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The earlier search at HERMES for narrow baryon states excited in quasi-real photoproduction,
decaying through the channel pK0

S → pπ+π−, has been extended with improved decay-particle
reconstruction, more advanced particle identification, and increased event samples. The structure
observed earlier at an invariant mass of 1528 MeV shifts to 1522 MeV and the statistical significance
drops to about 2σ for data taken with a deuterium target. The number of events above background
is 68+98

−31(stat)± 13(sys). No such structure is observed in the hydrogen data set.

PACS numbers: 12.39.Mk, 13.60.Rj, 14.20.Jn

Keywords: Glueball and nonstandard multi-quark, Pentaquark, Baryon production, Baryons

I. INTRODUCTION

Exotic hadrons consisting of five quarks were pro-
posed on the basis of quark and bag models [1–3] in

the early days of QCD. Predictions based on the Skyrme
model [4–7] generated renewed interest in the possible
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existence of such manifestly exotic baryon states, and
chiral-soliton calculations suggested a narrow resonance
at ∼ 1530 MeV [8], named Θ+. Possible experimental
evidence for this state came from the observation of a
narrow peak at 1.54± 0.01 GeV in both the K− and K+

missing-mass spectrum for the γn → K+K−n reaction
on 12C [9]. This observation provoked a series of reports
of experimental sightings and theoretical predictions for
such states. Increased experimental scrutiny failed to
confirm most of these initial reports, and it is now gen-
erally accepted that there is no substantial evidence for
the existence of the Θ+ state [10, 11].

Motivated by the early reports of its existence, the
HERMES Collaboration undertook a search for the Θ+ in
quasi-real photoproduction off a deuterium target. The
reaction searched for was inclusive photoproduction of
the Θ+ followed by the decay Θ+ → pK0

S → pπ+π−.
A narrow structure was observed at 1528 MeV with a
significance of 3.7σ [12]. Consequently, in spite of the
demise of the Θ+, it remained of interest to improve the
sensitivity of the HERMES data to explore the possibility
that the observed structure signals a hitherto unobserved
baryon resonance.

This paper presents results of a more precise study
of the pK0

S mass region near 1528 MeV where a narrow
structure in the M(pK0

S) distribution was observed in
the earlier HERMES search. In addition to an increased
number of events analyzed, the new analysis employed
a better track reconstruction algorithm and an improved
particle identification technique to extract a much cleaner
sample of K0

S’s. In addition, data obtained on a hydrogen
target have been analysed.

II. THE EXPERIMENT

HERMES was a fixed-internal-target experiment in
which the target, a storage cell, was traversed by the
circulating beam of the HERA lepton storage ring [13].
The target consisted of an open-ended elliptical storage
cell that was aligned coaxially to the lepton beam. The
cell was fed by polarized or unpolarized gas. The polar-
ized target used an atomic beam source [14], which could
produce luminosities of the order of 1031 to 1032 cm2/s.
Unpolarized data were obtained using an unpolarized gas
feed system, operating with up to three orders of mag-
nitude higher luminosities. An integrated luminosity of
∼ 500 pb−1, corresponding to 28.4 million deep-inelastic
scattering (DIS) events, was collected on a longitudinally
polarized (unpolarized) deuterium target over the years
1998-2000 (2006-2007). With the hydrogen target ap-
proximately twice the luminosity was collected, corre-
sponding to 54.9 million DIS events accumulated over
the years 2002-2005 (2006-2007) on a transversely polar-
ized (unpolarized) target. Polarized data were summed
over the spin orientations.

For an overview of the configuration of the experi-
ment the reader is referred to the earlier HERMES paper

[12]. Advances in several aspects of the techniques of the
experiment reported there increase the sensitivity in the
search for new baryon resonances. In the original mea-
surement, particle identification was accomplished with
reconstruction of the event response of the HERMES
ring-imaging Cherenkov detector (RICH) [15] on a track-
by-track basis. This approach was dictated by the limited
computing capability available at that time. However,
this technique does not account for complications in par-
ticle identification caused by overlapping Cherenkov rings
from two or more tracks in the same detector half. By its
nature, the search reported here focuses on events with
at least three tracks. In the analysis presented, the defect
is remedied by the implementation of a more advanced
method of particle identification, in which the response
pattern in the RICH is reconstructed with simultaneous
generation of the response to all the tracks present in
an event [16]. In this way, possible track-to-track cross
talk is accounted for and the efficiency and purity of the
RICH particle identification is improved.

The K0
S spectrum is reconstructed with improved res-

olution and background rejection. This results from the
use of constraints on the track geometry instead of pion
identification with the RICH, and of data reprocessing
with a tracking code involving event-level fitting based
on a Kalman-filter algorithm [17], which corrects the
tracking parameters for the effects from magnetic fields
and accounts for all detector materials and known mis-
alignments. In this case, imposition of collinearity and
track-vertex reconstruction generates spectra of K0

S of
purity superior to that from the earlier measurements.

III. EVENT SELECTION

In the present analysis, the search for the Θ+ is
based on the observation of events in the decay chan-
nel Θ+ → pK0

S → p π+π−. Hadron tracks are identified
with an efficiency greater than 99% and a lepton contam-
ination of <1% [18] through the combined response of
a transition-radiation detector, a scintillator hodoscope
preceded by two radiation lengths of lead (the pre-shower
detector), a lead-glass calorimeter and the RICH. Only
tracks that are within the spatial volume of fiducial limits
corresponding to the acceptance of the HERMES spec-
trometer and within the momentum range 1 − 15 GeV
are accepted. Events selected must have at least three
tracks: one track identified as a proton by the RICH
with momentum in the region 4 − 15 GeV, in which the
RICH is able to identify protons, and at least two op-
positely charged tracks not identified as protons. In the
subsequent event reconstruction these tracks are assumed
to be pions, i.e., for tracks between 1 − 4 GeV the pion
hypothesis is always applied while it is done so in the
region of 4 − 15 GeV when the RICH does not identify
the particle as a proton.

The first step of the event reconstruction is the selec-
tion of the K0

S through the invariant-mass spectrum of
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the two oppositely charged particles, which are assumed
to be pions. The reconstructed trajectory of the K0

S can-
didate is then combined with the proton track to recon-
struct the Θ+ candidate. The geometry assumed in the
search for the decay of the Θ+ is shown in Fig. 1. The

Beam DirectionBeam
pV

0
SK

p

+π
-π

°<1α

FIG. 1. Diagram of the kinematic reconstruction of the decay
of a Θ+. The angle α is the difference in the direction of the
K0

S momentum (dotted line), as given by the pion momenta,
and by the vector connecting the event origin, V Beam

p , with
the decay of the K0

S (dash-dotted line).

momentum of the Θ+ candidate is inferred from the mo-
menta of the decay pions at their crossing point together
with that of the proton. The Θ+ decay vertex is taken as
the intersection of the proton track with the beam. The
distance between the K0

S decay point along the beam di-
rection and the crossing point, V Beam

p , between proton
and beam trajectories must be greater than 4 cm. The
direction of the momentum of the K0

S candidate, as de-
termined by the summed momenta of the decay pions,
is required to agree within one degree with the direc-
tion of the vector connecting V Beam

p , assumed to be the

production point of the Θ+ candidate, and the point of
decay of the K0

S (α < 1◦ as shown in Fig. 1). The de-
cay vertex of the Θ+ candidate is required to be in the
target-cell region, i.e., along the beam direction within
(−20,+20) cm for the long cell used in 1998-2005 and
within (+2,+22) cm for the short cell used in 2006-2007.

The invariant-mass distribution, M(π+π−), of the
pion pairs obtained after applying all selection criteria
is shown in Fig. 2. A Gaussian function for the peak
together with a third-order Chebychev function for the
background is fitted to the spectrum. Compared to
HERMES data published in 2004 [12], the resolution of
the K0

S peak has been improved from 6.2 ± 0.2 MeV to
5.24 ± 0.09 MeV. The peak position value agrees within
±0.2 MeV with the PDG-value 497.614±0.024 MeV [10].
The K0

S peak is also much cleaner than that of the data in
Ref. [12]. The fit as shown in Fig. 2 results in the number
of K0

S of 3311±60 (within ±2σ) with 87±11 background
events in the new analysis, compared with 963 ± 38 K0

S
contaminated by 180±15 background events for the pre-
viously published M(π+π−) spectrum.

In order to search for the Θ+, events were selected
with a M(π+π−) invariant mass within ±2σ about the
centroid of the K0

S peak.

) [GeV]-π+πM(
0.4 0.45 0.5 0.55

E
ve

nt
s/

(2
M

eV
)

100

200

300

400

500

600

700
0.10 MeV±=497.49new

0
SKM

0.09 MeV±=5.24new
0
SK

σ

0.2 MeV±=496.8old
0
SKM

0.2 MeV±=6.2old
0
SK

σ

FIG. 2. Invariant-mass spectra of two oppositely charged
pions showing a clear K0

S signal peak. The filled circles denote
this analysis with data from 1998-2000 and 2006-2007 while
the crosses are the previously published analysis of the 1998-
2000 data. For comparison, the standard deviations and mean
values of a single Gaussian function fit to the data together
with a third-order Chebychev function for the background are
given. The new analysis has a much improved mass resolution
and signal-to-noise ratio compared to that of the previous
HERMES analysis.

IV. RESULTS

The invariant-mass distributions of the pK0
S system,

M(pK0
S), for data taken with deuterium targets are

shown in Fig. 3. It includes the previously published
spectrum (open circles), a spectrum of that data rean-
alyzed (filled circles), a spectrum for data taken in the
years 2006-2007 (filled stars), and the spectrum resulting
from summing the data from both these periods of HER-
MES running (filled squares). Only weak suggestions of
resonance structure are observed in the newly analyzed
spectra.

The presence of significant resonance strength can only
be established by a careful analysis. In order to put a
limit on the presence of a resonance in the region near
1528 MeV reported in the earlier HERMES paper, the
summed data were used in a fit of a peak near that
energy accompanied by smooth backgrounds. In order
to explore the influence of the background shape on the
strength of the fitted peak, several different fitting in-
tervals were used. The background shape has been de-
scribed with theD∗−D0 mass-difference function (RooD-
stD0BG function in RooFit package [19] of ROOT) and
also with a third-order Chebychev shape (RooChebychev
function in the RooFit package). The peak function is a
Breit–Wigner function convoluted with a Gaussian func-
tion (RooVoigtian function in RooFit). The σ of the
Gaussian function is fixed at 6 MeV as determined from
a Monte Carlo study of the spectrometer resolution. Fit-
ting the data in different regions yields an average num-
ber of signal events N = 68+98

−31(stat) ± 13(sys). Here,
the systematic uncertainty includes the effects of using
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FIG. 3. The various M(pK0
S) spectra for deuterium data

taken at the HERMES experiment in the years 1998-2000
(top), 2006-2007 (middle), and for both periods combined
(bottom). Also shown in the top panel is the previously pub-
lished spectrum [12] from 1998-2000 of data that has been
reanalyzed here. A Voigtian (using a Gaussian with a width
fixed to 6 MeV) together with two different background hy-
potheses was fitted to the summed spectrum in the bottom
panel. The resulting curves are shown separated into signal
and background contribution and also combined. The width
Γ of the Breit–Wigner function, the peak position M , and the
number of signal events obtained from the fits are given in the
panel.

different background functions and different fit ranges.
It also includes the bias determined by repeating many
times a Monte Carlo simulation, in which the same sta-
tistics as in the real-data spectrum were generated using
a fitted shape of the real data. The number of counts
under the peak was fitted, and input and output num-
bers were compared. The average peak position found
is 1521.8 ± 4.3 MeV with a width of the Breit–Wigner
function 5.5 ± 12.5 MeV. A significance of this peak of
1.9σ is obtained from the difference between maximum-
likelihood values from un-binned fits [19] with and with-
out the peak function accompanying a smooth back-
ground shape. A value of 2.2 σ is obtained when it is
estimated from many trials using a Monte Carlo simula-
tion with an event generator giving a smooth shape and
each trial fitted with a peak plus background shape, in
order to determine the probability to produce a fake peak
with a strength equal to or larger than 68, the number of
signal events resulting from the fit. Taken together, all
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FIG. 4. M(pK0
S) spectrum from the hydrogen target.

these methods show that the significance of a signal for a
potential resonant structure at 1521.8 MeV is about 2σ
for the HERMES deuterium data.

For the HERMES hydrogen data there is no evidence
for a resonance structure in the M(pK0

S) invariant-mass
spectrum, as shown in Fig. 4.

These results are confirmed by two independent anal-
ysis methods [20] based on slightly different event se-
lection criteria. In one case the events were selected
based on a multi-parameter scan in an optimization of
the figure of merit Z = S/

√
S +B, where S and B refer

to the K0
S signal and background yields, respectively, in

the K0
S reconstruction and proton identification. In the

other, the additional requirement of a constrained purity
P = S/(S +B) along the 97% contour in the parameter
space was applied. The results for the M(pK0

S) analysis
of all three methods are in statistical agreement with one
another for both targets, hydrogen and deuterium.

V. SUMMARY

In summary, the HERMES Collaboration has revisited
the earlier reported search [12] for a possible Θ+ excita-
tion in quasi-real photoproduction on a deuterium tar-
get with improved tracking and more advanced particle
identification. The original data set taken in the years
1998-2000 has been combined with an additional data set
taken in the years 2006-2007, resulting in nearly twice as
many events as in the original measurement. As a result
of the improved tracking and kinematic reconstruction
methods, the invariant-mass spectrum of K0

S is obtained
with significantly less background and better mass reso-
lution. The significance of the potential resonance struc-
ture in the M(pK0

S) spectrum of the deuterium data near
the 1522 MeV region is about 2σ, compared to the previ-
ously published significance of 3.7σ [12]. The position of
the structure is 6 MeV lower in mass than the previously
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reported 1528 MeV, consistent with the accuracies of the
old and present analyses.

The observed drop in significance from 3.7σ to about
2σ, in spite of twice the number of events for the data
from a deuterium target, does not support the presence
of a positive Θ+ signal at HERMES kinematics. For the
hydrogen data there is no indication of the existence of
an enhancement in the region of interest. The limited
statistics of the HERMES measurement preclude a firm
conclusion regarding the existence of five-quark exotic

baryons.
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