
Automatic Configuration of Routing Control Platforms in
OpenFlow Networks

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet and Piet Demeester
Department of Information Technology (INTEC), Ghent University - iMinds

E-mail: {firstname.lastname}@intec.ugent.be

ABSTRACT
RouteFlow provides a way to run routing control platforms
(e.g. Quagga) in OpenFlow networks. One of the issues of
RouteFlow is that an administrator needs to devote a lot of
time (typically 7 hours for 28 switches) in manual configu-
rations. We propose and demonstrate a framework that can
automatically configure RouteFlow. For this demonstration,
we use an emulated pan-European topology of 28 switches.
In the demonstration, we stream a video clip from a server
to a remote client, and show that the video clip reaches at
the remote client within 4 minutes (including the configura-
tion time). In addition, we show automatic configuration of
RouteFlow using a GUI (Graphical User Interface).

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Design; Management

Keywords
Quagga; OpenFlow; Virtualization

1. INTRODUCTION
OpenFlow decouples control plane functionality from for-

warding functionality of switches, and embeds it into one
or more servers called controllers. In OpenFlow networks,
RouteFlow [1] provides a way to run routing control plat-
forms (e.g. Quagga). It executes switches’ (OF-A, OF-B,
OF-C and OF-D in Fig. 1) control logic through virtual ma-
chines (VM-A, VM-B, VM-C and VM-D in Fig. 1) which
mirror a physical topology. Each virtual machine (VM) runs
a routing control platform (e.g. Quagga) and is dynamically
interconnected with other VMs.
Currently, configurations of RouteFlow are not automatic.

Before running RouteFlow, an administrator needs to devote

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
SIGCOMM ’13, Aug 12-16 2013, Hong Kong, China
ACM 978-1-4503-2056-6/13/08.
http://dx.doi.org/10.1145/2486001.2491695.

Figure 1: RouteFlow Design

a lot of time in configurations: (1) creating VMs, (2) creating
mapping between a VM and an OpenFlow switch, (3) creat-
ing mapping between VM interfaces and switch interfaces,
and (4) writing routing configuration files (e.g. ospf.conf,
zebra.conf) for each VM. For a large topology (typically for
1000 switches), it may take many days to configure Route-
Flow.

We propose a framework to automatically configure Route-
Flow. In our framework, we use an additional controller
which runs a topology discovery module [3] to know network
configurations. The network configurations are then sent to
RouteFlow using configuration messages. Using these mes-
sages, RouteFlow configures itself.

For this demonstration, we use an emulated pan-European
topology of 28 switches. In the demonstration, we stream
a video clip from a server to a remote client. This video
clip reaches at the remote client within 4 minutes (including
the configuration time). This is quite optimal compared to
the time consumed in manual configurations. In addition,
we show automatic configuration of RouteFlow by showing
configurations of VMs in a GUI.

2. AUTOMATIC CONFIGURATION OF
ROUTEFLOW

In this section, we introduce our framework and present
the results of the experiments performed on the OFELIA
testbed [2].

Fig. 2 shows five different components of the proposed
framework: (1) RF-controller, which runs RouteFlow with-
out any manual configuration of VMs, (2) Topology con-
troller, which contains a very small part of configurations
from the administrator (e.g. a range of IP addresses for the
virtual environment) and runs a topology discovery module

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55762793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 2: Framework for automatic configuration of
Routeflow

[3] to know the network configuration (switches and links in-
formation), (3) RPC (remote procedural call) client, which
collects configuration information from the topology con-
troller and sends this to a server called RPC server, (4)
RPC server, which resides in the RF-controller and config-
ures RouteFlow on reception of configuration messages from
the RPC client, (5) FlowVisor, which acts as a proxy server
between a switch and controllers (the topology controller
and the RF-controller in our framework).
In our framework, we used different controllers for gather-

ing topology information (topology controller) and running
RouteFlow. This is done to share the load of automatic
configuration of RouteFlow.
At the initial stage, the RF-controller does not have any

configurations i.e. there are no virtual machine to run Quagga.
On detection of a new switch, the topology controller sends
a configuration message to the RPC client, which then for-
wards it to the RPC server. This configuration message con-
tains the ID of the switch and the number of switch ports.
Upon receiving of the message, the RPC server creates a
VM with an ID identical to the switch ID and the number
of ports equivalent to the switch ports.
On detection of a new link, the topology controller com-

putes unique IP addresses (from the range of IP addresses)
for the corresponding VM interfaces, and sends this informa-
tion to the RPC server through the RPC client. The RPC
server then configures IP addresses of the VM interfaces.
Additionally, the RPC server writes routing configuration

files (e.g. ospf.conf, zebra.conf, bgp.conf) using the informa-
tion present in the configuration message sent by the RPC
client.

2.1 Results of automatic configuration exper-
iments

We perform experiments to automatically configure Route-
Flow that uses OSPF (Open Shortest Path First) as a rout-
ing protocol. The experiments are performed on ring topolo-
gies with different number of switches. These topologies are
generated on a node of the OFELIA testbed by using Linux
processes in different network namespaces. In each Linux
process, we run Open vSwitch 1.4.1 implementation [4]. Sep-
arate nodes of the testbed are used to run FlowVisor, the
topology controller, and the RF-controller.
Fig. 3 shows the time of automatic and manual configura-

tions of RouteFlow. We calculate the time in manual config-
urations based on personal experience. In manual configura-
tions, we assume that the administrator takes 5 minutes in
creating a VM (writing VM configurations, installing Linux

Figure 3: Configuration Time

distributions and packages like Quagga), 2 minutes in creat-
ing mapping between switch interfaces and VM interfaces,
and 8 minutes in writing routing configurations for a VM.
The figure shows that there is a large difference between
automatic and manual configurations of RouteFlow.

3. DEMONSTRATION SETUP
We demonstrate the proposed framework to automati-

cally configure RouteFlow in OpenFlow networks. For the
demonstration, we connect two laptops using an Ethernet
cable. The first laptop contains the RF-controller, the RPC
server, the RPC client, the topology controller and the FlowVi-
sor. The second laptop contains an emulated OpenFlow net-
work topology, which is a pan European topology [5] con-
sisting of 28 nodes. The clients and servers are connected
with the nodes of this topology.

In the demonstration, we show automatic configuration of
RouteFlow by showing switches with red and green colors
in a GUI. The color of a switch remains red until it is con-
figured by the RPC server. Otherwise, it changes to green.
Note that a switch is considered as configured when it has
a corresponding VM.

At the start of the experiment, we stream a video clip
from a server to a remote client. At this point, there is
no virtual machine present in the RF-controller. However,
thanks to the proposed framework, the VMs are created and
the routing protocol is enabled within a very short time, and
the video clip reaches (after around 4 minutes) at the remote
client.

ACKNOWLEDGMENT
The research leading to these results has received funding
from the EU FP7 programme under grant agreement no

317576 (CityFlow) and no 258365 (OFELIA).

4. REFERENCES
[1] C. E. Rothenberg et al., Revisiting Routing Control

Platforms with the Eyes and Muscles of Software
Defined Networking, HotSDN, 2012

[2] OFELIA Testbed: http://www.fp7-ofelia.eu/

[3] Topology Discovery module: https://github.com/
noxrepo/nox-classic/wiki/Discovery

[4] Open vSwitch: http://openvswitch.org/

[5] S. D. Maesschalck et al., Pan-European optical trans-
port networks: an availability-based comparison, Photonic
Network Communications, 2003


