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Abstract

In [2] Fan determines the endomorphism type of a finite projective plane. In this note we
show that Fan’s result actually characterizes the class of projective planes among the finite
bipartite graphs of diameter three. In fact, this will follow from a generalization of Fan’s
theorem and its converse to all finite bipartite graphs with diameter d and girth g such that
(1) d + 1 < g ≤ 2d, and (2) every pair of adjacent edges is contained in a circuit of length g.

1 Introduction

In this note, we generalize a theorem of Fan [2], obtaining the following characterization of bipartite
graphs with diameter d and girth g such that d + 1 < g ≤ 2d and such that every pair of adjacent
edges is contained in a circuit of length g.

Main Result. Let Γ be a finite bipartite graph with diameter d and girth g such that every pair
of adjacent edges is contained in a circuit of length g. Then d + 1 < g ≤ 2d if and only if the
endomorphism type of Γ is 6 if and only if this endomorphism type is even.

This implies in particular the following rather unexpected characterization of finite (general-
ized) projective planes in terms of the endomorphism type of their incidence graph.

Main Corollary. Let Γ be a finite bipartite graph with diameter 3. Then Γ is a weak generalized
triangle if and only if its endomorphism type is 6 if and only if its endomorphism type is even.

In Section 2 of this note we remind the reader of the definition of the endomorphism type
of a finite graph as introduced in [1]. Section 3 contains the proof of the “only if” part of our
Main Result (a direct generalization of Fan’s result [2]). Finally, in Section 4 we conclude the
proof of our Main Result by showing the “if” part. This article is based on the second author’s
Diplomarbeit [4].

2 Endomorphism types

In [1] the concept of the endomorphism type of a finite graph has been introduced. By [2] the
endomorphism type of a finite generalized triangle is known. The purpose of this note is to
characterize finite generalized triangles by their endomorphism type. Before doing so we recall the
notions from [1].

Let Γ = (V,E) be a finite undirected unweighted graph without loops and multiple edges.
An endomorphism of Γ is a map V → V which preserves edges. Since Γ does not have loops
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this in particular means that two adjacent vertices cannot have the same image under an en-
domorphism. An endomorphism f is called halfstrong if each edge (f(x1), f(x2)) ∈ E in the
image of f admits an edge in its preimage, i.e., there exists an edge (y1, y2) ∈ E satisfying
(f(y1), f(y2)) = (f(x1), f(x2)). An endomorphism f is called locally strong if for each edge
(f(x1), f(x2)) ∈ E the preimage f−1(f(x1), f(x2)) does not admit isolated vertices. An endo-
morphism f is called quasistrong if for each edge (f(x1), f(x2)) ∈ E in the image of f there exist
preimages y1 ∈ f−1(f(x1)) adjacent to each preimage of f(x2) and y2 ∈ f−1(f(x2)) adjacent to
each preimage of f(x1). An endomorphism f is called strong if for each edge (f(x1), f(x2)) ∈ E
in the image of f each preimage of f(x1) is adjacent to each preimage of f(x2). Finally, an
endomorphism f of Γ is called an automorphism if it is bijective and its inverse map is also an
endomorphism. Since Γ is finite, an endomorphism is an automorphism if and only if it is injective.

The set of endomorphisms, halfstrong endomorphisms, locally strong endomorphisms, qua-
sistrong endomorphisms, strong endomorphisms, and automorphisms of a finite graph Γ is denoted
by End(Γ), HEnd(Γ), LEnd(Γ), QEnd(Γ), SEnd(Γ), Aut(Γ), respectively. By definition

Aut(Γ) ⊆ SEnd(Γ) ⊆ QEnd(Γ) ⊆ LEnd(Γ) ⊆ HEnd(Γ) ⊆ End(Γ).

To a graph one can associate a string of length five consisting of 0s and 1s indicating whether
the corresponding inclusion is proper (1) or not (0). This string interpreted as a binary number
is called the endomorphism type of the graph Γ. For instance, to a graph satisfying Aut(Γ) =
SEnd(Γ) = QEnd(Γ) ! LEnd(Γ) ! HEnd(Γ) = End(Γ) one associates the string 00110 which
yields the endomorphism type 6 (written as a decimal number).

3 The endomorphism type of certain bipartite graphs

Bipartite graphs are the incidence graphs of point-line geometries. In fact, these geometries can
be identified with their incidence graph and hence the study of point-line geometries is equivalent
to the study of bipartite graphs. From this point of view, a weak generalized triangle, of in more
common words, a generalized projective plane, is a bipartite graph with diameter 3 and girth 6.

Fan [2] proved that a weak finite generalized triangle has endomorphism type 6. Inspection
shows that his proof can be extended to arbitrary bipartite graphs with diameter d and girth g
satisfying d + 1 < g ≤ 2d and such that every pair of adjacent edges is contained in a circuit of
length g. We adapt his proof here to this class of bipartite graphs for the reader’s convenience.
Note that the condition that every pair of adjacent edges is contained in a circuit of length g is
not a very restrictive one. Indeed, on the one hand most geometries satisfy this condition, on
the other hand the most important application of point-line geometries is in permutation groups,
where a “sufficiently transitive” automorphism group easily implies that condition.

Theorem 3.1 Let d ≥ 3 and let Γ be a finite bipartite graph with diameter d and girth g, with
d + 1 < g ≤ 2d and such that every pair of adjacent edges is contained in a circuit of length g.
Then the endomorphism type of Γ equals 6.

Proof. We split the proof into four parts.

Lemma 3.2 End(Γ) = HEnd(Γ).

By way of contradiction assume the existence of an endomorphism f which is not halfstrong. Then
there exists an edge (f(x1), f(x2)) ∈ E with the property that no preimage of f(x1) is adjacent
to any preimage of f(x2). In particular, x1 and x2 are not adjacent. There exists a path x1,
v1, v2, ..., vk−1, x2 from x1 to x2. Since v1 is adjacent to x1 we have f(v1) &= f(x1). Similarly,
f(vk−1) &= f(x2). Therefore the path f(x1), f(v1), f(v2), ..., f(vk−1), f(x2) contains at least four
distinct elements, yielding a circuit of length at most d + 1. This contradicts the assumption on
the girth g.

Lemma 3.3 HEnd(Γ) &= LEnd(Γ).
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By definition of diameter, there is a vertex x0 of Γ such that each of the sets Γi(x0) := {x ∈
Γ | distΓ(x0, x) = i}, 0 ≤ i ≤ d is non-empty. Fix elements x1 ∈ Γ1(x0) and x2 ∈ Γ2(x0) with
(x1, x2) ∈ E. Define an endomorphism f via

f(x) =






x0 if x = x0,
x1 if x ∈ Γ2k−1(x0), k ∈ N,
x2 if x ∈ Γ2k(x0), k ∈ N.

This endomorphism is halfstrong but not locally strong. Indeed, let y ∈ Γ3(x0). Then f(y) = x1

and y is an isolated vertex in the preimage f−1({x0, x1}), because y is not adjacent to x0 (it has
distance 3 from x0) and not adjacent to any vertex in f−1(x1) =

⋃
k Γ2k−1(x0) (because the graph

Γ is bipartite).

Lemma 3.4 LEnd(Γ) &= QEnd(Γ).

As before let x0 be a vertex of Γ such that Γd(x) &= ∅ and fix elements x1 ∈ Γ1(x0) and x2 ∈ Γ2(x0)
with (x1, x2) ∈ E. Define an endomorphism f via

f(x) =
{

x1 if x ∈ Γ2k+1(x0), k ∈ N ∪ {0},
x2 if x ∈ Γ2k(x0), k ∈ N ∪ {0}.

This endomorphism is locally strong but not quasistrong.

Lemma 3.5 QEnd(Γ) = Aut(Γ).

Assume that f is a quasistrong endomorphism which is not an automorphism. This means that
f is not injective, so there exist vertices x1, x2 with f(x1) = f(x2). Since edges cannot collapse,
the vertices x1 and x2 are not adjacent. On the other hand, since f is quasistrong, the vertices
x1 and x2 necessarily have a common neighbor. Therefore x1 and x2 have distance 2 in Γ. Now,
however, any circuit of length g of Γ containing x1 and x2 (and by assumption there exists at least
one such) is collapsed by f to a circuit of insufficient length, a contradiction. !

Remark 3.6 In Theorem 3.1 we cannot dispense with the bipartite assumption. Indeed, the
endomorphism type of the graph with vertex set all 3-subsets of a set of 7 elements, and adjacency
being disjoint, is 0 as the reader can check for himself. The graph has diameter 3 and girth 6.

Remark 3.7 The endomorphism type of a complete bipartite graph (the case d = 2 of the
previous theorem) is 16, cf. [4].

4 Bipartite graphs with even endomorphism type

Theorem 4.1 Let d ≥ 2 and let Γ be a bipartite graph with diameter d and finite girth, and with
even endomorphism type. Then n + 1 < g ≤ 2n, where g denotes the girth of Γ.

Proof. First note that, if d = 2, then g = 4 and we are done. Now suppose d ≥ 3.
Since Γ is bipartite, its girth g is even, whence g ≤ 2d. We have to prove that, if d + 1 ≥ g,

then a non-halfstrong endomorphism exists. Since the girth is g there exists a circuit y0, y1, ...,
yg−1, yg = y0. We assume by way of contradiction that g ≤ d + 1. Define a map f via

f(x) =






yi if x ∈ Γi(y0) and i ≤ g − 1,
yg−2 if x ∈ Γg+2i(y0) for some i ≥ 0,
yg−1 if x ∈ Γg−1+2i(y0) for some i ≥ 0.

Note that the map f does not collapse edges, because every circuit has even length, so that f is
an endomorphism. Since g ≤ d+1 the vertex yg−1 is contained in the image of f . Hence the edge
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(y0, yg−1) is in the image, but clearly has no edge in its pre-image. Therefore the endomorphism
f is not halfstrong, a contradiction. !

The Main Result follows from Theorem 3.1 and Theorem 4.1. Also, the Main Corollary follows
from the Main result by noting that, in a generalized projective plane, every pair of adjacent edges
is contained in a circuit of length 6.

Remark 4.2 Also in Theorem 4.1 we cannot dispense with the bipartite assumption. Indeed,
consider a (finite) graph Γ with diameter 4 and girth 8 (a so-called generalized quadrangle, see [5]).
Now let Γ′ be the adjacency graph of a generalized quadrangle, i.e., the vertex set of Γ′ is one of
the partitions of Γ and two vertices in Γ′ are adjacent if they are at distance 2 in Γ. Note that this
graph has diameter two and girth three, and therefore does not satisfy the conclusion of Theorem
4.1. The endomorphism f induces an endomorphism φ of the incidence graph of the generalized
quadrangle which is bijective on the point rows. Theorem 5.1 of [3] implies that φ and hence f
is either an automorphism or the image of f consists of a clique. In both cases f is halfstrong,
whence the endomorphism type is even.

Remark 4.3 The prominent examples of bipartite graphs with large girth compared to the di-
ameter are the so-called generalized polygons, which have diameter d and girth 2d, see [5]. For
these geometries, the condition that every pair of adjacent edges is contained in a circuit of length
g is automatically satisfied and hence our Main Result applies.
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