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SUMMARY

The global control of large-scale production machines composed of interacting subsystems is a challenging
problem due to the intrinsic presence of high coupling, constraints, nonlinearity, and communication limi-
tations. In this work, a pragmatic approach to distributed nonlinear model predictive control (DNMPC) is
presented with guaranteed decrease in cost. Furthermore, in order to tackle time-varying process dynamics,
a learning algorithm is developed, thereby improving the performance of the global control. The proposed
control framework is experimentally validated on a hydrostatic drivetrain, which exhibits nonlinear dynam-
ics, strongly interacting subsystems. The experimental results indicate that good tracking performance and
disturbance rejection can be obtained by the proposed DNMPC. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The ever increasing complexity of large-scale systems found nowadays in process industry, man-
ufacturing systems, and traffic networks urged the control community to revise old concepts of
distributed control and develop novel, pragmatic approaches. An excellent review of the current
techniques used in practice is given in [1]. The challenge for control is that these large-scale
systems are composed of many interacting subsystems. They can be difficult to control with a lin-
ear centralized control structure due to nonlinearity, computational complexity, and limitations on
communication [2, 3].

Many industrial systems can be described by a hierarchical structure where an algorithm at higher
level coordinates the actions of local regulators placed at a lower level. However, often, the high
level algorithm becomes so complex that it becomes hard to justify its advantages over a centralized
controller [1]. For all these reasons, in the last decade, many distributed control structures have been
developed and the nonlinear model predictive control (MPC) approach was recognized as one of the
most suitable candidates [4, 5]. This is not surprising, because MPC has a great potential to play a
crucial role in distributed control due to its intrinsic forecasting properties, which can be exchanged
(in part) to neighboring MPC units [1, 6–9].

In this paper, we introduce a pragmatic approach to distributed MPC by taking into account
the interaction of the subsystem with minimum amount of exchanged information with a guaran-
teed improvement in cost. We make use of the in-house developed nonlinear extended prediction
self-adaptive control (NEPSAC) algorithm as a basis for stemming the proposed approach [10].
The novelty of our approach is the ease of implementation preserving the guarantee of improve-
ment in cost, pragmatism, and ability to tackle constraints without significant computational
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complexity. In order to test these claims, a hydrostat drivetrain system is used, consisting of two
highly nonlinear, time-varying dynamic, interacting subsystems. This is a representative global
mechatronic system widely used in industry, for example, in mobile vehicles such as ground
moving machines, agricultural machines, forest machines, and industrial and mining lifters. The
use of hydrostatic transmission as the vehicle drives is primarily motivated by its large range of
continuously variable speed, high maneuverability, and a possibility to increase the overall
efficiency [11].

This motivates us to develop a distributed nonlinear model predictive control (DNMPC) frame-
work, which can guarantee an improvement in cost with every cycle for the distributed nonlinear
control of the hydrostat, and to the best of our knowledge, this opens up a new way of viewing and
controlling such global production machines. The paper elaborates on this practical research and is
organized as follows. Section 2 introduces the DNMPC technique with distributed recursive least
squares (DRLS). Section 3 presents a physical model and open-loop characteristics of the hydrostat.
The presented technique is then experimentally validated on the hydrostat in Section 4 by comparing
it with a PID and is followed by the principle conclusions in Section 5.

2. DISTRIBUTED NONLINEAR MPC (DNMPC)

Within the distributed control framework, a limited amount of information is transmitted between
the local regulators, such that each of them has some knowledge about the behavior of its interact-
ing neighbors. For simplicity, a schematic overview is given in Figure 1, depicting the concept of
distributed MPC with interacting subsystems. The information exchange can be performed either

� Non-iterative, that is, information is transmitted/received only once in each sampling period; or
� Iterative, that is, information is transmitted/received many times to reach global consensus

within each sampling period.

If the information is part of the cost function, then this can be either

� Independent, that is, each regulator minimizes a local performance index; or
� Cooperating, that is, all local regulators minimize a global cost function.

Agent-based distributed MPC scheme is another approach that is based on cooperative game theory
and has been reported for constrained linear systems in [12]. In this paper, we will explore the
cooperative approach due to its established stability properties [13] along with the non-iterative
scheme to be able to perform fast computation and give an extension for nonlinear systems with a
guarantee on monotonic decrease in global cost.

Figure 1. Distributed MPC of two interacting subsystems with information exchange.
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2.1. Proposed DNMPC algorithm

In this section, we elaborate on the DNMPC controller design. To facilitate the exposition, we
assume that the plant comprises only two subsystems. For a process with two inputs and two outputs,
the structure of the generic process model becomes [14]

y1.t/ D Oy1.t/C n1.t/ and y2.t/ D Oy2.t/C n2.t/ (1)

with yi .t/; Oyi .t/; ni .t/ as the i th process output, model output, and disturbance, respectively, where

Oy1.t/ D f1 Œ Oy1.t � 1/; Oy1.t � 2/ : : : u1.t � 1/; u1.t � 2/ : : : u2.t � 1/; u2.t � 2/�

Oy2.t/ D f2 Œ Oy2.t � 1/; Oy2.t � 2/ : : : u1.t � 1/; u1.t � 2/ : : : u2.t � 1/; u2.t � 2/� (2)

in the case where the system is available in the input–output formulation. In the case of a state-space
realization,

x1.t C 1/ D f
x
1 .x1.t/; x2.t/; u1.t/; u2.t//; x2.t C 1/ D f

x
2 .x1.t/; x2.t/; u1.t/; u2.t// (3)

y1.t/ D g1.x1.t/; x2.t//C n1.t/; y2.t/ D g2.x1.t/; x2.t//C n2.t/ (4)

The disturbances are modeled by colored noise processes

n1.t/ D
�
C1
�
q�1

�
=D1

�
q�1

��
� e1.t/ and n2.t/ D

�
C2
�
q�1

�
=D2

�
q�1

��
� e2.t/ (5)

where e1.t/; e2.t/ are zero mean white noise sequences. In the linear case, the future response can
then be expressed as

y1.tCkjt / D y1base.tCkjt /Cy1opt .tCkjt / and y2.tCkjt / D y2base.tCkjt /Cy2opt .tCkjt /
(6)

where the predictions are made at time t over the prediction horizon k D N1; N2. In vector notation,

Y1 D NY1 CG11 � U1 CG12 � U2 and Y2 D NY2 CG21 � U1 CG22 � U2 (7)

where NY1; NY2 are the base responses computed as the cumulative effect of both the past control
inputs/outputs (states), the a priori defined future control actions U1base; U2base , and the predicted
disturbances. The rest of the optimizing terms are the discrete time convolution of the predicted
optimal inputs U1; U2 (defined as the increments to U1base; U2base) with the corresponding impulse
response coefficients, that is, the respective Gij matrices defined from input j to output i , where
i; j 2 1; 2. Thus, U1 D Œıu1.t jt / : : : ıu1.t C Nu1 � 1jt /�

T , where Nu1 is the control horizon and
ıu1.:j:/ is the control increments from the base input.

Next, consider the following global cooperating cost function

V D .V1.U1; U2/C V2.U1; U2//; where; Vi D .Ri � Yi /
T � .Ri � Yi /C U

T
i :ƒi :Ui (8)

where Ri ; ƒi are the respective reference trajectories and control penalty matrices for i D 1; 2. It
follows that the optimization problem for MPC-1 is

U �1 DMinU1V; subject to U1 2 U
c
1 and U2 D U

��1
2base (9)

where U ��12base is the optimal input trajectory communicated by MPC-2 delayed by one sample, and
U c1 is the polytopic constraint set for MPC-1, which arises from the input and output constraints of
the model. An explicit solution can be obtained in the unconstrained case

U �1 D
�
GT11 �G11 CG

T
21 �G21 Cƒ1 � I

��1
�
�
GT11 �

�
R1 � NY1

�

CGT21 �
�
R2 � NY2

��
(10)

Similarly, an explicit solution can be derived for U �2 . Note that in many cases, a control horizon
of Nu D 1 sample suffices and then we can still use the explicit solution followed by clipping. A
short control horizon is widely used in the industry, at least in the case of stable plants when only
input constraints are active. When the underlying process model is nonlinear, for controller-1, the
superposition of (7) is still valid only if the term y1opt .t C kjt / is small enough compared with
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(a) (b)

Figure 2. (a) A schematic of the pump-controlled motor, (b) hydrostat benchmark consisting of two
hydromotors driven by a pump.

y1base.tCkjt /. This is true when ıu1.tCkjt / is small, which is the case if u1base.tCkjt / is close
to the optimal u�1.t C kjt /. To address this issue, the idea is to recursively compute ıu1.t C kjt /
using (10), within the same sampling period, until ıu1.tCkjt / converges to 0. Inside the recursion,
u1base.t C kjt / is updated each time to u1base.t C kjt / C ıu1.t C kjt /, that is, the extension of
extended horizon self-adaptive control (EPSAC) algorithm for nonlinear systems [10, 14]. Notice
that linearization of the process is not necessary in this case, which is a significant advantage over
other MPC strategies. The procedure is similar for controller 2, and both controllers are further
denoted in the remainder of this paper as NMPC-1 and NMPC-2.

To summarize, the non-iterative sequential DNMPC algorithm for the 2 � 2 process consists of
the following steps:

1. Initialize the control sequences U1base; U2base and compute the respective disturbance signals
ni , with i D 1; 2;

2. NMPC-1: Compute U �1 D argminU1V subject to U1 2 U c1 and U2 D U
��1
2base.

Update U1base D U1base C U �1 and communicate to NMPC-2 together with n1.t/.
3. NMPC-2: Compute U �2 D argminU2V subject to U2 2 U c2 and U1 D U

�
1base.

Update U2base D U2base C U �2 and communicate to NMPC-1 together with n2.t/.
4. NMPC-1 and NMPC-2 apply the first inputs of U1base; U2base to the real process.
5. Go to step 1 at the next sampling period.

Algorithm 1: Non-iterative sequential DNMPC

There are two main advantages of the proposed strategy. First, if a temporary failure in commu-
nication occurs, NMPC-1 can compute both U �1 and estimate of U �2 (and similarly for NMPC-2),
whereas only the disturbance estimates are exchanged until communication is re-established. Sec-
ond, for large-scale systems with for instance 50 decision variables, the resulting control horizon
may be 50, which requires large matrix inversion and complex quadratic programming optimization.
However, the DNMPC algorithm simplifies it to 50 subsystems, each optimizing over the control
horizon Nu D 1. In this case, the explicit solution can be used, which reduces the computational
burden to a scalar division.

A centralized NMPC (CNMPC), that is, multivariable NEPSAC would minimize the same cost
function of (8) but now with respect to the multivariable vector ŒU1; U2�T at once subject to the
constraints ŒU1 � U2�. This, even in the limiting case, that is, when both the inputs have individual
horizons of 1, adds up to a net control horizon of 2 and hence can only be solved by quadratic
programming, which has an exponential cost. Comparatively, in this case, the DNMPC with control
horizons 1 will have a polynomial time complexity.

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:369–380
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Figure 3. (a) Open-loop test on the hydrostat model demonstrating the coupled dynamics and (b) the
presence of significant nonlinearity.
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Figure 4. (a) A comparison of centralized and distributed NMPC for tracking; (b) the sequential distributed
NMPC algorithm approaching centralized NMPC locally optimal solution.

Assumption 1
The cost function of (8) is smooth and twice differentiable.

Theorem 1
The presented sequential non-iterative DNMPC algorithm 1 achieves a guaranteed decrease in
global cost with every iteration.

Proof
A nonlinear system usually leads to a non-convex cost function, which is convex around a neigh-
bourhood where the local minimum exists. In such a neighbourhood, let us say u1; u2 are the current
iterates. The presented DNMPC algorithm then freezes one direction and takes a gradient descent
step in the other direction to uC1 ; u2 as shown in Figure 4(b). Next, the converse happens and a
gradient descent step is taken in the other coordinate to uC1 ; u

C
2 . The monotonic decrease in the cost

function due to NEPSAC can be ensured by a suitable choice of control penalty ƒ, which is akin to
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Levenberg–Marquardt algorithm for each controller and together is called coordinate descent. The
decrease can only be 0 on both directions if a stationary point is attained which is the local optimal
for the global cost. (A Taylor’s series expansion around initial point V.U1base; U2base/ leads to
V.U1base C U1; U2base/, which is minimized to obtain (10) and so on.) �

Lemma 1
If the steps 2,3 of algorithm 1 are iterated over and over, convergence is guaranteed to the solution
of the CNMPC.

Proof
The satisfaction of Assumption 1 (which is assumed) guarantees that the algorithm does not get
stuck in corners of the level sets of the global cost function, and hence, the coordinate descent would
stop decrementing only at a locally optimal solution (u�1 ; u

�
2) with cost V �.U �1base; U

�
2base), same as

the one obtained when the optimization is performed in a multivariable fashion by CNMPC. This is
shown in Figure 4(b). �

2.2. Distributed learning

The production machines have intrinsic time-varying dynamics (e.g., oil temperature, density, and
leakage). They are also intensively operated under varying environmental conditions (e.g., process
properties, toxic gas, and seasonal variations). Consequently, these factors imply the necessity of an
adaptation mechanism for updating the model parameters in a distributed sense. In this section, we
propose a simple yet effective learning method.

The model equation for the i th subsystem can be written as

yi .t/ D �
T
i .t/ � �i .t/C �

T
i�.t/ � �i�.t/C �i .t/ (11)

where the nonlinear system is assumed to be linear in the parameter � . The vector � contains all
the past inputs and measurements (i.e., state), � denotes the error and subscript i� denotes all other
parameters except the i th. We employ the classic recursive least squares (RLS) algorithm for the
learning step [15]. The distributed sequential learning mechanism for a 2 � 2 system is proposed as
follows:

1. Initialize �1.t � 1/ and �2.t � 1/;
2. RLS-1. Compute �1.t/ D �1.t � 1/CK1 � .y1.t/ � �T1 .t/ � �1.t � 1/ � �

T
2 .t/ � �2.t � 1// in

the least squares sense and communicate to RLS-2.
3. RLS-2. Compute �2.t/ D �2.t � 1/CK2 � .y2.t/ � �T2 .t/ � �2.t � 1/ � �

T
1 .t/ � �1.t// in the

least squares sense and communicate to RLS-1.
4. Go to step 2 at the next sampling period.

The gain Ki can be computed recursively. Further, the error term multiplied with the gain can be
weighted with an exponential forgetting factor [15]. Because the distributed RLS algorithm has the
same structure as that of DNMPC, it was combined to add the learning feature to the DNMPC.

The DRLS algorithm itself has mild requirements such as (i) the measurement noise is assumed
to be white and (ii) the parameters vary slowly and continuously, which are generally true for RLS
even. In such cases, the forgetting factor is prescribed to be in between 0.98 and 1. For the dis-
tributed RLS case, if the incoming information is not uniformly distributed in the parameter space, a
directional forgetting factor may be used [16]. Therefore, it is desirable to assign different forgetting
factors to different parameters (however, this is to be determined based on simulation).

Remark 1
The arguments for the controller have been given for the case of two subsystems only, but same
arguments apply for any finite M > 0 number of interconnected subsystems, where each subsys-
tem has a copy of the plantwide model and can evaluate the objective function independently (by
definition of cooperative control).

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:369–380
DOI: 10.1002/oca



DISTRIBUTED NMPC 375

3. APPLICATION ON A HYDROSTATIC DRIVETRAIN BENCHMARK PROCESS

Generically, the hydrostatic drive uses fluid under pressure to transmit engine power in order to drive
wheels or tracks. Mechanical power is converted to hydraulic power and back to mechanical power
by a pump–motor synergy. The pump and motor are joined in a closed-hydraulic loop as shown in
Figure 2(a), which is good for power transmission when variable output speed is required. Hydro-
static transmissions outperform electrical, gear-type transmissions as they can offer fast response,
maintain precise speed under variable load, allows infinitely variable speed control from zero to
infinity, and can increase torque without changing gears. In a closed-hydrostatic transmission, the
torque can be transmitted in both directions, thus allowing hydrostatic breaking. However, this
property implies the existence of a precise control of the traction effort and speed. Another impor-
tant advantage for hydrostatic drives is the high efficiency and thereby low fuel consumption when
compared with hydrodynamic drives [11].

Typically, hydraulic systems are highly nonlinear, complex dynamic plants. For this reason, linear
model-based controllers that are used in practice often fail to maintain good performance. Although
nonlinear differential equations can be used to describe in detail a hydraulic system, it is difficult to
find suitable model-based controllers without loss of implementability [11].

3.1. Modeling

To understand the hydrostatic assembly, we would briefly describe the working principles of a motor
followed by a pump-controlled motor. A hydraulic motor consists of a swash plate connected to a
rotating barrel with pistons sitting on the plate via connectors. Valve plate that ports inlet fluid to
half of the cylinder barrel and pistons receiving this are forced against the swash plate. This causes
the barrel attached to the drive shaft to rotate. Variable displacement can be achieved by varying the
angle of the swash plate. A hydraulic motor can be made to work in an opposite fashion, that is,
the drive shaft rotation (due to a connected engine) now causes the pistons to generate a pressurized
flow. This arrangement is called a hydraulic pump.

For an ideal hydraulic motor/pump, the mechanical power output is given by [17]

hpjout D Tg � !m (12)

where Tg is the torque generated by the motor and !m the angular speed of the motor shaft. The
hydraulic power supplied to the motor is

hpjin D .P1 � P2/ �Qm (13)

where P1; P2 are pressures in high, low pressure lines, respectively (refer to Figure 2(a)) andQm is
the oil flow through the motor. Assuming 100% motor efficiency, we have that

Tg D Sm � .P1 � P2/ ,where (14)

Sm D Qm=!m (by definition) (15)

where Sm is the volumetric displacement (stroke) of the motor. However, in practice, leakage flows
and friction are important sources of losses. There are two types of leakage: internal and external.
The internal leakage is given by

Qim D Cim � .P1 � P2/ (16)

where Cim is the internal leakage coefficient. The external leakage is given by

Qemi D Cem � Pi ; i 2 ¹1; 2º (17)

where Cem is the external leakage coefficient. Further, there are two major sources of torque losses

1. The damping torque (due to shearing the fluid). Td D Bm � !m, where Bm is the viscous
damping coefficient; and

2. The friction force opposing the motion of piston. Tf / Sgn.!m/ � .P1 C P2/.

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:369–380
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Hence, the resultant torque delivered to the load can be written as

Tl D Sm � .P1 � P2/ � Td � Tf (18)

From the continuity equation for high (modulated) pressure forward chamber, we have that (refer to
Figure 2(a))

Sp � !p � Cip � .P1 � P2/ � Cep � P1 � Cim � .P1 � P2/ � Cem � P1 � Sm � !m D
V0

ˇ

dP1

dt
(19)

where subscript p denotes ‘pump’, V0 is the volume of forward chamber, and ˇ is the bulk modulus
of system. The torque balance equation gives

Tg D Sm � .P1 � P2/ D Jt � P!m C Bm!m C Tl (20)

where Jt is the total inertia of the motor and the load.
In the setup from Figure 2(b), we have one pump with variable displacement driving two motors

with variable displacement. The pump is driven by an engine, which is speed controlled. Thus, the
aforementioned analysis can be directly extended now to account for the two motors. It follows from
(19) that the combined continuity equation for the high pressure line, P1 becomes

Sp � !p � Cip � .P1 � P2/ � Cep � P1 � 2 � Cim � .P1 � P2/

�2 � Cem � P1 � Sm1 � !m1 � Sm2 � !m2/ D
V0

ˇ

dP1

dt
(21)

Subsequently, for the low pressure line, P2, we have

Sm1 � !m1 C Sm2 � !m2 � 2 � Cim � .P1 � P2/ � 2 � Cem � P1

�Cip � .P1 � P2/ � Cep � P1 � Sp � !p D
V0

ˇ

dP2

dt
(22)

The torque balance equations at two hydromotors are

Sm1 � .P1 � P2/ D Jt1 � P!m1 C Bm1!m1 C Tl1

Sm2 � .P1 � P2/ D Jt2 � P!m2 C Bm2!m2 C Tl2 (23)

where subscripts 1,2 denote the first and second hydromotors, respectively. Finally, the torque
balance equation for the driving electric motor is

TDrEM D .JDr C Jp/ � P!p C Sp � .P1 � P2/ (24)

The Equations (21), (22), (23), and (24) define the model of the hydrostatic drivetrain.

3.2. Open-loop tests

In the drivetrain setup from Figure 2(b), the pump speed driven by the engine and the displacement
volume of the pump are fixed. Thus, the control objective is to achieve the desired hydromotor speed
setpoints by manipulating the associated displacement volumes of the two motors while minimizing
the effect of the unmeasured load torque disturbances. In order to access the characteristics of this
system, we use the aforementioned derived system equations together with the parameters obtained
from the real machine to demonstrate the presence of coupled and nonlinear dynamics.

In the first test, the displacement volume of the second hydromotor is fixed and that of the first
hydromotor is varied stepwise. As shown in Figure 3(a), changing the displacement volume of the
first hydromotor is almost equal but opposite influence on the speeds of both hydromotors. This
observation suggests that the hydrostat is composed of highly coupled subsystems.

In the second test, both hydromotor displacement volumes are changed stepwise. Because both
hydromotors are assumed to have the same physical behavior, the effects of nonlinearity will be more
pronounced if the directions of the simultaneous variation in the inputs are the same. As depicted
in Figure 3(b), the step changes in the hydromotor displacement volumes produce significantly dif-
ferent dynamics in the hydromotor speeds. These differences are in terms of varying gain, damping
coefficients, and time constants, all depending on the operating point. This observation suggests the
presence of significant nonlinearities in the global system.

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:369–380
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3.3. Closed-loop tests

In order to explicitly demonstrate the superiority of Algorithm 1 in terms of performance and com-
putation, a centralized NEPSAC controller is designed with N1 D 1;Nu D 2;N2 D 5;ƒ D 10 � I .
Our target is now to show that two distributed NEPSAC controllers with the same parameters
N1 D 1;Nu D 1;N2 D 5;ƒ D 10 approach the centralized performance, which is the best that
can be achieved as all information is available. The DNMPC controllers communicate sequentially
and only once as in Algorithm 1. The control penalty is adapted to a very high value whenever the
cost does not decrease monotonically, essentially freezing the new control to the past value. The
sampling time is 100 ms, and the inputs are subjected to actuator constraints of 12–100% limits
on strokes. The goal is to drive the hydromotor speeds to the respective setpoints. The results are
plotted in Figure 4(a). As can be inferred, there is no difference to the naked eye between the perfor-
mance of the CNMPC and DNMPC tracking controllers with the controls almost overlapping each
other. This is a validation of Theorem 1 and Lemma 1 as the distributed locally optimal solution
approaches the centralized one. The graphical verification is given in Figure 4(b), where it can be
seen that the first steps are enough to guarantee sufficient decrease in the gradient, which is in fact
the case here.

Next, the computational costs for both the methods are compared. The maximum time, average
time required to perform all the computations within one sampling time are 500 ms and 20 ms for
CNMPC and 50ms and 2ms for DNMPC on embedded MATLAB for real-time target. This clearly
shows that as the peak computation time for CNMPC of 500 ms is greater than the sampling time
of 100 ms, it cannot be used in practice. However, the DNMPC controller is well within the limits
even in the worst case.

4. EXPERIMENTAL RESULTS

The experimental setup as shown in Figure 2(b) consists of (i) a speed controlled driving motor;
(ii) two torque controlled load motors; and (iii) a hydraulic pump attached to the engine which is
connected to the two hydromotors via flywheels. The stroke of the pump is fixed to 40% and the
speed of the engine to 1200 rpm. The objective is to regulate the hydromotor speeds, reject load
disturbances, and adapt to effects of varying load. Input constraints are set on the actuators, that is,
the stroke of the two hydromotors must be between 12% and 100%. First, we present the design of
two PID loops, which would be used for comparison purposes.

4.1. Quasi-decoupled PID control

It is clear from the analysis in Section 3.2 that there exists no unique relation between the stroke of
one hydraulic motor and its speed. Therefore, it is impossible to determine steady-state gains neces-
sary for classic PID tuning methods. A transformation is thus required that decouples significantly
the hydromotor interaction and is discussed hereafter.

One can rewrite the flow equation (assuming incompressible fluid and negligible leakage) as

Sp � !p D .Sm1 C Sm2/ � .!m1 C !m2/C .Sm1 � Sm2/ � .!m1 � !m2/ (25)

Ignoring the second term yields

d.!m1 C !m2/=d.Sm1 C Sm2/ < 0 (26)

Because the pressures across the pump and the two motors are equal, we have

d.Sm1=Sm2/ D d.Tg1=Tg2/ D .Tg2 � dTg1 � Tg1 � dTg2/=T
2
g2 (27)

where Tg1; Tg2 are the torques of the two hydromotors. Assuming positive torques in steady
state, if Sm1=Sm2 increases, then either Tg1 increases or Tg2 decreases. Further, at the flywheels,
dTl1=d!m1 > 0 and dTl2=d!m2 > 0. This leads to the resulting steady-state relation

d.!m1=!m2/=d.Sm1=Sm2/ > 0 (28)

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:369–380
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The relations (26) and (28) concur that two independent PID controllers can be designed with one
controlling the sum of hydromotor speeds with the sum of hydromotor strokes and the other con-
trolling the ratio of hydromotor speeds with ratio of hydromotor strokes. The PID controllers are
defined on the sum and the ratio error signals. The controller outputs are then re-transformed to
the hydromotor strokes through negative exponentials (as it more or less neutralizes the nonlinear
stroke–speed relation). This is indeed by far the most effective PID design, as the others which fail
to induce any decoupling and makes the system unstable and not safe for real tests.

4.2. Experimental validation

Two identical DNMPC controllers have been designed with prediction horizon N1 D 1 to N2 D 5,
control horizon Nu D 1, and control penalty ƒ D 10, an integrator as disturbance filter, that is,
C=D D 1=.1 � q�1/. The embedded DRLS uses a forgetting factor of 0.99 and the closed loop is
sampled at Ts D 100 ms. The DNMPC uses a cooperative cost function and exchanges the optimal
trajectories once every sampling period. The number of iterations in the nonlinear EPSAC algorithm
within the DNMPCs have been restricted to 1 iteration per sampling period.

First, the proposed control strategy has been tested on the real setup with nominal settings, that is,
temperature of 50ıC and load torques at 20 Nm. During this first closed-loop test, variations in the
speed setpoints are tested, and as a disturbance, the load torque values are varied within˙10 Nm.

(a)

5 10 15 20 25 30 35 40 45

5 10 15 20 25 30 35 40 45

5 10 15 20 25 30 35 40 45

500
600
700
800
900

S
pe

ed
 (

rp
m

)

20
40
60
80

100

S
tr

ok
e 

(%
)

20
40
60
80

100
120

Time (s)

P
re

ss
ur

e 
(b

ar
)

Load +−10Nm

(b)

600
700
800
900

S
pe

ed
 (

rp
m

)

20
40
60
80

S
tr

ok
e 

(%
)

10 20 30 40 50 60

10 20 30 40 50 60

10 40 50 60

50
100
150
200

Time (s)

P
re

ss
ur

e 
(b

ar
)

Figure 5. (a) Tracking performance and disturbance rejection by distributed NMPC and (b) PID control.
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Figure 6. (a) Learning the true motor damping coefficients by the distributed RLS method and (b) robust
performance of the distributed NMPC after learning the correct damping coefficients.
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The performance of the DNMPC is given in Figure 5(a). For comparison purpose, the same
experiment has been evaluated with the PID controllers and the results given in Figure 5(b). It can be
observed that the DNMPC outperforms the PID control, generating a much smoother control action
compared with the rather oscillatory response of the PID control strategy. The net oil flow, which
is the product of stroke and angular velocity, must remain constant. This implies that if both speeds
go up, the strokes go down (similarly for reverse sign). The load change is nicely compensated by
the DNMPC, whereas significant offsets are present in case of PID control. Both in nominal and
perturbed load settings, the DNMPC controller manages a settling time< 10 s with a rise time< 5 s,
whereas the PID though has the same rise time of< 5 s; the settling time!1 because of sustained
oscillations in the nominal case and the PID produce a big steady-state error in the perturbed case,
that is, after 50 s.

In the next experiment, the controllers have been initialized with erroneous motor damping coef-
ficients, that is, 1.9 Nm/rad/s. Given that damping varies exponentially with temperature, the ability
to continuously learn the right damping is of high practical importance. As shown in Figure 6(a),
the distributed RLS algorithm converges to the true value of 0.55 Nm/rad/s in a reasonable period.
Consequently, the performance of the controller in terms of settling time and rise time (plotted in
Figure 6(b)) remains comparable with the nominal case, demonstrating robustness of the proposed
control strategy.

5. CONCLUSIONS

A novel DNMPC framework has been presented together with an RLS distributed learning method.
The main contribution ensured guaranteed improvement in the cost function by the DNMPC even
in the limiting non-iterative case and a tenfold reduction in computation time for nonlinear non-
convex problems. The first principle modeling of the hydrostatic drivetrain has been developed and
used for the design of distributed control of the coupled nonlinear benchmark system. Experimen-
tal validation on the benchmark suggests that the proposed control methodology is successful in
practice.
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