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1 Introduction

Recently, the magnetic parameters of the magnetic coreiglateside an electromagnetic device (EMD), such as noati
electrical machines, have been retrieved using a coupleerenental-numerical electromagnetic inverse problemlfi
these inverse problems, the measurements are interpgtepaiforward model where the difference between the numer-
ical model responses and the measurement quantitiesavitdy minimized using a minimization algorithm. In priset,

two major aspects can reduce the accuracy of the recovehatibacof the inverse problem, specifically: measurement
noise and inaccurate modeling. Measurement noise can beg@do some extent by accurately performing the measure-
ments. On the other hand, modeling errors basically origifram two main sources: the uncertain ‘geometrical’ model
parameters and the way of modeling the physical phenomethe &MD.

The effect of the uncertain geometrical model parametetb@solution of the inverse problem has been extensively
investigated by the authors in several papers, see for dedfip In these references, the EMD models are assumed to
be perfect, i.e. all physical phenomena are modeled, oieratords, the EMD models exactly simulate the reality. To
this end, the EMD needs to be modeled using a very complex ncahenodel, e.g. 3D finite element (FE) model with a
very fine mesh discretization level and including very dethimaterial models. However, these ‘fine’ forward modeés ar
computationally expensive, and consequently the computdttime of the inverse problem becomes incredible due to
its iterative nature. Alternatively, simplified fast busteaccurate ‘coarse’ models can be used instead of the finelsnod
In this case, a large recovery error in the inverse probldotisa is expected due to the modeling error originatingrfro
the simplification in the used forward model. In order to cemgate this modeling error, the Bayesian approximation
error approach can be used by modifying the objective fondid be minimized with thenisfitbetween fine and coarse
forward model responses. However, there are some drawbettlesapplication of this technique such as the considerabl
computational time and the assumption of having a stoahasideling error with a uniform distribution.

In this paper, we present a robust methodology in order tocomee these drawbacks. The main goal of this paper
is to decrease the modeling error using the Bayesian appatixin error approach coupled with an efficient, fast with a
reasonable level of accuracy, Kriging based model. Theqweg methodology comprises two steps: the first step is the
simplification of the fine model using an adaptive Krigingddsnodel, and the second step is the implementation of the

Bayesian approximation error approach for compensatiagrthdeling error.

*A. Abdallh is a postdoctoral researcher of the BOF “Bijzand@nderzoeksfonds” of Ghent University. Correspondinghaute-mail:
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The proposed methodology is validated experimentallydentifying the material parameters of a real EMD, i.e. an
El electromagnetic core inductor, by solving an inverséfam starting from real experimental data.

The methodology is presented in section 2. In section 2€l Bdyesian approximation error approach is presented
followed by a brief summary of the adaptive Kriging based elasbupled with the cross-validation technique in section
2.2. As areal case study, the proposed methodology is vatidperimentally on an El electromagnetic core inductor

in section 3. The obtained results are discussed in sectibimdlly, the conclusions are drawn in section 5.

2 Methodology

In this section, we briefly explain the application of the Baian approximation error approach for modeling errorcedu
tion in the solution of the inverse problem. In order to regltlte computational time as well as improve the accuracy of

the inverse problem solution, the adaptive Kriging modgtechnique is proposed.

2.1 The Bayesian approximation error approach

Electromagnetic devices can be modeled using differentegsgof freedom. The three-dimensional finite element (3D-
FE) models with very fine mesh discretization are oftenzetii for accurate simulation of EMDs. Instead, less accurate
but fast coarse models can be used as a rough approximattbe ofality. In order to reduce the recovery error in the
inverse problem due to the implementation of the coarse hingead of the fine model, the Bayesian approximation
error approach has been successfully used [3].

The Bayesian approximation error approach is a stochastimique based o priori modification of the objective
function to be minimized by thenisfit between the fine and coarse model. Traditionally, the olgétinction to be
minimized in the inverse problem framework is the quadreggidualsbetween the experimental observations of the
magnetic systemV ¢ RX>! and the modeled oned ¢ RX*! with u and K being the unknown parameters to be

estimated and the total number of discrete experimentargatons, respectively. In other words, the functional
OF (u) = [®(u) — W] [®(u) — W] @)

needs to be minimized:

U= arg muin OF(u) 2

with U being the recovered values of the unknown model paramdtesactice,l is not necessarily equal to the actual
model parametens®, due to the presence of the measurement repisend modeling erroe,,,, i.e. W = ®(u*)+e, +€e,.

Assume that the fine model, which is used for modeling the EMiDulates perfectly the physics of the reality, i.e.
W = ®,(u*) + e,. Alternatively, one may use a coarse model for modeling thtDEvith an expected discrepancy
between the fine and the coarse model responses, whichiiserks modeling error, i.8V = ®.(u*) +e, +€,,. Since
the exact value of the parameters not known in advance, the modeling error is calculatedthemisfitbetween the fine
and the coarse model responses usingypothetical values of the unknown model parameters, withz = 1,--- , Z
being a hypothetical value. Thegehypothetical values are chosen in such a way that they adonamnd cover the
domain defined by the lower and upper bounds of these paresnete

The error between the fine and coarse forward models, at eadblmobservatiot and at each test valag, can be

represented by:
em,k(ﬁz) = (I)f,k(az)_q)c,k(ﬁz)a (k’ZI, 7K)a (Z:L"' aZ) (3)
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with K andZ being the total number of discrete model observations aadatal number of the assumed hypothetical
values of the unknown model parameters, respectively. Bfppring Z coarse and fine forward model computations,

and assuming that the modeling error at each model obsemvae,,, ;) follows the normal distribution, i.e.ef,  ~

N (pm ks, 02, )) one may calculate the mean modeling error and its varjangg andam & respectively.
1 Z A
Mk = E Z em,k(az); Um k= Z €m, k — Hm, k) (4)
z=1 z=1

Based on the calculated,, , ando?, , , the approximate overall probability distribution furati(PDF), at each model

m,k?

observationk, can be written as:

1

/ 2
27T0'm) &

The vector representations of the modeling mean error angitance at all model observatioRsare:

flemr) = -eXp( (em k—tm.x)?/ (202, 1)) (5)

ﬁm = [/’L’ITLJ’ Hm,2, * " ,U/m,K]T7 Egn = [0-7271,17 0-7277‘,2) Ty U%,K]T (6)

Since the modeling erra,, is assumed uncorrelated, ig, ; does not depend o, (4,7 =1,---, K, i # j), the

Oror s 0o k). The

covariance matrix of the modeling err(EiL € RE*E) can be written asE = diag(oz, ;,
mean and the covariance of the modeling error are used tateompensating the modeling error.
On the other hand, due to the random nature of the measuremiset,,, it is assumed to be normally white dis-

tributed with zero mearny, , = 0) and a variance an oo 1€ €0k ~ N(0, Ei,k)) [3]. Similarly,

T =2 2 2 2 T
n — [:u’n,lv Hn,2, =, MHK] = 07 o, = [Jn,h On2y "7 Jn,K] (7)
Again, since the measurement noise is assumed uncorrglateg ; does notdependan, ; (i,j =1,--- , K, i # j),
. . =2 . =2 .
the covariance matrix of the measurement nolsg € R *X) can be written as¥,, = diago?. |, 025, -+, 07 ).

In the Bayesian framework, the identification problem isnsage a statistical inference problem, in which the mea-
surements and the modeled responses are assumed to be fdhdonthe Bayesian approximation error approach, the
forward model can be rewritten a&/ = ®.(u*) + e, + e,,. Due to the Gaussian distribution of both the measurement
noise and modeling error, the overall ereds also Gaussian distributed.

In the well known Bayes’ formula, the posterior probabilitgnsity function of the measurememé given the un-

known model parametets' P(u|W)’ is given by [5]:

Puw) = “ R @
which can be written in a non-normalized form:
P(u|W) o P(u)P(W|u) )

with P(u) being the prior probability density function of the unknomodel parameters.
Since no information is given for thié(u) in our application, the unknown model parameters are assuon®llow

the uniform distribution between lower and upper bounds; anduy g, respectively:

1
P(U) = —, uc [LILB7 UUB} (10)
Uyp — ULB

ur g anduy g can be known from the reasonable physical representation of
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Assuming neithee, nor e,, depend on the unknown model parametershe likelihood density function of the

measurementd/ given the unknown model parametersan be written as [5]:

1

(27T)K/2 Hf:l On,k * Om,k

e (-5 |W-2w) g, - m) (% -%) Woewom-ml])  a

PW|u) =

Therefore, in order to solve this inverse problem, iti@ximum a posteriori)M A P) estimates is used, in which the

M AP of the unknown model parametarss given by:
Umap = arg max P(ulw) (22)
Substituting (9) and (11) in (12), angi{ = 0):

UMAP, Trad = argmax P(W|u)

p— { exp (_; [[w —ew-m,) (B ) Woew - um]D }

g . -1
= arg Hluil'l { [W - (U) - ﬁnL]T (Ei + z]fn) [W - P (U) - ﬁ'm] }
. —_ 2
= argmin ||Ln+m W—-®(u)—n,,) H (13)
with L., being the Cholesky factor of the covariance of the overarei.e. (5 + 3,)~! = L L ntm. N

andffn are the covariance matrix of the measurement noise and ingdstor, respectivelyz,, is the vector of the
mean values of the modeling error. Solution of (13) is th@veced model parametetap, compensated= U) USIng the
inverse problem in the Bayesian approximation error apgroa which the modeling error is compensated. For more
information concerning the Bayesian approximation erppraach, see [4], [6].

Although the Bayesian approximation error approach isessfolly applied for reducing the effect of the modeling
error when the inverse problem is solved, we discovered gtiffieulties. In [3], the Bayesian technique is applied to
reduce the modeling error in the inverse problem solutioemé 2D-FE or an analytical model is used instead of a 3D-
FE model. These coarse models are rather computationgdgneive. Moreover, the accuracy of the coarse model was
fixed ‘to some extent’, i.e. can not be largely improved. Ihestwords, the capability of enhancing the accuracy of the
coarse models was not considered in [3]. Furthermore, tiectie function is adapted by thaisfit between the fine
and the coarse model responses, which assumed to follovothghdistribution. This assumption rarely occurred. The
modeling error may or may not have a normal distribution.alet fthe distribution of the modeling error should be tested
before applying the Bayesian approximation error approHcthe error can be approximated by the normal distribytion
then the Bayesian approximation error approach can be usedaely. Nevertheless, a modeling error still appears.

Therefore, definitely there is a need to modify the error céida technique using the Bayesian approximation error
approach where the coarse model should be faster, its ayctaa be adapted, and the modeling error between the fine
and the coarse model should follow the normal distributfear. these reasons, we propose the use of the adaptive Kriging

based model.

2.2 An adaptive Kriging based model

Kriging models are widely used for modeling EMDs [7]. Suppdkat the aim is to simplify the fine forward model:

Y(u) = ®,(u) using a Kriging model, wher¥ is the forward model response ands the vector of the unknown
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parameters that needs to be identified using the inverségmolrhe most common form of Kriging modelsYgu) =

B+ E(u), whereY (u) is a simplified response of the forward model, @hi$ a constantE (u) is the vector of stochastic
modeling error with zero mean and variance i.e. both3@ andE(u) are the output of the implementation of the Kriging
technique to the considered model response. In fact, itusi@rto assess the accuracy of the simplified model before
using it in the inverse procedure. To this end, we use theserakdation scheme which is a very fast model accuracy
assessment technique [8].

Based on the calculated accuracy level, the Kriging modadiapted iteratively by increasing the number of the used
data-setV until satisfying a predefined value of the accuracy leveThe use of the adaptive Kriging based model as
a coarse model coupled with the Bayesian approximatiorr epproach offers three advantages. The Kriging based
metamodels are computationally inexpensive comparedetphifisical-based models, i.e. 2D-FE or analytical modals. |
this paper, the accuracy of the Kriging coarse model is imguido ensure an acceptable accuracy level before being used
in the inverse problem. Moreover, the modeling error duééosimplification of the fine model using the Kriging model
has a stochastic nature and purely follows a normal didtabu These three-fold advantages may improve the accuracy

of the inverse problem solution.

3 Application: An EI electromagnetic core inductor

In this section, the proposed methodology is validated exgntally for the magnetic material identification of an El

core electromagnetic inductor.

3.1 Problem definition and inverse problem formulation

In this application, the magnetic material properties ef [ electromagnetic core inductor, shown in Fig. 1, neeceto b
recovered using a coupled experimental-numerical elezgmetic inverse problem. The value of the middle air gap
is 0.85 mm, however, the value gf is kept zero in order to eliminate the modeling uncertairtysed by the uncertain
value ofg,, see [2]. In order to prevent the vibration during the experital work, the two yokes are fixed together by a
mechanical clamp.

In order to recover the values of the unknown magnetic neltearameters, an electromagnetic inverse problem needs
to be solved by interpreting the well-defined experimentaasurements with a forward model. Here, we assume that the
values of all geometrical parameters are perfectly knowd there are no uncertain model parameters. This assunigtion
acceptable due to the small effect of the uncertainty in #leevofg, when the value of- is kept zero, see [2]. However,
the only considered uncertainty is the modeling uncenairtich originates from the simplification of the forward nedd

The inverse problem is solved starting from local inductimeasurements at positidh on the I-yoke. The local
induction measurements are obtained as the peak valueg bfytteresis loops correspondinghko = 14 amplitudes
of the sinusoidal excitation current. The quasi-static nedig measurements are performed at 1 Hz for a sinusoidal
current excitation, in order to have a negligible skin efféige to the presence of eddy currents in the magnetic coee. Th
measurements are performed five times and the average \akiesed as the input for the inverse problem. Here, we
assume that the measurements are noise-free.

The single-valued nonlinear constitutive characterigtarmal magnetizing characteristic), to be reconstrubtethe
inverse problem, of the magnetic material of the EI core atoluis a nonlinear relation between the magnetic induckon

and the magnetic field strengtii without introducing the hysteresis behavior. There areynriarmulas to approximate
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Figure 1: Schematic diagram of the studied El electromagurete inductor.

the magnetization curve analytically [9]; one of them is anfull) power-series equation [10]:

£-(2)(2)

with parametersi = [H, (A/m), By (T), v]. The values of these parameters are unknown and need toritéiétusing

an inverse approach. The magnetic reluctivitgs a function of magnetic inductidd can be easily deduced from (14):

v(B) = %2 (1 + (;)V_l> : (15)

The traditional objective function to be minimized is:
Utrad = arg muin | Bm — Bs(u) ||2 (16)

whereB,, andBg are the measured local magnetic induction at posiffcand the corresponding simulated one, respec-

tively. On the other hand, the modified objective functiomgshe Bayesian approximation error approach is:
Usayes= argmin || Ly (Bm — Bs(U) — 7,,) || 1)

Here, the modeling erroe,, is assumed uncorrelated. Therefore, the covariance matdiagonal, i.e.ffn =
diago?, 1, 07,9, -+, Ufn,K)- In such a case, the Cholesky factorization is reduced biggake square root. In (17),
I, is calculated as mentioned in (6).

Moreover, it is worth mentioning that (16) and (17) are sdlusing the well-known least-square non-linear algorithm,

i.e. Levenberg-Marquardt method with line search [11].

3.2 EMD modeling

Here, we build three models: a very fine model based on 3D-FiEwery fine mesh discretizations, an analytical model

based on the magnetic reluctance network theory (MRN), aratlaptive Kriging based model.
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Figure 2: The averag&M SE values for different data-sets in the adaptive Kriging modée value of the average

RM SFE is calculated using the cross-validation technique.

For the adaptive Kriging based model, we initially use 1Gaekt, i.e.N = 10, and calculate th&M SE using the
cross-validation technique. The value §fis iteratively increased with a step of 5 data-sets till heag the stopping
criterion, i.e.e < 1%. Fig. 2 shows the values of theM S E for only 5 Kriging modes built using different values of
N. ltis clear from this figure that the accuracy of the coarselehés adapted and improved with increasiNg The
acceptable Kriging model for\| = 50) is used as a coarse model in the inverse problem combinédtivétBayesian
approximation error approach. The computational cost liffi@ding the coarse model is approximatélyx tsne, Where
tine IS the computational time of one forward computation of the finodel, see later Table 2.

It is worth mentioning that equation (16) is solved for theeth models, however, (17) is solved only for the two

‘relative’ coarse computer models, i.e. MRN and Krigingdzhsnodels, because no modeling error is considered in the
fine model.

3.3 Experimental validation

The recovered magnetic material characteristics usingteese problems are compared with the original normal reagn
tizing B-H curve of the material, which is measured using the IEEE stat893 — 1991, see [12]. The origindB-H curve
is fitted by equation (14), which results in the actual matgrarameter valuas* = [292.03 (A/m), 1.35 (T), 11.99].
Different inverse problems are solved, with the assumptiog), = 0, for each computer model. Then, the identified
magnetic characteristics (single-valugdH curve) are compared. For the fine model, only one inversdgmols solved
based on the traditional Bayesian approach (16). Howewgethe other two coarse models, four inverse problems are
solved, two for each model. The first inverse problem is basedhe traditional Bayesian approach (16), in which
the modeling error is not compensated. While, the other ss/problem is based on the Bayesian approximation error
approach (17), in which the modeling error is compensated.
Fig. 3 illustrates the solution of the five inverse problerampared to the original characteristics. It is clear from
this figure that the application of the Bayesian approachtferKriging model results in a better solution compared to
the one based on the MRN. Table 1 shows the values of the ngcex®r for the three models. The recovery error is

calculated using the formula presented in [3], which is Hase the ratio between the recovered and the origsié
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Figure 3: The recovereB-H curve using the two inverse problems based on the traditiBagesian approach ‘no
modeling error compensation’ and the Bayesian approxonatiror approach ‘with modeling error compensation’ for

the two coarse models, and the recovered characteristitisefdine model, compared to the original characteristics.

Table 1: The values of the recovery error for the three models

Model Fine model| MRN-model | MRN-model | Kriging model | Kriging model
Compensation - no yes no yes
RE % 0.0266 3.2304 1.5953 1.4813 0.0312

curves, respectively.

The computational time required for solving the inversebfem based on the adaptive Kriging model is largely
reduced compared the ones based on fine and MRN models. Thealifieience between the computational time of the
inverse problems for the adaptive Kriging and the MRN mosdéhat the modeling error is calculated when the Kriging
model is being built. There is no need to perform extra colman to construct the stochastic modeling error. It is
worth mentioning that the computational time for perforgnthe cross-validation technique is negligible. Table 2n&ho
the computational time, in minutes, required for solving)(and (17) for the MRN and the adaptive Kriging models
compared to the time required for solving (16) for the fine slpdssumingZ = 100 and N = 50 and the number of

iterations equal to 100.

Table 2: The computational time, in minutes, required fdvisg inverse problem based on the fine, MRN, and the

adaptive Kriging models, assumiify= 100, N = 50, and the number of iterations 100.

One forward evaluation Inverse problem time (min) Inverse problem time (min
Model time (min) (without compensation) (with compensation)
“100 iterations” “100 iterations”
Fine model 10 4 %103 -
MRN model 0.1667 66.68 1.08 x 10% (Z = 100)
Kriging model 0.002025 0.81 500.91 (V = 50)
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4 Discussion

The proposed methodology has been developed to overcome d@awbacks in the previous work presented by the
authors [3]. The Bayesian approximation error approacbupled with a fast and relatively accurate coarse modelbase
on a Kriging metamodel.

In practice, there are several techniques to reduce thelmgdsror. Two-level methods, such as space mapping
technique [13], can reduce the modeling error by incorpaged coarse model with a fine one. Although the two-level
techniques are worthy, the implementation of these tectasidn the inverse problem requires a considerable computa-
tional time, because both fine and coarse models are sol\kd iterative inverse approach. Moreover, a more advanced
technique, i.e. the two-level refined direct method, wasgméed in [14] to reduce the modeling error when the finite el-
ement model with a coarse mesh is used instead of the fine dilugh the results presented in [14] are acceptable, the
implementation of this technique requires advanced coatjouts. Alternatively, the coupled Kriging-Bayesian aggarh,
presented in this paper, offers a much easier and fastesgngeheme for reducing the modeling errors. Furthermloee, t
authors are convinced that the presented methodology falwsken dealing with high dimensional inverse problems,

where the high computational cost of the forward problenréhibitive.

5 Conclusion

In this paper, the recovery error in the inverse problemtsmiudue to the simplification in the used forward model
is reduced by implementing the Bayesian approach coupléd twé stochastic Kriging model. The accuracy of the
coarse model is adapted and improweplriori, using the cross-validation technique, to ensure an aabkplevel of the
model accuracy. The proposed methodology is validatedrarpatally for the magnetic material identification of an El
electromagnetic core inductor. Three computer modelssad to model the El core inductor. Beside the fine model, we
use two relatively coarse models. The first coarse modelssdan the theory of the magnetic reluctance network, while
the other one is based on the adaptive Kriging metamodelmidie advantage of the proposed methodology is the high
capability of reducing the effect of the modeling error irekatively small computational time. The computationaldirs
decreased approximately by about 50 percent with a bettelrdé accuracy of the inverse problem. Finally, the presént
scheme may be useful especially in the case of high dimealsiorerse problems, where the light computational cost of

the forward problem is necessarily needed.
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