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Rapid and Simple Cryopreservation of Anaerobic
Ammonium-Oxidizing Bacteria

Kim Heylen,a,b Katharina Ettwig,b Ziye Hu,b Mike Jetten,b,c and Boran Kartalb

Ghent University, Department of Biochemistry and Microbiology, Laboratory of Microbiology, Ghent, Belgiuma; Radboud University Nijmegen, IWWR, Department of
Microbiology, Nijmegen, The Netherlandsb; and Delft University of Technology, Department of Biotechnology, Delft, The Netherlandsc

A quick and simple protocol for long-term cryopreservation of anaerobic ammonium-oxidizing bacteria (anammox bacteria)
was developed. After 29 weeks of preservation at �80°C, activity recovery for all tested cultures under at least one of the applied
sets of preservation conditions was observed. Growth recovery was also demonstrated for a single-cell culture of “Candidatus
Kuenenia stuttgartiensis.”

Anaerobic ammonium oxidation (anammox) (15, 21) in the
nitrogen cycle is a recent discovery of global importance (2, 3,

12, 13). Application of the anammox process has already resulted
in increases in the energy efficiency of full-scale wastewater treat-
ment plants (1) and could potentially even make wastewater treat-
ment plants capable of generating energy in the near future (10).
Due to their long doubling times, anammox cultures are difficult
to cultivate ex situ, requiring carefully controlled continuous re-
actor systems. Currently, these microorganisms are kept viable
through continuous culturing or storage in cold-rooms. Both of
these methods are prone to calamities and community shifts and
can result in genetically dissimilar material after a certain time
period. In fact, the fastidious nature of the bacteria necessitates a
long-term, high-quality storage method. In addition, dissemina-
tion of biomass, formulation for commercial purposes and patent
applications (4), and deposition in a qualified culture collection
(7) all require knowledge of a suitable storage method.

Research on storage of enrichment cultures, consortia, or other
nonpure cultures is still in its infancy. Nevertheless, the few avail-
able reports have clearly demonstrated the feasibility of preserva-
tion of enrichment cultures and its effectiveness for recovery of
specific activity (14, 17, 27) and conservation of community com-
position (14, 17). The only two available studies on anammox
storage found freezing in liquid nitrogen and subsequent lyophi-
lization in skim milk medium (17) and storage at 4°C (26) suitable
for preservation of viable cultures and activity (not growth) recov-
ery of biofilm aggregates (�70% enriched) from the genera “Can-
didatus Brocadia” and “Candidatus Kuenenia,” respectively.
There are no reports on the preservation and resuscitation of ana-
mmox bacteria that are cultivated as faster-growing and highly
enriched (�95%) planktonic cells (8, 24). Although possible for
their aggregated counterparts, storage at 4°C was not successful
for single-cell cultures of “Candidatus Kuenenia stuttgartiensis”
and the marine anammox species “Candidatus Scalindua” sp.: the
cells lysed within days, potentially due to the lack of the protective
polymeric matrix present in aggregated cultures. Highly enriched
anammox cultures became available only recently and have al-
ready resulted in a breakthrough in research on the physiology
and biochemistry of anammox bacteria (11); therefore, it is of
utmost importance to have a routine methodology to store and
reactivate these cells.

In the present study, we were interested in a quick, simple, and
widely applicable method for long-term preservation of both ag-

gregated and single-cell anammox cultures and therefore opted
for cryopreservation. Dimethyl sulfoxide (DMSO) was chosen
over glycerol as the cryoprotective agent (CPA), as a pairwise com-
parison in the cryomicrobiology literature showed the latter to be
less effective (6). Yeast extract, sugars, or alcohols are almost al-
ways included in prepreservation growth medium and freezing
medium of heterotrophs, but their cryoprotective role has not
been frequently recognized (6, 20). Previous work demonstrated
that the combined protective actions of DMSO and carbon com-
pounds and addition of carbon compounds during prepreserva-
tion growth significantly increased viability recovery after cryo-
preservation of aerobic methane oxidizers (data not shown).
Therefore, the experimental design of the study presented here
incorporated the combination of Trypticase soy broth (TSB) and
trehalose, as well as careful execution of preservation and resusci-
tation manipulations, taking into account CPA penetration time,
suitable addition temperature, and toxicity, all previously de-
scribed as crucial parameters for successful preservation (5).

Biomasses from three enrichment cultures of anammox bacte-
ria (Table 1) were harvested from active continuous reactors after
growth at 33°C and pH 7.3 to 7.5 as previously described (8, 9, 22,
24, 25). The identity of the anammox bacteria in the cultures was
confirmed with fluorescent in situ hybridization (FISH) as previ-
ously described (8, 11, 18, 19). Samples were concentrated by cen-
trifugation and washed with and resuspended in 3 ml of fresh
medium (supplemented with 2.5% [wt/vol] Red Sea salt for the
“Candidatus Scalindua” biomass). Samples (in duplicate) were
directly frozen in mineral medium without CPA, with 5% (vol/
vol) DMSO, or with a combination of 5% DMSO (vol/vol), 1%
trehalose (wt/vol), and 0.3% TSB (wt/vol) as CPA or incubated
while shaken in mineral medium with 1% trehalose (wt/vol) for 2
h under an anaerobic headspace at 30°C and then frozen with 5%
DMSO (vol/vol). DMSO was always added to biomass at 4°C, to
decrease toxicity to cells and related adverse effects on survival,
and the cells were left to equilibrate for 15 to 30 min to enable
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intracellular uptake. All samples were frozen at �80°C in 10-ml
glass serum vials. All manipulations, from biomass harvest to
freezing, were performed without any precautions to avoid expo-
sure of cultures to air (no inhibitory effects of aerobic manipula-
tions were observed in activity tests with anammox cultures as also
previously observed) (8, 9, 11, 25).

After 29 weeks, preserved biomass was thawed at 37°C, CPAs
were quickly removed by centrifugation to decrease toxicity to
cells, and biomass was washed with and resuscitated in appropri-
ate fresh medium. The success rate of cryopreservation was eval-
uated by the recovery of specific activity compared to that of fresh
biomass, which was considered a proxy for the survival rate. To
this end, biomass was incubated while shaken with fresh medium
under an anaerobic headspace at 30°C. Specific activity, defined as
29N2 production from 15N-nitrite and unlabeled ammonium, was
determined by gas chromatography (Agilent 6890 system
equipped with a Porapak Q column at 80°C) combined with an
Agilent 5975c quadropole inert mass spectrometer (MS); ammo-
nium and nitrite levels were determined colorimetrically (9). To-

tal protein content was determined by the bicinchoninic acid assay
(Pierce) using a bovine serum albumin standard according to the
manufacturer’s instructions. All preserved cultures were active af-
ter a 29-week cryopreservation period (Fig. 1), but variations of
recovery of specific activity were observed. Aggregated “Candida-
tus Kuenenia” culture, in which cells were protected by the sur-
rounding matrix and biomass, recovered well from preservation
even without any added CPA (40% recovery), in contrast to sin-
gle-cell cultures (�5% recovery). Single-cell cultures more easily
take up CPA during the equilibration time prior to freezing, and
indeed, single-cell “Candidatus Kuenenia” cultures and “Candi-
datus Scalindua” cultures, which both showed only low activity
without CPA, recovered better (51% and 30%, respectively) using
DMSO, especially combined with carbon compounds (Fig. 1).
Nevertheless, use of a CPA did also improve the survival rate of
aggregated “Candidatus Kuenenia,” with no significant differ-
ences seen with the use of CPA combined with carbon compounds
versus prepreservation incubation with trehalose.

As a proof of principle for linking recovery of activity to

TABLE 1 Overview of anammox cultures included in this study

Culture Type
Biomass
concn (fold)

Preserved biomass
(mg/ml protein) Reference

Aggregated “Candidatus Kuenenia stuttgartiensis” Aggregate 4 3.39 � 0.58 9
Single-cell “Candidatus Kuenenia stuttgartiensis” Single cell 10 0.39 � 0.01 8, 24
Single-cell “Candidatus Scalindua” sp. Single cell 5 1.35 � 0.04 8

FIG 1 Percent recovery of specific activity of anammox biomass in batch tests after preservation for 29 weeks at �80°C under the indicated storage conditions.
Specific anammox activity was based on 29N-N2 production from 15N-nitrite and unlabeled ammonium. Preservation experiments and batch tests were
performed in duplicate (error bars represent variations in activity between individual cryopreserved tubes). No variation in activity was observed for aggregated
“Candidatus Kuenenia stuttgartiensis” and single-cell “Candidatus Scalindua” sp. without CPA.
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growth, a 2-liter volume of a single-cell “Candidatus Kuenenia”
culture at an optical density at 600 nm (OD600) of 1.0 was har-
vested from an active continuous reactor. Biomass was concen-
trated to 500 ml and manipulated in a manner identical to that
described for the batch tests. The preservation method with the
best results (Fig. 1) was chosen: freezing at �80°C in mineral
medium with 5% DMSO (vol/vol), 1% trehalose (wt/vol), and
0.3% TSB (wt/vol) as the CPA. After 23 weeks, the biomass was
resuscitated as described above and used to seed a 2-liter contin-
uous reactor with an internal membrane unit. The reactor was
operated at 33°C and pH 7.3 as previously described (8). After
inoculation, the culture started to grow immediately as deter-
mined by optical density measurements at 600 nm (Fig. 2). Within
8 days, it was possible to increase both ammonium and nitrite
concentrations in the influent medium from 3 mM (13 mg of N
load/liter/day) to 36 mM (159 mg of N load/liter/day), while all
available nitrite was consumed. In our experience, this is almost
identical to the time necessary for starting up a new reactor from
active cells, suggesting that most of the cells were viable after pres-
ervation. The nitrite concentration in the effluent was below the
detection limit (10 �M) throughout the operation of the reactor;
the nitrite-and-ammonium conversion ratio increased from �1
(day 3) to 1.22 (day 41), similar to the previously reported anam-
mox stoichiometry (23). This indicated that other nitrite-reduc-
ing processes (i.e., denitrification) did not contribute significantly
to substrate conversion. A doubling time of 12 days was calcu-
lated, assuming that the cells grew exponentially from the startup
of the reactor, between days 6 and 16 (R2 � 0.98). Moreover,
growth of “Candidatus Kuenenia stuttgartiensis” was still stable,
with a constant washout of cells (starting on day 29) at a flow rate
of 120 ml/day. This growth phase (after day 29) could be described
with a solids retention time (SRT) of 18.3 days, corresponding to
a doubling time of 12.7 days. In this phase, the reactor was stable
for longer than 3 doubling times (data after day 60 not shown).
These combined results showed that the continuous culture of
preserved anammox cells had no apparent loss of activity and that
their activity could immediately be coupled to growth after resus-
citation.

Currently, only one successful stable preservation protocol is
described for the (aggregated) anammox culture method using
lyophilization (17), resulting in �11% activity recovery after pres-
ervation. Unfortunately, lyophilization is a very complex proce-
dure where seemingly trivial changes in a protocol can render the
process unsuccessful (16), making it not easily applicable. Here we
demonstrate for the first time that a simple and rapid cryopreser-
vation procedure is suitable for stable and long-term storage of
both aggregated and single-cell anammox cultures and results in
both activity and growth recovery. Our choices for cryoprotective
agents appear to be crucial for this success, as activity recovery
after previous cryopreservation of aggregated anammox cultures
at �20°C or �60°C with glycerol and/or skim milk (17, 26) failed.
We therefore propose freezing at �80°C using 5% DMSO (vol/
vol), 1% trehalose (wt/vol), and 0.3% TSB (wt/vol) as the CPA as
the primary cryopreservation condition. However, preservation
success is always strain dependent, and preliminary tests should be
performed to confirm applicability on other cultures.

ACKNOWLEDGMENTS

This work was supported by the Flemish Fund for Scientific Research
(FWO grant V4.321.10N), the Dutch Organization for Scientific Research
(NWO grant 040.11.208), and the Geconcerteerde Onderzoeksactie
(GOA) of Ghent University (BOF09/GOA/005). M.J. and Z.H. are sup-
ported by ERC 232937, K.E. by the Darwin Center for Biogeology, and
B.K. by KRW (grant 09035) and the Netherlands Organization for Scien-
tific Research (VENI grant 863.11.003).

We thank S. Hoefman for helpful discussions on experimental design,
D. Kool for GC-MS measurements, and F. Luesken and M. Wu for pro-
viding N-DAMO cultures.

REFERENCES
1. Abma WR, Driessen W, Haarhuis R, van Loosdrecht MCM. 2010.

Upgrading of sewage treatment plant by sustainable and cost-effective
separate treatment of industrial wastewater. Water Sci. Technol. 61:1715–
1722.

2. Arrigo KR. 2005. Marine microorganisms and global nutrient cycles.
Nature 437:349 –355.

3. Dalsgaard T, Thamdrup B, Canfield DE. 2005. Anaerobic ammonium
oxidation (anammox) in the marine environment. Res. Microbiol. 156:
457– 464.

4. Giugni D, Giugni V. 2010. Intellectual property: a powerful tool to de-
velop biotech research. Microb. Biotechnol. 3:493–506.

5. Heylen K, Hoefman S, Peiren J, Vekeman B, De Vos P. Safeguarding
bacterial resources promotes biotechnological innovation. Appl. Micro-
biol. Biotechnol., in press.

6. Hubálek Z. 2003. Protectants used in the cryopreservation of microor-
ganisms. Cryobiology 46:205–229.

7. Janssens D, Arahal DR, Bizet C, Garay E. 2010. The role of public
biological resource centers in providing a basic infrastructure for micro-
bial research. Res. Microbiol. 16:422– 429.

8. Kartal B, Geerts W, Jetten MSM. 2011. Cultivation, detection and
ecophysiology of anaerobic ammonium-oxidizing bacteria. Methods En-
zymol. 486:89 –108.

9. Kartal B, et al. 2006. Adaptation of a freshwater anammox population to
high salinity wastewater. J. Biotechnol. 126:546 –553.

10. Kartal B, Kuenen JG, van Loosdrecht MCM. 2010. Sewage treatment
with anammox. Science 328:702–703.

11. Kartal B, et al. 2011. Molecular mechanism of anaerobic ammonium
oxidation. Nature 479:127–130.

12. Kuypers MMM, et al. 2005. Massive nitrogen loss from the Benguela
upwelling system through anaerobic ammonium oxidation. Proc. Natl.
Acad. Sci. U. S. A. 102:6478 – 6483.

13. Lam P, et al. 2009. Revising the nitrogen cycle in the Peruvian oxygen
minimum zone. Proc. Natl. Acad. Sci. U. S. A. 106:4752– 4757.

14. Laurin V, Labbe N, Juteau P, Parent S, Villemur R. 2006. Long-term
storage conditions for carriers with denitrifying biomass of the fluidized,

FIG 2 Resuscitation of preserved planktonic cells of “Candidatus Kuenenia
stuttgartiensis.” The two-liter bioreactor was operated as a membrane biore-
actor (MBR) as described elsewhere (8, 24). Open circles, optical density;
closed circles, nitrogen removal.

Heylen et al.

3012 aem.asm.org Applied and Environmental Microbiology

 on M
arch 25, 2012 by U

N
IV

E
R

S
IT

E
IT

 G
E

N
T

/U
Z

G
E

N
T

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org
http://aem.asm.org/


methanol-fed denitrification reactor of the Montreal Biodome, and the
impact on denitrifying activity and bacterial population. Water Res. 40:
1836 –1840.

15. Mulder A, van de Graaf AA, Robertson LA, Kuenen JG. 1995. Anaerobic
ammonium oxidation discovered in a denitrifying fluidized bed reactor.
FEMS Microbiol. Ecol. 16:177–184.

16. Oetjen G. 1999. Industrial freeze-drying for pharmaceutical applications,
p 267–335. In Rey L, May JC (ed), Freeze-drying/lyophilization of phar-
maceutical and biological products. Marcel Dekker, New York, NY.

17. Rothrock MJ, Vanotti MB, Szögi AA, Gonzalez MCG, Fuji T. 2011.
Long-term preservation of anammox bacteria. Appl. Microbiol. Biotech-
nol. 92:147–157.

18. Schmid M, et al. 2000. Molecular evidence for genus level diversity of
bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl.
Microbiol. 23:93–106.

19. Schmid M, et al. 2003. Candidatus “Scalindua brodae”, sp. nov., Candi-
datus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammo-
nium oxidizing bacteria. Syst. Appl. Microbiol. 26:529 –538.

20. Siaterlis A, Deepika G, Charalampopoulos D. 2009. Effect of culture
medium and cryoprotectants on the growth and survival of probiotic lac-
tobacilli during freeze drying. Lett. Appl. Microbiol. 48:295–301.

21. Strous M, et al. 1999. Missing lithotroph identified as new planctomycete.
Nature 400:446 – 449.

22. van de Graaf AA, et al. 1995. Anaerobic oxidation of ammonium is a
biologically mediated process. Appl. Environ. Microbiol. 61:1246 –1251.

23. van de Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen
JG. 1996. Autotrophic growth of anaerobic ammonium-oxidizing mi-
cro-organisms in a fluidized bed reactor. Microbiology 142:2187–
2196.

24. van der Star WRL, et al. 2008. The membrane bioreactor: a novel tool
to grow anammox bacteria as free cells. Biotechnol. Bioeng. 101:286 –
294.

25. van de Vossenberg J, et al. 2008. Enrichment and characterization of
marine anammox bacteria associated with global nitrogen gas production.
Environ. Microbiol. 10:3120 –3129.

26. Vlaeminck SE, Geets J, Vervaeren H, Boon N, Verstraete W. 2007.
Reactivation of aerobic and anaerobic ammonium oxidizers in OLAND
biomass after long-term storage. Appl. Microbiol. Biotechnol. 74:1376 –
1384.

27. Vogelsang C, Gollenbiewski K, Ostgaard K. 1999. Effect of preservation
techniques on the regeneration of gel entrapped nitrifying sludge. Water
Res. 33:164 –168.

Cryopreservation of Anammox Bacteria

April 2012 Volume 78 Number 8 aem.asm.org 3013

 on M
arch 25, 2012 by U

N
IV

E
R

S
IT

E
IT

 G
E

N
T

/U
Z

G
E

N
T

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org
http://aem.asm.org/

