
Experimental validation of a reinforcement learning

based approach for a service-wise optimisation of

heterogeneous wireless sensor networks

Milos Rovcanina, Eli De Poortera, Daniel van den Akkerb, Ingrid
Moermana, Piet Demeestera, Chris Blondiab

aGhent University - iMinds, Department of Information Technology (INTEC), Ghent,
Belgium

bPATS Research group, Department of Mathematics and Computer Sciences, University
of Antwerp - iMinds, Antwerp, Belgium

Abstract

Due to their constrained nature, wireless sensor networks are often optimised
for a specific application domain, for example by designing a custom MAC
protocol. However, when several wireless sensor networks are located in
close proximity to one another, the performance of the individual networks
can be negatively affected as a result of unexpected protocol interactions.
The performance impact of this ‘protocol interference’ depends on the exact
set of protocols and (network) services used. This paper therefore proposes
an optimisation approach that uses self-learning techniques to automatically
learn the optimal combination of services and/or protocols in each individ-
ual network. We introduce tools capable of discovering this optimal set of
services and protocols for any given set of co-located heterogeneous sensor
networks. These tools eliminate the need for manual reconfiguration while
only requiring minimal a priori knowledge about the network. A continuous
re-evaluation of the decision process provides resilience to volatile network-
ing conditions in case of highly dynamic environments. The methodology is
experimentally evaluated in a large scale testbed using both single- and mul-
tihop scenarios, showing a clear decrease in end-to-end delay and an increase
in reliability of almost 25 percent.
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access distribution;

1. Introduction

We are witnessing a continuous increase in the number of wireless com-
municating devices surrounding us. For constrained wireless sensor networks
(WSNs) specifically, many researchers focus on developing optimal network
solutions for very specific application domains. This is exemplified by the
large number of MAC protocols that exists for WSNs. However, since wire-
less sensor networks mostly use proprietary or highly customised protocols in
unlicensed frequency bands, inter-protocol interference is a typically occur-
ring problem. The fact that these protocols often operate under the implicit
assumption that they are ‘alone’ in the wireless environment can cause harm-
ful interference between these protocols [31]. As a result, choosing network
protocols and services that perform excellent in one specific environment
(e.g. TDMA MAC protocols for optimised single-hop networks) can result
in degraded performance in other environments where other sensor networks
are also present. Manual configuration and selection of the optimal net-
work protocols proves to be complex and inefficient [1], mainly due to the
sheer amount of devices (time consuming) and inability to take dynamically
changing network environments into account. Choosing the optimal set of
protocols and services is a multi-objective optimisation problem: individual
networks generally have different application level requirements, which may
even chance over time.

To cope with this complexity, intelligent solutions that allow networks
to efficiently reconfigure themselves at run time are needed. Such solutions
are expected to increase the network performance and simplify the setup of
networks for the end users [2]. This paper proposes a cooperation paradigm
in which co-located networks are automatically reconfigured at run-time to
activate the set of protocols and services that allow the involved networks to
operate optimally. The proposed solution relies on a reinforcement learning
algorithm that efficiently combines multi-objective optimisation (MOO) with
the reinforcement learning (RL) paradigm. It uses linear fitness approxima-
tions, extensively used for solving MOO problems, and applies these to the
general RL methodology. The cooperation process is initiated without any
priori knowledge about the environment.

The main goal of the cooperation process is to verify if the network ser-
vices and/or network protocols are correctly chosen so that they (i) fulfil the
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requirements imposed by a higher level application and (ii) do not negatively
influence each other. Since individual networks may benefit from different
types of medium access control (MAC) protocols (TDMA, CSMA-CA, . . . ),
the approach supports replacing the full MAC layer to support the respective
application requirements. In addition, different routing protocols or trans-
port layers may be available in each network and thus also be considered
during the process. Finally, packet sharing (allowing networks to route pack-
ets for each other), aggregation (combining multiple data-items in a single
packet) and similar network services can be enabled at higher layers depend-
ing on the application requirements. Each of these services is an additional
variable in the proposed multi-variable optimisation problem. The algorithm
allows the optimal operational point (the optimal set of services and proto-
cols) to be selected, while still being able to adapt to changes in the network
(eg.: altered interference patterns) or altered application requirements. It is
of course possible that the most optimal set of protocols and services for co-
operation between the networks yields poorer results than not cooperating at
all. The algorithm must be able to detect this in order to allow cooperation
to only be enabled if it is beneficial for all participating networks.

The main contributions of this paper include the following:

1. An overview of optimisation and self-learning algorithms for wireless
sensor networks.

2. Experimental demonstration that the selection of the optimal network
protocols (e.g. MAC protocol) depends on more than the application
requirements and should also take into account other networks in the
wireless environment.

3. Introduction of a methodology that:

• is capable of solving a multi-objective optimisation problems;

• takes into account heterogeneous requirement from multiple co-
located networks;

• can detect degraded performance due to unpredictable interaction
between protocols and/or faulty (e.g. buggy) protocol implemen-
tations;

• can adapt the network configuration to take into account changing
network requirements and dynamic environments.

4. Experimental evaluation and analysis of the obtained performance gains
using a large scale wireless sensor testbed.
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The remaining part of the paper is organised as follows. Section 2 gives
a brief overview of other machine learning techniques used in the context of
sensor networks. A detailed problem statement is given in Section 3. Sec-
tion 4 introduces the main mathematical concepts of reinforcement learning
and the LSPI algorithm. Section 5 explains how the RL methodology is used
as a solution to this particular problem. A experimental setup, used for val-
idation and evaluation of the algorithm, is introduced in Section 6. Results
and corresponding discussions can be found in Section 7. Future work is
described in Section 8, while Section 9 concludes the paper.

2. Related work

The first part of this section gives a brief overview of the optimisation
techniques being used for multi-objective optimisation (MOO) problems in
heterogeneous wireless sensor networks. The second part presents the most
relevant work regarding application of different RL techniques to the most
common sensor network problems such as routing, energy efficiency, medium
slot allocation etc.

2.1. MOO tools used in heterogeneous WSNs

MOO solutions are typically used to quickly converge to an optimal op-
erating point of a problem in a stable environment with multiple input pa-
rameters. Several MOO techniques have been used previously to optimised
WSNs.

The authors of [3] propose two evolutionary algorithms (EAs): NSGA-II
(Non-dominated Sorting Genetic Algorithm II) [4] and SPEA-II (Strength
Pareto Evolutionary Algorithm II) [5] as tools for solving an NP-hard prob-
lem of a heterogeneous WSN deployment, while maximising its reliability
and minimising packet delay.

Another example is a simultaneous optimisation of the high network life-
time and coverage objectives, tackled in [6]. As opposed to previous methods
that tried combining the two objectives into a single objective or constrain-
ing one while optimising the other, the newly proposed approach employs
a recently developed MO evolutionary algorithm based on decomposition -
MOEA/D [7] as a feasible solution.

In [8], a multi-objective hybrid optimisation algorithm is combined with
a local on line algorithm (LoA), to solve the Dynamic Coverage and Connec-
tivity problem in WSNs, subjected to node failures. The proposed approach
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is compared with an Integer Linear Programming (ILP)-based approach and
similar mono-objective approaches, regard coverage, network lifetime. Re-
sults show that the presented hybrid approach can improve the performance
of the WSN, with a considerably shorter computational time than ILP.

ILP was also used in the service-wise network optimisation problem, pub-
lished in [2]. The authors used a solution based on a the linear programming
methodology in combination with the IBM CPLEX ILPSolver [9] to deter-
mine the optimal operational point. In order to produce useful results how-
ever, it relies on the expected performance gains for reconfiguration, which
is rather difficult to obtain.

Since many of these solutions require stable a priori information, they
are mainly useful for well controlled and non-volatile environments, which is
quite the opposite of the type of environment for which our algorithm has
been developed.

2.2. RL in WSNs

Reinforcement learning predicts future behaviour based on information
from the past. As such, Reinforcement Learning is well suited for dynamic
environments that show limited change over time.

LSPI (Least Squares Policy Iteration), as a form of reinforcement learning,
has previously been used to optimise network layers above the physical layer.
Routing and link scheduling problems have been tackled in [10] and [11].

An autonomic reconfiguration scheme that enables intelligent services to
meet QoS requirements is presented in [12]. The authors apply, the Q learn-
ing technique [13] is to the route request/route reply mechanism of the AODV
routing protocol [14] in order to influence the failure or the success of the
process and thereby decreasing the protocol overhead and increasing the pro-
tocols’ efficiency.

In [15] a number of approximate policy iteration issues, related to our
research such as convergence and rate of convergence of approximate policy
evaluation methods, exploration issues, constrained and enhanced policy it-
eration are discussed. The main focus is on the above mentioned LSTD and
its scaled variant algorithm.

Research published in [16] tests and proves the convergence of a model
free, approximate policy iteration method that uses linear approximation of
the action-value function, using on-line SARSA updating rules. The update
rule is how the algorithm uses experience to change its estimate of the optimal
value function. SARSA updating is exclusively used in on-policy algorithms,
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where the successor’s Q value, used to update the current one, is chosen
based on the current policy and not in a greedy fashion, as with Q-learning.

Our algorithm uses mechanisms similar to the ones discussed above, but
applies these to a new problem domain. As a result, while searching for the
optimal set of services and protocols, we expect our methodology to provide
a precious insight into dependencies between various network protocols and
services. This will be beneficial for future research, as well as for the rest of
the research community.

3. Use Case

In this paper we consider a scenario in which two WSNs are deployed
in the same wireless environment. Both use the well known but resource
constrained Tmote Sky sensor nodes [17]. One network runs an intrusion
detection application, while devices belonging to the other network collect
temperature measurements.

3.1. Properties of the security network

The following requirements are set up for the security network:

• LONG NETWORK LIFETIME

• LOW END-TO-END DELAY

• HIGH RELIABILITY

Having a long network lifetime is a common requirement to avoid frequent
replacement of the batteries in energy constrained wireless sensor networks.
The requirements for a low delay and high reliability are motivated by the
fact that intrusion events should be reported fast and reliable.

The security network can choose between three different MAC protocols
- Time Division Multiple Access (TDMA) [18], Low Power Listening (LPL)
protocol [19] and Carrier Sense Medium Control with Collision Avoidance
(CSMA/CA) [20]. In addition, two higher layer network services, AGGRE-
GATION and PACKET SHARING, are available. The first service, aggre-
gation [21], is capable of combining multiple data packets in a single packet
to reduce the packet overhead. When the PACKET SHARING service is
enabled, packets from other networks can be routed over the network. Prior
to cooperation, each network selects a preferred MAC protocol based on
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its application requirements. The influence of a higher layer network service,
AGGREGATION and PACKET SHARING, is taken into consideration once
the cooperation is initiated. Within the scope of this work we require the
PACKET SHARING service to be enabled either in both networks simulta-
neously or not at all. The reason for doing so is that enabling this service in
one network only is expected to mainly provide performance benefits for the
other network (shorter routing paths) while having an (energy wise) impact
on the network itself. As a result, requiring a network to enable PACKET
SHARING is only ‘fair’ if it is done in both networks at the same time.

3.2. Properties of the temperature monitoring network

The following requirements are set up for the temperature monitoring
network:

• LONG NETWORK LIFETIME

• LOW DELAY

Since the monitoring network is not used for critical services, the high re-
liability requirement is omitted in favour of obtaining a high network lifetime.
The set of available services, MAC protocols and a higher level services, com-
pletely matches the case of the security network - TDMA, CSMA-CA and
LPL, accompanied with AGGREGATION and PACKET SHARING.

3.3. The cooperation process

The process of cooperation starts by exchanging the relevant informa-
tion between the different networks: available services and predefined user
requirements. A dedicated reasoning engine, connected to a sink of one of
the two networks, collects all data and iteratively applies multiple service
combinations to the networks to determine the most optimal configuration.
Once discovered, the most optimal configuration is applied and maintained
in both networks. It should be noted that network requirements may change
over time. Changes in the network topology or available resources (bat-
tery power) might require a re-evaluation of the previously obtained results.
Adding a significant number of nodes to a network may, for example, degrade
the performance of the MAC protocol to a point that it is better to switch
to a different MAC protocol entirely. The reasoning engine must be able to
notice such changes in a reasonable time span and reconfigure the networks
accordingly. A well know and widely used SOFT MAX [22] state exploration
methodology is used to balance between these two confronting objectives.

7



4. Reinforcement learning

Reinforcement learning [23] is a formal mathematical framework in which
an agent manipulates its environment through a series of actions, and in
response to each action, receives a reward value. Reinforcement learning
(RL) emphasises the individual learning through interactions with his envi-
ronment, as opposed to classical machine learning approaches that privilege
learning from a knowledgeable teacher, or on reasoning from a complete
model of the environment [24]. The learner is not told which action to take.
Instead, it must find which actions yield a better reward after trying them.
The most distinguishing features of reinforcement learning are trial-and-error
search and delayed reward.

4.1. RL mathematical fundamentals

RL models a problem as a Markov Decision Process (MDP). Relaying on
it, the agent can perceive a set S = (s1, s2, ..., Sn) of distinct states and has
a set A = a1, a2, ..., an of actions it can perform at each state. The agent
senses the current state St, chooses a current action at and performs it. The
environment responds by returning a reward rt = r(St, at) and by producing
the successor state s′ = P (S, a). Functions r and P (s, a) are not necessarily
known to the agent.

A numerical value, Q(s, a), is assigned to every state/action pair (s, a),
describing the payoff of a given action. The general outlook of the Q function
is known as the Bellman equation:

Q(s, a) = r(s, a) + γ
∑
s′

P (s′|s, a)maxQ(s′, a′) (1)

where r(s, a) represents the immediate reward for executing action a at
state s, while the other argument represents the maximum expected future
reward. Factor γ is known as the discount factor and its purpose is to make
sure that a reward given for the same state/action pair is decreasing over
time.

The goal of RL is to learn an optimal behavioural policy function, π(s, a),
which specifies the probability of selecting action a in a state s, for all states
and actions. An optimal policy is one that maximises the expected total
return. In “one-step” decision tasks, the return is simply the immediate
reward signal. In more complex tasks, the return is defined as the sum of
individual reward signals obtained over the course of behaviour.

8



4.2. Least Squares Policy Iteration - LSPI

LSPI was first introduced by M.G.Lagoudakis and R.Parr [25] as a re-
inforcement learning solution that efficiently copes with large state spaces.
LSPI is a model-free, off-policy method which efficiently uses “sample expe-
riences”, collected from the environment in any manner. The basic idea is
reflected through an approximation of a Q function with a linear combination
of basis functions and their respective weights:

Q(s, a;w) =
∑
k

φj(s, a)ωj (2)

Basis functions represent the relevant problem features (e.g. network’s
duty cycle, link quality, residual energy of nodes etc). Generally, their num-
ber is much smaller than the number of state/action pairs, k << |S||A|. The
ultimate outcome of the algorithm, for the given decision making policy, is
the set of weights: W = (ω1, ω2, ..., ωk).

The mathematical background of the LSPI algorithm, along with a couple
of simple application use cases (bicycle ride, inverted pendulum), can be
found in [26]. Its application to a multi-objective optimisation problem in
heterogeneous wireless networks is given in [27].

5. Framework Construction

This section explains how the aforementioned RL algorithm can be used
as a solution to the problem presented in Section 3. As discussed in 4.1,
reinforcement learning transforms a given problem into a Markov decision
process. Constructing the framework therefore starts with defining the main
properties of the underlying MDP.

5.1. States

Let Si and Mi be the number of services and MAC protocols available
for network i. Since each service can either be active or inactive and every
service combination can be used with every available MAC protocol, there
are a total of Mi2

Si possible configurations for each network i. Assume for
instance that there are two cooperating networks, each providing a set of
two network services (Network 1 - serviceA, serviceB; Network 2 - serviceC,
serviceD). In that case there are 42 = 16 different service combinations {A},
{B}, {C}, . . . , {ABCD}, where each combination represents a single set of
activated network services. It should be noted that the different networks
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are not required to use the same MAC protocol. As further discussed in in
Section 6, Virtual Gateways [29] are used to enable communication between
networks using different MAC protocols. This allows each network to choose
its MAC protocol independently from the MAC protocols used by the other
participating networks. The total number of states to consider can therefore
be defined as follows:

Nstates =
∏

i∈networks

Mi2
Si (3)

Within the scope of this work we assume that each network has already
determined the two most optimal MAC protocols to use prior to engaging in
cooperation. This can, for instance, be achieved by applying the methodology
presented in this paper to the single network case. Moreover, as discussed
in Section 3, there are two services that can be enabled in each network:
Aggregation and Packet sharing. This yields a total of 64 separate states.
The Packet Sharing service can only be activated in both networks at the
same time, which ultimately reduces the number of states down to 32.

5.2. Actions

The underlying MDP allows a decision maker to switch between any two
states, meaning that Nstates actions are available at each state. Taking an
action can produce two distinguishable outcomes:

• The engine stays in the current state

• The engine switches to another state

Preserving a current state (taking an action that will keep the engine
in the same state in two consecutive episodes) is what the algorithm aims
for: discover the optimal state and force an action that will keep it in that
particular state from than on. However, due to the nature of the state
exploring mechanism, this can also happen if the selected state is not the
most optimal one. This will be discussed further in the following sections:

One important property of the designed MDP is that state transition
probability P (s′|s, a) = 1. In other words, Taking an action a in the state s
will always result in state s′.

10



5.3. Basis functions

Basis functions are indicators of the network performance, regarding given
goals. Each network requirement (HIGH RELIABILITY, HIGH NETWORK
LIFETIME, LOW DELAY etc.) can be described with one or several basis
functions (relevant features). To prevent redundancy, basis functions should
be designed to be independent of one another. In combination with the re-
spective weights, they are crucial in the process of calculating the state/action
Q values. Generally, the number of basis functions is much smaller than the
number of state/action values, k << |S||A|.

In our use case we rely on a single basis function per network requirement:

• HIGH RELIABILITY - average packet loss (φ1)

• LONG NETWORK LIFETIME - duty cycle (φ2)

• LOW END-TO-END DELAY - average hop count (φ3)

Information about the average packet loss is obtained by comparing the
number of packets generated in each network to the total number packets
received for each network at the sink node. Hop count and duty cycle infor-
mation is piggy-backed to every data packet and used at the sink to calculate
the average value for each network.

Based on the above requirements, the Q function can be calculated as
follows:

Q(s, a) = φ1ω1 + φ1ω1 + φ1ω1 (4)

5.4. Rewards

A straightforward way of defining the reward function is the relation be-
tween the predefined (required) and the measured network performance. In
this multi-objective framework, the total reward is calculated as a combi-
nation of individual rewards, given for each network requirement (LONG
NETWORK LIFETIME, LOW END-TO-END DELAY, HIGH RELIABIL-
ITY etc.)

It is useful to enforce an upper limit to the contributions of each network
metric. Otherwise, a service combination that significantly ‘overshoots’ one
requirement can receive a higher reward than the ones performing somewhat
worse, but equally accomplishing all the given requirements. The rewarding
function is designed to prevent such behaviour:
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Figure 1: Rewards are calculated using the relative difference between the basis function
values collected at the end of an episode and the desired values. The function also sets
up a horizontal asymptote to an associated reward, thus making sure the reward increases
slowly once the requirements are met

Ri = 1− e−3
φi

φgoal (5)

The function increases slowly once the requirements are met (see Fig-
ure 1). If the requirements do not describe an upper performance limit,
rewards can be unlimited.

5.5. Collecting environmental information

Section 4.2 introduced the idea using information samples, D = (sdi , adi , s
′
di
, rdi|i =

1, 2, ..., L), in order to ultimately form the approximated version of matrices
A and b, crucial in decision policy evaluation. There is a general rule:

E(Â) =
L

|S||A|
AE(b̂) =

L

|S||A|
b (6)

which describes consistency between the approximated and real values
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of matrices A and b, depending on the number of collected samples. The
precision of the algorithm increases with the growing number of samples.

By relying on the memorylessness property of the designed MDP, our al-
gorithm is capable of collecting the information regarding every state/action
pair from the problem space in Nstates exploration episodes. The memory-
less property is satisfied by the fact that the performance of the network
in any given state only depends on the service combination related to that
particular state. If, for example, the network is in state Sx during a spe-
cific episode, the values of the relevant basis functions φ1, φ2, ..., φk, (used for
calculating the reward) collected at the end of that episode, depend solely
on the specific service combination related to state Sx and not on the previ-
ous state or the action taken to get to state Sx. This means that transitions
(si → Sx|i = 0, 1, 2, ..., n), cause by actions a0, a1, ..., an, all result in the same
values of the relevant basis functions φ1, φ1, ..., φk. Consequently Nstates sepa-
rate Q values, Q(s0, ax), Q(s1, ax), ..., Q(sn, ax), can be updated after a single
episode. (Where ax denominates the actions that leads the system from
whatever state into state sx).

Relying on this property, the algorithm is divided into two phases:

• Exploration phase - A constrained random walk is used to collect all the
samples in as many as Nstates episodes. Matrices A and b are populated
and the initial set of weight factors W = (ω1, ω1, , ..., ωk) is calculated.
In combination with the respective basis functions, this set of weights
is used to calculate the initial Q values for every state/action pair.

• Exploitation phase - This phase relies on the adopted SOFTMAX state
exploring technique. It utilises the initial Q values and tries to enforce
the optimal service combination (the optimal state) as much as possible,
while investigating the sub-optimal states in order to detect possible
performance changes.

Information collected during the exploitation phase is used to update an
already existing sample set. The new set of weights is calculated after each
episode and the corresponding Q values are updated.

5.6. Required changes for other use cases

Building up a framework is typically use case specific. States, actions
and rewards are differently interpreted depending on the scenario. However,
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Figure 2: The network architecture used during the experimental tests. Two networks are
co-located, a security network and a temperature monitoring network.

the structure of the underlying MDP and the mathematical apparatus that
governs it remain the same. Within our problem scope, LSPI’s usage can be
expanded to additional fields of research.

We provide two examples:

• A straightforward modification is to apply the same concepts to a use
case in which the operator has control over the settings of a single
network protocol. In this use case, the number of states and actions
would directly depend on the number of configurable properties of the
protocol and the rewards would be calculated depending on the relevant
performance metrics for the given protocol.

• A similar modification can be applied when a single network is under
full control of the operator, but uncontrollable outside influences are
present. A service-wise optimisation of a single network can then be
performed by again selecting the optimal set of services and protocols,
this time by taking into account only the performance of the single
network. Consequently, the number of state/action pairs would depend
on the number of configurable services, plus the number of variable
settings for each service. Rewards would be calculated in accordance
to a network’s application level objectives.
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Figure 3: The node deployment used for the real-life testing setup. We use 26 nodes
deployed on a single floor of the office building in which the testbed is deployed. These
nodes are separated into two networks of 13 nodes each so each network covers the entire
floor. The sink nodes are placed at opposite ends of the building and 6 fixed nodes are
used as virtual gateways.

6. Experimental setup

In this section the experimental setup used to evaluate the reinforcement
learning algorithm is discussed. Figure 2 shows the different nodes which
are deployed in the ‘security’ and the ‘temperature monitoring’ network. All
sensor nodes in both networks periodically generate data packets which are
subsequently forwarded over multiple hops to the nearest available sink. In
addition to the ‘regular’ measurements collected by the nodes (temperature,
movement detection, ...) these packets also contain duty-cycle and hop-count
statistics. The discovery nodes in the networks also periodically broadcast
‘discovery messages’ to allow cooperation between different networks to be
initiated. These ‘discovery messages’ contain, among others, the available
services and the requirements of the network. The sink node of the network
regularly broadcast ‘sink announcement’ messages that are used by the other
nodes to discover the route to the nearest (available) sink.

The sink node is connected to the ‘network controller’ over a serial line.
The network manager processes the packets received from the sink to cal-
culate network statistics. Once two networks have decided to cooperate, a
connection between the network controllers is created over a wired back-end
to allow ‘foreign’ data packets to be forwarded to the correct network man-
ager and to allow statistics to be exchanged. The ‘RL engine’ runs on one of
the network manager nodes and calculates the configurations of the networks
based on the gathered performance statistics and the services and require-
ments announced in the ‘discovery messages’. Once a new configuration has
been calculated, the network manager running the RL engine sends the con-
figuration to the attached sink node which subsequently distributes the new
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configuration in the local network. Upon reception of a new configuration,
the discovery of the local network forwards the configuration to the discovery
node of the ‘foreign’ network which subsequently distributes the configura-
tion in its own network. Afterwards, an activation message is distributed in
the same manner to both networks to instruct the nodes to apply the new
configuration.

The sensor node software was developed for the T-mote SKY [17] platform
using the IDRA framework [28] and the MultiMAC [29] network stack. The
MultiMAC network stack is a replacement network stack for TinyOS 2.1.0
that allows multiple MAC protocols to be used simultaneously on a single
node. This allows normal sensor nodes to be configured as so-called ‘Virtual
Gateways’ which enable communication between nodes using different MAC
protocols. Since the requirements of the ‘security’ and ‘temperature monitor-
ing’ network may cause these networks to use different MAC protocols, the
presence of Virtual Gateway nodes is essential to allow for cooperation be-
tween these networks. The IDRA-framework allows for the easy development
of sensor network applications and protocols and was therefore used on top of
the MultiMAC network stack to develop the applications and reconfiguration
mechanisms needed for our tests.

All tests were performed on the w-iLab.t [30] wireless testbed, which
contains several Tmote Sky sensor nodes deployed in an office building. The
deployment used is shown on Figure 3.

It should be noted that the performance of the networks depends on which
and how many sensor nodes are used as Virtual Gateways. Determining the
ideal location of these Virtual gateway nodes however is out of the scope of
this work and as a result a ‘fixed’ set of gateway nodes was used for each
configuration.

7. Results and discussions

The performance of the reasoning engine and the cooperation method-
ology is tested using two scenarios: a single-hop scenario (whereby nodes
use full transmit power) and a multihop scenario (obtained by reducing the
transmit power). Results are further divided into two subsections:

• Results regarding the exploration phase of the algorithm

• Results regarding the exploitation phase of the algorithm
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7.1. Single-hop networks scenario

When using full transmit power, the nodes in both networks can reach
their sinks in one hop. Due to optimisations in the used RPL-based routing
protocol, packets are sometimes routed using an intermediate node to avoid
unreliable links. To obtain baseline performance indicators, the performance
of the individual networks was first evaluated without cooperation under the
following conditions.

• “Stand alone” case. The performance is measured for each network
individually, without the other network active. As a result there is no
interference between the two networks.

• “Interfered” or “conflicted” case. Networks are co-located but ignore
each other entirely, resulting in negative protocol interactions.

Figure 4 shows the average duty cycle and reliability measured in both
networks for both the “Stand alone” and “Interfered” case. Results are
classified depending on the MAC protocol used during the tests.

A clear performance deterioration for both networks caused by interfer-
ence, can be observed. The duty cycle increases by at most 20% while the reli-
ability decreases by up to 18%. Only the average number of hops (1.12 for the
temperature network and 1.45 for the security network) remains unchanged.
Applying the proposed cooperation methodology is expected to shift perfor-
mances back towards the results obtained during the “stand alone” case.

7.1.1. Discussion on the exploration phase of the algorithm

Both exploration and exploitation phases are performed using 5 minute
long episodes. Each node generates a packet once every ten seconds, resulting
in six packets per minute. Information regarding the average packet loss, duty
cycle and number of hops is retrieved during each episode. The performance
of the different states is calculated according to Section 5 and shown in
Figure 5 and Figure 6.

The best performing service set is the one that enables the AGGRE-
GATION in both networks, in conjunction with the TDMA and LPL MAC
protocols in the temperature monitoring and security network, respectively.
While the choice of MAC protocols was expected, due to the network life-
time requirement, the influence of other network services was more difficult
to predict. This is true for both the single-hop and the multihop use cases.
The obtained results illustrate the following:
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Figure 4: Network performance of the (a) Security network and (b) temperature monitor-
ing network, in terms of a duty cycle and reliability metrics, in situations with and without
influences of co-located devices. Tests are performed using different MAC protocols

• Although TDMA MAC protocol is the optimal MAC protocol in the
“stand alone” case, this is no longer true when a second co-located
network, also using the TDMA protocol, is present. In that case, the
optimal performance is achieved by enabling TDMA in the tempera-
ture monitoring network and the LPL MAC protocol in the security
network.

• In general, AGGREGATION and PACKET SHARING services, do
not significantly impact the overall network performance in a single-
hop network scenario. This is understandable, since the great majority
of the nodes are one hop away from the sink, therefore neither AG-
GREGATION nor PACKET SHARING is frequently used.

• The obtained reliability for the optimal set is around 99 percent, com-
pared to 93 percent recorded before the cooperation was activated.

• The duty cycle of the security network, when using the optimal service
combination, decreased for 12.5 percent (80% down to 70%, while using
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Figure 5: Graphical illustration of the results, obtained during an exploration phase.
Service combinations are evaluated using basis functions and rewards explained in Section 5

LPL MAC protocol). The duty cycle of the temperature monitoring
network increases from 48%, as noted prior to negotiation up to 54%
( 12 percent), while using TDMA. This results in a fairer distribution
of the network lifetime. In addition, the same configuration results in a
6 percent (from 93 to 99 percent) higher reliability for both networks.

Figure 7 illustrates the performance improvement when applying our co-
operation methodology. Even for single-hop networks, taking into account
the presence of co-located networks has a significant impact on the perfor-
mance. Trying to predict which combination of settings and protocols will
perform best can be difficult at best, especially when trade-offs have to be
made between multiple performance criteria. Our methodology is capable of
objectively making this trade-off even in complex situations.

7.1.2. Discussion on the exploitation phase of the algorithm

This section evaluates how efficient our methodology copes with networks
changes. The efficiency of the exploitation phase is evaluated based on two
criteria:

• The algorithm’s ability to enforce the optimal service set.
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Figure 6: Tabular presentation of the exploration phase results

• The algorithms ability to readjust its decisions when drastic perfor-
mance changes occur.

Figure 8 illustrates the algorithm’s behaviour with the temperature τ fac-
tor set to two distinguish intervals. As expected, for the higher values of the
temperature factor, SOFTMAX acts in a uniform way, treating all decisions
as equiprobable. Because of this, the reasoning engine often chooses decisions
that result in a transfer to sub-optimal states. Lower values of the τ factor
clearly results in enforcement of the highest regarded service combinations,
keeping the relevant networking parameters (duty cycle, reliability ...) on a
highest level and stable.

The algorithm’s ability to adapt to sudden changes is tested by suddenly
increasing the duty cycle of the TDMA protocol in the temperature monitor-
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Figure 7: Comparison of the network performances before and after the cooperation is
applied.

ing network. This change is considered drastic, since the corresponding value
never surpassed 60% during the experiments. Figure 9 shows the obtained
results.

When τ < 1, the reasoning engine manages to maintain the optimal
service set for more than 95 percent of time. For the same values of τ , it takes
approximately 16 exploitation episodes to completely re-adjust its decision
making policy and start enforcing a newly determined highest performing
service set. Results are significantly worse, in both categories, when τ is set
to values higher than 2. As such, we recommend to use low values for τ as
long as the current set of services fulfils the application requirements, but to
increase this value whenever the application requirements are no longer met.

7.2. Multihop network scenario

To create a multihop network, the nodes’ transmission power was reduced,
resulting in a change of the average number of hops to around 1.45 in the
temperature monitoring network and 2.1 in the security network. As with
the previous tests, the duration of the learning episodes was set to 5 minutes
and the packet generation rate was set to 6 packets per minute. Figure 10
shows the values recorded for the networks’ duty cycle and reliability while
these networks cause interference to one another.

7.2.1. Discussion on the exploration phase of the algorithm

Figure 11 illustrates the outcome of the algorithm’s exploration phase.
Numerical values of all the relevant network metrics, over the entire explo-
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ration phase, are given on Figure 12.
In the case of multihop networks, the exploration phase revealed the

following:

• PACKET SHARING has a more significant influence on the overall
network performance than in the single-hop network scenario. This is
clearly visible on figure 11, for the service combinations marked from
16 to 31. This behaviour is expected in a multihop network scenario,
since the PACKET SHARING service allows the path to the sink to
be considerable shortened. (see Figure 12)

• Enabling the PACKET SHARING in combination with the LPL-MAC
protocol, results in a significant decrease of the end-to-end delay. This
is clear when the performance for service combinations 19, 23 and 27
are regarded. In network setups where a long network lifetime is not a
priority, these states would have a higher priority.

• Having an additional performance factor - PACKET SHARING, re-
sults in a more obvious difference between the highest regarded service
combinations (compare graphs 5 and 11). Similar outcome can be
expected after adding additional basis functions

Figure 13 shows the performance improvement of using our cooperation
methodology in a multihop network. Except for a slight increase of the duty
cycle in both networks, a drastic improvement is recorded for the other rele-
vant metrics compared to results obtained prior to cooperation. The average
number of hops is reduced in both networks (20 percent in the security net-
work, 5 percent in the temperature monitoring network), which should result
in a lower end-to-end delay. The reduced hop count also increased the relia-
bility of the security network by almost 25 percent. It should be noted that
the duty cycle of the network depends on the specific set of virtual gateway
nodes used. The duty cycle of the networks may therefore be further reduced
by using an appropriate gateway selection mechanism. This is however out
of the scope of this work.

7.2.2. Discussion on the exploitation phase of the algorithm

The capabilities of the algorithm to react to network changes was evalu-
ated, similar to Section 7.1.2. Similar conclusion can be made and as such
these results are omitted.
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8. Future work

Future work will mainly focus on finding ways to improve the algorithm’s
efficiency during both phases.

Searching through a problem space can be faster with a help of prediction
techniques. This would enable a reasoning engine to predict the performance
of several service combinations without actually investigating them. In the
use case presented in this paper for example, this would allow the reasoning
engine to discard states that involve a combination of LPL and CSMA MAC
protocols, after observing just a couple of them. This would reduce the
number of learning episodes to almost 1/4 of the entire space.

Similar techniques can be included in the SOFTMAX approach. Once
a network disturbance is detected, the engine should be able to detect the
cause and at least try to approximate its influence on other service combina-
tions, without actually investigating them. The reasoning engine should, for
instance, be able to detect drastic changes in the duty cycle for the TDMA
MAC protocol, approximate the effect of this change on the reward for other
configurations using the TDMA protocol and adjust the decision making
policy accordingly.

Research will also expand into other directions such as automatically op-
timising the performance of a single network based on a set of configurable
parameters. Similar applications can be found in the literature. Our fu-
ture work will therefore serve as an extension to ongoing research, which is
expected to yield some new ways of application.

9. Conclusions

Due to the increasing number of network protocols and services for wire-
less sensor networks, developers have to make an optimal selection in terms
of preferred configuration of the network. However, as this paper has shown,
choosing the optimal set of protocols and services is not straightforward. Our
research proposes a service-wise protocol optimisation technique for multi-
objective, co-located and complex heterogeneous networks. Network services,
provided by each sub-net, are used as arguments in the cooperation process.
Results show that our reasoning engine is capable of discovering service com-
binations that improve overall performance for all the networks participating
in the cooperation. Diverging high-level objectives and network capabilities
are taken into account during the process. The efficiency of the algorithm is
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shown in both single-hop and multihop network scenarios. The results are
encouraging, especially for a multihop network scenario. Our algorithm was
able to discover a service configuration that improved an overall reliability
up to 25 percent, by accepting a small increase in both networks duty cycles.

To cope with dynamic environments, a heterogeneous network requires
continuous monitoring. Our reasoning engine utilises the SOFTMAX algo-
rithm in order to notice performance fluctuations and adapt to it. During
the exploitation phase of the optimisation process, our implementation bal-
ances between maintaining the optimal service set and probing sub-optimal
states in order to notice possible performance changes. Newly gathered in-
formation is used to update decision making rules. In the case of a network
disturbance, the algorithm does not require a re-initiation. With the proper
choice of a single SOFTMAX argument, (temperature factor - τ), the algo-
rithm will efficiently reshape a decision making policy. By manipulating the
same argument, the algorithm’s ability to maintain an optimal service set
can be increased to an arbitrarily high level.

The authors strongly believe that the problem of interfering, co-located
networks will only increase. As such, innovative cross-layer and cross-network
solutions that take these interactions into account will be of a great impor-
tance to a successful development of efficient, next-generation networks in
heterogeneous environments.

10. Acknowledgements

This research is funded by the FWO-Flanders through a FWO post-
doctoral research grant for Eli De Poorter and through an Aspirant grant
for Daniel van den Akker

11. References

[1] Wakamiya, N.; Arakawa, S.; Murata, M.,”Self-Organization Based Net-
work Architecture for New Generation Networks”, 2009 First Interna-
tional Conference on Emerging Network Intelligence, pp.61-68, 11-16 Oct.
2009

[2] E. De Poorter, B. Latre, I. Moerman and P. Demeester, ”Symbiotic net-
works: Towards a new level of cooperation between wireless networks”,
Published in Special Issue of the Wireless Personal Communications Jour-
nal, Springer Netherlands, 45(4):479-495, June 2008

24



[3] J.M. Lanza-Gutierrez, J.A. Gomez-Pulido, M.A. Vega-Rodriguez, J.M.
Sanchez-Perez, ”Multi-objective evolutionary algorithms for energy-
efficiency in heterogeneous wireless sensor networks”, SAS 2012 : IEEE
Sensors Applications Symposium, Feb 7, 2012 - Feb 9, 2012, Brescia, Italy

[4] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap and T Meyarivan, A Fast
Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Op-
timization: NSGA-II, Parallel Problem Solving from Nature PPSN VI,
2000.

[5] E. Zitzler, M. Laumanns and L. Thiele, SPEA2: Improving the strength
Pareto evolutionary algorithm, EUROGEN 2001.

[6] Suat zdemir Baraa A. Attea nder A. Khalil, ”Multi-Objective Evolu-
tionary Algorithm Based on Decomposition for Energy Efcient Coverage
in Wireless Sensor Networks”,

[7] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen, ”Evolutionary algo-
rithms for solving multi-objective problems”, (2nd ed.). Berlin: Springer,
(2007).

[8] V. C. Flvio Martins, G. Eduardo Carrano, Elizabeth F. Wanner, H. Ri-
cardo, C. Takahashi, Geraldo R. Mateus, ”A Hybrid Multi-objective Evo-
lutionary Approach for Improving the Performance of Wireless Sensor
Networks”, IEEE SENSORS JOURNAL, VOL. 11, NO. 3, MARCH 2011

[9] http://www.me.utexas.edu/ bard/LP/LP 20Handouts/CPLEX 20Tuto-
rial 20Handout.pdf

[10] P. Wang, T. Wang, ”Adaptive Routing for Sensor Networks using Re-
inforcement Learning”, CIT ’06 Proceedings of the Sixth IEEE Inter-
national Conference on Computer and Information Technology, October
22-25, 2006 Charlotte Convention Center Charlotte, NC

[11] Z. Ye and A. A. Abouzeid, ”Layered Sequential Decision Policies for
Cross-layer Design of Multihop Wireless Networks”, Information Theory
and Applications Workshop (ITA’10), San Diego, CA, Feb 2010.

[12] Minsoo Lee, Dan Marconett, Xiaohui Ye, S. Yoo ,”Cognitive Network
Management with Reinforcement Learning for Wireless Mesh Networks”,

25



IP Operations and Management (2007), pp. 168-179, doi:10.1007/978-3-
540-75853-2-15

[13] Christopher J.C.H. Watkins, Peter Dayan, Technical Note Q-Learning”,
Machine Learning, 8, 279-292 (1992)

[14] Ad hoc on-demand distance vector (AODV) routing. Networking group
request for comments (rfc): 3561, http://tools.ietf.org/html/rfc3561
(July2003)

[15] Dimitri P. Bertsekas, ” Approximate Policy Iteration: A Survey and
Some New Methods”, Journal of Control Theory and Applications, MIT
April 2010, Vol.9, pp.310-335, Report LIDS - 2833

[16] Theodore J. Perkins, Doina Precup, ” A Convergent Form of Ap-
proximate Policy Iteration”, Advance in neural Information Processing
Systems 15, NIPS 2002, Decembre 9-14, Vancouver, British Columbia,
Canada

[17] url: www.eecs.harvard.edu/tmote-sky-datasheet.pdf

[18] D.D. Falconer, F. Adachi, B. Gudmundson, ”Time division multiple
access methods for wireless personal communications”, IEEE Communi-
cations Magazine. 02/1995; DOI:10.1109/35.339881

[19] R. Jurdak, P. Baldi, C.V. Lopes, ”Adaptive Low Power Listening for
Wireless Sensor Networks”, Mobile Computing, IEEE Transactions on
(Volume:6 , Issue: 8 ), Aug. 2007, 10.1109/TMC.2007.1037

[20] L.KleinrockandF. A.Tobagi, ”Packetswitching in radio channels: carrier
sense multiple-access modes and their throughput-delay characteristics”,
IEEE Transactions on Communications, vol.23,pp.14001416,1975.

[21] Eli De Poorter, Stefan Bouckaert, Ingrid Moerman, Piet Demeester,
”Non-intrusive aggregation in wireless sensor networks”, Ad Hoc Net-
works, Volume 9, Issue 3, May 2011, Pages 324340

[22] Richard S. Sutton, Andrew G. Barto, ”Reinforcement Learning:An In-
troduction”, MIT Press, Cambridge, MA, 1998, A Bradford Book

[23] L. P. Kaelblign, M. L. Littman, A. W.Moore,“Reinforcement learning:
A Survey”, Journal of Artificial Intelligence Research 4 (1996) 237-285

26



[24] T. G. Dietterich, and O. Langley, (2007) “Machine Learning for Cogni-
tive Networks:Technology Assessment and Research Challenges in Cog-
nitive Networks: Towards Self Aware Networks”, John Wiley and Sons,
Ltd, Chichester,UK. doi: 10.1002/9780470515143.ch5

[25] M. Lagoudakis and R. Parr. “Model-free least-squares policy iteration”.
In Proc. of NIPS, 2001.

[26] Michail G. Lagoudakis and Ronald Parr, ”Least-Squares Policy Itera-
tion”, Journal of Machine Learning Research, 4, 2003, pp. 1107-1149.

[27] Milos Rovcanin, Eli De Poorter, Ingrin Moerman, Piet Demeester,”A re-
inforcement learning based solution for cognitive network cooperation be-
tween co-located, heterogeneous wireless sensor networks”, ADHoc jour-
nal

[28] Eli De Poorter, Evy Troubleyn, Ingrid Moerman, Piet Demeester,
“IDRA: A flexible system architecture for next generation wireless sensor
networks”, Wireless Networks, 2011, Vol. 17 (6), pp. 1423-1440

[29] Daniel van den Akker, Chris Blondia, ”Virtual gateways: enabling con-
nectivity between MAC heterogeneous sensor networks”, International
Journal of Sensor Networks, Vol. 14, No. 3, pp. 133-143, Inderscience,
2013.

[30] Lieven Tytgat, Bart Jooris, Pieter De Mil, Benot Latr, In-
grid Moerman and Piet Demeester, ”UGentWiLab, a real-life
wireless sensor testbed with environment emulation”, 6th Euro-
pean conference on Wireless Sensor Networks (EWSN 2009), url:
https://biblio.ugent.be/publication/676545

[31] Daniel van den Akker, Chris Blondia, ”On the Effects of Interference
between Heterogeneous Sensor Network MAC Protocols”, IEEE Interna-
tional Conference on Mobile Ad-Hoc and Sensor Systems (IEEE MASS),
Vol. 0, pp. 560-569, IEEE Computer Society, 2011

27



Figure 8: Behaviour of the algorithm, in terms of the networks’ duty cycles, during the
exploitation phase for: (a) τ < 1 and (b) τ > 2
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Figure 9: Illustration of the algorithm’s ability to: (a) retain the optimal service combi-
nation, in terms of the percentage of time the network was optimally configured and (b)
adjust to a network conditions change, in terms of number of episodes needed to fully
reshape the decision making policy. Arrows show a tendency with which statistics are
changed when (a) τ decreases below 1 or (b) τ increases above 2
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Figure 10: Values for the performance metrics: duty cycle and reliability, for (a) Secu-
rity network and (b) Temperature monitoring network, tested while using different MAC
protocols
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Figure 11: Values for the performance metrics: duty cycle and reliability for: (a) Secu-
rity network and (b) Temperature monitoring network, tested while using different MAC
protocols
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Figure 12: Average duty cycles, number of hops and reliability for both networks, recorded
during the exploration phase
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Figure 13: Comparison of the matching network parameters in a multihop network use
cases, before and after the cooperation is applied
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