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We use the matrix product state formalism to construct stationary scattering states of elementary
excitations in generic one-dimensional quantum lattice systems. Our method is applied to the spin-1
Heisenberg antiferromagnet, for which we calculate the full magnon-magnon S matrix for arbitrary
momenta and spin, the two-particle contribution to the spectral function, and higher order corrections to the
magnetization curve. As our method provides an accurate microscopic representation of the interaction
between elementary excitations, we envisage the description of low-energy dynamics of one-dimensional
spin chains in terms of these particlelike excitations.
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Theoretical studies have shown that, despite the expo-
nential growth of Hilbert space, the low-energy physics of
large one-dimensional quantum systems can be described
efficiently. More specifically, the entanglement of the
ground state and lowest-lying excitations obey an area
law [1], which confines the low-lying physics of these
systems to some small subspace of the complete Hilbert
space. A natural and efficient parametrization of this
subspace is provided by the class of matrix product states
(MPS) [2] underlying the density matrix renormalization
group (DMRG) [3]. While DMRG and MPS algorithms
were initially focused on describing ground states, a lot of
work has gone into extending the formalism to the
calculation of dynamical properties [4,5].
One of these approaches towards the low-lying dynamics

consists of finding accurate descriptions of elementary
excitations variationally. By casting the Feynman-Bijl
ansatz [6] into the MPS formalism, elementary excitation
spectra of one-dimensional quantum spin systems [7] and
quantum field theories [8] were obtained to an unprec-
edented precision. Recently, this approach has found its
theoretical ground as it was shown that gapped elementary
excitations are local in the sense that they can be created by
a local operator acting on the ground state [9]. This result
suggested that elementary excitations can be identified as
particles on a nontrivial background and raises the question
whether we can study their scattering. As the particle
interactions are partly constituted by the strongly correlated
background itself, this amounts to a highly nontrivial
scattering problem (in contrast to Ref. [10], where scatter-
ing states were constructed on top of a product dimer state).
In many studies, interactions between elementary exci-

tations are modeled by different effective field theories to
capture, for example, the response of magnetic systems to
external fields [11–14]. Lacking a microscopic description
of the particles, the parameters in these effective theories

had to be determined from global properties of the system
[15,16] and/or strong- or weak-coupling limits [17].
In this Letter, we present a variational study of the

interactions between particlelike excitations in full micro-
scopic detail. We construct stationary scattering states and
calculate scattering phase shifts between particles with
arbitrary individual momenta. Our method is applied to the
spin-1 Heisenberg antiferromagnet, for which we calculate
the full magnon-magnon S matrix, the two-particle con-
tribution to the spectral function, and higher order correc-
tions to the magnetization curve.
Variational method.—Consider a one-dimensional spin

system with local dimension d in the thermodynamic limit,
described by a local and translation invariant Hamiltonian
Ĥ ¼ P

n∈Zĥn;nþ1, where we restrict to nearest neighbour
interaction. The translation invariant ground state of this
system can be accurately described by a uniform matrix
product state [18,19]

jΨ½A�i ¼
Xd
fsg¼1

v†L

�Y
m∈Z

Asm

�
vRjfsgi;

where the D × d ×D tensor As contains all variational
parameters.
Having found the ground state (by, e.g., simulating

imaginary time evolution using the time-dependent varia-
tional principle [18]), the variational ansatz for an elemen-
tary excitation with definite momentum κ is given by [7,20]

jΦκ½B�i ¼
Xþ∞

n¼−∞
eiκn

Xd
fsg¼1

v†L
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�
Bsn

×
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and can be understood as a localized disturbance of an
essentially unchanged ground state. Because of its matrix
product representation, this localized disturbance can
spread out over a distance determined by the bond
dimension D. As the variational subspace of excited states
defined by (1) is linear, finding the best approximation for
the lowest lying excited states is achieved by solving an
eigenvalue problem.
Because of the locality of the ansatz (1), we can interpret

the excitation as a particle and construct scattering states of

two particlelike excitations. The variational ansatz for states
with two elementary excitations with momenta κ1 and κ2 is
taken to be (κ ¼ κ1 þ κ2)

jϒκ1κ2i ¼ jχκ1κ2ð0Þi þ
X
αβ

Xþ∞

n¼1

cαβκ1κ2ðnÞjχαβ;κðnÞi ð2Þ

with the states

jχκ1κ2ð0Þi ¼
Xþ∞

n¼−∞
eiκn

Xd
fsg¼1

v†L

�Y
m<n

Asm

�
Csn
κ1κ2

�Y
m>n

Asm

�
vRjfsgi; ð3Þ

jχαβ;κðnÞi ¼
Xþ∞

n1¼−∞
eiκn1

Xd
fsg¼1

v†L

�Y
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Asm

�
B
sn1
α

� Y
n1<m<n1þn

Asm

�
B
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β

� Y
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�
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For the Bα and Bβ in the states (4), we use the two B tensors
that were found for the one-particle problems at momenta
κ1 and κ2. This restriction is accurate when both particles
are far away, but fails when the particles approach. The
local term (3) should be able to correct for this, however,
because of its ability to spread over some finite distance.
For this reason, we keep all D2ðd − 1Þ variational param-
eters in Cs

κ1κ2 .
Finding eigenstates within this (linear) variational sub-

space requires solving the generalized eigenvalue problem
Heff c̄ ¼ ωNeff c̄ with c̄ ¼ fCs

κ1κ2 ; c
αβ
κ1κ2ðnÞg containing all

variational parameters, ω being the total energy of the
excitation (with the ground state energy E0 subtracted), and
an effective Hamiltonian and norm matrix given by

Heff ¼ hχðnÞjðĤ − E0Þjχðn0Þi;
Neff ¼ hχðnÞjχðn0Þi: ð5Þ

Finding solutions for this half-infinite eigenvalue prob-
lem with definite energy ω starts with an inspection of the
asymptotic regime, i.e., the regime where the two particles
are considered to be infinitely far apart. For n0; n → ∞ the
effective norm matrix is diagonal and the effective
Hamiltonian matrix is reduced to repeating rows of block
matrices that decay exponentially away from the diagonal.
These blocks can be considered to be zero if they are, say,
N þ 1 sites from the diagonal and for every set ðκ;ωÞ, we
obtain a recurrence relation for the coefficients cαβðnÞ. This
recurrence relation typically has two solutions with modu-
lus one, which correspond to the incoming and outgoing
plane waves with total momentum κ and energy ω, a large
number of solutions within the unit circle that correspond to
decaying solutions as n → ∞, and an equally large number
of solutions with modulus larger than unity, which should

be discarded as they are non-normalizable (i.e., nonphysi-
cal) solutions to the eigenvalue problem.
Wenow construct solutions to the full eigenvalue problem

that resemble these asymptotic solutions for n → ∞. They
are obtained by writing the coefficients cαβðnÞ as c ¼ Qx,
where Q is a block diagonal of (i) a unit matrix of finite
dimension, that leaves open the coefficients cαβðnÞ for n <
N0 and (ii) a matrix consisting of the asymptotic solutions,
and x is a new vector of coefficients.We thus assume that the
asymptotic regime is reached when the two particles are a
finite distance N0 apart; this implies that, when imposing
c ¼ Qx, the eigenvalue problem with energy ω is automati-
cally fulfilled after N0 rows. Consequently, we can truncate
the infinite set of equations and solve the system to find the
finite-dimensional vector x. When this whole procedure is
done consistently, an exact solution to this slightly different
scattering problem is guaranteed to exist and, when the
approximations are negligible, should give an approximate
stationary scattering statewith totalmomentum κ and energy
ω. More specifically, the coefficients cαβðnÞ for this state
converge asymptotically to the form

cαβκ1κ2ðnÞ !n→∞
uαðκ1Þuβðκ2Þeiκ2n − eiϕuαðκ2Þuβðκ1Þeiκ1n;

where uαðκÞ and uβðκÞ corresponds to the one-particle
solution at momentum κ. This form allows for a direct
calculation of the scattering phase ϕ [21].
Application.—The spin-1 Heisenberg antiferromagnet is

defined by the Hamiltonian

Ĥ ¼
X
n

ŜxnŜ
x
nþ1 þ ŜynŜ

y
nþ1 þ ŜznŜ

z
nþ1: ð6Þ

Since Haldane’s conjecture of the existence of a gap [22],
the low-lying excitation spectrum has been studied
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extensively [5,23]. The spectrum has an isolated, threefold
degenerate one-particle (magnon) branch centered around
momentum π. At momentum κ ≈ 0.22π, this magnon triplet
becomes unstable and a continuum of two-magnon scatter-
ing states emerges around momentum 0.
Magnon interactions have been studied in Ref. [15],

where it was shown that the scattering of two magnons
with individual momenta around π can be parametrized by
one parameter, the scattering length a. Indeed, for small
momenta (κ1;2 → π) the phase shift behaves as ϕðκ1; κ2Þ≈
−aðκ1 − κ2Þ, hence, the definition of a. For the sector with
total spin S ¼ 2, this quantity can be determined from the
finite size correction to the energy of the lowest lying state
within this sector. DMRG simulations have given an
approximate value of a2 ≈ −2 [15] and (more recently) a
more precise value of a2 ¼ −2.30ð4Þ [24]. Through the
identification of the Heisenberg chain with the nonlinear
σ model (for which the full S matrix can be calculated
exactly [25]), qualitative estimates of all three scattering
lengths can be made (see Ref. [15]).
We now investigate the two-magnon scattering with our

variational method. In Refs. [7] and [20] it was shown that
the one-particle ansatz (1) is capable of describing the
elementary magnon triplet with great precision. Now we
can construct two-magnon states with every combination
of individual momenta for which the magnon is stable
(i.e., jκ1;2j > 0.22π) and for every combination of indi-
vidual spins. From the wave functions we can determine
every phase shift and compute the full magnon-magnon S
matrix. As the Hamiltonian (6) is SUð2Þ invariant, we
expect this S matrix to be diagonal in the coupled basis
with the matrix elements equal within each sector of
total spin.
In Fig. 1 we have plotted the scattering phases within

each spin sector for different relative momenta (our method
reproduces the block structure of the S matrix, so all
information is contained in these three phases). We can
clearly observe a linear regime where the relative momen-
tum is small, with the slope giving us a direct measure of
the scattering length in the different sectors. We find the
following values for the scattering lengths [26]:

a0 ¼ 1.945; a1 ¼ −4.515; a2 ¼ −2.306:

The signs of these scattering lengths are in agreement with
the predictions of the nonlinear sigma model. In the S ¼ 2
sector we have excellent agreement with Ref. [24], while
for the other sectors we have found no previous quantitative
estimates.
When we go to larger relative momenta, the curve loses

its linearity. In this regime, the low-energy description of
the scattering process in terms of the scattering length is no
longer valid and the S matrix can only be determined by
solving the full microscopic scattering problem. Since the
effective Hamiltonian (5) of the scattering problem indeed

captures the microscopic details of the magnon-magnon
interaction, our method is able to study scattering in this
nontrivial regime also.
Next we turn to the spectral function, defined as

Sðκ;ωÞ ¼
Xþ∞

n¼−∞
e−iκn

Z þ∞

−∞
dteiωthΨ0jSynðtÞSy0ð0ÞjΨ0i:

Since we have constructed the wave function of all two-
particle states explicitly, we can calculate their spectral
weights and, consequently, the two-particle contribution to
Sðκ;ωÞ. This contribution is expected to be dominant
around momentum zero, as the two-particle states are
the lowest lying excited states in that region [27]. In
Fig. 2 we have plotted the spectral function at momentum
κ ¼ ðπ=10Þ. Comparing our results with Ref. [5], where the
spectral function was calculated using DMRG techniques
for real-time evolution and linear prediction, shows that we
are able to capture the two-particle states perfectly.
We can get an idea of how well the full spectral

function is reproduced by looking at its zeroth and first
frequency moment, i.e., s0ðκÞ¼

R ðdω=2πÞSðκ;ωÞ and
s1ðκÞ ¼

R ðdω=2πÞωSðκ;ωÞ. As the former is equal to
the static structure factor and the latter can be written as
the expectation value of a simple double commutator
[28], both can be easily calculated with the MPS ground
state. It appears that the two-particle contribution in Fig. 2
approaches the exact values up to 98.7% and 96.4%,
showing indeed that the two-particle sector carries the
dominant contribution of the spectral function at this
momentum. Note that, as our method relies on the explicit
wave function of the excitations directly in the
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FIG. 1 (color online). The angle of the S-matrix elements for the
sectors of total spin S ¼ 2 (green, middle curve), S ¼ 1 (blue,
upper curve), and S ¼ 0 (red, lower curve) at total momentum
κ ¼ 0 and different relative momenta κrel ¼ κ1 − κ2. The linear
regime for small relative momenta is clearly visible, as well as
the deviations from that regime at higher relative momenta.
Calculations were done with bond dimension D ¼ 64.
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thermodynamic limit, our results do not suffer from finite
size effects nor statistical errors.
As another application, we use our variational results for

the magnon dispersion and the magnon-magnon Smatrix to
study the magnetization of the Heisenberg chain when
applying a critical magnetic field. In previous publications,
the finite density of magnons has been described as a gas
of interacting bosons [11] with quadratic dispersion, for
which the scattering length gives a first-order correction to
the hard-core boson description [15]. The magnetized
chain has been characterized as a Luttinger liquid (LL)
[29] with a LL parameter that varies with the magnetiza-
tion [14,30,31].
As the present method provides complete information on

two-magnon interactions, we can use this to approximately
describe the finite density of magnons. Indeed, we can
neglect three-particle interactions and write down the Bethe
ansatz wave function [32] (with the variationally deter-
mined phase shifts) as an approximation of the true wave
function of the magnon gas. Solving the corresponding
Bethe equations (with our variationally determined
dispersion relation) numerically [33], the magnetization
curve as well as the LL parameter can be obtained (see
Fig. 3). We expect this to be a good approximation at low
magnon densities, where three-magnon interactions are
negligible. A comparison with direct MPS calculations
shows that our description is indeed very accurate in a
broad regime and does not share the difficulties of tradi-
tional DMRG and MPS methods for capturing the onset of
criticality.
Conclusions and outlook.—Starting from a successful

particlelike ansatz for elementary excitations, we introduced
a variational method for constructing two-particle states and
determining their scattering phase shifts and spectral
weights. This information was then used to determine the
critical properties of a finite density of these excitations. We

believe that ourmethods open up new routes towards a better
understanding of the low-lying dynamics of (quasi-) one-
dimensional quantum spin systems.
Indeed, our methods can be straightforwardly applied to

more interesting systems such as, e.g., spin ladders and
dimerized chains beyond the strong-coupling limit [34].
Our formalism can be extended to topologically nontrivial
excitations, so we can study, e.g., spinon interactions in
half-integer spin chains, and bound states, which corre-
spond to solutions of the scattering problem without any
nondecaying asymptotic solutions. We might also study
systems at finite temperature, using semiclassical approx-
imations [17], the thermodynamic Bethe ansatz, and/or
form-factor expansions [35].
Most importantly, as we have shown to give an accurate

microscopic description of the interactions of elementary
excitations, we are able to build an effective theory of
interacting particlelike excitations for capturing the low-
energy physics of generic spin chains. By gradually
averaging out the microscopic details of the interactions,
we can systematically make the connection to previous
effective field theories based on phenomenological con-
siderations and symmetries, globally determined parame-
ters, and/or strong- or weak-coupling limits.
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FIG. 2 (color online). The two-particle contribution for the
spectral function Sðκ;ωÞ at momentum κ ¼ ðπ=10Þ. Calculations
were done with bond dimension D ¼ 48.
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FIG. 3 (color online). The magnetization m versus applied
magnetic field h for the spin-1 Heisenberg chain. Our results (red,
upper curve) with bond dimension D ¼ 64 are compared to the
hard-core boson square-root dependence (blue, lower curve) [11]
and first order corrections by the scattering length a2 (green,
middle curve) [15]. The direct MPS calculations (black dots)
were done at the same bond dimension of D ¼ 64. The bottom-
right inset provides a close-up of the phase transition. The top-left
inset provides our result for the LL parameter K in function of the
magnetization m (red), compared to the linear relation based on
the scattering length (green) [31].
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