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Abstract1

A twin-screw granulator (TSG), a promising equipment for continuous high shear wet2

granulation (HSWG), achieves the desired level of mixing by a combination of the appro-3

priate screw configuration and a suitable set of process settings (e.g. feed rate, screw speed,4

etc.), thus producing a certain granule size and shape distribution (GSSD). However, the pri-5

mary sizing and shaping mechanism behind the resulting distribution is not well understood6

due to the opacity of the multiphase system in the granulator. This study experimen-7

tally characterised the GSSD dynamics along the TSG barrel length in order to understand8

the function of individual screw modules and process settings, as well as their interaction.9

Particle size analysis of granules collected at the outlet of the TSG suggested significant10

interaction between the process and screw configuration parameters influencing the hetero-11

geneity in the GSSD. By characterising the samples collected along the screw length, a12

variable influence of the screw modules at different process conditions was observed. At low13

liquid-to-solid ratio (L/S), the first kneading module seemed to play a significant role in14

mixing, whereas the second kneading module was found to be more involved in reshaping15

the granules. At high L/S and high throughput, aggregation mainly took place in the second16

kneading module changing the GSSD. The results obtained from this study will be further17

used for the calibration and validation of a mechanistic model and, hence, support future18

development of a more detailed understanding of the HSWG process in a TSG.19

20

Keywords: twin-screw granulation, continuous pharmaceutical production, granule size and21

shape analysis22
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1. Introduction23

Granulation is a process aiming at enlarging powder particles, which can be advantageous24

for many reasons. The size enlargement results in gravity forces exceeding the van der Waals25

forces, thereby contributing to better flow properties required for improved processability26

and accurate dosing in further downstream processing. Especially in the pharmaceutical27

industry, where often highly potent drugs are processed, the amount of dust generated by28

powder handling is reduced by granulation, resulting in improved safety. Also, segregation29

(demixing) can be minimized along with the improved downstream processing characteristics30

of the granules. Therefore, wet granulation is an important process for the particle enlarge-31

ment during the formulation of solid dosage forms in the pharmaceutical industry (Ennis,32

2010). Vervaet and Remon (2005) extensively reviewed continuous granulation techniques.33

The high shear twin-screw granulation system has received most attention in the last decades34

due to its inherent benefits, including ease of use in continuous operation and the potential to35

integrate the TSG with other operations (Kumar et al., 2013). The high shear wet granula-36

tion (HSWG) process in the twin-screw granulator (TSG) can be divided into several stages37

(Fig. 1). A number of different mechanisms, including nucleation, growth, aggregation, and38

breakage, which ultimately determine the characteristics of the produced granules, typi-39

cally drive the dynamics of wet granulation. Although details about the precise sequence of40

growth and breakage mechanisms during TSG are not available from the literature, growth41

and breakage of granules are expected to occur simultaneously due to the inhomogeneous42

shear force distribution inside the TSG barrel (Dhenge et al., 2012).43

[Figure 1 about here.]44

Normally in batch HSWG the granulation time is in the order of minutes, while, in a45

TSG, it is limited to a few seconds (Kumar et al., 2014). The short granulation time is,46

although desirable from the productivity point of view, challenging for micro to meso scale47

rate processes in HSWG (Fig. 1). The rate processes of wet granulation are required to48

occur during the short granulation time before the material leaves the TSG. Thus, besides49
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a homogeneous distribution of granulation liquid and powder, the wet mixing in a TSG is50

also required to be achieved within the shortest possible screw length and with minimum51

power input. To facilitate wet granulation, the TSG screw is composed of mainly two52

blocks (Fig. 2). The first and the larger component contains the inter-meshing conveying53

elements involved in transport of the dry and then wetted powder. The second component54

is the mixing section, which contains kneading discs staggered at a certain angle to cause55

restriction to the flow and hence provide the required mixing for wet granulation. These56

modules change the shear environment of the material being conveyed, which determines57

the final granule characteristic distribution, such as granule size and shape distribution58

(GSSD), granule strength, etc. (Djuric et al., 2009). Besides the functional role of the screw59

configuration, performance of a TSG is also related to the applied process parameters. Along60

with the screw speed and the screw configuration, the feeding rate of the powder and the61

granulation liquid which together determine the liquid-to-solid ratio (L/S), and the fill ratio62

inside the barrel are the main process parameters. Therefore, they can be independently63

chosen to achieve the desired mixing levels of the powder and the granulation liquid, and64

influence the granulation yield at the outlet (Vercruysse et al., 2012, 2013).65

[Figure 2 about here.]66

However, there is very little understanding regarding the primary shaping mechanisms67

behind the particle size and shape distribution in the TSG during wet granulation, due to68

the opacity of the multiphase system (Dhenge et al., 2012; El Hagrasy and Litster, 2013).69

Most of the studies rely on the characterisation of the granules from the outlet of the TSG.70

Furthermore, the measured torque of the granulator drive is used as the steady state criterion71

in most studies using TSG. However, torque being a 0-dimensional measurement does not72

provide information linking the role of change in process parameters to the role of individual73

screw elements in the TSG.74

This study extends the spatial dimension of knowledge regarding HSWG using TSG in75

order to understand the dynamic change in characteristics of the material while progressing76

in the TSG barrel. The purpose of this study was to experimentally characterise the change77
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in GSSD along the TSG barrel in order to understand the function of individual screw78

modules and their interaction with other process parameters such as L/S, screw speed and79

filling degree in the TSG.80

2. Materials and methods81

2.1. Pharmaceutical model formulation82

In this study, a premix of α-Lactose monohydrate (Pharmatose 200M, Caldic, Hemiksem,83

Belgium) and Polyvinylpyrrolidone (PVP) (Kollidonr 30, BASF, Ludwigshafen, Germany)84

(ratio: 97.5/2.5, w/w) was granulated with distilled water using the ConsiGma-1 continuous85

wet granulation system.86

2.2. Continuous twin screw granulation87

Granulation experiments were performed using a 25 mm diameter co-rotating TSG with88

option to open the barrel, which is the granulation module of the ConsiGma-1 unit (GEA89

Pharma Systems, Collette™, Wommelgem, Belgium). The granulator screws had a length-90

to-diameter ratio of 20:1 (Fig. 2). The screw configurations up to 6 kneading discs (Length91

= Diameter/4 for each kneading disc) were composed of one kneading block. For the screw92

configuration with 12 kneading discs, two kneading blocks each consisting of 6 kneading93

discs were used. Both kneading zones were separated by a conveying screw block (Length94

= 1.5 Diameter). The stagger angle of the kneading elements was fixed at 60◦. An extra95

conveying element (Length = 1.5 Diameter) was implemented after the second kneading96

block together with 2 narrow kneading discs (L = D/6 for each kneading disc) in order to97

reduce the amount of oversized agglomerates, as reported by Van Melkebeke et al. (2008).98

The barrel jacket temperature was set at 25◦C. The TSG barrel had a feed segment, where99

the powder entered the barrel and was transported through the conveying zone to the work100

segment, where the granulation liquid was added to the powder (Fig. 2) (Fonteyne et al.,101

2012; Vercruysse et al., 2012). During processing, the powder premix was gravimetrically fed102

into granulator by using a twin concave screw feeder with agitator (DDW-MD2-DDSR20,103

Brabender, Duisburg, Germany). Distilled water as granulation liquid was pumped into104
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the screw chamber using a peristaltic pump (Watson Marlow, Comwall, UK) using silicon105

tubings connected to 1.6 mm nozzles. The granulation liquid was added before the first106

kneading disc by dripping through two liquid feed ports, each port located just above each107

screw in the barrel. The wetted, but not yet mixed powder was forced to follow a granula-108

tion track composed of the two co-rotating screws with a number of transport and mixing109

modules based on screw configuration. As the wet powder progresses along the length of110

the granulator, the distribution of particle characteristics changes.111

2.3. Experimental design and sample preparation112

A full factorial experimental design was performed to evaluate the influence of number113

of kneading discs (2, 4, 6, 12), screw speed (500-900 rpm), throughput (10-25 kg/h) and114

L/S (4.58-6.72% (w/w) based on wet mass) (Table 1). Three center point experiments115

were performed as well, resulting in 32 + 3 = 35 experiments. For each run, samples116

were collected from different locations inside the barrel by opening the barrel after stopping117

the process running at steady state (Fig. 2). Sample location 1 was just prior to the first118

kneading block, sample location 2 on the first kneading block, sample location 3 was between119

the first and second kneading block, sample locations 4 and 5 were on and right after the120

second kneading block. Irrespective of the number of kneading blocks, sample locations on121

the screw were kept constant during sampling. Sample location 6 was the regular outlet122

of the granulator and, hence, a large amount of granules was available at that location.123

The wet granules from all the experiments were dried at room temperature for 24 h and124

their GSSD was classified in granules size fractions <150, between 150-1000 and >1000125

µm (Table 1). The particle size distribution of α-Lactose monohydrate used for this study126

was 90% not more than 100 µm and 100% not more than 200 µm. Therefore <150micron was127

defined as fine to prevent under-prediction of fines. Since several responses were measured,128

it was helpful to fit a model simultaneously representing the variation of all responses to129

the variation of the factors. Therefore, the partial least squares (PLS) method was used130

(employing Modde 9.0 software by Umetrics, Umeå, Sweden), which is able to deal with131

many responses simultaneously, accounting for their covariances. The effect plot was used132
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to show the change in the response when a factor vary from low to high level, keeping other133

factors at their averages. The respective 95% confidence interval is shown for each plot.134

Insignificant effects are those where the confidence interval includes zero. The effects in this135

plot are ranked from the largest to the smallest.136

[Table 1 about here.]137

2.4. Determination of torque138

The TSG has an inbuilt torque gauge and the achievement of steady-state was decided139

based on the equilibration of the measured torque of the granulator. The torque values140

obtained after equilibration of the process were averaged to give the overall torque at steady-141

state during each run. The drive motor torque values are an indication of the shear and142

consolidation forces experienced by materials inside the barrel.143

2.5. Characterisation of granules144

2.5.1. Sieve test for particle size analysis145

The granule size distribution (GSD) of the granule samples, collected at the outlet of the146

TSG (sample location 6 in Fig. 2) during each design experiment, was determined using the147

sieve analysis method (Retsch VE 1000 sieve shaker (Haan, Germany)). Granule samples148

(100 g) were placed on a shaker for 5 min at an amplitude of 2 mm using a series of sieves149

(150, 250, 500, 710, 1000, 1400 and 2000 µm). The amount of granules retained on each150

sieve was determined. All granule batches were measured in triplicate. The fractions <150,151

150-1000 and >1000 µm were defined as the amount of fines, fraction of interest for tableting152

and oversized fraction, respectively.153

2.5.2. Dynamic image analysis for size and shape analysis of granules154

The GSSD of the samples from sampling locations which were inside the TSG barrel155

(Fig. 2), were determined via dynamic image analysis (DIA) used in the EyeTech instrument156

(Ankersmid B.V., Oosterhout, The Netherlands). A high speed camera (Fig. 3a) records157

pictures (up to 30 pictures /sec) and visualises the particle distribution in real time during158
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the measurement. The camera was synchronized with a pulsing light emitting diode (LED)159

and takes backlighted images. The captured images of flowing powders were used to calculate160

GSSD.161

The average Feret diameter was used as the size parameter that provides information162

on a diameter that is measured every 5 degrees, resulting in an average of a total of 36163

diameters for each granule (Fig. 3b, eq. 1). This size information also serves as a basis for164

the calculation of shape related parameters such as the aspect ratio, which measures the165

elongation of the granule and has been used in this study. It is a ratio of the smallest over166

the largest diameter of the granule (eq. 2). The aspect ratio gives information about how167

far the particles deviate from being spherical. Rod shaped particles have an aspect ratio168

less than 0.5 while an aspect ratio close to 1 indicates higher sphericity of the granules.169

Feret Diameter = d1 + d2 + d3 + d4....d36

36 (1)

Aspect ratio = Minimum Feret Diameter
Maximum Feret Diameter (2)

[Figure 3 about here.]170

The link between mean Feret diameter and aspect ratio of the granules was determined171

simultaneously by the WINDOX software using Sympatec Image Analysis (QICPIC) (with172

the same measurement system as the Eyetech) by dispersing the granules under gravity173

through the focus plane of a high speed camera.174

The screw arrangement at sample locations 2 and 4 was changed based on the experi-175

mental design, which lead to a deviation in granule characteristics at these locations purely176

due to the local and experimental run specific conditions. Therefore, they have not been177

used in the remainder of this study and the samples from location 1, 3 and 5 in Fig. 2 were178

analysed for further study.179
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3. Results and discussion180

This study examined the impact of four main factors of HSWG using TSG, which include181

the screw speed, number of kneading discs, throughput and L/S during granulation on the182

GSSD.183

3.1. Influence of process variables on the granules at the outlet184

The samples collected at the outlet of the TSG (sample location 6 in Fig. 2) were analysed185

using a sieve test for each experiment. This was useful to understand the effect of the various186

factors on the granule size fractions (F) defined as fines (F < 150 µm), fraction of interest187

for tabletting (150 µm < F < 1000 µm) being the granulation yield, oversized granules (F188

> 1000 µm) as well as the measured torque (Nm) (Table 1). The effect of individual factors189

and their combinations on size fractions determined via the PLS method, suggested that190

the L/S had a significant effect on both the fines (16.10–45.87% < 150 µm) and oversized191

fraction (15.21–49.43% > 1000 µm) of the granules (Fig. 4, Table 1). From this analysis,192

it was observed that granules contained a higher fraction of fines when the powder was less193

wetted at low L/S and vice versa produced more oversized granules. Since the parameters194

having a positive effect on the oversized fraction had a negative effect on the fines and195

vice versa, these parameters did not affect the yield of the fraction of interest significantly196

(yield between 31.01 - 55.90%). Furthermore, low screw speeds resulted in an increase of197

the oversized fraction, due to material accumulation at a reduced conveying rate and the198

lack of proper sheared mixing and less breakage inside the barrel. For the oversized fraction,199

the interaction between L/S and number of kneading discs was significant as the effect of200

the change in L/S was observed to be different at a low or high number of kneading discs.201

At a higher number of kneading discs, L/S variations caused more drastic changes in the202

oversized fraction compared to similar L/S variations for a low number of kneading elements.203

The measured torque of the granulator drive, which is related to the fill level and the shear204

mixing of material in the TSG, was found to be most affected by the number of kneading205

discs. The increase in the number of kneading discs caused an enhanced hindrance to the206

flow of material and hence a high torque of the granulator drive. However, this hindrance207
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to the flow in the screw channel resulted in a greater residence time and more distributive208

mixing of the powder which is essentially required for a better granulation yield (El Hagrasy209

and Litster, 2013). Also, the interaction between the number of kneading elements and210

screw speed was significant with respect to the torque. The torque increase from 2 to 12211

kneading elements was higher at a low screw speed compared to that at a high screw speed.212

This could be explained by the higher filling degree of the barrel at low screw speed.213

[Figure 4 about here.]214

3.2. Influence of process variables on granule properties along the TSG length215

The samples from location 1 (before the first kneading block), location 3 (after the first216

kneading block) and location 5 (after the second kneading block in the screw configuration217

with 2 kneading blocks) were used to characterise the change in the GSSD along the TSG218

length (Fig. 2). Firstly, it is important to point out that the granulation using only 2219

kneading discs did not yield a sufficient degree of control over the process, and therefore the220

results were inconsistent (data not shown). We believe that 2 kneading discs in the screw221

configuration pose a too low hindrance to the flow in the screw channel. Due to this, the222

primary response by the kneading block in terms of restriction to the flow was significantly223

asynchronous, thus generating random results. Therefore, for further comparison only results224

from runs with 4, 6 and 12 kneading discs are presented. The pattern of evolution in225

granule size and shape indicates that the formation of primary granules (50-200 µm) led226

to a loss in the particle shape uniformity via reduction in the aspect ratio (Fig. 5). The227

further growth of granule size (between 200-400 µm) resulted in a more uniform and higher228

mean aspect ratio. However, an increase in granule size beyond 400 µm led to a more229

heterogeneous and relatively lower aspect ratio. For the three sample locations (1, 3 and 5)230

in Fig. 2 it was observed that granules at location 1 (top subplot in Fig. 5) had a reasonably231

homogeneous aspect ratio except for the oversized granules. As the granules moved to sample232

location 3 (middle subplot in Fig. 5) both primary (50-200 µm) and oversized granules were233

further deformed. Compared to location 3, there was a minor increase in the width of the234

intermediate size granules (between 200-800 µm) at sample location 5 (bottom subplot in235
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Fig. 5) with a more uniform aspect ratio. However, the larger granules remained deformed.236

This can be explained by the high shear and the lack of free space inside the TSG which237

is very different from high-shear mixers where granules, despite their large sizes, tumble on238

their free surface and get rounded (Lee et al., 2013).239

[Figure 5 about here.]240

Furthermore, as the wetted powder is conveyed from the pre-kneading zone to the first241

kneading zone and further, the number density of the granules shifted towards the right,242

indicating an increase in the fraction of larger granules and occasionally some breakup at the243

end (Fig. 6 and 8). Remarkably, an increasing number of kneading discs not only increased244

the fraction of larger granules for the downstream sample locations 3 and 5 which were245

located after the kneading blocks but also at sample location 1, which was located upstream246

of the kneading discs. This suggests that along with the mixing section composed of kneading247

discs, a significant mixing and granulation also occurs in the upstream section. The material248

in the mixing section flows more slowly than in the upstream section and hence the built-up249

material in the flow restricted zone of the barrel is force-mixed with the incoming materials.250

Lee et al. (2012) have shown that the degree of filling of the ’non-kneading zone’ of the251

granulator increases with an increase in the restriction to the flow. Also, elongation of the252

granules was observed to decrease along the granulator length and for increasing number253

of kneading discs (Fig. 7 and 9). This spherification of granules together with enlargement254

now allows discussion of the effects of factors as well as their interactions on GSSD.255

3.2.1. Effect of throughput256

Low liquid-to-solid ratio (4.58%) and low screw speed (500 rpm)257

An increase in the throughput from 10 kg/h to 25 kg/h keeping the L/S and screw speed258

at the lowest level resulted in a minor increase in the granule size for successive sample259

locations (comparing ID 1 and 3 plots in Fig. 6). This effect was clearest for 12 kneading260

discs, where a small reduction in the amount of fines for sample location 5 occurred. No261

significant effect on the shape distribution was observed for configurations containing up to 6262
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kneading discs (comparing ID 1 and 3 plots in Fig. 7). For a higher number of kneading discs263

the elongation of the granules decreased with the progressive sample locations indicating a264

greater consolidation of granules.265

High liquid-to-solid ratio (6.72%) and low screw speed (500 rpm)266

At high L/S more granulation liquid enhanced the size enlargement rate processes (such267

as wetting, nucleation and aggregation), and thereby a shift of GSDs towards higher average268

diameters was noticed (ID 2 and 4 plots in Fig. 6). For up to 6 kneading discs, increased269

throughput had a trivial influence on granulation, which was reflected by the fact that no270

change in the GSD was observed. However, a further granule size enlargement at location271

5 and a broadening of the distribution were observed when the second kneading block was272

present (comparing ID 2 and 4 plots for 12 kneading discs in Fig. 6). Besides the size,273

increasing throughput at a high number of kneading discs affected the aspect ratio profile,274

which shifted towards the right and became narrower for location 3 (ID 2 and 4 plots in275

Fig. 7). However, the higher fill ratio at increased throughput and sluggish flow of more276

wetted powder in the granulator barrel led to an almost doubled TSG drive torque (ID 4277

plots in Fig. 6).278

[Figure 6 about here.]279

Low liquid-to-solid ratio (4.58%) and high screw speed (900 rpm)280

Despite good shear mixing at high screw speed, increasing the throughput did not support281

an increase in the fraction of larger granules due to a low L/S (ID 1 and 3 plots in Fig. 8).282

The increased throughput for the 12 kneading discs configuration showed a reduction in the283

larger granules after the second kneading block (location 3 and 5 profiles when comparing284

ID 1 and 3 plots for 12 kneading discs in Fig. 8). Besides the reduction in the granule size,285

the increased throughput did not affect the shape of granules and the profiles for ID 1 and286

3 plots in Fig. 9 corresponded to the same pattern for an equal number of kneading discs.287

[Figure 7 about here.]288
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High liquid-to-solid ratio (6.72%) and high screw speed (900 rpm)289

With an increase in throughput at these conditions, granulation was more uniform which290

led to a clear difference between the GSD profile from sample location 1, 3 and 5 when two291

kneading blocks were used (comparing ID 2 and ID 4 plots in Fig. 8). However, the GSD292

of location 3 was narrower than at location 5 in the ID 4 plot for 12 kneading discs. The293

increased throughput only affected the shape of the granules from location 1, where the294

granulation liquid was distributed to a larger amount of powder available at high throughput.295

However, due to the high shear-induced mixing at high screw speed, despite the high filling296

ratio the downstream material was well-mixed thus yielding a more uniform particle aspect297

ratio distribution for ID 4 plots compared to ID 2 plots in Fig. 9. However, for sample298

locations 3 and 5 the aspect ratio profile corresponded to the same pattern for an equal299

number of kneading discs.300

The above suggests that increasing throughput is not beneficial without sufficient gran-301

ulation liquid and shear mixing to make strong bridges between powder particles in the302

agglomerates. Despite the availability of granulation liquid, when the shear-induced mix-303

ing is poor, an inhomogeneous distribution of liquid over the material occurs resulting in a304

broader GSD. On the other hand, at low L/S, an increase in screw speed leads to a high level305

of shear mixing and further contributes to the fragility of the granules and thus increased306

attrition and breakage. Although an increase in throughput requires a higher torque, this307

issue can be solved by increasing the screw speed during granulation which increases the308

conveying rate and reduces the load on the screws. At high shear and high L/S, the wet309

granules are easy to deform leading to a more uniform shape. However, due to the higher310

filling of the channels of the screws and the increased consolidation at high throughput,311

attrition of the wet mass between the screws and barrel wall may increase, as observed312

by Dhenge et al. (2011).313

[Figure 8 about here.]314
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3.2.2. Effect of liquid-to-solid ratio315

Low throughput (10 kg/h) and low screw speed (500 rpm)316

When the L/S was increased at low levels of throughput and screw speed, the degree of317

aggregation increased (comparing ID 1 and 2 in Fig. 6). With an increase in the number318

of kneading discs, the measured torque and shear mixing increased and the GSD shifted319

towards higher granule sizes at sample locations 3 and 5 (ID 2 plot in Fig. 6). However, no320

narrowing of the size distribution at sample location 5 was observed. An additional kneading321

block showed only a slight contribution to the aggregation when comparing the number based322

GSD profile at sample location 3 and 5 in the ID 2 plots of Fig. 6. This also happened due323

to the fact that bigger granules are created by aggregation of many small particles, thereby324

resulting in a visible drop in the number of small size granules, but only a small increase325

in the bigger ones. The increase in L/S also reduced the granule elongation for the screw326

configurations with 6 and 12 kneading discs at sample locations 3 and 5 (comparing ID 1327

and 2 in Fig. 7). Altogether it can be confirmed that the additional kneading block had a328

minor contribution in this case, both in terms of granule enlargement and the spherification329

of granules.330

High throughput (25 kg/h) and low screw speed (500 rpm)331

When the granulation was performed at high throughput and a low screw speed, an332

increase in L/S increased the degree of aggregation (comparing ID 3 and 4 plots in Fig. 6).333

However, the most remarkable change was observed for the screw configuration with 12334

kneading discs when the GSD profiles of the three sample locations were clearly segregated335

by the second kneading block in the TSG. Moreover, the aspect ratio profiles at higher L/S336

shifted towards the right and became narrower in ID 4 compared to ID 3 plots of Fig. 7,337

indicating an increased aspect ratio and uniformity of the granule shape. However, the338

torque of the TSG drive increased significantly due to the high fill ratio and sluggish flow of339

wetted powder inside the granulator barrel.340

[Figure 9 about here.]341
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Low throughput (10 kg/h) and high screw speed (900 rpm)342

With the increase in L/S at the low throughput and high screw speed, there was only a343

minor increase in granule size for the screw configuration with 4 kneading discs (comparing344

ID 1 and 2 plots in Fig. 8). However, increasing the number of kneading discs increased345

the aggregation level due to which the GSD shifted towards a larger diameter. The second346

kneading block showed only a small contribution to the aggregation level as can be observed347

from profiles from sample locations 3 and 5 in ID 2 plots of Fig. 8. This may be due to348

the lack of unwetted powder in the granulator to support further agglomeration. Besides,349

the additional granulation liquid encouraged the formation of more spherical granules in350

successive sample locations of the TSG suggesting a higher level of consolidation of the351

granules (comparing ID 1 and 2 plots in Fig. 9). However, the shape distributions of samples352

before and after the second kneading block were similar. This indicates that, at a very low fill353

level, the second kneading block played a minor role in changing the shape of the granules.354

High throughput (25 kg/h) and high screw speed (900 rpm)355

At high throughput more material was available inside the TSG, but an increase in356

screw speed caused a reduction in the fill level and improved mixing. However, at a lower357

number of kneading discs, a considerable reduction of distributive mixing of the powder358

and the granulation liquid and consequent aggregation occurred, leading to minor shifts359

in GSD between locations 1, 3 and 5 (comparing ID 3 and 4 plots in Fig. 8). When the360

number of kneading discs was increased, the wetted powder was well mixed despite a lower361

fill level of the barrel and hence agglomerated, leading to an increase in granule size. For the362

screw configuration with 12 kneading discs, the most significant difference between all three363

locations was observed, which can be attributed to the presence of an additional kneading364

block between sampling location 3 and 5 along with the one between sample location 1 and365

3. An increase in the number of kneading discs also caused an increase in the number density366

of high aspect ratio granules (comparing ID 3 and 4 plots in Fig. 9). Moving from a low to a367

high number of kneading discs, for the location 1, 3 and 5 the aspect ratio distributions were368

very similar. This indicates that shear-induced consolidation occurred in the early stage of369
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the granulation (near location 1) and the aggregation and the consolidation of the granules370

took place simultaneously.371

Overall, more granulation liquid at increased L/S enhances wetting, nucleation and ag-372

gregation, i.e. granule enlargement rate processes (Litster and Ennis, 2004). However, an373

increased L/S can only improve the agglomeration level when the mixing is also increased.374

An increase in screw speed causes a reduction in the fill level of the wetted material and375

an increase in the shear leading to improved mixing. Especially at high screw speed the376

axial mixing inside the granulator increases significantly (Kumar et al., 2014). In this study,377

a higher L/S also affected the shape of the granules along the length and the produced378

granules grew to be more spherical. This outcome is in accordance with results reported by379

Dhenge et al. (2012) comparing samples collected at the granulator output only. However,380

the torque of the TSG drive increases significantly due to the high fill ratio and sluggish flow381

of wetted powder in the granulator barrel, which can be reduced by increasing the conveying382

rate of the screw at high screw speed.383

3.2.3. Effect of combined change in throughput and liquid-to-solid ratio384

Low screw speed (500 rpm)385

When both throughput and the L/S were increased at low screw speed, there was less386

difference between the GSD from sample locations 1 and 3 for a low number of kneading387

discs due to the lack of mixing (comparing ID 1 and 4 plots in Fig. 6). However, a progressive388

mixing in the axial direction occurred due to the shear induced during the conveying of the389

wet powder, hence changing the morphology in terms of reduction in the fraction of smaller390

granules and an increase in the fraction of larger granules at sample location 3 and 5 in391

the ID 4 plot for 4 kneading discs in Fig. 6. For the screw configuration with 12 kneading392

discs, most distinctly separate distributions for the three sample locations were observed.393

However, the number density of small granules also increased with spatial progress indicating394

that, beyond the consolidation, breakage was an important size reduction phenomenon and395

competed with the aggregation process in the second kneading block of the TSG under these396

conditions. Also, at a low number of kneading discs, the shape distribution of the sample397
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locations 1, 3 and 5 were similar (comparing ID 1 and ID 4 plots in Fig. 7). For an increasing398

number of kneading discs, an increase in the aspect ratio of granules from location 3 and 5399

caused the shape distribution of the locations 1 and 3 samples to be more distinct, while400

the difference between locations 3 and 5 samples remained low.401

High screw speed (900 rpm)402

When the screw speed was increased, for 4 kneading discs the difference between the403

downstream sample profiles from locations 3 and 5 was small (plot ID 4 in Fig. 8). With 6404

kneading discs the restrictive forces started playing a role, which resulted in the formation405

of more stable GSD even before the material entered the first kneading block (plot ID 4406

in Fig. 8). However, in lack of adequate distributive mixing of wetted powder, there was407

only a minor difference between sample location 3 and 5. When a second kneading block408

was added between sampling location 3 and 5 in the screw, the powder with high moisture409

content was distributively mixed and hence agglomerated furthermore (plot ID 4 in Fig. 8).410

This led to GSD profiles, which were separated for all the three sample locations. Also,411

unlike the observations at low screw speed (ID 4 plot for 12 kneading discs in Fig. 6), the412

number density for the lower particle size did not increase with the spatial progress for high413

screw speed indicating that sufficient mixing occurred to support the aggregation process at414

location 5 in the TSG barrel (ID 4 plot for 12 kneading discs in Fig. 7). The suitability of415

this condition was also reflected in the shape dynamics as the increase in number of kneading416

discs only caused a minor increase in the aspect ratio distributions (comparing ID 1 and ID417

4 plots in Fig. 9). For both a low and a high number of kneading discs, for the location 1,418

3 and 5 the aspect ratio distribution were quite similar regardless of the throughput. This419

indicates that consolidation of the granules went well along with the aggregation during the420

conveying of the granules in the TSG barrel.421

These results suggest that increased mixing is required when the throughput and the422

L/S are high. Since the mixing of the wetted powder inside the TSG is mainly distributive,423

the most effective mixing in this condition can be obtained by increasing the number of424

kneading discs. Besides, a high shear and a low fill level due to the increased conveying rate425
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at high screw speed can lead to a very efficient mixing in the TSG barrel (Vercruysse et al.,426

2012). These results also suggest that at increased shear first the wetted granules’ shape427

changes through consolidation, only after which the breakage occurs.428

3.2.4. Effect of increase in screw speed429

At low throughput and L/S, when the screw speed was increased from 500 rpm (ID 1 plot430

of Fig. 6) to 900 rpm (ID 1 plot of Fig. 8), there was no significant shift in the GSDs. Only431

the measured torque level decreased for 12 kneading discs due to reduction in hindrance to432

the flow at increased conveying rate and low filling ratio at high screw speed. Comparing433

the shape dynamics, the distribution of shape followed a consistent pattern due to a lower434

fill ratio and good mixing in the barrel. With an increasing number of kneading discs, there435

was an increase in the aspect ratio due to an accumulated level of shear (ID 1 plots of Fig. 7436

and 9).437

At a low throughput and a high L/S, an increased screw speed assisted early aggregation438

of the wetted powder, which is reflected by an increase in the fraction of larger granules for439

all three sample locations (comparing ID 2 plots of Fig. 6 and 8). The addition of more440

kneading discs further increased the agglomeration level and a successive reduction in the441

amount of fines. Moreover, at increased screw speed together with an increase in the number442

of kneading discs, the granules became more spherical (comparing ID 2 plots of Fig. 7 and443

9). It can be assumed that increased shear caused a greater consolidation of granules and444

consequently an increased sphericity, while making squeezed-out liquid available to a further445

granulate leading to the further shift of the GSD towards larger diameters.446

However, when the feed rate was high and the L/S was low, an increase in the screw447

speed resulted in an early aggregation of the particles with minimal number of kneading discs448

(comparing ID 3 plots in Fig. 6 and 8). The addition of more kneading discs to the screw449

caused a reduction in the amount of fines. However, for the configuration with 12 kneading450

discs there was a reduction in the number density of larger particle sizes at successive sample451

locations indicating breakage of larger granules induced by the second kneading block (ID452

3 plot for 12 kneading discs in Fig. 8). This is likely due to availability of insufficient liquid453
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to make strong bridges between the particles in the granules, which was also reflected in the454

aspect ratio where no significant change in the shape distribution was observed due to lack455

of additional particle growth processes (comparing ID 3 plots in Fig. 7 and 9).456

The effect of an increase in screw speed at high levels of throughput and L/S was discussed457

in section 3.2.3. The major contribution of increasing the screw speed at high throughput458

and L/S was the reduction in granulator torque, without affecting the GSD. This is desirable459

at manufacturing scale from a productivity point of view where operation at high throughput460

is a prerequisite.461

These comparisons suggest that along with the distributive mixing by the kneading discs,462

the shear-induced mixing by increasing screw speed is another important factor in mixing.463

However, increasing the screw speed reduces the mean residence time of the wet powder464

in the barrel. Hence, a competitive relationship exists between the shear mixing in the465

barrel and the residence time of the wetted powder, both of which are desired to support466

granulation rate processes. Except for the granules which are brittle due to lack of sufficient467

granulation liquid, the shape distribution at high shear remains the same compared to low468

shear conditions. This suggests that the shape of granules largely depends on the design of469

the screws and not on the shear level.470

4. Conclusions471

This study showed that a balanced mixing is important to change the granule charac-472

teristics through aggregation and breakage mechanisms along with the consolidation of the473

particles. The fill ratio in the barrel is an important factor both because it affects the torque474

required by the granulator drive, and it plays a major role in changing the size and shape475

of the particles. Increasing throughput is beneficial only when sufficient granulation liquid476

and shear mixing is present to make strong agglomerates. An increase in throughput causes477

a higher torque, which can be resolved by increasing the screw speed. The deformation478

of wet granules is easy and granules with a more uniform shape are produced. A number479

of competing mechanisms, such as aggregation, consolidation and breakage occur in the480
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process. Although this study provided a detailed insight regarding the process, the experi-481

mental data produced only semi-quantitative insight into which of these mechanisms were482

dominant. Unlike experimental results, where only the collected data are available, mecha-483

nistic models are more transparent in the sense that any and all of the intermediate data can484

be observed after simulation (given a thoroughly validated model is available). Therefore485

the results obtained from this study will now be used as the basis for the development of486

a mechanistic model to further improve our understanding of the granulation process in a487

TSG.488
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Figure 1: Schematic presentation of the wet granulation process.
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Figure 2: Screw configuration with 12 kneading discs (2 blocks) used in the twin screw granulator during the
study. Sampling locations along the screw length: [1] before first kneading block, [2] on the first kneading
block [3] between first and second kneading block, [4] on the second kneading block [5] after second kneading
block, [6] outlet of the granulator.
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(a) (b)

Figure 3: (a) Principle of the dynamic image analysis technique. The shape and size of the granule are
determined based on the imaged formed by the LED flashing light passing directly through the sample and
captured by the camera. (b) The Ferret diameters provide information on the size (average Ferret diameter),
give deep insight into the granules morphology (minimum Ferret and maximum Ferret) and serve as a basis
for the calculation of the aspect ratio.
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Figure 4: Effect plots of the partial least squares (PLS) models showing the mean responses of number of
kneading discs (Num), screw speed (Scr) [500-900 rpm], throughput (Pow) [10-25 kg/h] and liquid-solid ratio
(Liq) [4.58-6.72%] on the size fractions (F) defined as fines (F < 150 µm), fraction of interest for tableting
(150 µm< F< 1000 µm) and oversized granules (F>1000 µm) and the measured torque.
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Figure 5: Mean, maximum and minimum aspect ratios vs. mean Feret diameter of the granules in the range
of 50 to 1600 µm (log scale, x-axis) at location 1 (top subplot), location 3 (middle subplot) and location
5 (bottom subplot) in barrel for the runs performed at different throughputs (10, 25 kg/h), liquid-to-solid
ratio (4.58, 6.72% (w/w)), screw speed (500, 900 rpm) and number of kneading discs (4, 12).
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Figure 6: Number density of the granules (primary y-axis) having an average Feret diameter in the range of
50 to 1500 µm (log scale, shared x-axis) and torque level (secondary y-axis) at different throughputs (10-25
kg/h), liquid-to-solid ratio (4.58-6.72% (w/w)) at low screw speed (500 rpm) [ID: experiment ID, MFR:
throughput (kg/h), LSR: liquid-solid ratio (%)].
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Figure 7: Number density of the granules (primary y-axis) having an aspect ratio in the range of 0.3 to 1
(shared x-axis) at a different throughput (10-25 kg/h), liquid-to-solid ratio (4.58-6.72% (w/w)) at low screw
speed (500 rpm) [ID: experiment ID, MFR: throughput (kg/h), LSR: liquid-solid ratio (%)].
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Figure 8: Number density of the granules (primary y-axis) having an average Feret diameter in the range of
50 to 1500 µm (log scale, shared x-axis) and torque level (secondary y-axis) at different throughputs (10-25
kg/h), liquid-to-solid ratio (4.58-6.72% (w/w)) at high screw speed (900 rpm) [ID: experiment ID, MFR:
throughput (kg/h), LSR: liquid-solid ratio (%)].
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Figure 9: Number density of the granules (primary y-axis) having an aspect ratio in the range of 0.3 to 1
(shared x-axis) at different throughputs (10-25 kg/h), liquid-to-solid ratio (4.58-6.72% (w/w)) at low screw
speed (900 rpm) [ID: experiment ID, MFR: throughput (kg/h), LSR: liquid-solid ratio (%)].
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Table 1: Overview of experimental design runs: factor variables (number of kneading discs, screw speed,
throughput and liquid-solid ratio) and responses (Torque, F < 150 µm (defined as fines), 150 µm<F<1000
µm (fraction of interest for tabletting) and F>1000 µm (defined as oversized) granules).

Run
Or-
der

Number
of knead-
ing discs

Screw
speed ThroughputL/S

ratio Torque F<150
µm

150-
1000
µm

F>1000
µm

(-) (RPM) (Kg/h) (%) (N-m) (%) (%) (%)
1 2 500 10 4.58 34.95 42.19 22.86 1.38
2 4 500 10 4.58 40.66 37.95 21.39 1.84
3 6 500 10 4.58 38.28 43.77 17.95 2.59
4 12 500 10 4.58 43.2 37.87 18.93 2.92
5 2 900 10 4.58 37.86 46.02 16.11 1.25
6 4 900 10 4.58 43.12 39.53 17.34 2.00
7 6 900 10 4.58 42.78 39.25 17.96 3.06
8 12 900 10 4.58 40.68 37.62 21.7 1.95
9 2 500 25 4.58 36.25 35.66 28.09 1.30
10 4 500 25 4.58 45.79 31.01 23.19 2.02
11 6 500 25 4.58 42.52 37.54 19.93 2.27
12 12 500 25 4.58 45.41 34.69 19.91 2.4
13 2 900 25 4.58 39.87 38.88 21.25 1.55
14 4 900 25 4.58 45.87 36.15 17.98 1.98
15 6 900 25 4.58 43.9 40.89 15.21 2.09
16 12 900 25 4.58 45.07 35.89 19.04 2.02
17 2 500 10 6.72 22.29 39.62 38.10 0.92
18 4 500 10 6.72 22.55 35.65 41.80 1.73
19 6 500 10 6.72 28.49 32.80 38.71 2.97
20 12 500 10 6.72 23.80 34.84 41.36 3.06
21 2 900 10 6.72 23.56 39.75 36.7 1.44
22 4 900 10 6.72 25.70 33.27 41.04 1.89
23 6 900 10 6.72 29.04 34.82 36.15 3.07
24 12 900 10 6.72 22.19 35.15 42.66 2.6
25 2 500 25 6.72 26.14 36.3 37.56 1.24
26 4 500 25 6.72 29.37 32.43 38.21 2.16
27 6 500 25 6.72 33.58 33.71 32.71 2.28
28 12 500 25 6.72 16.10 34.46 49.43 4.7
29 2 900 25 6.72 26.01 44.26 29.73 1.54
30 4 900 25 6.72 30.72 34.44 34.84 1.46
31 6 900 25 6.72 32.58 37.62 29.79 2.46
32 12 900 25 6.72 26.25 31.31 42.44 1.86
33 4 700 17.5 6 22.58 55.90 21.52 1.33
34 4 700 17.5 6 18.52 53.03 28.45 1.32
35 4 700 17.5 6 20.59 55.50 23.92 1.24
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