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Abstract
Weuse the formalismof tensor network states to investigate the relation between static correlation
functions in the ground state of local quantummany-bodyHamiltonians and the dispersion relations
of the corresponding low-energy excitations. In particular, we show that thematrix product state
transfermatrix (MPS-TM)—a central object in the computation of static correlation functions—
provides important information about the location andmagnitude of theminima of the low-energy
dispersion relation(s), andwe present supporting numerical data for one-dimensional lattice and
continuummodels as well as two-dimensional latticemodels on a cylinder.We elaborate on the
peculiar structure of theMPS-TM’s eigenspectrum and give several arguments for the close relation
between the structure of the low-energy spectrumof the system and the formof the static correlation
functions. Finally, we discuss how theMPS-TMconnects to the exact quantum transfermatrix of the
model at zero temperature.We present a renormalization group argument for obtaining finite bond
dimension approximations of theMPS, which allows one to reinterpret variationalMPS techniques
(such as the densitymatrix renormalization group) as an application ofWilson’s numerical
renormalization group along the virtual (imaginary time) dimension of the system.

1. Introduction

Determining the vacuumof an interacting field theory or the ground state of a strongly interacting quantum
systemdescribed by a local translational invariantHamiltonian is one of themost fundamental and challenging
tasks in quantummany-body physics. Once obtained—possibly in some variational way—howmuch
information about theHamiltonian is then encodedwithin the ground state?Wewill demonstrate that it is
possible to extractmany low-energy features of theHamiltonian by simply having access to the ground state.
This is possible due to theHamiltonian being a sumof (quasi-) local terms; this locality is the key to uncovering
themysteries of quantummany-body systems, such as the presence of a finite group velocity in quantum lattice
systems, known as the Lieb-Robinson bound [1, 2], and the relation between the spectral gap and correlation
length [3]. The latter result connects a single characteristic of the static correlation functions of the ground state
to one particular excitation energy.

This work continues along this line by investigating towhat extent information about the full dispersion
relations of the different elementary excitations of themodel is encodedwithin the ground state and its
correlations. Throughout the paperwe assume translation-invariantHamiltonians, such that excited states can
always be characterized bymomentum. Any statement regarding the spectrumof aHamiltonian is to be
interpreted up to an overall energy scaling and a constant energy shift. The shift is typically chosen such that the
ground-state energy =E 00 . The overall energy scale is represented by a characteristic velocity (e.g., the Lieb-
Robinson velocity related to the normof theHamiltonian terms, or some spin-wave velocity) in the system.
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In theory, the full dispersion relation can be reproduced from the ground state if themap between a local
Hamiltonian and its corresponding ground state is bijective. For strictly n-localHamiltonians (i.e.,
Hamiltonians forwhich every term acts only on afinite number n of neighboring sites), such a bijective relation
is generically obtained. There the n-site reduced-densitymatrices (RDMs) of ground states represent extreme
points in the convex set of all possible n-site RDMs. TheHamiltonian can then be represented as a hyperplane in
the space of suchRDMs, and the energy will necessarily beminimized for an extreme point in this set. Each of
these points uniquely determines an n-local parentHamiltonian via the tangent space to the boundary at this
point, if the boundary is smooth there [4]. This argument is, however, of very limited practical use as it is
computationally almost infeasible to characterize this convex set [5]. Also, the uniqueness is only obtained by
restricting to a class of n-localHamiltonians, and theremight exist other +n k( )-local (with ⩾k 1) or quasi
localHamiltonians forwhich this is the exact ground state. One of themain goals of this paper is thus to identify
which features of all thoseHamiltonians can be captured in the ground state and its correlations.

We follow amore practical approach based on local information containedwithin the ground state, which is
naturally accessible through a tensor network representation of the same. A central local object arising in tensor
network simulations is the tensor network transfermatrix, which is defined in section 2. Indeed, themain
motivation for this work originates fromnumerical results obtained from tensor network simulations of the
ground states of strictly local translation-invariantHamiltonians in the thermodynamic limit. There it is
observed that the spectrumof the transfermatrix exhibits a very peculiar structure, fromwhich certain
information about the low-energy excitation spectrumof the underlyingHamiltonian can be extracted. These
results are presented and discussed in section 3 for a set of prototypical quantummodels on lattices in one and
two dimensions, as well as (1+1)-dimensional field theories.

We provide several arguments for explaining these observations in section 4. There, we argue how the
structure of the eigenvalue spectrumof the transfermatrix allows one to reproduce the expected formof
correlation functions in gapped quantum states, andwe use the single-mode approximation to relate these
eigenvalues to excited states of theHamiltonian.We also show the converse–that the excited states of the
Hamiltonian affect the static correlations functions, either by employing arguments from relativistic theories or
by usingmomentumfiltering to refine the celebrated proof ofHastings in [3] for the relation between the gap
and the correlation length.

In section 5we follow an alternative approach by directly connecting the transfermatrix in the context of
tensor network states to the exact quantum transfermatrix (QTM) [6, 7] at zero temperature, which appears in
path-integral formulations of partition functions or ground states of quantum systems. Tensor network
methods for studying such transfermatrices have been successful since the invention of the transfermatrix
renormalization group (TMRG)method of simulating classicalmodels in two [8, 9] and higher dimensions
[10]. Invoking a quantum-to-classicalmapping, thismethod has been generalized and used to simulate one-
dimensional quantummodels atfinite temperatures [11–13], and recently to also include real-time evolution
[14, 15]. In thesemethods, the object that is approximated by a tensor network is the (quantum) transfermatrix
itself. In this work however, we investigate the transfermatrix at zero temperature generated by a tensor network
approximation of the ground state.We also explain how the renormalization group (RG) allows one to interpret
thematrix product state transfermatrix (MPS-TM) as a compressed version of theQTM.More specifically, in
section 5.3we demonstrate howWilson’s numerical renormalization group (NRG) for impurity systems—or its
recent reformulation using themulti-scale entanglement renormalization ansatz (MERA) [16–20]–allows one
to build amatrix product state (MPS) approximation of the ground state withfinite bond dimensionD from the
QTM.This construction yields a novel connection between tensor network states andRGmethods.

2. Tensor network transfermatrices

In this sectionwe define the regular andmixed transfermatrix (TM) forMPSs [21–24] on one-dimensional
lattice systems and continuousmatrix product states (cMPS) [25–27] on (1+1)-dimensional field theories,
respectively. In the context of higher-dimensional lattice systems described by projected entangled pair states
(PEPS) [23, 28], we consider two-dimensional lattice systems on cylinders. Therewe obtain an effective one-
dimensional lattice systemby blocking sites on rings around the cylinder, as described in section 2.1.

Aswe are interested in the bulk properties of quantum systems, wewill generally work in the
thermodynamic limit, where for gapped one-dimensional quantum lattice systems, a good approximation of the
ground state can be obtained by using a uniformMPS ansatz withfinite bond dimension,D
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where As j is a set of dmatrices, ∈ ×D D, containing all variational parameters defining the state, sj labels states
within the d-dimensional localHilbert space on each site, and j labels sites on the lattice. vL and vR are boundary
vectors that have no effect on bulk properties. An optimalMPS representation of the ground state can readily be
calculated using variational uniformMPS techniques [29, 30]. For ground states of higher-dimensional lattice
systems, similar techniques can be used for uniformPEPS [31].

Equivalently, ground states of (1+1)-dimensional field theories in the thermodynamic limit can bewell
approximated by uniform cMPS, where, for example, a one-flavor bosonic cMPS offinite bond dimensionD is
given by

∫ψ ψ Ω= ⨂ + ⨂
−∞

∞
 v vQ R x Q x R x x[ , ] exp d ( ) ( ) ˆ ( ) , (2)L R

† †⎜ ⎟⎛
⎝ ⎡⎣ ⎤⎦⎞

⎠
where again,matrices ∈ ×Q x R x( ), ( ) D D contain all variational parameters defining the state. Here, ψ xˆ ( )†

are bosonic creation operators,  is the path-ordering operator, Ω∣ 〉 is the vacuumof thefield theory, and vL and
vR are again boundary vectors having no effect on the bulk properties. To obtain cMPS ground-state
approximations, the algorithmof [30] can be adapted accordingly.

2.1. Regular transfermatrix
It is well known (and reiterated in section 4.1) that static correlation functionswith respect to a uniformMPS
ground state are obtained using the regularMPS transfermatrix (MPS-TM) [23], which is given by

 ∑= ⨂A A¯ , (3)A

s

s s

with Ās being the complex conjugate ofAs. To simplify notation, wewill generally omit the subscriptA denoting
theMPSmatrix if it is not necessary.

For continuum results we define the (generator of a) uniform cMPS-TM

 = ⨂ + ⨂ + ⨂ Q Q R R¯ ¯ , (4)Q R,

where again Q̄ and R̄ denote the complex conjugates ofQ andR, respectively.Wewill again omit subscripts
whenever they are not necessary. The relation to the lattice TM is given by

 
ϵ

=
ϵ→
lim

1
log (5)

0

with ϵ being the lattice spacing of an underlying lattice discretization and  being the TMof the corresponding
MPS defined on the discretized lattice.

Finally, for two-dimensional systems studied using PEPS, wework in the setting of infinitely long cylinders.
By blocking the PEPS tensors,As

udlr, on a ring along the (finite) transversal y-direction of the cylinder, we can
then interpret this contracted object as a uniformMPS along the (infinite) longitudinal x-direction of the
cylinder, andwe define the longitudinal TMas in (3). For a square lattice geometry, thisMPS has bond
dimension DNy and physical dimension d Ny , whereNy is the number of sites along the circumference of the
cylinder. Equivalently, an elementary TM  can be constructed from the individual PEPS tensors,As

udlr, and the
TMalong a ring is obtained by contracting these elementary TMs along a ring. A graphical representation of the
obtainedTM is given infigure 1.

2.2. Symmetries and themixed transfermatrix
If a uniformMPSdefined by a set ofmatrices andAs

1 is invariant under a local unitary symmetry operation u, one
can show [32] that

Figure 1. (a)Graphical representation of the theMPSmatrix,As
lr, and the regularMPS-TM, A, constructed from it. (b)Graphical

representation of the PEPS tensorsAs
udlr, the elementary PEPS-TM , and the quasi-one-dimensional TM  constructed by blocking

 on a ring around the cylinder in the case of a square lattice.
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whereA2
s defines the transformed state. Here,V is a unitary gauge transformation on the auxiliary space and θei is

the dominant eigenvaluewithmagnitude one of themixed TM

 ∑= ⨂A A¯ . (7)A
A

s

s s
2 11

2

In fact, theMPS is invariant under the local symmetry, u, if and only if the spectral radius of themixed TM
ρ ( )A

A
1
2 is one (i.e., the fidelity per lattice site is one). In the case of higher-dimensional lattice systems, a relation

similar to (6) holds for PEPS [32].
For phases with a spontaneously broken symmetry, the ground state is degenerate and the variationally best

ground-state approximations within themanifold ofMPS of bond dimensionD areminimally entangled states
that exhibitmaximal symmetry, breaking. Such states can be transformed into each other by applying the
symmetry the operations of the broken symmetry.

In the ground state of a one-dimensional quantum system, continuous symmetries for which the order
parameter does not commutewith theHamiltonian cannot be spontaneously broken [33, 34]. Nevertheless,
close to orwithin a gapless phase with a continuous symmetry, it is sometimes energetically favorable for a
variational cMPS approximation of the ground state to break this symmetry and to approximate an excited state
with very small excitation energy andmuch smaller entanglement. This pseudo-symmetry-breaking is purely an
effect of the finite bond dimension and also gives rise to a pseudo-order parameter [35, 36]. The symmetry is
restored in the limit → ∞D .

In a phase with broken symmetry on a lattice, letAs
1 andA

s
2 beMPS approximations of two ground states

with the same variational energy but different order parameters andmaximally broken symmetry. The
orthogonality of these states requires that the fidelity per lattice sitemust be strictly smaller than one (i.e., the
spectral radius of themixed TM, ρ <( ) 1A

A
1
2 ).

Equivalently, for continuum systemswe define the (generator of the)mixed cMPS-TMas

 = ⨂ + ⨂ + ⨂ Q Q R R¯ ¯ (8)Q R
Q R

,
,

2 1 2 11 1
2 2

where Q R,1 1 and Q R,2 2 are two different cMPS representations. Similar to the lattice case, if Q R,1 1 and Q R,2 2

describe two equally good ground-state approximations with the same variational energy, butwith different
order parameters andmaximum symmetry-breaking, the spectrum Q R

Q R
,
,

1 1
2 2 has strictly negative real parts.

The degeneracy of the ground state in phases with broken symmetries gives rise to topologically nontrivial
excitations (kinks or domainwalls), which typically correspond to the elementary excitations of themodel. The
mixed cMPS-TMof type (7) or (8) of these symmetry broken ground states plays a crucial role in obtaining a
variational approximation for such excitations, whereas the regular cMPS-TMof type (3) or (4) is the central
object for topologically trivial excitations [36, 37].

3.Numerical results

This section illustrates and discusses typical spectra of the regular andmixed cMPS-TMof obtained cMPS
ground-state approximations and compares them to low-energy excitations for several quantummodels of
interest. For the eigenvalues of the cMPS-TM,wewrite

λ = ε ϕ− +e (9)j
ij j

where ε λ= − ∣ ∣logj j and ϕ λ= argj j is the complex argument. This form already suggests that the ε j will be

related to some characteristic energies of themodel, asmotivated throughout the remainder of this paper.
Low-lying variational excitation energies for one-dimensionalmodels are obtained bymeans of both

topologically trivial and nontrivial uniform cMPS ansatzes [36, 37] and—if applicable—they are shown together
with exact solutions.

For two-dimensionalmodels we exploit the observed relation between eigenvalues of the TMand the
location andmagnitude of energy-dispersion relations to give afirst estimate of the dispersion of elementary
excitations.

3.1.One-dimensional latticemodels
Wewillfirst focus on three prototypical one-dimensional latticemodels.We start with the spin-1/2 XYmodel in
an externalmagnetic field
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∑ γ γ= − + + − ++ +H S S S S gS(1 ) (1 ) , (10)
j

j
x

j
x

j
y

j
y

j
z

XY 1 1

which can be solved exactly [38–40].Here, αS j denote spin-1/2 operators defined on site j.We consider the
gapped ferromagnetic regime, γ< <0 1and < <g0 1, where the system is in a symmetry-broken phase and
the ground state is twofold degenerate with local order parameter = 〈 〉m Sx j

x . Here the elementary excitations
are domain-wall-like and therefore well approximated by a topologically nontrivialMPS ansatz. Specifically, we
consider the incommensurate phase γ + <g 12 2 , where correlations oscillate with arbitrary wave vectors.

As a second examplewe consider the spin-1/2 XXZmodel in an externalmagnetic field

∑ Δ= − + + ++ + +H S S S S S S hS . (11)
j

j
x

j
x

j
y

j
y

j
z

j
z

j
z

XXZ 1 1 1

Thismodel is solvable as well, and the ground state and elementary excitations in the thermodynamic limit can
be obtained via Bethe ansatz [41–43].Here we consider the antiferromagnetic gapless incommensurate phase
specified by Δ− < <1 0 and Δ< ∣ ∣ < −h0 1 , where there are gapless excitations atmultiples of the Fermi
momentum π= −k m( )zF

1

2
with = 〈 〉m Sz j

z as the ground-statemagnetization. In this phase there is no
spontaneous symmetry-breaking, but due to criticality the finiteDMPS ground-state approximation breaks the
continuous rotational symmetry in the XYplane (see section 2.2). Thismakes it possible to use a topologically
nontrivial variationalMPS ansatz for the excitations.

As a third examplewe study the (extended) Fermi-Hubbardmodel

∑

∑ μ

= − − +

+ − − −

σ
σ σ σ σ+ + +

↑ ↓

H c c c c Vn n

U n n n
1

2

1

2
, (12)

j

j j j j j j

j

j j j

HUB
†

1 1
†

1

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where σ σc c,† denote the creation and annihilation operators of fermionswith spin σ, =σ σ σn c c† and
= +↑ ↓n n n . For ≠V 0, thismodel is non integrable.We consider the repulsive regimewhere >U V, 0, away

fromhalf filling (μ ≠ 0), which again corresponds to a gapless incommensurate phase. There is no spontaneous
symmetry-breaking in this phase andwe consider topologically trivial excitations only.

The last example studied is theKondo latticemodel (KLM) [44]

∑ μ= − − − +
σ

σ σ σ σ+ + S SH c c c c n J · (13)
j

j j j j j j
c

j
d

KLM
†

1 1
†

where σ σc c,† denote the creation and annihilation operators of conduction electrons (c) with spin σ,

= +↑ ↑ ↓ ↓n c c c c† † ; S j
c and S j

d are the spin operators for conduction electrons (c) and localized electrons (d),
respectively.We consider the paramagneticmetallic phase away fromhalf filling (μ ≠ 0). Thismodel in this
phase has also been studied at finite temperatures with TMRG techniques in [46].

Infigures 2 and 3we show results for (1) the XYmodel at γ = 0.3, g=0.2, andD=40, (2) the XXZmodel at
Δ = −0.5, h=1, and =D 100, (3) the extendedHubbardmodel atU=5,V=1, μ = 2, andD=100, and (4) the
KLMat J= 2, μ = −1, andD=120.On the left we plot the eigenvalues, λ = ε ϕ− +ej

ij j, of the regularMPS-TMon
the complex planewithin the unit circle, whereas on the right we plot ε λ= − ∣ ∣logj j versus the complex
argument ϕ j, alongwith the lowest variational excitation energies obtained from a topologically trivial

variationalMPS ansatz [37].We do not plot the dominant eigenvalue, λ = 10 . Infigure 4we show results for the
mixedMPS-TMand topologically nontrivial excitations for the XYmodel andXXZmodel only, with the same
parameters as above. If available, we also plot the exact dispersion of the elementary excitations, as well as the
lower boundaries ofmultiparticle continua, for reference.

From figure 4 it is apparent that the topologically nontrivial variational ansatz captures elementary
excitations with high accuracy. The two-particle continuum consists of combinations of two elementary
excitations, and is thus partially captured by a topologically trivial ansatz (see figures 2 and 3), which is consistent
with the results in [36]. The full continuum can be recovered by using a variationalMPS ansatz, including the
scattering states of elementary excitations [45]. Consequently, low-lying states with higher odd particle numbers
are partially captured by a topologically nontrivial ansatz, whereas low-lying states with even particle numbers
are partially captured by a topologically trivial ansatz. In the case where there are no topologically nontrivial
excitations, there is no such distinction.

Concerning the eigenvalues of theMPS-TM,we can nowmake the following remarkable observations. In
the plots on the left of figures 2–4, we see thatmost of the eigenvalues arrange themselves along several lines with
an approximately constant complex argument, ϕ ϕ= αj , where α labels distinct lines. This fact is reflected in the

arrangement of the ε j in columns in the plots on the right, where low-lying ε j correspond to eigenvalues λ j close
to the unit circle. Denote the lowest-lying ε j for each line, α, as εα.

5
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Wecan also observe that the complex arguments, ϕα, of these εα coincide very precisely with themomenta,

k ,min of theminima in the dispersion of excitation energies. This fact has been exploited in [46] to locate the
Fermimomentum, k ,F in theKLM.While therewas no justification given there as to how the phase, ϕ, of the
second-largest eigenvalue of the TM is related to low-energy excitations, we contribute several arguments for
this fact in section 4. Connections between peaks in the static structure factor and the logarithmof the absolute
value and the complex argument of TMeigenvalues have also been exploited in [14, 47] to study the
temperature-dependence of static correlation functions.

The values of the lowest-lying εα are related tominima, αE ,min in the dispersion of elementary excitation
energies via some characteristic velocities, αv

1, and can serve as afirst approximation for this energy if the
velocity can be estimated. It appears that these velocities, which determine the energy scale for each line, α, can
also vary between different excitationminima, αEmin , within each respectivemodel in the examples shown.

Indeed, for the XYmodel, themomenta, k ,min of theminima of the elementary excitations and the three-
particle continuumarewell reproduced by the eigenvalues of themixedMPS-TMwith the largestmagnitude,
with deviations of −O(10 )3 . Consequently the same holds for theminima of the two-particle continuumand the
regularMPS-TM. For the elementary excitations we estimate the characteristic velocity, v ,1 relating the lowest
excitation energy, Emin and ε λ= − ∣ ∣log1 1 , where λ1 is the eigenvalue with, second-largestmagnitude, as

Figure 2.Eigenvalues of the regularMPS-TMand topologically trivial excitations for (a) the XYmodel at γ = 0.3, =g 0.2, and
=D 40, and (b) theXXZmodel at Δ = −0.5, =h 1, and =D 100. Left column: eigenvalues, λ = ε ϕ− +e ,j

ij j of theMPS-TMon the
complex planewithin the unit circle.Right column: ε λ= − ∣ ∣logj j versus ϕj (red symbols, left vertical axis), alongwith the lowest

excitation energies obtained from a topologically trivial variationalMPS ansatz (blue symbols, right vertical axis).We also show the
exact lower boundaries ofmulti particle continua (solid lines, right vertical axis) for reference.

1
As  essentially ‘evolves’ the system in real space (as opposed to an evolution in real time by an operator, −e Hti , see also section 5), the ε j

are given in units of inverse length and represent inverse correlation lengths, as established in section 4.1. As energies are given in units of
inverse time, both quantities can thus be related by a velocity.

6
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ε= ≈v E 0.94091 min 1 (see figure 4 inset), wherewe have extrapolated the value of ε1 for → ∞D . Towards the
end of section 4.3we showhow the value of this velocity can be estimated from assuming a Lorentz-invariant
low-energy behavior. There, we obtain an estimate for v1 that agrees with the value obtained abovewithin 1%
accuracy.

For theXXZmodel, themomenta of the gapless excitations atmultiples of kF are evenmore precisely
reproducedby the arguments, ϕ ,j of the eigenvalues of the regular andmixedMPS-TMwithmagnitudes close to
one (i.e., ε j close to zero), with relative deviations of −O(10 )6 . Notice that in the limit → ∞D , we expect ε → 0j ;
that is, the spectral radius of themixedMPS-TMalso becomes one and the rotational symmetry in theXYplane is
restored (see section 2.2).

For the extendedHubbardmodel, the star-like structure of the eigenvalue spectrum infigure 3 is very
pronounced. In the right plot, the ratios of the variational dispersionminima and the lowest ε j at ϕ π= ≈k 0.4j

and ϕ π= ≈k j might suggest a characteristic velocity, >αv 1. However, onewould expect to have gapless

excitations at thesemomenta, as well as at π≈k 0.2 suggesting that the corresponding variational energies are
not converged. It is instructive to either use a larger bond dimension or to enhance by using an ansatz including
scattering, whichwe have not performed here. It is, however, interesting to note for theseminima that the
accuracy of the variational energies and the low-lying ε j appears to be roughly on the same level.

At last, for theKLMwe obtain a variational low-energy dispersion that exhibits overall low variation in k,
which is typical for the heavy fermion regime.We also observe dents in the slowly varying part coming from
gapless excitations atmultiples of the Fermimomentum, forwhichwe obtain an estimate of π≈k 0.41541(3)F

by extrapolating → ∞D .While in [46], kF is estimated by approximating the finite temperatureQTMof the
quantum systemusing TMRG. Subsequently extrapolating →T 0 –which is inherently prone to technical

Figure 3.The same quantities as infigure 2 for (a) the extendedHubbardmodel atU=5,V=1, μ = 2, and =D 100, and (b) the
KLMat J=2, μ = −1, andD=120. As there are no exact solutions for thesemodels in these parameter regimes, we only show
variational excitation energies.

7
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difficulties—wedirectly work atT=0 and construct an approximation of the zero temperatureQTM from an
MPS ground-state approximation. Indeed, our estimate of kF atT=0 is of the same order as the value in [46] for
lowestT; however, there are no claims aboutwhether the value atT=0was possible due to technical difficulties.

The above observations are truly remarkable. Themere knowledge of the ground stateMPS-TMalready
yields important information about the excitation spectrumof the underlyingHamiltonian.More specifically,
themomenta, k ,min of the excitation energyminima in the respective particle sectors can be determined
accurately, and the corresponding energies can be estimated in afirst approximation just from static ground-
state properties. An advantage of this TMbased approach over just considering static correlation functions is
discussed in section 4.2.

3.2. (1+1)-dimensional field theories
Wewill now turn to continuous (1+1)-dimensional field theories and study the Lieb-Linigermodel [48] using
cMPSmethods. TheHamiltonian is given by

∫ ψ ψ ψ ψ ψψ μψ ψ= ∂ ∂ + −
−∞

∞
H x cd , (14)x xLL

† † † †

with repulsive interaction strength >c 0 and chemical potential μ > 0, whereψ and ψ † are bosonic field
operators. Themodel depends only on a single parameter, γ =

ρ
c , with ρ ψ ψ= 〈 〉† being the ground state

particle density, which is critical for all values of γ.

Figure 4.The same quantities for the samemodels and parameters as infigure 2 for themixedMPS-TMand topologically nontrivial
excitations. For reference, we also show the exact dispersion of elementary excitations and the lower boundaries ofmulti particle
continua (solid lines, right vertical axis). (a) Inset: magnification of the plot around theminimum, E ,min of the exact elementary
excitation energies,marking the smallest non zero ε1 used to estimate the characteristic velocity, ε=v E1 min 1. Notice that in (a), we
have chosen the same scale for ε λ= − ∣ ∣logj j andE(k) to emphasize the energy scale dictated by the characteristic velocity, v1.
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Infigures 5 and 6we show results for the eigenvalues of the regular andmixed cMPS-TM, similar to the
lattice case for (a) γ ≈ 1.35 and (b) γ ≈ 311.5 andD= 64.Given the relation in (5), the right columnnowplots
the real part of the eigenvalues, σ− j of the generator  , versus their imaginary part, which is now interpreted as

momentum. In the left column the eigenvalues, λ ,j of  = exp( ) are plotted on the complex planewithin the
unit circle, as in the lattice case. In the continuum setting,momentum space is no longer π2 -periodic, and the
definition of  is not fully justified, as it can comewith any real power, ⩾x 0, in continuum correlation
functions, where as only integer powers appear in lattice correlation functions. Nevertheless, it helps to illustrate
that the spectrumof eigenvalues of the TMexhibits a similar structure. The fact that this structure infigures 5
and 6 is less outspoken than for some of the latticemodels indicates a larger contribution ofmicroscopic effects
for this specific case.

Next wewill study the simplest Lorentz-invariant theory available: the free (1+1)-dimensional Klein-
Gordon boson described by theHamiltonian

∫ π ϕ ϕ= + ∂ +
−∞

∞
( )H x m

1

2
d , (15)xKG

2 2 2 2⎡
⎣⎢

⎤
⎦⎥

wherewe have taken the speed of light to be unity. Thefield operators,ϕ and π, can bewritten in terms of the
cMPS Fock space operators,ψ and ψ ,† as:

Figure 5.Eigenvalues of the (generator of the) regular cMPS-TMand topologically trivial excitations for the Lieb-Linigermodel at
D=64 for (a) γ ≈ 1.35 and (b) γ ≈ 311.5. Left column: eigenvalues, λ ,j of the cMPS-TM  = exp( ) on the complex planewithin
the unit circle.Right column: real versus imaginary part of the eigenvalues, σ− ,j of the generator  (red symbols, left vertical axis)
together with the lowest excitation energy obtained from a topologically trivial cMPS ansatz (blue symbols, right vertical axis).We also
plot Lieb’s type II excitations (lower boundary of hole-hole continuum, solid line, right vertical axis) for reference.
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ϕ
ν

ψ ψ π ν ψ ψ= + = − −( ) ( )1

2

i

2
2 , (16)† †

where an arbitrary scale, ν, is introduced [49]. TheHamiltonian (15) needs to be regularized, and this is achieved

by adding the term π ν∂ −( )x
2 2 to theHamiltonian.

Wemake the following observations regarding the eigenspectrumof the generator of the cMPS-TM,  ,
corresponding to HKG, as plotted infigure 7. The eigenvalues, σ ,j of  are all real and negative for all values ofm
andD. This reflects the fact that the relativistic dispersion relation has a singleminimumatmomentum zero.
The eigenvaluewith the largest real part of  converges to −m as → ∞D . As is argued in section 5.1, it follows
from the Euclidean invariance of the quantum transfermatrix of a relativistic theory that in the limit → ∞D ,
the eigenspectrumof  should be the same as that of HKG (up to the sign), corresponding to a characteristic
speed, = =v c 1. The above observation provides numerical support for this by using and extrapolating from
finiteD data.

We can also study the distribution of the eigenvalues of  as a function of the bond dimension. For any value
ofm, the (negative) eigenvalues, σ ,j become dense in the region +∞m[ , ). In the gapped phase ( >m 0), the
density of eigenvalues diverges atm (i.e., the ratio of the nth largest and second-largest eigenvalue of 
converges to unity for low-lying n). This is similar to the density of states in a gapped single particle excitation
branch near theminimumof the dispersion relation. As themass, m, is taken to zero, the theory becomes
critical, and the cMPS approximation enters the so-called ‘finite entanglement regime’ [50]. The eigenvalues of
 are still all real and converge to zero as → ∞D , but their ratios now converge to values larger than one, and
are expected to encode universal data [49]. This is tantamount to the statement that the effect of the finite bond
dimension is only to introduce a single scale into the underlying conformal field theory, and implies that
universal quantities can be extracted straightforwardly from cMPS data [49].

Figure 6.The same quantities as infigure 5 for the (generator of the)mixed cMPS-TMand topologically nontrivial excitations. For
reference, we also plot the branch of elementary hole excitations (solid line, right vertical axis).
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Let us exemplify this by spelling out the results obtained by takingm=0.2 in (15) and using themodest range
of bond dimensions up toD=36. Scalingwith D1 and extrapolating to → ∞D yields that the second-largest
eigenvalue of  tends to 0.201, thus reproducing themass accurately. The ratio of the third and second
eigenvalue of  is estimated to converge to 1.040 as → ∞D , and the ratio of the fourth and second is estimated
to converge to 1.086.We note that, since the theory is free, the deviation fromunity cannot be due to
convergence to some bound state just above the lowest branch, and can only be an effect of numerical accuracy.
The same ratios form=0 converge to approximately 2.51 and 3.1, respectively, and are related to properties of
the excitation spectrumof the underlying conformal field theory [49].

3.3. Two-dimensional latticemodels
The observed connection between the eigenvalues of the TMand theminimumof the dispersion relation opens
up away to infer properties of the dispersion relation of two-dimensional systems, which are notoriously
difficult to deal with. To this end, given a two-dimensional translation-invariant PEPS [28] on a square lattice
cylinder with periodic boundary conditions in the y direction, we block all PEPS tensors in a ring around the
cylinder (i.e., with the same x coordinate along the cylinder).We then consider the quasi-one-dimensional
system along the cylinder obtained that way, described by blocked tensorsAs

lr, and its TM,  .
As the original state was also translational invariant in the y direction, we can label the eigenvectors of  by

eigenvalues e ki y of the action of the translation operator on the auxiliary degrees of freedom, as given by (6). On a
hexagonal lattice cylinder, we additionally block two neighboring PEPS tensors to obtain a quasi square lattice
before further blocking all obtained tensors in a ring around the cylinder. Assuming that the observed
connection between the leading eigenvalues of the TMand theminimumof the dispersion relation holds for
each ky independently, we obtain the location and relative energy of theminima of the dispersion relation for
each possible value of ky, which yields a cut through the dispersion relation. By closing the periodic boundaries in
different ways, we can obtain this information along different symmetry axes, allowing us to reconstruct the
overall formof the dispersion relation.

Wenow apply this strategy to the Affleck–Kennedy–Lieb–Tasaki (AKLT)model [51] on the square and
hexagonal lattice. Its ground state is constructed by placing spin- 1

2
singlets on the edges of the lattice and

projecting the spin- 1

2
ʼs at each vertex onto the sector withmaximal spin ( =S 2phys for the square lattice and

=Sphys
3

2
for the hexagonal lattice); this construction yields the unique ground state of the SU(2) -invariant

Hamiltonian Π= ∑〈 〉H i j i j, , , where Πi j, is the projector onto the subspacewith spin =S Sphys on neighboring

sites i and j. This construction corresponds exactly to a PEPS, with bond dimensionD=2. Even though the exact
ground state is known, little is known about the excited states, although recently an indirectmethodwas
proposed to estimate the gap bymeans of a tensor network renormalization groupmethod [52].

We can use an iterative eigensolver to exactly determine the low-lying spectrumof  on cylinders with
sufficiently large circumference. Since themodel possesses SU(2) symmetry, we can additionally label the
eigenvectors of the TMby their spin (which corresponds to the spin of the excitation), thereby aiding the

Figure 7.The same quantities as infigure 5 for the Klein-Gordon boson form=0.2 atD=36. The eigenvalues of  and  are all real,
resulting in the arrangement of all eigenvalues on a single line in both plots.We also plot the exact relativistic dispersion of elementary
excitations (green solid line) and the lower boundary of the two-particle continuum (purple solid line) for reference.
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identification of different excitation branches. As the TMof the AKLTmodel isHermitian (up to a gauge
transformation), its eigenvalues are real, and thus π=k 0,x . The pairs k k( , )x y for all eigenvalues of  are
therefore arranged along lines in the Brillouin zone; by properly closing the periodic boundaries, we can thus
obtain data points along different symmetry axes. The results for the square and hexagonal lattice are shown in
figure 8. In both cases, wefind an isolated branch of antiferromagnetic spin-1 excitations, with a two-particle
continuum starting at about twice the elementary quasi energy gap, in agreementwith known results for one-
dimensional systems. In particular, for the square lattice wefind theminimumof the dispersion atmomentum

π π=k k( , ) ( , )x y , whereas for the hexagonal lattice theminimum is found at =k k( , ) (0, 0)x y . For both lattices
theminima appear on the isolated S=1branches.

This approach has further been used by some of the authors to study anyon condensation in the toric code
model with string tension [53].

4. Static correlation functions and excitations

In this section, we elaborate on the relation between the eigenvalues of the TMand static connected correlation
functions, andwe use this information to provide several arguments for understanding the peculiar structure of
the TMspectrum.Without loss of generality, we consider the case of one-dimensional lattice systems andwrite
the static connected correlation function for operatorsA0 andBn acting on single sites, 0 and n, as

= −C n A B A B( ) , (17)AB n n0 0

where 〈…〉denotes the expectation valuewith respect to the ground state. These arguments can readily be
extended to operators acting onmultiple sites, as well as higher dimensional systems and continuum systems.

In section 4.1we explain how the clustering of the eigenvalues of the TM in branches allows one to recover
the typicalOrnstein-Zernike formof correlations (to be defined below) in the limit → ∞D . Section 4.2 uses the
single-mode approximation to relate these branches tominima in the dispersion relation and also discusses why
generically, the full spectrumof the TMcan providemore information than selected typical static correlation
functions.

We also investigate this connection in the other direction by showing how the low-energy excitations of the
Hamiltonian affect the static correlation functions in the ground state. Section 4.3 assumes a Lorentz-invariant
low-energy description to recognize the structure of the spectrumof the TMas thefiniteDmanifestation of the
Källén-Lehmann representation of correlation functions. Finally, section 4.4 usesmomentumfiltering to
formulate amomentum-resolved version of the proof of [3] for the relation between the correlation length and
the energy gap of the system.

4.1. Recovering theOrnstein-Zernike form
Let usfirst recall how the regularMPS-TMgives access to all static correlation functions in the corresponding
MPS. For this we assume a complete eigendecomposition of the TM

Figure 8. Leading eigenvalues of the TMof the 2DAKLTmodel along the symmetry lines indicated in the insets. (a) Square lattice:
one can clearly see theminimumof the dispersion around theM point withmomentum π π( , ) and spin S=1, in accordancewith the
one-dimensional AKLTmodel. One can further recognize the continuumof two-particle states, which sets in atΓ at about twice the
lowest quasi energy of the single-particle band at M, and can have spin =S 0, 1, 2. (b)Hexagonal lattice: againwefind a branch of
spin-1 excitations, whoseminimum is now around theΓ point withmomentum (0, 0), as the unit cell contains two spins and there is
a continuumof two-particle excitations at about twice the quasi energy atΓ. For both lattices the S=0 point atΓ corresponds to the
ground state. Data has been obtained from cylinders with different circumferences (Ny=12 forΓ– ′X and X–M, =N 8 2y for M–Γ

for the square lattice and =N 6 3y forΓ–M, andNy=12 for M–K and K–Γ for the hexagonal lattice in units of the lattice constant)
and different boundary conditions, resulting in different scales for the data in the individual panels.
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 ∑λ= ∣ ∣
=

j j)( , (18)
j

D

j

0

2

wherewe have dropped the subscriptA for notational simplicity. Here ∣j) and ∣j( are the right and left
eigenvectors of  , respectively, with δ∣ =i j( ) ij; we againwrite λ = ε ϕ− +ej

ij j for the eigenvalues.We demand the
ground stateMPS representation to be injective, such that there is a unique dominant eigenvalue, λ = 10 and
λ∣ ∣ <> 1,j 0 for all other eigenvalues. Furthermore, we define the operator, transfermatrix (OTM) for operators,

O, acting on n sites as

 ∑= … ⨂ …
…
…

…
… ( ) ( )O A A A A¯ ¯ , (19)O

i i
j j

j j
i i i i j j

n

n

n

n n n

1

1

1

1 1 1

where = 〈 … ∣ ∣ … 〉…
…O i i O j jj j

i i
n n1 1n

n

1

1 .

With the above definitions, it is well known that (17) can bewritten as

∑ ∑λ+ = = ε ϕ

> >

−C n f f( 1) e e (20)AB

j
j j

n

j
j

n n

0

AB

0

AB ij j

wherewe have defined the form factors

 = ∣ ∣ ∣ ∣f j j(0 )( 0). (21)j A B
AB

As for afinite bond dimension, (20) is afinite sumof exponentials; connected correlation functions for
sufficiently large distances, n,must decay as a pure exponential, ξ∼ −C n n( ) exp( ),AB where the correlation

length, ξ, corresponds to the inverse of the smallest ε j with a nonzero form factor.
In contrast, typical correlation functions in gapped phases are expected to decay at large distances, n, as

∼ η− −ξC n n( ) e , (22)AB
n

where there is an additional power law contribution to the decaywith an exponent, η, which in principle depends
on operatorsA andB. Close to a critical point, this form can bemotivated from conformal field theory or from a
general renormalization group argument. Approaching the critical point takes the correlation length, ξ → ∞,
and a pure power law decay of correlations remains, where the scaling exponent, η, can depend on the choice of
operatorsA andB. Sufficiently deep in a gapped phase, on the other hand, (22) is known as theOrnstein-Zernike
form, and η typically depends on the number of spatial dimensions, d, as η = d 2 [54, 55] (i.e., for a one-
dimensional quantum system

∼ ξ−C n
n

( )
1

e (23)AB
n

for large distances, n).
In the limit → ∞n , anMPSwith afinite bond dimensionwould correspond to η = 0. Nevertheless, for

→ ∞D the correct formof the correlation functions should be restored.We proceed by noting that the scaling
form in (22) can be obtained from (20) under the following assumptions:

(i) The leading eigenvalues, λ ,j arrange themselves on a finite number of lines in the complex plane with
constant complex argument ϕα, wherewe label these lineswith index α. Consider also the form factors

f ,j
AB as defined in (21), along such a line.We define the subset of indices ϕ ϕ∣ = ≠α α{ }j fand 0j j

AB

(i.e., indices αj label all eigenvalues with constant complex argument ϕα, for which the form factors, f ,j are

non zero).

(ii) On each of these lines, the λ
αj
become sufficiently dense for ≫D 1, and the corresponding ε

αj
will follow

some dispersion.Wewill then reorder the indices αj , such that the ε
αj
are in ascending order and

Δ ε=α =αj 0 is theminimum. In the complex plane this parameterization corresponds to going from the λ
αj

closest to the unit circle along line α towards the center. For small αj , ε
αj
changes smoothly as

ε Δ= +α α
κ

α
g jj to the leading order, with some constants, κ >g , 0, possibly depending onα.

(iii) The form factors
α

f j
AB also vary smoothly and follow, to the leading order, some power law ∼ α

ρ
α

f j ,j
AB where

the exponent ρ depends on the operatorsA andB and possibly α. For ρ = 0, the leading order corresponds
to a non zero constant.
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With the above assumptions and using the Euler-McLaurin formula to approximate the discrete sumwith
an integral, the contribution of one line, α, of eigenvalues in (20) becomes approximately

∫ϕ Δ
α

−
∞

−α α
κ

z f ze e d ( )e (24)n n ngzi

0

AB

wherewe have replaced αj with a continuous parameter, z, and integrate to∞ for convenience, as − κ
e ngz decays

sufficiently fast with increasing z, even formoderate n.
Using the saddle point approximation allows one to replace αf z( )AB by its dominant behavior near z=0, and

we obtain for n sufficiently large

∫ ∼ϕ Δ ρ ϕ Δ−
∞

− − −α α
κ

α
ρ

κ α
+

z z ne e d e e e (25)n n ngz n ni

0

i 1

andwe have recovered (22)with η = ρ
κ
+1

. Deep in a gapped phase, we can reasonably expect that κ = 2, and
with ρ = 0,we then recover the typical Ornstein-Zernike form for one-dimensional quantum systemswith
η = 1 2. The correlation length, ξ, is then given by ε Δ= =

ξ
,1

1 1 with ε1being the smallest non zero ε j.

Infigure 9we show corresponding numerical evidence for the XYmodel, defined in (10), at γ = 0.5 and
g=1.05 (i.e., in the gapped paramagnetic phase, with bond dimensionD=32). In this phase all the eigenvalues
of the TMare real (i.e., ϕ = 0j ).We plot ε j alongwith a quadratic fit, ε Δ= +j a j( ) 2, as well as the form

factors f j
XX, whereX stands for Sx, versus index j for <j 7. Again, j labels eigenvalues for which the form factors,

f ,j
XX are non zero, in ascending order. The data confirms the expected values of the exponents as κ = 2 and

ρ = 0, yielding theOrnstein-Zernike behavior of the correlation function

∼
Δ−

C n
n

( )
e

(26)
n

XX

expected for thismodel in this parameter regime [39].
For amore rigorous analysis in the framework of an exactMPS formulation for the ground state of theXY

model, see [56].

4.2. Static structure factor and the singlemode approximation (SMA)
Whereas the previous subsection indicates why the peculiar structure of the eigenvalue spectrumof theMPS-
TMallows one to recover the typical formof static correlation functions for → ∞D , itmakes no connection
between the branches of eigenvalues appearing in this spectrum and the dispersion relations of the elementary
excitations of themodel. Tomake this connectionmore explicit, we now reiterate thewell-known result that the
singlemode approximation (SMA) produces dispersion relations that are strongly dependent on the static
structure factor [57–61]. In particular, wewill illustrate why the energies, E k( ), of the lowest energy-
momentum eigenstates, ∣ 〉αE ,k of a local translation-invariantHamiltonian, = ∑H h ,n n become very small at

momenta kwhere the TMhas eigenvalues λ = ε ϕ− +e ,j
ij j with ε j approaching zero and ϕ± =k j.

The generality of this subsection is based on the recent proof that elementary excitations on top of a gapped,
strongly correlated ground state tend to be localized or particle-like [62]. Thismeans that there exists a

Figure 9.Plot of the form factors f j
XX (blue symbols, left vertical axis,X stands for Sx) as well as εj , alongwith a quadratic fit (red

symbols and green line, right vertical axis) for theXYmodel at γ = 0.5 and g=1.05 for <j 7. Results have been obtained from an
MPS ground-state approximationwith =D 32, and they confirm the expected values of exponents as κ = 2 and ρ = 0.
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representation of all lowest-lying excited states by actingwith the Fourier transformof a quasi local operator,
ℓO ,( ) centered around site n=0 and having support on sites ℓ ℓ∈ −n [ , ], on the ground state:

∑ϕ ψ=ℓ ℓ( )O
V

O
1

e , (27)k
n

kn
n

( ) i ( )
0

where =ℓ ℓO U O Un n n
( ) ( ) † withUn being the lattice translation operator over n sites;V is the volume of the system.

For the remainder of this subsection, wework in afinite systemwith periodic boundary conditions to be able to
define normalizable energy-momentum states. The unnormalized state in (27) becomes exponentially close to a
true, isolated energy-momentum eigenstate, ∣ 〉αE ,k with increasing linear size, ℓ, of the support of ℓO( ) [62].

We can readily use this set of states in a variational ansatz for low-energy excited states, andwewill consider
their energy expectation value

ϕ ϕ

ϕ ϕ
=

ℓ ℓ

ℓ ℓ

( ) ( )
( ) ( )

E k
O H O

O O
( ) (28)

k k

k k

( ) ( )

( ) ( )

which is a good approximation for the lowest excitation energies ofH atmomentum k. The operator, ℓO ,( )

should have a zero vacuumexpectation value, and can be a chosenHermitian2. Together with the assumption of
parity invariance for bothH and ℓO( ), it is well known [60] that (28) can be rewritten as

ψ ψ

ψ ψ
= =

−

−
E k

O H O

O O

F k

S k
( )

1

2

, ,
1

2

( )

( )
, (29)

k k

k k

0 0

0 0

⎡⎣ ⎡⎣ ⎤⎦⎤⎦

where = ∑O Oek V n
kn

n
1 i ; we have omitted the superscript ℓ( ) for notational simplicity. Here, F(k) is the double

commutator expectation value known as the oscillator strength and =S k S k( ) ( )OO is the static structure factor,
which is related to the static correlation function by a Fourier transform,

∫ π
=

π
C n

k
S k( )

d

2
( )e . (30)AB AB

kn

0

2
i

In (29), we have again discarded subscripts denoting the operators, O, for notational simplicity.
For aHamiltonian consisting of strictly local terms, h ,j

m( ) acting on sites +j j m[ , ](i.e., with support on

+m 1 sites), F(k) is afinite polynomial in powers of e ki and can thus be bounded as

∑

ℓ ℓ

=

⩽ + + + + ∥ ∥ ∥ ∥

F k O h O

m m O h

( ) e , ,

4(4 2 1)(2 1) . (31)

nj

kn
j n

i
0

2

⎡⎣ ⎡⎣ ⎤⎦⎤⎦

However, the static structure factor, S k( ), can become very large. This will happenwhen themomentum, k,
corresponds to the period of an oscillating static correlation function, C n( ), with a very large correlation length.
For thesemomenta, one can therefore optimize over possible operators, O, such that the resulting energy
expectation value is very small, and thus, by virtue of the variational principle, excitationswith small energies
exist.

Generically, there is a one-to-one correspondence between themomenta, k,where S(k) peaks and the
complex arguments, ϕ ,j of the TMeigenvalues. This can easily be shown in the framework ofmatrix product

states wherewe use the same notation as in section 4.1. Due to translation invariance, the static structure factor
can bewritten as

∑=S k O O( ) e . (32)
n

kn
n

i
0

This sum can be split into one part, ∣ ∣ ⩽x l2 ,where operators O0 andOn overlap and a nother part, ∣ ∣ >x l2 ,
where they commute. Thefirst part can be bounded as

∑ ℓ= ⩽ + ‖ ‖
ℓ

ℓ

ℓ
=−

O O D O Oe ( ) (4 1) . (33)
n

kn
n

2

2
i

0
2

2
The proof of [62] could have been formulated equally well using a symmetric energy-filtering operation, bywhich aHermitian operator

would bemapped to aHermitian operator under energyfiltering.
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The remaining part can bewritten as

R

R

R

  

  

∑

∑

∑

= ∣ ∣

= ∣ ∣

ℓ

ℓ

ℓ

>

>

− +

+

=

∞

O O2 e

2 e (0 0)

2 e (0 [e ] 0), (34)

n

kn
n

n

kn
O

n l
O

k

n

O
k n

O

2

i
0

2

i (2 1)

i (2 1)

0

i

where O is theOTMdefined in (19). To perform the geometric sum in the last line, we define the projector,
= − ∣ ∣Q 0)(0 , which projects out the dominant eigenvector with eigenvalue one (i.e.,

    = = = = − ∣ ∣Q Q Q Q 0)(0 ).We can thenwrite   = + ∣ ∣ = + ∣ ∣Q Q0)(0 0)(0n n n , where the
second termwill not contribute to S(k) due to the zero vacuumexpectation value ofO. Assuming that there are
no other eigenvalues withmagnitude one, which is guaranteed if theMPS is injective, we can now safely perform
the geometric sum and obtain

R   = + ∣
−

∣ℓ

ℓ+


S k D O( ) ( ) 2 (0

e

e
0) (35)O

k

k
O

i (2 1)

i

R∑= +
−

ℓ

ℓ

ε ϕ>

+

− +( )
D O f

e
( ) 2

e

1 e
, (36)

j
j
OO

k

k
0

i (2 1)

ij j

where the form factors, f ,j
OO are given by (21). It is apparent that the fraction can become very large for an

eigenvalue of  with ε j close to zero (i.e.,magnitude close to one)with k approaching the argument ϕ± j
3. By

the above arguments, we can therefore expect low-energy excited states at thesemomenta, assuming that the
form factors, f ,j

OO do not vanish.

In the case of symmetry-breaking and topologically nontrivial excitations, similar arguments lead to the
same formof S(k) as in (36), where  is replacedwith themixedMPS-TM4.

As a final point, we elaborate further on the relation between the static structure factor and the spectrumof
the TM. For an injectiveMPS, it will always be possible tofind an operatorwhoseOTMexactly excites one or
more of the eigenvalues of the TMon a branchwithfixed ϕα (i.e., ∣ ∣ ≠αj( 0) 0O ). This, however, could be an
operatorwith very large support. Conversely, it is possible that for operators with small support, several
eigenvalues are excited on branches with different arguments, ϕα,which are close together. For these operators,
the static structure factormight then have amaximumat amomentum k,which does not exactly correspond to
one of the arguments, ϕα.

An example of this is the transition from commensurate to incommensurate order in the bilinear-
biquadratic S=1Heisenberg chain [63–65]

∑ θ θ= ++ +( )S S S SH cos( ) · sin( ) · . (37)
n

n n n nBLBQ 1 1
2

Weconsider the regime θ π< <0 0.25 , where the oscillation period of static correlation functions changes
from π to some incommensurate period exactly at the AKLTpoint, θ π= ≈arctan(1 3) 0.1024VBS . However,
by looking at the static structure factor of a simple one-site operator such as Sz, the peak stays at π=k until some
significantly larger value, θ π≈˜ 0.1314 . Based on the relation between the structure factor and theminima of the
dispersion relation, we have reason to expect that the dispersion relation starts shifting away from π at this latter
value of θ. It appears, however, that theminimumof the dispersion relation starts shifting at θ π≈ 0.12 , a value
in between θVBS and θ̃ . Infigure 10we observe from the full spectrumof the TM that this happenswhen the
eigenvalues with the largestmagnitudes havefinished aligning along the line of constant phase, ϕ π≈α 0.755 . At
this point it appears that the support of the operator, O, generating the excitation has shifted from the—by now
very small—branchwith ϕ π=α to the now fully aligned branchwith ϕ π≈α 0.755 . This value of ϕα further shifts
towards π2 3with θ π→ 0.25 , where the gap then closes atmomenta π= ±k 0, 2 3 [66–68].

From this example it is apparent that, especially in the vicinity of such peculiar crossover points, it is
worthwhile to look at the full spectrumof the TM. It generically containsmore information than a simple static
structure factor, as the TM is completely independent of the choice of operator. It illustrates that there is a
crossover regimewhere theMPS-TMhas to react by developing additional branches with constant ϕα, and the
support of the operator, O, generating the excitation has to shift to this newly developed branch. It appears that
this process is completed after the eigenvalues have fully aligned along the newly developed branch. It would be

3
Complex eigenvalues of  come in conjugate pairs. Assuming they are arranged successively, we therefore have ε ε= +j j 1 and ϕ ϕ= − +j j 1

within such a pair, and (36)will become large for k close to ϕ± j if ε j is small.
4
In this case, there is no need for the projector Q, as here themixedMPS-TMhas a spectral radius strictly smaller than one.
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interesting to investigate this process further with the precise knowledge about the operator, O, generating the
excitation and how the form factors ∣ ∣αj( 0)O developwith θ.

For nowwe concludewith the observation that there are indeed also situations where the locations of the
lowest-lying TMeigenvalues do not precisely coincidewith theminima of the dispersion. These are, however,

Figure 10. Left column: eigenvalues λ = ε ϕ− +ej
ij of the TMon the complex planewithin the unit circle for the bilinear-biquadratic

S=1Heisenberg chain (37)with (a) θ π= 0.11478 , (b) θ π= 0.12522 , (c) θ π= 0.15652 andD=64.Right column: static structure
factor =S k S k( ) ( )ZZ , whereZ stands for Sz (purple line) and variationally obtained dispersion E(k) (blue line) versusmomentum k,
alongwith εj versus ϕj (red symbols).Whereas S(k) still has itsmaximumatmomentum π in (b), theminimum, k ,min of the

dispersion has already started shifting away from π=kmin . In the spectrumof the TM, this is reflected by the fact that the eigenvalues
with largestmagnitude havefinished aligning along ϕ π≈α 0.755 . Themaximumof S(k) doesn’t start shifting until around
θ π≈ 0.1314 .
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very special cases like the one discussed above, where the TMhas to adapt to changing conditionswithin some
crossover regime. There, the peculiar structure of the TMeigenvalue spectrum is, however, also different from
normal situations as investigated in section 3, which can serve as an indicator for such exceptional situations.

4.3. Källén-Lehmann representation
In the previous two subsections, we have discussed two effects of the peculiar distribution of the eigenvalues of
theMPS-TM. First, the clustering of eigenvalues onto lines starting from the origin allows one to recover the
typical formof static correlation functions in gapped quantumground states in the limit → ∞D . Second, this
distribution causes peaks in the static structure factor, which can be related tominima in the dispersion relation
of excitations using the singlemode approximation. In retrospect, the first effect only requires a dense
distribution of eigenvalues along a line, without any connection between the location of these lines and the
dispersion relation of the excitations of the system. The second argument only requires the existence of a single
dominant eigenvaluewith a phase corresponding to themomentumof theminimumof the dispersion relation,
and does not explain why there needs to be a dense distribution of eigenvalues. This leaves open the question of
whether a different structure of the eigenvalue distribution could give rise to similar effects. Put differently, we
would like to answer the reverse question: towhat extent are static correlation functions and the clustering of the
eigenvalues of theMPS-TMdetermined by the excited states of theHamiltonian?

For Lorentz-invariant field theories, the Källén-Lehmann representation of two-point correlation functions
provides a direct connection to the excitation spectrumof theHamiltonian.Whereas theKällén-Lehmann
representation exists for arbitrary dynamical correlation functions, we here focus on the case of static correlation
functions between two scalar operators,A(x) andB(y), where it is given by

∫ ∫
Ψ Ψ

ρ
π

Ψ Ψ=
+

−

( )

A x B y

M M
k

M k
A M M B

( ) ( )

d
d

(2 )

e

2
(0) , 0 , 0 (0) , (38)

d

d

k x y
2 2

i ( )

2 2

2 2

where—contrary to standardfield theory notation—x and y denote spatial vectors, k denotesmomentum, and d
represents the number of spatial dimensions. Thefirst integral is over all possiblemasses in the theory, and
ρ M( )2 corresponds to the density of states. If the lowest-lying excitations correspond to single-particle
excitations with discretemasses, αM , then ρ M( )2 will contain a contribution, δ∑ −α αM M( )2 2 . The state

∣ 〉αM , 02 corresponds to the presence of such an excitationwithmass αM andmomentum zero.
Let us again restrict to the case of d= 1.We are interested in the long-range behavior of correlation functions

in a latticemodel, which is clearly dictated by the low-energy behavior of themodel. If this low-energy behavior
can be captured by a Lorentz-invariant theorywithmasses αM , a remnant of theKällén-Lehmann
representation of correlation functions should exist in the latticemodel. For the field theory, theminimumof all
dispersion relations is atmomentum zero.However, inmany cases taking the continuum limit of a lattice theory
requires that, for example,N sites are blocked, and a single lattice dispersion relationwith severalminima for
momenta ϕ πα=α N2 with α = … −N0, , 1 gives rise toN independent dispersion relations of the field
theory. A prototypical example forN=2 is the XX-model, which corresponds to the staggered fermion
discretization of relativistic Dirac fermions, where the two components of theDirac spinor are put on even and
odd sites, respectively [69].

Equation (38) represents the static correlation function in real space as an integral overmomentum space.
The corresponding representation for the static structure factor inmomentum space can therefore easily be
identified. In the Lorentz-invariant case, the single-particle excitations add a contribution to the static
correlation function that is given by a constant times the inverse of the dispersion relation of that excitation. For
typical operators, thesewill be the dominant contributions. If the low-energy behavior of a latticemodel is
Lorentz-invariant, we can thus expect that S(k) should also receive contributions, αS k( ), of the form

ϕ= + −α α α α α

−

( )S k c m v k( ) . (39)2 2 2 1 2⎡
⎣⎢

⎤
⎦⎥

Here, αc is a constant depending on the choice of operatorsA andB, αm is themass of the excitations in units of
the inverse lattice spacing, and αv is the characteristic velocity, which for a proper Lorentz-invariant low-energy
behavior should be the same (and thus independent ofα) for all excitations.

Since this form is only expected to hold for ϕ≈ αk we can instead choose a π2 -periodic version of the
dispersion relation to get contributions of the form

ϕ= + − −α α α α α
−

{ }( )S k c m v k( ) 2 2 cos . (40)2 2
1 2⎡⎣ ⎤⎦

Wecannow transform from the π2 -periodic variable, k, to the complex variable =z e ki , andwe change the
notation of the static structure factor as → =S k S z( ) ( e )ki towrite
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∮ π
= −C n

z
S z z( )

d

2 i
( ) , (41)n 1

where the contour integral is over the unit circle  , which is where S(z) is originally defined (see figure 11).
If nowwewere to construct an analytic continuation of S(z), we expect that every contribution of the formof

(40) produces a square root singularity at z=0 and inverse square root singularities at the points

Δ Δ Δ= ± + ±

≈

α
ϕ

α α α

ϕ Δ Δ

±

± +

α

α α α

( )
( )

z e 1 1 4 2

e (42)

( ) i 2

i O 3

⎡
⎣⎢

⎤
⎦⎥

with Δ =α α αm v .We can thus choose the branch cuts to go from α
−z ( ) to 0 and from α

+z to +∞. Assuming that
there are no other singularities, we can then deform the integration contour as infigure 11. In the limit
η η′ →, 0, the arc segments α and ′α β, do not contribute, as they correspond to square root and inverse
square root singularities, respectively, whereas line segments α and ′α produce equivalent contributions

∫ − −ϕ Δ Δ− − + −
α

Δα
α α

−

( )( )y y y ye d e e (43)n ni

0

e
1 2

1 2⎡⎣ ⎤⎦
wherewe have transformed to = ϕ− αy ze i and the contributions to the correlation function,C(n), are now
written as integrals over ⩽ ⩽ Δ− αy0 e along the branch cuts.

It is apparent that afiniteDMPS approximation of the static correlation function tries to reproduce this
continuum formwith a discrete sumover the eigenvalues of the TM. These eigenvalues cluster on the branch
cuts of the static structure factor, whichwe have related to the single-particle excitation spectrumby assuming a
Lorentz-invariant low-energy behavior.

For large n, where the low-energy contributions dominate and the approximations are valid, we can again
use the saddle point approximation around the point = Δ− αy e and change variables to = Δ− +αy e x( ) dominate
to obtain for contributions αC n( ) toC(n) up to some factor

∫∼ + ∼
−α

ϕ Δ
ϕ Δ

−
∞ − − −

α α
α α( )

C n x
x

x
n

( ) e e d
e

(1 O( ))
e e

1 2
, (44)n n

x n n n
i

0

i1
2

which reproduces correlations of theOrnstein-Zernike form,with correlation lengths ξ Δ=α α
−1 . Therefore, the

dominant contribution for n large stems from the branchwith the smallest Δ =α α αm v .
It is interesting to compare this to the discussion in the previous section. The single-mode approximation for

the dispersion relation,E(k), was given in (29) as =E k F k S k( ) ( ) [2 ( )], which allowed us to conclude that peaks
in the static structure factor, S(k), produceminima in the corresponding dispersion relation. Assuming Lorentz
invariance, the Källén-Lehmann representation produces contributions to S(k) of the form ∼α αS k c E k( ) ( ),
with αc being a k-independent constant, which looks like the reverse relation:minima in the dispersion relation
give rise to peaks in the static structure factor. However, the single-mode approximation also allows forminima
that are not caused by S(k), but rather by a small or vanishing value for the oscillator strength, F(k). It would be
interesting if one could show that such excitations are necessarily related to low-energy features which have an
intrinsically non relativistic description.

Figure 11.Change of integration contour. The original contour,  , corresponds to the unit circle, and ismapped to a contour, ′,
consisting of line sigments α and ′α at distance η from every branch cut between α

−z ( ) and 0, as well as arc segments α rotating by π
around α

−z ( ) with radius η, and arc segments ′α β, rotating by π N2 around the origin at radius η′, between the branch cuts
corresponding to α

−z ( ) and β
−z ( ).
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As a final justification for the argumentation in this subsection, we apply the above results to the case of the
XY-model in the incommensurate gapped phase investigated in section 3.1. There, it is observed that for the
elementary excitations, the smallest excitation energy, Emin (i.e., the energy gap), and the eigenvalue of the TM
with the second-largestmagnitude, λ1, are related by some characteristic velocity, v1, via ε = E v1 min 1, where

ε λ= − ∣ ∣log1 1 and ε ξ= −
1

1, with ξ being the correlation length, as established in section 4.1. If we assume a
Lorentz-invariant low-energy behavior—with some characteristic velocity, vc–of the dispersion, E(k), around
theminimumof the form

≈ + −( )E k E v k k( ) , (45)cmin
2 2

min
2

as also used in (39), we can deduce by virtue of (42) and (44) that ξ Δ= =− E vc
1

1 min , wherewe have interpreted
the energy gap, Emin, as the lowestmass,m1. On the other hand, with ξ ε= =− E v1

1 min 1, we thus see that =v vc1

is exactly the characteristic velocity appearing in (45).

With γ= − +E k g k k( ) ( cos( )) sin ( )2 2 2 known exactly for the XY-model [38–40], and assuming (45) to
hold around =k kmin, we can then estimate v1 as

γ

γ
= =

− −

−
=

( )
v

E k

k

g1

2

d ( )

d

1

1
. (46)k k1

2
2 2

2

2 2 2

2min

For the parameters γ = 0.3 and g=0.2 considered in section 3.1, this yields an estimate of =v 0.93061 , which
differs from the value =v 0.94091 obtained from ε=v E1 min 1by only ≈1%.

4.4.Momentum-resolved relation between correlation length and gap
In this sectionwe derivemore rigorous statements connecting the decay of static connected correlation
functions to the dispersion, E(k), of low-energy excitations of local translation-invariantHamiltonians in the
thermodynamic limit.We generalize the seminal work ofHastings [3], which proved that the inverse of the
energy gap,Δ, of a local translation-invariantHamiltonian times a constant serves as an upper bound for the
correlation length, ξ, of connected static correlation functions. This implies that if the gap vanishes, these
correlationsmay (and inmost cases will) be long rangewith a diverging correlation length.

The proof gives a statement relating the smallest overall excitation energy and the largest correlation length
in the system, but it does not take into accountmomentum information. In this workwe extend the results in [3]
to derive bounds on the decay ofmomentum-filtered correlation functions and relate them to the dispersion, E
(k), of low-energy excitations. Specifically, we show that the inverse of the energy gap, E(k), at a specific
momentum, k, times a constant serves as an upper bound for amomentum-resolved correlation length, ξk.
Conversely, the existence of afinite correlation length, ξ ,k thus implies an upper bound for the energy,E(k).

The detailed derivation of the bound in themost general setting is given in the appendix; herewe, for the sake
of simplicity, present the result for one-dimensional lattice systems and operators acting on single sites.We start
from the static connected correlation function of operators =Ai 0 and ℓ= >B j 0, for whichwe assume zero vacuum
expectation value.We now attempt to extractmomentum-space informationwhile retaining real-space
information by replacing operator ℓB at siteℓwith aGaussianwave packet centered around siteℓ, defined as

∑=ℓ ℓ
−

+B k N B˜ ( ) e e (47)r

n

kn
n

in
r
2

2

whereNr is a normalization constant.We define themomentum-filtered correlation function as

ℓ = ℓC A B k( ) ˜ ( ) , (48)k 0

which corresponds to a Fourier transformof the product of the static correlation function and aGaussianwave
packet centered around siteℓ. Inmomentum space this yields the convolution of the static structure factor, S(k),
and anotherGaussianwave packet inmomentum space.

In the appendix, it is proven that by tuning r as a fraction ofℓ, themomentum-filtered correlation function,
ℓC ( )k , can—for sufficiently largeℓ–be bounded by

ℓ ⩽ ∥ ∥∥ ∥ ℓ−C c A B( ) e , (49)k
c

1
2

where c1 and c2 are some constants and the inverse of c2 is an upper bound for themomentum-filtered
correlation length ξk, given by

ξ
δ δ

⩽ = +
c

v

E k

1 1

*( , )
. (50)k

2
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Here, vLR is the characteristic Lieb-Robinson velocity [1] and δ = ′δ∣ − ′ ∣⩽E k E k* ( , ) min ( )k k is theminimumof
the dispersion E(k) in an interval around k given by δ.

The constant, δ, is introduced in the proof and and can be tuned to obtain the sharpest bound. From (50) it is

clear that there is a tradeoff, as increasing δ generally leads to a decrease of δE k* ( , ). If k, however, corresponds

to aminimum in the dispersion E(k), then the function δE k* ( , ) is largely insensitive to δ in some region around
theminimum, andwe can choose δ as large as possible within this region. If k, on the other hand, corresponds to

a regular point where ≠ 0,E

k

d

d
then there is a direct effect from increasing δ to decreasing E*. An optimal choice

of δ is thus dependent on the formofE(k).
Colloquially, the above resultmeans that the decay of themomentum-filtered correlation functions is

dictated by the corresponding low-energy states around that givenmomentum. Equivalently, one can say that a
large correlation length for a givenmomentum, k, implies a small excitation energy,E(k).

In practice, thismeans that one can deduce an upper bound for the low-energy spectrumof theHamiltonian
by looking at themomentumdependence ofmomentum-filtered correlation functions, where onewould have
to optimize over the parameter δ 5.

5. The quantum transfermatrix (QTM)

This section uses renormalization group arguments to establish a close relationship between theMPS-TMand
the exact quantum transfermatrix (QTM) of themodel, thus providing a direct connection between theMPS-
TMand the spectral properties of theHamiltonian.

5.1. Imaginary time evolution as tensor network
Consider a one-dimensional local-latticeHamiltonian,H, with translation invariance and a unique ground
state, ψ∣ 〉,0 with ground-state energy =E 00 . To avoid issues with the infrared orthogonality catastrophe, we
work in afinite systemofN sites with periodic boundary conditions for this section. The ground state can be
obtained by an evolution in imaginary time β

ψ
ϕ

ϕ
=

β

β

β→∞

−

−
lim

e

e
, (51)

H

H0
init

init

with ϕ∣ 〉,init some initial statewhich is nonorthogonal to ψ∣ 〉0 . SinceH is a sumof local terms, hn, we can break β

into small imaginary-time steps, δ, and use a Suzuki-Trotter decomposition of ∏≈δ δ− −e eH
n

hn [6, 70]. There

are several strategies towrite this (or alternative) decomposition(s) as a two-dimensional tensor networkwith
translation invariance in the spatial direction [14, 15, 71]. Obviously, all the information ofH is thus encoded
into this tensor network.

If the state ϕ∣ 〉init is initially in the formof a translation-invariantMPS, thenwe can also interpret ψ∣ 〉0 as a
translation-invariantMPS by grouping contractions along imaginary time. Each columnof the tensor network
is anMPSmatrixAs, itself being a half-infiniteMPO.As then exactly represents the ground state up to a Trotter
error6. A graphical representation of this construction is given infigure 12.

We immediately see that ψ ψ〈 ∣ 〉 = TrA
N

0 0 where theMPS-TM  ,A is defined in (3). For a systemwith a
unique ground state, the boundary conditions at β = 0 are irrelevant, and an equivalent networkwith periodic
boundary conditions in the temporal directionwould be obtained for the thermal partition function,

=β
β−Z Tr ,H in the limit β → ∞. The exactMPS-TM for the ground state ψ∣ 〉0 thus corresponds to theQTMat

zero temperature, defined in [6, 7].
It is important to note that all the information about theQTM—in particular its eigenvalues—is thus

containedwithin the ground state ψ∣ 〉0 and its exactMPS representation,As. Note, however, that this exact

representationwith an exponentially diverging bond dimension differs from afiniteD approximation, Ã ,s

which can be obtained, for instance, from some variational algorithm. For an example of an analytic derivation
of such an exact ground stateMPS representation,As, and the effect of truncating tofiniteD for the case of the

=S 1 2XYmodel, see [56].
In section 5.3we present a construction how such afiniteD approximation—which only retains degrees of

freedom relevant for the physical degree of freedom, s–can be obtained from this exactMPS representation,As,
and thus from the trueQTM.To understand how this relates theMPS-TM to theHamiltonian of the system,we
first need to discuss how the latter relates to the exactQTM,which is the topic of the next subsection.

5
Tofind the optimal bound, onewould have to optimize over all possible operatorsA andBwith arbitrary finite support aswell.

6
The limit of infinite Trotter number (δ → 0) is, in general, possible [75–77].
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5.2. TheQTMand the hamiltonian
Tounderstandwhat information about the underlyingHamiltonian can be extracted from the knowledge about
theQTM,we first consider the case of relativistic (1+1)-dimensional field theories. The vacuumor ground state
can be expressed in terms of a path integral formulation very similar tofigure 12, butwhere both real space and
imaginary time are continuous.We can then identify a factor, δ−e ,H for some infinitesimally small δwith a
narrowhorizontal slice of the entire network. Due to relativistic invariance, however, such slices are invariant
under Euclidean rotations between real space and imaginary time. Thismeans in particular that a vertical slice–
corresponding to afield theory analogue of  ,—is also equal to δ−e H . Hence, knowing the spectrumof 
immediately yields knowledge about the spectrumofH. This in turn implies that all the information about the
eigenvalues ofH is already containedwithin the ground state. Of course, Lorentz invariance also strongly
restricts the dispersion relations of the theory, such that they are completely determined by a single parameter—
themass of the excitation.

The relevant question is thus howmuchEuclidean invariance between real space and imaginary time
remains in nonrelativistic lattice systems. As a concrete example, we consider the one-dimensional XYZmodel
on a chainwithN sites and periodic boundary conditions

∑= − + ++ + +H J S S J S S J S S . (52)
j

x
j
x

j
x y

j
y

j
y z

j
z

j
z

XYZ 1 1 1

By invoking a Suzuki-Trotter decomposition [6, 70], the finite temperature partition function, βZ , can be
mapped onto a classical two-dimensional eight-vertexmodel [43, 72] of dimensionN ×M, where the statistical
weights,W, of the arrow configurations depend on themodel parameters, the inverse temperature β, the Trotter
numberM, and the type of chosen decomposition.Herewe use a generalized Suzuki-Trotter decomposition,

∏= ≈δ δ δ− − ∑ −e e eH h
n

hn n n, with δ β= M . This leads to a real space decomposition introduced by Suzuki

[6], where theQTM,  , is translation invariant on a slanted lattice [7], andwe assumeM to be amultiple ofN.

The statistical weights are then given by = 〈 ∣ ∣ 〉δ−W cd abeabcd
hn [43]. The same network is obtained after a 90-

degree rotation of the lattice, and considering an equivalent effectivemodel on a chain ofM sites andTrotter
numberN at an effective inverse temperature, β̃ . TheQTMof the original lattice can therefore bewritten in

terms of the effectivemodelHamiltonian H̃ as  = δ−e H˜ ˜ with δ β= N˜ ˜ and effective statistical weights W̃ up
to a Trotter error inN. The effectivemodel parameters and the effective inverse temperature β̃ can be obtained
from the vertexweights after rotating (i.e., from =W W˜

bdac abcd). For a graphical representation of thismapping,
see figure 13. From this relation the spectrumof the effectiveHamiltonian can, in principle, be studied by
looking at theQTMgenerated by the ground state of the originalHamiltonian .

Note that depending on themodel and parameter regime, the effective parametersmay also become
complex, resulting in a non-Hermitian effectiveHamiltonian, and thus accounting for non-Hermitian transfer
matrices. This particular fact was already discussed in the case of systemswith Lorentz invariance, as the

Figure 12.Two-dimensional tensor network representing the ground state, ψ∣ 〉,0 of a one-dimensional local latticeHamiltonian,H.

The horizontal slices correspond to a decomposition of δ−e H into a translation-invariantmatrix product operator (MPO)with tensors
O. The ground state is obtained by successively applying δ−e H onto an initial state, ϕ∣ 〉init . Grouping contractions along the vertical
imaginary time axis,As can be interpreted as a translation-invariantMPS representation of the ground state. TheMPS-TM is then
identified as a single column of the tensor network representing the partition function at zero temperature, ψ ψ= 〈 ∣ 〉β→∞Z 0 0 .
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continuum limit can often only be taken after blockingN sites. In that case, all eigenvalues of the TMwould have
phases ϕ π=α n N2 with = … −n N0, , 1, and by defining = −H̃ log( )N up to some energy scale, a
Hermitian-effectiveHamiltonianwould be obtained. For systemswith incommensurate order, where the
eigenvalues can have arbitrary phases that are not fractions of π2 , this is no longer possible.

5.3. Truncation of the virtual system
In this subsectionwe showhow to obtain anMPS approximation, Ã ,s with afinite bond dimension from the
exactQTMconstructed in the previous subsections. Aswas shownpreviously, an exactMPS representation of
the ground state can be constructed from imaginary time evolution, where theMPSmatricesAs are given as a
semi-infiniteMPOanwith exponentially diverging virtual dimension (see figure 12). This construction allows
one to identify theMPS-TMwith the exactQTMat zero temperature.

In the following, we assume that theQTMcan bewritten in terms of an effective localHamiltonian,

= ∑H h˜ ˜
n n as  = −e H̃ , for instance via the construction of the previous subsection. In this representation, the

MPS-TMappears to be completely translation invariant in the imaginary time direction, with no special role
being played by the physical index s, where thematrices,As and Ā ,s of the exactMPS representation of ket and
bra are connected. The point is of course that, for expectation values of operators,O, different from the identity,
therewould be an extra insertion at imaginary time τ = 0, corresponding to theOTM,  ,O defined in (19).Here
we have set the origin τ = 0 of the imaginary time axis at the point whereAs and Ās are connected.

We can then interchange the roles of real space and imaginary time and give two distinct new interpretations
to the expectation value Ψ Ψ〈 ∣ ∣ 〉O x( ) . First, we can interpret the new imaginary time direction as the evolution
of a pure state of an infinite one-dimensional virtual system in the x direction according to theMPS-TM  , or
equivalently, the correspondingHamiltonian H̃ . At certain ‘times’ x, there is an insertion of some impurity,O,
at the fixed coordinate τ = 0, which destroys the translation invariance of the virtual system. An alternative
interpretation is given belowwhile constructing an approximationwith afinite bond dimension of the exact
ground-stateMPS,As.

To arrive at afinite virtual dimensionD, it is necessary to restrict the exponentially diverging amount of
virtual degrees of freedom (DOF) ofAs to afinite subset that is relevant for the physical DOF, s, at τ = 0.We thus
need to identify the relevant low-energy subspace of the virtual system to describe the evolution of the impurity
at position τ = 0 as a function of x; thefiniteD approximation, Ã ,s is then obtained from the exactMPS,As, by
projecting onto this relevant subspace.

The relevant low-energy subspace for an impurity problem can be obtained by applying real space RG
transformations, as wasfirst shown in the seminal work ofWilson using hisNRG [73].However, we here follow
themore recent construction using theMERA [16–20]. This approach allows one to identify the relevantDOF as
those living at the causal cone of the impurity [19, 20]. For completeness, we repeat this argument for our
specific case.

The following construction starts from the assumption that there exists a sequence of real space RG
transformations,  ,r that renormalizes H̃ onto its low-energy subspace, where r labels the layers of successively
applied RG transformations. Equivalently, r renormalizes  onto the subspace spanned by its dominant
eigenvectors. For concreteness, we consider a real space RGprocedure that coarse grains four neighboring sites
into two renormalized sites, which can be realized, for example, by amodified binaryMERA. If H̃ is scale
invariant, the transformations become independent of the layer index, r, after some amount of initial layers, r*.
At this point, all RG-irrelevant terms have been removed and the renormalizedHamiltonian is afixed point of

Figure 13.The systemdescribed by aHamiltonian,H, can bemapped onto a classical eight vertexmodel with statistical weights,W,
determined by themodel parameters bymeans of a Suzuki-Trotter decomposition.Herewe choose a real space decompositionwhere
theQTM  , is translation invariant on a slanted lattice. An effectivemodelHamiltonian, H̃ is obtained by rotating the systemby 90

degrees. The original QTMcan then bewritten as  = − β Hexp( ˜ )
N

˜
and the effectivemodel parameters can be extracted from the

effective statistical weights W̃ which are related to the original statistical weights,W through =W Wb̃dac abcd .
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the scale-invariant RG transformation,  . For non-scale-invariantHamiltonians, the series of RG
transformations terminates after ≈r log( )max layers, where  is the dominant length scale of the
Hamiltonian. At this point there are no relevantDOF left. These two cases can, for example, be represented by a
scale-invariant or afinite-rangeMERA, respectively [17]. An example for the latter case is shown infigure 14 .

TheMERA construction allows one to conclude that any perturbation at position τ = 0 can only affect the
DOF living at its causal cone [20]. This causal cone is shown as red solid lines infigure 14. In particular, let us
focus on one side of this causal cone (e.g., the lower half offigure 14). It is apparent that only one index of the RG
network protrudes from the boundary of the causal cone for each layer.We can therefore interpret these legs as
the sites of an effective lattice system,  ,W defined along the boundary of the causal cone, whichwe call the
Wilson chain.We label the sites along this chain by the layer index, r. Note that the r-th site on this chain is an
effective renormalized description of ≈N 2r

r sites of the original lattice, reminiscent of the logarithmic
discretization introduced byWilson, hence the chosen nomenclature [19, 20, 73].

Contracting the RGnetwork outside the causal cone (non shaded region infigure 14) allows, one to
renormalize theMPS-TM,  ,A into a newTM,  ,W along theWilson chain, W [19, 20]. It is immediately clear

that  W corresponds to the TM,  ,Ã of a newMPSwithmatrices Ãs, which are obtained by projecting the exact
MPS representation, A ,s exactly onto this subspace of relevantDOF along theWilson chain. For non critical
systems, theWilson chain is offinite length L, andwe obtain a virtual systemwithfinite dimension χ≈D rmax ,
where χ is the bond dimension of the RGnetwork. For critical, scale-invariant systems, however, theWilson
chain is still infinite and any truncation to afinite system introduces some error.

It is of course well known that ground states withfinite correlation length ξ can bewell approximated by a
finite-DMPS [4]. By virtue of the previous sections, the effectiveHamiltonian H̃ is gapped, where the gap is
exactly equal to ξ−1. It is interesting to contrast this interpretationwith themore usual considerations regarding
the gap of the actual physicalHamiltonian, H , of the system. For Lorentz-invariant systems,H and H̃ are equal
and the correlation length is directly given by the inverse of the gap in units where the speed of light c=1.
Without Lorentz invariance, there is no obvious relation betweenH and its Euclidean rotation, H̃ . The result of
[3] allows one to bound ξ (and thus the gap of H̃ ) in terms of the gap, Δ, ofH.When the low-energy behavior of
H still allows for an effective relativistic description, it can indeed be expected that ξ Δ∼ v ,where v replaces the
speed of light with some characteristic speed of the system.However, there is also the possibility of an inherently

Figure 14.TheTM,  , is renormalized onto the space spanned by its dominant eigenvectors (i.e., the low energy subspace of the
effectiveHamiltonian, H̃ ) through successive RG transformations, r ,that can, for example, be represented by local tensors s

(consisting of disentanglers and isometries), forming aMERA. The red solid line denotes the causal cone of the physical degree of
freedom s, i.e., the boundary between the two semi-infinite parts of  , corresponding to the exact ground- stateMPS representation,
As. This boundary defines theWilson chain, W , alongwhich an effective impurity problem arises for the physical degree of freedom s.
The finiteD approximation, Ã ,s is obtained by contracting the RGnetwork outside the causal cone (non shaded region) to retainDOF
along theWilson chain that are relevant for s.
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non relativistic low-energy behavior, resulting in, for example, gaplessHamiltonians, H , for which the ground
state is an exactMPS [74], so that the corresponding H̃ is gapped.

Finally, we can obtain an alternative interpretation by applying the Jamiołkowski isomorphism tomap the
pure state defined on the infinite, one-dimensional virtual systemof the previous discussion to the density
matrix of a half-infinite, one-dimensional virtual systemwith a boundary at τ = 0. By again interchanging the
roles of real space and imaginary time, this half-infinite systemundergoes dissipative evolution in the new time
direction x, corresponding to aHamiltonian containing the terms of H̃ with support on the region τ > 0, and
additional Lindblad operators corresponding to the action of H̃ across the boundary and the additional action of
an operator, O, inserted at certain ‘times’, x. Hence, all the Lindblad operators are acting near the boundary, and
the truncation of the bond dimension corresponds to selecting the relevantDOF to describe the boundary of the
system. It is a virtue of theMERA that it naturally unifies the process of selecting the relevantDOF for
boundaries and impurities [20]. The resulting virtual systembecomes effectively zero-dimensional, and can be
interpreted as providing a holographic description of the physical system [26].

6. Conclusions

In this paper we have investigated howmuch information about the excitation spectrumof a local translation-
invariantHamiltonian can be obtained from local information and static correlations in the ground state.We
have approached this question using the formalismof tensor network states in particular, but have also
established several general results not restricted to tensor network formulations.

We started by defining the regular andmixed tensor network TM for lattice and continuummodels in
sections 2.1 and 2.2.We then obtained tensor network approximations for the ground states of various
prototypical quantummodels on a lattice in one and two dimensions and (1+1)-dimensional field theories, and
we studied the spectrumof eigenvalues, λ, of the tensor network TM in section 3. Therewe observed that the the
complex arguments, ϕ, of the dominant eigenvalues correspond to themomenta, k ,min of theminima in the
low-energy dispersion of the system. Especially for criticalmodels, one can therefore easily determine the
momenta forwhich there exist gapless excitations directly fromground-state properties.We have used this to
determine the value of the Fermimomentum in theKLMstudied in [46], where no claims for zero temperature
were possible.We have also related the logarithmof the absolute values, ε λ= − ∣ ∣log , to theminimum
excitation energies, E ,min by some characteristic velocity ε=E vmin , which can be estimated by, for example,
assuming a Lorentz-invariant low-energy behavior (see section 4.3).

These observations are of significant, practical importance in the context of simulating quantummany-body
systems using tensor network techniques: they imply that fairly accurate information about the structure of the
low-energy excitation spectrum can be obtained just from a variational ground-state calculation.We
demonstrated that this is especially useful for two-dimensional systems using the PEPS formalism, forwhich no
other efficientmethods are presently known to extract information about excited states beyond the value of the
gap. In particular, we investigated the AKLTmodel on a square and hexagonal lattice cylinder, wherewe
obtained afirst approximation of the dispersion of the elementary excitations, for which no other competitive
numericalmethods currently exist. Some of the authors have subsequently used this approach to study
topological phase transitions and anyon condensation in the toric codemodel with string tension [53].

In section 4, we gathered several arguments to explain how the eigenvalue spectrumof the TMaffects the
low-energy excitations of themodel, and vice versa. In section 4.1, we explained how a clustering of eigenvalues
along the lines of the constant complex phase allows, to recover theOrnstein-Zernike formof correlations in
gapped phases if the distribution of eigenvalues becomes sufficiently dense in the limit → ∞D . In section 4.2,
we used the single-mode approximation and a recent proof about the locality of elementary excitations [62] to
explore why the phase of the eigenvalues along these lines correspond to theminima of the dispersion relation of
the elementary excitations in thosemodels.We also discussed that the full spectrumof the TMgenerally
containsmore information than static correlation functions of specific operators, as the TM is completely
independent of the choice of operators. To approach this connection from the opposite perspective in
section 4.3, wefirst called on the assumption of a Lorentz-invariant low-energy behavior to identify the
spectrumof the TMwith a discrete version of theKällén-Lehmann representation of correlation functions.
Finally, in section 4.4we introducedmomentum-resolved correlation functions by definingGaussianwave
packets of operators centered around a certainmomentum, k, in order to obtain amomentum-resolved
refinement of the celebrated result ofHastings [3], relating the correlation length in the system to the gap of the
Hamiltonian.

Furthermore, in section 5.1we identified the tensor network TM of an exact tensor network representation of
the ground state, with theQTM, appearing in path integral formulations of partition functions or ground states
of quantummany-body systems. Then, in section 5.1, we argued how theQTM is related to the original
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Hamiltonian for systemwith andwithout Lorentz invariance.We demonstrated that for systemswithout
Lorentz invariance, theQTMcan bewritten in terms of an effectiveHamiltonian, with effective parameters that
are related to the original hamiltonian. These parameters can in principle also be complex, thus yielding non-
Hermitian effectiveHamiltonians and non-Hermitian TMs. For systemswith commensurate order, a
Hermitian-effectiveHamiltonian can be obtained by blocking several sites in constructing the TM. Based on this
construction, some of the authors have subsequently obtained an analytic formof such an exactMPS ground
state representation for the case of the =S 1 2XYmodel in [56].

As a final point, we demonstrated in section 5.3 how a tensor network approximation of the ground state
withfinite bond dimensionD can be obtained from the exactQTM through a renormalization process where the
physical system acts as an impurity.More specifically, the tensor network TM stemming from afiniteD tensor
network ground-state approximation is a low-energy representation of the exactQTMafter applying several
renormalization group transformations. Further details of this relationwill be published elsewhere.
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Appendix. Derivation of the boundon the decay ofmomentum-filtered correlation
functions

This section contains the proof for (49) and (50) in section 4.4. The following derivation is general for any spatial
dimension and lattice geometry.

Let usfirst introduce the relevant notations and conventions. Throughout this appendix, we assume to be
working on a d-dimensional lattice, Λ ⊂  ,d generated by the primitive translation vectors, …a a, , d1 . The unit
cell has a volume, = ∣ ∣ ∣⋯∣ ∣V a a adet[ ]dcell 1 2 . Arbitrary lattice sites are denoted as Λ… ∈x y, , ; sets of sites are
denoted as …X Y, , , and the cardinality of a setX is denoted as ∣ ∣X . To every lattice site Λ∈x ,we associate
identical Hilbert spaces, x ; theHilbert space of thewhole system is  = ⊗Λ Λ∈x x . This requires that we
workwith afinite lattice, andwe assume periodic boundary conditionswith a period ∈ pi in the direction of
lattice vector ai, such that sites x and +x p ai i are identified for any i (no summation). The lattice is thus given by
the set of points, Λ = + … + ∣ = … − ∀ = …n a n a n p i d{ 0, 1, , 1, 1, , }d d i i1 1 .Wewill, however, be
interested in the thermodynamic limit, → ∞ ∀ = …p i d, 1, ,i , since this scenariowas used throughout the
main text.

The reciprocal lattice Λ̃ consists of all vectors, K , such that =K xexp(i · ) 1, Λ∀ ∈x . In particular, we can
define the reciprocal basis vectors, b ,i satisfying πδ=b a· 2i j i j, . The Fourier transformof a lattice function,

Λ → f : , is defined as

∑=
Λ∈

−F k f x( ) e ( ) (A.1)
x

k xi ·

and satisfies + =F k K F k( ) ( ) for any Λ∈K ˜. Hence, we can restrict tomomenta ∈k , where in the Brillouin
zone, , is theWigner-Seitz unit cell of Λ̃. Because of the periodic boundary conditions,momentum space is
discretized and can be identifiedwith Λ = + … + ∣ = … − ∀ = …n p b n p b n p i d˜ { 0, , 1, 1, , }d d d i1 1 1 1 .
Anticipating the thermodynamic limit and in order to harmonize the notationwith themain text, we
nevertheless denote the inverse Fourier transformation as

  ∫ ∫
π

= =f x
V

F k k
V

F k k( )
1

( )e d
(2 )

( )e d (A.2)k x
d

k xi · cell i ·

with  π=V V(2 )d
cell being the volume of the Brillouin zone.

By using the Euclidean scalar product to define p x· , we can use the Euclidean distance as a compatible
latticemetric, = ∥ − ∥x y x ydist( , ) ; the distance between two setsX,Y is defined as

= ∈ ∈X Y x ydist( , ) min dist( , ),x X y Y, and the diameter of a setX is defined as = ∈X x ydiam( ) max dist( , )x y X, .

We introduce a shift operator,T ,x for all Λ∈x that shifts a state, Ψ∣ 〉 ∈ Λ, over the lattice vector, x. The
Hamiltonian is given by = ∑Λ Λ⊂H H ,X X where the termsHX are supported on a subsetX, such that ΛH is
translation invariant
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Λ∀ ∈ =Λx T H: , 0 (A.3)x⎡⎣ ⎤⎦
and local, that is, there exist positive constants, μ, s, for which

∑ μ∥ ∥ ⩽ ⩽ ∞
∋

H X X sexp[ diam( )] . (A.4)
X x

X

This allows one to use Lieb-Robinson bounds [1, 2]

∥ ∥ ⩽ ∥ ∥∥ ∥∣ ∣ −μ− ( )A t B A B X[ ( ), ] 2 e e 1 (A.5)X Y X Y
X Y s tdist( , ) 2

for two operators,AX and B ,Y supported on disjoint setsX andY. Furthermore, we assume that ΛH has a unique,
translation-invariant (i.e.momentum k=0) ground state, Ψ∣ 〉 ∈ Λ,0 with ground-state energy 0. All
eigenstates ofH can be labeled by amomentum vector, ∈k , and an index, α, that labels all eigenstates within
a givenmomentum sector.We denote these energy-momentum eigenstates as Φ∣ 〉αk, , with eigenenergies αEk, .

The lowest excitation energy atmomentum k is given by E(k). Note that Φ Φ∣ 〉 = ∣ 〉−T ex
k

k x
k

i · for every vector
Φ∣ 〉k in the sector ofmomentum k.

For two operators,AX and B ,Y supported on disjointfinite subsets X Y, , we define the static connected
correlation function as

Ψ Ψ=C A B (A.6)X Y0 0

wherewe assumeAX andBY to have zero vacuumexpectation value.We attempt tofiltermomentum-space
information from this static correlation function by replacingBYwith awave packet

∑=
Λ∈

− −∥ ∥
B k N T B T˜ ( ) e e (A.7)Y r

x

k x x
Y

xi ·x
r

2

2

where the normalization factorNr is given by = ∑ Λ∈
−

−
∥ ∥

N er x

1
x

r

2

2⎜ ⎟⎛
⎝

⎞
⎠ .We thus attempt to bound themagnitude

of themomentum-filtered correlation function

Ψ Ψ=C k A B k( ) ˜ ( ) (A.8)X Y0 0

in the regimewhere X Ydist( , ) is large.

A.1. Proof
We start by defining ÃX as

∫π ϵ
=

− +−∞

+∞ −
−A

A

t
t˜ 1

2

e e

i
e d (A.9)X

Ht
X

Hti i
t

q
2

2

andfirst show that

∫

∫ ∫

∫

Φ Ψ Φ Ψ
π ϵ

Φ Ψ
π

Φ Ψ
π

Φ Ψ

=
− +

=

=

⩽ −

α α

α
ϵ

α

α
α

′ ′
−∞

+∞ −

′
−∞

−
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+∞
− + −

′
−∞

−
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′
′
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′
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′
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it
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A E
q
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qE

A
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2
d
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1

2
d d e e

d
2

e

exp
2

(A.10)

k X k X
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k X
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k X

E

k
k X
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, 0
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⎞
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and

∫

∫ ∫

Ψ Φ Ψ Φ
π ϵ

Ψ Φ
π

− = −
− +

= −

α α

α
ϵ
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−∞

+∞ − −

′
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d

e
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2
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∫Ψ Φ
π

Ψ Φ

=

⩽ −

α

α
α

′
+∞

−

′
′

α′

A E
q

c
qE

A

d
2

e

exp
2

, (A.11)

X k
E

k
X k

0 ,

erf
,

2

0 ,

k

qE

,

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where cerf is a constant that allows one to bound the error function by aGaussian.We can use these inequalities
to show that

∫ ∑Ψ Φ Ψ

Ψ

∥ ∥ = ′

⩽ ∥ ∥ ⩽ ∥ ∥
α

α′A k A

c A c A

˜ d ˜

(A.12)

X k X

X X

0 , 0
2

1 2

erf 0 erf

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

and similarly using the triangle inequality

Ψ Ψ Ψ∥ ∥ ⩽ ∥ − ∥ + ∥ ∥ ⩽ + ∥ ∥( ) ( )A A A A c A˜ ˜ 1 . (A.13)X X X X X0 0 0 erf

Wenowwrite A B k˜ ( )X Y as + − +A B k A A B k B k A[ ˜ , ˜ ( )] ( ˜ ) ˜ ( ) ˜ ( ) ˜
X Y X X Y Y X and again use the triangle

inequality to bound ∣ ∣C k( ) as

Ψ Ψ Ψ Ψ⩽ + − +( )C k C k A A B k B k A( ) ˜( ) ˜ ˜ ( ) ˜ ( ) ˜ , (A.14)X X Y Y X0 0 0 0

wherewe have defined a new correlator, Ψ Ψ= 〈 ∣ ∣ 〉C k A B k˜( ) [ ˜ , ˜ ( )]X Y0 0 .
For both the second and third termon the right-hand side of (A.14), we introduce a resolution of the

identity, whichwe separate into two parts: one coming frommomentum sectors withmomentumk′ satisfying
δ∥ ′ − ∥ ⩽k k (for the second term) or δ∥ ′ + ∥ ⩽k k (for the third term), and one coming from the rest. For

the latter contribution, we use theCauchy-Schwarz inequality towrite, for example, the third term

∫

∫

∫

∑

∑

∑

Ψ Φ Φ Ψ

Ψ Φ

Φ Ψ

′
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δ
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By observing that

∑Ψ Φ Ψ Φ

Ψ Φ
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⩽

α α
Λ

α
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∈

′+ −

−
′

∥ ∥
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2

where cgauss is defined inA.2, the first factor can be bounded as
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whereas for the second factor we use
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∫ ∑ Φ Ψ⩽ ′

⩽ ∥ ∥
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From the above, we thus conclude that
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An identical contribution is obtained from themomentum region, δ∥ ′ − ∥ >k k , if the resolution of the
identity is inserted in the second termof the right-hand side of (A.14).

For themomentum region, δ∥ ′ + ∥ ⩽k k , in the third term,we use the same approachwith theCauchy-
Schwarz inequality, but we nowbound thefirst factor by
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and the second factor by
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where δ = ′δ∥ ′− ∥⩽E k E k* ( , ) min ( )k k . Again, the contribution of δ∥ ′ − ∥ <k k in the second term is evaluated
completely analogously.

We can thus rewrite (A.14) as

⩽ + + +− − −δ δ δ−
C k C k c c( ) ˜( ) 2e e e . (A.17)gauss erf
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To bound the new correlator C k˜( ), we replace thewave packet, B k˜ ( ),Y with a completely local version,

B k˜̃ ( ),Y defined as

∑=
Λ
ℓ

∈
∥ ∥⩽

− − −∥ ∥
B k N T B T˜̃ ( ) e e , (A.18)Y
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and thus define yet another correlator , C k˜̃( ), as

Ψ Ψ=C k A B k˜̃( ) ˜ , ˜̃ ( ) . (A.19)X Y0 0
⎡⎣ ⎤⎦

The error in the operator norm can be bounded by the triangle inequality as
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where an accurate determination of Λc requires detailed knowledge about the structure of the lattice,Λ.We can
thuswrite

Ψ Ψ

Ψ Ψ

⩽ ∣ ∣ + −
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and, using theCauchy-Schwarz inequality in the different terms and (A.12) and (A.13), we obtain

⩽ ∣ ∣ + + ∥ ∥∥ ∥Λ
−ℓ( )C k C k c c A B˜( ) ˜̃( ) 2 1 e . (A.22)X Yerf r

2
2

Finally, to bound C k˜̃( ), we separate the time integral in the definition of ÃX into two pieces. For <t T , we
obtain
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wherewe have also used
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For the contribution of ∣ ∣ >t T , we use theGaussian in the integrand to bound
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The bound on C k˜̃( ) is thus given by
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Finally, putting everything together, we obtain
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In this expression, we can tune the constants r, δ, q, ℓ, andT as a function of X Ydist( , ), and the characteristics

ofE(k) around k (i.e., δE k* ( , )). It is clear thatwewant to impose the restrictions:

ℓ μ ℓ< ⩽ −X Y sT X Ydist( , ), 2 (dist( , ) ). (A.26)

Let us start by setting ℓ α= X Ydist( , )with α < 1and =T X Y vdist( , ) with >
μ α−

v s2

(1 )
. In addition, we

choose β=q X Ydist( , ) and γ=r X Ydist( , ), so that

30

New J. Phys. 17 (2015) 053002 VZauner et al



π

π

∥ ∥∥ ∥

⩽ + +

+ + +

+

Λ
μ α

− − −

− − − −

−

γδ β δ β δ

α
γ

β

−

( )

C k

A B

c c

c c X

c

T

r

( )

2e e e

2 1 e
2

e

2 2
e (A.27)

X Y

X Y X Y X Y

X Y X Y

X Y

gauss erf
dist( , ) dist( , ) dist( , )

erf
dist( , ) [ (1 ) ]dist( , )

erf dist( , )

E k E k

s
v

v

2

2
*( , )2

2
*( , )2

2

2
2

2

1

2 2

⎡
⎣⎢

⎤
⎦⎥

Wecannowfine-tune the remaining constant to have a similar decay in all exponentials. Assuming the system

has reflection invariance (i.e., δ δ= −E k E k* ( , ) * ( , )) we can therefore choose the constants such that

μ α
β

α
γ

γδ β δ− − = = = =s

v v

E k
(1 )

2 1

2 2 2

*( , )

2
. (A.28)

2

2 2 2

If there is no reflection invariance, the smaller of both δE k* ( , ) and δ−E k* ( , )will determine the slowest
exponential decay and should be used in the equations above.

Clearly, we should set β δ= −vE k[ * ( , )] 1.We then obtain μ α δ− − =s v E k v(1 ) 2 * ( , ) (2 ), fromwhich

we determine the optimal velocity, δ μ α= + −v s E k[4 * ( , )] [ (1 )]. From the second equality we can fix

γ α δ= . The remaining equation is therefore δ αδ=E k v* ( , ) (2 ) 2. Inserting the velocity, we obtain

μ α δ αδ δ− = +E k s E k2 (1 ) *( , ) 4 *( , )
⎡⎣ ⎤⎦

which determines α as

α δ
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δ μ
= + +− s
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2

2
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(A.29)1

and only leaves δ to be determined. Note that the restriction α < 1 is satisfied. The fastest exponential decay is
obtained bymaximizing
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If wewant tominimize the denominator, there is a clear tradeoff, since increasing δ decreases the first term and

increases the second. If k corresponds to aminimumof the dispersion relation E(k), then the function δE k* ( , )
will be insensitive to δ in some region, andwe can choose δ to be as large as possible within this region.However,
if k corresponds to a regular point where ≠k( ) 0E k

k

d ( )

d
, then there is a direct effect from increasing k to

decreasing δE k* ( , ).
Amore intuitive result is obtained if we treat the term coming from the Lieb-Robinson bound separately, as

the decay properties of this term are specific to the details of theHamiltonian. Let us assume that we only know
about the existence of somemaximal velocity of propagation vLR, such that for any ∣ ∣ ⩽v t X Ydist( , )LR , we can
write

ξ
∥ ∥ ⩽ ∥ ∥∥ ∥ −A t B c A B

X Y
[ ( ), ] exp

dist( , )
. (A.31)X Y X YLR

⎛
⎝⎜
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⎠⎟

Clearly, choosing, vLR results in a smaller ξ (a quicker exponential decay of the Lieb-Robinson bound), and
vice versa. For the Lieb-Robinson bound to be the smallest error in the proof in [3] of the exponential decay of
correlations, we need to choose vLR to be at least large enough such that

ξ
Δ⩾ E

v

1

2
. (A.32)

LR

If we nowuse the new Lieb-Robinson bound of (A.31) above, wewould again choose ℓ α= X Ydist( , ), but
wewould need tofix α= −T X Y v(1 )dist( , ) LR. Hence, we use afixed velocity of propagation andwe do not
optimize over it (essentially, the parameter μ in (A.30)).Wewill again try to have an equal decay in all
exponentials, except for the one coming from the Lieb-Robinson bound, whichwe allow to decay faster.We thus
obtain
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Setting γ α δ= and β α δ= − v E k(1 ) [ * ( , )]LR reduces these equations down to
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Clearly, thefirst inequality is trivially satisfied, since δ Δ⩾E k E* ( , ) and thefixed velocity, v ,LR satisfies (A.32).
From the last equation, we obtain

α
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and the rate of the exponential decay in X Ydist( , ) is given by
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Wecan then optimize over δ tofind an optimal decay.

A.2. Bounds on fourier transforms of gaussians
Wecompute the discrete Fourier transformof a sampledGaussian by inserting the inverse continuous Fourier
transform
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with Λ̃ being the reciprocal lattice and V , being the volume of the Brillouin zone (which is the unit cell of Λ̃).
Hence, the Fourier transformof the sampledGaussian is a sumofGaussians centered around the different lattice
points of the reciprocal lattice, Λ̃.We are only interested in the value ofG(k) for ∈k , so if r is sufficiently large,
the contributions of theGaussians around the points ≠K 0 will be very small. In general, there exists a constant
c ,gauss so thatwe can boundG(k) by
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