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Abstract- The influence of temporal daily exposure to Global System for Mobile 

Communications (GSM) and Universal Mobile Telecommunications Systems (UMTS-

HSDPA) is investigated using spectrum analyzer measurements in two countries, France 

and Belgium. Temporal variations and traffic distributions are investigated. Three 

different methods to estimate maximal electric field exposure are compared. The 

maximal realistic (99%) and the maximal theoretical extrapolation factor used to 

extrapolate the measured Broadcast Control Channel (BCCH) for GSM and the 

Common Pilot Channel (CPICH) for UMTS are presented and compared for the first 

time in the two countries. Similar conclusions are found in the two countries for both 

urban and rural areas: worst-case exposure assessment overestimates realistic maximal 

exposure up to 5.7 dB for the considered example. In France, the values are the highest, 

because of the higher population density. The results for the maximal realistic 

extrapolation factor at the weekdays are similar to those from weekend days.  

 

Key Words- temporal exposure, electromagnetic fields, radio frequency, general public. 

I. INTRODUCTION 

People are continuously exposed to radio frequency (RF) electromagnetic fields 

emitted by wireless communication systems and broadcasting systems (both television and 

radio). Human exposure has to be assessed in accordance with international guidelines. This 

evaluation cannot be limited to a single measurement moment and should account for 

temporal variations of RF electromagnetic field exposure. The International Commission on 

Non Ionizing Radiation Protection(1) and the Institute of Electronics and Electrical Engineers 
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IEEE(2) recommended exposure guidelines. Standards have also been developed to check the 

compliance with limits like those from the European Committee for Electro-technical 

Standardization CENELEC(3) and the International Electrotechnical Commission (IEC) and 

form IEEE(2).  

The CENELEC method proposes to check the compliance to the reference levels, by 

extrapolating an instantaneous measurement of the pilot signals strength to the “worst-case” 

values. The worst-case assessment is adopted by some countries to ensure reliable and 

reproducible exposure assessments in varying traffic conditions, which guarantees the 

compliance. However, the extrapolation to maximum traffic does not consider the actual real-

live exposure induced by the fluctuations of the field strength during communication.  

Temporal variations and measurement procedures for temporal exposure assessment of RF 

signals are investigated in refs (3, 4, 5, 6, 7, 8). In ref (7), the daily distribution of the RF field 

strength is determined for FM Broadcasting (FM), Television (TV), Global System for Mobile 

Communications (GSM900 at 900 MHz and GSM1800 at 1800 MHz), Universal Mobile 

Telecommunications Systems (UMTS), and High Speed Downlink Packet Access (HSDPA) 

services. The proposed method gives to the different signals a conservative extrapolation 

factor to determine the maximum real exposure during a day using a statistical method on 

different measurements performed over 24h. Erlang data, representing average mobile phone 

traffic intensity during a period of time, is related to RF exposure using temporal 

measurements during a week in ref (6). Diurnal variations of fields of mobile 

telecommunication and broadcasting systems are studied in Greece (5). Data from surveys of 

radio base stations in 23 countries from the year 2000 onward is pooled to investigate 
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chronological trends and compare exposures by technology(8). Daily variations are not 

accounted for in ref (8).  

 

The objectives and novelties in this paper are the following. Firstly, we estimate the maximum 

exposure in two countries (Belgium and France) in urban and rural zones by comparing the 

extrapolation methods of(6, 7) and CENELEC(3) for the first time. Secondly, we determine the 

maximal realistic (99%) and the maximal theoretical extrapolation factor used to extrapolate 

the measured Broadcast Control Channel (BCCH) for GSM and the Common Pilot Channel 

(CPICH) for UMTS/HSDPA and the comparison in two countries. Thirdly, for the 

determination of the realistic extrapolation factors, we distinguish here between GSM900, 

GSM1800, UMTS, and HSDPA, and two types of environments (urban and rural), and 

weekdays versus weekend days, which is novel. Fourthly, the methods to assess the electric 

field exposure at a time instant from the electric field measurements at another time instant, 

and to estimate the maximum electric field value over a day are compared. The first method 

(Erlang method(6)) is based on the Erlang data for GSM signals and on the throughput data or 

transmitted power for the UMTS signals. The second method (3-Gaussian method(7)) is based 

on a statistical analysis using a three-Gaussian distribution model. The third method is the one 

of CENELEC(3) to extrapolate to maximal field values.  

II. MATERIALS AND METHOD  

A. Configurations and measurement setups 

In Belgium, the electric fields are measured with a tri-axial R&S TS-EMF Isotropic 

Antenna (dynamic range of 1 mV m-1 – 100 V m-1 and a frequency range of 30 MHz – 3 GHz) 
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in combination with a spectrum analyzer SA of type R&S FSL6 (frequency range of 9 kHz – 

6 GHz – http://www2.rohde-schwarz.com/). To demodulate the UMTS and HSDPA signals, 

the FSL-K72 decoder option of the R&S SA is used. Using this option, the code domain 

analyzer can be used for demodulation of the UMTS signals. The tri-axial antenna has a built-

in switch to select the appropriate axis during the measurements.  

In France, the measurement equipment consisted also of a spectrum analyzer (Agilent MXA, 

N9020A model, frequency band: 20Hz-13.6 GHz, www.agilent.com), an isotropic tri-axial 

probe satisfying the specifications of the EN50492 standard(3), a switch that selects the axis of 

the probe to the measured unit, and a laptop controller to control the analyzer and the switch, 

and to save all the measurements. For UMTS (3GPP R99) and HSDPA systems, a Wideband-

Code Division Multiple Access (W-CDMA) decoder (Anritsu, ML8720B model, 

www.anritsu.com) is used for measurements to extract the total power and also the allocated 

power to each channel which is not possible with a standard spectrum analyzer.  

The measurement systems in both studies are thus very similar: these consist of narrowband 

equipment i.e., a spectrum analyzer and suitable measurement probes. In both studies also a 

W-CDMA decoder is used to extract the power allocated to each channel. These measurement 

setups have been validated extensively in previous studies(4, 6, 7) and satisfy the CENELEC 

standard(3), thus they are comparable. The main difference between both studies is that in 

Belgium, we had collaboration of the mobile operators, so the contribution per operator could 

be determined. The measurement uncertainty for the electric field is ± 3 dB for the considered 

SA setup(3). This uncertainty represents the expanded uncertainty evaluated using a 

confidence interval of 95%. 
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B. Measurement procedure 

Fig. 1 summarizes the measurement procedure for the temporal assessment of RF base station 

exposure in Belgium and France. 

 In Belgium, 16 sites were considered, 7 sites in rural environments and 9 in urban 

environments (11 outdoor sites and 5 indoor sites). The sites were investigated during 2 

different measurement campaigns. A first measurement campaign was performed in Brussels, 

Belgium; long-term temporal measurements were performed here during 7 days for 2 sites in 

rural zones and 3 sites in urban zones. Additionally, in Flanders, Belgium, 5 sites in rural 

zones and 6 sites in urban zones were investigated during 2 weekdays and 2 working days.  

For all the sites, a spectral overview measurement (step 1 in Fig. 1) in the frequency range of 

80 MHz up to 3 GHz has been performed to identify present RF signals. Based on this 

spectral overview the relevant present signals (FM, GSM900, GSM1800, HSDPA, UMTS and 

demodulation of the UMTS-HSDPA signal for the different operators in Belgium) were 

selected for the long-term measurements (step 2). These significant signals were measured 

sequentially for each of the three orthogonal components and each measurement sequence 

was repeated during several days (step 3). Depending on the number of significant signals, a 

measurement sequence took about 2-4 minutes. Performing these measurements during 7 and 

4 days resulted for each significant signal in a total of 2,520 and 1,440 samples, respectively. 

The total number of time samples was 115,967 for urban zones and 100,419 for rural zones. 

In Belgium, three different operators are active for commercial GSM and UMTS networks. 

For the measurements and the statistical analysis, the signals for the different operators were 

processed separately for each kind of signal (e.g., GSM900, GSM1800 …). 
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In Paris, France, 6 measurements at 3 different sites in rural zones and 22 measurements in 9 

different sites in urban zones were performed. Also, first a spectral measurement (step 1 in 

Fig. 1) was performed to identify present RF signals (step 2). Measurements were performed 

with a sampling rate of 10s for each site in different locations (bedroom, kitchen, living-room) 

to obtain a wide range of situations (step 3). Each of these measurements resulted in a total of 

8,570 measured samples per signal during one day. The total number of time samples was 

51,420 per signal for rural zones and 188,540 per signal for urban zones. For UMTS and 

HSDPA systems, 8 measurements for UMTS and 12 measurements for HSDPA were 

performed with a sampling rate of 6s in 5 different sites in urban areas. For each measurement 

a total of 15,000 measured samples was obtained during one day.  

Different factors can influence the RF measurements (path loss, the data rate, discontinuous 

transmission (DTX), power control…). This has been addressed in previous publications by 

making network adaptations to enable that research(9, 10). Note that in this paper, the 

measurements were performed continuously during 24 hours to take into account all these 

aspects. The networks were not forced to operate in a specific mode in order to observe traffic 

variations in real conditions. From the obtained data the maximal exposure factors can be 

assessed (Fig. 1). 

C. Method to assess realistic maximal extrapolation factors 

The 3-Gaussian method(7) is compared with the CENELEC extrapolation method(3) to 

estimate the maximum exposure in two countries (Belgium and France). Both methods are 

based on the determination of the extrapolation factor to use in combination with the pilot 

signals. Basically, GSM and UMTS-HSDPA are signals composed of two parts. The first part 
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consists of the pilot signals. The second part consists of the traffic signals. BCCH and the 

CPICH are the pilot signals for GSM and UMTS-HSDPA respectively. BCCH and CPICH 

represent the signalizations and they are continuously emitted over the day.  

To extract the broadcast control channel BCCH for GSM using spectral measurements the 

following method is used. Spectral scans in the appropriate GSM frequency band enable to 

identify the different GSM channels. The BCCH signals can be identified because these never 

become zero, in contrary to the TRX signals that vary largely between zero (no phone traffic) 

and maximal field values (lots of traffic)(4). Moreover, for hopping (i.e., changing the channel 

frequency with time) the frequencies of the hopping channels are known or provided by the 

mobile operators. Fig. 2 shows as an example the frequency spectrum (hopping) for a 

GSM900 signal measured during 24 hours in Belgium. Fig. 2 shows 396 traces of momentary 

measurement values of the electric field captured with the SA: clearly 4 BCCH channels and 

various traffic (TRX) channels (vary from noise level to maximal values) can be separated in 

the downlink band. For UMTS-HSDPA, the measurements occurred with a code domain 

analyzer (see Section measurement setup) where the CPICH and traffic channels are 

extracted. Again, BCCH and CPICH signals never become zero in contrary to the electric-

field strength of the TRXs(4). 

In theory, the BCCH and CPICH power remains constant but in-situ the electric field 

strengths of the BCCH and CPICH vary over time due to environmental changes (e.g., 

movement of people and cars, weather) and instability of the BCCH(6). The traffic variation is 

represented by the ratio (Ntraffic(t)) of the total power (Ptotal(t)) to the pilot power (Ppilot) as 

follows: 
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With t representing time (s). 

Some standards(3, 12) propose an extrapolation method to assess the maximal “worst-case” 

electric field, based on the measurements of the pilots signals. Network operators can provide 

the maximal theoretical value of the traffic channels. Extrapolation using these numbers often 

overestimates the realistic electric-field values because traffic channels vary during the day 

and these numbers represent the maximal capacity of the cell. For control agencies, it is 

important to extrapolate using realistic extrapolation factors to check compliance with limits. 

In this paper, NTRX and NCPICH are the equivalent traffic (Ntraffic in (2)) evaluated for GSM and 

UMTS, respectively. Note that the maximum numbers of traffic (TRXs) channels (and 

CPICHs) are set by telecommunication operators through radio planning optimization taking 

into account the population density and the traffic capacity. Systems are also designed to 

avoid a maximum load to allow a good traffic quality. 

In France, the maximum number of TRXs has been defined by national authorities as a 

constant value depending on the population density and in practice this represents 99% of the 

actual installed cases. The values of the maximum deployed TRXs by operators for GSM900 

and GSM1800 networks are 6 and 8, respectively. These maximum values have been 

recommended by the National Agency of Frequency (ANFR)(11) to assess the exposure for 

maximum traffic situation (worst case). In(13, 14), the value of 10 is recommended for NCPICH in 

UMTS network, which corresponds to the maximum theoretical value (recommended also by 

ANFR). There is no value recommended yet for NCPICH in HSDPA systems.  
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In Belgium, the different regional regulations do not include any attempt to extrapolate to the 

maximum exposure. The electric-field values averaged over 6 minutes have to be compliant 

with regional limits at each moment of the day, but no further details are included. 

In this study, the determination of the real number of equivalent TRXs and CPICHs (NTRX and 

NCPICH) that is active over one day in France and in Belgium using the method proposed in(7) 

is presented. To find the realistic maximum number of TRX-CPICH values, the 99% value is 

taken for each measured signal. For the measurements in Belgium, the 99-percentile value of 

the TRX-CPICH is evaluated for each site and for each operator. This is not the case for the 

measurements in France, where only one model and one TRX-CPICH value (max at 99%) is 

available for each technology because all the measurements for one technology were 

processed together. 

D. Summary of existing methods for extrapolation self 

The CENELEC method(3) proposes to check the compliance to the reference levels, by 

extrapolating an instantaneous measurement of electric field strength of the pilot signals 

(BCCH and CPICH) to the “worst-case” value. This method does not allow determining the 

electric field exposure at a time instant from the electric field measurements at another time 

instant. Therefore, new methods are needed to evaluate the real exposure. 

In(4, 6), a method is proposed to calculate the maximal electric field strength during 24 

hours (1 day) from the momentary total measured electric field value (pilot signals and traffic 

signals together) using the corresponding Erlang data for GSM. The maximal electric field 

strength ( max
calcE ) can be calculated from a momentary field value Enorm(t) using eq. (2). 
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With Erlang(t) and max(Erlang) are the Erlang data at time instant t and the maximum Erlang 

data during 24 h for the corresponding electric field value of the GSM signal at a specific 

location, respectively. SFErlang is the normalized Erlang data as function of the time. Fig. 3 

shows the median value of all the normalized Erlang data as function of the time between 

9:00 am and 6:00 pm for the different considered sites provided by the telecom operators (15 

data sets for GSM 900 and GSM1800, Section II.A). The chosen time interval corresponds to 

typical working hours during which control agencies can make their measurements. One has 

to remark that the traffic data must be provided by the operator. In this paper, this method is 

applied for GSM because only the Erlang data was provided. For UMTS/HSDPA no traffic 

data was available. 

In(7), the method proposes to obtain the NTRX(t) over 24 hours. Based on the 

explanation of Section II.C, this factor is found with a statistical method on different 

measurements performed at different sites. This factor can be used whatever the location of 

the performed measurements. The scaling factor SF3-Gaussian is defined as follows: 

)(
)(

max
3  tE

E
SF Gaussian  (3)

(-) representing no unit. Fig. 3 shows also the scaling factor using eq. (3) obtained using the 

data presented in this paper. In the following, NTRX and NCPICH will be determined for realistic 

circumstances in the two countries. 



 
 
 

 12

III. RESULTS AND DISCUSSION 

A. Comparison of realistic maximal exposure 

A summary of the median and maximum values of the realistic extrapolation factors (Ntraffic in 

eq. (1), 99-percentiles) for the different technologies is provided in Table 1. In this table, the 

theoretical maximum values for France are those recommend by ANFR; the theoretical 

maximal values for the measured sites were not available. For the measurements in Belgium, 

the theoretical maximum values are these provided by the network operators for the 

corresponding sites. The 99-percentile values of NTRX and NCPICH are also evaluated by taking 

a sliding time average of 6 min for all the measurements in agreement with the ICNIRP 

exposure guidelines(1).  

Fig. 4 shows the cumulative distribution function (CDF) of the measured realistic values of 

the 99th percentile of NTRX and NCPICH for the GSM900, GSM1800, UMTS, and HSDPA 

technologies in Belgium. Clearly, all realistic values are lower than the theoretical maxima of 

Table 1 for the various technologies. The realistic values in Table 1 are obtained by taking the 

maximum and the median values of the CDFs of these realistic 99-percentile values in Fig. 4. 

 

In France and in Belgium, the results of Table 1 show that the realistic maximal NTRX in urban 

zones for GSM1800 (4.0 in France and 4.3 in Belgium, no averaging) is found higher than for 

GSM900 (3 in France and 4 in Belgium). This result was expected because the GSM1800 

network is used as a reinforcement network to increase the GSM900 capacity. Therefore, 

NTRX in a GSM1800 network is larger than in a GSM900 network in urban zones. This is not 

the case in rural zones, because GSM900 (e.g., in Table 1 maxima of 4.0 and 3.4 for GSM900 
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versus 3.0 and 2.7 for GSM1800, in France and Belgium, respectively) is preferred due to the 

propagation performances of the 900 MHz carrier in this environment and also because 

GSM900 was deployed first and no more capacity is needed in rural environments. This 

explains why the maximal NTRX found for GSM1800 is smaller in rural than in urban zones. 

Also for the theoretical maxima these conclusions can be drawn. 

Operators in France and in Belgium use UMTS most of the time for voice communications 

while HSDPA is used for data. UMTS and HSDPA are very similar in terms of signal 

characteristics and radio access interface. However, they are different in terms of power 

allocation. In fact, in HSDPA systems, all the power is allocated to one user equipment at a 

time, which explains why the NCPICH for HSDPA is higher than UMTS in Table 1. Moreover, 

the theoretical values for HSDPA are higher in Belgium than in France, explaining the highest 

realistic values in Belgium for HSDPA.  

The values for UMTS are the highest in France, because of the higher population and also 

because of the network optimization. Note that in Belgium, the UMTS network is not yet 

deployed as a GSM network, which is the reason for higher realistic values for GSM900-

GSM1800 in urban areas in Belgium than in France.  

Similar conclusions can be made in the two countries for both urban and rural areas: the 

maximal equivalent TRX and CPICH values in a realistic environment demonstrate that a full 

traffic situation is not reached in reality.  
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B. Weekdays versus weekend days 

In Belgium, for each site, measurements were performed on weekdays and weekend 

days. Table 2 lists their median values of the 99% value for NTRX/NCPICH. Fig. 5 compares the 

CDFs for GSM900 in urban zones.  

The median values are very similar for all types of technology in an urban environment for 

both weekdays and weekend days, in general only slightly higher values are obtained for 

weekdays (see also Fig. 5 for GSM900). Thus, realistic maximal traffic in urban environments 

does not depend much on the day of the week. In rural environments (Table 2), the NCPICH 

values for HSDPA are higher on weekdays (4.9) than on weekdays (3.8), indicating that here 

more data traffic is present on weekdays. 

C. Comparison of the Maximal Daily Electric Field Value Using Different Methods 

In this section, three methods are presented and compared to find the realistic scaling 

factors, in order to extrapolate an instantaneous measurement to the maximal value possible 

over a day. 

 
1) Comparison of the Erlang and 3-Gaussian methods 

The scaling factors of Fig. 3 for both methods as function of the time show a similar trend (for 

GSM900 and GSM1800). Lowest scaling factors (corresponding to highest measured 

instantaneous electric field values) can be found between noon and evening. Then, the scaling 

factors are for both methods lower than 1.4. Between 9:00 am and noon both methods have a 

decreasing scaling factor but the scaling factor based on the Erlang data gives higher values. 

The scaling factor based on the Erlang data is only considered during normal working hours 

while the scaling factor based on the 3-Gaussian model is given for the whole day. One has to 
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remark that the scaling factors to extrapolate instantaneous measurements to the maximum 

possible value over the day depend on the traffic pattern of the mobile phone users and can 

change over time. Consequently, the values must be evaluated at regular time intervals. 

2) Extrapolation for an instantaneous measurement with the different proposed methods 

In Table 3, a comparison of the different methods to calculate the maximum electric-field 

value can be found for a realistic long-term measurement, an example of a GSM signal, 

performed in Belgium. Both the instantaneous electric-field value during 24 hours and the 

pilot signals were measured. trueEmax  is the maximum measured electric-field value during 24 

hours. The maximum calculated electric-field value calcEmax  is also assessed using the different 

methods proposed in this paper. The first method is based on the extrapolation method 

mentioned in CENELEC(3). The scaling factor is determined in three different ways: (i) using 

the real number of traffic channels TRXs for the specific site provided by the operators, (ii) 

using the equivalent number of TRXs based on the 3-Gaussian method (see Table 1), and  (iii) 

using the number of TRXs mentioned in ANFR. The BCCH is not constant over time(4), so we 

have chosen the mean value of the BCCH over 24 hours to perform the extrapolation. The 

second and third method are based on the scaling factors of the Erlang data(6) and of the 3-

Gaussian method(7). The scaling factors (SFErlang and SF3-Gaussian) are determined as a function 

of time to rescale the momentary total measured electric field value (measured at 11:00 am in 

our example). For the first method, a dedicated measurement equipment to measure the pilot 

signals is required while the total measured electric field, used for the second and third 

method, can be measured using a simple spectrum analyzer. The results are summarized in 

Table 3. In this table, the deviations  between the realistic maximum and the calculated 

maximum electric field are also listed: 
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true

calc

E

E

max

maxlog20  (dB) (4)

The results of Table 3 confirm that the CENELEC method(3) overestimates the real exposure 

(+1.7 dB to 5.7 dB), which is a high value compared to the proposed methods. The results 

found with the maximal NTRX given from the operator (0.27 V/m corresponds to a full traffic 

situation as the maximal known NTRX is used at this location) confirm that a situation with a 

full traffic is not reached in reality at this given location as the maximal real value found over 

24 hours is only about 0.21 V/m. For the CENELEC method, extrapolation using the 99-

percentile value (3-Gaussian method), gives lowest deviations (an overestimation of 1.7 dB). 

The methods proposed in(4, 6, 7) give a better assessment of the maximal electric field value 

from an instantaneous measurement (only +0.4 dB to +0.6 dB for this example). 

Finally, Table 3 compares also the electric-field values of the different methods with the 

ICNIRP reference levels(1). Therefore, the exposure ratio (ER in in %) of a signal is defined as 

the ratio in % of the obtained electric-field value to the corresponding ICNIRP reference 

level(1) for the general public. The percentages in Table 3 are much lower than 100%, 

indicating compliance with the ICNIRP guidelines. The 3-Gaussian and Erlang methods give 

ER = 0.5%, which agrees very well with the true maximal ER value of 0.5%. The CENELEC 

method gives ratios up to 1%, thus an overestimation of a factor 2 is here possible. If exposure 

values would be close to the ICNIRP reference levels or regional limits, this overestimation 

can result in non-compliance while in reality compliance would be obtained. 

IV. CONCLUSIONS 

In this paper, the influence of the temporal daily exposure to GSM, UMTS, and 

HSDPA is investigated. Temporal variations and traffic distributions are compared in two 
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different countries, France and Belgium. The electric-field amplitude varies because it 

depends on the environmental changes and the traffic. 

The number of actual traffic channels NTRX and NCPICH evaluated for GSM and UMTS, 

respectively, are determined in the two countries. Similar conclusions are found in the two 

countries for both urban and rural areas. The maximal NTRX in GSM1800 is higher than the 

one of GSM900 in urban zones. This is not the case in rural zones, because GSM900 is 

preferred due to the propagation performances of the 900 MHz carrier in this environment. 

The maximal equivalent TRX and CPICH values found in a realistic environment demonstrate 

also that a full traffic situation is never reached in reality, and that the CENELEC method 

(worst-case assessment) overestimates the real exposure. 

The Erlang and 3-Gaussian methods to assess the electric field exposure at a time instant from 

the electric-field measurements at another time instant, and to estimate the maximum electric-

field value over a day from an instantaneous measurement are compared. These methods are 

also compared with the CENELEC method. Again, the CENELEC method overestimates the 

real exposure much more compared to the proposed methods. 

Future research should focus on the temporal evolutions of LTE (long term evolution), which 

is recently launched in several countries. 
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List of captions 

Table 1: Median and maximal values for the number of equivalent TRX (NTRX,99%) and CPICH 

(NCPICH,99%) for GSM, UMTS, and HSDPA in urban and rural zones (in France and Belgium). 

Table 2: Comparison of median values of equivalent TRX (NTRX,99%) and CPICH (NCPICH,99%) 

for GSM, UMTS and HSDPA on weekdays and weekend days (for the different operators at 

each site in urban and rural zones in Belgium). 

Table 3: Real and calculated maximal electric field values determined with different 

extrapolation methods and deviation  between true and calculated value for a GSM900 

signal (measurement performed in Belgium). 

 

Figure 1: Block diagram of the measurement procedure for temporal RF base station 

exposure assessment. 

Figure 2: Electric field (V/m) of BCCH and TRX channels of GSM900 signal (396 traces 

during 24 hours). 

Figure 3: Scaling factor based on Erlang for GSM900 and GSM1800 signals (median for all 

sites during working hours) and based on the 3-Gaussian method for GSM900, GSM1800, 

UMTS, and HSDPA. 

Figure 4: Cumulative distribution function (CDF) of the 99% extrapolation factor for all sites 

in urban areas in Belgium (6 minutes averaging). 

Figure 5: comparison of CDF of the 99% extrapolation factor on weekdays and weekend days 

for all sites in urban areas for GSM900 (Belgium, 6 minutes averaging). 
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   France Belgium 
   Urban Rural Urban Rural 
  NTRX,99% / NCPICH,99% Max  Max  Max  Median Max Median 

NTRX  

GSM900 
Theoretical   6.0(*) 6.0(*) 5.0 3.0 4.0 3.0 
Realistic  No averaging 3.0 4.0 4.0 2.4 3.4 2.5 

6 min. averaging 2.36 3.2 4.0 2.4 3.4 2.1 
NTRX 
GSM1800 

Theoretical   8.0(*) 8.0(*) 8.0 2.0 4.0 3.0 
Realistic  No averaging 4.0 3.0 4.3 2.6 2.7 2.2 

6 min. averaging 2.7 2.2 4.3 2.5 2.3 2.0 
NCPICH 
UMTS2100 

Theoretical  10(*) - 3.9 3.9 - - 
Realistic  No averaging 5.0 - 2.3 2.1 - - 

6 min. averaging 4.4 - 2.3 2.1 - - 
NCPICH 
HSDPA 

Theoretical  - - 20.0 14.8 20.0 15.0 
Realistic  No averaging 14.0 - 18.7 7.9 9.8 5.4 

6 min. averaging 10.2 - 17.8 7.3 8.3 5.2 
 (x)* = general value recommended by ANFR 
 

Table 1 
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NTRX,99%  Weekday Weekend 
day 

Urban GSM900 2.2 2.2 
 GSM1800 2.5 2.3 
 UMTS2100 2.1 2.0 
 HSDPA 5.0 5.3 
Rural GSM900 2.1 2.0 
 GSM1800 2.2 1.9 
 UMTS2100 - - 
 HSDPA 4.9 3.8 

 

 

Table 2 
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Methods of calculation of the 
Emax for the measured site 

 
Emax 
(V/m) 


(dB) 

ER 
(%) 

Max over 24h trueEmax   0.210 - 0.5 

      

CENELEC method 

calcEmax based on BCCH and 

NTRX,realistic (given from the 
operator for this site) 

0.270 2.2 0.7 

    
calcEmax based on NTRX,99% found 

with the 3-Gaussian method 
0.250 1.7 0.6 

 
calcEmax based on worst-case,  

(NTRX given from ANFR) 

 
0.410 

 
5.7 

 
1.0 

Erlang method Emax based on SFErlang, 0.224 0.55 0.5 

3-Gaussian method Emax based on SF3-Gaussian 0.221 0.44 0.5 
 

Table 3 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 


