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Humans are known to discount future rewards hyperbolically in time. Nevertheless, a
formal recursive model of hyperbolic discounting has been elusive until recently, with
the introduction of the hyperbolically discounted temporal difference (HDTD) model. Prior
to that, models of learning (especially reinforcement learning) have relied on exponential
discounting, which generally provides poorer fits to behavioral data. Recently, it has been
shown that hyperbolic discounting can also be approximated by a summed distribution of
exponentially discounted values, instantiated in the μAgents model. The HDTD model and
the μAgents model differ in one key respect, namely how they treat sequences of rewards.
The μAgents model is a particular implementation of a Parallel discounting model, which
values sequences based on the summed value of the individual rewards whereas the
HDTD model contains a non-linear interaction. To discriminate among these models, we
observed how subjects discounted a sequence of three rewards, and then we tested how
well each candidate model fit the subject data. The results show that the Parallel model
generally provides a better fit to the human data.
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INTRODUCTION
In the past two decades, models of reinforcement learning (RL)
have revolutionized our understanding of the neural bases of
reward processing and decision-making. Early single-unit neu-
rophysiology studies in monkey identified dopamine (DA) neu-
rons in primate ventral tegmental area (VTA) whose activity
over the course of learning developed in the same manner as
a reward prediction error in temporal difference learning (for
a review, see Schultz, 1998). Since then, studies in which key
aspects of the RL framework have been applied to the interpre-
tation of neural activity have proliferated. Theoretical work has
attempted to link neuromodulatory systems in addition to DA
to key parameters in temporal difference (TD) learning (Daw
et al., 2002; Doya, 2002; Krichmar, 2008; Smith et al., 2013).
At the same time, empirical work has identified neural signa-
tures corresponding to quantities that are presumed to be used
in RL learning, including reward value (O’Doherty et al., 2004),
delay until a reward is received (Kable and Glimcher, 2007), and
the probability of failing to receive a reward (Brown and Braver,
2005).

Despite its ubiquity in modern neuroscience research, key
questions remain to be resolved if the RL framework is to con-
tinue to be a useful paradigm for advancing our understanding
of the brain (Dayan and Niv, 2008). Significant among these is
the question of how the present value of future rewards is cal-
culated. Given a choice between a reward now and the same
reward later, humans and animals generally prefer the immediate
reward. Temporal discounting refers to the phenomenon whereby
the value of a rewarding state of affairs is diminished by the delay

until that state of affairs obtains. A common assumption in RL
models is that future rewards are discounted exponentially:

V = Re−kT (1)

where V is the value of a delayed reward, R is the magnitude of
reward, k is a discount parameter, and T is the delay to the reward.
Exponential discounting is ubiquitous in RL models chiefly due
to computational convenience stemming from its ability to be
defined recursively:

Vt + 1 = Vte
−k (2)

In this model, the value at each timestep is multiplied by the
same amount, namely e−k. Although the Exponential model of
discounting is computationally convenient, the preponderance
of behavioral evidence reveals that animals (e.g., Ainslie and
Herrnstein, 1981; Green and Estle, 2003) and humans (e.g., Green
et al., 1994; Kirby and Herrnstein, 1995) discount future rewards
hyperbolically. Simple hyperbolic discounting can be defined as:

V = R

1 + kT
(3)

The effect of this formulation is that value is now inversely pro-
portional to the length of the delay. This is in contrast to the
Exponential model in which the value is reduced by a fixed per-
centage at each timestep. Within the brain, it has been observed
that the activity of DA neurons in VTA is more consistent with
hyperbolic discounting (Schultz, 2010). Furthermore, it has been

www.frontiersin.org March 2014 | Volume 5 | Article 178 | 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55763158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.00178/abstract
http://community.frontiersin.org/people/u/115387
http://community.frontiersin.org/people/u/117393
http://community.frontiersin.org/people/u/6056
mailto:william.alexander@ugent.be
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Zarr et al. Temporal discounting models

suggested that the preference reversals (inconsistency of intertem-
poral choice) characteristic of hyperbolic discounting are due to
electrical coupling in DA neurons via gap junctions (Takahashi,
2007). Although evidence for hyperbolic discounting predomi-
nates at the behavioral and neural levels, standard RL formu-
lations tend not to incorporate hyperbolic discounting, in part
because of its previously presumed lack of a recursive definition
(Dayan and Niv, 2008).

Recently, two RL models have been proposed which are able to
exhibit hyperbolic discounting. In Alexander and Brown (2010),
the authors show how hyperbolic discounting can in fact be
defined recursively as

Vt = Rt + 1 + Vt + 1

1 + kVt + 1
r

(4)

where r is a scaling factor equal to the reward expected for a
given trial. This scaling factor is needed because discounting is
a function of the discount factor and Vt . Therefore as the mag-
nitude of reward increases, driving up Vt , the rate of discounting
would increase inappropriately. In contrast to the non-recursive
definition of hyperbolic discounting [Equation (3)], the time to
a reward is not represented explicitly in the hyperbolically dis-
counted temporal difference (HDTD) model. Instead, the time
to a reward is implicitly represented by the degree to which the
value of that reward is discounted. Because value at a given time
is determined based on the value at the next timestep, this model
predicts that the effective discounted value of a reward will be
increased by the presence of additional rewards. As a result, the
values of rewards in a sequence combine superadditively. This
is the key difference in the predictions generated by the HDTD
model compared to the more standard Parallel model, discussed
below.

The HDTD model can also be formulated with an additional
parameter,

Vt = Rt + 1 + Vt + 1

1 + kVt + 1
rσ

(5)

Here σ allows discounting to vary non-linearly with reward
magnitude. In all other respects, this model is identical to the
previously discussed HDTD model described by Equation (4).

A second approach to recursive temporal discounting,
the μAgents model (Kurth-Nelson and Redish, 2009), shows that
hyperbolic discounting can be achieved by averaging over mul-
tiple exponential discounting functions. In the μAgents model,
each exponential discounting function has a distinct discount
parameter, and the discount parameters for all exponential dis-
counting functions are distributed in some fashion. The distribu-
tion used influences the effective hyperbolic discount parameter.
Because each exponential function is itself expressible recursively,
the μAgents model shares with the HDTD model the advantage of
being usable in TD learning. Sozou (1998) demonstrated that for
certain distributions of exponential discount parameters, models
such as μAgents are formally equivalent to the simple hyperbolic
model [Equation (3)].

Although both the HDTD and μAgents models have been
demonstrated to be mathematically equivalent to the simple

model of discounting [Equation (3)] in the special case of a single
future reward, they suggest different mechanisms by which hyper-
bolic discounting might arise. The μAgents model proposes that
the value of future rewards is represented as the sum of a distribu-
tion of exponentially discounted values of a future reward, while
the HDTD model suggests that value is represented as the future
value of a reward scaled by the reward magnitude. These distinct
mechanisms lead to a number of differing predictions.

One such example is explored in Kurth-Nelson and Redish
(2010), in which they appear to demonstrate that the μAgents
model, and not the HDTD model, is able to exhibit precommit-
ment, the ability for humans and animals to ensure that a larger,
later reward will be obtained by acting to preclude the possi-
bility of selecting a smaller, more immediate reward (e.g., one
can precommit to saving money over buying a new gadget by
not going to the store). However, in unpublished simulations, we
observed that a minor adjustment to the HDTD model would
allow it to precommit. Specifically, in the published version of the
HDTD model (Alexander and Brown, 2010), r represented the
total amount of reward available during a single trial. If instead we
specify that r represents the total remaining reward available on a
trial, we observe precommitment behavior in the HDTD model.
The question of which model can better account for discounting
behavior therefore remains very much open.

In order to answer this question, we identified another means
by which the models may be discriminated. Specifically, the two
models differ in how they treat sequences of rewards. Because
exponential functions are memoryless, the exponentially dis-
counted value of a reward does not depend on other rewards
nearby. Since the μAgents model relies on exponential discount-
ing for its overall hyperbolic discounting, it also has this property.
The value of a sequence at a given time is simply the sum of the
individually discounted rewards at that time. In short, individ-
ual rewards in a sequence are discounted independently of one
another.

This is equivalent to a previous proposal regarding discounting
of multiple rewards, the Parallel hyperbolic model (Brunner and
Gibbon, 1995). In this model, total value of a reward sequence is
computed by summing over the values of future rewards, each of
which has been separately discounted using the simple hyperbolic
model.

V =
∑N

n = 1

R

1 + kTn
(6)

Here, n indexes rewards, R represents the magnitude of each
reward, k is the discount parameter, and T represents the amount
of time until the reward will be obtained.

Like the HDTD model, the Parallel model also has a two
parameter version,

V =
∑N

n = 1

R

(1 + kTn)
σ (7)

The σ parameter alters the shape of the hyperbola, resulting in a
shallower curve for values less than 1. The addition of this param-
eter has been shown to provide a better fit to behavioral data
(Myerson and Green, 1995).
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Because μAgents is equivalent to the Parallel discounting
model, we used the Parallel model as a computationally conve-
nient stand-in for the μAgents model. The Parallel model has
the advantage that it can generate the value of a delayed reward
in one step without requiring the separate calculation of many
exponentially delayed values. In addition, it has an easily inter-
pretable discount parameter which is not the case for the μAgents
model. In that model, the discount parameters are sampled
from a distribution which may itself have multiple parameters.
This would greatly complicate model fitting and require invok-
ing additional assumptions. Since both models constitute linear
combinations of sequential, hyperbolically discounted rewards,
the Parallel model is an appropriate substitute for the μAgents
model in this context. While the two models make identical
predictions in terms of behavior, the μAgents model is readily
interpretable as a collection of “micro-agents” all discounting in
Parallel, perhaps subserved by individuated loops through the
basal ganglia (Kurth-Nelson and Redish, 2009). Differences in
neural implementation, however, are not directly relevant to the
current project.

In contrast to the Parallel model, the HDTD model modu-
lates reward value as a result of nearby rewards. Because value at a
given time is determined based on the value at the next timestep,
this model predicts that the effective discounted value of a future
reward will be increased by the presence of additional rewards
nearby in time. In other words, the values of rewards in a sequence
combine superadditively.

We therefore aim to discriminate between these two primary
models utilizing behavioral data from a task which determines
how much subjects value various hypothetical sequences of mon-
etary rewards. Because two-parameter models may offer a better
fit to human discounting data, even when they are penalized for
having the extra parameter (Peters et al., 2012), we also looked at
two-parameter versions of the HDTD and Parallel models. Our
design has the benefit of providing data on how subjects discount
sequences of rewards, an issue which has implications extending
beyond the HDTD vs. μAgents debate. This is especially true since
many decisions have consequences that are spread out in time,
yet most studies of discounting deal with only single rewards. We
will consequently use the data generated in the experiment to test
between a number of discounting models in addition to the four
presented above.

First, we tested the standard Exponential model as a sort of
baseline. Like the Parallel model, the Exponential model does not
treat rewards differently based on the presence of nearby rewards.
Therefore, to compute the value of a reward sequence at a given
point the values of the individual rewards at that time are simply
summed.

V =
∑N

n = 1
R−kTn (8)

We also examined two models created and tested in rats by
Brunner and Gibbon (1995). The first of these is the Mixed model,
so named because the model treats rewards separately in some
sense but also discounts the sequence as a holistic package. The
value of the sequence is computed by discounting each reward
hyperbolically from the time of the first reward. So the value of

the package presented immediately is,

V0 =
∑N

n = 1

R

1 + (n − 1) kTs
(9)

where n indexes the reward and Ts is the spacing between rewards.
The package is then itself discounted hyperbolically,

V = V0

1 + kTf
(10)

where Tf is the delay before the first reward.
Finally, we tested the Serial model, also from Brunner and

Gibbon (1995). In the Serial model, each reward is discounted
based on its distance from the previous reward. The first reward
is discounted according to the temporal distance between the
current time and the first reward. The second reward is then
discounted based on the distance between the first and second
rewards, etc. For a sequence of three rewards value is therefore
computed as,

V = R + R + R
1 + kTs

1 + kTs

1 + kTf
(11)

where, again, Ts is the spacing between rewards and Tf is the delay
before the first reward, i.e., the onset in the behavioral task.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-five people (14 females) participated in this study. The
average age was 22 years (SD = 3.97). Participants were recruited
through advertisements posted on the university campus and
nearly all participants were Indiana University students. The
experiment took approximately 40 min–1 h and participants were
compensated with $10. All subjects gave informed consent prior
to their participation in the study.

TASK
The task consisted of a series of choices between an immedi-
ate monetary reward and a delayed monetary reward. Depending
on condition, the delayed reward could be given all at once or
as a sequence of rewards separated by some time intervals. All
rewards were purely hypothetical. Because a primary goal of this
experiment was to understand the effects of reward sequences
on temporal discounting, in most cases the delayed reward con-
sisted of three payments arranged in a series. In these cases each
of the three payments was $1000. The other cases consisted of
conditions in which a delayed reward of $3000 or $1000 was
administered all at once. The payment schedule of the delayed
reward was manipulated within subjects along two orthogonal
dimensions. The first dimension was the time until the first
reward in the series, which we called the onset. The onset could be
3, 6, 12, 24, 36, 48, or 84 months. The second dimension was the
spacing between the reward sequences which could be 0, 12, or
60 months. The “0” spacing represents two conditions in which
the delayed reward was given in one lump sum, either $3000 or
$1000. The different sizes of the lump sum reward were included
in order to examine how the rate of discounting is affected by dif-
ferently sized rewards without the confound of a reward sequence
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FIGURE 1 | An example display of a choice as seen by participants.

vs. lump sum payment. Participants saw every combination of
spacings and onsets. For example, one condition was an onset of
6 months and a spacing of 12 months. In this case, the delayed
option would consist of $1000 in 6 months, $1000 in 18 months,
and $1000 in 30 months. Time spans of less than a year were dis-
played in units of months whereas time spans of a year or more
were displayed in terms of years, as shown in Figure 1.

For each spacing-onset pair, participants completed 14 con-
secutive trials. During each of these blocks of trials, the reward
offered immediately was adjusted according to a staircase proce-
dure. The goal of the procedure was to determine the immediate
reward value such that participants were indifferent between the
immediate and delayed options. In other words, we were attempt-
ing to determine the value each participant placed on each of
the delayed reward schedules. Possible values ranged from $1
to $3000 since presumably participants would always take the
delayed option rather than nothing and prefer the $3000 now as
opposed to in the future.

The staircase procedure started at the midpoint of this inter-
val plus a small amount of noise. Therefore, the first immediate
option presented to the participants for each condition was
around $1500. The interval of possible indifference points was
then based on the participant’s responses. The simplest staircase
procedure would, on each trial, set one of the interval end-
points to the value which was offered immediately. For example,
if the immediate option was $1500 and the participant chose
the delayed option, in effect saying the immediate offer was too
low, the interval of possible indifference points would be adjusted
from 0–3000 to 1500–3000. However, if decision making is a noisy
or stochastic process (e.g., Johnson and Busemeyer, 2005), this
procedure would result in certain values being excluded prema-
turely. For instance the person’s “true” (or mean) indifference
point could be $1400 but due to noise in the decision mak-
ing process she might chose the delayed option when offered
$1500 immediately. Now no values lower than $1500 would ever
appear again in the set of 14 trials for that condition and the true
indifference point can never be reached. To address this issue,
we modified the staircase procedure such that the new inter-
val excludes 60% rather than 100% of the values between the
old interval endpoint and the offered amount. So if a partici-
pant chose the delayed option when offered $1500 immediately,

instead of moving the interval minimum from 0 to 1500, it would
move to 900.

Over the course of 14 trials, the staircase procedure yielded a
narrow range of possible indifference points for that particular
condition (i.e., combination of onset and spacing). The indiffer-
ence point was assumed to be the mean of this interval which was
recorded for use in the model fitting before participants moved on
to another 14-trial block in a different condition. Conditions were
presented sequentially such that after completion of each condi-
tion the onset was increased to the next level. If the onset was
already 84 months (the highest level), the spacing was increased
to the next level and the onset was reset back to 0. This proce-
dure yielded 7 indifference points per spacing, one for each onset.
These points could then be used to form a discounting curve,
indicating how the value of a reward sequence changes based on
how far in the future it is. We then fit the models, which yield sim-
ilar discounting curves, to the data-based curves and calculated
the degree of fit.

The experiment was completed on PCs using E-Prime 2.0
(Psychology Software Tools, Pittsburgh, PA). On each trial, par-
ticipants were presented with two options on the screen, one
displayed above the other as in Figure 1. Which choice appeared
on top was held constant within the 14 trials dedicated to a par-
ticular condition but varied randomly between conditions. While
this was done to alleviate order effects, participants were of course
free to look at the options in any order and this order may have
been affected by the various amounts offered in addition to their
spatial arrangement. The “a” key was always used to select the
top option and the “k” key was always used to select the bottom
option. Participants could not make a selection and advance to
the next choice until a 4 s delay period elapsed. This was signified
by the appearance of three asterisks at the top of the screen. This
period was put in place to help ensure that participants were actu-
ally weighing the choices and not merely advancing as quickly as
possible.

ANALYSIS
Each of the models was fit to each subject’s data individually by
varying the discount parameter and the sigma parameter where
appropriate. After fitting, the Bayesian information criterion
(BIC) was computed for each model (Schwarz, 1978; Priestley,
1981).

BIC = n · ln
(
σ2

e

) + p · ln(n) (12)

where n is the number of data points (28 per participant per
model) and p is the number of free parameters (1 or 2 depending
on the model).

Here σ2
e is the error variance, defined as

1

n

∑n

i = 1
(mi − bi)

2 (13)

where m is the model-derived indifference point and b is the
observed behavioral indifference point. We then performed a
matched-samples ANOVA and Bonferroni-corrected pairwise
matched-samples t-tests, using the various models’ BICs for a
particular subject as the matched samples (cf. Milosavljevic et al.,
2010).
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RESULTS
Each “spacing” condition constitutes a particular reward sched-
ule. By determining indifference points for these schedules with
a varying interval until the first reward, we can see how the value
of these schedules drops off as the time to reach them increases.
These curves are displayed in Figure 2 below. Each of the plots
represents a particular reward schedule, with the narrow lines rep-
resenting the data generated by particular participants. The bold
line indicates the mean, with error bars of one standard deviation.
As observed in previous studies on discounting (e.g., Myerson
and Green, 1995), it is readily apparent that the data are quite
noisy, with some participants displaying non-monotonic value
judgments as time to reward increases and others displaying lit-
tle discounting. Nevertheless, we were able to use this data to
discriminate between the models.

A BIC was calculated for each model for each participant. The
average BIC for each model is displayed in Table 1 with the mod-
els listed from best to worst. “Parallel2” and “HDTD2” refer to the
two-parameter versions of the respective models. In addition, we
calculated how many subjects had data best fit by each particular

model. Notably, the Exponential model offered the best fit for the
plurality of subjects. Since every other model utilized hyperbolic
rather than exponential discounting, this likely reflects the fact
that the other models are more similar to each other than to the
exponential model. If we consider that 78% of the time a hyper-
bolic model provided the best fit, our data are in accord with pre-
vious work on hyperbolic vs. exponential discounting in which
data from some subjects is better fit by exponential discounting
(Myerson and Green, 1995).

We used a One-Way repeated measures ANOVA to test
whether certain models fit better than others, taking into account
that each model was fit to each participant. Based on Mauchly’s
test of sphericity, our data violated the assumption of spheric-
ity, p < 0.001. A Greenhouse-Geisser-corrected F-test with a
Box index of sphericity of 0.271, and corrected degrees of free-
dom demonstrated that the goodness of fit between models was
significantly different, F(1.628,19) = 4.689, p = 0.021.

We then completed post-hoc pairwise comparisons using
matched-samples t-tests with a Bonferonni-corrected alpha level
of p = 0.0024 and 24 degrees of freedom. The matched samples

FIGURE 2 | Each plot displays each participant’s discounting curve for a

particular delayed reward schedule. The vertical axis represents the
proportion of total available reward subjects would have to be given
immediately for them to be indifferent between the immediate and delayed

rewards. The horizontal axis represents the delay before the first reward in
the sequence would be received. The black line shows the mean responses
with error bars showing the standard deviation of responses for that
particular spacing and onset time.

Table 1 | Model fitting results.

Model Average BIC BIC standard error Subjects best fit by model

Parallel2 321.87 6.19 5 (20%)

Mixed 322.37 6.16 3 (12%)

Parallel 324.61 6.11 2 (8%)

Exponential 325.85 5.91 7 (28%)

HDTD 327.02 5.77 3 (12%)

HDTD2 327.85 5.87 0 (0%)

Serial 333.76 6.08 5 (20%)
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Table 2 | Pairwise comparisons between models based on BIC scores.

HDTD Parallel Exponential HDTD2 Parallel2 Mixed Serial

HDTD

Parallel t = 3.90,

p < 0.001*
(Parallel)

Exponential t = 0.64,

p = 0.53
t = −0.67,

p = 0.51

HDTD2 t = −1.41,

p = 0.17
t = −4.3,

p < 0.001*
(Parallel)

t = −1.05,

p = 0.31

Parallel2 t = 3.75,

p < 0.001*
(Parallel2)

t = 2.18,

p = 0.04
t = 1.82,

p = 0.08
t = 3.74,

p = 0.001*
(Parallel2)

Mixed t = 4.31,

p < 0.001*
(Mixed)

t = 3.34,

p = 0.0028
t = 2.32,

p = 0.029
t = 4.92,

p < 0.001*
(Mixed)

t = −0.33,

p = 0.74

Serial t = −1.50,

p = 0.15
t = −2.18,

p = 0.04
t = −1.69,

p = 0.10
t = −1.34,

p = 0.19
t = −2.71,

p = 0.01
t = −2.88,

p = 0.008

An asterisk indicates significance. For significant comparisons, the winning model is in parentheses.

were the list of BICs generated by each model, one for each
participant. Our results are summarized in Table 2 below.

Since the Parallel2 model was most successful in accounting for
participants’ data, the best-fitting parameters for this model are
of particular interest. For a number of reasons, however, they do
not offer a straightforward interpretation. Recall that the Parallel2
model has a discount parameter k, and a parameter σ which raises
the denominator to a power. The latter has been interpreted as a
non-linear scaling parameter reflecting the relationship between
subjective and objective reward magnitude (Myerson et al., 2001).
However, because the k and σ parameters are correlated (i.e., an
increase in either parameter results in increased discounting), the
best-fit values obtained for each parameter are unreliable in that
the data may be fit equally well by a range of values for k and σ.
As a consequence of the correlation between parameters, the val-
ues obtained for each parameter from our model fit were highly
variable; the distribution of discount parameters for this model
had a mean of 7.05E+304, a median of 0.031, a range of 1.18E-08
to 8.81E+305 with a standard deviation of 2.39E+305. The best-
fitting σ values had a mean of 1.92E+05, a median of 1.01, a range
of 9.83 E-05 to 9.57E+05, and a standard deviation of 2.98E+05.
The extreme values were likely the joint product of the interac-
tion between the two parameters in combination with outlying
subject data. As can be seen in Figure 2, some curves are quite flat
and remain at very high or very low values. Two such curves are
responsible for the maximum discount parameter of 8.81E+305
being the best fit for two participants. Such values (which likely
reflect computational limits as k was driven upward) can provide
a better fit to some curves due to the interaction with σ which is
driven very low in such cases.

The solution of a very large discount factor with a very small σ
value was not only found for the outlying data, however. For the
more normal curves, the solutions generally fell into two clusters.
One cluster consisted of discount parameters between 1 and 0.001

with σ values between 1 and 0.1. The other cluster featured very
low discount parameters on the order of 10 - 08 and σ values on
the order of 10 + 05. Naturally, such values do not readily afford
psychological interpretation.

While σ may offer a significantly better fit to some data, it
comes at the cost of making some optimal solutions unintelligi-
ble. The best-fitting discount parameters for the standard Parallel
model, which lacks a σ parameter, are more manageable. They
were distributed with a mean of 0.15, a median of 0.08, a range
of 0.04–1.36, and a standard deviation of 0.27. These values are
much less extreme and readily offer an interpretation of the dis-
count parameter as corresponding to value placed on not having
to wait for reward.

This experiment also allowed us to examine how different
sizes of rewards influenced the discount rate. The magnitude
effect refers to the finding that higher rewards are discounted
less sharply than smaller rewards. This effect has been found in
a variety of studies (e.g., Myerson and Green, 1995; Kirby, 1997;
Johnson and Bickel, 2002), and would predict that the best-fitting
discount parameters in the single $3000 reward case would be
smaller on average than those found in the single $1000 reward
condition. From there, it would be interesting to see whether
sequences of three $1000 rewards are discounted more like the
$1000 or $3000 lump sum. To investigate this, we looked at the
average best-fitting discount rates for the Parallel model, despite
it not being the best fitting model. We did this both because
the Parallel model is one of the two key models we examined
and also because the discount parameter has a more straight-
forward interpretation in the Parallel model as opposed to the
Parallel2 and Mixed models which performed slightly better. In
the case of the Parallel2 model, the discount parameter is diffi-
cult to interpret for reasons discussed above, while in the Mixed
model discounting occurs at two different “levels.” We therefore
fit the Parallel model to each spacing condition individually and
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Table 3 | Summary statistics of the best-fitting discount parameters

for Parallel model in each condition.

Condition Mean discount Standard deviation of

parameter discount parameters

across subjects

$3000 single reward 0.135 0.484

Three $1000 rewards
with 12 month spacing

0.262 0.728

Three $1000 rewards
with 60 month spacing

0.189 0.671

$1000 single reward 0.092 0.244

Table 4 | Pairwise comparisons between the best-fitting discount

parameters for the Parallel model in each condition.

$3000 single 12 mo. 60 mo. $1000 single

spacing spacing

$3000
single

12 mo.
spacing

t = −1.539,
p = 0.14

60 mo.
spacing

t = −1.31,
p = 0.20

t = 0.77,
p = 0.45

$1000 single t = 0.87,
p = 0.40

t = 1.67,
p = 0.11

t = 1.09,
p = 0.29

found the average best-fitting discount factor. Our results are
summarized in Table 3.

Surprisingly, the mean discount parameter for the $3000
reward case was slightly larger than for the $1000 reward
case. However, matched-samples pairwise comparisons (df =
24), demonstrated that none of the differences in discount param-
eters across conditions were significant (Table 4).

MODEL RECOVERY
The next question we addressed is whether our data were suffi-
ciently powered to discriminate between the models. The BICs
for the models are quite high, reflecting the generally high level of
variance we observed in responses. The average unsigned residual
error across participants and across models was $272.19. Since
the difference in BIC between models is rather low, one concern
is whether our model comparison procedure is actually capable of
picking up on the relatively subtle differences between the models.
To address this, we performed a model recovery analysis in which
we created model-based data with a level of noise comparable
to that actually observed. We then examined whether the model
used to generate the data offered a significantly better fit than the
alternative model. Because our primary aim in this study was a
comparison between the HDTD and Parallel models, we limited
the model recovery to these two models. For each participant, we
generated two sets of simulated data, one for each model, using
the best-fitting discount parameters for the model in question. We
then added Gaussian noise with a mean of 0 and a standard devi-
ation that matched the standard deviation of the residual errors
for the particular participant and particular model. In this way,

we created simulated data with the same parameters and noise as
the human subject data, but with a known underlying generative
model.

For each set of simulated data, we fit each of the two mod-
els, calculated the corresponding BIC values, and conducted a
matched-samples t-test just as we did in the analysis of the
genuine data. The t-tests were one-tailed since we were testing
only whether the data-generating model offered a better fit, and
Bonferonni-corrected with an alpha of 0.025. We found that in
both cases, the correct model offered a significantly better fit. For
the HDTD-generated data, the HDTD model had an average BIC
of 324.51 while the Parallel model had an average BIC of 325.53.
The HDTD model offered a better fit with p = 0.0053. For the
Parallel-generated data, the HDTD model had an average BIC of
318.21 while the Parallel model had an average BIC of 317.05.
The Parallel model provided the better fit with p = 0.0035. These
findings demonstrate that despite the high amount of noise and
relatively similar performance of the models, our model discrim-
ination procedure is able to determine the better fitting model for
the observed data.

DISCUSSION
In this study we fit several models of temporal discounting
to behavioral data gathered from a procedure which estimated
the value placed on various hypothetical monetary rewards and
reward sequences. Of particular interest were the Parallel and
HDTD models. We found that the Parallel model performed most
similarly to human subjects while the HDTD model performed
relatively poorly. Our findings are consistent with the hypoth-
esis that, within sequences of rewards, individual rewards are
discounted independently. It is notable that in our analyses, all
discounting models that assumed at least some form of indepen-
dent discounting of rewards (Parallel, Exponential, Mixed model)
were ranked higher than models that assumed some interaction
amongst rewards (HDTD, Serial). Although the Mixed model
treats sequences of rewards as a “package” reward that is then
discounted, individual rewards within a sequence are discounted
independently in order to determine the value of the package at
the beginning of the reward sequence.

The finding that models that discount rewards independently
provide better fits to our data is consistent with the findings of
Brunner and Gibbon (1995). In their design, rats chose between
a spaced sequence of rewards or a massed option in which the
rewards were delivered one immediately after the other. Rather
than varying the magnitude of the massed option to estimate the
value of the spaced option, as we did here, they varied the time
delay to the massed option. In contrast to our results however,
they found that the Mixed model did a poor job of account-
ing for the rats’ behavior. In accord with our findings, though,
Mitchell and Rosenthal (2003) found that both the Parallel model
and the Mixed model accurately characterized temporal discount-
ing in rats. The Parallel model was also found by Kirby (2006) to
accurately predict the behavior of human subjects making choices
about real monetary rewards.

As can be seen in Tables 3, 4 we failed to replicate the mag-
nitude effect, which occurs when larger rewards are discounted
less heavily than smaller rewards, despite the fact that it has
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been found in a wide variety of other discounting studies (e.g.,
Myerson and Green, 1995; Kirby, 1997; Johnson and Bickel,
2002). In particular, the average discount rate in the small sin-
gle reward condition was actually slightly lower than the average
discount rate in the large single reward condition, though not sig-
nificantly so. One possible reason for this is that the two reward
values, $1000 and $3000 were not different enough to elicit the
magnitude effect. In Myerson and Green (1995), for instance, the
rewards differed by a factor of 10 as the small reward was $1000
and the large reward was $10,000.

Recall that both the HDTD model and Kurth-Nelson and
Redish’s (2009) μAgents model are capable of implementing
hyperbolic discounting in the context of temporal difference
learning, which has traditionally incorporated the less behav-
iorally plausible exponential discounting. A primary motivation
for this study was to test which method was favored by behav-
ioral data. Our results provide support for the hypothesis that
individual rewards within a sequence are discounted indepen-
dently from one another. Although these results are consistent
with the μAgents model, it remains an open question as to
whether and where hypothesized distributions of exponentially
discounted representations of reward are maintained and inte-
grated in the brain. Presumably, in order for an agent to exhibit
hyperbolic discounting at the behavioral level, the distributed
representations suggested by the μAgents model would need to
be integrated prior to the generation of a response. While regions
within the brain have been observed whose activity is consistent
with distributed discount factors (Tanaka et al., 2004), it has not
been established that such signals represent exponential rather
than hyperbolic discount parameters. Practically, distributed rep-
resentations of hyperbolic discount parameters would manifest
behaviorally in much the same way that distributed representa-
tions of exponential discount parameters do (i.e., as a hyperbolic
discount function) for much the same reason that hyperbolic dis-
counting is observed both at the level of individual subjects and
at the group level (e.g., Green and Myerson, 1996). Moreover,
activity in regions within the brain implicated in discounting
and reward processing tends to be more consistent with hyper-
bolic rather than exponential discounting (Paulus and Frank,
2006; Kobayashi and Schultz, 2008). Future work is needed to
determine how putative exponentially discounted reward repre-
sentations are integrated in order to yield hyperbolic discounting.
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