
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. X, NO. X, XXXX 201X 1

Impulsive Radiation from a Horizontal Electric
Dipole above an Imperfectly Conducting Surface

Mark C. H. Lam

Abstract—Solutions for the impulsive wave fields generated
by a horizontal electric dipole situated above an imperfectly
conducting surface are derived. The space-time expressions for
the reflected wave fields open the door to analysis of their
properties in the far-, intermediate-, and near-field regions, and
can serve as benchmark for numerical methods employed to
wave simulation with applications in antenna design and radio
communication. The EM properties of the conductive material
are represented by a surface impedance and translated to the
wave motion via employing the local plane wave relation as the
boundary condition. At the core of tackling the impedance bound-
ary value problem is the derivation of three space-time reflected-
wave Green’s functions. In contrast to the vertical electric dipole
problem, a coupling term is present in the transform-domain
wave solutions, and hinders direct application of the extended
Cagniard-de Hoop method. A partial-fraction decomposition of
this coupling term is the key to furnishing the transformation
back to the time domain. Numerical results illustrate time traces
and spectra of the measurable reflected electric field strength.

Index Terms—Impedance boundary condition, imperfectly
conducting surface, impulsive wave reflection, horizontal electric
dipole.

I. I NTRODUCTION

The impedance boundary formulation, [1], [2], is useful
in EM applications, where wave simulation is performed in
geometrically complex-structured configurations characterized
by imperfectly conductive materials. The approximating rep-
resentation of conducting bodies via the surface impedance
boundary condition (IBC), e.g. [3], [4], [5], [6], is convenient
to avoid a costly fine discretization in unstructured mesh grid
modelling methods, such as the finite-element method, e.g.
[7]. This applies also to the FDTD method, [8], which in
conjunction with the IBC, e.g. [9], [10], has found widespread
applications in the modelling of thin conductive structures,
e.g. [11], [12], [13], [14]. Applications are found in antenna
simulation, micro-strip design, e.g. [15], [16], and on-chip
interconnect modelling, e.g. [17], [18], [19].

In this paper, the impulsive radiation from an electric dipole
situated above an imperfectly conducting medium, e.g. [20],
is studied in the time domain. To this end, the canonical
configuration consisting of a planar boundary separating a
homogeneous, isotropic and non-conducting medium from a
homogeneous, isotropic and imperfectly conducting medium
is investigated, e.g. [21]. Studies of perfect dielectric media
can be found in e.g. [22], [23], and transient problems are
found in e.g. [24], [25], [26]. The employed IBC in this
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paper represents the conductive material’s properties at its
surface via the local plane wave relation, and simplifies the
two-media wave problem to a half-space problem. The case
of a horizonal electric dipole (HED) directed parallel to the
impedance boundary is investigated, which completes the
problem of an arbitrarily oriented electric dipole above a planar
conducting surface since the vertical electric dipole (VED)
problem has been investigated in [27].

The objective of this paper is to derive solutions for the
impulsive EM wave fields after reflection against a planar
impedance wall. It turns out that solving this boundary value
problem requires the derivation of three space-time reflected-
wave Green’s functions (RWGFs). To this end, the Cagniard-
de Hoop (CdH) method, e.g. [28], [29], [30], is applied to fur-
nishing the analytical transformation back to the time domain.
In contrast to the VED problem studied in [27], a coupling
term is part of the Laplace-domain wave field solutions and
it has a denominator∆Y∆Z, which hinders direct analytical
transformation back to the time domain with the aid of the
extended CdH method. A partial-fraction decomposition of
this coupling term is presented, which is the key to solving
the impedance boundary value problem corresponding to the
elementary half-space configuration.

This paper develops an analytical benchmark for numerical
methods employed to EM wave simulation with applications in
antenna design and radio communication. Illustrative numeri-
cal results present time traces and spectra of the measurable
reflected electric field strength, which can serve as benchmark
results.

II. PROBLEM FORMULATION

The EM wave motion is studied in the homogeneous half-
spaceD1 = {−∞ < x < ∞,−∞ < y < ∞, 0 < z < ∞},
which is characterized by the constant electric permittivity ε1
and magnetic permeabilityµ1. The wave speed is consequently
c1 = (ε1µ1)

−1/2. Figure 1 shows the configuration including
the nomenclature. The space-time wave fields inD1 satisfy
the Maxwell’s equations

−curl H + ε1∂tE = −J
e, (1)

curl E + µ1∂tH = −K
e, (2)

in which

{Je,Ke}(r, t) = {Je, 0}(t)δ(r − rs)ix, (3)

are the volume density of externally applied electric and
magnetic current density, respectively. The symbolJe stands
for the source signature,δ(r) is the Kronecker delta function
operative atr, andrs = (0, 0, h) denotes the position of the
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point source, withh ≥ 0 the source height. The source starts
to act att = 0 and prior to this time instant the configuration
is at rest.
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Fig. 1. Elementary configuration consisting of a planar interface∂D separat-
ing two media. Half-spaceD1 is homogeneous, nonconducting and charac-
terized by the wave impedanceZ1, whereas half-spaceD2 is homogeneous,
conducting and characterized by the wave impedanceZ2. With the surface
impedance boundary condition, the electric properties inD2, called second
medium, are represented at∂D. The symbolrs denotes the dipole source
position,rI

s the image source position, andh the source height. Furthermore,
R0 is the distance between source and receiver, andR1 is the distance
between image source and receiver.

Let Y1 = (ε1/µ1)
1/2 and Z1 = (µ1/ε1)

1/2 denote the
wave admittance and wave impedance ofD1, respectively.
Furthermore, letYn(t) andZn(t) stand for the specific wave
admittance and the specific wave impedance ofD2, respec-
tively. Specific means normalized with respect to its counter-
part in D1. Then, the EM properties of the planar boundary
are modelled via the linear, time-invariant, local admittance
relation,

HT(x, y, 0, t) = −Y2(t)
(t)
∗ [ET(x, y, 0, t) × n] , (4)

in which Y2(t) = Y1Yn(t) is the wave admittance ofD2, or
the local impedance relation

ET(x, y, 0, t) = −Z2(t)
(t)
∗ [n × HT(x, y, 0, t)] , (5)

in which Z2(t) = Z1Zn(t) is the wave impedance ofD2. In

these expressions, the operation
(t)
∗ denotes temporal convolu-

tion and the subscript T stands for the tangential component.
The EM wave field inD1 is defined as the sum of the
incident wave field{Einc,Hinc}, which is the wave field in
the absence of the lossy material inD2, and the reflected wave
field {Eref ,Href}, which expresses the presence of the planar
boundary,

{E,H}(r, t) = {Einc,Hinc}(r, t) + {Eref ,Href}(r, t). (6)

The focus in the remainder is on the derivation of the space-
time reflected EM wave fields inD1.

The time-invariance and causality of the EM wave fields
are taken into account by the use of the unilateral Laplace
transform

{Ê, Ĥ}(r, s) =

∫

∞

t=0

exp(−st){E,H}(r, t)dt, (7)

in which the Laplace transform parameters is taken positive
and real. According to Lerch’s theorem [31], a one-to-one
mapping exists then between{E,H}(r, t) and their Laplace
transformed counterparts{Ê, Ĥ}(r, s). The configuration is

initially at rest, so the transform rule∂t → s holds. The com-
plex slowness representation for{Ê, Ĥ}(r, s) are introduced
as

{Ê, Ĥ}(r, s) =
s2

4π2

∫

∞

α=−∞

dα

∫

∞

β=−∞

{Ẽ, H̃}(α, β, z, s) exp[−is(αx+ βy)]dβ, (8)

in which i stands for the imaginary unit, andα andβ denote
the wave slowness in thex andy directions, respectively. The
transform rules∂x → −isα and∂y → −isβ apply.

III. SPACE-TIME STRUCTURE OF THE REFLECTED

ELECTROMAGNETIC WAVE FIELDS

LetR1(r) = [x2+y2+(z+h)2]1/2 > 0 denote the distance
between image source and receiver, andT ref(r) = D1(r)/c1
the arrival time of the reflected wave. Let

{

Gref
Y ,Gref

Z ,Gref
C

}

(r, t) =
{

Gref
Y , Gref

Z , Gref
C

}

(r, t)H[t− T ref(r)], (9)

denote reflected-wave Green’s functions, in whichH(t) stands
for the Heaviside unit step function. With the aid of Eqs. (61)-
(62) in Appendix A and the slowness-domain counterparts of
Eqs. (68)-(73) in Appendix B, the space-time reflected wave
field expressions corresponding to the incidence of a horizontal
electric dipole generated spherical wave are found as

Eref
x (r, t) = −µ−1

1 ∂2
t J(t)

(t)
∗ Gref

Y (r, t) (10)

−ε−1
1 J(t)

(t)
∗ ∂2

xGref
Z (r, t)

+ε−1
1 J(t)

(t)
∗ ∂2

xGref
C (r, t),

Eref
y (r, t) = −ε−1

1 J(t)
(t)
∗ ∂y∂xGref

Z (r, t) (11)

−ε−1
1 J(t)

(t)
∗ ∂y∂xGref

C (r, t),

Eref
z (r, t) = ε−1

1 J(t)
(t)
∗ ∂x∂zGref

Z (r, t)

−2ε−1
1 J(t)

(t)
∗ ∂x∂zGref

C (r, t)

−2µ1∂
2
t J(t)

(t)
∗ ∂x

∫

∞

z′=z

Gref
C (x, y, z′, t)dz′, (12)

Href
x (r, t) = −c21

∫ t

τ=0

J(τ)dτ
(t)
∗ ∂x∂y∂zGref

C (r, t),(13)

Href
y (r, t) = ∂tJ(t)

(t)
∗ ∂zGref

Z (r, t) (14)

−c21
∫ t

τ=0

J(τ)dτ
(t)
∗ ∂2

y∂zGref
C (r, t),

Href
z (r, t) = −∂tJ(t)

(t)
∗ ∂yGref

Z (r, t) (15)

−c21
∫ t

τ=0

J(τ)dτ
(t)
∗ ∂3

yGref
C (r, t).

It is clear that the canonical half-space problem is reducedto
finding the space-time RWGFs in Eq. (9), to which end the
inverse Laplace transformation of

{

Ĝref
Y , Ĝref

Z , Ĝref
C

}

(r, s) =
1

4π2

∫

∞

α=−∞

dα

∫

∞

β=−∞

dβ

{

R̃Y, R̃Z,
−2

∆Y∆Z

}

exp{−s[i(αx+ βy) + γDz]}
2γ

. (16)
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is required. Here, the reflection coefficients are given by
Eqs. (63)-(64), and the coupling term is defined via Eq. (65)
in Appendix A. They depend on the plane wave specific
admittance ofD2, which is specified as

Ŷn(s) = X̂
1/2
Y (s) = F

(

1 + τ−1
rel s

−1
)1/2

, (17)

in which F = (ε2/ε1)
1/2(µ1/µ2)

1/2 and τrel = ε2/σ2

stands for the second medium’s relaxation time constant. The
Laplace-domain plane wave specific impedance function is the
inverse of the Laplace-domain plane wave specific admittance
function, i.e.Ẑn(s) = 1/Ŷn(s). Finally, a check of correctness
of Eqs. (10)-(15) is given in Appendix C, where the case of
a perfectly reflecting impedance wall is discussed.

IV. SPACE-TIME REFLECTED-WAVE GREEN’ S FUNCTIONS

To furnish the analytical transformation of the slowness-
domain expressioñGref

I , with I = Y,Z or C, given by Eq. (16)
back to the time domain, the standard procedures of the CdH
method, cf. [28], are invoked. The following transformation
is carried out first,α = −ip cos(θ) − q sin(θ) and β =
−ip sin(θ) + q cos(θ). Then, the vertical slowness becomes
γ(q, p) = [Ω(q)2 − p2]1/2, with Ω(q) = (c−2

1 + q2)1/2. Next,
the integration path along the imaginary axis of the complexp-
plane is replaced by the hyperbolic contourpr+γ(z+h) = τ ,
with T1(q) < τ < ∞, whereT1(q) = R1Ω(q). Finally, the
transformationq = (τ2/R2

1−c−2
1 )1/2 sin(ψ) is carried out and

leads to

Ĝref
I (r, s) =

1

4πD1

∫

∞

τ=T ref

K̂ref
I (r, τ, s) exp(−sτ)dτ, (18)

in which the quantity

K̂ref
I (r, τ, s) =

2

π

∫ π/2

ψ=0

Re
{

R̃I(γ, s)
}

dψ, (19)

denotes the reflected-wave kernel function. The symbolT ref =
T1(0) = R1/c1 andγ(r, τ, ψ) stands for the vertical slowness
after carrying out the indicated transformations. If the causal
time-domain counterpart of̂Kref

I (r, τ, s) is known, then the
space-time RWGF can be expressed as

Gref
I (r, t) =

1

4πR1

∫ t

τ=T1

Lref
I (r, τ, t− τ)dτH[t− T ref(r)].

(20)
The calculation of the space-time RWGFs is reduced to finding
the space-time reflected-wave kernel functionsLref

I (r, τ, t), for
I = Y,Z,C, which are discussed next.

A. Reflected-wave Green’s functionGref
Y

Substitution of the expression for the reflection coefficient
R̃Y in Eq. (19) yields

L̂ref
Y (r, τ, s) = 1 +

2

π

∫ π/2

ψ=0

Re
{

D̂ref
Y

}

dψ. (21)

Here,

D̂ref
Y (r, τ, s) =

−2Ŷn(s)

Ŷn(s) + c1γ
, (22)

with c1γ(r, τ) = Γ1(r, τ) − iΓ2(r, τ) cos(ψ), where
Γ1(r, τ) = (τ/T ref) cos(θ) and Γ2(r, τ) = [(τ/T ref)2 −
1]1/2 sin(θ). Evaluation of theψ-integral with the aid of the
following identity

2

π

∫ π/2

ψ=0

A

A2 +B2 cos2(ψ)
dψ =

1

(A2 +B2)1/2
, (23)

results in

L̂ref
Y (r, τ, s) = 1 − 2Ŷn(s)

{[Ŷn(s) + Γ1]2 + Γ2
2}1/2

. (24)

To recast the term on the r.h.s. to a suitable form, the Schouten-
Van der Pol theorem of the unilateral Laplace transform, [32],
[33], [34], [35], is employed in conjunction with the following
identity from the Laplace transform,

s

[(s+ a)2 + b2]1/2
=

∫

∞

v=0

∂v[exp(−av)J0(bv)H(v)] exp(−sv)dv, (25)

in which the symbolJ0 denotes the Bessel function of the first
kind and order zero. The result is

L̂ref
Y (r, τ, s) = −1 + 2

∫

∞

v=0

KVMD
C (r, τ, v)K̂Y(v, s)dv, (26)

in which

K̂Y(v, s) = exp
[

−vŶn(s)
]

, (27)

is a kernel function that contains only the boundary’s EM
properties via the admittance function, and

KVMD
C (r, τ, v) = exp(−Γ1v)[Γ1J0(Γ2v) + Γ2J1(Γ2v)]H(v),

(28)
is a kernel function that depends only on the configuration.
The time-domain counterpart is found as

L̂ref
Y (r, τ, t) = −δ(t) + 2

∫

∞

v=0

KVMD
C (r, τ, v)KY(v, t)dv.

(29)
The problem is reduced to finding the time-domain counterpart
of Eq. (27). The procedures are discussed in Appendix D.
After transformation back to the time domain, the space-time
RWGF is expressed as

Gref
Y (r, t) = Gref;R

Y (r, t) + Gref;C
Y (r, t) + Gref;D

Y (r, t), (30)

in which the first term on the r.h.s.,

Gref;R
Y (r, t) =

1

4πR1
H[t− T ref(r)], (31)

denotes the perfectly conducting surface RWGF. The second
and third terms on the r.h.s. take into account the deviation
from the caseσ2 → ∞, with

Gref;C
Y (r, t) =

1

4πR1
H[t− T ref(r)] ×

−2F
[

(Γ2
1 + Γ2

2) + 2Γ1F + F 2
]−1/2

, (32)
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the remainder of the constant-admittance RWGF, and

Gref;D
Y (r, t) =

1

4πR1
H[t− T ref(r)] × (33)

−2F

∫ t

τ=T1

dτ

∫

∞

v=0

dv

∫

∞

w=0

dw KVMD
C (r, τ, v)Ψ(v, w) ×

exp(−F 2w)

(

τ−1
rel w

t− τ

)1/2

J1

{

2F [w(t− τ)/τrel]
1/2

}

,

the part of the total-admittance RWGF that represents the
dispersive EM response of the imperfectly conducting material
to an incident wave. Note thatGref;D

Y (r, t) requires numerical
evaluation of a triple integral, which is of the order similar to
the case of applying directly 2D inverse Fourier transformation
and then inverse Laplace transformation of the transformed
domain wave solution. The integrand inGref;D

Y (r, t), however,
is always (1) real-valued, (2) decaying for increasingv and
w, and (3) slowly oscillating for physically interesting time
windows of observation, sayt < 100τrel. It can be shown,
but is omitted here, that transformations exist, which avoid
integrating over the essential singularity atw = 0 and which
lead to a relaxed requirement for the number of support points
needed to perform the 3D integration.

B. Reflected-wave Green’s functionGref
Z

Substitution of the expression for the reflection coefficient
R̃Z in Eq. (19) yields

L̂ref
Z (r, τ, s) = 1 +

2

π

∫ π/2

ψ=0

Re
{

D̂ref
Z

}

dψ, (34)

in which

D̂ref
Z (r, τ, s) =

−2Ẑn(s)

Ẑn(s) + c1γ
=

−2

1 + c1γŶn(s)
. (35)

The transformation back to the time domain goes along similar
lines as outlined in [27]. The derivations are omitted here,and
the space-time RWGF is expressed as

Gref
Z (r, t) = Gref;R

Z (r, t) + Gref;C
Z (r, t) + Gref;D

Z (r, t), (36)

in which the first term on the r.h.s.,

Gref;R
Z (r, t) =

1

4πR1
H[t− T ref(r)], (37)

denotes the perfectly conducting surface RWGF. The second
and third terms on the r.h.s. take into account the deviation
from the caseσ2 → ∞, with

Gref;C
Z (r, t) =

1

4πR1
H[t− T ref(r)] ×

−2
[

(Γ2
1 + Γ2

2)F
2 + 2Γ1F + 1

]−1/2
, (38)

the remainder of the constant-impedance RWGF, and

Gref;D
Z (r, t) =

1

4πR1
H[t− T ref(r)] × (39)

2F

∫ t

τ=T1

dτ

∫

∞

v=0

dv

∫

∞

w=0

dw KVED
C (r, τ, v)Ψ(v, w) ×

exp(−F 2w)

(

τ−1
rel w

t− τ

)1/2

J1

{

2F [w(t− τ)/τrel]
1/2

}

,

the part of the total-impedance RWGF that represents the dis-
persive EM response of the imperfectly conducting materialto
an incident wave. The configurational kernel functionKVED

C

is given by

KVED
C (r, τ, v) = Λ3 exp(−Λ1v)J0(Λ2v)H(v), (40)

in which Λ1(r, τ) = Γ1/(Γ
2
1 + Γ2

2), Λ2(r, τ) = Γ2/(Γ
2
1 + Γ2

2)
andΛ3(r, τ) = 1/(Γ2

1 + Γ2
2)

1/2.

C. Reflected-wave Green’s functionGref
C

Substitution of the coupling term in Eq. (19) yields

L̂ref
C (r, τ, s) =

2

π

∫ π/2

ψ=0

Re

( −2

∆Y∆Z

)

dψ. (41)

For further analytical derivations, a partial fraction decompo-
sition of the coupling term is performed, which yields

−2

∆Y∆Z
= ĤY(s)D̂ref

Y (r, τ, s) + ĤZ(s)D̂ref
Z (r, τ, , s), (42)

in which D̂ref
Y and D̂ref

Z are given by Eqs. (22) and (35),
respectively, and

ĤY(s) =
[

1 − Ŷ 2
n (s)

]

−1

= − s

(F 2 − 1)s+ F 2τ−1
rel

,(43)

ĤZ(s) =
[

1 − Ẑ2
n(s)

]

−1

=
s+ τ−1

rel

(1 − F−2)s+ τ−1
rel

. (44)

Using this decomposition and the results from the previous
two subsections, the space-time RWGF corresponding to the
coupling term is easily found as

Gref
C (r, t) = HY(t)

(t)
∗ Wref

Y (r, t)+HZ(t)
(t)
∗ Wref

Z (r, t), (45)

in which

Wref
Y (r, t) = Gref;C

Y (r, t) + Gref;D
Y (r, t), (46)

Wref
Z (r, t) = Gref;C

Z (r, t) + Gref;D
Z (r, t), (47)

and HY(t) and HZ(t) are the time-domain counterparts of
Eqs. (43) and (44).

V. SPATIAL DIFFERENTIATION OF THE REFLECTED-WAVE

GREEN’ S FUNCTIONS

The reflected electric field strengthEref
y (r, t) is computed

in the numerical section and requires spatial differentiation
of Gref

Z (r, t), Wref
Y (r, t) and Wref

Z (r, t). The computation of
the corresponding reflected-wave Green’s tensors goes along
similar lines as presented in [27], where the procedures of
dealing with the differentiation of the discontinuous RWGF
Gref

Z (r, t) were discussed. These procedures are omitted here
and Appendix E presents the expression forEref

y (r, t) cor-
responding toGref

Z (r, t). The other constituents ofEref
y (r, t)

corresponding toWref
Y (r, t) andWref

Z (r, t) are obtained in a
similar fashion.
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VI. N UMERICAL RESULTS

Let µ0 = 4π × 10−7 Hm−1 be the constant magnetic
permeability in bothD1 andD2. The wave speed in domainD1

is in all examples takenc1 = c0 = 299792458 ms−1, which
corresponds to the choiceε1 = ε0, whereε0 = (c20µ0)

−1 =
8.8542 × 10−12 Fm−1 is the electric permittivity of vacuum.
The second medium is in the three presented examples filled
by different materials, i.e., metal, water and wet soil. Themetal
is represented by copper with electric parametersε2 = ε0 and
σ2 = 5.96 × 107 Sm−1. The relaxation time of copper is
calculated asτrel = ε2/σ2 = 1.4856 × 10−19 s. Sea water
is the second investigated material with electric parameters
ε2 = 81ε0 and σ2 = 4.8 Sm−1, e.g. [36]. The relaxation
time of sea water isτrel = ε2/σ2 = 1.50 × 10−10 s. Wet
soil is the third investigated material with electric parameters
ε2 = 20ε0 and σ2 = 0.1 Sm−1. The relaxation time of wet
soil is τrel = ε2/σ2 = 1.7708 × 10−9 s.

A source signatureJ is specified for the computation of the
wave field constituents. The source signature is taken

J(t) =

{

0, t < 0,
d
dtW

(m)(t), t ≥ 0,
(48)

in which

W (m)(t) = W0(t/τs)
m exp[−m(t/τs − 1)]H(t), (49)

is aCm−1 power exponential function. The symbolτs denotes
the source signature’s characterization time. The amplitudeW0

is chosen such that the maximum value ofJ is unity. In the
calculation of time traces,m is taken four.

Time traces for the reflected electric field strengthEref
y (r, t)

at the position(x, y, z) = (
√

2h,
√

2h, h), with h = 2c1τrel,
are presented now for three different values ofτs. It is
convenient to scaleEref

x (r, t) to the same order of magnitude
as the source signatureJ for a direct check of correctness.
Here,Eref

y is displayed via

Eref
y (r, t) = (4πR3

1) × ε1E
ref
x (r, t)/T ref(r), (50)

This scaling yields values close to the amplitude ofJ , for
all r ∈ D1. Note that the scaling factor is independent oft.
Figure 2(a)-(c) present modelling results corresponding to (a)
τs = 2τrel, (b) τs = 4τrel, and (c)τs = 8τrel, for copper as the
second medium. The black and blue lines represent the mod-
elled result for the total-admittance and constant-admittance
reflected electric field strength, respectively. Their difference
is the dispersive EM response, which is represented by the
red line. Figure 2(d)-(f) present the corresponding magnitude
spectra, which are normalized with respect to maxf |Êref

y (f)|.
Figure 3 presents similar modelling results as in Fig. 2, but
now for sea water as the second medium. Figure 4 presents
similar modelling results as in Fig. 2, but now for wet soil as
the second medium.

Finally, a note of the computation time and coding. The
generation of the time traces, i.e. mainly the calculation of the
triple integrals in the RWGFs, required about 75 seconds on a
Pentium 4 laptop computer. The number of support point was
taken (Nt, Nv, Nw) = (20, 30, 25) and the(v, w)-integrals
were truncated at(Lv, Lw) = (5, 4). The temporal convolution

integrals in Eq. (45) were avoided by acting bothĤY(s = iω)
and ĤZ(s = iω) on the frequency-domain source signature
Ĵ(s = iω) and then taking the inverse Fourier transform to
obtain a modified time-domain source signature.

VII. C ONCLUSION

Space-time expressions were derived for the EM wave fields
after reflection against an imperfectly conducting surface.
The source is an impulsive horizontal electric dipole with
orientation parallel to the planar impedance wall. At the core
of tackling the canonical impedance boundary value problem
was the derivation of three space-time reflected-wave Green’s
functions. In contrast to the vertical electric dipole problem,
the coupling term in the transform-domain wave solutions
hindered direct application of the extended CdH method.
A splitting of the coupling expression via a partial-fraction
decomposition was required for the transformation back to
the time domain. Numerical results presented time traces and
spectra of the measurable reflected electric field strength.
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Fig. 2. Copper as the second medium (ε2 = ε0, σ2 = 5.96×107 Sm−1 and
τrel = 1.4856 × 10−19 s). (a)-(c) Time traces ofEref

y
(r, t) at the position

(x, y, z) = (
√

2h,
√

2h, h), with h = 2τrelc1. The source signature’s
characterization time is (a)τs = 2τrel, (b) τs = 4τrel, and (c)τs = 8τrel.
(d)-(f) Corresponding normalized magnitude spectrum ofEref

y
(r, t).

APPENDIX

A. SLOWNESS-DOMAIN REFLECTED WAVE SOLUTIONS

The slowness-domain equivalents of Eqs. (1) and (2) are
obtained first, and then reduced to second-order equations.
This yields the wave equation

−∂2
z Ẽ + s2γ2

Ẽ = −µsĴe +
1

εs
∇̃(∇̃ · Ĵe) − ∇̃ × K̂

e, (51)

for the electric field strength, and

−∂2
zH̃ + s2γ2

H̃ = −εsK̂e +
1

µs
∇̃(∇̃ · K̂e) + ∇̃ × Ĵ

e, (52)

for the magnetic field strength. The quantity

γ(α, β) = (c−2
1 + α2 + β2)1/2, (53)

denotes the vertical slowness, with Re{γ} > 0, and∇̃ is the
slowness-domain gradient operator. LetG̃inc and G̃ref denote
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the transform-domain scalar incident-wave and reflected-wave
Green’s function, respectively. Then, the solution of the ordi-
nary differential equation

−∂2
z G̃inc + s2γ2G̃inc = δ(z − h), (54)

is useful for solving the half-space problem. After some
elaboration,G̃inc and G̃ref can be written in the form
[

G̃inc

G̃ref

]

(γ, z, s) =

[

Ãinc(γ, s) exp(−sγ|z − h|)
Ãref(γ, s) exp(−sγDz)

]

, (55)

in whichDz = z+h. From Eq. (55), the property∂z → ±sγ
is obtained, which is valid forz ∈ (0, h). The plus and
minus signs correspond to the incident and reflected wave,
respectively. Next, a relation between the tangential EM field
strengths at the planar surface is derived, for which the
following decomposition is convenient,

Ẽ = [ẼTT Ẽz]
T , with ẼT = [Ẽx Ẽy]

T , (56)

H̃ = [H̃T
T H̃z]

T , with H̃T = [H̃x H̃y]
T , (57)

∇̃ = [−iskTT ± sγ]T , with kT = [α β]T . (58)

The superscriptT denotes the vector transpose operation.
Application of this decomposition at the slowness-domain
equivalents of Eqs. (1) and (2), the following relations can
be derived,

n × H̃T = ± γ

µ1

[

1

γ2
ikT

(

ikT · ẼT

)

+ ẼT

]

, (59)

ẼT × n = ± γ

ε1

[

1

γ2
ikT

(

ikT · H̃T

)

+ H̃T

]

. (60)

These are used in conjunction with the wave field decomposi-
tion in Eq. (6) and the boundary condition in Eq. (4) or (5) to
solve the impedance boundary value problem. After a lengthy
derivation, the reflected electric and magnetic field strengths
can be expressed in terms of the incident electric and magnetic
field strengths, i.e.,

Ẽ
ref
T = R̃YẼ

inc
T − 2

∆Y∆Z
c1kT(c1kT · Ẽinc

T ), (61)

H̃
ref
T = R̃ZH̃

inc
T − 2

∆Y∆Z
c1kT(c1kT · H̃inc

T ). (62)

In these expressions,

R̃Y(γ, s) = 1 − 2Ŷn/∆Y, (63)

R̃Z(γ, s) = 1 − 2Ẑn/∆Z, (64)

ares-dependent reflection coefficients, in which

∆Y(γ, s) = Ŷn(s) + c1γ, ∆Z(γ, s) = Ẑn(s) + c1γ, (65)

are denominator functions. The normal component of the
reflected wave is obtained from the transform-domain com-
patibility relations, viz.,

Ẽref
z = −γ−1ikT · Ẽref

T , H̃ref
z = −γ−1ikT · H̃ref

T . (66)

Equations (61)-(66) complete the slowness-domain solutions
for the reflected wave fields in the elementary half-space
configuration. Appendix B reviews the incident wave fields.

B. SPACE-TIME INCIDENT WAVE FIELDS

LetR0(r) = (x2+y2+ |z−h|2)1/2 > 0 denote the distance
between source and receiver, andT inc(r) = R0(r)/c1 the
arrival time of the incident wave. Let

Ginc(r, t) =
1

4πR0
H[t− T inc(r)], (67)

denote the incident-wave Green’s function. Then, the space-
time incident EM wave fields generated by an electric dipole
with orientation in thex-direction can be derived easily, e.g.,
via Eqs. (51)-(52), and are given by

Einc
x (r, t) = ε−1

1 J(t)
(t)
∗ ∂2

xGinc(r, t) (68)

−µ1∂
2
t J(t)

(t)
∗ Ginc(r, t),

Einc
y (r, t) = ε−1

1 J(t)
(t)
∗ ∂y∂xGinc(r, t), (69)

Einc
z (r, t) = ε−1

1 J(t)
(t)
∗ ∂z∂xGinc(r, t), (70)

H inc
x (r, t) = 0, (71)

H inc
y (r, t) = ∂tJ(t)

(t)
∗ ∂zGinc(r, t), (72)

H inc
z (r, t) = −∂tJ(t)

(t)
∗ ∂yGinc(r, t). (73)

The slowness-domain counterparts of these expressions are
substituted in Eqs. (61) and (62) to arrive at the slowness-
domain reflected wave fields in Eqs. (10)-(15).
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Fig. 3. Same as Fig. 2, but now for sea water as the second medium (ε2 =
81ε0, σ2 = 4.8 Sm−1 andτrel = 1.50 × 10−10 s).

C. SPECIAL CASE OF A PERFECTLY REFLECTING

IMPEDANCE WALL

For the special casesσ2 → ∞ andε2 → ∞, the impedance
wall is perfectly reflecting. In both cases,̂Yn(s) → ∞ and
Ẑn(s) → 0, with the result thatR̃Y = −1, R̃Z = 1, and
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(∆Y∆Y)−1 = 0. The solutions in Eqs. (10)-(15) become

Eref,PR
x (r, t) = −ε−1

1 J(t)
(t)
∗ ∂2

xGref,PR(r, t) (74)

+µ1∂
2
t J(t)

(t)
∗ Gref,PR(r, t),

Eref,PR
y (r, t) = −ε−1

1 J(t)
(t)
∗ ∂y∂xGref,PR(r, t), (75)

Eref,PR
z (r, t) = −ε−1

1 J(t)
(t)
∗ ∂z∂xGref,PR(r, t), (76)

Href,PR
x (r, t) = 0, (77)

Href,PR
y (r, t) = ∂tJ(t)

(t)
∗ ∂zGref,PR(r, t), (78)

Href,PR
z (r, t) = −∂tJ(t)

(t)
∗ ∂yGref,PR(r, t), (79)

in which Gref,PR(r, t) = H(t−T ref)/4πR1. Using the results
of Appendix D in [27], it can be shown that these expressions
are (apart from minus sign difference for the electric field
strength) the solutions for the wave fields in homogeneous
media. The latter was expected since the impedance wall was
assumed perfectly reflecting. This shows that Eqs. (10)-(15)
are consistent with the solutions for this special case.

D. TRANSFORMATION BACK TO THE TIME DOMAIN

With the help of Eq. (17), Eq. (27) is rewritten as

K̂Y(v, s) = exp
[

−vX̂1/2
Y (s)

]

. (80)

Next, the Schouten-Van der Pol theorem (c.f. Formula 29.3.82
in [37]) is invoked to express the r.h.s. of Eq. (80) as an integral
representation. This yields

exp
[

−vX̂1/2
Y (s)

]

=

∫

∞

w=0

Ψ(v, w) exp
[

−wX̂Y(s)
]

dw,

(81)
in which

Ψ(v, w) =
v

(4πw3)1/2
exp(−v2/4w)H(w), (82)

is the kernel function well-known from the theory of partial
differential equations on diffusion processes [38]. The r.h.s. of
Eq. (81) is now in an appropriate form for findingKY(v, t)
analytically. The time-domain counterpart of̂KY(v, s) is first
expressed as

KY(v, t) = L−1
{

exp
[

−vX̂1/2
Y (s)

]}

= (83)
∫

∞

w=0

Ψ(v, w) exp
(

−F 2w
)

L−1
{

exp
(

−wF 2τ−1
rel s

−1
)}

dw,

in which L−1 stands for the inverse Laplace transformation.
With the aid of the identity (cf. Formula 29.3.75 in [37]),

s−1 exp
(

−ks−1
)

= (84)
∫

∞

t=0

exp(−st)
{

J0

[

2(kt)1/2
]

H(t)
}

dt, k ≥ 0,

KY(v, t) is explicitly found as

KY(v, t) =

∫

∞

w=0

Ψ(v, w)
{

exp(−F 2w)δ(t)− (85)

F exp(−F 2w)

(

wτ−1
rel

t

)1/2

J1

[

2F (wtτ−1
rel )1/2

]

H(t)

}

dw,

in which J1 stands for the Bessel function of the first kind
and order one.

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

4

5

0 5 10 15 20 25 30

−4

−2

0

2

4

6

8

0 5 10 15 20 25 30
−10

−5

0

5

10

15

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
−2

10
−1

10
0

Er
e
f

y
→

Er
e
f

y
→

Er
e
f

y
→

1
0
lo

g
(|Ê
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Fig. 4. Same as Fig. 2, but now for wet soil as the second medium (ε2 =
20ε0, σ2 = 0.1 Sm−1 andτrel = 1.7708 × 10−9 s).

E. SPACE-TIME REFLECTED ELECTRIC FIELD STRENGTH

CORRESPONDING TOGref
Z

The reflected electric field strengthEref
y (r, t) corresponding

to Gref
Z (r, t) is reviewed. Similar to [27],Eref

y is written as

Eref
y (r, t) = Eref,1

y (r, t) + Eref,2
y (r, t), (86)

in which

Eref,1
y (r, t) = ε−1

1 (T ref)2∂tJ [t− T ref(r)]Gref,1;FF
Ey

(r)

+ε−1
1 T refJ [t− T ref(r)]Gref,1;IF

Ey
(r)

+ε−1
1

∫ t

τ=T ref

J(t− τ)Gref,1;NF
Ey

(r, τ)dτ, (87)

is the constant-admittance part ofEref
y , and

Eref,2
y (r, t) = ε−1

1

∫ t

τ=T ref

J(t− τ)Gref,2;NF
Ey

(r, τ)dτ, (88)

represents the dispersive part of the total-admittanceEref
y . The

RWGT components in Eqs. (87)-(88) are given by

Gref,1;FF
Ey

(r, t) = −xyG
ref,1
Z [r, T ref(r)]

R4
1

H[t− T ref(r)],

(89)

Gref,1;IF
Ey

(r, t) = H[t− T ref(r)]{x∂yG
ref,1
Z [r, T ref(r)]

R2
1

−xyG
ref,1
Z [r, T ref(r)]

R4
1

+
y∂xG

ref,1
Z [r, T ref(r)]

D2
1

}, (90)

Gref,1;NF
Ey

(r, t) = −∂x∂yGref,1
Z (r, t)H[t− T ref(r)], (91)

Gref,2;NF
Ey

(r, t) = −∂x∂yGref,2
Z (r, t)H[t− T ref(r)], (92)

in which the first two terms represent the far- and intermediate-
zone contributions, respectively, whereas the last two terms
represent the near-zone contributions toEref

y . The following
identity, cf. [27], is easily obtained

Gref,1
Z [r, T ref(r)] =

1

4πR1

[

1 − 2

F cos(θ) + 1

]

, (93)
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from which the expressions

∂xG
ref,1
Z [r, T ref(r)] =

x

4πR3
1

{

2

[F cos(θ) + 1]2
− 1

}

,

∂yG
ref,1
Z [r, T ref(r)] =

y

4πR3
1

{

2

[F cos(θ) + 1]2
− 1

}

,

∂zG
ref,1
Z [r, T ref(r)] =

F + cos(θ)

2πR2
1[F cos(θ) + 1]2

− cos(θ)

4πR2
1

, (94)

are derived.
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