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ABSTRACT

Monoallelic gene expression is typically initiated
early in the development of an organism. Dys-
regulation of monoallelic gene expression has al-
ready been linked to several non-Mendelian inher-
ited genetic disorders. In humans, DNA-methylation
is deemed to be an important regulator of monoal-
lelic gene expression, but only few examples are
known. One important reason is that current, cost-
affordable truly genome-wide methods to assess
DNA-methylation are based on sequencing post-
enrichment. Here, we present a new methodology
based on classical population genetic theory, i.e.
the Hardy–Weinberg theorem, that combines methy-
lomic data from MethylCap-seq with associated SNP
profiles to identify monoallelically methylated loci.
Applied on 334 MethylCap-seq samples of very di-
verse origin, this resulted in the identification of
80 genomic regions featured by monoallelic DNA-
methylation. Of these 80 loci, 49 are located in genic
regions of which 25 have already been linked to im-
printing. Further analysis revealed statistically sig-
nificant enrichment of these loci in promoter regions,
further establishing the relevance and usefulness
of the method. Additional validation was done us-
ing both 14 whole-genome bisulfite sequencing data
sets and 16 mRNA-seq data sets. Importantly, the
developed approach can be easily applied to other
enrichment-based sequencing technologies, like the
ChIP-seq-based identification of monoallelic histone
modifications.

INTRODUCTION

For diploid organisms, gene expression is denoted as
monoallelic if only one allele is transcriptionally active.
The expressed allele can be randomly selected (e.g. X-
chromosome inactivation and some autosomal genes) or
predetermined by parental imprinting (1–3). Erroneous
monoallelic expression has been associated to several ge-
netic disorders, like the Prader–Willi syndrome, as well as
to certain forms of cancer, like Wilms’ tumour. Both dis-
eases are caused by loss of imprinting of some genes in the
15q11-q13 and 11p15.5 region, respectively (4).

Epigenetics is defined as the study of inheritable modi-
fications on both chromatin and DNA that have an influ-
ence on gene expression without changing the underlying
DNA sequence (5). Mammalian DNA-methylation is an
epigenetic mark that is predominantly found in a CpG se-
quence context (6). This methylation mark has been linked
with gene expression and when located in the promoter re-
gion, it generally leads to transcriptional silencing of the
corresponding gene (7). As it is a defining feature of cellu-
lar identity and essential for normal development, its dys-
regulation is often associated with disease (4). Monoallelic
DNA-methylation is likely to bare an important role in
the regulation of monoallelic expression (8). In addition
to DNA-methylation, histone modifications also contribute
to the maintenance of monoallelic expression. The methy-
lated, silenced allele is mostly sustained with the repres-
sive histone modification histone H3 trimethylation at ly-
sine 9 (H3K9me3) while the active allele is characterized by
the permissive histone marker H3 trimethylation at lysine 4
(H3K4me3) (9).

An important example of monoallelic DNA-methylation
is the regulation of the parental-dependent monoallelic ex-
pression at imprinted loci, where the silenced allele is sig-
nificantly more methylated than the active, expressed al-
lele (2). Although imprinting is a well-investigated topic
and several studies already provided evidence (e.g. compu-
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tational predictions based on DNA sequence characteristics
or detection of monoallelic expression) of some regions with
monoallelic DNA-methylation (2,3,10–16), only a few im-
printed regions are well characterized in humans, like, for
example, the IGF2/H19 region. Furthermore, monoallelic
methylation has recently been recognized as very common
at non-imprinted loci affecting autosomal genes, regulat-
ing, for example, the production of specific antibodies and
receptors in the immune system as well as the selection of
olfactory receptors (17,18). While monoallelic methylation
has been shown to play an important role in the differenti-
ation between tissues, little is known about the specific lo-
cation of these loci as well as the genome-wide character of
monoallelic DNA-methylation.

The recent advent of next-generation massively paral-
lel sequencing platforms has introduced the possibility
of genome-wide DNA-methylation profiling. Bisulfite se-
quencing, which combines bisulfite treatment of genomic
DNA (gDNA) with the high-throughput sequencing of
the entire genome, is the gold standard and allows to
readily identify monoallelic methylated alleles (19), but
is very costly and therefore outside the reach of smaller
projects. Fortunately, cost-effective alternatives based on
the specific enrichment of methylated portions of the
genome (i.e. enrichment-based methods) such as methy-
lated DNA immunoprecipitation followed by sequencing
(MeDIP-seq) and methyl-CpG binding domain protein se-
quencing (MethylCap-seq) exist. Yet, these methods do nei-
ther provide single base pair (bp) resolution nor informa-
tion regarding unmethylated alleles and are therefore not
directly applicable to detect monoallelic events (20). While
some approaches already tried to tackle this issue, they rely
on the combination of multiple sequencing technologies,
like, for example, the integrative method of Harris et al.
(21), which tries to find regions with intermediate and po-
tentially monoallelic events by combining data originating
from MeDIP-seq, methylation-sensitive restriction enzyme
sequencing (MRE-seq), ribonucleic acid sequencing (RNA-
seq) and chromatin immunoprecipitation followed by se-
quencing (ChIP-seq).

To circumvent these issues, we developed a data analyti-
cal framework that solely uses data from enrichment-based
sequencing (like MethylCap-seq), which screens for regions
that exhibit monoallelic DNA-methylation based on clas-
sical population genetic theory, i.e. the Hardy–Weinberg
equilibrium, in a parental-independent and genome-wide
manner. This theory states that in a large random-mating
population with no selection, mutation or migration both
the allele and genotype frequencies of a gene locus with two
alleles are constant from generation to generation, and fur-
thermore, that there is a simple relationship between these
allele and genotype frequencies: if the alleles are A and a
with frequencies p and q (= 1 − p), respectively, then at equi-
librium the genotype frequencies of AA, Aa and aa are p2,
2pq and q2, respectively (22).

The developed pipeline first compares enrichment-based
sequencing data of multiple samples to the public NCBI
Single Nucleotide Polymorphism (SNP)-archive (dbSNP)
in order to screen the obtained non-duplicate, uniquely
mappable sequence reads for SNPs. Only SNP loci with an
adequately coverage and allele frequency are retained and

the effect of sequencing errors is further reduced by com-
paring the chance of a sequencing error with the chance
of detecting genuine SNPs. For each single SNP locus,
the Hardy–Weinberg theorem is then applied to evaluate
whether the observed frequency of samples featured by a
biallelic event is lower than randomly expected (22). Using a
permutation approach, confidence limits are simulated and
genomic regions with a P-value smaller than the P-value
corresponding with a given false discovery rate (FDR) can
be assumed to harbour a monoallelic event.

Starting from MethylCap-seq data of a mixture of
334 Caucasian human samples and an FDR of 0.1, this
methodology allowed the identification of 80 monoallel-
ically methylated loci, significantly more found than ex-
pected in promoter regions. Of these 80 loci, 25 have pre-
viously been linked to imprinting. Additional validation
was done using both 14 whole-genome bisulfite sequenc-
ing (WGBS) data sets of diverse origin and mRNA-seq
data of 16 normal tissues. Here, the analysis was performed
on available samples originating from a variety of tissues,
mostly cancer tumours, providing a challenging data set
to identify monoallelic methylation events (see Discussion).
However, even in this set-up generally known imprinted re-
gions were identified as well as putative novel imprinted
genes, demonstrating the robustness of our method. Finally,
because of the general rationale of the developed approach,
it can be applied to enrichment-based sequencing appli-
cations to detect monoallelic features other than DNA-
methylation. A possible application could be ChIP-seq (23)
to screen for monoallelic histone modifications (24–28).

MATERIALS AND METHODS

Samples

A total of 334 human samples, mostly cancer samples of
various tissues, was used to detect monoallelically methy-
lated loci (Supplementary Table S1). Of these 334 samples,
215 samples were of female origin and only these were used
to analyse the X-chromosome. gDNA was extracted from
these samples with the Easy DNA kit (Invitrogen K1800-
01) using protocol #4 from the manufacturer manual. The
DNA concentration was measured on a Nanodrop ND-
1000. Subsequently, the gDNA was sheared on the Covaris
S2 with following settings: duty cycle 10%, intensity 5, 200
cycles per burst during 180 s to obtain fragments with an
average length of 200 bp. The power mode was frequency
sweeping, temperature 6◦C–8◦C and water level of 12. A to-
tal of 500 ng was loaded in 130 �l TE (1:5) in a microtube
with Adaptive Focused Acoustics (AFA) intensifier.

Methyl-CpG binding domain sequencing

Methyl-CpG binding domain protein sequencing
(MethylCap-seq) (20), which combines enrichment of
methylated DNA-fragments by methyl-CpG binding
domain (MBD)-based affinity purification with massively
parallel sequencing, was used to profile the DNA-
methylation pattern of the 334 samples. The samples were
sequenced according to the protocol described in the paper
of De Meyer et al. (29) with some additional modifications:
(i) After DNA fragmentation, the methylated fragments
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were captured using Diagenode’s MethylCap kit starting
from a DNA concentration of 500 ng instead of 200 ng.
(ii) Paired-end sequencing was done on either the Illumina
GAIIx or the HiSeq platform. Depending on the sequenc-
ing platform, the obtained paired-end sequence reads were
45 or 50 bp, respectively.

Data pre-processing

The rationale behind the proposed methodology is that
biallelic DNA-methylation results in MethylCap-seq data
which is in Hardy–Weinberg equilibrium for each locus, i.e.
if SNPs are present for a locus, both homozygous and het-
erozygous subjects will be detected at a predictable rate (22).
However, in case of monoallelic methylation, heterozygous
samples will no longer be detected resulting in deviation
from the Hardy–Weinberg equilibrium, which can be mea-
sured. For a detailed description of the statistical frame-
work, see the Additional Methods. Figure 1 gives an overall
representation of the workflow starting from MethylCap-
seq data.

Mapping. For each of the 334 samples, the MethylCap-
seq paired-end reads were mapped using BOWTIE (v1.0.0)
(30). The mapping parameters were chosen so that only
those paired-end reads that mapped uniquely on the hu-
man hg19/GRCh37 reference assembly within a maximum
of 400 bp of each other were retained. In order to both re-
duce the presence of sequencing errors as well as to allow the
occurrence of real SNPs, a maximum of three mismatches
was allowed. As suggested by Stevenson et al. (31), allow-
ing three mismatches during the alignment step significantly
reduces the reference allele bias at SNP loci while still en-
abling an ample amount of uniquely mapped reads. Dupli-
cate fragments, i.e. fragments with the exact same location
of both paired-end reads, were disposed as these are most
likely the result of amplification of the same sequence reads
during the library preparation.

SNP tracing. The non-duplicate, uniquely mappable reads
were subsequently screened for SNPs. Only positions that
showed a mismatch in the mapping of one or more sam-
ples and that overlapped known single nucleotide varia-
tions (SNVs) of the dbSNP (version 137) were withheld.
Not keeping all the mismatches reduces both the effect of
sequencing errors (false positives) and the computational
load in the further analyses. Also, for each locus, the cov-
erage of each SNP variant was determined, and the allele
frequencies were estimated.

Additional data filtering and correction. Both for compu-
tational reasons and as a first filtering step for sequencing
errors, SNP loci with a very high major allele frequency
(MAF) were filtered (threshold 0.9). Additionally, a min-
imal total coverage threshold, i.e. across all samples, for
each SNP locus was imposed (350 ∼ 1× per sample). Note
that loci not fulfilling both criteria are unlikely to provide
sufficient power for the subsequent statistical analysis. As
analysis of the X-chromosome involved fewer samples, the
threshold for the coverage was set to a less stringent value,
namely, 250 instead of 350, which roughly corresponded to
the number of female subjects.

In this reduced data set, an additional sequencing er-
ror correction was performed. For computational reasons,
a simple Bayesian methodology was implemented. Basi-
cally, for each sample and locus, the chance of obtaining
a certain profile was calculated under (i) the assumption
of heterozygosity and (ii) the assumption of homozygosity
but with additional sequencing errors. The option with the
largest a posteriori change was withheld (with alleles repre-
senting putative sequencing errors being removed from the
data set). As the prior chances of homozygosity and het-
erozygosity were based on the allele frequencies, which are
updated upon each round of the Bayesian algorithm, this
method was performed twice (see Additional Methods Sec-
tion 2.1.3). This approach can be considered to be conser-
vative (i.e. to disfavour the presence of monoallelic DNA-
methylation), as (i) only two rounds of correction were ap-
plied and (ii) the sequencing error estimate (0.25%, based on
Quail et al. (32)) is on the lower bound of estimates reported
and is based on the performance of the Illumina HiSeq,
whereas also more error prone GAIIx data were included
in this study.

Detection of monoallelically methylated loci

After additional filtering and data correction, the remaining
data were used as input of the new data-analytical frame-
work developed in the R statistical environment (R 2.15.2).
The statistical strategy and practical implementation are
elaborated in the Additional Methods. In summary, based
on the observed allele frequencies, theoretically expected
genotype frequencies can be calculated assuming Hardy–
Weinberg equilibrium in the overall data set. If the ob-
served frequency of heterozygote individuals is significantly
reduced relative to Hardy–Weinberg expectations, this in-
dicates significant monoallelic methylation. Null distribu-
tions were generated using random data with the same al-
lele frequencies and sample coverages (for that locus) as in
the original data. This approach accounts for the increased
likelihood of erroneously calling loci with a low coverage
homozygous. P-values were determined by comparison of
the observed frequency of heterozygotes with the generated
null distributions. Only loci that obtained a P-value smaller
than or equal to 0.005 after the first iteration were kept as
input for the second iteration. Thus, after the first iteration
round, loci that were in all probability not monoallelically
methylated, were filtered out as to reduce the computational
time in the second iteration. At the end of the second itera-
tion the algorithm obtained a P-value for each locus. If this
P-value was smaller than the P-value corresponding with
an FDR of 0.1, monoallelic methylation on this locus was
called significant. This procedure was also performed two
times, a first time with 1000 and a second time with 1 000
000 iterations. To summarize results, significant loci were
visualized on a circular plot with the Circos tool (33).

Functional annotation and enrichment analysis

Successful completion of the monoallelically methylated
loci detection pipeline resulted in a list of significant SNPs.
The functional annotation (i.e. promoter, exon, intron and
intergenic) of these SNP positions was determined using
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Figure 1. Overview of bioinformatics pipeline to detect putative monoallelically methylated SNP loci starting from MethylCap-seq data. After mapping
with BOWTIE the non-duplicate, uniquely mapped reads are screened for SNPs using dbSNP. To reduce the computational load SNP loci with a too high
MAF and/or a too low overall coverage are filtered. In this reduced data set, an additional sequencing error correction was performed with two iterations.
The corrected data was next put in the newly developed data-analytical framework with 1000 and 1 000 000 iterations, respectively. Only loci that obtained
a P-value smaller than or equal to 0.005 after the first iteration were kept as input for the second iteration. If the P-value obtained for a locus was smaller
than the P-value corresponding with an FDR of 0.1 the monoallelic methylation on this locus was called significant. After determining the functional
annotation of these SNP positions an enrichment analysis was performed. Finally, the resulting loci were validated using both literature and WGBS data.

Ensembl (release 66), wherein the promoter was defined as
starting from 2000 bp upstream until the transcriptional
start site.

We tested for enrichment in one or more of these func-
tional categories. A null distribution was generated by ran-
dom sampling from the total amount of detected SNPs (af-
ter filtering as specified in ‘Additional data filtering and cor-
rection’ of Materials and Methods) and counting the occur-
rences of the respective annotations. During this sampling
procedure, the number of SNPs sampled for each chromo-
some was equal to the number of significant SNPs on that
chromosome. This sampling was repeated 1000 times. With
the null distribution obtained for each of these functional
locations (i.e. promoter, exon, intron and intergenic), it was
possible to calculate a two-sided P-value for each functional
location. For loci that were featured by more than one func-
tional annotation (i.e. overlapping genes and/or different
transcripts and/or sense and antisense strand) the score for
the functional location was divided by the amount of differ-
ent functional locations that this locus has (the sum always
being one). For example, if a locus is located in an exon on
the sense strand but is also located in an intron on the other
strand, both the exon and intron were attributed a score of
0.5.

Validation of putative loci using 14 WGBS data sets

In order to evaluate the loci detected by this novel method-
ology, an extra validation step was performed using 14 pub-
licly available WGBS data sets comprising a range of tissue
types. The WGBS data sets were downloaded from the Gene
Expression Omnibus repository (34). A summary of the
data sets including accession numbers is provided in Supple-
mentary Table S3. The 14 samples were aligned in a window
of 2000 bp (1000 bp upstream and 1000 bp downstream)
around the candidate SNP positions (hg19/GRCh37 refer-
ence assembly) using BISMARK (35). A maximum of three
non-bisulfite mismatches was permitted in the seed (70 bp)
to (i) lower the presence of sequencing errors while still al-
lowing the detection of real SNPs, but also to (ii) circum-
vent a possible bias alignment to the reference allele while
keeping a substantial unique alignment rate (31). After ex-
cluding duplicates, only reads mapping onto one of the can-
didate monoallelically SNP positions were kept. Next, for
each SNP position and each sample the methylation calls,
i.e. methylated or unmethylated, of all CpGs were summa-
rized from the mapped bisulfite reads per SNP allele (cov-
ered by the reads on the specific SNP position). To assess
monoallelic DNA-methylation in the SNP loci a Pearson’s
chi-square test was performed. With a chi-square test, it
could be assessed if each allele has an equal distribution of
methylation calls, i.e. degree of methylation. Samples that
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were not covered or were homozygous for the particular lo-
cus were excluded. In summary, for each heterozygous sam-
ple a chi-square value was calculated based on the degree of
(non-)methylation obtained for each SNP allele, with a high
chi-square value indicating that the methylation degree is al-
lele dependent (i.e. monoallelic methylation), i.e. one SNP
allele featuring a high degree of methylation while the other
allele is characterized with no or a low degree of methy-
lation. Null distributions were made by a permutation ap-
proach (using the chisq.test function of the R Stats package)
generating 2000 random chi-square values for each sample,
making it possible to determine a sample-specific P-value
for each SNP-loci. By summing the chi-square values over
all heterozygous samples for a specific SNP locus and again
generating null distributions of random chi-square values,
also a global P-value for a SNP locus could be obtained.
Note that this test does not require absolute absence of
methylation of one allele, which would be too strict given the
possibility of incomplete bisulfite conversion and the pres-
ence of both sequencing errors and sequencing bias.

Validation of allele-specific expression (ASE) using 16 RNA-
seq data sets

As an additional validation and to evaluate the effect of
the found monoallelic methylated loci on gene expression,
the results were combined with publicly available mRNA-
seq data sets from 16 normal human tissues (Illumina’s
Human BodyMap 2.0 project), including adipose, adrenal,
brain, breast, colon, heart, kidney, liver, lung, lymph, ovary,
prostate, skeletal muscle, testes, thyroid and leukocyte cells
originating from different individuals (15 Caucasians and 1
African American, see Supplementary Table S5). The data
are accessible from ArrayExpress, ArrayExpress accession:
E-MTAB-513, actual sequence files are in ENA archive with
accession number: ERP000546 (linked from ArrayExpress
page as ‘ENA - ERP000546’ tag in links section).

For each tissue, the raw paired-end sequence reads (2 ×
50 bp) were aligned using the transcriptome mapper STAR
(v2.3.1) (36). In order to tackle possible mapping bias to
the reference allele, reads were aligned using the method of
Degner et al. (37), i.e. using the human hg19/GRCh37 as a
reference genome which was masked for known dbSNP po-
sitions. Reads mapping up to 10 places were allowed with a
maximum of 8 mismatches per fragment, i.e. read pair. Only
uniquely mapped reads were kept and duplicate fragments
were removed with Picard’s MarkDuplicates command-line
tool (v1.97) (http://picard.sourceforge.net/).

By assessing if some of the found monoallelic methylated
loci are associated with ASE, ASE was determined on a per-
heterozygote-site per-tissue basis. In a likewise manner as
other ASE studies (31,38,39), Samtools mpileup/bcftools
(v0.1.19) (40) was used to call possible variants in the non-
duplicate, uniquely mapped reads, whereby variant sites
with a raw read depth lower than 10 were filtered out and
only bases with a minimum base quality (MAQ) of 13 were
considered. Next, only SNP positions called by Samtools
mpileup and present in dbSNP were kept. Additionally,
known dbSNP sites called as homozygous for the reference
allele, but where at least two high quality (MAQ ≥ 13) al-

ternate (i.e. non-reference) bases mapped, were also added
to the list of variant sites.

After observing the amount of high quality mapped ref-
erence versus non-reference bases for each variant site in
each tissue, ASE was assessed by performing an exact bino-
mial statistical test with the null hypothesis that each allele is
equally expressed. To correct for multiple testing, an FDR
of 1% was used. In a next step, the variant sites showing
a significant deviation from the binomial distribution were
mapped to their corresponding genes. Only genes with at
least two significant variant sites were assumed to be allele-
specific expressed.

RESULTS

Mapping

For the 334 samples the mapping resulted in 2 995 375 490
uniquely mapped reads and an average mapping percentage
of 63.05% (Supplementary Table S1). After removing the
duplicate fragments a total of 2 688 409 588 non-duplicate,
uniquely mapped reads was acquired.

SNP tracing and data filtering

After parsing the mapping output for SNPs (= mapping
mismatches), 19 850 891 SNPs overlapped with already
known SNV positions from dbSNP. These 19 850 891 loci
represent 41.61% of the total number of SNV present in db-
SNP and only these SNPs were used in the remainder of
the analysis. Supplementary Table S2 details the number of
SNPs that overlapped with dbSNP per chromosome.

After pre-processing the data, the corresponding cover-
age and allele frequencies were calculated for each of the
19 850 891 loci and subsequently used to filter the data.
Only positions with a frequency of the major allele smaller
than 0.90 and coverage larger than or equal to 350 (250 for
chromosome X) were retained. A total of 486 090 out of 19
850 891 loci (2.45%) complied with these thresholds. Sup-
plementary Table S2 shows the number of SNP positions
that were retained after filtering as well as the fraction per
chromosome.

Detection of monoallelically methylated loci

Likely sequencing errors in the list of filtered loci were ad-
justed (see Materials and Methods ‘Additional data filter-
ing and correction’ and Additional Methods Section 2.1.3).
Corrected data (available as Additional Data) were subse-
quently analysed using the developed statistical methodol-
ogy. If the P-value obtained for a locus was smaller than
the P-value corresponding with an FDR of 0.1 (P-value =
0.000016), the monoallelic methylation on this locus was
called significant. This was true for 80 loci (see Table 1). Fig-
ure 2 depicts the genomic distribution of these 80 monoal-
lelically methylated loci.

In a next step, the functional location of the 80 loci with
significant monoallelic DNA-methylation was determined.
These results are shown in Table 2. Table 3 provides an
overview of the genes in which a significant SNP position
was found. Thus, of the 80 detected loci, 49 are located
in a genic region (i.e. promoter, exon, intron) of which 25
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Figure 2. Genomic distribution of the 80 loci for which the monoallelic DNA-methylation was called significant. Chromosomes are shown on a circular
representation and divided in regions of 5 000 000 bp. The inner circle shows the histogram of all SNPs found in a specific region, whereas the outer circle
shows the histograms of the significant SNPs in that same region, normalized to the number of SNPs found in that region.

are located in regions with (some) evidence, i.e. monoallelic
expression, of imprinting (15,16) (http://www.geneimprint.
com).

Functional enrichment of loci with significant monoallelic
DNA-methylation

Figure 3(A) represents the relative number of the different
functional annotations of these 80 loci. No significant en-
richment was found when genic regions were compared to
intergenic regions (data not shown). The majority of the

significant SNP positions are located in intronic (43.33%)
and intergenic regions (37.5%). Additionally, a significant
number was found in the promoter regions (13.96%). A
minority of 5.21% mapped to exonic regions. In order to
investigate whether one of these functional locations was
under- or overrepresented compared to random data, we
also performed an enrichment analysis. Figure 3(B) shows
the mean classification of SNPs after 1000 random sam-
plings. By comparing the outcome of this random sampling
with the functional locations of the 80 significant loci (see
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Figure 3. Pie charts representing the relative number of significant SNPs in the different functional classes. (A) Functional classification (i.e. promoter,
exon, intron and intergenic) of the significant SNPs (i.e. loci with significant monoallelic DNA-methylation). (B) Functional classification of random SNPs
resulting from 1000 iterations.

Table 1. Monoallelic DNA-methylation per chromosome

Chr Input entries P ≤ 0.005 P ≤ 0.000016

1 37 259 98 3
2 34 184 113 10
3 22 065 73 4
4 26 442 68 3
5 20 500 54 1
6 25 708 112 3
7 31 450 153 8
8 20 868 63 0
9 19 908 78 0
10 30 138 108 7
11 19 255 82 8
12 20 484 51 0
13 11 709 88 3
14 12 297 40 1
15 11 829 47 2
16 29 432 64 4
17 24 824 158 3
18 11 783 29 1
19 25 066 96 8
20 16 201 45 7
21 11 977 40 2
22 15 012 70 2
X 7699 27 0
TOTAL 486 090 1757 80

The first two columns show the specific chromosome (Chr) and the number
of input entries for the statistical analysis. The third and fourth columns
show the amount of loci, which obtained a P-value smaller than (or equal
to) 0.005 (after first iteration) and 0.000016 (after second iteration, corre-
sponding with FDR = 0.1), respectively.

Materials and Methods ‘Functional annotation and enrich-
ment analysis’), the analysis indicated a significant enrich-
ment in promoter methylation (P-value = 0.002), but not in
other functional locations.

Validation of putative loci using 14 WGBS data sets

After pre-processing the 14 WGBS data sets as outlined in
Materials and Methods ‘Validation of putative loci using 14
WGBS data sets’, 44 out of the 80 significant loci were cov-
ered by at least one heterozygous sample. Table 4 summa-
rizes both the global and the sample-specific P-values ob-
tained for each of these 44 loci. Note that 29 loci (65.9%)
had a global P-value lower than 0.05 of which 24 (54.5%)
even had a global P-value virtually equal to 0 suggesting
monoallelic methylation in at least one of the 14 samples.

Validation of ASE using 16 RNA-seq data sets

To validate if the found monoallelically methylated loci are
associated with ASE, publicly available mRNA-seq data
sets from 16 different individuals and tissues were searched
for ASE. After pre-processing the data for each variant site,
binomial tests were performed. Using an FDR of 1%, and
requiring the presence of at least two significant variant
sites per gene, in total, 19 840 genes showed ASE, ∼1190
genes per tissue (Supplementary Table S5), in line with the
amount of loci identified in previous studies (1,41–43).

In a next step, it was examined if some genes from Ta-
ble 2––the genes with one (or more) monoallelic methylated
SNP(s) in their genic regions––were also characterized by
ASE. Indeed, 21 of the 43 genes were covered by at least two
variant sites in some tissues, of which 19 showed ASE in one
or more tissues (Table 4). Of these 19 genes, 13 also showed
biallelic expression in other tissues. For the remaining two
genes, GNAS-AS1 and ADAMTS2––although covered by
two or more variant sites in some tissues––ASE could not be
validated and thus showed evidence of biallelic expression.
Of the 19 allele-specific expressed genes, 6 have already been
linked to imprinting (15,16) (http://www.geneimprint.com).
The other 13 genes represent novel candidate imprinted
genes. In addition, for WRB, NHP2L1, NAA60, ZNF331,
H19 and GNAS the found monoallelic methylated loci were
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Table 2. SNPs featured by monoallelic methylation located in a gene-associated region

GeneID Gene symbol Description Biotype Location

ENSG00000183929 DUSP5P Dual specificity phosphatase 5
pseudogene

Pseudogene 1:228757936

ENSG00000200624 RN5S6 RNA, 5S ribosomal 6 rRNA 1:228757936
ENSG00000169604 ANTXR1 Anthrax toxin receptor 1 Protein coding 2:69347244
ENSG00000233786 CDC27P1 Cell division cycle 27 homolog

(S.cerevisiae) pseudogene 1
Pseudogene 2:133018988,133020085

ENSG00000163975 MFI2 Antigen p97 (melanoma
associated)

Protein coding 3:196722009

ENSG00000184985 SORCS2 Sortilin-related VPS10 domain
containing receptor 2

Protein coding 4:7635629

ENSG00000138641 HERC3 Hect domain and RLD 3 Protein coding 4:89618837
ENSG00000177432 NAP1L5* Nucleosome assembly protein

1-like 5
Protein coding 4:89618837

ENSG00000087116 ADAMTS2 ADAM metallopeptidase with
thrombospondin type 1 motif,
2

Protein coding 5:178650557

ENSG00000145945 FAM50B* Family with sequence
similarity 50, member B

Protein coding 6:3849305

ENSG00000238158 RP11-420L9.4.1 Processed transcript Processed
transcript

6:3849305

ENSG00000184465 WDR27 WD repeat domain 27 Protein coding 6:170055316
ENSG00000223838 AC007091.1.1 lncRNA lncRNA 7:19534519
ENSG00000155093 PTPRN2 Protein tyrosine phosphatase,

receptor type, N polypeptide 2
Protein coding 7:158041459, 158041458,

157923845
ENSG00000075826 SEC31 SEC31 homolog B

(S.cerevisiae)
Protein coding 10:102279295,102279294

ENSG00000255339 NDUFB8 NADH dehydrogenase
(ubiquinone) 1 beta
subcomplex subunit 8,
mitochondrial

Nonsense
mediated
decay

10:102279295,102279294

ENSG00000166136 NDUFB8 NADH dehydrogenase
(ubiquinone) 1 beta
subcomplex 8, 19kDa

Protein coding 10:102279295,102279294

ENSG00000053918 KCNQ1* Potassium voltage-gated
channel, KGT-like subfamily,
member 1

Protein coding 11:2721568

ENSG00000258492 KCNQ10T1* KCNQ1 opposite
strand/antisense transcript 1

Antisense 11:2721568

ENSG00000211502 MIR675** microRNA 675 miRNA 11:2019496,2019618
ENSG00000130600 H19* H19, imprinted maternally

expressed transcript
Processed
transcript

11:2021164, 2019496,
2019618, 2021206, 2021980,
2022023

ENSG00000102802 C13ORF33 Chromosome 13 open reading
frame 33

Protein coding 13:31481030

ENSG00000226317 LINC00351 Long intergenic non-protein
coding RNA 351

lncRNA 13:85969909,85969941

ENSG00000258807 RP11-1152H15.1.1 lncRNA lncRNA 14:88237822
ENSG00000214265 SNURF* SNRPN upstream reading

frame
Protein coding 15:25201659

ENSG00000128739 SNRPN* Small nuclear
ribonucleoprotein polypeptide
N

Protein coding 15:25201659,25123472

ENSG00000122390 NAA60** N(alpha)-acetyltransferase 60,
NatF catalytic subunit

Protein coding 16:3493495

ENSG00000167981 ZNF597* Zinc finger protein 597 Protein coding 16:3493495
ENSG00000175643 RMI2 RecQ mediated genome

instability 2, homolog
(S.cerevisiae)

Protein coding 16:11415785

ENSG00000207986 AC136932.1 miRNA ncRNA miRNA 16:33960762
ENSG00000108684 ACCN1 Amiloride-sensitive cation

channel 1, neuronal
Protein coding 17:31340444

ENSG00000074181 NOTCH3 Notch 3 Protein coding 19:15279411
ENSG00000251948 AC092279.1 miRNA ncRNA miRNA 19:24184564
ENSG00000198300 PEG3/ZIM2* Zinc finger, imprinted 2 Protein coding 19:57350463
ENSG00000259486 ZIM2.1* Zinc finger, imprinted 2 Protein coding 19:57350463
ENSG00000130844 ZNF331 Zinc finger protein 331 Protein coding 19:54057515, 54057777,

54041242, 54057156,
54040861
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Table 2. Continued

GeneID Gene symbol Description Biotype Location

ENSG00000235590 GNAS-AS1/SANG* GNAS antisense RNA 1 Antisense 20:57427132, 57414110,
57426449, 57426726

ENSG00000087460 GNAS* GNAS complex locus Protein coding 20:57427132, 57414110,
57426449, 57426726,
57431165

ENSG00000160183 TMPRSS3 Transmembrane protease,
serine 3

Protein coding 21:40757887

ENSG00000182093 WRB Tryptophan rich basic protein Protein coding 21:40757887
ENSG00000183486 MX2 Myxovirus (influenza virus)

resistance 2 (mouse)
Protein coding 21:44011806

ENSG00000100138 NHP2L1 NHP2 non-histone
chromosome protein 2-like 1
(S.cerevisiae)

Protein coding 22:42078666

ENSG00000219438 FAM19A5 Family with sequence
similarity 19, member A5

Protein coding 22:49077801

Following parameters are indicated: Location (chromosome:location), (Ensembl) Gene ID, Gene symbol, Description and Biotype. *known imprinted
gene; **predicted imprinted gene.

Table 3. Outcome of the additional validation of the putative loci with 14 WGBS data sets

Chr: SNP
position

Global
P-value Colon

Colon
tumour

Cortex
Nor-
mal1

Cortex
Nor-
mal2

Cortex
AD1

Cortex
AD2 fFF IMR90 HepG2 HSCP bcell dMesenchy dNPC dMEEN

1:228757936 0 0.0195 - 0.387 - 0.2695 0 0 0 0 0 0.122 0 0 0
2:133018988 0.248 1 0.5405 0.525 1 1 0.1735 - - - - - 0.0685 - 0.482
2:133020085 0.0005 0.002 0.7665 0.7875 0.117 0.2655 1 1 1 - 0.029 0.124 0.0925 - 0.3705
2:207122438** 0 0.1345 0.325 0.002 0.4405 - 0.0125 0.3495 0.1685 0.0015 0.5 - 0.03 0.155 0.0015
2:69347244 0.582 - - 1 - 0.541 - - - - - - - - -
2:133033524 0.2535 - - - - - - 0.28 - - 0.6135 - - - -
2:133029769 0.4335 1 - - - - 1 0.175 - - - - - - -
2:133032580 0 0 0 0.7585 0.119 0.5695 0.034 0 0 0 0 0 0 - 0
3:162561619 0 - - - 0 - - 0 - - 0.0265 - - - 0.5525
4:7635629 0 0.0355 - 0.6355 - - 0 0.004 - - - - 0.00555 - 0.0005
4:89618837* 0 - - - 0.0005 0 0.001 0.33 0 - - 0.0035 0 - 0.0035
4:49099668 0 0.002 0.0015 0.034 0.0755 0.151 0 0 0.0595 0.0015 0.004 0.3295 0.089 - -
5:178650557 0 - - - 0 - - - - - 0.3215 - 0.0045 0.226 -
6:170055316 0 - - 0 - - - 0.002 - 0.2125 0.4965 0.566 0 - 0.2345
6:3849305* 0 0 0 0 0.0065 0 0.0025 0.6925 0.48 0.0025 - 0 1 0.1505 -
6:168784228 0 0 0.04 - - 0.0315 0 0.0005 0.0025 0 - - 0.003 - -
7:64895556 0.0265 - 0.38 - - - 1 0.0005 - - - - - 0.075 -
7:157923845 0.3995 - - - - - - 0.3995 - - - - - - -
7:61080848 1 - - - - - - - - - 1 1 - - -
7:56437045 0 - - 0 - - - 0 - - - - - 0.001 0.0775
7:19534519 0.307 - - - - - - 1 - - 0.3905 - - - 0.33
7:57554497 0.0205 - - - - - - 0.0275 - - 0.269 - - - 0.574
10:42800026 0.5405 - - - - - - 1 - - - 1 - - 0.27
11:2721568* 0 0 0 0 0 - 0 0 - - 0 0.1275 - - -
11:51579458 0.5285 - - - - - - 0.5285 - - - - - - -
13:31481030 0.096 0.1905 - - - - - - 0.174 - - - - - -
14:88237822 0.17 0.184 - - 0.2815 1 - 0.1725 - - - 0.0445 - - 0.6605
15:25123472* 0 0 0 0.0475 0.003 0 0 0.4215 0.314 - 0.0045 0 - - -
15:25201659* 0 - - 0 0 - - 0.5625 - - 0.4805 0.012 0 0 0
16:46411729 0 1 0.6475 - - - - 0 - 0.546 - - - - -
16:3493495* 0 - - 0 0 - 0.0355 0 0 - 0.861 0.0095 0 - 0.001
16:11415785 0.002 - - - - - - 0.0475 0 - - - - - -
17:22252007 0.74 1 - 0.6095 - - 0.627 - - - 0.6155 - - - -
17:22259640 0.7215 0.8215 0.7795 0.3425 1 1 0.613 0.3785 0.6265 - 0.212 0.7165 1 - -
18:18517029 0 - 0.0415 - 0.017 0.1795 0.0045 0 - - 0 0.307 - - 0
19:15279411 0 - - 0.299 0.054 0 0.0005 0 - 0.568 0.839 0.0155 0 - 0.016
19:57350463* 0 0 0.0005 0 0 0 - 0.004 - 0 0.2945 0.0095 0 0 0
19:24184564 0 - - - - - - 1 - - - - - 0 0.0005
20:57415110* 0 - - 0.016 0 - 0 0 0.0095 0.4675 - 0 0 - 0
20:57431165* 0.0625 - - 0.5545 - - - 0.011 0.8245 - - - - - -
21:44011806 0.0145 - - - - - - 0.0145 - - - - - - -
21:40757887 0 0 0 - - - - 0.0255 - - 0 - 1 - -
22:42078666 0 0 0.005 - 0 - - - - - - - 0 - 0.013
22:49077801 0.715 - - - - - - 0.715 - - - - - - -

Global and sample-specific P-values are shown for the 44 SNP loci (Chr:SNP location) that were covered by at least one heterozygous WGBS sample. Value ‘-’ in the sample columns indicates that the sample
did not cover or was not heterozygous for the corresponding SNP loci. *known imprinted genomic region; **predicted imprinted genomic region. Samples: colon adjacent normal (Colon), colon primary
tumour (Colon tumour), mid frontal cortex normal (Cortex Normal1/2), mid frontal cortex Alzheimer (Cortex AD1/2), newborn foreskin fibroblasts (fFF), human foetal lung cell line (IMR90), human
liver carcinoma cell line (HepG2), hematopoietic stem cell progenitors (HSCP), human B cells (bcell), H1-derived mesenchymal stem cells (dMesenchy), H1-derived neuronal progenitor cells (dNPC) and
H1+BPM4-derived mesendoderm cells (dMEEN).
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Table 4. Validation of ASE

GeneID Gene symbol
#
Tissues Tissues

Type of
expression

ENSG00000219438 FAM19A5 1 testis ASE
ENSG00000184985 SORCS2 1 brain ASE
ENSG00000169604 ANTXR1 1 adipose ASE
ENSG00000255339 NDUFB8 1 heart ASE
ENSG00000166136 NDUFB8 10 adipose, adrenal, brain, breast, colon, heart, ovary, prostate,

testis, thyroid
ASE

ENSG00000130600 H19* 10 adipose, adrenal, breast, colon, kidney, ovary, prostate,
skeletal muscle, testis, thyroid

ASE

ENSG00000175643 RMI2 1 testis ASE
1 ovary BE

ENSG00000122390 NAA60** 1 brain ASE
10 adipose, adrenal, breast, colon, heart, kidney, liver, lymph

node, ovary, thyroid
BE

ENSG00000138641 HERC3 1 brain ASE
4 heart, leukocyte, ovary, prostate BE

ENSG00000155093 PTPRN2 1 brain ASE
1 prostate BE

ENSG00000182093 WRB 2 brain, liver ASE
7 adrenal, heart, leukocyte, ovary, skeletal muscle, testis, thyroid BE

ENSG00000198300 PEG3/ZIM2* 2 brain, ovary ASE
1 testis BE

ENSG00000183486 MX2 2 adipose, leukocyte ASE
4 breast, ovary, testis, thyroid BE

ENSG00000130844 ZNF331 2 brain, ovary ASE
1 lung BE

ENSG00000074181 NOTCH3 4 adipose, adrenal, breast, testis ASE
6 colon, heart, lymph node, ovary, skeletal muscle, thyroid BE

ENSG00000214265 SNURF* 4 brain, lymph node, prostate, testis ASE
2 heart, thyroid BE

ENSG00000128739 SNRPN* 7 adrenal, colon, leukocyte, lymph node, ovary, prostate, testis ASE
1 brain BE

ENSG00000100138 NHP2L1 8 adrenal, brain, heart, kidney, leukocyte, ovary, prostate, testis ASE
7 adipose, breast, colon, liver, lung, lymph node, thyroid BE

ENSG00000087460 GNAS* 13 adipose, adrenal, brain, breast, heart, kidney, leukocyte, lung,
lymph node, ovary, prostate, testis, thyroid

ASE

1 colon BE
ENSG00000235590 GNAS-AS1/

SANG*
1 testis BE

ENSG00000087116 ADAMTS2 3 adipose, breast, ovary BE

Results are shown for the 21 genes with one (or more) monoallelic methylated SNP(s) in their genic regions and reached the thresholds to investigate
putative ASE. Six genes exclusively show ASE in one or multiple tissues, 13 genes have both ASE and biallelic expression (BE) in different tissues and
2 genes only show BE. Following columns are indicated: (Ensembl) Gene ID, Gene symbol, number and annotation of tissues for which ASE/BE could
be examined (# Tissues and Tissues, respectively) and the Type of expression found for these tissues (ASE or BE). *known imprinted genomic region;
**predicted imprinted genomic region.

located in their respective promoter region. Supplementary
Table S6 also lists the results for genes called allele-specific
expressed if at least one significant variant site was present.

DISCUSSION

Monoallelic gene expression is typically initiated early in
the development of an organism and stably maintained.
Erroneous monoallelic expression has been related to sev-
eral non-Mendelian inherited genetic disorders. DNA-
methylation plays a significant role in the regulation of
monoallelic expression. The choice of the allele to be
monoallelically expressed can be either random or a pri-
ori defined by imprinting. Here we introduced a method-
ology to screen for genes that exhibit monoallelic DNA-
methylation and thus might regulate monoallelic expres-
sion.

Using MethylCap-seq, methylome profiles of 334 sam-
ples, mostly human cancer samples of diverse origin, were

obtained. In summary, upon extra filtering and data cor-
rection, for each SNP locus the Hardy–Weinberg theorem
was applied to evaluate whether the observed frequency of
samples featured by biallelic methylation is lower than ran-
domly expected. Using a permutation approach, loci with
a P-value smaller than the P-value corresponding with a
selected FDR of 0.1 were assumed to be monoallelically
methylated. Finally, this resulted in the identification of 80
loci that showed significant monoallelic DNA-methylation.

Functional location of these monoallelic events might
provide deeper insight in the unraveling of monoallelic
mechanisms and are provided in Table 2 and Supplemen-
tary Table S4. It is common that imprinted genes are present
within clusters and share common regulatory elements,
such as non-coding RNAs and differentially methylated re-
gions (DMRs). If these DMRs control the imprinting of
one or more genes, these regions are called imprinting con-
trol regions (ICRs). It is known that many of these ICRs
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are located in intergenic regions. As some of the found
loci are located in intergenic regions as well as in known
(long) non-coding RNAs (lncRNAs) (see Table 2 and Sup-
plementary Table S4, respectively), it is possible that these
regions present new regulatory elements involved in im-
printing. Furthermore, when we take a closer look at the
intergenic regions, the SNP on chromosome 2 with position
207 122 438 also shows significant monoallelic methylation.
This is interesting, because this locus falls in GPR1AS, a re-
cently found imprinted lncRNA in the GPR1-ZDBF2 inter-
genic region (44), corroborating the outcome of this study
and indicating that the so-called ‘intergenic’ regions are also
of interest for further analyses. Of the 80 loci, 49 were lo-
cated in genic regions of which 25 are already linked to im-
printing. For example, on chromosome 11 (2.01–2.03 mega
base (Mb)), the IGF2/H19 region was highlighted with 6
SNPs (Figure 2). This locus is a well-known imprinted re-
gion that is also linked to the Beckwith–Wiedemann syn-
drome and Wilms’ tumour (4,45–47). The H19 gene codes
for a lncRNA of which expression is negatively correlated
with the expression of the neighbouring gene insulin-like
growth factor 2 (IGF2). Usually the paternal copy of H19 is
methylated and silent, while the maternal copy is hypo- or
unmethylated and expressed. The same is true for the im-
printed region on chromosome 15 that is correlated to the
Prader–Willi syndrome (20.7–30.3 Mb) (4).

In SNRPN, one of the genes in this region where loss of
imprinting is linked to the Prader–Willi syndrome, 2 signif-
icant SNPs were identified. For a couple of genes (or re-
gions), like, for example, H19, more than one significant
SNP locus was found. Because some of these SNPs are at
a distance of more than 400 bp (the cut-off length of se-
quence reads during mapping) of each other, these prove in-
dependently the presence of monoallelic DNA-methylation
in that particular region. These SNPs thus provide ‘mul-
tiple proof’ in the identification of the particular monoal-
lelically methylated region and lend added value to the re-
sults. Not unexpectedly, Figure 3 and the enrichment analy-
sis clearly demonstrated enrichment for monoallelic methy-
lation in promoter regions, although it should be noted that
this enrichment is rather limited in absolute number.

In females, most of the genes on one X-chromosome are
transcriptionally silenced by monoallelic epigenetic events
like DNA-methylation and histone modifications. Early
in development, each cell makes an independent, random
choice which chromosome to inactivate. Once this decision
is set, all further descendants of that cell keep the same pat-
tern. As our method is designed to specifically detect a devi-
ation from the Hardy–Weinberg equilibrium, it is necessary
that for one sample, the same allele is (un)methylated for all
cells––and thus not randomly chosen. In summary, as ran-
dom monoallelic methylation would lead to the detection of
more heterozygotes, the fact that no monoallelic methylated
loci were found on the X-chromosome reassures the detec-
tion of stable monoallelic methylation with our method.

Further validation was performed using 14 publicly avail-
able WGBS data sets, comprising 10 normal samples and
4 samples derived from non-normal tissue, including two
samples of cancerous origin (colon tumour tissue and a hu-
man liver carcinoma cell line) and two brain samples from
Alzheimer patients. Of the 80 significant loci, 44 were cov-

ered by a heterozygous sample and could thus be further
examined. Twenty-nine of the 44 loci (65.9%) obtained a
global P-value lower than 0.05 of which 24 (54.5%) had a
global P-value of virtually 0, indicating monoallelic methy-
lation in one or more samples. For only 9 of these 24 SNP
loci evidence of imprinting already exists, so that with this
subset of 14 WGBS samples at least 15 new monoallelically
methylated regions, found with our new data-analytical
framework, are validated. Furthermore, from the sample-
specific P-values in Table 3 it can be seen that these 24 loci
are mainly validated in samples of normal origin, whereby
each locus is validated in multiple normal samples––and
thus not or not only in cancerous/diseased samples.

In addition, with the ASE analysis of 16 different tis-
sues of normal origin it was possible to investigate if (some
of) the found monoallelically methylated regions are asso-
ciated with ASE––and thus might regulate this monoallelic
expression. Of the 43 genes featured by one or more of the
detected monoallelic methylated loci, 21 had variants with
sufficient coverage and base quality, and were further ex-
amined. Of these, 13 genes showed both allele-specific as
well as biallelic expression in different tissues, while 6 genes
were only featured by ASE (Table 4). The remaining two
genes could not be validated as allele-specific expressed in
a tissue. Of the 19 genes featured by ASE, only 6 have al-
ready been linked to imprinting, suggesting the identifica-
tion of novel candidate imprinted genes. In fact, for two of
these ‘novel’ imprinted genes, WRB and NHP2L1, recent
evidence by Docherty et al. strongly suggests that these are
indeed putatively imprinted as (i) they show ASE in some
tissues and (ii) their methylation patterns are consistent with
allelic maternal methylation (48). Furthermore, for WRB
and NHP2L1 as well as NAA60, ZNF331, H19 and GNAS
monoallelic promoter methylation was found.

There are a couple of important remarks that come with
the proposed methodology:

(i) The basic assumption that MethylCap-seq data from
biallelically methylated loci are generally in Hardy–
Weinberg equilibrium only holds for samples originat-
ing from a panmictic population (i.e. a single popula-
tion that is long-term randomly mating). If this is not
the case and the samples are not panmictic, this could
possibly give rise to some false positives. Thus, for sam-
ples that slightly deviate from the assumption of pan-
mixia, an extra validation of the resulting loci is nec-
essary to assure qualitative results (as was done in this
study).

(ii) The approach does not take into account that loci
with monoallelic methylation will be picked up less effi-
ciently than biallelic loci resulting in less power leading
to a less efficient detection of monoallelically methy-
lated loci. By consequence, the methodology is less sen-
sitive and thus too conservative, though this has no ef-
fect on the reliability of those results deemed signifi-
cant.

(iii) It is known that aligning to a reference genome at sites
of DNA-variants generates a bias towards higher map-
ping rates of the reference allele compared with the
alternative allele (37). Recently, Stevenson et al. (31)
showed that increasing the number of mismatches sig-
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nificantly improved measures of allelic abundance, and
demonstrated that a maximum of three mismatches
provides a good trade-off, as implemented in this study.
Also, as the SNP density in the human genome is ap-
proximately one SNP per kilobase (49), this trade-off
is deemed to be sufficient to both allow the occur-
rence of real SNPs as well as to lower the presence
of possible sequencing errors. By not calculating the
observed allele frequencies from sample-specific allelic
abundances but from the observed genotypes (see Ad-
ditional Methods), the possible influence of an allelic
bias is further minimized. In conclusion, these precau-
tions together with the fact that our method is conser-
vative ensure that our method is not affected by a possi-
ble bias alignment. Indeed, an extra quality control of
the monoallelically methylated loci showed no differ-
ence in sample coverage between samples homozygous
for the reference and the alternative allele (Wilcoxon
rank-sum test, P-value = 0.21, data not shown).

(iv) To eliminate sequencing errors as well as to reduce the
computational time and effort a filtering step was per-
formed. Consequently, some data will not be analysed
and this could interfere with the detection of monoal-
lelic DNA-methylation. However, the benefits of fil-
tering outweigh the possible drawbacks: the computa-
tional load reduces significantly and the power to de-
tect loci that do not pass the filter cut-off will be typi-
cally insufficient.

(v) The approach used to correct for possible sequencing
errors disfavours the presence of monoallelic DNA-
methylation: only two correction rounds were per-
formed and the sequencing error estimate of 0.25% is
the lowest estimate reported (32). But although the cor-
rection method can be considered a bit too stringent,
it will assure a better quality of the obtained results
and will not give rise to more false positives. In fact, it
will possibly reduce the amount of false negatives and
thus allows a more sensitive identification of monoal-
lelically methylated loci that would otherwise not have
been detected.

(vi) The analysis was performed with samples originating
from different tissues that were mostly cancer tumours.
The fact that tumours are epigenetically less stable than
healthy tissue (50), makes it probably more difficult to
detect monoallelic methylation. On the other hand, it
is known that chromosomal deletions and loss of het-
erozygosity frequently happen in cancer, both leading
to possible ‘monoallelic’ methylation events. However,
as a mixture of different cancer tumours was used and
it is very unlikely that these are all characterized by the
same chromosomal deletion, this latter phenomenon
will have had little effect on our stringent analysis. To
justify this, additional analyses were performed on 14
WGBS data sets (of which 10 were of normal origin) as
well as on mRNA-seq data of 16 tissues of normal ori-
gin, validating a notable number of the identified loci
and detecting putatively imprinted genes.

Although the employed experimental set-up to test our
methodology is somewhat challenging––using a mixture of
samples originating from different tissues, mostly cancer

tumours––the proposed methodology allowed the identifi-
cation of loci known to be generally imprinted and involved
in genetic and/or imprinting disorders (e.g. IGF2/H19,
KCNQ10T1, SNURF/SNRPN, GNAS, . . . ) demonstrating
the robustness and biological relevance of our method. Ad-
ditionally, the extra ASE analysis identified monoallelic
methylated loci associated with ASE, thereby identifying 6
known and 13 novel candidate imprinted genes (e.g. WRB,
NHP2L1, . . . ). As we opted to use a stringent approach, the
outcome further demonstrates that our methodology is still
sensitive enough and produces satisfying results.

As recent evidence suggests that monoallelic DNA-
methylation is often tissue- or cell-type specific (19,51), it
would be particularly interesting to apply the methodology
on MethylCap-seq samples of normal, single-tissue origin,
ideally from a single population. Next to MethylCap-seq,
our approach also opens the door to other applications,
like ChIP-seq-based detection of monoallelic protein-DNA
binding events and histone modifications.
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