)Jb
ω(y)

)

=

∫

[dω][dω] exp

[∫

ddxddy ωa(x)Aabωb(y)

+

∫

d4x (Ja
ω(x)ω

a(x) + ωa(x)Ja
ω(x))

]

, (16)

whereby we set the sources Ja
ω and Jb

ω equal to zero, we
obtain

exp

(

−

∫

ddxh3(x)

)

=

d(N2+1)
∏

i=1

∫

[dω][dω][dϕ][dϕ]

exp
[∫

ddx

∫

ddy
(
ϕa
i (x)M

ab(x, y)ϕb
i (y)

−ωa
i (x)M

ab(x, y)ωb
i (y)

)

+ lim
θ→0

∫

ddx
(
Da

i (x)γ
2(x)

)
ϕa
i (x)

+
(
Da

i (x)γ
2(x)

)
ϕa
i (x)

]

.

The new localized action thus becomes

SGZ = S′
0 + S′

γ , (17)

with

S′
0 = SYM+Sgf+

∫

ddx
(
ϕac
µ ∂νD

ab
ν ϕbc

µ − ωac
µ ∂νD

ab
ν ωbc

µ

)
,

(18)
and with

S′
γ = − lim

θ→0

∫

ddx
[(
Dac

µ (x)γ2(x)
)
ϕac
µ (x)

+
(
Dac

µ (x)γ2(x)
)
ϕac
µ (x)

]

= lim
θ→0

∫

ddx γ2(x)Dca
µ (ϕac

µ (x) + ϕac
µ (x))

= γ2

∫

ddx Dca
µ (ϕac

µ (x) + ϕac
µ (x)) . (19)

Notice that, as already remarked, the limit θ → 0, in
equation (19) has been performed after localization. As
one can see from (13), taking this limit is equivalent with
setting γ2(x) equal to the constant γ2. As at the level
of the action, total derivatives are always neglected, S′

γ

becomes

S′
γ = γ2

∫

ddxgfabcAa
µ

(
ϕbc
µ + ϕbc

µ

)
. (20)

From this expression we can easily understand why
certain doubts have arisen. Starting from the first
horizon function h1(x) given in (7) and undertaking the
same procedure, we would end up with exactly the same
action S′

γ . This can be understood as we have neglected
the total derivatives. In conclusion, although the local
actions derived from h1(x) and h3(x) are the same, at
the nonlocal level they are clearly different, which also
follows from [8]. This is important when one is doing
manipulations at the level of the nonlocal action as has
been done in [8].

Let us now translate the nonlocal horizon condi-
tion (11) into a local version [4]. The local action SGZ

and the nonlocal action SYM + Sgf + Sh are related as
follows,

∫

[dA][db][dc][dc]e−(SYM+Sgf+Sh)

=

∫

[dA][db][dc][dc][dϕ][dϕ][dω][dω]e−SGZ .

Next, we take the partial derivative of both sides with
respect to γ2 so we obtain,

−2γ2 〈h〉 = 〈gfabcAa
µ(ϕ

bc
µ + ϕbc

µ )〉 , (21)

for both horizon functions h1(x) and h3(x). We recall
that 〈∂µϕ

aa〉 = 0 and 〈∂µϕ
aa〉 = 0, meaning that both

horizon functions h1 and h3 give rise to the same local
horizon condition. Using these expressions and assuming
that γ 6= 0, we can rewrite the horizon condition (11)

〈gfabcAa
µ(ϕ

bc
µ + ϕbc

µ )〉+ 2γ2d(N2 − 1) = 0 . (22)



4

By adding the vacuum term

∫

ddx γ4d(N2 − 1) (23)

to S′
γ , we can write the horizon condition as

∂Γ

∂γ2
= 0 , (24)

with Γ the quantum action defined as

e−Γ =

∫

[dΦ]e−SGZ , (25)

where
∫
[dΦ] stands for the integration over all the fields.

For the Gribov-Zwanziger action to be renormaliz-
able, it necessary to perform a shift over the field ωa

i ,
see [4],

ωa
i (x) → ωa

i (x)

+

∫

ddz(M−1)ad(x, z)gfdkℓ∂µ[D
ke
µ ce(z)ϕℓ(z)] , (26)

so that the action becomes

SGZ = S0 + Sγ , (27)

whereby S′
0 has been replaced by S0

S0 = S′
0 +

∫

ddx
(
−gfabc∂µω

a
iD

bd
µ cdϕc

i

)
, (28)

and the vacuum term is now included in Sγ

Sγ = S′
γ +

∫

ddx γ4d(N2 − 1) . (29)

The renormalizability of SGZ has been proven in the Ap-
pendix A. We would like to stress that this is far from
being trivial, especially since no new parameter is needed
to take into account the divergences of the vacuum term
we introduced by hand in equation (23). In addition, the
algebraic formalism employed in the Appendix A also
gives a more clean argument why the extra term appear-
ing in equation (28) is necessary, without the need of
performing the nonlocal shift (26).

III. THE COMPOSITE OPERATORS, PART I

We shall provide a strong argument which illustrates
that only the horizon function h3(x) possesses a clear
meaning at the quantum level. For this, we first need to
demonstrate the following equality

〈
f(A)(M−1)ab(x, y)

〉
=
〈
f(A)ca(x)cb(y)

〉

= −
1

Nc

〈
f(A)ωa

i (x)ω
b
i(y)

〉
,(30)

where f(A) stands for an arbitrary quantity depending
on the gauge fields Aa

µ, and Nc is the number of colors.
Let us start with
〈
f(A)ca(x)cb(y)

〉
=

∫

[dΦ]f(A)ca(x)cb(y)e−SGZ .(31)

We can rewrite this expression by adding corresponding
sources for the ghost and the gluon fields,
〈
f(A)ca(x)cb(y)

〉

= f

(
δ

δJA

)
δ

δJb
c (y)

δ

δJa
c (x)

∫

[dΦ]e−SGZ+Ssources

∣
∣
∣
∣
sources=0

,

(32)

with

Ssources

=

∫

ddx

{
[
Ja
ωi

Ja
c

]
[
ωa
i

ca

]

+
[
ωa
i ca

]
[
J
a

ωi

J
a

c

]

+ JAA

}

,

(33)

and with the full expression for SGZ given in (27). We
can perform the integration over the ghosts c, c, ω, ω as
this is just a Gaussian integration. The relevant piece of
the action is given by

SGZ =

∫

ddx
[
ωa
i ca

]
[
−Mab gfakℓ∂µ(ϕ

ℓ
iD

kb
µ )

0 Mab

]

︸ ︷︷ ︸

Kab

[
ωc
i

cd

]

+. . . .

(34)
Making use of the formula (16) gives

〈
f(A)ca(x)cb(y)

〉
f

(
δ

δJA

)
δ

δJb
c (y)

δ

δJa
c (x)

=

∫

[dΦ] exp

{

[
Ja
ωi

Ja
c

]
(K−1)ab

[

J
b

ωi

J
b

c

]

+ . . .

}∣
∣
∣
∣
∣
sources=0

.

(35)

The matrix (K−1)ab can be computed as

(K−1)ab =

[
−(M−1)ab χ

0 (M−1)ab

]

, (36)

whereby χ is some function of the relevant fields. From
(32), we now see that

〈
f(A)ca(x)cb(y)

〉
=

∫

[dΦ]f(A)(M−1)abe−SGZ ,(37)

while

〈
f(A)ca(x)cb(y)

〉
= −

1

Nc
f

(
δ

δJA

)
δ

δJb
ωi
(y)

δ

δJa
ωi
(x)

∫

[dΦ] exp

{

[
Ja
ωi

Ja
c

]
(K−1)ab

[

J
b

ωi

J
b

c

]

+ . . .

}∣
∣
∣
∣
∣
sources=0

= −
1

Nc

〈
f(A)ωa

i (x)ω
b
i (y)

〉
,
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which proves relation (30).

A. The horizon function h3

We shall now prove that the expectation value 〈h3(x)〉,
see equation (12), is renormalizable. We can apply the
formula (30) to the horizon condition 〈h3(x)〉, yielding

∫

ddx 〈h3(x)〉 = lim
θ→0

∫

ddx

∫

ddy

〈(
Dac

µ (x)γ2(x)
)
(M−1)ab(x, y)

(
Dbc

µ (y)γ2(y)
)〉

= − lim
θ→0

∫

ddx

∫

ddy

〈(
Dac

µ (x)γ2(x)
)
ωa
i (x)ω

b
i(y)

(
Dbc

µ (y)γ2(y)
)〉

= −
1

Nc
γ4

∫

ddx

∫

ddy 〈(Dµωi)
a(x)(Dµωi)

a(y)〉 .

(38)

In order to check whether this horizon term h3(x) is well
defined, the correlator 〈(Dµωi)

a(x)(Dµωi)
a(y)〉 includ-

ing the composite operators (Dµωi)
a(x) and (Dµωi)

a(y)
should be renormalizable. In fact, this turns out to be
the case, as shown in the Appendix A, where a detailed
account of the algebraic renormalization of the Gribov-
Zwanziger action has been provided. Moreover, we have
also proven that the action ΣGZ (see equation (A5)) is
renormalizable. From this, one can immediately obtain
the correlator 〈(Dµωi)

a(x)(Dµωi)
a(y)〉 by deriving the

action ΣGZ (A5) with respect to the sources[44] Na
i (x)

and Ua
i (y),

∫

[dΦ]
δ

δNa
i (x)

δ

δUa
i (y)

e−ΣGZ

∣
∣
∣
∣
all sources = 0

=

∫

[dΦ]
[
−gfabc(Dµc)

b(x)ϕc
i (x) + (Dωi)

a(x)
]

(Dωi)
a(y)e−ΣGZ

=
〈
−gfabc(Dµc)

b(x)ϕc
i (x)(Dωi)

a(y)
〉

+ 〈(Dωi)
a(x)(Dωi)

a(y)〉 . (39)

We shall now show that the first correlator in expression
(39) vanishes,

〈
(gfabc(Dµc)

bϕc
i )(x)(Dωi)

a(y)
〉

= 0 . (40)

In fact, equation (40) belongs to a more general class of
Green functions which are all zero, namely

〈Θ(x)Λ(y)〉 = 0 , (41)

with Θ(x) a function of fields not containing the field ω,
while Λ(y) is a function containing ω. We can show that
all these Green functions are zero by using an elementary
diagrammatical argument. It is impossible to construct
any diagram which has an ω leg starting from a space
time point y which has to be connected in some way to
a space time point x, where no ω leg is present. Indeed,

every ω requires an ω leg to propagate, ω in his turn
shall always produce another ω leg in all vertices as
can be seen from the action (27). Moreover, the field ω
needs again another ω leg to propagate. Therefore, an
ω leg is required in the space time point y to close the
diagram. As a consequence, all Green functions of the
type of equation (41) are zero.

Hence, we conclude that the Green function
〈(Dωi)

a(x)(Dωi)
a(y)〉 is multiplicatively renormalizable

as follows from

〈(Dωi)
a(x)(Dωi)

a(y)〉0 = Z−1
U Z−1

N 〈(Dωi)
a(x)(Dωi)

a(y)〉 ,
(42)

whereby

Z−1
U Z−1

N = Z
1/2
A Zg = Z−1

c , (43)

see expression (A41).

B. The horizon function h1

We shall now prove that the first horizon function (7)
implies a horizon condition which is not multiplicatively
renormalizable. In an analogous fashion as in the previ-
ous subsection, we can write

∫

ddx 〈h1(x)〉 =

γ4

∫

ddx

∫

ddy
〈
g2fakcAk

µ(x)(M
−1)ab(x, y)f bℓcAℓ

µ(y)
〉

= −
1

Nc
γ4

∫

ddx

∫

ddy
〈
(gfakcAk

µω
a
i )(x)(gf

bℓcAℓ
µω

b
i)(y)

〉
.

(44)

We can demonstrate that the composite operators
gfakcAk

µω
a
i and gf bℓcAℓ

µω
b
i are not renormalizable. This

is due to the fact that, at the quantum level, those com-
posite operators will unavoidably mix with the operators
∂µω

a
i , ∂µω

a
i , which have the same quantum numbers.

For this, we need to consider the operators ∂µω
a
i and

gfakbA
k
µω

b
i as separate operators, each coupled to their

own source, instead of Dab
µ ωb

i being coupled to the single

source Uai
µ , and similarly for ∂µω

a
i and gfakbA

kωb
i . In

Appendix B, we have given an alternative proof of the
renormalizability of the Gribov-Zwanziger action, where
we have coupled the following sources to the following
operators, see equation (B2),

∂µω
a
i → Uai

µ ,

gfakbAk
µω

b
i − gfabcD

bd
µ cdϕc

i → U ′ai
µ ,

∂µω
a
i → −Nai

µ ,

gfakbAk
µω

b
i → −N ′ai

µ . (45)

In (53), we have found that the sources U and U ′ mix,
as well as N mixes with N ′. Taking the inverse of this
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matrix yields

[
U
U ′

]

=

[

Z
−1/2
A a1
0 Z1

g

] [
U0

U ′
0

]

,

[
N
N ′

]

=

[
Z−1
g a1

0 Z
1/2
A

] [
N0

N ′
0

]

. (46)

We recall that insertions of an operator can be obtained
by taking derivatives of the generating functional
Zc(U,U ′, N,N ′) w.r.t. to the appropriate source. For
example,

(gfakbAk
µω

b
i)0 ∼

δZc((U,U ′, N,N ′)

δN ′
0

=
δN

δN ′
0

δZc(U,U ′, N,N ′)

δN
+

δN ′

δN ′
0

δZc(U,U ′, N,N ′)

δN

so that

(gfakbAk
µω

b
i)0 = a1(∂µω

a
i ) + Z

1/2
A (gfakbAk

µω
b
i) .(47)

We can do the same for the other operator

(gfakbAk
µω

b
i − gfabcD

bd
µ cdϕc

i )0

= a1(∂µω
a
i ) + Zg(gf

akbAk
µω

b
i − gfabcD

bd
µ cdϕc

i ) .(48)

Taking the partial derivatives of Σ2
GZ given in equation

(B1) w.r.t. N ′a
i (x) and U ′a

i (y), we find

∫

[dΦ]
δ

δN ′a
i (x)

δ

δU ′a
i (y)

e−ΣGZ

∣
∣
∣
∣
all sources = 0

=

∫

[dΦ]
(
gfakbAk

µω
b
i − gfabcD

bd
µ cdϕc

i

)
(x)

×(gfaℓcAℓ
µω

c
i )(y)e

−ΣGZ

=
〈
(gfakbAk

µω
b
i )(x)(gf

aℓcAℓ
µω

c
i )(y)

〉

−
〈
(gfabcD

bd
µ cdϕc

i )(x)(gf
aℓcAℓ

µω
c
i )(y)

〉
.

The correlator
〈
(gfabcD

bd
µ cdϕc

i )(x)(gf
akbAk

µω
b
i)(y)

〉
also

belongs to the class (41) and is therefore equal to zero.
However, the remaining Green function
〈
(gfakbAk

µω
b
i )(x)(gf

aℓcAℓ
µω

c
i )(y)

〉
is no longer multiplica-

tively renormalizable. Indeed, due to the mixing we have
found, the bare correlator can be written as follows

〈
(gfakbAk

µω
b
i )(x)(gf

aℓcAℓ
µω

c
i )(y)

〉

0

= a1Z
1/2
A

〈
(∂µω

a
i )(x)(gf

aℓcAℓ
µω

c
i )(y)

〉

+a1Zg

〈
(gfakbAk

µω
b
i )(x)(∂µω

a
i )(y)

〉

+ZgZ
1/2
A

〈
(gfakbAk

µω
b
i )(x)(gf

aℓcAℓ
µω

c
i)(y)

〉
. (49)

This is a strong argument why one should not rely on
this first horizon h1 function. When renormalizing this
Green function, the “missing” terms stemming from the
covariant derivative re-enter again.

IV. THE COMPOSITE OPERATORS, PART II

A. The horizon function h3

Let us now look at the composite operators which are
involved in the horizon term h3 after having performed
the necessary localization. In particular, we are inter-
ested in the composite operators appearing in expres-
sion (19) before setting γ(x) equal to a constant, namely
Dbc

µ ϕcb
µ and Dbc

µ ϕbc
µ . If the horizon function is well de-

fined, we expect these composite operators to be renor-
malizable. We can check this again from Appendix A.
Firstly, from (A5) we can deduce

(Dab
µ ϕb

i)0 = Z−1
M (Dab

µ ϕb
i ) = Z1/2

g Z
1/4
A (Dab

µ ϕb
i) . (50)

Secondly, we can do something analogous for Dab
µ ϕb

i . We
see that this operator is a linear combination of two
renormalizable composite operators, namely the compos-
ite operator coupled to V ai

µ , i.e. −Dab
µ ϕb

i + gfabcD
bd
µ cdωc

i

and to Rai
µ , i.e. −gfabcD

bd
µ cdωc

i . Luckily, the two compos-
ite operators have the same renormalization constant, as
without this property, the linear combination would not
be renormalizable. Therefore,

(Dab
µ ϕb

i )0

= −(−Dab
µ ϕb

i + gfabcD
bd
µ cdωc

i)0 − (−gfabcD
bd
µ cdωc

i )0

= Z−1
V (Dab

µ ϕb
i) , (51)

whereby Z−1
V = Z

1/2
g Z

1/4
A as can be found in (A41). In

conclusion, both composite operators Dbc
µ ϕcb

µ and Dbc
µ ϕbc

µ

are renormalizable.

B. The horizon function h1

When taking the limit θ(x) → 0, we can drop the total
derivatives. However, the remaining composite operators
gfakbA

kϕb
i and gfakbA

kϕbi are not multiplicative renor-
malizable. We can prove this in an analogous fashion as
in the previous section. In Appendix B, we have con-
sidered the operators ∂µϕ

a
i and gfakbA

k
µϕ

b
i as separate

operators instead of being coupled only to one source,
and similarly for ∂µϕ

a
i and gfakbA

kϕb
i . To that purpose,

in the Appendix B, we have coupled the following sources
to the following operators, see equation (B2):

∂µϕ
a
i → Mai

µ ,

gfakbAk
µϕ

b
i → M ′ai

µ ,

∂µϕ
a
i → V ai

µ ,

(gfakbA
k
µϕ

b
i − gfabcD

bd
µ cdωc

i ) → V ′ai
µ , (52)

and we have reworked out the complete algebraic renor-
malization in this alternative setting. In (53), we have
found that the sources M and M ′ mix, and also V mixes
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with V ′. Taking the inverse of this matrix yields

[
M
M ′

]

=

[

Z
−1/2
g Z

−1/4
A a1

0 Z
1/2
g Z

1/4
A

] [
M0

M ′
0

]

,

[
V
V ′

]

=

[

Z
−1/2
g Z

−1/4
A a1

0 Z
1/2
g Z

1/4
A

] [
V0

V ′
0

]

. (53)

As in the previous section we have that

(gfakbAk
µϕ

b
i )0 = a1(∂µϕ

a
i ) + Z−1/2

g Z
−1/4
A (gfakbAk

µϕ
b
i ) .
(54)

We can do the same for the other operator. Only some
care has to be taken as the source V ′ai

µ couples to a sum of

two operators (gfakbA
k
µϕ

b
i−gfabcD

bd
µ cdωc

i). We therefore

have to subtract the operator coupled to the source Rai
µ ,

namely

(gfakbA
k
µϕ

b
i)0

= (gfakbA
k
µϕ

b
i − gfabcD

bd
µ cdωc

i )0 − (−gfabcD
bd
µ cdωc

i )0

= a1(∂µϕ
a
i ) + Z−1/2

g Z
−1/4
A (gfakbAk

µϕ
b
i − gfabcD

bd
µ cdωc

i )

−Z1/2
g Z

1/4
A (−gfabcD

bd
µ cdωc

i )

= a1(∂µϕ
a
i ) + Z−1/2

g Z
−1/4
A (gfakbAk

µϕ
b
i) . (55)

We can thus conclude that the operators gfakbA
kϕb

i and
gfakbA

kϕb
i are not multiplicatively renormalizable and

mix with the operators ∂µϕ
a
i and ∂µϕ

a
i , respectively.

Therefore, one should keep in mind that the limit θ → 0
has to be taken as the final step, and that it can only be
taken at the local level. Furthermore, the mixing we have
found tells us that one should always leave the covariant
derivative of a field “in one piece”. As a consequence,
much care has to be taken at the nonlocal level when de-
riving all kinds of results, as we shall now explain in the
next section.

V. THE KUGO-OJIMA GREEN FUNCTION(S)
AND THE LINK WITH THE HORIZON

CONDITION

As explained in [33], there exists a close link between
the Gribov-Zwanziger formalism and the Kugo-Ojima
analysis of gauge theories. An important role in the
Kugo-Ojima work is played by the parameter u(0), which
is the zero momentum limit of the function u(p2), which
can be extracted from

∫

ddxeipx 〈Dad
µ cd(x)Dbe

ν ce(0)〉

= δab
[(

δµν −
pµpν

p2

)

u(p2)−
pµpν

p2

]

. (56)

In order to have a finite quantity u(p2), the previous
Green function should of course be renormalizable. In
the case of pure Yang-Mills theories, one can indeed prove

this, but this was achieved by also using anti-BRST in-
variance. We refer to the literature [34, 35] for details.
In the presence of the restriction to the Gribov region
Ω, we even lack the concept of the anti-BRST symmetry
as far as we know. We shall therefore present a slightly
different argument here. Using the correspondence (30),
we may also write

−
1

Nc

∫

ddxeipx 〈Dad
µ ωds

λ (x)Dbe
ν ωes

λ (0)〉

= δab
[(

δµν −
pµpν

p2

)

u(p2)−
pµpν

p2

]

, (57)

from which the renormalizability immediately follows, see
equation (42). If one wishes to introduce bare quantities,
one can write down

−
1

Nc

∫

ddxeipx 〈Dad
µ ωds

λ (x)Dbe
ν ωes

λ (0)〉
0

= δab
[(

δµν −
pµpν

p2

)

u(p2)−
pµpν

p2

]

0

⇔ −
Z−1
c

Nc

∫

ddxeipx 〈Dad
µ ωds

λ (x)Dbe
ν ωes

λ (0)〉

= Z−1
c δab

[(

δµν −
pµpν

p2

)

u(p2)−
pµpν

p2

]

0

,(58)

but this is just a formal relation. It nevertheless
teaches us that one cannot simply speak about the
(multiplicative) renormalization of u(p2) in terms of a
bare Kugo-Ojima function u0(p

2).

As a corollary, using the identification (38), we de-
rive the following correspondence between the horizon
function and the Kugo-Ojima parameter u(0),

−〈h3〉 = (N2 − 1) [(d− 1)u(0)− 1] , (59)

which hereby rigourously proves the relation which was
one of the starting points of the paper [33].

In [29], it was shown that one can parametrize the
ghost propagator, defined as follows

〈
ca(−p)cb(p)

〉
= δabG(p2) , (60)

in terms of[45]

G(p2) =
1

p2(1 + u(p2) + w(p2))
. (61)

This relation was also discussed in [4, 8–10, 26, 36]. Us-
ing this relation, one can again derive a formal correspon-
dence between bare and finite quantities,

[1 + u(p2) + w(p2)]0 = Z−1
c [1 + u(p2) + w(p2)] . (62)

but as already noticed in [36], it does not allow to
separately speak about (1 + u(p2))0 and w0(p

2).
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In [8], it was claimed that the function w(p2) en-
joyed the property of being not-renormalized. We are
unable to understand this claim, especially since we do
not know what the corresponding bare quantity w0(p

2)
would be. Let us explain. Due to expression (30), we
can rewrite (3) as

−

∫
ddx

Nc
ddyeip(x−y)

〈
(gfabcA

b
µω

c
i )(x)(gfakℓA

k
νω

ℓ
i)(y)

〉

1PI

= gµνu(p
2) +

pµpν

p2
w(p2) . (63)

We see that this correlator is, up to the Lorentz structure,
equal to the one investigated in equation (49). Also this
correlator is not multiplicatively renormalizable, as we
find

〈
(gfakbAk

µω
b
i )(x)(gf

aℓcAℓ
νω

c
i)(y)

〉

0

= a1Z
1/2
A

〈
(∂µω

a
i )(x)(gf

aℓcAℓ
νω

c
i )(y)

〉

+a1Zg

〈
(gfakbAk

µω
b
i )(x)(∂νω

a
i )(y)

〉

+ZgZ
1/2
A

〈
(gfakbAk

µω
b
i )(x)(gf

aℓcAℓ
νω

c
i )(y)

〉
.(64)

It is therefore of no use to define u(p2) and w(p2) at the
bare level, as we cannot introduce their corresponding
bare counterparts. We can conclude that the definition
of u(p2) and w(p2) should be considered as a definition
at the level of renormalized Green functions, in which
case the parametrizations (56) and (61) make perfect
sense. Due to the mixing, we do not see how we can
maintain the definition (63) at the renormalized level.
In our opinion, one must first define u(p2) through
equation (56), which then allows to extract a value for
w(p2) from the ghost propagator via the relation (61).

We end by commenting on the results of [8–10]
which gave a connection between the horizon function
h1 given in equation (7) and the functions u(p2) and
w(p2). Using the nonlocal expression (7), one manages
to write down a quite complicated connection. However,
as we have clearly shown in this work, it is impossible
to treat h1 at the quantum level, as quantum effects
make necessary the presence of the derivative operators,
see the previous section. At the end, only the horizon
function h3 given in equation (12) is meaningful, and as
such only the connection (59) survives. In contrast with
the outcome of[46] [8], which turns out to be ill-defined,
imposing the horizon condition (11) would lead to the
infrared enhanced ghost as follows from the results (59),
(61), and using the fact that w(0) = 0. This has been
confirmed explicitly in [6] to two loop order, and it has
also been found using a Schwinger-Dyson approach in
[26].

The question that remains then is whether the
ghost propagator is necessarily infrared enhanced when
enforcing the horizon condition? Indeed, starting from
the standard Gribov-Zwanziger action, one shall find

an enhanced ghost propagator. As already indicated in
the introduction, this does not seem to be in agreement
with recent lattice results. However, after one takes into
account the nontrivial dynamics of the Gribov-Zwanziger
action by including the possibility of having nonvan-
ishing condensates, one is able to find different results
[21, 22, 38]. By including for example the dimension
2 condensate 〈ϕa

i ϕ
a
i − ωa

i ω
a
i 〉, a non-enhanced ghost

propagator is found within the so called refined Gribov-
Zwanziger (RGZ) formalism [21, 22, 38]. Simultaneously,
the same condensate also leads to a gluon propagator
that does not vanish at zero momentum. Moreover, we
mention that the form of the gluon propagator stemming
from the refined Gribov-Zwanziger framework enables us
to fit the lattice data in a very reasonable way [38]. We
notice that the works [8–10] are unable to say anything
about the gluon sector.

VI. CONCLUSION

The main conclusion of this paper is that the renor-
malizability requirement of the Green functions of a
quantum field theory is of paramount importance. It
dictates whether the Green function one is considering
makes sense or not. Once having obtained a finite,
renormalized Green function, one can address the
question of how the renormalized Green function can be
parametrized in terms of certain quantities. It is of no
use, or even incorrect, to discuss the renormalization of
such parameters directly.

An important ingredient to discuss and interpret
the underlying renormalizable quantum field theory is
the issue of locality. If one wishes to study nonlocal
theories, a prerequisite appears to be that one can write
down a local version of the theory, to which the usual
tools of local quantum field theory apply [39]. Once
having established the necessary features of a quantum
field theory at the local level, one can try to go back and
see what the corresponding nonlocal version looks like.

In particular in this paper we have first shown that
the Gribov-Zwanziger action is unambiguous. There is
only one possible horizon function at the nonlocal level,
which is given by

∫

ddxh(x) ≡ lim
θ→0

∫

ddxh3(x) = lim
θ→0

∫

ddy

(
Dac

µ (x)γ2(x)
)
(M−1)ab(x, y)(Dbc

µ (y)γ2(y)) . (65)

with γ2(z) = eiθzγ2. We have motivated in two different
ways that this is the only correct horizon function to
start any discussion from. Our analysis was based on
the renormalization properties of the corresponding local
version of the operators involved.

In addition, we have also elaborated on the defini-
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tions of the Kugo-Ojima parameters u(p2) and w(p2),
and we have argued that it only makes sense to talk
about these parameters at the level of renormalized
Green functions. We reanalyzed the connection between
u(p2) and the horizon function, and motivated that the
relation (59) is the only correct one, in contrast with
other results made available recently [8]. We believe
that any relation derived from other horizon functions
should be looked upon with great caution [8].
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Estado do Rio de Janeiro, the SR2-UERJ and the Coor-
denação de Aperfeiçoamento de Pessoal de Nı́vel Superior
(CAPES) are gratefully acknowledged for financial sup-
port. D. Dudal and N. Vandersickel wish to thank the
UERJ for its hospitality during the final stages of this
work.

Appendix A: Renormalization of the
Gribov-Zwanziger action, option 1

In this section we shall repeat the proof of the renor-
malizability of the Gribov-Zwanziger action. We shall
also have the opportunity to correct a minor mistake
present in previous works [22, 30, 31]. This is the rea-
son why we shall repeat the full algebraic renormaliza-
tion in all details. In particular, our current analysis
also presents a slightly improved version of the original
renormalization proof [4, 40]. However, let us stress that
none of our results are affected by this minor error, like
e.g. those presented in [22, 31].

1. The starting action and the BRST

We start with the following action,

SGZ = S0 + Sγ , (A1)

with

S0 = SYM + Sgf +

∫

ddx
(
ϕa
i ∂µ

(
Dab

µ ϕb
i

)

−ωa
i ∂µ

(
Dab

µ ωb
i

)
− gfabc∂µω

a
iD

bd
µ cdϕc

i

)
,

Sγ = −γ2g

∫

ddx
(
fabcAa

µϕ
bc
µ

+fabcAa
µϕ

bc
µ +

d

g

(
N2 − 1

)
γ2

)

.(A2)

First, notice that we have simplified the notation of the
additional fields

(
ϕac
µ , ϕac

µ , ωac
µ , ωac

µ

)
in S0 as S0 displays a

symmetry with respect to the composite index i = (µ, c).
Therefore, we have set

(
ϕac
µ , ϕac

µ , ωac
µ , ωac

µ

)
= (ϕa

i , ϕ
a
i , ω

a
i , ω

a
i ) . (A3)

The conventional BRST variations of all the fields are
given by,

sAa
µ = − (Dµc)

a
, sca =

1

2
gfabccbcc ,

sca = ba , sba = 0 ,

sϕa
i = ωa

i , sωa
i = 0 ,

sωa
i = ϕa

i , sϕa
i = 0 . (A4)

One can check that the BRST symmetry is softly broken
for the Gribov-Zwanziger action [2, 22],

sSGZ = s(S0 + Sγ) = s(Sγ)

= gγ2

∫

ddxfabc
(
Aa

µω
bc
µ −

(
Dam

µ cm
) (

ϕbc
µ + ϕbc

µ

))
.

We notice that the breaking is due to the γ dependent
term, Sγ .

In order to discuss the renormalizability of SGZ,
we should treat the breaking as a composite operator
to be introduced into the action by means of a suitable
set of external sources. This procedure can be done in
a BRST invariant way, by embedding SGZ into a larger
action, namely

ΣGZ = SYM + Sgf + S0 + Ss , (A5)

whereby

Ss = s

∫

ddx
(
−Uai

µ Dab
µ ϕb

i − V ai
µ Dab

µ ωb
i − Uai

µ V ai
µ

+T ai
µ gfabcD

bd
µ cdωc

i

)

=

∫

ddx
(
−Mai

µ Dab
µ ϕb

i − gfabcUai
µ Dbd

µ cdϕc
i

+Uai
µ Dab

µ ωb
i −Nai

µ Dab
µ ωb

i − V ai
µ Dab

µ ϕb
i

+gfabcV ai
µ Dbd

µ cdωc
i −Mai

µ V ai
µ + Uai

µ Nai
µ

+Rai
µ gfabcDbd

µ cdωc
i + T ai

µ gfabcD
bd
µ cdϕc

i

)
. (A6)

We have introduced 3 new doublets (Uai
µ , Mai

µ ), (V ai
µ ,

Nai
µ ) and (T ai

µ , Rai
µ ) with the following BRST transfor-

mations, and

sUai
µ = Mai

µ , sMai
µ = 0 ,

sV ai
µ = Nai

µ , sNai
µ = 0 ,

sT ai
µ = Rai

µ , sRai
µ = 0 . (A7)

We have therefore restored the broken BRST at the ex-
pense of introducing new sources. However, we do not
want to alter our original theory (18). Therefore, at the
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TABLE I: Quantum numbers of the fields.

Aa
µ ca ca ba ϕa

i ϕa
i ωa

i ωa
i

dimension 1 0 2 2 1 1 1 1

ghost number 0 1 −1 0 0 0 1 −1

Qf -charge 0 0 0 0 1 −1 1 −1

end, we have to set the sources equal to the following
values:

Uai
µ

∣
∣
phys

= Nai
µ

∣
∣
phys

= T ai
µ

∣
∣
phys

= 0 ,

Mab
µν

∣
∣
phys

= V ab
µν

∣
∣
phys

= − Rab
µν

∣
∣
phys

= γ2δabδµν .(A8)

It is exactly here that we have committed a mistake. In
previous papers, we have forgotten to introduce the dou-
blet (T ai

µ , Rai
µ ), and therefore, the intended physical limit

did not exactly reproduce the original action (A1). In the
original article [4], these two sources were also not intro-
duced. When taking the physical limit, an extra term
was generated, which was then removed by doing a (non-
local) shift in the ω field. Here, we have circumvented
this unnecessary shift by introducing the doublet (T ai

µ ,

Rai
µ ).

2. The Ward identities

Following the procedure of algebraic renormalization
[41], we should try to find all possible Ward identi-
ties. Before doing this, in order to be able to write the
Slavnov-Taylor identity, we first have to couple all non-
linear BRST transformations to a new source. Looking
at (A4), we see that only Aa

µ and ca transform nonlin-
early under the BRST s. Therefore, we add the following
term to the action ΣGZ,

Sext =

∫

d4x

(

−Ka
µ (Dµc)

a
+

1

2
gLafabccbcc

)

,(A9)

with Ka
µ and La two new sources which shall be put to

zero at the end,

Ka
µ

∣
∣
phys

= La|phys = 0 . (A10)

These sources are invariant under the BRST transforma-
tion,

sKa
µ = 0 , sLa = 0 . (A11)

The new action is therefore given by

Σ′
GZ = ΣGZ + Sext . (A12)

The next step is now to find all the Ward identities
obeyed by the action Σ′

GZ. We have enlisted all the iden-
tities below:

TABLE II: Quantum numbers of the sources.

Uai
µ Mai

µ Nai
µ V ai

µ Rai
µ T ai

µ Ka
µ La

2 2 2 2 2 2 3 4

−1 0 1 0 0 -1 −1 −2

−1 −1 1 1 1 1 0 0

1. The Slavnov-Taylor identity is given by

S(Σ′
GZ) = 0 , (A13)

with

S(Σ′
GZ) =

∫

d4x

(
δΣ′

GZ

δKa
µ

δΣ′
GZ

δAa
µ

+
δΣ′

GZ

δLa

δΣ′
GZ

δca

+ ba
δΣ′

GZ

δca
+ ϕa

i

δΣ′
GZ

δωa
i

+ ωa
i

δΣ′
GZ

δϕa
i

+Mai
µ

δΣ′
GZ

δUai
µ

+Nai
µ

δΣ′
GZ

δV ai
µ

+Rai
µ

δΣ′
GZ

δT ai
µ

)

.

2. The U(f) invariance is given by

UijΣ
′
GZ = 0 , (A14)

Uij =

∫

ddx
(

ϕa
i

δ

δϕa
j

− ϕa
j

δ

δϕa
i

+ ωa
i

δ

δωa
j

− ωa
j

δ

δωa
i

−Maj
µ

δ

δMai
µ

− Uaj
µ

δ

δUai
µ

+Nai
µ

δ

δN
aj
µ

+ V ai
µ

δ

δV
aj
µ

+Raj
µ

δ

δRai
µ

+ T aj
µ

δ

δT ai
µ

)

.

By means of the diagonal operator Qf = Uii, the
i-valued fields and sources turn out to possess an
additional quantum number. One can find all quan-
tum numbers in Table I and Table II.

3. The Landau gauge condition reads

δΣ′
GZ

δba
= ∂µA

a
µ . (A15)

4. The antighost equation yields

δΣ′
GZ

δca
+ ∂µ

δΣ′
GZ

δKa
µ

= 0 . (A16)

5. The linearly broken local constraints yield

δΣ′
GZ

δϕa
i

+ ∂µ
δΣ′

GZ

δMai
µ

+ gfdbaT
di
µ

δΣ′
GZ

δKbi
µ

= gfabcAb
µV

ci
µ ,

δΣ′
GZ

δωa
i

+ ∂µ
δΣ′

GZ

δNai
µ

− gfabcωb
i

δΣ′
GZ

δbc
= gfabcAb

µU
ci
µ

.(A17)
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6. The exact Rij symmetry reads

RijΣ
′
GZ = 0 , (A18)

with

Rij =

∫

d4x

(

ϕa
i

δ

δωa
j

− ωa
j

δ

δϕa
i

+V ai
µ

δ

δN
aj
µ

− Uaj
µ

δ

δMai
µ

+ T ai
µ

δ

δR
aj
µ

)

. (A19)

7. The integrated Ward identity is given by

∫

d4x

(

ca
δΣ′

GZ

δωa
i

+ ωa
i

δΣ′
GZ

δca
+ Uai

µ

δΣ′
GZ

δKa
µ

)

= 0 . (A20)

Here we should add that due to the presence of the
sources T ai

µ and Rai
µ , the ghost Ward identity [41] is bro-

ken, and we are unable to restore this identity. For the
standard Yang-Mills theory, this identity has the follow-
ing form

Ga(SYM + Sgf) = ∆a
cl , (A21)

with

Ga =

∫

ddx

(
δ

δca
+ gfabccb

δ

δbc

)

, (A22)

and

∆a
cl = g

∫

d4xfabc
(
Kb

µA
c
µ − Lbcc

)
, (A23)

a linear breaking. However, it shall turn out that this is
not a problem for the renormalization procedure being
undertaken.

3. The counterterm

The next step in the algebraic renormalization is to
translate all these symmetries into constraints on the
counterterm Σc

GZ, which is an integrated polynomial in
the fields and sources of dimension four and with ghost
number zero. The classical action Σ′

GZ changes under
quantum corrections according to

Σ′
GZ → Σ′

GZ + hΣc
GZ , (A24)

whereby h is the perturbation parameter. Demanding
that the perturbed action (Σ′

GZ+hΣc
GZ) fulfills the same

set of Ward identities obeyed by Σ′
GZ, see [41], it follows

that the counterterm Σc
GZ is constrained by the following

identities.

1. The linearized Slavnov-Taylor identity yields

BΣc
GZ = 0 , (A25)

with B the nilpotent linearized Slavnov-Taylor op-
erator,

B =

∫

d4x
(δΣ′

GZ

δKa
µ

δ

δAa
µ

+
δΣ′

GZ

δAa
µ

δ

δKa
µ

+
δΣ′

GZ

δLa

δ

δca

+
δΣ′

GZ

δca
δ

δLa
+ ba

δ

δca
+ ϕa

i

δ

δωa
i

+ ωa
i

δ

δϕa
i

+Mai
µ

δ

δUai
µ

+Nai
µ

δ

δV ai
µ

+Rai
µ

δ

δT ai
µ

)

, (A26)

and

B2 = 0 . (A27)

2. The U(f) invariance reads

UijΣ
c
GZ = 0 . (A28)

3. The Landau gauge condition

δΣc
GZ

δba
= 0 . (A29)

4. The antighost equation

δΣc
GZ

δca
+ ∂µ

δΣc
GZ

δKa
µ

= 0 . (A30)

5. The linearly broken local constraints yield

(
δ

δϕa
i

+ ∂µ
δ

δMai
µ

+ ∂µ
δ

δMai
µ

+ gfabcT
bi
µ

δ

δKci
µ

)

Σc
GZ

= 0 , (A31)

(
δ

δωa
i

+ ∂µ
δ

δNai
µ

− gfabcωb
i

δ

δbc

)

Σc
GZ

= 0 . (A32)

6. The exact Rij symmetry reads

RijΣ
c
GZ = 0 , (A33)

with Rij given in (A19).

7. Finally, the integrated Ward identity becomes

∫

d4x

(

ca
δΣc

GZ

δωa
i

+ ωa
i

δΣc
GZ

δca
+ Uai

µ

δΣc
GZ

δKa
µ

)

= 0 . (A34)

Now we can write down the most general counterterm
Σc

GZ of d = 4, which obeys the linearized Slavnov-Taylor
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identity, has ghost number zero, and vanishing Qf num-
ber,

Σc
GZ = a0SYM+B

∫

ddx

{[

a1K
a
µA

a
µ+a2∂µc

aAa
µ+a3L

aca

+ a4U
ai
µ ∂µϕ

a
i + a5 V

ai
µ ∂µω

a
i + a6 ω

a
i ∂

2ϕa
i + a7 Uai

µ V ai
µ

+ a8 gf
abcUai

µ ϕb
iA

c
µ + a9 gf

abcV ai
µ ωb

iA
c
µ

+ a10 gf
abcωa

iA
c
µ ∂µϕ

b
i + a11 gf

abcωa
i (∂µA

c
µ)ϕ

b
i

+ b1R
ai
µ Uai

µ + b2T
ai
µ Mai

µ + b3gfabcR
ai
µ ωb

iA
c
µ

+ b4gfabcT
ai
µ ϕb

iA
c
µ + b5R

ai
µ ∂µω

a
i + b6T

ai
µ ∂µϕ

a
i

]}

,

(A35)

with a0, . . . , a11 arbitrary parameters. Now we can un-
leash the constraints on the counterterm. Firstly, al-
though the the ghost Ward identity (A21) is broken, we
know that this is not so in the standard Yang-Mills case.
Therefore, we can already set a3 = 0 as this term is
not allowed in the counterterm of the standard Yang-
Mills action, which is a special case of the action we are
studying[47]. Secondly, due to the Landau gauge condi-
tion (3.) and the antighost equation (4.) we find,

a1 = a2 . (A36)

Next, the linearly broken constraints (5.) give the fol-
lowing relations

a1 = −a8 = −a9 = a10 = a11 = −b3 = b4 ,

a4 = a5 = −a6 = a7 , b1 = b2 = b5 = b6 = 0 . (A37)

The Rij symmetry does not give any new information,
while the integrated Ward identity relates the two previ-
ous strings of parameters:

a1 = −a8 = −a9 = a10 = a11 = −b3 = b4

≡ a3 = a4 = −a5 = a6 . (A38)

Taking all this information together, we obtain the fol-
lowing counterterm

Σc = a0SYM + a1

∫

ddx

(

Aa
µ

δSYM

δAa
µ

+ ∂µc
a∂µc

a

+Ka
µ∂µc

a +Mai
µ ∂µϕ

a
i −Uai

µ ∂µω
a
i +Nai

µ ∂µω
a
i + V ai

µ ∂µϕ
a
i

+ ∂µϕ
a
i ∂µϕ

a
i + ∂µω

a
i ∂µω

a
i + V ai

µ Mai
µ − Uai

µ Nai
µ

− gfabcU
ai
µ ϕb

i∂µc
c − gfabcV

ai
µ ωb

i∂µc
c − gfabc∂µω

a
i ϕ

b
i∂µc

c

− gfabcR
ai
µ ∂µc

bωc
i + gfabcT

ai
µ ∂µc

bϕc
i

)

.

4. The renormalization factors

As a final step, we have to show that the countert-
erm (B3) can be reabsorbed by means of a multiplicative

renormalization of the fields and sources. If we try to ab-
sorb the counterterm into the original action, we easily
find,

Zg = 1− h
a0

2
,

Z
1/2
A = 1 + h

(a0

2
+ a1

)

, (A39)

and

Z
1/2
c = Z1/2

c = Z
−1/4
A Z−1/2

g = 1− h
a1

2
,

Zb = Z−1
A ,

ZK = Z1/2
c ,

ZL = Z
1/2
A . (A40)

The results (A39) are already known from the renormal-
ization of the original Yang-Mills action in the Landau
gauge. Further, we also obtain

Z1/2
ϕ = Z

1/2
ϕ = Z−1/2

g Z
−1/4
A = 1− h

a1

2
,

Z1/2
ω = Z

−1/2
A ,

Z
1/2
ω = Z−1

g ,

ZM = 1−
a1

2
= Z−1/2

g Z
−1/4
A ,

ZN = Z
−1/2
A ,

ZU = 1 + h
a0

2
= Z−1

g ,

ZV = 1− h
a1

2
= Z−1/2

g Z
−1/4
A ,

ZT = 1 + h
a0

2
= Z−1

g ,

ZR = 1− h
a1

2
= Z−1/2

g Z
−1/4
A . (A41)

This concludes the proof of the renormalizability of the
action (A1) which is the physical limit of Σ′

GZ.

Appendix B: Renormalization of the
Gribov-Zwanziger action, option 2

We can also write down an alternative proof of the
renormalization of the Gribov-Zwanziger action. Look-
ing at (20), we are tempted to treat gfakbA

k
µϕ

bc
ν and

gfakbA
k
µϕ

bc
ν as the relevant composite operators. How-

ever, we shall see that these operators mix with ∂µϕ
ac
ν

and ∂µϕ
ac
ν , respectively. A similar observation holds

for gfakbA
k
µω

bc
ν and gfakbA

k
µω

bc
ν . Such conclusion is ev-

idently not unexpected, as we have learnt already from
Appendix A that e.g.
Dab

µ ϕbc
ν = ∂µϕ

ab
ν + gfakbA

k
µϕ

bc
ν is multiplicatively renor-

malizable.
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1. The starting action and the BRST

Looking at (A5), we may try to also start with another
possible BRST invariant action,

Σ
(2)
GZ = SYM + Sgf + S0 + S(2)

s + Sext , (B1)

whereby we have immediately added Sext still given by
(A9) and with

S(2)
s = s

∫

ddx
(
−Uai

µ ∂µϕ
a
i − U ′ai

µ gfakbA
k
µϕ

b
i − V ai

µ ∂µω
a
i

−V ′ai
µ gfakbA

k
µω

b
i − U ′ai

µ V ′ai
µ + T ai

µ gfabcD
bd
µ cdωc

i

)

=

∫

ddx
(
−Mai

µ ∂µϕ
a
i + Uai

µ ∂µω
a
i −M ′ai

µ gfakbAk
µϕ

b
i

−gfabcU ′ai
µ Dbd

µ cdϕc
i + U ′ai

µ gfakbA
k
µω

b
i −Nai

µ ∂µω
a
i

+V ai
µ ∂µϕ

a
i −N ′ai

µ gfakbAk
µω

bi − gfabcV ′ai
µ Dbd

µ cdωc
i

+V ′ai
µ gfakbA

k
µϕ

b
i +Rai

µ gfabcDbd
µ cdωc

i

+T ai
µ gfabcD

bd
µ cdϕc

i

)
. (B2)

In contrast with the previous section, we have now intro-
duced 5 doublets, (Uai

µ , Mai
µ ), (U ′ai

µ , M ′ai
µ ), (V ai

µ , Nai
µ ),

(V ′ai
µ , N ′ai

µ ) and (T ai
µ , Rai

µ ) with the following BRST
transformations,

sUai
µ = Mai

µ , sMai
µ = 0 ,

sU ′ai
µ = M ′ai

µ , sM ′ai
µ = 0 ,

sV ai
µ = Nai

µ , sNai
µ = 0 ,

sV ′ai
µ = N ′ai

µ , sN ′ai
µ = 0 ,

sT ai
µ = Rai

µ , sRai
µ = 0 . (B3)

In order to go back from S
(2)
s to Ss from Appendix A

(see equation (A6)), we just need to set U = U ′, V = V ′,
N = N ′ and M = M ′. Eventually, it appears natural to
give the primed sources the same physical value of their
corresponding unprimed counterparts, see equation (A8).

2. The Ward identities

Just as in Appendix A, we enlist all the Ward identities

obeyed by Σ
(2)
GZ, which of course look very similar.

1. The Slavnov-Taylor identity is now given by

S(Σ
(2)
GZ) = 0 , (B4)

with

S(Σ
(2)
GZ) =

∫

d4x
(δΣ

(2)
GZ

δKa
µ

δΣ
(2)
GZ

δAa
µ

+
δΣ

(2)
GZ

δLa

δΣ
(2)
GZ

δca

+ba
δΣ

(2)
GZ

δca
+ ϕa

i

δΣ
(2)
GZ

δωa
i

+ ωa
i

δΣ
(2)
GZ

δϕa
i

+Rai
µ

δΣ
(2)
GZ

δT ai
µ

+Mai
µ

δΣ
(2)
GZ

δUai
µ

+Nai
µ

δΣ
(2)
GZ

δV ai
µ

+M ′ai
µ

δΣ
(2)
GZ

δU ′ai
µ

+N ′ai
µ

δΣ
(2)
GZ

δV ′ai
µ

)

.

2. The U(f) invariance is easily adapted

UijΣ
(2)
GZ = 0 , (B5)

Uij =

∫

ddx
(

ϕa
i

δ

δϕa
j

− ϕa
j

δ

δϕa
i

+ ωa
i

δ

δωa
j

− ωa
j

δ

δωa
i

−Maj
µ

δ

δMai
µ

−M ′aj
µ

δ

δM ′ai
µ

− Uaj
µ

δ

δUai
µ

− U ′aj
µ

δ

δU ′ai
µ

+Nai
µ

δ

δN
aj
µ

+N ′ai
µ

δ

δN
′aj
µ

+ V ai
µ

δ

δV
aj
µ

+ V ′ai
µ

δ

δV
′aj
µ

+Raj
µ

δ

δRai
µ

+ T aj
µ

δ

δT ai
µ

)

.

We have again that the i-valued fields and sources
turn out to possess an additional quantum number.
All the quantum number are still the same as in
Table I and Table II, whereby we keep in mind
that the quantum numbers of the primed sources
are obviously the same as those of the unprimed
ones.

3. The Landau gauge condition does not change,

δΣ
(2)
GZ

δba
= ∂µA

a
µ . (B6)

4. The same goes for the antighost equation,

δΣ
(2)
GZ

δca
+ ∂µ

δΣ
(2)
GZ

δKa
µ

= 0 . (B7)

5. The linearly broken local constraints now become

δΣ
(2)
GZ

δϕa
i

+ ∂µ
δΣ

(2)
GZ

δMai
µ

+ ∂µ
δΣ

(2)
GZ

δM ′ai
µ

+ gfdbaT
di
µ

δΣ
(2)
GZ

δKbi
µ

= gfabcAb
µV

′ci
µ , (B8)

δΣ
(2)
GZ

δωa
i

+ ∂µ
δΣ

(2)
GZ

δNai
µ

+ ∂µ
δΣ

(2)
GZ

δN ′ai
µ

− gfabcωbi δΣ
(2)
GZ

δbc
= gfabcAb

µU
′ci
µ . (B9)

We also find some extra linearly broken constraints

δΣ
(2)
GZ

δMai
µ

= ∂µϕ
ai ,

δΣ
(2)
GZ

δNai
µ

= ∂µω
ai ,

δΣ
(2)
GZ

δUai
µ

= ∂µω
ai ,

δΣ
(2)
GZ

δV ai
µ

= ∂µϕ
ai . (B10)
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6. The exact Rij symmetry can be adapted to

RijΣ
(2)
GZ = 0 , (B11)

with

Rij =

∫

d4x
(

ϕa
i

δ

δωa
j

− ωa
j

δ

δϕa
i

+ V ai
µ

δ

δNai
µ

+V ′ai
µ

δ

δN
′aj
µ

− Uaj
µ

δ

δMai
µ

− U ′ai
µ

δ

δM ′ai
µ

+ T ai
µ

δ

δR
aj
µ

)

.

(B12)

7. The integratedWard identity is now linearly broken
as follows

∫

d4x

(

ca
δΣ

(2)
GZ

δωa
i

+ ωa
i

δΣ
(2)
GZ

δca
+ U ′ai

µ

δΣ
(2)
GZ

δKa
µ

)

= Uai
µ ∂µc

a − U ′ai
µ ∂µc

a . (B13)

3. The counterterm

We again translate all the identities into identities for

the counterterm Σ
(2)c
GZ

1. The linearized Slavnov-Taylor identity:

B(2)Σ
(2)c
GZ = 0 , (B14)

with B(2) the nilpotent linearized Slavnov-Taylor
operator,

B(2) =

∫

d4x
(δΣ

(2)
GZ

δKa
µ

δ

δAa
µ

+
δΣ

(2)
GZ

δAa
µ

δ

δKa
µ

+
δΣ

(2)
GZ

δLa

δ

δca

+
δΣ

(2)
GZ

δca
δ

δLa
+ ba

δ

δca
+ ϕa

i

δ

δωa
i

+ ωa
i

δ

δϕa
i

+Mai
µ

δ

δUai
µ

+Nai
µ

δ

δV ai
µ

+M ′ai
µ

δ

δU ′ai
µ

+N ′ai
µ

δ

δV ′ai
µ

+Rai
µ

δ

δT ai
µ

)

.

2. The U(f) invariance

UijΣ
(2)c
GZ = 0 . (B15)

3. The Landau gauge condition

δΣ
(2)c
GZ

δba
= 0 . (B16)

4. The antighost equation

δΣ
(2)c
GZ

δca
+ ∂µ

δΣ
(2)c
GZ

δKa
µ

= 0 . (B17)

5. The linearly broken local constraints

(
δ

δϕa
i

+ ∂µ
δ

δMai
µ

+ ∂µ
δ

δM ′ai
µ

+ gfabcT
bi
µ

δ

δKci
µ

)

×Σ
(2)c
GZ = 0 ,

(
δ

δωa
i

+ ∂µ
δ

δNai
µ

++∂µ
δ

δN ′ai
µ

− gfabcωb
i

δ

δbc

)

×Σ
(2)c
GZ = 0 , (B18)

and

δΣ
(2)c
GZ

δMai
µ

= 0 ,
δΣ

(2)c
GZ

δNai
µ

= 0 ,

δΣ
(2)c
GZ

δUai
µ

= 0 ,
δΣ

(2)c
GZ

δV ai
µ

= 0 . (B19)

6. The exact Rij symmetry

RijΣ
(2)c
GZ = 0 . (B20)

7. Finally, the integrated Ward identity becomes

∫

d4x

(

ca
δΣ

(2)c
GZ

δωa
i

+ ωa
i

δΣ
(2)c
GZ

δca
+ U ′ai

µ

δΣ
(2)c
GZ

δKa
µ

)

= 0 .

(B21)

Now we can write down the most general counterterm

Σ
(2)c
GZ of d = 4, which obeys the linearized Slavnov-Taylor

identity, has ghost number zero, and vanishing Qf num-
ber,

Σ
(2)c
GZ = a0SYM+B(2)

∫

ddx

{[

a1K
a
µA

a
µ+a2∂µc

aAa
µ+a3L

aca

+ a4U
ai
µ ∂µϕ

a
i + a5V

ai
µ ∂µω

a
i + a6 ω

a
i ∂

2ϕa
i + a7U

ai
µ V ai

µ

+ a8gf
abcUai

µ ϕb
iA

c
µ + a9gf

abcV ai
µ ωb

iA
c
µ

+ a10gf
abcωa

iA
c
µ ∂µϕ

b
i + a11 gf

abcωa
i (∂µA

c
µ)ϕ

b
i

+ b1R
ai
µ Uai

µ + b2T
ai
µ Mai

µ + b3gfabcR
ai
µ ωb

iA
c
µ

+ b4gfabcT
ai
µ ϕb

iA
c
µ+ b5R

ai
µ ∂ωa

i + b6T
ai
µ ∂ϕa

i + a′4U
′ai
µ ∂µϕ

a
i

+ a′5 V
′ai
µ ∂µω

a
i + a′6ω

′a
i ∂2ϕa

i

+ a′7 U
′ai
µ V ′ai

µ + a′8 gf
abcU ′ai

µ ϕb
iA

c
µ + a′9 gf

abcV ′ai
µ ωb

iA
c
µ

+ a′10 gf
abcωa

iA
c
µ ∂µϕ

b
i + a′11 gf

abcωa
i (∂µA

c
µ)ϕ

b
i

]}

.

Notice that the part in a and b parameters is exactly the
same as in the previous Appendix A, see equation (A35).
We shall now impose all the constraints induced by the
Ward identities. We keep in mind that the argument con-
cerning the broken ghost Ward identity still holds. Also,
the 4 constraints (B19) invoke the counterterm to be in-
dependent of the sources U ′, V ′, M ′ and N ′. Ultimately,
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we find

Σ
(2)c
GZ = a0SYM + a1

∫

ddx

(

Aa
µ

δSYM

δAa
µ

+ ∂µc
a∂µc

a

+Ka
µ∂µc

a +M ′ai
µ ∂µϕ

a
i − U ′ai

µ ∂µω
a
i +N ′ai

µ ∂µω
a
i

+V ′ai
µ ∂µϕ

ai
µ + ∂µϕ

a
i ∂µϕ

a
i + ∂µω

a
i ∂µω

a
i + V ′ai

µ M ′ai
µ

−U ′ai
µ N ′ai

µ − gfabcU
′ia
µ ϕb

i∂µc
c − gfabcV

′ia
µ ωb

i∂µc
c

−gfabc∂µω
aϕb

i∂µc
c − gfabcR

ai
µ ∂µc

bωc + gfabcT
ai
µ ∂µc

bϕc

)

.

(B22)

We notice the close similarity between this counterterm
and the one in expression (B3).

4. The renormalization factors

The last step is to find all the renormalization factors.
Due to the close similarity with the output of Appendix
A, many Z factors will be the same. One can indeed

check that equations (A39) and (A40) still hold, and also

the Z-factors of Z
1/2
ϕ , Z

1/2
ϕ , Z

1/2
ω , Z

1/2
ω , ZT and ZR do

not change. Only the renormalization of the sources U ,
V , M , N is different as they mix with respectively U ′,
V ′, M ′, N ′. Indeed, we find that

[

M0

M ′
0

]

=

[

Z
1/2
g Z

1/4
A −a1

0 Z
−1/2
g Z

−1/4
A

][

M

M ′

]

,

[

U0

U ′
0

]

=

[

Z
1/2
A −a1

0 Z−1
g

] [

U

U ′

]

,

[

N0

N ′
0

]

=

[

Z1
g −a1

0 Z
−1/2
A

] [

N

N ′

]

,

[

V0

V ′
0

]

=

[

Z
1/2
g Z

1/4
A −a1

0 Z
−1/2
g Z

−1/4
A

][

V

V ′

]

, (B23)

which again proves the renormalizability of the Gribov-
Zwanziger action. The consequences of this mixing shall
be explained in sections II.B and III.B.
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