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1 Introduction

Clifford analysis (see a.o. [1,3]) is a theory that offers a natural generalization of complex
analysis to higher dimensions. To R™, the Euclidean space in m dimensions, we first
associate the Clifford algebra Cl,,, generated by the canonical basis e;, © = 1,...,m.
These generators satisfy the multiplication rules e;e; + eje; = —20;;.

The Clifford algebra Cly,, can be decomposed as Cly,, = EBZ‘:OCZISM with Cl]&m the space
of k-vectors defined by Cl’&m = span{e;, i, = €, ...€;,, i1 < ...<1i}. More precisely,
we have that the space of 1-vectors is given by Cl(l),m = span{e;, ¢ = 1,...,m} and it is
obvious that this space is isomorphic with R™. The space of so-called bivectors is given
explicitly by Cl(z)’m = span{e;; = e;e;, ¢ < j}. Moreover, the even subalgebra le{m of Clo m
is defined by CIf,, = 3k even BCLG - Similarly, Cly ., = Sy oaa BCL,,, is the so-called odd
subalgebra.

We identify the point (71, ..., z,) in R™ with the vector variable x given by x = Y27, xje;.

The Clifford product of two vectors splits into a scalar part and a bivector part:

zy=xey+ITNYy

with
i 1
zey=—(z,y =— oy = 5(zy +yz)
j=1
1
TNy = Z ejen(Tjye — TrY;) = 5@3 — yx).

i<k
It is interesting to note that the square of a vector variable x is scalar-valued and equals
the norm squared up to a minus sign: z? = —(x,z) = —|z|?.
In a similar way we introduce a first order vector differential operator by 9, = >7*, 0, e;.
This operator is the so-called Dirac operator. Its square equals, up to a minus sign, the
Laplace operator in R™: 8; = —A,,. In the sequel, we will also consider the so-called

Cauchy-Riemann operator 0,, + 0, for which (0, + 04)(0xy — 02) = Apy1. A function



f(x1,...,xy), respectively f(zg,x1,...,%,), defined and continuously differentiable in
an open domain of R™, respectively R™"! is called monogenic in that region if 9, f = 0,
respectively (0, + 9,)f = 0. They generally take values in the full Clifford algebra Clg,,.
The spinor spaces may be interpreted as minimal left ideals of Cl ,, of the form S = Cly ,,, 1,
I being the primitive idempotent. Hence solutions of the spinor Dirac operator are in fact
monogenic functions of the form fI. In this paper we only consider monogenic functions
with values in the full multivector space Clg .

A monogenic homogeneous polynomial Py of degree k (k > 0) in R™ is called a solid inner
spherical monogenic of degree k. The set of all solid inner spherical monogenics of degree

k will be denoted by My.

A monogenic function is called an axial monogenic of degree k if it is of the form

Flaonz) = (Am, o+ £ Bloo, |as|>) Pu(w).

where A, B are scalar functions and Py is a solid inner spherical monogenic of degree k.
The monogenicity condition (0,, + 0;)f = 0 then leads to the Vekua-type system for A

and B:

2k —1
amoA_arB: +7mB ) axOB+aTA:O ) r= ‘£’7

,
the solution of which leads to numerous special monogenic functions (see [15]).

In general every monogenic function f(xg, z) is determined by its restriction f(0,z) to the
hyperplane 2y = 0 and conversely any given real analytic function f(z) has a unique mono-
genic extension f(xzg,z) called Cauchy-Kowalevski extension (abbreviated CK-extension)
(see [14]). Axial monogenics of degree k are also determined by their restriction

limz o @ f (2o, x), which turns out to be A(zg,0)P;(w) and consequently, starting from a
given function A(xg) of one variable, one may establish its generalized axial CK-extension
(A(xo, |z|) + 5 B(xo, |§|)) Py(z). This generalizes the standard CK-extension that is used

in our former paper [4]. If one composes this operation with the restriction to zo = 0 we



arrive at a correspondence

Alw) — (A(O, i+ 280 |x|>) Pu(x)

transforming one dimensional functions into higher dimensional ones. In Section 2 we
study this generalized axial CK-extension and the resulting correspondence in detail for
some cases, namely A(zo) = e, A(zo) = e *8/2 and A(zg) = (1 — 22)*, a € R.

In Section 3 we generalize our result to the case of biaxial monogenic functions. These
functions originate from the more general splitting R™ = RP @ RY giving rise to two vector
variables x = Y>0_, xje;, y = Y1_, y;€,4; that anti-commute, and the corresponding Dirac
operators Oy = >i_; Oy;€j, 0y = >.1_; 0y .€,1 . The over-all Dirac operator is d, + 9, and
biaxial monogenics are defined as solutions of (0, + 9,)f(x,y) = 0 of the special form

(z=rw,y=pf,we St e s

(A(r, p) +wB(r, p) +£C(r, p) + wED(r, p)) Pro(w, €),

whereby A, B, C, D are scalar functions and Py, is a solid inner spherical monogenic of
degree k, ¢ in the variables z and y, i.e. Pyo(Az, py) = Nu‘Py(z,y) and 0,[Pyo(z, y)] =
9y[Pre(z,y)] = 0. An example of such a solid inner spherical monogenic of degree k, ¢
is Ppe(z,y) = Pu(z)Pi(y) with Py, respectively P, a solid inner spherical monogenic of
degree k, respectively /£, in z, respectively y. Moreover it may be shown that (see [3]) the
monogenicity condition leads to Vekua-type systems for the pairs (A, D) and (B, C):
<8T—k>A+ (ap+”qp_1>pzo, (&JrW)D— (apf)A:o

r r 1%

respectively

<GT+W>B+<8P+M_1>C:O, <8r_k>0_<8p—€>320
r p r p

Similar to axial monogenics, biaxial monogenics are determined by their restriction to

the first axis R” given by y = 0 and the second axis R? given by z = 0. This leads to a



correspondence between functions on R? and functions on R? that will be investigated for

a number of examples.

In the fourth section we will produce special axial and biaxial monogenics as linear su-
perpositions of plane wave type monogenic functions.

In the axial case we start from monogenic plane waves of the simple form h(zo+i (z,t)) (1—
it), whereby t € Sm=1 is a variable unit vector and h is a classical holomorphic function

of the complex variable xo + i (z,t). We then consider the integral

[ hlao+ide.t) (1) Pu(t) dt

P, being a fixed inner spherical monogenic of degree k, which may be evaluated using
Funk-Hecke’s theorem and gives, up to a constant, rise to the generalized axial CK-
extension of h®(z4) (see Theorem 4.2). Note that in case of the function h(zy) = €™ we
can link this approach with the generalized axial CK-extension technique of Section 2,
since then h(*) () = h(zo) (see subsection 4.2).

In the biaxial case we start from plane wave functions F'(z, y; ¢, s) of either form h(i(z,t) —
(y,8)) (t+is) or h(i{z,t)—(y,s)) (1+its) with ¢t € SP~!, s € 597! variable orthogonal unit
vectors. After integration over the bi-sphere (¢,5) € SP7! x SU! of F(z,y;t,s) Pyelt, s)
with Py, an even Clifford algebra-valued inner spherical monogenic of degree k, ¢ in
the variable z and y, we obtain biaxial monogenics of odd and of even type respec-
tively. In subsection 4.3 we work out these integrals explicitly for the exponential function
exp (z(@, t) — (v, §>), giving rise to integral formulas for the Clifford-Bessel function of

biaxial type. The methods used in this section are substantially more complicated than

those in [4], due to the use of Funk-Hecke’s formula in its most general form.

It is clear that this paper deals with simple, though fundamental, examples of special
monogenic functions and that many more special functions may be computed using the

described methods.



For an introduction to Clifford analysis we refer to [1,3,5,6]. Other papers dealing with
axial and biaxial monogenics are [2,8,9,11-13].
This paper generalizes the results obtained in [4]. For the sake of readability, we have

repeated some formulae and calculations, which is then explicitly mentioned.

2 Generalized Cauchy-Kowalevski extensions: the axial framework
2.1 General problem

We start with explaining the idea of generalized axial CK-extensions.
Let us consider an SO(m)-invariant domain Q C R™*! and let us assume that the inter-
sections of 0 with all subspaces parallel to R™ are convex. Putting Q = Q N R, we have

the following result (see [3]).

Theorem 2.1 Let Py(z) € My be fized and let Wy(xg) be an analytic function in €.

Then there exists a unique sequence (Wy(0)),~o of analytic functions such that the series

f(o,z) = i W, (20) Pi(z)

is convergent in a neighbourhood U C R™*! of the domain Q2 and its sum f is monogenic

in U. The function Wy(xo) is determined by the relation

E

Pi(w)Wo(wo) = lim —f(xo,z), w= €5

|z|—0 |z|¥

[

The series f(xo,x) is the generalized axial CK-extension of the function Wy(xo).

In this section we consider series of the form

f(zo,2) = i Cs )k &st,k(SUo)W(xo)Pk(@

s=0



with Fo(z9) = 1, the coefficients ¢y, satisfying
OulCsn 2°Pu(z)] = o1 2° ' Pe(z), cop =1 (1)
and (0, + 9;)[f(z0,2)] = 0. In other words, f is monogenic in the whole of R™*! and

1
\:HTO Wf(x(]’&) = Pk(g)W(l‘o), W=

i.e. f(zo,z) is the generalized axial CK-extension of W (zy). The aim is to determine

10, 2) = (f; o xSFS7k<o>W(o>> Pul(a).

s=0

By means of induction and using the fundamental formula

—sz* 1 P (z) for s even
Op[2® Pr(z)] = (2)

—(s =1+ m+2k)z* ' Py(z) for s odd,

one can prove that the coeflicients ¢, satisfying (1), take the form

Cotk = L (% i k) and Cor+1,k = —

(% +k+ () 220!

(3 +k)
(% 4k 0+ 1) 22000

(3)

2.2  FExamples

2.2.1 W(xg) =e"

This example was already considered in [15]. Putting

f(xo,z) = i Cs i °Bg (z0)e™ Py (z)

s=0

with By (z9) = 1, the coefficients ¢, satisfying (1) and f being monogenic in R™*!, the

aim is to determine f(0, z).



The first step is to obtain B j (o). Expressing the monogenicity of f, we find consecutively

(8330 + @z) Z Cs,kisBs,k(xO)ezOPk(i) =0

s=0

— ZBSk (x0)e™cs i’ Pe(x) + Z By i (z0)e™ cs pz® Py (z)

s=0 s=0

+ Y Byi(zo)e™cs_1 52" Py(z) =0

s=1
— ZB; (zo)e™cs pa® Py(z) + ZBSk xo)e™ sk’ Py (z)
s=0 s=0
+ > Bar1k(wo)e™ ey’ Py(z) = 0,
s=0

where in the last series the substitution s’ = s — 1 was executed. The functions By (zo)

must hence satisfy the recurrence relation

Boyik(wo) = =Bop(wo) — Byg(zo) , Boxl(wo) =1,

from which it follows that By y(x¢) = 1 and By x(zo) = —1.

Next, using spherical co-ordinates z = |z|w, w € Sm=1 we obtain

f(0,z) = i Co o By n(0) Pr(z) = i Coe 12 Pp(z) Z Cors1 k2 Py(z)

5=0 =0

R )
_F<2+k> (;r( +k+e)22f£v>Pk()

+F<ﬂ;+k) ; (i (Dl ) 2P(z).

2\ (2 +k+0+1)220

In view of
" [e%9) (_1)£p2€
v = 4
T () ; O0(v+ €+ 1)2% )

with J,(p) = p~“J,(p), J, being the Bessel function of the first kind, we finally arrive at

£0.2) =T (5 + k) 2247 (i () + Toalal)z) Pe(a).

Remark 2.1 Note that the full generalized azial CK-extension of e*° is given by:

m ~ ~
f(xo,2) =T (2 + /f) 2 (g (l2l) + Tnjoan(lzl)z) € Pulz).



2.2.2 Wi(xy) = e /2
We now consider the series

f(xo,z) = o lsHs,k(IO)e_xg/2Pk($)
s=0
with Ho(z9) = 1, f being monogenic in R™*! and the coefficients ¢ given by (3). We

again want to obtain a closed form for f(0,z).

In a similar way as for the first example, the monogenicity of f yields:

Hqy1x(20) = 2oH g (20) — H, 1. (0) ; Hox(zo) = 1.

From the above recurrence relation it follows that Hjj(x¢) are the classical Hermite
polynomials on the real line associated with the weight function e~%0/2, which are defined

by the Rodrigues formula

H, (o) = 78/ (_ a ) femst2]

dl’o

These polynomials satisfy (see e.g. [10], p. 250):

—1)¢(20)!
H257k(0) = (£)|2<Z> and H2£+1 k(O) 0,

from which we obtain

00 o T 20 /12 £
F0.2) = 3 coa s 0)Py(x) = 323 +E)_2012- (%) nw.

=0 e:or<2+k+€) (£1)? 2

Taking into account (see e.g. [10], p. 3)

we finally arrive at

P& T(+s) 1P\ (Lm Jaf
0= gZoF(eJr?Jrk:)“(?)Pk(@_lFl(+k7>Pk<I>




with

Kummer’s function.

2.2.8 W(xg)=(1-123)* a€eR

As alast example, we consider for W (zq) the Gegenbauer weight function. The generalized

axial CK-extension now takes a slightly different form, namely

o) =S e 2°C%(20)(1 — 22)° Py(x)
s=0

with G (z9) = 1 and the coefficients c,;, again satisfying (1). We indeed have that

. 1 2\«
éllr—rfo @f@oa&) = (1 = 25)" Pr(w).

First the aim is to determine G¢) (7o) and then the series 332 ¢, x2°G51(0) Pr(2).

S,

The monogenicity relation (9., + 9.)[f(zo, )] = 0, leads to the recurrence relation

’

Goar(T0) = 2(a = 5)20GT 4 (w0) — (L —25) (G2p) (w0),  Giplzo) =1 (6)

The results below concerning the polynomials G (7o) are already mentioned in [4].

The polynomials of lower degree take the form

Golzo) =1
Tr(20) = 209
Gy (o) = 20200 — g — 2a
G (w0) = da(a — 1)(2a — 1)z — 120(r — 1) g

ete.

10



Putting

t

t
Goa(wo) = Y by"wg’  and Gy p(wo) = Y- by g™,
=0 i=0

) . . 2 2t+1
we can derive an expression for the coefficients b3, " and b%il’a

Theorem 2.2 For 0 <i <t, one has

2o _ to2t (=2t + 1)y ;22T (a4 1/2 —t+1)
e TS | (RS V) N A (S TTGH ]
(0 —2t)ar 11

B = (—1)'22 (2t + 1) (~1)'

| (20 — 4t — 1)gyq D — 2t — 1/2)
2% (o + 1/2 — t + i)
(t —4)!(2i + 1)

with (@) =ala+1)...(a+l—1)= % Pochhammer’s symbol.

Proof. This result is proved by means of induction on the degree of the polynomial and

using the recurrence relation (6). [J

Using the above theorem, we can write G (zo) in terms of the classical Gegenbauer

polynomials on the real line.

Corollary 2.1 One has

—2t+ D)ot a—oi41/2
Ge _ 29 L C
(a0 — 2t)9141

GSy (o) = 2271 (2t + 1)) Cord ™ (o)

(20& — 4t — 1)2t+1

with CX (o) the classical Gegenbauer polynomial on the real line given explicitly by (see

e.g. [10], p. 219)

Co(xo) =

Proof. This follows immediately from Theorem 2.2 and the explicit expression (7). O

11



From the above it follows that G5, ;(0) = 0 and

2t)l  T(a+ 12 —4t+ D (a+1/2 — )

50) = B = (—1y22!
In view of (see e.g. [10], p. 3):

1
[(22) = 7~ Y222 1T (2)T (z 4 2) ,

the expression for Gg; ;(0) can be simplified to

L(20)! T(a+1)
t! T(a—t+1)

5ek(0) = (=1)

We thus obtain

> ok ® GE(0) Pr(z) =D o™ G5, 1 (0) Pi(z)
s=0 =0

F(5+k) | 20 Ta+1)
e T s 1)

=T (3+k+0)22
Taking into account (5) and (see e.g. [10], p. 2):

Na+1—10)=(-1)T(a+ 1)%,

expression (9) becomes

— s o & F(%—I—k) F(€+%)F(3_a)(_|£|2)e
S;Ocs,kl S7k(0)Pk(x)—€ZOF<T§+k+€) F(%) M(—a) / Pi(z)

= 2F1(]-/2a —a;m/2 + k; _|l|2>Pk(l)

with
X T(a+)Tb+0) T(c) 2*

F1(@b62) = 2 LT T Tt o d

the hypergeometric function.

12

t! T(a—2t+1)I'2a—2t+ 1) —2t+1/2)



3 Generalized Cauchy-Kowalevski extensions: the biaxial framework

In this section we consider functions of two vector variables » = YV_, xje; and y =

Z?:l Y;jep+j- The sum x + y represents a vector variable in RPT4 = R™ equipped with the

orthonormal basis (e1, ..., €y, €pt1, ..., €ptq). The corresponding Dirac operators take the
form 0, = Y%_, 0,,e; and 0y = >9-10y,€p4+;. Note that the vector variables and Dirac
operators anti-commute, i.e. zy = —yzx and 0,0, = —0,0, and that the vector variables

are orthogonal, i.e. <g, g> = 0.

In the following, Py (x) and Py (y) represent solid inner spherical monogenics of degree &’
in the variable z and of degree ¢ in the variable y. This means that Py (x) and Py(y) are
homogeneous polynomials taking values in the Clifford algebra spanned by respectively
{e1,...,e,} and {epi1,...,€p4q}; they satisfy the relations 0,[Py(z)] = 0, Py(tz) =
t* Py(z) and 9y[Pr(y)] =0, Pulty) = t* Py(y). We also assume Py(z) and Py (y) to be

even Clifford algebra-valued, which implies that P (z) and Py(y) commute.

Let us first introduce the concept of generalized CK-extensions in this biaxial framework.
Consider an SO(q)-invariant domain Q C R and assume that the intersections of € with

all subspaces parallel to R? are convex. Putting Q = QN R, the following holds (see [3]).

Theorem 3.1 Let Py(y) € Mp(q) be fived and let Wo(z) be a fized analytic function
in (2. Then there exists a unique sequence (Wy(z)),~, of analytic functions such that the

series

fla,y) =2y Pr(y)Wi(z)
s=0
1s convergent in a neighbourhood U C R™ of the domain €2 and its sum f is monogenic

in U. The function Wy(x) is determined by the relation

PAOWole) = lim oz f(rw). b= Iyl

The function f(x,y) is the so-called generalized biaxial CK-extension of Wy(x).

13



3.1 First example: Wy(z) = e 2°/2P, (2)

Given

f(g’ g) — Z 0378/ QSPZ/ (Q)HS,’C/ (£)€7|£‘2/2P]€/ (g)
5=0

with HO,k’(&) = 1,

Oylese v Pr(y)] = cs—10 Yy Puly), cow =1

and (0, + 9,)[f(z,y)] = 0, the question is to determine

.
e~0 [z

F(ey) =3 e 4 Poy)Hap (0) Polw).

s=0

In a similar way as in the previous section, we obtain that the coefficients ¢, » are
r(4+0)

T (440 +0) 220

r(4+0)
T (440 +041) 22100

Cop o = and Cop41,00 = —

From the monogenicity of f, we obtain consecutively

(9. +y) [Z Cory* Po(y) Hopo()e ™2/ Py <x>] =0

s=0

— ics,z'(—l)sySPef (v) (—gHs,k/ ()P (2) + 8y He o (2) P @)]) o—laf?/2

+ 2 Cowy® Po(y) He 1 o (2)e” 22 Py (2) = 0.
The functions H (x) thus satisfy the recurrence relation
Hypy0(z) Po(z) = (=1)°(2 — 0p) [How (2) P (z)],  How(z) =1,
from which we observe that

Hoppo(z) = (-1)'H5;S/ (z)  and  Hoppqw(z) = (—1) Hg S0 (2)

with HSG,?,H (x) the so-called generalized Clifford-Hermite polynomials introduced by Som-

men in [15]. Taking into account the expression of these polynomials in terms of the

14



generalized Laguerre polynomials on the real line

’ 2 2
HGGH (x) = 2'0Ly ! ('“2') and  H5Gy (2) = 201" (' 2' ) z,

and the relation (see e.g. [10], p. 240): L%(0) = (0‘2!1)", we have that

tort (g +E+ g)
Hoypp(0) = (-1)2" ———<+ and Hoypiq10(0) = 0.
T (3+#)
This finally yields
. 1
|}:1\T0 Wf( = Z co.0y* Po(y) Hop 1 (0) P (w)

=0
D) & TR0 (P
Cr(z+ k:') g;) T (g Snyi s E) a <2> Prlg)hele)

3.2 Second example: Wy(z) = (jk/+p/2_1(|g|) +gjk/+p/2(|g|)) Py (z)

In this subsection we determine the generalized biaxial CK-extension of the Clifford-Bessel
function without exponential factor, introduced by Sommen in [15]. We now put
Fz,y) = cor v Pr)0s | (Tapo-1(z]) + 2irippa(lz])) Po(@)]
s=0
where the coefficients ¢y are taken such that 3732, ¢, y° Py (y)(?; is monogenic, i.e.

(0; + 0,) {Z?‘;O o Y P @a;} = 0. This leads to the equation
cs,g/(‘?g[gng/(g)] = ( ].) Cs_ 14/ Pg/( )

As limyy, o Wf(g, y) = Wo(z)Pr(€), we also have that ¢y = 1. By means of induction,
one can prove that in this case the coefficients ¢, »» take the form

(1T (4+0) (DT (4+0)
d cayr00 = .
(440 +10) 220 DT (3L 1) 22

Coppr =

(10)

15



The question is to determine lim;_o ﬁ f(z,y). Hereto we start with the following result.

Theorem 3.2 One has

03 [ (Twsprz—([z]) + 2w spa(|2])) Pio(@)] = (—=1)* (Jospjoi(zl) + 2T ippa(lz])) Pe(z).

Proof. By means of the series expansion (4) for the Bessel function we have that

(Jersppa-1(l]) + 2Tispy2l2])) Por(2)

— 9l-p/2—K i z* Py (z) 4 9—P/2—K i 2>+ Py (z) .
=0T (B + K+ 0) 2 SO (B4 K+ 0+ 1) 2%

Using the fundamental formula (2) and executing the substitution ¢/ = ¢ — 1 in the first

series, we have consecutively

Oa [ (Tirspra1(|2]) + 2Tivspya(|2])) Poo(2)]

i i 2?1 P () _omp/2W i (20 + p + 2K 2% Py (2)
S0 (B4R +0) 22 SO0 (B4 K +041)2%
— _9p/2-K i 221 Py () _ gmp/2-kL i 2% Py (z)
P O (B4 K 404 1) 22 S 0T (B4 K+ 1) 22

= — (Joapo-1(z)) + 2T ippa(lz))) Po (),

from which the desired result follows. [J

We thus have that

flz,y) = i oy Po(y)(=1)" (Jspjar(|2]) + 2y sppa(|2])) Pe(2)

s=0

16



which leads to

l 1 b 21—p/2—k’ .
im 7z Cs, 0/ ’ 1) ——~ Pw(w
/@) gjgyg(x >r@+w)k()
21—p/2 K 00
e (ch - Y )PA )P ()

+E)\S T (§+ 0 +0) 220!

_ epfre (W')(& [y
= 2! o >

’2€

3 ly )
P’ P/ .
Z ( +£l+£+1) 920+1 ) f(ﬂ) k(@)

The above calculations lead to the following result.

Theorem 3.3 One has that

|z|—0 ’&‘k/f(g’ Q)
Y INE + El T T
gww4%é+$a@m@wWW(M)quMU
r(4+0) y
9(q=p)/2+0' =K' __\2 Pu(w)Pu(y)|y 1-q/2-0 (I —1(ly]) — 1. Y )
r(g+k0 i (@) Por (y)]y] a/2+e—1(1yl) |gq0%(LD

with I,,(2) the modified Bessel function of the first kind.

Proof. This theorem is proved using the series expansion (4) and the relations (see e.g.

[10])

J(2) = 27" J,(2), J(iz) = "1, (z). O

Remark 3.1 During the above calculations we have also obtained a closed form for the
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full generalized biazial CK-extension:

flasy) =20 (L 40) Poty) (Tysre-alilyh) = yaretilyDy)

% (Jpjpsw1(lz]) + 2poin(|2)) Po(x)
Y

— Qu/2+¢-1p ( + é) Po(y)ly**" <]q/2+z'—1(|y’) - |y|fq/2+ef(ly|)>

_ k! X
meWk(%%me+uﬁmme&@»

Note that from the monogenicity of f it follows that the even Clifford algebra-valued part:

el = 27200 (L) (Fymawns(l) Tyema(ils)

+w#wqumﬂM0%@H@)

and the odd Clifford algebra-valued part

el =220 (§4) (Gymanel) Tyseatia) o

nmmﬂbmwmm)mm&@

are also monogenic.

3.3 Third example: Wy(z) = 1F} (a & —@) Py(z), a,ceR

Similar to the previous subsection, we start from the following expression for the genera-

lized biaxial CK-extension

where the coefficients ¢ take the form (10).

We start with calculating the derivatives of Wy(z).

18



Proposition 3.1 Forn € N one has

o [ (w5 o] -2 (e (v ei) 1)

2
x 15y (a +2n —i;c+2n — i —|2|> (—2)*"* Py (x)

2 n
5’5”“ [1F1 <G§C; o ) Py (x 1 Z ()21~ 2 (p +kK +n—i+ 1) (n)
- 2 C 2n+1—1 2 i \?

=

2
x 1F; (a +2n+1—dic+2n+1—71; —|:E2’> (—2)* 12 P (2).

Proof. This result is proved by induction on n using the relations

2 2
Op [1F1 < ,5,—||>] = g 1F1 (04‘1‘ L; 8+ 1;—|$2> (—z)

and

((—2)" 1Py (x) for ¢ even
Ou[(—2) P (2)] =

(l+p—1+2K)(—2)" Pu(z) for £ odd. O

The differential equations in Proposition 3.1 lead to

(2 e )~ 28] i

z=0

1 2
<‘ G oz [1F1 (a; & —|$2|> Pk'(ﬂf)D = 0.
la=0

=

Hence, we obtain the following boundary value:

. 1 9 a D ,
m Sz, y) =D coney™ Py 2”<+k) Py (w
o Jafe /(88 = g e G G ), )

. a), % k,/ 2\
M;' <|y|> Py (y) Pe(w)
= oF}, <a

2

1\3 \

, ,yl?
+ka 77+£ 9 Pf/( )P]f’( )

19



Remark 3.2 The above calculations can be generalized to:

iy

Wo(z) = pFy <a1,...,ak;cl,...,c@; 5 >Pk/( )

witha; e R (i =1,...,k), ¢; eR (j=1,...,¢). In a similar way as above, we obtain

4 Monogenic plane waves
4.1 General method

For this method we refer to [16].

In what follows, we will frequently use the following Funk-Hecke theorem (see for e.g. [7]).

Theorem 4.1 (Funk-Hecke theorem) Let Sy be a spherical harmonic of degree k, then

[ P Selw) dS(@) = Any Sila) [ SO0 - )32 Py (0) d

where Py m(t) denotes the Legendre polynomial of degree k in R™, expressed as follows in

terms of the Gegenbauer polynomials

Kl(m = 3)! -

2)/2
(k+m—3) " (®)

Py (t) =

and A,,_1 = 202 the area of the unit sphere S™2 in R™1,

r(=z)

4.1.1  The azial case

Let h(z) be a holomorphic function in z € C. Consider h(zo+i (z,t)) (1 —it) with o € R,

z € R™ and t € S™'. We have that
(0o + Op) [M(wo 41 (2, ) (1 —it)] = P (2o + i (x,1)) (1 +it) (1—1it) =0.

20



In the sequel, we consider the following integral:

f(zo,z) =C s h(xg +i{x,t)) (1 —it) P(t) dt

with C' a constant and Py(t) a fixed inner spherical monogenic of degree k. Naturally, we
have that (0, + 01)[f(20,2)] = 0. Let us now determine lim;o @f(xo,g). Hereto, we
first expand h(zo + i (z,t)) into a Taylor series:
0o ([ f
h(zo +i(z,1)) Z O ().

=0

Hence, we have that

/S h(aoti{z,t) (1 it) Pt i /S @)’ (1—it) Bt

Let us consider the integral over S™! in the case when ¢ < k. Application of the Funk-

Hecke theorem yields

/Smfl (z,t)" (1—it) Pu(t)dt

2r(m=1/2 El(m —3)! 1 _
=P —/ t'(1 — )= I R ()

where we have used spherical coordinates z = rw, r = |z|, w € S™L.

Taking into account the orthogonality of the Gegenbauer polynomials:
1
/ 1ONE) (1 — 2V =0 if £ <k, (11)
-1
we immediately obtain that in case of £ < k:

/Swl (z,0)" (1—it) Py(t) dt = 0.

We thus have that

/Sm_1 h(zo + i (z,1)) (1 —it) Pyt ﬁ:: i |z /Sm_1 (w,t)" (1 —it) Py(t)dt
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and also

‘xﬁk C [ hleo+ilat) 0 —it) Pe) dt

o 1, (0) Y
hgoﬁ | F / (w, ) (1—it) Pu(t)dt,
. Sm—l

=k
from which we immediately see that
1 R (z0)i* % ,
ln e ) =€ T [ et (- i) Pt

Applying once more the Funk-Hecke theorem gives

_ 1 R (zg)iF 2m(m=1)/2

2

—iwh(w) / 1

-1

1
<Pk(w) /_ ltk(l — =32 p () dt
tR(1 = )m=32P (1) dt).

The second integral is zero in view of the orthogonality relation (11). Furthermore, ap-

plying the following relation (see [7], p. 188, ex. 4)

m—1

r
/_11 f(t) kam(t) (1 . tQ)(m—3)/2 dt — le_M /_11(1 . tQ)k+(m—3)/2 f(k)(t) dt

with f a function which is k£ times differentiable, we arrive at

1 ikZ_k+17r(m_1)/2

f(zg,z) =C - (k N mT_l) ) (z4) Py(w) /11(1 _ 2)REm3/2 gy

lim —
2| —0 ||
From the orthonormality relation of the Gegenbauer polynomials we derive that

7237 %=mD(2k + m — 2)

(k- 252) (£ (b + m52))
VA (kg - 3)

/ Ck+ m—2) /2 (1) Ck+m 2) /Q(t) (1 _t2)k+(m—3)/2 dt —

r(k+7%)
where we have used (8). We thus finally obtain
1 Z'k217k7rm/2
lim — f(zg,2) =C ———————h¥(20) Py(w).
120 |z|F f(o,2) T (k+15) (w0) Fi(w)

The above calculations lead to the following result.
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Theorem 4.2 Let h(z) be a holomorphic function in z € C, g € R, z € R™ and Py(t)

a fixed inner spherical monogenic of degree k. Then the function

T (k+2) (—i)k2k!

’ﬂ'm/Q Sm—1

h(zo +i(z, 1)) (1 —it) Pi(t) di

f(x07£> -

satisfies
(1)
(Ozo + 0) f (20, 2) =0
(ii)
lim — f(zg,z) = h(z0) Plw), w=
In other words, f(xy,x) is the generalized avial CK-extension of h'*) ().
Remark 4.1 Note that we can only link this approach with the generalized CK-extension

approach in the azial framework (see Section 2) in case of the function h(xg) = €™, since

only then h(xo) = b (x¢).

4.1.2  The biazial case

In the biaxial case monogenic plane waves F'(z, y;t, s) take the form h(i(z,t) — (y, s)) (t+

is) or h(i(z,t) — (y,s)) (1 +its), t € SP~', s € ST

We consider integrals of the form

/S /S F(z,y;t,8) Pu(t) Pr(s) dt ds, (12)

where, as in Section 3, Py(z) and Py (y) represent solid inner spherical monogenics of
degree k' in the variable x and of degree ¢’ in the variable y. Again we assume them to
be even Clifford algebra-valued, which implies that they commute.

Integrals of the form (12) lead to biaxial monogenic functions of the form

[A(lzl, ly]) +wB(|zl, lyl) + £C(|z|, [y]) + wED(|zl, [y])] Prr(w) Pr(§), z=|zlw, y=|yl¢
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The evaluation of integrals of the above type is based on applying Funk-Hecke’s theorem

twice.

Let us first consider the restriction to z = 0 of the even Clifford algebra-valued biaxial

monogenic:

Flay) = [, [ bt = (.5) (1+its) Po(t) Po(s) dids.

Like in the axial case, we start with expanding h(i(z,y) — (y, s)) into a Taylor series:

i, t) — (ys) = 3> CED 0y )

(=0
which, after application of the Funk-Hecke theorem, leads to

4 4r(Pta)/2—-1

F@y =2 gkl ey r ) (et ([ =iy )

2

Po(©) ([ 1O Igls) (1= 2Py (s)ds )
+ iw Py (w) (/11 tf(l — t2)(p—3)/2pk/+17p(t)dt)
ere© ([ B Jyls)(1 - DRy f5)ds ) }

From the orthogonality (11) it follows that all terms with ¢ < k" are zero. Moreover, it is

then easily seen that

1 & gppte)/2-1

A T AT

Po(©) ([ B9 (~lgl)(1 = £ I2y  (s)ds) . (13)

| Petw) ([ 11 (1= t2)<p—3>/2pk,,p<t)dt)

Next, in a similar way as in the axial case, we find that

27 R/l (25
(K +3)

1, B
/_lt’“ (1 —t)e=32p, (t)dt =

Y
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hence the boundary value (13) becomes

lim o f(z.y)

|z|—0 ‘l’|k/
’ ’

_ , , k’ g (q—3)/2 , )
_F(%l)r(k/_‘_g)Pk()PK (/h —ly|s)(1 — 5%) Pe()d) (14)

The Taylor series expansion:
oo [ 4
ife.t) — .5) = > L0 gy

yields in an analogous way

ife(L Y)

lim
lyl—0 |y|¢

—1)¢' 92—t p(p+ta—1)/2 .
T S Pe@ @) ([ WOl — ) Ry ayat) . (15)

(5T

The limit values of the odd Clifford algebra-valued biaxial monogenic:

- /sp—l /Sq—l h(i{z,t) — (y,s)) (t+is) Pw(t) Pr(s) dtds

take the form

lim - —f(z,y)

|z|—0 |l’|kl
k +192— K’ 7T(p+q—1)/2

CHNCED Pro(@)§Pe (€) (/ W) (=Jyls) (1 = 83T Py o (s )ds> (16)

and

lim —f(z.y)

lyl—o |y|*
(—1)¢'22-¢ glp+a=1)/2

_ WP ) “x _2\e-3/2p,
ST C T Rtia” ) ([ n 0l = 2092 P ) (1)
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4.2 llustration of monogenic plane wave integrals in the axial case

From Theorem 4.2 it follows that

T (k+15) (—i)k2k

Tm/2

f(z0,z) = ¢ /S D (1 i) Py(t) dt (18)

is the generalized axial CK-extension of e*. From the generalized axial CK-extension

approach (see subsection 2.2.1, Remark 2.1) we already know that f(xg, z) takes the form

m
o) =T (g +8) 2207 (D salal 4o (alal =) P
(19)

We further calculate (18) using the Funk-Hecke theorem

9 (m—1)/2

. 1 3
/ ¢t (1 —it) Py(t) dt = —— [ Pu(w) / (L — )P (bt
gt I (L—l) -1 ’

2

— iwPy(w) / 1

-1

ellalt(1 — tQ)(m—?’)/?PHLm(t)dt) :

By comparing now the scalar and vector part of (18) and (19) we obtain the integral

equations

A m/2—1
(—1 |z ! i|z|t 2\ (m—3)/2
il = 2y (5 R e WO

(
NEdl m/2—1 1
Tupsinllzl) = % (B [ e a-ermorr o

-1

which are an application of the following integral expression which is derived in [7], p.

203-204:

-1

) ) @m/ﬂ / LR (B)(1— ) 2g(20)
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4.8 llustration of monogenic plane wave integrals in the biaxial case

We will now illustrate the monogenic plane wave approach in the biaxial framework for
h(z) = e* in order to obtain integral formulas for the Clifford-Bessel function of biaxial

type (see subsection 3.2, Remark 3.1):

FPe(g, ) = 20/2+ 1r<2+£) (Tuyzsoailyl) = Tyreilyl)y)

X (jk/+p/2_1(‘£|) +£jk’+p/2(‘l|>) Pk’( ) PZ’( )

Applying Funk-Hecke twice, we obtain for the odd Clifford algebra-valued biaxial mono-

genic

Plag) =[] e @ pis) Pu(t) Pols) dt ds
- Sp—1Jgq-1

== (E) - (q_l)g Py (w) (/_11 dlelt (1 — 420972 p, () dt)

2

Next, in view of (20) we become

F,y) = ¥ (<1)f (2m) 002 (Jk/+p/z<|x|> Torvayas(il]) 2—Torspyas(2]) Tosasa(ily) y)

X Pk:’(l) Pg/(&)
In a similar way, we find for the even Clifford algebra-valued biaxial monogenic:

&g A 141 1+Zt$)P]€l()P£l()d§d§
=¥ (_1) (27T)(p+q <Jk/+p/2 1(]z]) Je/+q/2 1(tlyl) +zy Jk/+p/2(|x]) J€/+q/2( ’y|))

X Py (z) Pr(y)
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From the above calculations and subsection 3.2, we obtain the following result.

Theorem 4.3 The odd and even Clifford algebra-valued part of the Clifford-Bessel func-

tion of biaxial type

72, y) = 2 (44 ) (Tyvealilyl) = Tyreily)y)

X (Terspos(lz]) + zdirpa(l2])) Polz) Poly).

can be written as plane wave integrals:

Bes ( 1)€,< )k +1F +£l zmt
[f (i’g)]o = 21+p/2-t/ p-‘rQ)/? ~/SP N ~/Sq 1 (t+ZS) Pk/( ) Pgl( ) dt dS

€s (_1)£,< Z) F + gl Z Z. S
7 @ y)le = s (p(ﬂ /S /S WY (1 4 its) Pu(t) Pu(s) dt ds.

One thus also has that

Bes (_1)£ (_ + 6/ z (z,t)—
1 (2, y) = e M) - /S . /S B ) (1—it+s+its) Pu(t) Pu(s) dt ds.

The boundary values (14), (15), (16) and (17) can easily be calculated using (see (20)):

- 1 2 m/2—1
/ ezzt(1 o t2>(m*3)/2pn7m(t)dt = ﬁr (Tn2> " <Z> Jn+m/271(’z)'

-1

We find
(_1)Z’ik’21—k’+q/2ﬂ.(p+Q)/2 _ '
7 c Jo —11? Pu(w) Py
\w|—>0 mk f(zy) = T (k’—l— g) vtqr2-1(i|y|) Per (w) Per (y)
1, (_l)Z’ik’21—€’+p/2ﬂ.(p+Q)/2 _
\y|—>0 |y|£/f @y = (g/ g) Jrspja-1(|2]) P (2) Po (€)
(— 1)f’+1 K +191=k'+q/2 - (p+q) /2 _
/fo X, = J/ y P/ yP/ y
‘ﬂ"o ||k (z,y) = T (k’+ 5) €+q/2( ilyl) Pe (w)yLe (y)
1 (_1)4’Z’k’+121—£’+p/2ﬂ,(p+q)/2 _
lim — f(x,y) = Jir x| )z Py () Py (£).
w0 [y fo(z,y) T (ﬁ' n g> wapy2(|z]) 2Py (2) P (€)
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