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Abstract. We perform a bifurcation analysis of a discrete predator-prey
model with Holling functional response. We summarize stability condi-
tions for the three kinds of fixed points of the map, further called F1, F2

and F3 and collect complete information on this in a single scheme. In
the case of F2 we also compute the critical normal form coefficient of the
flip bifurcation analytically. We further obtain new information about bi-
furcations of the cycles with periods 2, 3, 4, 5, 8 and 16 of the system by
numerical computation of the corresponding curves of fixed points and
codim-1 bifurcations, using the software package MatContM. Numer-
ical computation of the critical normal form coefficients of the codim-2
bifurcations enables us to determine numerically the bifurcation scenario
around these points as well as possible branch switching to curves of
codim-1 points. Using parameter-dependent normal forms, we compute
codim-1 bifurcation curves that emanate at codim-2 bifurcation points
in order to compute the stability boundaries of cycles with periods 4, 5,
8 and 16.

1 Introduction

Interactions of different species may take many forms such as competition, pre-
dation, parasitism and mutualism. One of the most important interactions is
the predator-prey relationship. The dynamic relationship between predator and
prey is one of the dominant subjects in mathematical ecology due to its universal
existence and importance. For more details on different types of predator-prey
systems we refer to [5] and the references cited therein. How predators respond
to changes in prey availability (functional response) is an issue of particular im-
portance. A functional response specifies the rate at which prey are consumed,
per predator, as a function of the prey density. The type of functional response
specified can greatly affect model predictions, see [20, 6].

⋆ Corresponding author.



Three general forms of functional response are commonly used in ecological
models namely linear, hyperbolic, and sigmoidal. The linear functional (Lotka-
Volterra) response specifies a directly proportional relationship between the con-
sumption rate of an individual predator and the density of its prey. Holling [11]
extended this to include a cap or limitation (Holling’s type I), where there is an
abrupt upper threshold representing predator satiation. The hyperbolic (respec-
tively, sigmoid) functional response, most commonly known as Holling’s type II
(respectively type III) function, incorporate search rate and predator handling
time to produce a smooth asymptotic curve.

Discrete-time predator-prey models go back at least to [21] where the clas-
sical discrete-time Lotka-Volterra model is introduced. They are further studied
by many authors, see [4, 13, 14, 16, 22, 23, 25, 27–29]. For example, Sacker and von
Bremen [27] propose a biological model for the genetic reproductive process and
compute some invariant curves explicitly. Four typical discrete-time ecosystem
models under the effects of periodic forcing have been studied in [28]. In a sim-
ple discrete-time predator-prey model with Holling’s type I functional response,
chaotic dynamics can occur [3].

In this paper we consider the general case of a discrete-time predator-prey
system with Holling type II response. Our model is equivalent to model (30) in
[25] and therefore to a special case of a model in [10] which itself is a discretization
of a system studied in [26].

In [1] and [15] the same model is studied and we follow their notation. The
main differences with these papers are that (a) we focus on results that have an
immediate ecological meaning, (b) that we consider not only the map but also
its iterates so that periodic orbits come into the picture much more prominently,
and (c) that we rely heavily on advanced numerical methods, namely numerical
continuation to obtain results that cannot be obtained analytically.

Point (a) means, for example, that we are interested mainly in stability and
instability of fixed points of the map and its iterates. Contrary to what is done
in [1, 15], the linear nature of the fixed points is of little interest to us. This leads
to a simple classification of the stability and instability regions of all fixed points
of the map that can be summarized in a global picture (Figure 2).

For (b) we remark that the only numerical illustrations in [1, 15] are orbit
simulations. This does not allow to compute stability boundaries numerically.

In Section 2 we introduce the model and discuss the stability and bifurcations
of its fixed points. We derive analytically the stability regions of all types of fixed
points and their bifurcation behaviours. Moreover, we compute analytically the
critical normal form coefficients in the case of the period doubling bifurcation to
prove supercriticality. These results correct those in [1] and are consistent with
those of [15]. In the degenerate case where the functional response reduces to a
mass-action law, they were already obtained in [25, 23].

In Section 3 we numerically compute curves of codim-1 bifurcations and the
critical normal form coefficients of codim-2 bifurcation points, using theMatlab

toolbox MatContM [8, 9]. These tools enable us to compute stability bound-
aries of different cycles. In particular, we determine the bifurcation scenario of
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the map near an R4 resonance point, which involves stable and unstable 4-cycles
as well as 8-cycles and 16-cycles. As an example of the power of the numerical
methods we compute a region where a stable 8-cycle coexists with a stable 4-
cycle. As another application we compute a branch of neutral saddle 3-cycles.
We furthermore compute an Arnol’d tongue of period 5 and so find a parameter
region where stable period-5 cycles exist.

In Section 4 we summarize our results and draw some conclusions.

2 Holling type II predator-prey system, existence and

stability of its fixed points

The Lotka-Volterra predator-prey system (see e.g. [7, 17, 29, 30]) is a fundamen-
tal population model. More realistic predator-prey systems were introduced by
Holling [11] using the three kinds of functional responses for different species
to model the phenomena of predation. We first mention the continuous-time
predator-prey model studied in [12] and later studied in a discretized version in
[1]:

ẋ(t) = α0x(1− x)− α
mxy

1 + ǫx
,

ẏ(t) =

(

mx

1 + ǫx
− β

)

y,
(1)

where α0,m, α, β and ǫ > 0 are parameters and x(t), y(t) represent the densities
of the prey and the predator, respectively. α0 is the intrinsic growth rate of the
prey, m is a mass-action law constant, ǫ is a limitation parameter of the growth
of the predator population for increasing prey density, ax(1 − x) is a logistic
function and mxy

1+ǫx
is the Holling type II functional response, β and α denote the

death rate of the predator and conversion, respectively.
In the case of a predator-prey system with non-overlapping generations this

can be replaced by a discrete system

F :

(

x
y

)

7→
(

ax(1− x)− bxy
1+ǫx

dxy
1+ǫx

)

, (2)

where a, b, d are nonnegative parameters and ǫ > 0. This model was studied in
[1, 15]. We note that the parameter b can be absorbed by rescaling y. Thefore
this is, from a bifurcation point of view, a three-parameter problem and we will
indeed see that b does not appear in any bifurcation equations.

The bifurcation analysis of (2) naturally starts with fixed points. The fixed
points of (2) are the solutions (x∗, y∗) to

ax∗(1− x∗)− bx∗y∗

1 + ǫx∗
= x∗,

dx∗y∗

1 + ǫx∗
= y∗.

The origin F1 = (0, 0) is always a fixed point of (2). Two further fixed points of
the system are given by F2 = (a−1

a
, 0) which is biologically possible for a ≥ 1
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and

F3 =

(

1

d− ǫ
,

d

d− ǫ

(

a

b

(

1− 1

d− ǫ

)

− 1

b

))

. (3)

We note that F3 is biologically possible if its coordinates are nonnegative, i.e.,

a > 1,
d ≥ ǫ+ a

a−1 .
(4)

We start the local bifurcation analysis of the map (2) by linearization of F
around each of its fixed points. The Jacobian matrix J(x, y) is given by:

J(x, y) =

(

a(1− 2x)− by
(1+ǫx)2 − bx

1+ǫx
dy

(1+ǫx)2
dx

1+ǫx

)

. (5)

The characteristic equation of J(x, y) is given by

λ2 − tr(J)λ+ det(J) = 0, (6)

where tr(J) = a(1− 2x)− by
(1+ǫx)2 + dx

1+ǫx
and det(J) = adx(1−2x)

1+ǫx
.

2.1 Stability of F1

Proposition 1. The fixed point F1 is asymptotically stable for 0 ≤ a < 1. It
loses stability via branching for a = 1 and there bifurcates to F2.

Proof. Eigenvalues of the Jacobian at F1 are a and 0. So F1 is stable if a < 1
and loses stability at a = 1. It remains to show that F1 bifurcates to F2 at a = 1.
To do this we consider the matrix (Fx − I|Fa), evaluated at F1:

(

a− 1 0 0
0 − 1 0

)

. (7)

When a = 1, this matrix is clearly rank deficient. We choose vectors φ1 and φ2
which form a basis for the null space of J(F1) and a vector ψ that spans the null
space of J(F1)

T . A possible choice is:

φ1 = (
1√
2
, 0,

1√
2
)T , φ2 = (1, 0, 0)T , ψ = (1, 0)T .

Now we consider the algebraic branching equation (ABE), see [8],

c11α
2 + 2c12αβ + c22β

2 = 0, (8)

where cjk =< ψ,F 0
Y Y φjφk > for j, k = 1, 2. Here the 2 × 3 × 3 tensor F 0

Y Y of
second derivatives of F with respect to the three variables x, y, a taken at (0, 0)
is given by:

F 0
Y Y (:, :, 1) =

(

−2a −b 1
0 d 0

)

, (9)
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F 0
Y Y (:, :, 2) =

(

−b 0 0
d 0 0

)

, (10)

F 0
Y Y (:, :, 3) =

(

1 0 0
0 0 0

)

. (11)

We obtain c11 = −2a+2
2 , c12 = −2a+1√

2
, c22 = −2a. For a = 1, we obtain c11 = 0.

So the discriminant of (8) is ∆ = c212 − c11c22 = c212 = 1
2 > 0.

If Y (s) is any branch of fixed points of (2) with Y (s0) = (0, 0, 1), then its
derivative Ys(s0) can be written as Ys(s0) = αφ1+βφ2 where α and β are scaled
roots of (8). We find

Y1s = (
1√
2
, 0,

1√
2
)T , Y2s = (0, 0, 1)T .

The branch X(s) = (0, 0, s) of F1-equilibria has unit tangent vector Xs =
(0, 0, 1)T , i.e. Y2s. Differentiation of the branch of F2-equilibria w.r.t the pa-
rameter a leads to the vector ( 1

a2 , 0, 1)
T . When a = 1, the scaled tangent vector

to this branch of is ( 1√
2
, 0, 1√

2
)T , i.e. Y1s. ⊓⊔

2.2 Stability of F2

The Jacobian matrix of (2) at F2 is given by

J(F2) =

(

2− a b(1−a)
a+ǫ(a−1)

0 d(a−1)
a+ǫ(a−1)

)

. (12)

Proposition 2. The fixed point F2 is asymptotically stable iff a ∈]1, 3[ and d <
ǫ+ a

a−1 . Moreover, it loses stability:

(i) via branching for a = 1 and there bifurcates to F1.
(ii) via branching for d = ǫ+ a

a−1 and there bifurcates to F3 if 1 < a < 3.

(iii) via a supercritical flip for a = 3 if d < ǫ+ 3
2 .

Proof. The eigenvalues of J(F2) are λ1 = 2 − a and λ2 = d(a−1)
a+ǫ(a−1) . The fixed

point F2 is asymptotically stable iff |λ1| < 1 and |λ2| < 1, i.e. iff a ∈]1, 3[ and
d < ǫ+ a

a−1 .
Boundary points of the stability region must satisfy one of three conditions:

a = 1, d = ǫ+ a
a−1 , or a = 3.

In the first case the conditions d < ǫ+ a
a−1 and a < 3 are satisfied for nearby

values a > 1, hence this is a real stability boundary. In Proposition 1 we proved
that this is a branch point and the new branch consists of F1 points.

In the second case this is a stability boundary only if 1 < a < 3. The Jacobian
(12) then has an eigenvalue +1 and it is checked easily that these boundary points
are also F3 points.

In the third case, this is a stability boundary only if d < ǫ + 3
2 . In this

case λ1 = −1 which means that F2 loses stability via a period doubling point.
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For supercriticality of the period doubling point it is sufficient to show that the
corresponding critical normal form coefficient b,

b =
1

6

〈

p, C(q, q, q) + 3B(q, (I −A)−1B(q, q))
〉

, (13)

derived by center manifold reduction is positive, see [19], Ch. 8 and [8]. Here
A = J(F2), and B(., .), C(., ., .) are the second and third order multilinear forms
respectively, and p and q are the left and right eigenvectors of A for the eigenvalue
−1, respectively. These vectors are normalized by 〈p, q〉 = 1, 〈q, q〉 = 1, where
〈..〉 is the standard scalar product in R

2. We obtain:

q =

(

q1
q2

)

=

(

1
0

)

, (14)

and

p =

(

p1
p2

)

=

(

1
2b

3+2(d+ǫ)

)

. (15)

The components of the multilinear form B(q, q) are given by:

[B(q, q)]1 =

2
∑

j,k=1

∂2
(

ax(1− x)− bxy
1+ǫx

)

∂xj∂xk
qjqk = −2a = −6, (16)

[B(q, q)]2 =

2
∑

j,k=1

∂2
(

dxy
1+ǫx

)

∂xj∂xk
qjqk = − 2dyǫ

(1 + ǫx)3
= 0, (17)

where the state variable vector is for ease of notation generically denoted by
(x1, x2)

T instead of (x, y)T .

Let ζ = (I −A)−1B(q, q), then we have ζ =

(

−3
0

)

and find

[B (q, ζ)]1 = −2a(−3) = 18, [B (q, ζ)]2 =
6dyǫ

(1 + ǫx)3
= 0. (18)

The third order multilinear form C(q, q, q) is given by

[C(q, q, q)]1 =

2
∑

j,k,l=1

∂3
(

ax(1− x)− bxy
1+ǫx

)

∂xj∂xk∂xl
qjqkql =

−6byǫ2

(1 + ǫx)4
= 0, (19)

[C(q, q, q)]2 =

2
∑

j,k,l=1

∂3
(

dxy
1+ǫx

)

∂xj∂xk∂xl
qjqkql =

6dyǫ2

(1 + ǫx)4
= 0. (20)

The critical normal form coefficient b is given by

b =
1

6
pT
(

54
0

)

= 9, (21)
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d
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S
F2

 d=ε+a/(a−1)

Fig. 1. SF2 is the stability region of F2 for ǫ = 0.5.

which is clearly positive. This completes the proof of supercriticality of the flip
point at F2. ⊓⊔
The stability region SF2 of F2, as obtained in Proposition 2, is shown in Figure 1
for ǫ = 0.5. We note that the supercriticality of the flip bifurcation in Proposition
2 was also obtained in [15] though our proof is different.

2.3 Stability of F3

To study the stability of F3 we use the Jury’s criteria, see [24], §A2.1. Let
F (λ) = λ2 − tr(J(F3))λ + det(J(F3)) be the characteristic equation of J(F3).
Hence we have F (λ) = (λ−λ1)(λ−λ2) where λ1, λ2 are the eigenvalues of J(F3).

According to the Jury’s criteria F3 is asymptotically stable if the following
conditions hold:

F (−1) = 1 + tr(J(F3)) + det(J(F3)) > 0,
F (1) = 1− tr(J(F3)) + det(J(F3)) > 0,

1− det(J(F3)) > 0.
(22)

At F3 we have:

J(F3) =





a
(

1− 2
d−ǫ

)

− d−ǫ
d

(

a
(

1− 1
d−ǫ

)

− 1
)

−b
d

d−ǫ
b

(

a
(

1− 1
d−ǫ

)

− 1
)

1



 . (23)

We note that:

tr(J(F3)) = 1 + a

(

1− 2

d− ǫ

)

− d− ǫ

d

(

a

(

1− 1

d− ǫ

)

− 1

)

,
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and

det(J(F3)) = a

(

1− 2

d− ǫ

)

,

are independent of b.

Proposition 3. F3 is asympotically stable iff one of the following mutually ex-
clusive conditions holds:

(i) ǫ+
3

2
< d <

1

8

(

4ǫ+ 9 +
√
16ǫ2 + 56ǫ+ 81

)

and

d− ǫ

d− ǫ− 1
< a <

(d− ǫ)(ǫ− 3d)

2d(d− ǫ− 2) + (d− ǫ)(−d+ ǫ+ 1)
,

(ii) d =
1

8

(

4ǫ+ 9 +
√
16ǫ2 + 56ǫ+ 81

)

and

d− ǫ

d− ǫ− 1
< a <

d− ǫ

d− ǫ− 2
=

(d− ǫ)(ǫ− 3d)

2d(d− ǫ− 2) + (d− ǫ)(−d+ ǫ+ 1)
,

(iii) d >
1

8

(

4ǫ+ 9 +
√
16ǫ2 + 56ǫ+ 81

)

and
d− ǫ

d− ǫ− 1
< a <

d− ǫ

d− ǫ− 2
.

Proof. The criterion F (1) > 0 is easily seen to be equivalent to the condition

a >
d− ǫ

d− ǫ− 1
, (24)

or equivalently,

d > ǫ+
a

a− 1
, (25)

i.e. a slightly stronger version of the second condition in (4).
Next, the criterion det(J(F3)) < 1 is easily seen to be equivalent to

a <
d− ǫ

d− ǫ− 2
for all d > ǫ+ 2. (26)

The criterion F (−1) > 0 translates as

a <
(d− ǫ)(3d− ǫ)

(d− ǫ)(d− ǫ− 1)− 2d(d− ǫ− 2))
(27)

for all d, ǫ that satisfy

(d− ǫ)(d− ǫ− 1)− 2d(d− ǫ− 2) > 0. (28)

The latter equation is easily seen to be equivalent to

d <
3 +

√
9 + 4ǫ2 + 4ǫ

2
. (29)

It is also easy to see that for a given ǫ > 0 the only values of a, d for which the
inequalities in (24) and (27) are both equalities is found for d = ǫ+ 3

2 , a = 3.
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d

a
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d=ε+3/2 

S
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S
F2

S
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S
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  NS curve
BP curve 

Fig. 2. Stability regions in (d, a)− space for ǫ = 0.5. SF1, SF2 are the stability regions of

F1, F2 respectively. The stability region SF3 of F3 is the union of S
(i)
F3 and S

(ii)
F3 (which

correspond to (i) and (iii) in Proposition 3, respectively), and the open interval that

separates them (and corresponds to (ii) in Proposition 3). a = (d−ǫ)(3d−ǫ)
(d−ǫ)(d−ǫ−1)−2d(d−ǫ−2))

indicates the PD curve, a = d−ǫ

d−ǫ−2
determines the NS curve, a = d−ǫ

d−ǫ−1
indicates the

BP curve and a = ǫ

2
+ 1

8

√
9 + 16ǫ2 + 56ǫ+ 81 indicates the line that separates the

regions S
(i)
F3 and S

(ii)
F3 .

Similarly, for a given ǫ > 0 there is a unique pair a, d for which the inequalities
in (26) and (27) are both equalities. For this point we have

d =
1

8
(4ǫ+ 9 +

√

16ǫ2 + 56ǫ+ 81), a =
−4ǫ+

√
16ǫ2 + 56ǫ+ 81 + 9

−4ǫ+
√
16ǫ2 + 56ǫ+ 81− 7

. (30)

⊓⊔

The stability regions (i) and (iii) of F3 obtained in Proposition 3 are depicted

as S
(i)
F3 and S

(ii)
F3 , respectively, in Figure 2 for ǫ = 0.5. The region (ii) is the open

interval on the common boundary of S
(i)
F3 and S

(ii)
F3 . We note that these regions

are qualitatively similar for all values ǫ > 0 and so we have a complete description
of the stability region of F3 for all parameter combinations.
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2.4 Notes

Proposition 4 in [1] is somewhat similar to our Proposition 3 but is incomplete
and needs several corrections. We give a few examples.

– Consider fixed values d = 3.5, ǫ = 1. For these we have

d >
1

8

(

4ǫ+ 9 +
√

16ǫ2 + 56ǫ+ 81
)

≈ 3.17116.

By Proposition 3 F3 is stable when 1.666667 < a < 5.
The stability condition in Proposition 4, part (i) in [1] includes the condition

a >
(3d− ǫ)(d− ǫ)

(d− ǫ)(2d− ǫ)− 2d(d− ǫ− 2)
≈ 2.065217,

so this condition is not necessary.
– For the parameter values d = 3.7, ǫ = 2,

1

8

(

4ǫ+ 9 +
√

16ǫ2 + 56ǫ+ 81
)

≈ 4.1289

and so the first condition in part (i) of Proposition 3 is satisfied. The second
condition leads to (approximately)

2.42857 < a < 4.53665.

But the condition a < d−ǫ
d−ǫ−2 = −5.666667 in Proposition 4, part (i) of [1]

can never be satisfied for a > 0. Hence that condition is not a necessary one.
– For d = 3.5, ǫ = 1, it is claimed in part (iii) of Proposition 4 in [1] that F3 is

non-hyperbolic if

a =
(3d− ǫ)(d− ǫ)

(d− ǫ)(2d− ǫ)− 2d(d− ǫ− 2)
≈ 2.06522.

Part (i) of Proposition 3 in fact proves that this is a stable fixed point.
– For d = 3.5, ǫ = 1, it is claimed in part (iv) of Proposition 4, in [1] that F3

is a saddle if a < (3d−ǫ)(d−ǫ)
(d−ǫ)(2d−ǫ)−2d(d−ǫ−2) ≈ 2.06522. Part (i) of Proposition 3

in fact proves that this is a stable fixed point for values of a slightly below
2.06522.

2.5 Bifurcations of F3

Proposition 4. Suppose that the conditions (4) hold. Then F3 loses stability:

(i) via a flip point when a =
(d− ǫ)(3d− ǫ)

(d− ǫ)(d− ǫ− 1)− 2d(d− ǫ− 2)
and

ǫ+
3

2
< d <

1

8

(

4ǫ+ 9 +
√
16ǫ2 + 56ǫ+ 81

)

,
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(ii) via a Neimark-Sacker bifurcation when a =
d− ǫ

d− ǫ− 2
and

d >
1

8

(

4ǫ+ 9 +
√
16ǫ2 + 56ǫ+ 81

)

,

(iii) via branching when a =
d− ǫ

d− ǫ− 1
and d > ǫ+

3

2
, where it bifurcates to F2,

(iv) via a fold-flip (LPPD) point when d = ǫ+
3

2
and a = 3,

(v) via a resonance 1:2 point when d =
1

8

(

4ǫ+ 9 +
√
16ǫ2 + 56ǫ+ 81

)

and a =

−4ǫ+
√
16ǫ2 + 56ǫ+ 81 + 9

−4ǫ+
√
16ǫ2 + 56ǫ+ 81− 7

.

Proof. By Proposition 3 (see also Figure 2) the stability boundary of F3 consists
of parts of three curves, namely

1. Curve 1: a = (d−ǫ)(3d−ǫ)
(d−ǫ)((d−ǫ−1))−2d(d−ǫ−2) ,

2. Curve 2: a = d−ǫ
d−ǫ−2 ,

3. Curve 3: a = d−ǫ
d−ǫ−2 .

The points of Curve 1 which are on the stability boundary of F3 satisfy F (−1) =
0, i.e. they have an eigenvalue −1. The points of Curve 2 which are on the
stability boundary satisfy det(J(F3)) = 1, i.e. they have two eigenvalues with
product 1. The points of Curve 3 which are on the stability boundary satisfy
F (1) = 0, i.e. they have an eigenvalue +1.

Combining this with Proposition 2 we find that the interior points of the
boundary parts of Curves 1,2, and 3 form the sets described in parts (i), (ii) and
(iii) of the Proposition, respectively.

Next, Curves 1 and 3 have an intersection point which has eigenvalues +1
and −1. This is the LPPD point in part (iv) of the Proposition (but note that
it is degenerate, in fact a BPPD point).

Finally, Curves 1 and 2 also have an intersection point. In this point both
eigenvalues are −1. This is the 1 : 2(R2) in part (v) of the the Proposition. ⊓⊔

We remark that our numerical evidence indicates that the flip and Neimark-
Sacker bifurcations in Proposition 4 are sub- and supercritical, respectively in all
cases considered in this paper. This is based on the numerical computation of the
normal form coefficients of these bifurcations (see [19], Ch. 8 and [8]). However,
a detailed study in [15] (Theorem 4.1 and Theorem 5.1) suggests that other cases
might be possible for certain combinations of parameter values. Resonances are
also possible, cf. §3.2 and the discussion at the end of §5 in [15].

We further note that in the case ǫ = 0 our model (2) reduces to model (7) in
[25] under a rescaling of the x− variable and introduction of the parameters c, r
with a = r + 1, b = c, d = (r + 1)c/r. By straightforward calculations one finds
that the new equations for the PD, BP and NS curve then must be replaced
by c = 3r/(r + 4), c = 1, and c = 2, respectively. Hence we exactly reproduce
the results summarized in Figure 1 of [25]. We note, however, that in [25] the
subcriticality of the PD bifurcations is proved (for ǫ = 0).
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Model (30) in [25] uses the parameters c, r, γ. It is equivalent to (2) under a
rescaling of the x− variable and by setting a = r+ 1, b = c/γ, ǫ = (r+ 1)/(rγ),
d = c(r + 1)/(rγ). In [25] the stability region of F3 is depicted in (r, c)− space
in the case γ = 1 and it is mentioned that subcritical flip points were found in
this case.

The case ǫ = 0 also reduces to model (1) in [23] (in terms of the param-
eters α, β where a = α, b = 1, d = 1/β). We note, however, that in [23] the
supercriticality of the NS bifurcations is proved (for ǫ = 0).

In the sequel we will concentrate on the numerical study of cycles and their
stability since this leads to finding parameter regions where stable periodic be-
haviour with different periods is found.

3 Numerical bifurcation analysis of F2 and F3

In this section we perform a numerical bifurcation analysis by using the MAT-
LAB package MatContM, see [8] and [9]. The bifurcation analysis is based on
continuation methods, tracing out the solution manifolds of fixed points while
some of the parameters of the map vary, see [2].Testruns for these computations
willl be made available via [9].

3.1 Numerical bifurcation of F2

We continue F2 = (0.54545454, 0) starting with a = 2.2, b = 3, ǫ = 0.2, d = 0.5
with a free. We see that F2 is stable when 1 < a < 3. It loses stability via a
supercritical period doubling point when a = 3, and via a branch point when a
crosses 1. These results are consistent with Proposition 2 since d < ǫ+ 3

2 ≤ d+ a
a−1

for all a ∈]1, 3[. The output of Run 1 is given by:

label = BP , x = ( -0.000000 -0.000000 1.000000 )

label = PD , x = ( 0.666667 0.000000 3.000000 )

normal form coefficient of PD = 9.000000e+000

The first two entries of x are the coordinate values of the fixed point F2,
and the last entry of x is the value of the free parameter a at the corresponding
bifurcation point. We note that the normal form coefficient of the PD point is 9,
confirming (21). The curve computed in Run 1 is presented in Figure 3. Beyond
the PD point the dynamics of (2) is a stable 2-cycle. MatContM allows to
switch to the continuation of this 2-cycle. It loses stability at a supercritical
PD point for a = 3.449490. A stable 4-cycle is born when a > 3.449490. An
instance is given by C4 =

{

X4
1 , X

4
2 , X

4
3 , X

4
4

}

where X4
1 = (0.87867696, 0), X4

2 =
(0.37483245, 0), X4

3 = (0.82394508, 0), X4
4 = (0.51004805, 0). The correponding

parameter values are a = 3.516128, b = 3, ǫ = 0.2, d = 0.5. We note that the y−
coordinate equals zero in all four points of the cycle. The 4-cycle loses stability
via a supercritical PD point for a = 3.544090. Thus, when a > 3.544090 a stable
8-cycle emerges. This 8-cycle loses stability at another supercritical PD point
for a = 3.564407. In fact a cascade of period doublings appears if we further
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Fig. 3. Continuation of F2 in (x, a)-space.

increase a. We note that for F2 the map (2) is a logistic map, which is well know
to have chaotic behavior through a cascade of period doubling points, see [18].

Continuation of F2 starting from the same parameter values as in Run 1, with
d as free parameter, leads to the discovery of a branch point for d = 2.033333.
This is consistent with Proposition 2 part (ii) which states that F2 bifurcates to
F3 when d = ǫ+ a

a−1 = 0.2 + 2.2
1.2 = 2.033333.

3.2 Numerical bifurcation of F3

We now consider F3 = (0.4, 0.681333) which is in the stable region for the pa-
rameter values a = 4.1, b = 3, ǫ = 1, d = 3.5 (stability follows from Proposition
3 part (i)). We do a numerical continuation of F3 with control parameter ǫ, and
call this Run 2:

label = NS , x = ( 0.378049 0.683638 0.854839 )

normal form coefficient of NS = -9.079782e+000

label = PD , x = ( 0.603958 0.439521 1.844256 )

normal form coefficient of PD = -7.976577e+000

label = BP , x = ( 0.756098 0.000000 2.177419)

F3 is stable when 0.854839 < ǫ < 1.844256. It loses stability via a supercrit-
ical Neimark-Sacker (NS) point when ǫ = 0.854839, which is consistent with
Proposition 4 part (ii) ( d−ǫ

d−ǫ−2 = 4.1 = a). It loses stability through a subcritical
PD point when ǫ = 1.844256, which is consistent with Proposition 4 part (i)

since (d−ǫ)(3d−ǫ)
(d−ǫ)(d−ǫ−1)−2d(d−ǫ−2) = 4.1 = a.

The dynamics of the system prior to the PD point consists of an unstable
2-cycle that coexists with a stable fixed point. For ǫ < 0.854839, a stable closed
invariant curve is created around the unstable fixed point F3. Such a curve is
shown in Figure 4. Now we compute the period doubling curve, with a and ǫ
free, by starting from the PD point detected in Run 2. We call this Run 3.

label = LPPD, x = ( 0.666667 0.000000 3.000000 2.000000 )
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Normal form coefficient for LPPD :[a/e , be]=

-1.200000e-001, -3.467480e-006,

label = R2 , x = ( 0.464286 3.520833 14.000000 1.346154 )

Normal form coefficient for R2 :[c , d]= 3.479148e+001, -1.346125e+002

Two codim-2 bifurcation points are detected on the flip curve, namely a fold-
flip LPPD and a resonance 2 bifurcation R2, see Figure 5 (right curve). We note
that the LPPD point is degenerate in the sense that it is really a BPPD point.
The parameter values indeed satisfy the equation a = (d− ǫ)/(d− ǫ− 1) of the
branch point curve, cf. Proposition 4. In general, a BPPD point is ungeneric
on a PD curve and therefore is not detected by the software. It follows that the
normal form coefficients given for the pretended LPPD point are meaningless.

Now we compute the NS curve, with a and ǫ free parameters, by starting
from the NS point of Run 2. We call this Run 4.

label = R4 , x = ( 0.428571 1.500000 7.000000 1.166667 -0.000000 )

Normal form coefficient of R4 : A = -1.260354e+000 + 7.511202e-001 i

label = R3 , x = ( 0.452381 2.506944 10.500000 1.289474 -0.500000 )

Normal form coefficient of R3 : Re(c_1) = -5.439941e-001

label = R2 , x = ( 0.464286 3.520833 13.999998 1.346154 -1.000000 )

Normal form coefficient of R2 : [c , d] = 3.479148e+001, -1.346125e+002

label = CH , x = ( 0.122849 0.023342 1.325730 -4.640055 0.810610 )

Normal form coefficient of CH = 9.285903e+001

The computed curve of NS points is also shown in Figure 5 (left curve).
We note that the PD and NS curves intersect in an R2 point. The codim-2
bifurcations that are computed along the Neimark-Sacker curve are a resonance
1:2 (R2), resonance 1:3 (R3), resonance 1:4 (R4) and a Chenciner bifurcation
(CH). In addition to the coordinates of the bifurcation point, parameter values
and the real part of the Neimark-Sacker multiplier at the bifurcation point are
output.

A closer look at the codimension 2 bifurcations found in this subsection
reveals that the Chenciner bifurcation is far away in an ecologically impossible
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parameter region. For the LPPD bifurcation it follows from the output be < 0
that no new local bifurcation curves are rooted in this point, cf. [8]. Similarly,
for the R2 bifurcation the output c > 0 has the same implication. We therefore
concentrate on the remaining cases R4 and R3.

3.3 Orbits of period 4, 8 and 16

In this subsection we will describe parameter regions where predator and prey
can coexist in a stable way and reproduce their densities every fourth, eighth or
sixteenth years. The regions with 4-cycle and 8-cycle stability overlap, so that
bistability occurs. The normal form coefficient A of theR4 point in Run 4 satisfies
|A| > 1, hence two cycles of period 4 of the map are born. A stable 4-cycle for
a = 6.401280, b = 3, ǫ = 1.093117 and d = 3.5 is given by: C4 = {X1, X2, X3, X4}
where X1 = (0.347307, 1.272391).In order to compute the stability region of this
4-cycle, we compute two fold curves of the fourth iterate rooted at the R4 point.
These curves exist since |A| > 1, see [19] and switching from an R4 point to the
fold curves of the fourth iterate is supported by MatContM. The stable fixed
points of the fourth iterate exist in the wedge between the two fold curves. The
output of this continuation, Run 5, is given below and the fold curves (denoted
by LP 4) are shown in Figure 7.

label = LPPD, x = ( 0.341617 1.808057 7.596591 1.084004 )

Normal form coefficient for LPPD :[a/e , be]= 5.904006e-001, -4.511886e+001,

label = LPPD, x = ( 0.085157 0.508424 3.947668 -0.035122 )

Normal form coefficient for LPPD :[a/e , be]= -1.863197e-001, -2.336863e+003,

We can further compute the stability boundaries of the 4-cycle. This region
is bounded by the two just computed limit point curves and a period doubling
curve of the fourth iterate rooted at the detected LPPD points on the branches
of LP 4 curves.

Continuation of the flip curve of the fourth iterate emanated at the LPPD
of Run 5 is given below. We call this Run 6.

label = GPD , x = ( 0.341591 1.802206 7.570354 1.087021 )

Normal form coefficient of GPD = 8.180449e+005

label = R2 , x = ( 0.317814 1.734061 7.225039 1.068919 )

Normal form coefficient for R2 :[c , d]= -2.430015e+002, -1.078458e+003

label = GPD , x = ( 0.311884 1.760666 7.295843 1.056324 )

Normal form coefficient of GPD = -3.64862e+004

This curve is depicted in Figure 7 and indicated by PD4 curve. We further
compute a curve of fixed points of the fourth iterate starting from the 4-cycle C4

with control parameter a. We call this Run 7. The curve is presented in Figure
6.

The 4-cycle is stable in the wedge between the two LP 4 curves, and loses
stability when crossing the PD4 curve. When C4 loses stability at the super-
critical PD point corresponding to a = 7.284657, a stable 8-cycle is born which
coexists with an unstable 4-cycle until the second PD point (a = 7.483037) is
reached. A stable 8-cycle is given by C8 =

{

X8
1 , X

8
2 , X

8
3 , X

8
4 , X

8
5 , X

8
6 , X

8
7 , X

8
8

}

15



6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

0.35

0.4

0.45

0.5

0.55

LP  

LP  PD  PD  
LP  

LP  

PD  PD  

LP  LP  
PD  

PD  

LP  

LP  
PD  

a

x

Fig. 6. Curve of fixed points of the fourth iterate starting from the 4-cycle C4.

where X8
1 = (0.510422, 1.384081) for a = 7.411918, b = 3, ǫ = 1.093117 and

d = 3.5. We can compute the stability boundaries of C8, by computing two fold
curves of the eighth iterate by switching at the GPD points in Run 6. Again,
this is supported by MatcontM. These fold curves emanate tangentially to the
fold curve of the fourth iterate in Run 6. These curves are presented in Figure 7
and indicated by LP 8 curves. The region where C8 is stable is bounded by the
two fold curves of the eighth iterate and the lower part of the flip curve of the
fourth iterate (shaded region indicated by Ω8

S).
Further we continue the 4-cycle (C4) with control parameter ǫ. The output

of this continuation, Run 8, is:

label = NS , x = ( 0.328281 1.215657 1.057947 )

normal form coefficient of NS = -4.089749e+002

label = LP , x = ( 0.355258 1.300254 1.100154 )

normal form coefficient of LP =-7.154929e+000

The 4-cycle remains stable when 1.057947 < ǫ < 1.100154. Now we compute
a NS-curve starting from the computed NS point in Run 8, given below. This
curve is depicted in Figure 7 and indicated by NS4 curve. We call this Run 9.

label = R3 , x = ( 0.331234 1.257772 6.541014 1.066957 -0.500000 )

Normal form coefficient of R3 : Re(c_1) = -4.885966e+000
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label = R2 , x = ( 0.332363 1.439768 7.225039 1.068919 -1.000000 )

Normal form coefficient of R2 : [c , d] = -1.046630e+002, -4.653504e+002

label = R4 , x = ( 0.294522 0.915737 5.526230 0.928728 0.000000 )

Normal form coefficient of R4 : A = -4.055960e+000 + -8.600805e-001 i

We note that we have bistability of the 4-cycle (C4) and 8-cycle (C8) in the

region indicated by Ω4,8
S in Figure 7. We note that the NS curve of the fourth

iterate in Run 9 and the PD curve of the fourth iterate of Run 6 intersect in
an R2 point. Now we consider the R4 point computed in Run 9. Since |A| > 1
(A is the corresponding normal form coefficient of the R4 point), two cycles of
period 16 of the map are born. A stable 16-cycle is given in Figure 8. In order to
compute the stability region of this 16-cycle, we compute two fold curves of the
sixteenth iterate rooted at the R4 point. These curves exist since |A| > 1. The
stable fixed points of the sixteenth iterate exist in the wedge between the two
fold curves. The output of this continuation, Run 10 is given below. The fold
curves are shown in Figure 9.

label = LPPD, x = ( 0.294382 0.903595 5.468882 0.911109 )
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Normal form coefficient for LPPD :[a/e , be]= 4.600977e+000, -1.127121e+002,

label = R1 , x = ( 0.221519 0.406043 4.347547 0.363383 )

normal form coefficient of R1 = -1

label = LPPD, x = ( 0.222150 0.409925 4.354848 0.368810 )

Normal form coefficient for LPPD :[a/e , be]= -5.087744e-001, -1.179672e+009,

label = R1 , x = ( 0.181745 0.167415 3.975582 -0.000054 )

normal form coefficient of R1 = -1

label = LPPD, x = ( 0.302337 0.997939 5.668515 0.954589 )

Normal form coefficient for LPPD :[a/e , be]= 3.260385e+001, -1.518085e+001,

label = LPPD, x = ( 0.324821 1.218070 6.191127 1.018418 )

Normal form coefficient for LPPD :[a/e , be]= -8.188768e-001, -3.916020e+005,

label = CP , x = ( 0.338557 1.721717 7.495970 1.027620 )

Normal form coefficient of CP s= -7.702949e+003
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Fig. 8. A stable 16-cycle near the
R4 point of Run 9 for a =
5.549119387672505, b = 3, ǫ =
0.930418649464793, d = 3.5.
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We note in particular the existence of a cusp point of 16-cycle.

3.4 Orbits of period 3

Next we consider the resonance 1:3 (R3) point in Run 4. Since its normal form
coefficient is negative, the bifurcation picture near the R3 point is qualitatively
the same as presented in [19], Fig. 9.12. In particular, there is a region near the
R3 point where a stable invariant closed curve coexists with an unstable fixed
point. For parameter values close to the R3 point, the map has a saddle cycle of
period three.

Furthermore, a curve of Neutral Saddles of fixed points of the third iterate
emanates [19], Ch 9. We compute this curve by branch switching at the R3 point.
This curve is presented in Figure 10. We note that, however interesting, it is not
a bifurcation curve.
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3.5 Computation of Arnol’d tongues

It is well known that near a Neimark-Sacker curve there exists a dense array
of resonance tongues, generalizing the isolated tongue of period 4 in Figure 7.
So far, no numerical methods have been implemented to specifically compute
the boundaries of the resonance tongues that are rooted in weakly resonant
Neimark-Sacker points (unlike the strong resonant 1 : 4 case). However, since
they are limit point curves of fixed points of cycles with known periods, they
can be computed relatively easily if the cycles inside the tongue are globally
stable (which depends on the criticality of the Neimark-Sacker curve and the
noncritical multipliers as well). It is sufficient to find a fixed point of cycles
inside the tongue by orbit convergence and to continue it in one free parameter
to find a point on the boundary of the Arnol’d tongue as a limit point of cycles.
From this, the boundary curves can be computed by a continuation in two free
parameters. In Figure 11 we present an Arnol’d tongue rooted in a weak 2 : 5
resonant Neimark- Sacker point. Its computation started from a stable 5-cycle
with x = 0.460832, y = 3.136574, a = 12.7, b = 3, ǫ = 1.327634, and d = 3.5. We
note that the boundary curves contain further bifurcation points.

From the ecological point of view, this means that we have described a param-
eter region where predator and prey can coexist in a stable way and reproduce
their densities every fifth year.

4 Concluding remarks

We investigated the dynamical behaviour of a discrete-time predator-prey model
with Holling type II functional response. In Section 2, we focused on the stabil-
ity and possible bifurcations of three types of fixed points of the model denoted
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F1, F2 and F3 respectively. We established the stability condition and branching
behaviour of F1 in Proposition 1. Conditions under which F2 may bifurcate to
a flip or a branch point, are derived in Proposition 2. We proved supercritical-
ity of the flip bifurcations of F2 by computing the corresponding normal form
coefficient. Proposition 3 provides the necessary and sufficient conditions under
which F3 is stable. All possible bifurcations of F3 are given in Proposition 4.
In Section 3, we computed curves of fixed points and codim 1 bifurcations of
cycles. In particular, we computed curves of flip and Neimark-Sacker bifurca-
tions of the fourth iterate and fold curves of the fourth, eighths and sixteenth
iterates. We computed two curves of folds of the eighth iterate that are born
tangentially at GPD points on the flip curve of the fourth iterate. These curves
bound the stability region of an 8-cycle that is born when a fixed point of the
fourth iterate crosses a supercritical flip point. We note the bistability of the
4- and 8-cycles in Figure 7 . Furthermore, curves of fold points of the sixteenth
iterate are computed which bound the stability region of a 16-cycle that appears
near a resonance 4 point of the fourth iterate. Finally, we described a parameter
region inside an Arnol’d tongue where stable 5-cycles of the map occur.
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