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Impulsive Radiation from a Horizontal Electric
Dipole above an Imperfectly Conducting Surface

Mark C. H. Lam

Abstract—Solutions for the impulsive wave fields generated paper represents the conductive material’s propertiedsat i
by a horizontal electric dipole situated above an imperfectly surface via the local plane wave relation, and simplifies the
conducting surface are derived. The space-time expressionsrfo two-media wave problem to a half-space problem. The case

the reflected wave fields open the door to analysis of their - o .
properties in the far-, intermediate-, and near-field regions, and of a horizonal electric dipole (HED) directed parallel t@th

can serve as benchmark for numerical methods employed to impedance boundary is investigated, which completes the
wave simulation with applications in antenna design and radio problem of an arbitrarily oriented electric dipole abovdanar
communication. The EM properties of the conductive material conducting surface since the vertical electric dipole (YED
are represented by a surface impedance and translated to the problem has been investigated in [27].

wave motion via employing the local plane wave relation as the - . . . .
boundary condition. At the core of tackling the impedance bound- The objective of this paper is to derive solutions for the

ary value problem is the derivation of three space-time reflected- impulsive EM wave fields after reflection against a planar
wave Green's functions. In contrast to the vertical electric dipée impedance wall. It turns out that solving this boundary ealu
problem, a coupling term is present in the transform-domain problem requires the derivation of three space-time reftect
wave solutions, and hinders direct application of the extended \yave Green’s functions (RWGFs). To this end, the Cagniard-
Cagniard-de Hoop method. A partial-fraction decomposition of de Hoop (CdH) method, e.g. [28], [29], [30], is applied to-fur
this coupling term is the key to furnishing the transformation e . v = ! ! ' ) ;
back to the time domain. Numerical results illustrate time traces nishing the analytical transformation back to the time dioma
and spectra of the measurable reflected electric field strength. In contrast to the VED problem studied in [27], a coupling
Index Terms—Impedance boundary condition, imperfectly fcerm is part of _the Laplace-domain_wave figld solution_s and
conducting surface, impulsive wave reflection, horizontal electe it has a denominatoAy Az, which hinders direct analytical
dipole. transformation back to the time domain with the aid of the
extended CdH method. A partial-fraction decomposition of
this coupling term is presented, which is the key to solving
the impedance boundary value problem corresponding to the
The impedance boundary formulation, [1], [2], is usefublementary half-space configuration.
in EM applications, where wave simulation is performed in This paper develops an analytical benchmark for numerical
geometrically complex-structured configurations chamaoéd methods employed to EM wave simulation with applications in
by imperfectly conductive materials. The approximating-re antenna design and radio communication. lllustrative misme
resentation of conducting bodies via the surface impedarnza results present time traces and spectra of the measurabl
boundary condition (IBC), e.g. [3], [4], [5], [6], is conviemt reflected electric field strength, which can serve as bendhma
to avoid a costly fine discretization in unstructured mest grresults.
modelling methods, such as the finite-element method, e.g.
[7] This applies also to the FDTD method, [8], which in Il. PROBLEM FORMULATION
conjunction with the IBC, e.g. [9], [10], has found widespie
applications in the modelling of thin conductive structjre
e.g. [11], [12], [13], [14]. Applications are found in anten

fr:;nlrjlatr:%n, tmrhcrg-s”tirrllp deS|gr1,7e.gl.8[15{,9 [16], and origch and magnetic permeabilify; . The wave speed is consequently
erconnect modelling, e.g. [17], [18], [19]. c1 = (e1p1) /2. Figure 1 shows the configuration including

_tln Ehs pgper, the _|mpulf5|v?| radlat(ljontf_rom and_electrlc dhapg e nomenclature. The space-time wave fieldsDin satisfy
situated above an imperfectly conducting medium, e.g.,[ ae Maxwell’s equations

is studied in the time domain. To this end, the canonic

configuration consisting of a planar boundary separating a —curl H+¢,0E = —J¢, Q)

homogeneous, isotropic and non-conducting medium from a curl E + 1,0, H “Ke, @)

homogeneous, isotropic and imperfectly conducting medium

is investigated, e.g. [21]. Studies of perfect dielectriedia in which

can be found in e.g. [22], [23], and transient problems are e Toe s .

found in e.g. [24], [25], [26]. The employed IBC in this {J% KO, 8) = {77, 0} ()d(r — ro)ia, )
are the volume density of externally applied electric and

mgﬂi‘sg”f{t 'ﬁgﬂ"ezchjgéﬁixrz‘s'tf:eir 4%‘32"155[’)“Axé§:( X0 XXX oordNgNetic current density, respectively. The symiolstands

Brabant, The Netherlands (e-rjnail: mérk.lam.2068@g%nail.c%m). , (%OI’ the source signaturé(r) is the Kronecker delta function

operative atr, andr, = (0,0, ) denotes the position of the

I. INTRODUCTION

The EM wave motion is studied in the homogeneous half-
spaceD; = {—oc0 < x < 00,—00 < Yy < 00,0 < z < o0},
which is characterized by the constant electric permistivi
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point source, with, > 0 the source height. The source startgitially at rest, so the transform rulg; — s holds. The com-
to act att = 0 and prior to this time instant the configuratiorplex slowness representation f6E, H}(r, s) are introduced

is at rest. as
A A 52 o0
Py {E, H}(I‘, S) = m /a:ioo da
i o0

D [~ (BN B.zs) explislan + fp)las, @
| =—00

i | €1, M in which i stands for the imaginary unit, ardand 3 denote

7z the wave slowness in the andy directions, respectively. The
Zy O ‘>M €9, [l2, 02 transform rules), — —isa and9d, — —isf apply.
1
Ts D, [1l. SPACE-TIME STRUCTURE OF THE REFLECTED

ELECTROMAGNETIC WAVE FIELDS
Fig. 1. Elementary configuration consisting of a planar faez0D separat- 19 2 211/2 .
ing two media. Half-spac®; is homogeneous, nonconducting and charac- Let 2y (r) - [x +y +(Z+h) ] /2 > 0 denote the distance

terized by the wave impedancg , whereas half-spac®s is homogeneous, between image source and receiver, di€f (r) = D;(r)/c;

conducting and characterized by the wave impedatigeWith the surface the grrival time of the reflected wave. Let
impedance boundary condition, the electric propertie®in called secon

medium, are represented @D. The symbolrs denotes the dipole source {Q{ff7 géef7 géef (r, t) _
position,r! the image source position, afhdthe source height. Furthermore, P ¢ ¢ of
Ry is the distance between source and receiver, Badis the distance {Giﬁ G GE } (r,t)H[t — T (r)], (9)

between image source and receiver. , . .
denote reflected-wave Green'’s functions, in whi€fy) stands

Let V1 = (e1/p1)*/? and Z = (1/e1)'/? denote the for the Heaviside unit step function. With the aid of Egs.)(61
wave admittance and wave impedanceIof, respectively. (2) in Appendix A and the slowness-domain counterparts of
Furthermore, let,,(¢) and Z,(t) stand for the specific wave gqs_ (68)-(73) in Appendix B, the space-time reflected wave
admittance and the specific wave impedanceDgf respec- fie|q expressions corresponding to the incidence of a hotito

tively. Specific means normalized with respect to its counte|ectric dipole generated spherical wave are found as
part in D;. Then, the EM properties of the planar boundary

are modelled via the linear, time-invariant, local admita  E*°(r,t) = —u;'02J(t) ¥ vi(r, 1) (10)
relation, . O
) —& ‘](t) * axgée (I‘,t)
HT(%%OJ) = _Y2(t) * [ET(%%OJ) X 1'1], (4) +€;1J(t) (i) aigéef(r7t)’
in which Y5(t) = Y1Y,(t) is the wave admittance dP,, or rof 1 (t) rof
the local impedance relation B t) = —e (1) + @(@igz (v, 1) (11)
—1 t ref
—e1 J(t) ¥ 0,0.G5 (v, 1),
ET(JJ,? 707t) = _ZQ(t) (i) [1’1 X HT(x7y707t)]’ (5) l(t) ( ) ! ¢ ( )
Erf(r,t) = 7 J(t) ¥ 0,0.G5 (r, 1)

in which Z5(t) = Z;1Z,(t) is the wave impedance @P,. In

-1 ®) ref
these expressions, the operatl(é)ndenotes temporal convolu- —2e J(t) ¥ 9:0:G¢ (I;;t)
tion and the subscript T stands for the tangential component —2u102J(t) ®© 9, Gl (2, y, 2, 1)d2!, (12)
The EM wave field inD; is defined as the sum of the 2=z
incident wave field{E»¢, H"}, which is the wave field in rof B 5 [ (t) rof
the absence of the lossy materiallia, and the reflected wave H (r,t) = _Cl/T 0 J(7)dr % 0,0,0:G¢" (r, 1),(13)

field {E™f, H™'}, which expresses the presence of the planar Tt)

boundary, Hyf(r,t) = 0,J(t) * 0.G5" (v, t) (14)
t
(B, H) (r. 1) = (B B} (r,1) + (B H*}(r,1). (6) ~it [ aoar ¥ eto.gero),
=0
The focus in the remainder is on the derivation of the space- . - ) ref
time reflected EM wave fields i, . HF(rt) = —0J(t) *t 0,9z (r,1) (15)
The timg-invariance and causality of the EM wave fields _C%/ J(7)dr ® 82%ef(r’t)_
are taken into account by the use of the unilateral Laplace =0 ‘
transform It is clear that the canonical half-space problem is reduoed
. o0 finding the space-time RWGFs in Eq. (9), to which end the
{E,H}(r,s) = /t_o exp(—st){E, H}(r,)dt, () inverse Laplace transformation of
in which the Laplace transform parameters taken positive {QA{sf,g}efnggﬂf} (r,s) = 1 /OO da /Oo ds
and real. According to Lerch’s theorem [31], a one-to-one AT Jom oo =—0c0
mapping exists then betwedE, H}(r,¢) and their Laplace o R =2 )\ exp{—sfi(azx + By) +vD.|} 16
transformed counterpartsE, H}(r, s). The configuration is VD AGA, 2y - (16)
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is required. Here, the reflection coefficients are given lwith ¢ 5(r,7) = Ti(r,7) — il2(r,7)cos(y)), where
Egs. (63)-(64), and the coupling term is defined via Eq. (6%) (r,7) = (7/7"%)cos(d) and Ty(r,7) = [(7/T™F)2
in Appendix A. They depend on the plane wave specifig!/?sin(6). Evaluation of they-integral with the aid of the

admittance ofD,, which is specified as following identity
N =X =F s ) a2t 4 (29)
= 2 2 g2 T (A2 2\1/2°
in which F' = (e2/21)Y2(u1 /pi2)/2 and 7o = £2/05 v=o A%+ BPcos®(y) T (A% + B?)
stands for the second medium’s relaxation time constare. Tfasults in
Laplace-domain plane wave specific impedance functiongis th R
inverse of the Laplace-domain plane wave specific admitanc Lref(r ms) = 1— 2Yu(s) (24)
function, i.e.Z,(s) = 1/Y,(s). Finally, a check of correctness o {[Vu(s) +T1]2 4 T2}1/2°
of Egs. (10)-(15) is given in Appendix C, where the case of
a perfectly reflecting impedance wall is discussed. To recast the term on the r.h.s. to a suitable form, the Seheut

Van der Pol theorem of the unilateral Laplace transform],[32
[33], [34], [35], is employed in conjunction with the folldng
identity from the Laplace transform,

To furnish the analytical transformation of the slowness-
domain expressiog:ef, with 1 = Y, Z or C, given by Eq. (16)

; ; (s + a)? + b?]1/2

back to the time domain, the standard procedures of the CdH -
method, cf. [28], are invoked. The following transformatio 9y [exp(—av)Jo(bv)H (v)] exp(—sv)dv, (25)
is carried out first,a = —ipcos(f) — ¢gsin(d) and 8 = v=0
—ipsin(f) + qgos(eg' JQhen., the vert|cal_2slowr21els/2 becomeg, \hich the symboll, denotes the Bessel function of the first
7(g,p) = [Qq)” —p°] 77, with Q(q) = (c;" +¢°) /% Next, - ying ang order zero. The result is
the integration path along the imaginary axis of the complex
plane is replaced by the hyperbolic conteurt-y(z+h) =7,  jret 1 2/ KYMD i dv. (26
with T (q) < 7 < oo, whereTi(q) = R1Q(q). Finally, the v(rme)=-1+ (r, 7, 0) Ky (v, s)dv, (26)
transformation; = (72/R? —c;%)'/?sin(¢) is carried out and

IV. SPACE-TIME REFLECTED-WAVE GREEN' S FUNCTIONS

S

leads to in which R )
1 0o Ky (v,s) =exp [vKn(s)} , 27)
Giet(r, s) = / Kt (r, 7, s) exp(—s7)dr, (18)
AmDy Jr=rret is a kernel function that contains only the boundary’s EM
in which the quantity properties via the admittance function, and
/2

Kt (e, 7)== / / Re{ M7, o)}, (1g) K™ (o) =exp(-T1o)[LJo(Tov) + T2y (To0)} H ()
7 Joso (28)

) is a kernel function that depends only on the configuration.
denotes the reflected-wave kernel function. The syriit = The time-domain counterpart is found as

T1(0) = Ry /c; and¥(r, 7, ) stands for the vertical slowness
after carrying out the indicated transformations. If thesa . e
time-domain counterpart ok*(r, 7, s) is known, then the L (x,m,t) = —6(1) + 2/1)70 KM (x,7,0) Ky (v, t)dv.
space-time RWGF can be expressed as - (29)
. The problem is reduced to finding the time-domain countérpar
/ L (x, 7t — r)drH[t — T™(r)].  of Eq. (27). The procedures are discussed in Appendix D.
(20) After transformation back to the time domain, the spacestim

RWGF is expressed as
The calculation of the space-time RWGFs is reduced to finding P

the space-time reflected-wave kernel functi@#® (r, , ¢), for Gf(r,t) = gref Rir,t) +gref0( t) + g{ffD( 1), (30)
1=Y,7Z,C, which are discussed next.

1
47TR1

gref( r, )

in which the first term on the r.h.s.,

A. Reflected-wave Green's functigi’

o _ _ . Gy (r,
Substitution of the expression for the reflection coeffitien (r,) = 4T Ry

Ry in Eq. (19) yields

HIt - T (x)], (31)

denotes the perfectly conducting surface RWGF. The second

o 9 [m/2 o and third terms on the r.h.s. take into account the deviation
L (r,7,5) =1+ ;/ Re {D }d¢~ (21)  from the caser, — oo, with
=0
1
Here, R GO, t) = H[t — T (r)] x
ref 72YH(S) 47TR1
D¥i(r,m,5) = (22)

Vals) + ey P [(T24+12) + 20, F+ F2] 7% (32)
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the remainder of the constant-admittance RWGF, and the part of the total-impedance RWGF that represents the dis-
ofD ot persive EM response of the imperfectly conducting matéoial
Oy (rt) = —o-H[t =T (r)] (33) an incident wave. The configurational kernel functiai=°
! is given by
—2F/ dT/ dv/ dw KEMP (r,7,0) ¥ (v, w) x
T v=0 KEEP (v, 7,v) = Az exp(—A1v)Jo(Aav) H (v), (40)

1 /
exp(—F?w) (M> J1 { [w(t — T)/Trel]l/ } , in which Ay (r,7) =T'1/(I'f +13), Aa(r,7) =T/(I'f +13)
t=7 and As(r,7) = 1/(I2 + T2)1/2,

the part of the total-admittance RWGF that represents the
dispersive EM response of the imperfectly conducting nnalter
to an incident wave. Note th&t™"" (r, ) requires numerical C. Reflected-wave Green's functigit*
evaluation of a triple integral, which is of the order simita
the case of applying directly 2D inverse Fourier transfdroma
and then inverse Laplace transformation of the transformed - 9 /2
domain wave solution. The integrand @ (r, t), however, L& (x,7,5) —/ Re<
is always (1) real-valued, (2) decaying for increasingnd ¥
w, and (3) slowly oscillating for physically interesting #m For further analytical derivations, a partial fraction detpo-
windows of observation, say < 1007.. It can be shown, sition of the coupling term is performed, which yields
but is omitted here, that transformations exist, which @voi
integrating over the essential singularity:at= 0 and which
lead to a relaxed requirement for the number of support point AyAz

needed to perform the 3D integration. in which b{}ef and béef are given by Egs. (22) and (35),
respectively, and

Substitution of the coupling term in Eq. (19) yields

S ) @D

h=0

= Hy(s)D% (r,7,8) + Hyz(s) Dt (x, 7, ,5), (42)

B. Reflected-wave Green's functigi! .
Substitution of the expression for the reflection coeffitien Ay (s) = {1 - ?j(s)} =— 5 ——1:(43)

Rz in Eq. (19) yields (F2—1)s + F2r

. 2 et
iy =0

in which Using this decomposition and the results from the previous
two subsections, the space-time RWGF corresponding to the
(35) coupling term is easily found as

Trel
-1 s+ T

52 _ rel
[1 - Zn(s)] o (44)

w/2

Hy(s)

—2Z,(s) -2
Za(s)+er7 14 eqVals)
The transformation back to the time domain goes along similaGis! (r, t) = Hy (t) “ Wref( ) +Hz (1) G Wref( t), (45)
lines as outlined in [27]. The derivations are omitted hare]

Dyff(r,m,5) =

the space-time RWGF is expressed as in which
Grt(r.t) = G () + G (0, 1) + G P (x,8), (36) W () = Gy () + Gy (r,0),  (46)
in which the first term on the r.h.s., Wit(e,t) = G5, t) + G5 P (r, 1), (47)
grefR( r,t) = 1 H[t_Tref(r)L (37) and Hy(t) and Hy(t) are the time-domain counterparts of
AT R, Egs. (43) and (44).

denotes the perfectly conducting surface RWGF. The second

and third terms on the r.h.s. take into account the deviation
from the caser, — oo, With V. SPATIAL DIFFERENTIATION OF THE REFLECTEDWAVE

GREEN' S FUNCTIONS

ref;C _ rpref
Gz (x,1) 47rR1H[t ] x The reflected electric field strenglﬁ;‘ff(r,t) is computed
o [(T2 £ T2)F2 4+ oI F 4+ 1 —1/2’ 3g) In the numerical section and requires spatial dlﬂeremrat
(TL+T2) ! ] 38) o Gt (r, t), Wit (r,t) and Wi (r, t). The computation of
the remainder of the constant-impedance RWGF, and the corresponding reflected-wave Green’s tensors goeg alon
ref:D 1 ot similar lines as presented in [27], where the procedures of
Gz (r,t) = 47rR1H[t — T (r)] x (39) dealing with the differentiation of the discontinuous RWGF

Gif(r,t) were discussed. These procedures are omitted here
2F/ dT/ dv/ dw K¥EP(r, 7,0)¥ (v, w) x and Appendix E presents the expression fgf'(r,t) cor-
=T = w= 2/2 responding toGif(r, ). The other constituents o‘ﬂref( t)

T tw corresponding taV%st and Wit are obtained in a
exp(—Fw) <trel > S {QF[ (t_T)/Tmﬂm}’ similar fashion. ) !
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VI. NUMERICAL RESULTS integrals in Eq. (45) were avoided by acting batk (s = iw)

Let o = 47 x 10-7 Hm~! be the constant magneticaAnd Hyz(s = iw) on the frequency-domain source signature

permeability in bothD; andD,. The wave speed in domaip, J(s = iw) an_d_ then taking the inverse _Fourier transform to
is in all examples taken, = o = 299792458 ms~!, which obtain a modified time-domain source signature.
corresponds to the choica = &g, whereeg = (c3uo) ! =
8.8542 x 10~ Fm~! is the electric permittivity of vacuum. VII. CONCLUSION
The second medium is in the three presented examples fillepace-time expressions were derived for the EM wave fields
by different materials, i.e., metal, water and wet soil. fretal after reflection against an imperfectly conducting surface
is represented by copper with electric parameters- e and The source is an impulsive horizontal electric dipole with
oy = 596 x 107 Sm'. The relaxation time of copper is orientation parallel to the planar impedance wall. At theeco
calculated asne = £2/02 = 1.4856 x 107! s. Sea water of tackling the canonical impedance boundary value problem
is the second investigated material with electric paramsetevas the derivation of three space-time reflected-wave Green
g2 = 8lgg and oy = 4.8 Sm', e.g. [36]. The relaxation functions. In contrast to the vertical electric dipole desh,
time of sea water iy = e2/0p = 1.50 x 1079 s. Wet the coupling term in the transform-domain wave solutions
soil is the third investigated material with electric pagders hindered direct application of the extended CdH method.
g2 = 20g9 and oy = 0.1 Sm!. The relaxation time of wet A splitting of the coupling expression via a partial-fracti
SOl is Ty = €2/09 = 1.7708 x 1079 s. decomposition was required for the transformation back to
A source signaturd is specified for the computation of thethe time domain. Numerical results presented time traceds an
wave field constituents. The source signature is taken spectra of the measurable reflected electric field strength.

0, <0,
0 _{ W), >0, (49)

w
[
“ ®
£s

&5 1

in which . ;
W™ (1) = Wy (t/7)™ exp[—m(t/7s — )]H(t), (49)

(=T /rg — (@ ! g xf— ()

oI5 —

is aC™~! power exponential function. The symbaldenotes
the source signature’s characterization time. The angaitl .
is chosen such that the maximum value Jofs unity. In the
calculation of time tracesn is taken four.

Time traces for the reflected electric field strengti’ (r, ¢)
at the position(x,y, z) = (v/2h,v/2h, h), with h = 2¢1 71,
are presented now for three different values 7of It is -_
convenient to scal@:*!(r, t) to the same order of magnitude ~ °
as the source signaturé for a direct check of correctness
Here, E3°" is displayed via

10log(|€5°7]) —

0

T R ® -
(t =T /e — (b) 27 Trel X [ — (e)

log (€57 —

0

=T /r —  (0) * mraxf— @
rof 3 rof of Fig. 2. Copper as the second medium & co, 02 = 5.96 X 107 Sm—1 and
&S (r,t) = (4TRY) x e1 B3 (v, 1) /T (), (50) 701 = 1.4856 x 1019 s). (a)-(c) Time traces of}*f (r, ¢) at the position
. ) . ) (x,y,2) = (vV2h,/2h,h), with h = 27.c1. The source signature’s
This scaling yields values close to the amplitude Qffor  characterization time is (ak = 27ve1, (B) 7s = 47ve1, and (€)7s = 87yel.

all r € D;. Note that the scaling factor is independenttof (d)-(f) Corresponding normalized magnitude spectrungsf (r, ).

Figure 2(a)-(c) present modelling results corresponding)

Ts = 2Tel, (D) 75 = 4701, @nd (C)7s = 87401, fOr copper as the APPENDIX

second medium. The black and blue lines represent the mod- . SLOWNESSDOMAIN REFLECTED WAVE SOLUTIONS

elled result for the total-admittance and constant-admite

reflected electric field strength, respectively. Their atiéince

is the dispersive EM response, which is represented by t%

red line. Figure 2(d)-(f) present the corresponding maglat

spectra, which are normalized with respect to mé;@fl(fﬂ. _O%F + 2% = —pusd® + i@(@ 39—V x K°, (51)

Figure 3 presents similar modelling results as in Fig. 2, but €s

now for sea water as the second medium. Figure 4 presefatisthe electric field strength, and

similar modelling results as in Fig. 2, but now for wet soil as ~ . R 1 - - . o

the second medium. —0?H + s°y*H = —esK°* + —V(V-K°) + V x J¢, (52)
Finally, a note of the computation time and coding. The Hs

generation of the time traces, i.e. mainly the calculatibthe for the magnetic field strength. The quantity

triple integrals in the RWGFs, required about 75 seconds on a -2 2 2y1/2

Pentium 4 laptop computer. The number of support point was V(e f) = (er” +a7+ 57 & (53)

taken (N;, N,,, N,,) = (20,30,25) and the (v, w)-integrals denotes the vertical slowness, with {§é¢ > 0, andV is the

were truncated atL,,, L,,) = (5,4). The temporal convolution slowness-domain gradient operator. Iggt° and G**' denote

The slowness-domain equivalents of Egs. (1) and (2) are
btained first, and then reduced to second-order equations.
fis yields the wave equation
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the transform-domain scalar incident-wave and reflectadew B. SPACE-TIME INCIDENT WAVE FIELDS
Green'’s function, respectively. Then, the solution of tinéi-o

nary differential equation Let Ro(r) = (22 +y%+|z—h|?>)'/2 > 0 denote the distance

—92G™MC 4 242G™C = §(z — h), (54) between source and receiver, aidf“(r) = Ro(r)/c; the
arrival time of the incident wave. Let
is useful for solving the half-space problem. After some
elaborationG'*¢ and G**f can be written in the form

[ Gine Ame(y, s) exp(—s7y]z — h|)

Gt } 0= [ ATl (v, 5) exp(—57D) - .

denote the incident-wave Green’s function. Then, the space
in which D, = z+ h. From Eq. (55), the proper§. — +sv time incident EM wave fields generated by an electric dipole
is obtained, which is valid forz € (0,%). The plus and with orientation in thez-direction can be derived easily, e.g.,
minus signs correspond to the incident and reflected wavga Egs. (51)-(52), and are given by
respectively. Next, a relation between the tangential ENd fie
strengths at the planar surface is derived, for which the

1

inc t) =
g (I‘, ) 47TRO

H[t — T (r)], (67)

, (59)

inc — (®) inc
following decomposition is convenient, EY(r,t) = &' J(t) * 07G™(x, 1) (68)
= = -~ ad -~ ad (t) inc
E = [BT E)7, with By =[E, E,)7,  (56) —md;J(t) * G"(r,1),
H = [H} H.]", with Hy = [H, HJ]", (57) ERc(rt) = e lJ(t) Y 0,0.6™(x. 1), (69)
V = [-iskh +s9]7, with kp = T (58 . :
[—isk 57] T=la [ (58) EM(e,t) = erlJ() (i) 00,6 (x. 1), (70)
The superscriptl” denotes the vector transpose operation. H(rt) = 0, (71)
Application of this decomposition at the slowness-domain ) (t) )
equivalents of Egs. (1) and (2), the following relations can H(r,t) = 0, J(t) ¥ 0.G™(r,1), (72)
be derived, H™(r,t) = —8,J(t) ¥ 9,6 (x,1). (73)
nxHy = +1 {%ikT (ikT : ET) +ET] . (59)
H Ly The slowness-domain counterparts of these expressions are

Erxn = + {%ikT (ikT‘I:IT) JFI:IT:| . (60) substi.tuted in Egs. (61)' and '(62) to arrive at the slowness-
€1 LY domain reflected wave fields in Egs. (10)-(15).

These are used in conjunction with the wave field decompc-
tion in Eq. (6) and the boundary condition in Eq. (4) or (5) t , *
solve the impedance boundary value problem. After a lengiz..
derivation, the reflected electric and magnetic field stitesig
can be expressed in terms of the incident electric and miagn

log(€57) —

0

field strengths, i.e., T Ut @ o @
. ; : .
rref H_ Tninc 2 rinc T ="
ET = RYET — nclkT(ClkT . ET ), (61) T . (lﬁ‘g:r,
Y7 w F w
. . 2 . 2 ; E
HY' = RHP - ake(ake HE). (62 :
Y Z ) 5 10 15 20 25 E) 10 10° 10
. (t — T /7o) — (b) 27Tl X f — (e)
In these expressions, , .
T ="
RY (’% 8) = 1- 2Yvn/AY7 (63) i')«f : %:m
~ ~ =
Rz(v,s) = 1-2Z,/Ag, (64) E
are s-dependent reflection coefficients, in which =10 /ra —  (© ) srraxf— (@)

. A Fig. 3. Same as Fig. 2, but now for sea water as the second medjuea (
Ay (y,8) =Yu(s) + a1y, Az(y,s) =Zu(s) + 17, (65)  81co, 00 = 4.8 S ! and e = 1.50 x 1010 s),

are denominator functions. The normal component of the
reflected wave is obtained from the transform-domain com-
patibility relations, viz., C. SPECIAL CASE OF A PERFECTLY REFLECTING

S of ~ o6 ~ o = of IMPEDANCE WALL
Bt = 7 likyp B A = ik - HEL (66)

Equations (61)-(66) complete the slowness-domain salstio For the special cases, — oo ande; — oo, the impedance
for the reflected wave fields in the elementary half-spaeeall is perfectly reflecting. In both case¥),(s) — co and

configuration. Appendix B reviews the incident wave fieIds.Zn(s) — 0, with the result thatRy = —1, Rz = 1, and
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(AyAy)~! = 0. The solutions in Egs. (10)-(15) become in which J; stands for the Bessel function of the first kind
and order one.

t
BESPRe ) = e W RGN (et (74) T
) e : ="
smdta Y g e, 5
t %Dm
EOPR(e ) = —erl(n) ¥ 0,0,670 R (x, 1), (75) :
EECf’PR(rvt) = —€1_1J(t) (i) D.0,G PR (r 1), (76) T — @ g f— (@)
HUPR(p t) = 0, T i
t N &
HEPR (e t) = 0,0() ¥ 0.6 (), (78) ¥
ref,PR _ ®) ref,PR )
HS7 Y = —0J) + 9,6 (=8, (79) T g — (B) s f— (@
in which G"PR (¢ t) = H(t —T"") /47 R;. Using the results 1.
of Appendix D in [27], it can be shown that these expressio «_ &
are (apart from minus sign difference for the electric fie - EX
strength) the solutions for the wave fields in homogenec .

media. The latter was expected since the impedance wall v.ee © ° ooy 7 @ E sk f—
assumed perfectly reflecting. This shows that Eqgs. (10)-(16g. 4. Same as Fig. 2, but now for wet soil as the second medigm-(
are consistent with the solutions for this special case. 20c0, 02 = 0.1 SM™" and ey = 1.7708 x 1077 s).

E. SPACE-TIME REFLECTED ELECTRIC FIELD STRENGTH

D. TRANSFORMATION BACK TO THE TIME DOMAIN CORRESPONDING TQGL!
With the help of Eq. (17), Eq. (27) is rewritten as The reflected electric field strengfi{! (r, t) corresponding
Ry (v, ) = exp {77])2\1//2(5)} ' (80) to G&¥f(r, t) is reviewed. Similar to [27],Eref is written as
ErXi(r,t) = B0 (r,t) + B0 (x, 1), (86)

Next, the Schouten-Van der Pol theorem (c.f. Formula 29.3.8
in [37]) is invoked to express the r.h.s. of Eq. (80) as argrete in which

representation. This yields Bt (e t) = er (T)20,J[t — T (r)] ;?eyf,l;FF(r)
exp [—U)A(\l/z(s)} = /wojo U (v, w) exp [—wa(S)} dw, e TN Tt — TrCf(r)]g;;;’l;IF(r)
in which o o1 / T J(t=7)gg, N (x,1)dr, (87)
(v, w) = m exp(—v®/4w)H(w),  (82) is the constant-admittance part B, and

t
is the kernel function well-known from the theory of partial Eref 2(r,t) = €] / J(t — TGN (p 7)dr, (88)
differential equations on diffusion processes [38]. Thesr.of Tret v
Eq. (81) is now in an appropriate form for findingy (v,¢) represents the dispersive part of the total-admittafié. The
analytically. The time-domain counterpart &f (v, s) is first RWGT components in Egs. (87)-(88) are given by
expressed as rof 1 ot
_wyGy e, T (x)]

R ref,l,FF _ _ rpref
Kv(t) = £ {exp[-0XY%(s)] } = 83 In *0) R} Hit =T (@),
o0 (89)
U(v,w)exp (—F?w) L7 {exp wa27'r;1571 dw, ref,1 ref
A:O (v, w)exp (—F*w) L7 {exp ( 1s7)} G e ) = s et ey Z00 G R[;,T (r)]
in which £~! stands for the inverse Laplace transformation. !
) ) . ) X Gref 1[ Tref( ] a Gref,l[ Tref( )]
With the aid of the identity (cf. Formula 29.3.75 in [37]), _ Ty b r) 4 Yo%z L r 1, (90)
R} D? ’
1 B -1 _ i 1
S GXOE ( ks ) (84) grE?j’l;NF(r, t) _ 78;anGrZEt71(r, t)H[t - Tref(r)]’ (91)
1/2 £ 5.
/t _ exp(st) {Jo [z(kt) / }H(t)}dt, k>0, GEIENT (e 1) = —0,0,G5" 2, )H[t - T(x)], (92)
Ky (v,t) is explicitly found as in which the first two terms represent the far- and interntedia
o zone contributions, respectively, whereas the last twmger
Ky(v,t) = / U (v,w) {exp(—F?w)d(t)— (85) represent the near-zone contributionsHs’. The following
w=0 identity, cf. [27], is easily obtained

1/2

wr.
Fexp(—F?w) (—rel) Ji [2F (wtt DY H(t) p dw, ref, 11 . rpref 1 B 2
t 2wty ] G T = -] e
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from which the expressions [22] R.W.P. King, M. Owens, and T. T. Wiiateral Electromagnetic Waves,

Theory and Applications to Communicatiori@eophysical Exploration,

ref,1 rof x 2 and R_emoting Sensing_, Sp_ringer—_VerIag, _1_992. _ _

8sz [I'zT (I')] = A R3 F ] 112 -1, [23] K. Li, Electromagnetic Fields in Stratified Medig&Springer-Verlag,
T [ COS( ) + ] Berlin, Germany, 2009.
ref.1 rof Y 2 [24] H. J. Frankena,“Transient phenomena associated withnSafeld’s
0yGy [r, T (r)] = 3 -1, horizontal dipole problem,Appl. Sci. Res.vol. 8, pp. 357-368, 1960.
A7 R} | [F cos(0) + 1]2

1 [25] R. W. P. King, “Lateral electromagnetic pulses genetate a plane
8ZGrZEf’1[r,Tref(r)] = boundary between dielectrics by vertical and horizontglot#i source

with Gaussian pluse excitation]! Electrom. Waves Apphol. 2, pp. 589-
F + cos(6 cos(f
- (9) ~cos( )7 (94) 597, 1989. ) _ o - 3
27"R1 [F cos(@) 4 1]2 471.3% [26] A. T. de Hoop, “Transient diffusive electromagnetic dielin stratified
media - Calculation of the two-dimensional E-polarized fielRadio

are derived. Sciencevol. 35, pp. 443-453, 2000.
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