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Abstract 

The structure of Eu
2+

 monomer centers in CsBr single crystals is investigated using electron 

paramagnetic resonance (EPR) spectroscopy. These centers are produced by heating the 

melt-grown crystals above 600 K in vacuum followed by a rapid quench to room 

temperature (RT) or 77 K. The angular dependence of their EPR spectrum demonstrates that 

these centers have cubic symmetry. At RT the EPR spectrum decays by aggregation of the 

Eu
2+

 ions. This strongly contrasts with the situation for CsBr:Eu Needle Image Plates 

synthesized by physical vapor deposition, where the Eu
2+

-related EPR spectrum was 

observed to exhibit long-term stability at RT. 
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I. Introduction 

It is well known that in alkali halides (AX) many divalent cations (M
2+

) aggregate at ambient 

temperature, these include Pb
2+

,
1,2 the transition metal ions Mn

2+
 
3,4

 and Fe
2+

,
5
 and the rare-

earth ions Sm
2+

, Eu
2+ 

and Yb
2+

.
6,7

 Very often, these divalent ions have a cation vacancy (VA) in 

their direct vicinity which preserves charge compensation. Attraction between the electric 

dipoles M
2+

A–VA  is considered to be the driving force for the aggregation, while vacancies 

assure the mobility of the impurity ions. In many cases, the initial decay kinetics of the dipole 

monomer centers were observed to be of third order, suggesting the formation of M
2+

A–VA  

trimers as a first step in the aggregation process.
3,7

 Direct trimer formation seems very 

unlikely, in view of the low probability of coincidence for three M
2+

A–VA dipoles. However, 

Crawford demonstrated that a monomer dipole decay proportional to the third power of the 

monomer concentration is observed if trimers are formed by capture of dipole monomers by 

dimers, in which the monomers exhibit low binding energy.
8
 For many M

2+
 impurity – AX 

host combinations the location of the VA could be determined from the symmetry of the 

defect, as established from angular dependent electron paramagnetic resonance (EPR) 

studies on single crystals. Such experiments demonstrated that several vacancy 

configurations may coexist and that charge compensation of divalent substitutional 

impurities in alkali halides is not necessarily local (see e.g. also Rh
2+

 in NaCl
9,10

 and AgCl
11

). 

Among these systems, CsBr:Eu has regained interest in the past decade. Since the late 1990’s 

research efforts have been directed towards the development of a CsBr:Eu
2+

 based X-ray 

storage phosphor for medical image plates (IPs) in computer radiography, that would solve 

the resolution problems of the BaFBr:Eu
2+

 powder IPs, while maintaining high sensitivity. It 

was found that thermal evaporation of CsBr:Eu
2+

 on an Al substrate may result in oriented 

needle growth (needle image plate, NIP), with needles only a few µm in diameter and up to 

several 100 µm in length, matching resolution and sensitivity requirements.
12-14

 This in itself 

is quite remarkable, as melt-grown Eu
2+

 doped single crystals perform rather poorly as 

photo-stimulated luminescence (PSL) phosphors. Our EPR investigation of NIPs 

demonstrated that they exhibit a Eu
2+

-related spectrum which can be detected at room 

temperature (RT), and whose intensity is correlated with the sensitivity of the plate.
15,16

 

While at RT the spectrum can be interpreted as being due to a single type of Eu
2+

 centers 

with axial symmetry around a <100> axis, below 20 K the spectrum exhibits two 

contributions due to axial and orthorhombic centers, occurring in a fixed ratio.
17

 A detailed 

electron nuclear double resonance (ENDOR) study revealed the presence of a H2O (or OH
-
) 

molecule in the close vicinity of the Eu
2+

 ion, and a model was proposed in which a cesium 

vacancy (VCs) accounted for the occurrence of two distinct centers at low temperature in a 

fixed ratio (immobile VCs) while only one type of centers is observed at high temperature (VCs 

bound to the complex, but free to move around it).
18

  

Like the PSL properties, also the EPR spectra of NIPs and melt-grown single crystals of 

CsBr:Eu differ substantially. In previous reports, no Eu
2+

-related EPR spectra had been 
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detected in as-grown single crystals,
19

 which was attributed to the aggregation of Eu
2+

 ions in 

CsBr forming diamagnetic pairs or larger clusters. Even earlier, Savel’ev et al.
7
 had shown 

that Eu
2+

 ions in CsBr qualitatively exhibit the same behavior as in the rock-salt type alkali 

halides : an EPR spectrum exhibiting a hyperfine structure typical for a natural abundant 

mixture of 
151

Eu/
153

Eu is produced after quenching the crystals from T > 600 K to 77 K, but it 

decays at RT following third-order kinetics in the early stage. Hence, the isolated Eu
2+

 centers 

were assumed to be Eu
2+

-VCs dipoles, although, unlike for the centers with a nearest 

neighbor VA in the NaCl-type lattices,
6
 no angular dependent EPR spectra were presented, 

specifying the position of the vacancy.  

This paper is devoted to a study of the angular dependence of the EPR spectrum of these 

quenched-in Eu
2+

 centers in CsBr crystals. It is further organized as follows. In Section III.A 

the EPR spectrum of isolated Eu
2+

 centers in CsBr single crystals is introduced and its limited 

stability at RT is examined, while in Section III.B the symmetry of the center is determined, 

resulting in a defect model. The implications for the aggregation mechanism for the Eu
2+

 ions 

is discussed in Section IV. Sections II and V present experimental details and conclusions, 

respectively. 

 

II. Experimental 

A. Crystal growth and preparation 

CsBr:Eu single crystals were grown using the vertical Bridgman technique from CsBr (8.37 g, 

Sigma-Aldrich, 99.9% purity) and the Eu-dopant Cebla (CsEuBr3, 0.11g). The powders were 

mixed in a grinder, transferred in a quartz ampoule (6 mm inner diameter) and dried in 

vacuum at 540 K during 3 days. The evacuated quartz ampoule was fused and heated to 970 

K during 4 h before growth (Carbolite two-zone furnace, upper hot zone at 940 K, lower cold 

zone at 850 K, ampoule lowered at 2 mm/h) in order to obtain a homogeneous melt. After 

growth, the oven was cooled to RT during 1 day. Undoped crystals grown in this way were 

clear, transparent and showed no visible evidence of defects (twinning, cracks). The doped 

crystal was slightly opaque and exhibited a faint yellow color. It had a central inhomogeneity 

indicating segregation of the dopant. Under UV illumination it exhibited homogeneous 

blue/purple Eu
2+

-related luminescence (see figure 1, picture of the crystal in ambient light, 

under UV excitation, emission spectrum).  

Samples of appropriate size for X- (2x2x4 mm
3
) and Q-band (1x1x2 mm

3
) measurements at 

microwave frequencies (νµw) of 9.5 and 34.0 GHz, respectively, were cut from the as-grown 

single crystal using a diamond wire saw and oriented with their long axis parallel to a 

crystallographic <110> direction by inspection of pole figures on a Bruker D8 θ-θ X-ray 

diffractometer, with an accuracy of a few degrees. The actual orientation of the samples was 

determined by fitting the angular dependence of the EPR spectra. The samples were 

transferred into quartz tubes which were evacuated and sealed. These tubes were annealed 



4 

 

in a preheated oven at 600-840 K typically for 30 min., then quenched to RT or 77 K, and 

rapidly (within 5 min.) mounted on the EPR sample holders without raising their 

temperature.  

 

B. EPR measurements and analysis 

EPR spectra were recorded in X-band using a Bruker ESP300E EPR spectrometer, with the 

standard rectangular EPR cavity ER4102ST (TE102 mode) fitted to an ESR910 Oxford 

continuous flow He cryostat, and in Q-band with a Bruker ElexSYS E500 spectrometer with 

an ENDOR cavity (ER5106QT-E, TE013) and a CF935 continuous flow He cryostat. Field 

modulation was employed at 100 kHz with an amplitude of 0.3 to 0.5 mT. In order to avoid 

aggregation of centers
7
 during the lengthy recordings of the angular dependence of spectra, 

these were performed at 20 K and low microwave power (160 µW).  The spectra could, 

however, easily be recorded, with virtually no loss of information, at temperatures up to 80 

K and microwave powers of the order of a couple of mW. At RT the spectra exhibit excessive 

broadening which prevents a detailed angular dependence study, and in addition, the 

intensity slowly decays.  

Spectrum simulations and fittings were performed using the EasySpin routines in Matlab.
20

 

The usual spin Hamiltonian (SH) for Eu
2+

 centers (
8
S7/2 ground state, S = 7/2) was used,

21
 

which for each of the magnetic Eu isotopes (I(
151/153

Eu) = 5/2) takes the form 

 ( ) ( )k
A q q A A

S B k k
k 2,4,6 q k

ˆ ˆ ˆ ˆˆĤ Eu g B S B O S S A I
= =−

= µ ⋅ + + ⋅ ⋅∑ ∑
r r r tr r

 (1) 

with A = 151,153. The first term in the spin Hamiltonian represents the electronic Zeeman 

interaction, here assumed to be isotropic, which is a good approximation for S-state ions. 

The second term parameterizes the Zero Field Splitting (ZFS), with ( )q
k

ˆÔ S
r

 representing the 

non-normalized extended Stevens operators
20,22

 associated with the coefficients q
kB  which 

are real and given in MHz. The last term represents the hyperfine (HF) interaction of the 

unpaired electrons with the central Eu nucleus. For simulations the weighed sum of the 

spectral components corresponding to the two isotopes was calculated, explicitly taking into 

account the known ratios for the HF constants and natural abundances of the isotopes 

(A(
151

Eu)/A(
153

Eu) = gN(
151

Eu)/gN(
153

Eu) = 1.3887/0.6130, 47.81 % 
151

Eu and 52.19 % 
153

Eu).
23
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III. Results 

A. Effect of annealing, quenching and aggregation 

In Fig. 2, the EPR spectra of as-grown crystals, stored for a long time in a low humidity 

environment at RT, and immediately after heating to 840 K and quenching to RT are 

compared. In both cases the spectra are recorded at RT and at 80 K. It is interesting to note 

that for crystals annealed to 700 K (or higher) in air, even after rapid quench to RT or 77 K, 

no EPR spectrum is observed, indicating that during this anneal Eu
2+

 is oxidized to the EPR 

silent Eu
3+

 state. In line with previous EPR reports
19

 on Eu
2+

-doped CsBr crystals, we do not 

observe a Eu
2+

-related signal in as-grown crystals, but a long time after a previous annealing-

quenching cycle, the signal in Fig. 2a was recorded at RT. The structure observed in this 

spectrum can be attributed to HF interaction with the magnetic Eu isotopes.  

A sharp line in the spectra (indicated with an asterisk), probably related to an intrinsic defect 

in CsBr, strongly grows in relative intensity when the recording temperature is lowered from 

RT to 80 K Fig. 2b. The spectra (a) and (b) exhibit only small variations when the crystal is 

rotated in the magnetic field. Inspired by previous reports on Eu
2+

 in CsBr
7
 and alkali halides 

of the rock salt type (see Ref. 6 and references therein), we assume this signal is due to 

aggregated Eu
2+

 in these crystals. 

After heating to 840 K for 30 min. and quenching to RT or slightly below (273 K, ice-water 

temperature) the EPR spectrum recorded at RT (Fig. 2c) still roughly exhibits the same 

structure (and angular dependence), although the HF pattern is more pronounced. When 

the sample is kept at RT, the spectrum experiences an important decay in the first few hours  

and evolves to its stable state (see further in this section). If the spectrum after annealing 

and quenching is recorded at lower temperature (80 K, here, Fig. 2d), it looks substantially 

different. It consists of a large number of sharp and intense lines. In this respect, it better 

resembles the spectra of Eu
2+

 centers observed in the alkali halides of the rock salt type.
6
 

The twelve central, most intense lines result from the HF split MS : −1/2 → +1/2 allowed EPR 

transition. A detailed study of the angular dependence of the spectrum (Section III.B) 

demonstrates that all other lines in Fig. 2d belong to the other allowed EPR transitions of the 

same Eu
2+

 center. 

In Fig. 3a selected spectra from the time-evolution at RT of the EPR spectrum after annealing 

to 840 K and quenching to RT are shown. It is clear that a component exhibiting pronounced 

HF splitting disappears from the spectra in the first few hours. In Fig. 3b the decay of the 

signal height at a magnetic field of 1215 mT is presented. In view of the scatter on the data, 

it is not evident to establish the decay profile in an unambiguous way from the spectral time 

evolution at a single magnetic field, however. Figure 4 shows the time evolution of the 

double integrated spectra (total intensity), these allowed the fitting to various decay profiles 

: exponential decay, pair recombination, recombination by formation of trimers.  
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These results suggest that in the later stage (after 1500 – 2000 s or 0.5 h) the decay is in a 

good approximation exponential, with a time constant of about 5500 s (92 min, 1.5 h, see 

red full line as guide for the eye). There is a marked deviation in the first half an hour, which 

may simply be the result of an additional fast exponential component. Figs. 4b and 4c, 

however, indicate that initial recombination in pairs or in triples, may also explain the fast 

intensity decay immediately after the quench. In this respect the results are in qualitative 

agreement with those of Savel’ev et al. who proposed trimer formation as primary step in 

the aggregation of Eu
2+

 ions in CsBr.
7
 We assume that the same, or at least very similar, Eu

2+
 

centers are involved in our study. The relative contributions of distinct components in the 

kinetics very probably depend on details of the crystal growth, the doping, and the anneal 

and quenching. 

 

B. Low temperature spectrum and model of the dominant Eu
2+

 center 

To understand the aggregation mechanism of Eu
2+

 ions in CsBr, detailed knowledge of the 

structure of the Eu
2+

 monomer centers is a prerequisite. In the rock-salt type AX lattices, the 

model of a nearest-neighbor Eu
2+

-VA <110> dipole is well-established from angular 

dependent EPR measurements.
6
 In CsBr a similar <110> dipole was proposed as a model, 

although in this case this implies that Eu
2+

 and the VCs occupy next-nearest-neighbor cation 

positions.
7,24

 This identification is to the best of our knowledge not supported by EPR 

spectral evidence. Even in a more recent EPR study,
25

 the proximity of a VCs to the Eu
2+

 ions 

is assumed for explaining the aggregation of these ions, but in view of the complexity of the 

spectra, no definite position for this vacancy is proposed. In fact, it is even suggested that 

several Eu
2+

 centers with VCs at different positions contribute to the spectrum. 

In Fig. 5 the angular dependences recorded at 20 K in {110} planes for crystals annealed at 

840 K during 30 min. and quenched to 77 K, in X-  (Fig. 5 a) and Q-band (Fig. 5b) are 

presented. The angular pattern in the two figures is strikingly similar, and, as demonstrated 

by simulations, can be completely explained by a single type of cubic centers with S = 7/2. 

For each magnetic field orientation 7 HF packets of 12 lines (two isotopes with I = 5/2) are in 

principle expected. The observed number of lines in the spectra is much smaller, on the one 

hand because the HF packets overlap, and on the other because the outer packets are 

broadened. In order to reveal the origin of this line broadening, simulations of the <100> 

spectrum have been performed. The results are summarized in Fig. 6. 

Fig. 6a shows the experimental spectrum and that in Fig. 6b is calculated using the SH 

parameters from Table 1 and a residual line width (full width at half maximum, FWHM) of 

0.8 mT.  In the experimental spectrum the EPR lines corresponding to the HF packets 1, 2, 6 

and 7 are much less pronounced than those for 3, 4 and 5, which is not the case in the 

simulation 6b. One might consider that the spin of the system is 3/2 rather than 7/2 as an 

explanation for this remarkable observation, but, in this case cubic ZFS parameters have no 
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influence on the energy levels and axial parameters B�
�

 have to account for the angular 

dependence of the spectrum. This leads to a lowering of the symmetry of the paramagnetic 

center and the observation of several symmetry related paramagnetic centers, which were 

not detected. Simulations of the roadmaps for the center with spin S=3/2 with various B�
�

 

combinations also demonstrated that the angular dependence of the EPR line positions is 

completely different in this case. 

A more plausible explanation for the broadening of the outer transitions is that, due to a 

distribution of distant crystal imperfections, a distribution occurs in the ZFS parameters B�
�

. 

In Figure 6c the simulated EPR spectrum of the cubic Eu
2+

 center is presented taking into 

account a Gaussian distribution of the B�
� parameter with a FWHM of 33	kHz. This 

simulation already reproduces the experimental spectral line heights and widths much 

better. The remaining difference between experimental and simulated spectra is most 

probably caused by the more complex way in which random crystal imperfections affect the 

ZFS parameters and a distribution of B�
�

 and B�
�

 may also have to be taken into account. For 

instance, the deviation between experimental and simulated spectra is even considerably 

smaller if a Lorentzian distribution in the 
�
� parameter with maximum at  B�

� = 0	MHz and a 

FWHM of 4.38 MHz is applied (Figure 6d). The origin of such a distribution is not clear at this 

moment, but a distribution of distant lattice defects, e.g. VCs, presents a plausible 

explanation. 

 

IV. Discussion : implications for the aggregation mechanism 

In view of the earlier reports on Eu
2+

 centers in CsBr, our result that the symmetry of these 

centers is cubic is highly surprising. Hence we verified that the same angular dependence is 

recorded, without notable appearance of other spectral components, when varying the 

experimental conditions in the following ways : 

1. After subsequent annealing to temperatures up to 300 K 

2. When the sample is quenched to 300 K or 273 K instead of to 77 K 

3. When the annealing temperature is lower, e.g. 620 K rather than 840 K. 

Differences with recently reported results,
25

 where relatively low annealing temperatures 

were applied, are difficult to explain. They might be related with crystal quality (which might 

lead to additional broadening of the transitions other than −1/2 → +1/2), annealing 

atmosphere (not mentioned in Ref. 25, in air Eu
3+

 is produced above 700 K, at lower 

temperatures maybe other species) or EPR recording temperatures and powers. Concerning 

the latter, we did, indeed, observe that at 10 K the spectra strongly saturate, even at powers 

of only a few 100 µW.  

In any case, our results demonstrate that the dominant EPR observable monomer Eu
2+

 

species in CsBr has cubic symmetry. This either implies that no vacancy is present in the first 
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few cation shells around the Eu
2+

 ion that would lower the symmetry, or that even at 

temperatures down to 20 K such a vacancy is so mobile that it freely hops between various 

neighboring positions around the divalent cation. The latter possibility can practically 

certainly be excluded, in view of earlier dielectric loss and thermally stimulated current 

experiments on divalent cation doped CsBr.
26,27

 From these experiments activation energies 

and frequency factors for cation vacancy movement were estimated at ~0.6 eV and ~10
10

 Hz, 

respectively, implying freeze-out of the vacancy mobility below 200 K. Hence, we conclude 

that the dominant fraction of isolated Eu
2+

 centers in CsBr has no charge compensating VCs in 

its first few surrounding shells.  

Although the EPR results strongly indicate that after dispersion Eu
2+

 ions have no VCs in their 

direct vicinity, aggregation of these centers at RT (see Section III.A) is hard to imagine if no 

cation vacancies are involved. Nevertheless, in none of our experiments we could observe 

centers with lower than cubic symmetry, even when the crystal was annealed for a 

considerable time to RT, and a notable decay of the Eu
2+

 EPR signal intensity was observed. 

The detection of centers with VCs in their direct vicinity may be hampered if the distribution 

in their ZFS parameters are even larger than for the cubic center, although one would still 

expect the −1/2 → +1/2 transition not to be strongly affected by such a distribution. An 

interesting alternative explanation for these observations is that in the aggregation process 

the trapping of a VCs is the rate determining step. This hypothesis implies that after Eu
2+

Cs-VCs 

dipole formation, the migration of such a dipole to others (forming dimers, trimers, clusters 

or new crystal phases) is virtually instantaneous. Hence, one would expect the activation 

energy of aggregation to be close to that of VCs migration through CsBr, although the 

frequency factor may be largely different. Our attempts to measure the intensity decay of 

the EPR spectrum as a function of temperature did not allow us to determine the activation 

energy, though, most probably related to uncertainties in the sample temperature control 

and measurement.  

 

V. Conclusions 

CsBr:Eu single crystals grown from the melt and NIPs differ substantially with respect to Eu
2+

 

incorporation. In single crystals isolated Eu
2+

 ions are only produced when aggregates are 

dispersed at elevated temperature while oxidation is prevented (e.g. by heating in vacuum). 

They are frozen in by rapidly quenching the crystal to room or lower temperature. At RT the 

EPR spectrum of Eu
2+

 ions is observed to decay as a result of reaggregation of the ions. In 

agreement with literature, a fast and a slow component are discerned in this decay. 

Surprisingly, only Eu
2+

 centers with cubic symmetry were detected with EPR, either 

suggesting that Eu
2+

-VCs dipoles cannot be observed with EPR or that VCs capture by a 

substitutional Eu
2+

 ion is the rate-determining step in the aggregation. NIPs, on the other 

hand, which exhibit a much stronger PSL response to X-ray exposure, have a Eu
2
-related EPR 

spectrum with long-term stability at RT. Our earlier EPR and ENDOR studies have shown that 
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in these centers the Eu
2+

 ion has a H2O (or OH) molecule in its direct vicinity and most 

probably also a VCs. The stability of these centers is most likely a direct consequence of this 

particular structure.  
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FIGURES 

 

 

 

 

 

Figure 1 : Undoped (a,c) and Eu
2+

 doped (b,d) melt-grown CsBr crystals under ambient (a,b) 

and UV (c,d) light, (e) emission spectrum of the CsBr:Eu
2+

 crystal under UV (360 nm) 

excitation. 
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Figure 2 : Q-band EPR spectra of (a,b) CsBr:Eu
2+

 crystals stored for a long time at RT and 

(c,d), a short time after heating to 840 K and quenching to 273 K. Spectra (a,c) are recorded 

at 265 K and (b,d) at 80 K. The line marked with an asterisk is not (directly) related to Eu
2+

 

ions. 
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Figure 3 : Decay at RT of the intensity of the cubic Eu
2+

 Q-band EPR spectrum in melt-grown 

CsBr:Eu single crystals, after heating to 840 K and quenching to RT. (a) Selected EPR spectra 

recorded at different times after quench (measurement starts approximately 300 s after the 

quench. (b) Time-dependence of the signal height at B = 1215 mT, marked with an arrow in 

(a).  
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Figure 4 : Representations of the time evolution of the total intensity (I(t)) of the EPR 

spectrum of isolated Eu
2+

 in CsBr (intensity of last spectrum in the time evolution subtracted) 

after heating to 840 K and quenching to RT, for testing various decay models.  

(a) ( ) ( )( )ln I 0 / I t  : exponential decay modeled by ( ) ( )dI t dt I t= −α  

(b) ( ) ( )( )I 0 / I t 1−  : decay by pair formation modeled by ( ) ( )2dI t dt I t= −α  

(c) ( ) ( )( )2
I 0 / I t 1−  : decay by trimer formation modeled by ( ) ( )3dI t dt I t= −α
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Figure 5 : Angular dependence of the EPR spectrum, recorded at 20 K, of the dominant, cubic 

Eu
2+

 center produced in melt-grown CsBr:Eu single crystals by heating to 770-840 K and 

quenching the crystal to 300 K or 77 K, (a) in X-band (9.57 GHz) and; (b) in Q-band (33.99 

GHz). Open square symbols represent experimental resonance positions and full lines 

simulations for the two Eu isotopes (red 
151

Eu, blue 
153

Eu), using the spin Hamiltonian 

parameters in Table 1. 
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Figure 6 : Experimental EPR spectrum and simulations of the cubic Eu

2+
 spectrum produced in 

melt-grown CsBr:Eu single crystals by heating to 840 K and quenching the crystal to 77 K. (a) 

Q-band spectrum recorded at 80K in the <100> orientation and at νµw = 33.98 GHz. (b) 

Simulated spectrum of cubic Eu
2+

 without distribution in the ZFS parameters. (c) and (d) Same 

as (b) but with a Gaussian distribution in  
�
� around  363	��� with ���� = 33	���  and a 

Lorentzian distribution in 
�
� around 0 MHz with ���� = 4.38	���, respectively. The 

labeling of the transitions is as follows :  1: -7/2 → -5/2, 2: -5/2 → -3/2, 3: -3/2 → -1/2, 4: -

1/2 → +1/2, 5: +1/2 → +3/2, 6: +3/2 → +5/2, 7: +5/2 → +7/2. 
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Table 1 : Spin Hamiltonian parameters for the cubic Eu
2+

 center produced in melt-grown 

CsBr:Eu single crystals by heating to 770-840 K and quenching the crystal to 300 K or 77 K, 

determined by fitting the angular dependence of the EPR spectra recorded at 20 K. Subscripts 

indicate the error in the least significant digit. 

 

g (dimensionless) 1.9931 

A(
151

Eu) (MHz) -92.92 

B4
0
 (MHz) 0.3636 

B6
0
 (kHz) -0.442 

  

 


