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Abstract—A novel two-step perturbation technique to analyze
nonuniform single and differential transmission lines in the
frequency domain is presented. Here, nonuniformities are con-
sidered as perturbations with respect to a nominal uniform line,
allowing an interconnect designer to easily see what the effect of
(unwanted) perturbations might be. Based on the Telegrapher’s
equations, the proposed approach yields second-order ordinary
distributed differential equations with source terms. Solving these
equations in conjunction with the pertinent boundary conditions
leads to the sought-for currents and voltages along the lines.
The accuracy and efficiency of the perturbation technique is
demonstrated for a linearly tapered microstrip line and for a
pair of coupled lines with random nonuniformities. Moreover,
the necessity of adopting a two-step perturbation in order to get
a good accuracy is also illustrated.

Index Terms—Interconnect modeling, nonuniform transmis-
sion line (NUTL), perturbation, Telegrapher’s equations.

I. INTRODUCTION

ODELING of nonuniform transmission lines (NUTL),

being part of modern high-speed electronic devices
and systems, is often a challenging problem. NUTLs have
been widely used in several microwave applications, such as
filters [1], impedance transformers [2], directional couplers [3],
and very large scale integration (VLSI) interconnections [4].
Also, they are applied for impedance matching [5] and ultra
wideband pulse shaping [6]. Since skin, proximity, edge and
roughness effects can lead to signal integrity problems at high
frequencies [7], transmission lines with (undesirable) nonuni-
formities must be accurately modeled at the early stage of the
design process. Due to the varying per-unit-length (p.u.l.) para-
meters along the NUTL, the differential equations describing
them cannot be solved analytically, except for some special
cases [8]-[10].

Modern high-speed electronic devices and systems are
characterized by presence of interconnecting networks with
nonuniform transmission lines (NUTLs). Modeling of nonuni-
form single lines, being a part of such interconnecting net-
works, is often challenging task. The usage of nonuniform
single lines are of great interest to the design engineer in
many microwave applications such as such as filters [1],
impedance transformers [2], directional couplers [3], and very
large scale integration (VLSI) interconnections [4]. Moreover,
transmission lines with (undesirable) nonuniformities must be
accurately modeled at early stage of design process, because
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skin, proximity, edge, and roughness effects can cause signal
integrity problems.

Therefore, plenty of research has been devoted to the
numerical solution of nonuniform lines, both in the time
and frequency domain. For instance, Precise Time-Step In-
tegration [11] and Differential Quadrature Methods [12] are
stable and demonstrate good accuracy, but they are very
time consuming. One of the easiest ways to deal with a
NUTL is to approximate it as a cascade of discrete uniform
transmission lines [13], [14]. Unfortunately, in modern ap-
plications, the number of discrete sections of the line must
be quite large to accurately account for all nonuniformities
and increasing the number of sections reduces the efficiency
of the method. Another technique, based on the method of
characteristics [15], allows to convert the hyperbolic partial
differential equations of the NUTLs into a set of ordinary
differential equations. However, to account for frequency-
dependent p.u.l. parameters of the lines, convolutions need
to be computed [16], again increasing the calculation time.
Methods proposed in [17] and [18] use Tailor and Fourier
expansions to describe the properties of nonuniform lines, but
can only be applied as long as the series converge. Other
contributions are based on waveform relaxation, see e.g. [19],
congruence transforms, see e.g. [20], or wavelet expansion,
see e.g. [21]. In [22] an improved averaging technique for
single lines with subwavelength nonuniformities is presented.
Finally, [23] presents an equivalent source technique for single
lines solving the pertinent integral equation in an iterative way
and presenting examples using two iterations.

In this contribution, we propose a two-step frequency-
domain perturbation technique for nonuniform single lines.
The cross-sectional properties can change in an arbitrary way
for such type of lines, allowing to apply our method to
a large variety of NUTLs with a single signal conductor
with frequency- and place-dependent parameters. We start our
technique from considering a uniform transmission line in the
quasi-TM regime [24], described in terms of the well-known
RLGC-matrix, as the nominal structure. Next, the nonunifor-
mities are treated as perturbations with respect to (w.r.t.) these
nominal values of the complex inductance and capacitance
matrices. Knowing the nominal voltages and currents obtained
by solving the classical Telegrapher’s equations, we get a first-
order perturbation. The solution of the first perturbation step
is found by solving the same set of Telegrapher’s equations,
however in this step, with distributed voltage and current
sources depending on the nominal voltages and currents and
on the deviation of the RLGC-values from their nominal
value in each point along the transmission line. Unfortunately,



the results of the first-order perturbation appear to be not
sufficiently precise. To achieve the substantial gain in accuracy,
the second perturbation step is introduced. The procedure of
the second perturbation step is similar to the previous one, but
now accounting voltages and currents of the nominal solution
and of the first-order perturbation. The final equations are
relatively simple making our two-step perturbation technique
very efficient.

In this paper, we propose a novel frequency domain per-
turbation technique with two perturbation steps, not only
for nonuniform single lines but also for the technologically
important case of differential lines. For both type of lines,
the cross-sectional properties can change in an arbitrary way,
allowing to apply our technique to a large number of NUTLs
with frequency- and place-dependent line parameters. To con-
struct the presented technique, we start from the well-known
RLGC-matrix description of a uniform transmission line in
the quasi-TM regime [24], which is considered to be the
nominal structure. Next, the nonuniformities are treated as per-
turbations with respect to (w.r.t.) these nominal values of the
complex inductance and capacitance matrices. Starting from
the knowledge of the nominal voltages and currents obtained
by solving the classical Telegrapher’s equations, a first-order
perturbation is obtained. This first-order perturbation is found
by solving the same set of Telegrapher’s equations but now
with distributed voltage and current sources depending on the
nominal voltages and currents and on the deviation of the
RLGC-values from their nominal value in each point along the
transmission line. However, it turns out that the obtained result
is not sufficiently accurate. A substantial gain in accuracy is
obtained by repeating the procedure, i.e. by introducing a sec-
ond perturbation step, which now takes voltages and currents
of the nominal solution and of the first-order perturbation into
account. Due to the relative simplicity of the final equations,
the novel rwo-step perturbation technique is very efficient. Its
accuracy and efficiency are demonstrated by applying it to a
linearly tapered microstrip line and to a pair of coupled lines
with random nonuniformities.

The outline of this paper is as follows. In a first step, we con-
struct the perturbation technique for a single line (Section II).
At the end of this section, some remarks are formulated as
to the range of applicability of the proposed method. Next,
in Section III, the technique is extended to differential lines.
The theory is validated and illustrated in Section IV. The
examples comprise the application of the proposed technique
to a linearly tapered microstrip line (Section IV-A) and to
a pair of nonuniform coupled lines (Section IV-B). Finally,
conclusions are summarized in Section V.

II. PERTURBATION SOLUTION FOR A SINGLE SIGNAL
CONDUCTOR

We will perform our calculations within the framework of
the quasi-TM approach and in the frequency domain (with the
e/@t dependence suppressed) considering a single voltage V'
and a single current /. To simplify notations we will work
with a complex p.u.l. inductance L and capacitance C, i.e. the
p.u.l. resistance R and conductance G are understood to be

part of L and C (L = L+ j% and C = C+ j%). Our starting
point are the well-known Telegrapher’s equations:

AV (z)

= —jwL(2)I(z), (1)
%(ZZ) = —jwC(2)V (2), (2)

with z the signal propagation direction and where we have
explicitly made clear that C' and L depend on z. To perform a
perturbation analysis, we introduce the following expansions:

V(2) = V(2) + AVi(2) + AVa(2) + ...,

I(2) = I(2) + AL (2) + AL(2) + ...,

C(z) = C + AC(2),

L(z) = L+ AL(2). 3)

The leading terms of the series expansions (3) for voltage V()
and current I(z) will be labeled as the unperturbed values.
The remaining terms are perturbations of order one, two, etc.
C(z) and L(z) in (3) are written as the sum of a constant part
and a place-dependent part without extention in series. Here,
C and L are the unperturbed values of the p.u.l. capacitance
and inductance. AC(z) and AL(z) are the variations of the
capacitance and inductance along the line which remain when
subtracting the constant values C' and L from C(z) and L(z)
respectively. Remark that C and L are not necessarily the
mean values of C' and L over the line. We only suppose that
AC(z) and AL(z) are small enough with respect to C' and
L. Substituting (3) into (1) and (2) and collecting terms of the
same order, yields

% = —jwLI(2), )
dil(j) = —jwCV (z), 5)
WONE) - JwIALG) - juBL()IE),  ©
BLE) _ juoan() - jwac@Ve), @)
dAdLi(z) = —jwLALL(2) — jwAL(2)ALL(z),  (8)
‘méiz(z) = —jwCAV,(2) — jwAC(2)AVi(2).  (9)

Higher-order perturbations could be obtained in a similar way.
From this point on, for ease of notation, the argument z will
be omitted. The solutions of (4) and (5) are straightforward:

V = Ae 7koz 4 Betikoz
1
Zy

(10)

[ = —(Ae ko= _ petikoz), (11)

with the unperturbed characteristic impedance Z, = \/IN// C

and the unperturbed wave number kg = w\/ﬁ. At this
point we introduce the boundary conditions. We will consider
a signal conductor of length [ terminated in a load Z and
excited by a Thévenin source V;, with internal impedance Z,.
Contrary to what is often done in transmission line theory, the



load will be placed at z = [ and the source at z = 0. These
boundary conditions lead to

_ Y 1
14+ % 1 — KK e 2ikol”

B = K Ae~ kol

12)

13)

with the reflection coefficients K, and K, at the load and at
the generator, respectively, given by:

Z1, — Zy
Kp=——,
Y20 Z,
Zg— Zy
== 14
g Zg+Zo (14)

From (6) and (7), the first-order perturbation AV; satisfies

*AVy - d -
a2 + kgAVy = _k(%TC'V_]kOa(TLZOI)a (15)
with 7o = Aéc and 77, = AEL. Analogically, (8) and (9) give
us
d?AV,

o d
— k3AV,y = —k3itc AV, = jko—(1L.Z0AN1). (16)

The above differential equations (15) and (16) can now be
solved by applying the general theory for second-order dif-
ferential equations with an arbitrary source term, see e.g. [1]
or the Appendix A of [23]. The solutions take the following
form :

AV; = Cie7k07 4 Dyetikor L AV (17)
ZoAlL = Cie=ik0z — Deti%0z 4 ZoAL,.  (18)

with ¢ = 1, 2. The particular solutions AV, and AI;;, can be
written as

ik
AVip(z) = ~12

2
ZoAILy(z) = 7% (7 (2)e=h0% —

[Fv;(z)efjk“’z + Gi(z)eﬂkoz] ,  (19)

Gi(2)e™™=] . (20)

The values of F} and G for the first-order perturbation are
given by
Fi(z) =vA+ BB, Gi(z) = —(aA+~B), (21)

where A and B are given in (12) and (13) respectively and
with

az) = /OZ[TC(Z') — TL(z’)]ef%kOZ’dz’, (22)
B(z) = / o) — (e A @3)
A(z) = / o) + (). 24)

Also, for the second-order perturbation the values of F» and
G4 are found to be

ik
Fy(z) = 7Cy + BD; — JTO(M +6,B)
ko
2 .
GQ(Z) = —aCq — vDy + %((5514 + (563)
'k
- 370(57/1 +5,B),

+ (03A+ 04B),

(25)

with
51(2) = /0 o) + (), 26)
5a(z) = /0 o) + 1 (B( ), @7
8) = [ o) = el oy
51) = [ o) = B e a9
05() = [ o) = mh e a0
0u() = [ lre) = AN a6
1) = [ [re) + o)z 32)

As can be seen from (21)-(32) F;(z = 0) = 0 and G;(z =
0) = 0. The unknown coefficients C; and D; of (17) and (18)
are found by enforcing the following boundary conditions:

AVi(z =0) = —Z,AL;(z = 0), (33)
AVi(z =1)= Z,ALi(z =1). (34)

Note that the source V/ itself drops out in the perturbed bound-
ary conditions. Indeed, as already V(z = 0) = —Z,I(z = 0)+
Vg and as this boundary condition must also remain satisfied
by the total voltage and current, it follows that AV; and Al;
must satisfy (33) and (34). As F;(z =0) = G;(2 =0) =0,
the first boundary condition immediately yields C; = K D;.
The second boundary condition then leads to
[ZLALy(z =1) — AVjy(z = 1)]e kol

D; = : : 35
(1+ Z8)(1 — K K e 2ikol) 52

At this point the following remark is important. The final
expressions for AV;, and AI;, depend on «a(z), 5(z) and
v(2) (see Appendix ??). It is now possible to simplify these
expressions by explicitly choosing «(z = [) to be zero. This
can be achieved by choosing C and L to be the mean values
over the line of C(z) and L(z), respectively. This is the option
that was also taken in [23]. However, we have chosen to
derive our expressions for the more general case aiming at
applications that might be of particular interest to high-speed
designers. In high-speed design, a nominal L,,,, and Cy.n,
will typically have been selected according to the wanted
impedance level and the used substrate technology. From this
point of view, it might be preferable to take these nominal
design values as the unperturbed ones, i.e. L = Lyom and
C = Chrom, to next evaluate the effect of variations of these
nominal values due to the manufacturing process. In such a
case y(z = [) will not be zero. As will become clear from the
numerical results, adding a second-order perturbation greatly
improves the accuracy. For an intuitive understanding of the
reason for this, we refer the reader to Section IV. Note that, in
the single line analysis of [23], the first iteration corresponds
to what is above called the unperturbed case, but only provided
~v(z = 1) is selected to be zero. The second iteration in [23]
then corresponds to what we call the first perturbation step.



As pointed out by the reviewers, further research is needed to
find out if it is possible to derive hard mathematical conditions
under which this second-order perturbation (or higher-order
ones) will always increase accuracy. We have not yet been
able to produce such a proof under general circumstances.
Nevertheless, from an engineering point of view, and as
confirmed by the examples given in this paper and by many
others we used to verify our theory, it is obvious that when
the variation of L(z) and C(z) remains reasonable, a very
good accuracy is obtained. It is interesting to mention that
(12) and (35) indicate that high K; and/or K, values should
be avoided because the unperturbed solution will then exhibit
a high voltage standing wave pattern. With typical applications
in high-speed design in mind, such highly non-matched lines
will rarely occur.

III. PERTURBATION SOLUTION FOR A DIFFERENTIAL LINE
PAIR

In this section we turn to the analysis of the differential line
pair (see Fig. 5 for an example of a differential microstrip line).
The Telegrapher’s equations now become:

V) — juc1eo), (36)
dfi(;) = —jwC(2)V(2). 37)

V = [Vi Vo]T and Z = [I; I,]T are the voltage and current
column vectors, holding the two voltages and two currents
along the lines, while C and £ are the 2 x 2 symmetric
p-u.l. capacitance and inductance matrices. All quantities can
be expanded in a completely analogous way as in (3) and
differential equations similar to (4)-(9) are readily obtained.
The unperturbed p.u.l. C- and L-matrices are z-independent
and can be written as:

5 _ Ca _Cb A La Lb

C<—Cb Ca> E(Lb La>' (38)
Due to the well-known properties of such matrices [25],
C,,Cp, L, and Ly in (38) are positive. Let us first take a
closer look at the solution of the unperturbed problem. It is

well-known [26] that this solution consists of an even and an
odd mode contribution, i.e.:

f{l (Z) = [‘:/;(Z) + f/o(z)}/2
I(2) = [Le(2) + Lo(2)]/2

Va(z) = [Ve(2) = Vo(2)]/2,

Iy(2) = [Le(z) — 1o(2)]/2-
(39)
Often, the designations common and differential mode are
used, replacing the couples (V.,1.) and (V,, 1,) by (f/e/27 I.)
and (‘70, fo /2). The unperturbed differential equations for the
even and odd mode are easily found to be
Wel) — (L + L),
dI,(z)
dz
dV,(2)
dz
dI,(z)
dz

= —jw(Ca — Cy)Ve(2),

= 7jw(La - Lb)jo(z)7

= —jw(Ca + Cy)Vo(2). (40)

Hence, the modal voltages become:

V, = (Ale_jkez + Bleﬂkez)7

V, = (Age 7k 4 Byetikez), (41)

Even and odd mode wave numbers k. and k, are given by:

k k
== V(Lo + Ly)(Cq — Cy), —= V(Lo — Lu)(Ca + Cb).
(42)
The corresponding modal currents are
I, = (Age=Ikez — Boetikez) /7,
I, = (Age Tho® — Boetikor) /7, (43)
with the even and odd mode impedances given by
[ Lo + Ly L, — Ly
Ze=\ =+ Zo=\—7—"F- 44
e Ca _ Cb7 o Ca + Cb ( )

Remark that the common mode and differential mode
impedances are given by Z. = Z./2 and Z; = 2Z,. To
determine to unknown coefficients A., A,, B. and B,, the
boundary conditions at z = 0 and z = [ must be enforced.
Referring to the very general source and load conditions
shown in Figs. 1 and 2, the detailed expressions for these
boundary conditions in terms of even and odd mode voltages
and currents are given in Appendix ??.

Before turning to the first-order perturbation, let us take a
closer look at AC and AL. AC can be written as

AC — <ACa1 —AC;,) '

“AC, AC,, (45)

As C+AC must have all the properties of a proper capacitance
matrix in each point along the line pair, it can be asserted that
the above matrix is symmetric but the entries of the matrix can
either be positive or negative. As will become clear below, it
is useful to rewrite (45) as:

AC1+AC,2 _Acb
AC = < _A20b ACCLl;AC(Lz)
AC, 1 —AC,o 0
+ ( (2) AcalAca2> - (46)
—&¥a1-8Ce
and
ALyg1+ALgo ALb
A‘C = ( A%Lb ALal‘gALaZ)
ALy —ALgo O
+ ( (2) ALGIALa2> - 47)
—S201-8%e

With (46) and (47), the differential equations for the even and
odd mode first-order perturbation, become

dAszle = —jw(La + Lo) AL — jw(le + ). — jwil,,
dAdfe = —jw(Cy — Cp)AV1e — jw(cq — )V — jwcV,,
% = —jw(La — Ly) AL, — jw(la — ) I, — jwll,
dilo = —jw(Cq 4 Cp) AViy — jw(cq + )V, — jweV,

(48)



with

A A A —A
Ca = Cal _g Ca2) cp = AC},, _ Cal 5 Ca2
la, _ ALal + ALaZ’ lb _ ALb, 1 = ALal - ALaZ
2 2
(49)

Equations (48) exhibit the same structure as their single line
counterparts (6) and (7). In the differential line case we have
a separate set of equations for the two modes: the even mode
comes with the (C, — Cy, L, + Lp) p.u.l. set; the odd mode
with the (Cy, +Cy, L, — Lp) p-u.l. set. In each of the equations,
two source terms can be distinguished: one source term due
to each mode, i.e. the source terms are responsible for mode
coupling! By rewriting AC and AL as in (46) and (47), it
becomes clear which part of the variation of the capacitance
and inductance along the line is responsible for perturbation
with and without mode coupling. Given the similarity between
the single line case and the differential line case, when viewed
as a superposition of even and odd mode, the actual solution of
(40) proceeds along the same lines as sketched in Section II.
Two pairs of unknown coefficient will have to be introduced
(Ce, D.,C, and D, in the notation of Section II). They can
be determined by enforcing boundary conditions (??) in which
the sources are left out and unperturbed quantities are replaced
by first order perturbations. Integrals similar to (22) and (23)
will appear in the final solution, but instead of the e®2/ko=
exponentials, eink(,z7 einkez’ ein(ko—ke)z and ein(ko-er)Z
exponentials will now appear. Following (24) it turned out that
for the unperturbed value of the p.u.l. capacitance C and its
inductive counterpart £, the mean value of C(z) and £(z) can,
but do not have to, be used. Similar choices, simplifying the
calculations, are possible for the differential line case. To this
end, 2C, in (38) should be chosen to be the mean value of
C11(2) + Ca3(2), while C, must be put equal to the mean
value of |012(Z)‘ = |C’21(Z>| with 011,012,021 and Cyy the
elements of the z-dependent 2 x 2 p.u.l. capacitance matrix
C = C 4+ AC and similarly for the choices of 2L, and L. It
is, however, also possible to choose the nominal design values
for C and L, as such allows the high-speed designer to assess
the influence of the unwanted perturbations on his/her design.

IV. NUMERICAL RESULTS
A. Linearly Tapered Microstrip Line

The aforementioned technique for a single TL is validated
by means of comparison with the approach described in [9].
The analytical model for lossy linearly tapered microstrip lines
(LTML) of [9] thereby acts as an exact reference solution.
This model results from a quasi-TEM approximation which is
a special case of the more general quasi-TM approximation
in [24]. The top view of the investigated structure is shown
in Fig. 3. It concerns a tapered microstrip line of length
! = 50 mm, residing on a RO4350B substrate with a thickness
h = 1.524 mm, a relative permittivity £, = 3.66 and a loss
tangent tan 6 = 0.003. The metal thickness and conductivity
of the taper are t = 35 um and o = 5.8-107 S/m, respectively.

I I

Vi Va

Vs, 43
Z

Vls +

Fig. 1. Excitation of the differential line pair.

I Iy

Vi Va

Z3r,
Zir I I Zar

Fig. 2. Termination of the differential line pair.

l

w1 l port 1 port 2 Wy

Fig. 3. Top view of a linearly tapered microstrip line.

The line width w; at port 1 is kept constant at 3 mm,
while the width ws is a parameter in our study. Approximate
models for the varying complex p.u.l. capacitance C(z) and
p.ul. inductance L(z) along the line are calculated with
the technique described in [9], which leads to an analytical
solution, based on Airy functions.

First, we compute the S-parameters for this tapered line,
w.rt. 50 © reference impedances at both ports, using the
analytical solution and the novel perturbation technique with
the two perturbation steps. The obtained absolute value of
the S-parameters are depicted in Fig. 4 for the case that
wo = 4 mm. From this figure, the high accuracy of the novel
technique is appreciated. In addition, the S-parameters of the
uniform, non-perturbed line, i.e. when wy = 3 mm, are also
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Fig. 4. Magnitude of S11 and S2; as a function of frequency for the tapered
line of Fig. 3 with w1 = 3 mm, w2 = 4 mm and [ = 50 mm, using the novel
perturbation technique with two perturbation steps and the analytical reference
solution [9]. To indicate the influence of the tapering, the S-parameters of a
uniform line with w1 = ws = 3 mm are also shown.

TABLE I
INFLUENCE OF VARYING THE WIDTH w2 (w1 = 3 mm, ! = 50 mm)

wo Maximum Maximum ASy @
(mm) || AL(z) (%) | AC(z) (%) | 10 GHz (%)
1 65.7 43.9 3.35
1.5 40.8 324 1.18
2 234 21.4 0.37
2.5 10.3 10.6 0.07
3 0 0 0
35 8.4 10.5 0.06
4 154 21.1 0.23
4.5 21.3 31.8 0.51
5 26.4 422 0.90

shown, clearly illustrating the influence of the tapering.

Obviously, the novel approach is intended for NUTLs for
which the nonuniformities can be considered as perturbations
w.r.t. a nominal case, i.e. for cases in which AL and AC are
not too large. Therefore, second, to clearly demonstrate and to
quantify the accuracy of our technique as well as illustrating
its limitations, a parameter study is performed. We define the
relative error on So; (taking both magnitude and phase into
account) as follows:

Sii = S5

ASy = p
S5y

) (50)

where 5% is the analytical result and S$’ is obtained by
means of our perturbation technique with the two perturbation
steps. Table I shows how changing the width ws influences the
maximum variations of capacitance and inductance, expressed
in percent w.r.t. the nominal values, and it shows the relative
error ASy; at 10 GHz. As can be seen from Table I, if AL
and AC increase, ASs;, obviously, grows too. However, even
for a AL and AC up to 30% w.r.t. the nominal values, for
this example, the relative error remains limited to about 0.5%.
The results in Table I are given for the highest considered
frequency (i.e. 10 GHz). For lower frequencies the errors

Fig. 5. Nominal cross-section of the two coupled microstrip lines with
w = 1.8 mm, s = 700 ym, h = 1.524 mm, t = 35 pm, o = 5.8:107 S/m,
er = 3.66 and tan 6 = 0.003.

decrease.

Third, of course, the electrical length of the line also plays
an important role, as phase errors can accumulate. For the taper
of Fig. 3, which is already rather long, i.e. 50 mm at 10 GHz,
the perturbation technique gives a relative error equal to 0.23%
when wo = 4 mm (see Table I). The relative error increases to
0.98% for an even longer taper with length [ = 100 mm. For
a shorter taper with [ = 25 mm, the relative error becomes
very small, i.e. 0.05%.

B. Nonuniform Coupled Lines

For this next example, we focus on a pair of coupled lines.
The nominal cross-section of this pair is the one also used in
[27] and it is shown in Fig. 5. The track width is w = 1.8 mm,
the spacing between the lines is s = 700 pym. The microstrip
lines and the ground plane have a thickness ¢ = 35 pum and a
conductivity o = 5.8-107 S/m. The parameters of the substrate
are the same as for the LTML described in the previous
subsection and the lines are given a length [ = 50 mm.
For this uniform transmission line, which is considered to
be the nominal structure, the nominal frequency dependent
L- and C-matrices are calculated with the technique of [24],
[28]. This technique is a 2-D electromagnetic numerical
method that assumes a quasi-TM behavior of the fields and
that in essence solves the pertinent complex capacitance and
complex inductance problem. By introducing a differential
surface admittance operator, these two problems are cast as
boundary integral equations, which can be solved efficiently
and accurately. For further details on the usage of this method
we refer the reader to [29] and the references therein.

Now, random nonuniformities are introduced by dividing
the 50 mm lines into 100 equal sections, and for each section
the p.u.l. parameters are varied by multiplying each matrix
element L117 LQQ, L12 = LQl, 0117 CQQ and Clg = CQl
of £ and C with a random variable (RV) that is uniformly
distributed within the interval [1 - £, 1 + £]. The six RVs so
used are independent of each other. The number £ determines
the maximum deviation from the nominal case and it is a
parameter of our study. As a reference solution we use the
chain parameter matrix approach described in [13]. Based
on Telegrapher’s equations for each individual section, the
voltages and currents at the output of this section are related
to the voltages and currents at its input by means of a 4x4
chain parameter matrix. The overall chain parameter matrix
of the entire interconnect structure is then obtained as a
product of the 100 chain parameter matrices of the individual
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Differential mode reflection (a) and transmission (b) coefficients of the pair of coupled lines for the case when the maximum variation of p.u.l.

capacitance and inductance is £ = 20%, using the one-step perturbation and the chain parameter matrix techniques.

sections. From this overall chain parameter matrix, the 4x4
S-parameter matrix can be easily derived.

We present the results of the novel perturbation technique
and the reference solution by means of mixed-mode S-
parameters, characterizing the nonuniform pair of coupled
lines in terms of the response to common and differential

mode signals [30] w.r.t. 50 €2 references impedances, i.e. Z; =
Zo = Zy1p = Zor, = 50 Q) and Z3 and Zs3y, are open circuits
(see Figs. 1 and 2). Since transmission of a differential signal
is the most interesting for practical applications, Fig. 6 shows
the magnitude of the differential-to-common mode conversions
Scq11 and S.g421, the differential reflection coefficient Sg411



and the differential transmission coefficient Sgy401, when the
maximum variations are £ = 20% w.r.t. the nominal values
of the £- and C- matrices’ elements. We can see from Fig. 6
that, these mixed-mode S-parameters are captured with a very
high accuracy by our novel method. As was also done in the
previous example, in Figs. 6 (c) and (d), the magnitude of
the reflection coefficient Sz411 and the transmission coefficient
Sgqo1 of the differential line with the nominal L and C along
the line are also shown to demonstrate the influence of the
random perturbations. Obviously, there is no mode conversion
for the uniform, symmetric line of Fig. 5, and hence, this is
not shown in Figs. 6 (a) and (b).

At this point, it is instructive to demonstrate the importance
of adopting a two-step perturbation. In Figs. 7 (a) and (b),
the results for |Sgq11| and |Sgq21| are shown when using a
one-step perturbation. It is clearly observed that this might
be sufficient for predicting the S-parameters at the near
end (Fig. 7 (a)). However, it clearly fails to capture the
influence of the variation of the p.ul. parameters along the
line at the far end (Fig. 7 (b)), leading to an |Sggo1]| that
still closely resembles the results for the nominal line. The
reader might wonder why the second perturbation step leads
to considerable improvements for the transmission parameter,
while the reflection result is only slightly affected and is al-
ready quite good after the first-order perturbation. An intuitive
understanding (here given for a single line) can be obtained
when considering a situation for which the nominal problem
is already quite well adapted at its terminals, implying that the
nominal solution is dominated by a voltage and a current wave
travelling in the positive z-direction with phase dependence
e~7%0% 1In the first-order perturbation, at a particular point zg
along the line, this wave will give rise to a voltage source
term proportional to %e*j koz0 and a current source term
proportional to %e‘j kozo Tf the signal originating from these
sources travels back to the near-end of the line, an extra
phase factor e 7%0%0 is added. This effect is mathematically
expressed through integrals of the type « (22) and 3 (23).
If, however, the same signal travels to the far-end of the
line, an extra phase factor e 7Fo(!=20) is added, leading to
a total phase of e~7%o! independent of z,. Hence, under the
considered circumstances, all source contributions in the first-
order perturbation are in-phase at the far-end of the line,
as mathematically expressed by integral of the type v (24).
When we select our nominal LC-values as the mean value
over the line, i.e. v = 0, it becomes clear that the first-order
perturbation has little influence at the far-end. A second-order
perturbation remedies the problem.

Adopting the two-step approach again, apart from the mag-
nitude of the S-parameters, accurate results for the phase are
obtained as well. This will be demonstrated now, and at the
same time, the limitations of the method will be illustrated.
Thereto, we calculate the relative error on the transmission
coefficient S;421. The relative error is defined in a similar
way as it was done for the LTML, accounting for both its
magnitude and phase:

S(Ch) . S(P)
Ade21 — dd21 o dd21 , (51)
S

TABLE II
INFLUENCE OF VARYING THE MAXIMAL VALUE OF AL AND AC

Max. deviation (%) || ASga21 @ 6.6 GHz (%) |

10 0.05
15 0.1

20 0.17
25 0.29
30 0.41
35 0.58
40 0.79
45 1.04
50 1.34

TABLE III

CPU TIME COMPARISON

Number of | Perturbation | Reference | Speed-up
sections technique solution factor
50 1.56 s 6.48 s 4.15
100 1.88 s 12.68 s 6.74
200 252s 25.15 s 9.98
500 449 s 66.23 s 14.75

where S\ and S'). are obtained by means of the chain
parameter matrix and perturbation technique respectively. The
relative errors were calculated for the entire frequency range
up to 10 GHz in order to determine the frequency for which
the relative error is the highest. It was found that the highest
relative error on Sggo1 occurs at a frequency of 6.6 GHz.
Table II shows that increasing the maximal values of AL
and AC, i.e. increasing £, makes the relative error larger.
Nevertheless, as can be seen, the relative error remains limited
to 1% if perturbations do not exceed 40% w.r.t. the nominal
case.

Finally, to demonstrate the efficiency of our novel tech-
nique, we consider the computation time of the code in Mat-
lab R2009a. All calculations were performed on a computer
with an Intel(R) Core(TM) Quad CPU Q9650 and 8 GB
of installed memory (RAM). For the perturbation technique,
the computational cost is attributed to the calculation of the
integrals (22), (23) and (24) given in Appendix ??. For the
reference technique, the computational complexity scales with
the number of sections one uses, and hence, it is less efficient
than the newly proposed method. This is demonstrated in
Table III, where the computation time is shown for 200
frequency samples (linearly spaced between 1 and 10 GHz)
and for a varying number of sections. For example, in the
case of 200 sections, we achieve a speed-up of about 10. This
speed-up factor becomes even larger if we need to describe the
variation of AL and AC along the line with more precision,
i.e. when increasing the number of sections. Indeed, note
that the chain parameter matrix approach always introduces
a staircasing effect, this in contrast to the novel perturbation
technique presented in this paper.



V. CONCLUSION

In this paper, a novel perturbation technique has been pre-
sented to analyze nonuniform single and differential transmis-
sion lines in the frequency domain. Nonuniformities were rep-
resented as perturbations w.r.t. a nominal configuration as such
allowing to easily see the effect of (unwanted) perturbation
during interconnect design. Starting from the Telegrapher’s
equations and applying two consecutive perturbations, leads
to second order differential equations, describing the sought-
for currents and voltages along the interconnect structure.

By way of example, the proposed method has been applied
to a linearly tapered microstrip line and a pair of coupled
lines with random variation of the p.u.l. parameters along the
line. In both cases a high accuracy was achieved. Addition-
ally, the importance of employing a two-step perturbation to
get sufficient accuracy for the transmission coefficients was
highlighted. Consideration of the computational time of the
perturbation approach showed improved efficiency w.r.t. the
reference chain parameter matrix method.
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