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To a reaction-diffusion medium with an inhomogeneous anisotropic diffusion tensor D, we add a fourth
spatial dimension such that the determinant of the diffusion tensor is constant in four dimensions. We
propose a generalized minimal principle for rotor filaments, stating that the scroll wave filament strives
to minimize its surface area in the higher-dimensional space. As a consequence, stationary scroll wave
filaments in the original 3D medium are geodesic curves with respect to the metric tensor G ¼ detðDÞD−1.
The theory is confirmed by numerical simulations for positive and negative filament tension and a model
with a non-stationary spiral core. We conclude that filaments in cardiac tissue with positive tension
preferentially reside or anchor in regions where cardiac cells are less interconnected, such as portions of the
cardiac wall with a large number of cleavage planes.
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Introduction.—Phase singularity lines known as fila-
ments are present in many natural systems [1–4]. Filaments
are remarkably persistent features, since they are topologi-
cally protected and therefore must be closed or end on
medium boundaries. They often act as organizing centers,
as in the case of hydrodynamical [4] or superconducting [1]
vortices, crystallographic defects [2], oscillating chemical
reactions [3] and cardiac arrhythmias [5–8]. Being organ-
izing centers, filaments tend to dominate the dynamics of
the entire system if they are present, e.g., in hurricanes, type
II superconductors, chemical oscillations and cardiac
fibrillation [1,3,7,8]. Thus, studying the dynamics and
stability of filaments will help to characterize and under-
stand the entire system.
Despite their diverse nature, filaments in homogeneous

media tend to behave geometrically. A useful characteristic
is the total length of a filament: for a hydrodynamical
vortex—a conservative system—filament length is pre-
served over time [4]. In contrast, in dissipative reaction-
diffusion systems such as cardiac tissue, filament length
changes monotonically [9]; its length decreases if the
so-called filament tension γ1 of the medium is positive
[9]. In such a case, filament rings will shrink and vanish,
while a “transmural” filament (i.e., connecting opposite
medium boundaries) can only be in stable equilibrium if
its length is minimal. Hence, for γ1 > 0, the stationary
filament shape in an isotropic parallel slab is a straight line.
However, some media exhibit anisotropic wave propa-

gation, which complicates their mathematical description.
An important example is cardiac tissue, which is anisotropic
due to its fibrous structure. Moreover, steep spatial varia-
tions in fiber direction were found to destabilize transmural
filaments [10] and form cusp waves [11]. Also, the equi-
librium configuration of a filamentwas numerically found to

be a trade-off between a straight line and following the local
fiber direction [12,13]. This property was elegantly sum-
marized byWellner et al. [13],who showed analytically for a
class of “deformed” anisotropy that a minimal principle
holds: the stationary filaments are geodesic curves if one
recognizes the anisotropic diffusion tensor as the inverse
metric of the space considered. A more general proof for
Wellner’s minimal principle based on response functions
and Fermi coordinates is presented in [14]. In the curved-
space viewpoint [13–16], more accurate laws of motion for
wave fronts [17] and spiral waves [18] have been derived for
anisotropic reaction-diffusion systems.
A key assumption in the current proofs for the minimal

principle is that the diffusion tensor’s determinant jDj should
be constant in time and space. However, gradients in jDj are
known to cause filament drift (see, e.g., [15]), and may
therefore change the stationary filament shape and position.
To go beyond the condition of constant jDj is interesting in
cardiac tissue applications, since laminar clefts decrease the
diffusivity in portions of the ventricular wall [19,20], and
transmural gradients in the expression of intercellular gap
junctions [21] lead to inhomogeneous jDj. Moreover, during
cardiac ischemia, diffusion is reduced [22]. Although chemi-
cal systems are mostly modeled as isotropic, the diffusivity
and therefore jDj may vary spatially in experiments.
In this Letter, we show that the modified metric

G ¼ D−1jDj introduced in [23] for isotropic media gives
rise to a generalized minimal principle that is also valid in
anisotropic excitable media with varying determinant of the
diffusion tensor. We rely on a geometric argument to show
that this view does not necessarily conflict with calculations
in the usual metric g ¼ D−1 [13]. Finally, we apply the
generalized minimal principle. First, our results justify the
equivalence between filament tension coefficients andmetric
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drift coefficients. Second, we reinterpret literature results on
scroll wave drift from [23–25]. Third, numerical simulations
confirm the theoretical prediction that filaments with positive
tensionwill drift to the lowest diffusive coupling,while nega-
tive tension filaments drift towards higher diffusive coupling.
Methods.—We are interested in the properties of sta-

tionary scroll wave solutions to the reaction-diffusion (RD)
equations

∂tu ¼ ∂iðDij∂jPuÞ þ FðuÞ; ð1Þ
where u is the vector of state variables. In cardiac models,
the constant matrix P ensures that only the first variable
(transmembrane potential) can diffuse, while in models of
chemical systemsP is usually taken to be the identitymatrix.
It can be observed [14] that the anisotropic diffusion term in
Eq. (1) is highly similar to a covariant Laplacian D2; the
latter trivially transforms (i.e., is covariant) under a change
of coordinates. For a general metric h with determinant jhj,
one has under a coordinate change xi → x0i0 that

D2f ¼ ∂ið
ffiffiffiffiffiffijhjp

hij∂jfÞffiffiffiffiffiffijhjp ¼ ∂i0 ð
ffiffiffiffiffiffiffijh0jp

hi
0j0∂j0fÞffiffiffiffiffiffiffijh0jp : ð2Þ

There are several ways to recognize the covariant Laplacian
(2) in Eq. (1). First, if jDj is assumed constant in space, the
correspondence is exact if one defines gij ¼ Dij (see, e.g.,
[13,14,16,18,25,26]):

g ¼ ðgijÞ ¼ D−1; g≔jgj ¼ jDj−1: ð3Þ
Second, one may equate the bracketed quantities in the
diffusion term and covariant Laplacian to proposeffiffiffiffi
G

p
Gij ¼ Dij, whence

G ¼ ðGijÞ ¼ D−1jDj; G≔jGj ¼ jDj2: ð4Þ
The latter formulas were first obtained by Wellner and
co-workers [23,27], in an isotropic medium with linear
diffusivity gradient. Filament statics in an isotropic medium
with an abrupt change in diffusion coefficient are studied
in [28].
There are several ways to prove that the metric (4) also

describes filament statics in generic anisotropic media.
In our variational derivation, a fourth spatial dimension is
added, in which the scroll wave is invariant; we show that
minimizing the filament’s surface area in the 4D space is
equivalent to finding geodesics of the 3D metric (4).
Let us now explicitly perform the geometric embedding

of an anisotropic medium with inhomogeneous jDj. For
three-dimensional scroll waves, we imagine a fourth spatial
dimension called w in which the rotating scroll wave
solution is left invariant: u4ðx; y; z; w; tÞ ¼ uðx; y; z; tÞ.
This dimension may be assigned finite length W and
periodic or no-flux boundary conditions. The diffusion
coefficient in the additional direction is chosen to be
1=jDj ¼ jgj, with g the metric (3), which measures

distances in terms of plane-wave arrival times [14,29]. In
4D Cartesian coordinates, we obtain the extended metric ~g

~g ¼

0
BBB@

gxx gyy gzz 0

gxy gyy gyz 0

gxz gyz gzz 0

0 0 0 jDj

1
CCCA; ð5Þ

which does not depend on the new coordinate w. Moreover,
it was constructed to possess determinant j ~gj ¼ 1. When
embedding a scroll wave into four dimensions, the filament
also extends in the w direction, so that it becomes a surface,
which one may choose to call a “brane” or “worldsheet” as
in string theory [30]. A filament with fixed end points now
becomes a brane with fixed boundary lines parallel to the
W axis.
Following the Fermi-coordinates approach used in

Refs. [14,15], we can show that instead of minimizing
its length, the two-dimensional filament brane will strive
to minimize its surface area with respect to the metric ~g.
The detailed proof falls outside our present scope and will
be presented elsewhere. Using such a higher-dimensional
minimal principle, a stationary filament brane will mini-
mize its surface area S ¼ ∬ ffiffiffiffiffiffij ~gjp

dwds, given by the
Nambu-Goto string action [30]:

S ¼
ZZ

dw
ffiffiffiffiffiffiffi
~gww

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gij

∂xi
∂s

∂xj
∂s

r
ds

¼ W
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðgijjDjÞ
∂xi
∂s

∂xj
∂s

r
ds

¼ W
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gij
∂xi
∂s

∂xj
∂s

r
ds: ð6Þ

This short derivation shows that minimizing filament
surface area with respect to ~g using the classical minimal
principle boils down to minimize filament length with
respect to G ¼ gjDj, according to Eq. (4).
Results.—We now provide several examples that illustrate

the power of the generalized minimal principle. Let us first
apply the embedding idea to the drift of a spiral wave on a
two-dimensional surface with anisotropic diffusion and
varying jDj, as shown in Fig. 1(a). Extending the medium
in the W direction with Dww ¼ 1=jDj, one sees that in the
resulting three-dimensional medium, the diffusion has con-
stant determinant equal to one again. Here, we
can use Wellner’s original minimal principle [13] in three
dimensions, to find that stationary filaments will reside at a
site where they have extremal length. It is well known that in
a medium where filaments have positive tension γ1, their
length will be minimized [9]. Thus, when γ1 > 0, the
filament of the embedded spiral wave will end up in a locus
where Dww ¼ 1=jDj is maximal. On the contrary, in models
where the reaction kinetics yield γ1 < 0, the filament will
drift to a region with minimal Dww ¼ 1=jDj. In this case, a
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negative tension instability is not allowed to develop since the
filament curve is defined to remain parallel to the W axis.
From recent work [18], it is known that in two dimen-

sions, the Riemann curvature of the medium will also
induce drift of spiral waves on a surface. However, if one
works in the limit of slowly varying anisotropy compared
to the spatial rate of change of jDj, the drift induced by the
gradient of jDj will prevail and determine the stationary
filament positions. Furthermore, nonvanishing Riemann
tensor components in the extended space (e.g., Rxwxw)
cannot affect the filament dynamics, since all state variable
fields are invariant in the w direction. Also, due to the
block-diagonal structure of ~g, Riemann tensor components
along the original spatial directions (e.g., Rxyxy) remain
unaffected by the embedding.
Note further that the intramural filaments in a rotational

anisotropy setting as studied in [24,25] are essentially spiral
waves in a medium with inhomogeneous diffusion. The
reasoning above now predicts that intramural filaments will
drift to a layer where they are parallel to the local fiber
direction only when γ1 > 0; for negative tension, they will
end up perpendicular to the local fiber direction, confirming
the discussion in [25].
As a second application, consider a three-dimensional

scroll wave in the half plane x > −1=H, with scalar
diffusivity Dij ¼ ð1þHxÞδij, where H > 0. It was shown
in [23] that a filament pinned at x ¼ a, y ¼ 0, z ¼ �b takes
the shape x ¼ −1=H þ A coshðz=AÞ with A defined by
1þ aH ¼ AH coshðb=AÞ to satisfy the pinning conditions.
This solution was found to be a geodesic of G defined by
Eq. (4). From the embedding viewpoint depicted in Fig. 1(b),
we extend the medium in a fourth dimension w with
Dww ¼ ð1þHxÞ−3 to note that the filament brane is pulled
to the region of small x, since its surface area measure
dw=

ffiffiffiffiffiffiffiffiffi
Dww

p
in the fourth dimension is more favorable there.

In general, if γ1 > 0 we expect from the higher-dimensional
minimal principle that stationary filaments will tend to reside
in regions with small jDj, i.e., in regions where the medium
has the lowest diffusive coupling.

Geometry for numerical simulations.—Let us consider
thirdly a relevant example from cardiac anatomy.
Classically, the thick ventricular wall is modeled as con-
sisting of local myofibers aligned in the direction ~ef, i.e.,

Dijð~rÞ ¼ Dsδ
ij þ ðDf −DsÞeifð~rÞejfð~rÞ; ð7Þ

with Df ≈ 3Ds [10,13]. The fibers are found to rotate
through the myocardial wall over an angle close to 120°
[31], with left-handed chirality. A widely used simplified
model for cardiac anisotropy, known as rotational
anisotropy [10,11,13,24], is given on the domain ðx; y; zÞ ∈
ð0; LxÞ × ð0; LyÞ × ð0; LzÞ by

~efð~rÞ ¼ cos αðzÞ ~ex þ sin αðzÞ ~ey: ð8Þ
The fiber helix angle α is often assumed to be linearly
increasing with transmural coordinate z.
From histological [32] and high-resolution MRI studies

[33], however, the cardiac myofibers in the midwall region
were found to be organized in sheets, separated by cleavage
planes that reduce mechanical shear stresses during con-
traction [19,20]. We shall here model the layered archi-
tecture of myocardial tissue by reducing diffusivity along
the sheet normal direction in the central part of the
myocardial wall in the direction normal to the cleavage
plane orientation. As a result, the tissue is modeled as
orthotropic. Instead of Eq. (7) we take [34]

Dij ¼ Dfeife
j
f þDseise

j
s þDneine

j
n; ð9Þ

where the main diffusivities Df > Ds ≥ Dn > 0 occur
along the fiber ( ~ef), sheet ( ~es), and sheet normal ( ~en)
direction, which are mutually orthogonal. Sheet presence
is modeled using an orthotropy parameter ηð~rÞ ∈ ½0; 1�:
Df ¼ D1, Ds ¼ D2, Dn ¼ ηD2 þ ð1 − ηÞD3. Here, we set
D1 ¼ 5, D2 ¼ 1, D3 ¼ 0.33 to match anisotropy ratios in
pig ventricular tissue experiments [35]. For the myofiber
and sheet normal directions, we take

~efðzÞ ¼ cos αðzÞ ~ex þ sin αðzÞ ~ey; ð10Þ

~enðzÞ ¼ sin αðzÞ ~ex − cos αðzÞ ~ey; ð11Þ

with fiber helix angle αðzÞ ¼ π=3 − 2πz=ð3LzÞ. Since it is
well known that sheets are absent in the subepicardium
[19,20], we set η ¼ 0 for z > z1 ¼ 0.8Lz. In our simula-
tions, we assume the orthotropy parameter ηðx; zÞ piece-
wise linear in x, with x1 ¼ 0.3Lx, x2 ¼ 0.7Lx:

ηðx;zÞ ¼
�
ηxðxÞ 0≤ z < z1
0 z1 ≤ z≤Lz;

ηxðxÞ ¼

8><
>:

0.5þ 0.5x=x1 0≤ x < x1
ðx− x1Þ=ðLx− x1Þ x1 ≤ x < x2
1− 0.5ðx− x2Þ=ðLx− x2Þ: x2 ≤ x≤Lx:

ð12Þ

FIG. 1 (color online). Understanding stationary filament shapes
by adding an additional dimension W. (a) By adding an extra
dimensionW to a spiral wave in the XY plane, the spiral’s rotation
center becomes a filament curve in XYW space. (b) Filament in
an isotropic 3D space, pinned at both ends ðx; y; zÞ ¼ ða; 0;�bÞ
under a gradient H of the diffusion coefficient D [23]; the spatial
Y dimension is not drawn here. By embedding, the filament curve
is extended to a brane around which the scroll wave rotates in four
dimensions. Dark shading indicates low D.
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For the geometry considered, the length of a straight
transmural filament with respect to the metric g is
Lg ¼ Lz=

ffiffiffiffiffiffi
Ds

p
and therefore constant along the wall.

Thus, from the original minimal principle, no drift is
expected. However, according to the generalized minimal
principle, the filament strives to minimize its length with
respect to the metric G, i.e., LG ¼ ð1 − z1ÞLz

ffiffiffiffiffiffiffiffiffiffiffiffi
D1D3

p þ
z1Lz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ðD2 − ηðD2 −D3Þ�

p
. Hence the filament will be

stationary where η is extremal.
Numerical results.—Figures 2–3 show the drift trajectory

for a filament with Barkley kinetics [36], i.e., u ¼ ½u; v�T ,
F¼½ðu=ϵÞð1−uÞðu−ðvþbÞ=a;u−v�T and P¼ diagð5;0Þ.
We take domain size Lx ¼ 150, Ly ¼ 150, Lz ¼ 3, lattice
step dx ¼ 0.3 and explicit Euler time step dt ¼ 0.0027. We
chose parameter values b ¼ 0.01, ϵ ¼ 0.025 and a ¼ 0.7 or
a ¼ 0.4 to cover the positive and negative filament tension
regimes [37]. For a ¼ 0.7, γ1 > 0 and we see in the
simulation that the filament is attracted to x ¼ x1, i.e.,

the zone with lowest diffusive coupling, as predicted by the
generalized minimal principle. For a ¼ 0.4 and Ly ¼ 225,
we have γ1 < 0, but the wall is thin enough not to cause full
3D instability [17]. Instead, the original transmural (I)
filament produces short-lived filaments (U) whose end-
points lie on the endocardial surface, where they appear as
clockwise (CW) or counterclockwise (CCW) rotating spiral
waves. Their trajectory is shown in Fig. 3. Note that despite
this instability, the “mother” filament slowly drifts towards
x ¼ x2, as predicted by the generalized minimal principle.
Second, we performed a numerical simulation with the

minimal model for epicardial cells as proposed in [39]. We
used grid resolution dx ¼ dy ¼ 0.6 and dz ¼ 0.4 mm and
domain size Lx ¼ 360mm, Ly ¼ 180mm, Lz ¼ 2.4 mm,
diffusion coefficient P̂ ¼ diagð0.1171; 0; 0Þ mm2=ms [39],
orthotropy ratio as above and time step 0.092 ms. Although
this model has a linear core, Fig. 4 shows that its filament is
attracted to the plane x ¼ x1 with the most pronounced
laminar structure, as predicted by the generalized minimal
principle in the case of positive filament tension.
Discussion.—In this Letter, we have generalized the

minimal principle for scroll wave filaments to anisotropic
media with inhomogeneous diffusivity. We presented a
variational derivation due to its simplicity and the addi-
tional geometrical insights it offers. E.g., the direction of
drift easily follows from the sign of filament tension and the
filament length (surface) after embedding.
We also recall that the standard and generalized minimal

principle for filaments are lowest order descriptions in
curvature, twist, and anisotropy compared to the scroll
wave core size [14]. In Figs. 2–3, two manifestations of
higher order dynamics can be noted. First, the equilibrium
position is not exactly x1 or x2, due to the different slopes of
DnðxÞ, which are felt by the finite-size scroll wave core.
Second, since the medium is translationally invariant in Y,
the minimal principle does not prefer one particular y value,
and higher order corrections make the final filament state
slowly drift in the Y direction.

FIG. 2 (color online). Drift of a transmural filament (green)
in a medium with rotational anisotropy and varying diffusivity
Dnðx; zÞ. Filament rendered every 100 time units, and epi- and
endocardial trajectory shown inwhite. Barkley’s kinetics [36]were
used with a ¼ 0.7; bottom surface color denotes u at t ¼ 2000.
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FIG. 3 (color online). (a) Epicardial drift trajectory for filaments
in Barkley’s model with positive (a ¼ 0.7) and negative filament
tension (a ¼ 0.4). (b) Endocardial drift trajectories for the
negative tension case (a ¼ 0.4), in which case the original
transmural (I) filament pinches off secondaryU-shaped filaments
at the endocardial side. The generalized minimal principle
predicts filament attraction to x ¼ x2 (black, dashed). See movie
in the Supplemental Material [38].
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FIG. 4 (color online). Tip trajectory of a scroll wave in the
minimal cardiac model by Bueno-Orovio, Cherry, and Fenton
[39] in a slab geometry with fiber rotation and varying cleavage
plane density. Every 1 s, the tip trajectory on the epicardial
surface is shown during 0.3 s; the arrow indicates drift direction.
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We further note that in thin tissue such as the atrial wall,
filaments will remain straight and transmural due to their
rigidity [17], even in the case of negative filament tension.
Thus, given a cardiac geometry, one could measure the
effective wall thickness with respect to metric G to find the
filament attractors. Note that this result will be largely
independent of the physiological reaction kinetics since
they do not affect D or G; the effect of tension becoming
negative is that repulsive loci will become attractive and
vice versa. In principle, our method can thus be used to
identify stable loci in the cardiac wall where rotors
preferentially reside. Such application may be promising,
as novel ablation strategies targeting rotors are currently
being developed [8,40].
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