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1 Introduction

Recently, the magnetic parameters of the magnetic core material inside an electromagnetic device (EMD), such as rotating

electrical machines, have been retrieved using a coupled experimental-numerical electromagnetic inverse problem [1]. In

these inverse problems, the measurements are interpreted using a forward model where the difference between the numer-

ical model responses and the measurement quantities is iteratively minimized using a minimization algorithm. In practice,

two major aspects can reduce the accuracy of the recovered solution of the inverse problem, specifically: measurement

noise and inaccurate modeling. Measurement noise can be reduced to some extent by accurately performing the measure-

ments. On the other hand, modeling errors basically originate from two main sources: the uncertain ‘geometrical’ model

parameters and the way of modeling the physical phenomena ofthe EMD.

The effect of the uncertain geometrical model parameters onthe solution of the inverse problem has been extensively

investigated by the authors in several papers, see for example [2]. In these references, the EMD models are assumed to

be perfect, i.e. all physical phenomena are modeled, or in other words, the EMD models exactly simulate the reality. To

this end, the EMD needs to be modeled using a very complex numerical model, e.g. 3D finite element (FE) model with a

very fine mesh discretization level and including very detailed material models. However, these ‘fine’ forward models are

computationally expensive, and consequently the computational time of the inverse problem becomes incredible due to

its iterative nature. Alternatively, simplified fast but less accurate ‘coarse’ models can be used instead of the fine models.

In this case, a large recovery error in the inverse problem solution is expected due to the modeling error originating from

the simplification in the used forward model. In order to compensate this modeling error, the Bayesian approximation

error approach can be used by modifying the objective function to be minimized with themisfitbetween fine and coarse

forward model responses. However, there are some drawbacksin the application of this technique such as the considerable

computational time and the assumption of having a stochastic modeling error with a uniform distribution.

In this paper, we present a robust methodology in order to overcome these drawbacks. The main goal of this paper

is to decrease the modeling error using the Bayesian approximation error approach coupled with an efficient, fast with a

reasonable level of accuracy, Kriging based model. The proposed methodology comprises two steps: the first step is the

simplification of the fine model using an adaptive Kriging based model, and the second step is the implementation of the

Bayesian approximation error approach for compensating the modeling error.
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The proposed methodology is validated experimentally for identifying the material parameters of a real EMD, i.e. an

EI electromagnetic core inductor, by solving an inverse problem starting from real experimental data.

The methodology is presented in section 2. In section 2.1, the Bayesian approximation error approach is presented

followed by a brief summary of the adaptive Kriging based model coupled with the cross-validation technique in section

2.2. As a real case study, the proposed methodology is validated experimentally on an EI electromagnetic core inductor

in section 3. The obtained results are discussed in section 4. Finally, the conclusions are drawn in section 5.

2 Methodology

In this section, we briefly explain the application of the Bayesian approximation error approach for modeling error reduc-

tion in the solution of the inverse problem. In order to reduce the computational time as well as improve the accuracy of

the inverse problem solution, the adaptive Kriging modeling technique is proposed.

2.1 The Bayesian approximation error approach

Electromagnetic devices can be modeled using different degrees of freedom. The three-dimensional finite element (3D-

FE) models with very fine mesh discretization are often utilized for accurate simulation of EMDs. Instead, less accurate

but fast coarse models can be used as a rough approximation ofthe reality. In order to reduce the recovery error in the

inverse problem due to the implementation of the coarse model instead of the fine model, the Bayesian approximation

error approach has been successfully used [3].

The Bayesian approximation error approach is a stochastic technique based ona priori modification of the objective

function to be minimized by themisfit between the fine and coarse model. Traditionally, the objective function to be

minimized in the inverse problem framework is the quadraticresidualsbetween the experimental observations of the

magnetic systemW ∈ R
K×1 and the modeled onesΦ ∈ R

K×1, with u andK being the unknown parameters to be

estimated and the total number of discrete experimental observations, respectively. In other words, the functional

OF (u) = [Φ(u)− W]T [Φ(u)− W] (1)

needs to be minimized:

ũ = argmin
u

OF (u) (2)

with ũ being the recovered values of the unknown model parameters.In practice,̃u is not necessarily equal to the actual

model parametersu∗, due to the presence of the measurement noiseen and modeling errorem, i.e. W = Φ(u∗)+en+em.

Assume that the fine model, which is used for modeling the EMD,simulates perfectly the physics of the reality, i.e.

W = Φf (u∗) + en. Alternatively, one may use a coarse model for modeling the EMD with an expected discrepancy

between the fine and the coarse model responses, which is referred as modeling error, i.e.W = Φc(u∗)+ en + em. Since

the exact value of the parameteru is not known in advance, the modeling error is calculated as themisfitbetween the fine

and the coarse model responses usingZ hypothetical values of the unknown model parameters, withûz, z = 1, · · · , Z

being a hypothetical value. TheseZ hypothetical values are chosen in such a way that they are random and cover the

domain defined by the lower and upper bounds of these parameters.

The error between the fine and coarse forward models, at each model observationk and at each test valuêuz, can be

represented by:

em,k(ûz) = Φf,k(ûz)− Φc,k(ûz), (k = 1, · · · ,K), (z = 1, · · · , Z) (3)
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with K andZ being the total number of discrete model observations and the total number of the assumed hypothetical

values of the unknown model parameters, respectively. By performingZ coarse and fine forward model computations,

and assuming that the modeling error at each model observation k (em,k) follows the normal distribution, i.e. (em,k ∼

N (µm,k, σ
2
m,k)), one may calculate the mean modeling error and its variance, µm,k andσ2

m,k, respectively.

µm,k =
1

Z

Z∑

z=1

em,k(ûz), σ2
m,k =

1

Z

Z∑

z=1

(em,k(ûz)− µm,k)
2 (4)

Based on the calculatedµm,k andσ2
m,k, the approximate overall probability distribution function (PDF), at each model

observationk, can be written as:

f (em,k) =
1√

2πσ2
m,k

· exp(−(em,k−µm,k)
2/(2σ2

m,k)) (5)

The vector representations of the modeling mean error and its variance at all model observationsK are:

µm = [µm,1, µm,2, · · · , µm,K ]T , σ2
m = [σ2

m,1, σ
2
m,2, · · · , σ2

m,K ]T (6)

Since the modeling errorem is assumed uncorrelated, i.e.em,i does not depend onem,j (i, j = 1, · · · ,K, i 6= j), the

covariance matrix of the modeling error (Σ
2

m ∈ R
K×K ) can be written as:Σ

2

m = diag(σ2
m,1, σ

2
m,2, · · · , σ2

m,K). The

mean and the covariance of the modeling error are used later for compensating the modeling error.

On the other hand, due to the random nature of the measurementnoiseen, it is assumed to be normally white dis-

tributed with zero mean (µn,k = 0) and a variance ofσ2
n,k, i.e. (en,k ∼ N (0, σ2

n,k)) [3]. Similarly,

µn = [µn,1, µn,2, · · · , µn,K ]T = 0, σ2
n = [σ2

n,1, σ
2
n,2, · · · , σ2

n,K ]T (7)

Again, since the measurement noise is assumed uncorrelated, i.e. en,i does not depend onen,j (i, j = 1, · · · ,K, i 6= j),

the covariance matrix of the measurement noise (Σ
2

n ∈ R
K×K ) can be written as:Σ

2

n = diag(σ2
n,1, σ

2
n,2, · · · , σ2

n,K).

In the Bayesian framework, the identification problem is seen as a statistical inference problem, in which the mea-

surements and the modeled responses are assumed to be random[4]. In the Bayesian approximation error approach, the

forward model can be rewritten as:W = Φc(u∗) + en + em. Due to the Gaussian distribution of both the measurement

noise and modeling error, the overall errore is also Gaussian distributed.

In the well known Bayes’ formula, the posterior probabilitydensity function of the measurementsW given the un-

known model parametersu ‘P(u|W)’ is given by [5]:

P(u|W) =
P(u)P(W|u)

P(W)
(8)

which can be written in a non-normalized form:

P(u|W) ∝ P(u)P(W|u) (9)

with P(u) being the prior probability density function of the unknownmodel parameters.

Since no information is given for theP(u) in our application, the unknown model parameters are assumed to follow

the uniform distribution between lower and upper bounds;uLB anduUB , respectively:

P(u) =
1

uUB − uLB
, u ∈ [uLB , uUB ] (10)

uLB anduUB can be known from the reasonable physical representation ofu.

3



Assuming neitheren nor em depend on the unknown model parametersu, the likelihood density function of the

measurementsW given the unknown model parametersu can be written as [5]:

P(W|u) =
1

(2π)K/2
∏K

k=1 σn,k · σm,k

· exp

(
−
1

2

[
[W −Φ (u)− µn − µm]

T
(
Σ

2

n −Σ
2

m

)
−1

[W −Φ (u)− µn − µm]

])
(11)

Therefore, in order to solve this inverse problem, themaximum a posteriori(MAP ) estimates is used, in which the

MAP of the unknown model parametersu is given by:

uMAP = argmax
u

P(u|W) (12)

Substituting (9) and (11) in (12), and (µn = 0):

uMAP, Trad = argmax
u

P(W|u)

= argmax
u

{
exp

(
−
1

2

[
[W −Φ (u)− µm]

T
(
Σ

2

n +Σ
2

m

)
−1

[W −Φ (u)− µm]

])}

= argmin
u

{
[W −Φ (u)− µm]

T
(
Σ

2

n +Σ
2

m

)
−1

[W −Φ (u)− µm]

}

= argmin
u

∥∥Ln+m (W −Φ (u)− µm)
∥∥2 (13)

with Ln+m being the Cholesky factor of the covariance of the overall error, i.e. (Σ
2

n + Σ
2

m)−1 = LT
n+mLn+m. Σ

2

n

andΣ
2

m are the covariance matrix of the measurement noise and modeling error, respectively.µm is the vector of the

mean values of the modeling error. Solution of (13) is the recovered model parameter (uMAP, Compensated≡ ũ) using the

inverse problem in the Bayesian approximation error approach, in which the modeling error is compensated. For more

information concerning the Bayesian approximation error approach, see [4], [6].

Although the Bayesian approximation error approach is successfully applied for reducing the effect of the modeling

error when the inverse problem is solved, we discovered somedifficulties. In [3], the Bayesian technique is applied to

reduce the modeling error in the inverse problem solution when a 2D-FE or an analytical model is used instead of a 3D-

FE model. These coarse models are rather computationally expensive. Moreover, the accuracy of the coarse model was

fixed ‘to some extent’, i.e. can not be largely improved. In other words, the capability of enhancing the accuracy of the

coarse models was not considered in [3]. Furthermore, the objective function is adapted by themisfit between the fine

and the coarse model responses, which assumed to follow the normal distribution. This assumption rarely occurred. The

modeling error may or may not have a normal distribution. In fact, the distribution of the modeling error should be tested

before applying the Bayesian approximation error approach. If the error can be approximated by the normal distribution,

then the Bayesian approximation error approach can be used accurately. Nevertheless, a modeling error still appears.

Therefore, definitely there is a need to modify the error reduction technique using the Bayesian approximation error

approach where the coarse model should be faster, its accuracy can be adapted, and the modeling error between the fine

and the coarse model should follow the normal distribution.For these reasons, we propose the use of the adaptive Kriging

based model.

2.2 An adaptive Kriging based model

Kriging models are widely used for modeling EMDs [7]. Suppose that the aim is to simplify the fine forward model:

Y(u) = Φf (u) using a Kriging model, whereY is the forward model response andu is the vector of the unknown
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parameters that needs to be identified using the inverse problem. The most common form of Kriging models is̆Y(u) =

β + E(u), whereY̆(u) is a simplified response of the forward model, andβ is a constant.E(u) is the vector of stochastic

modeling error with zero mean and varianceσ2, i.e. bothβ andE(u) are the output of the implementation of the Kriging

technique to the considered model response. In fact, it is crucial to assess the accuracy of the simplified model before

using it in the inverse procedure. To this end, we use the cross-validation scheme which is a very fast model accuracy

assessment technique [8].

Based on the calculated accuracy level, the Kriging model isadapted iteratively by increasing the number of the used

data-setN until satisfying a predefined value of the accuracy levelǫ. The use of the adaptive Kriging based model as

a coarse model coupled with the Bayesian approximation error approach offers three advantages. The Kriging based

metamodels are computationally inexpensive compared to the physical-based models, i.e. 2D-FE or analytical models. In

this paper, the accuracy of the Kriging coarse model is improved to ensure an acceptable accuracy level before being used

in the inverse problem. Moreover, the modeling error due to the simplification of the fine model using the Kriging model

has a stochastic nature and purely follows a normal distribution. These three-fold advantages may improve the accuracy

of the inverse problem solution.

3 Application: An EI electromagnetic core inductor

In this section, the proposed methodology is validated experimentally for the magnetic material identification of an EI

core electromagnetic inductor.

3.1 Problem definition and inverse problem formulation

In this application, the magnetic material properties of the EI electromagnetic core inductor, shown in Fig. 1, need to be

recovered using a coupled experimental-numerical electromagnetic inverse problem. The value of the middle air gapg1

is 0.85 mm, however, the value ofg2 is kept zero in order to eliminate the modeling uncertainty caused by the uncertain

value ofg2, see [2]. In order to prevent the vibration during the experimental work, the two yokes are fixed together by a

mechanical clamp.

In order to recover the values of the unknown magnetic material parameters, an electromagnetic inverse problem needs

to be solved by interpreting the well-defined experimental measurements with a forward model. Here, we assume that the

values of all geometrical parameters are perfectly known, and there are no uncertain model parameters. This assumptionis

acceptable due to the small effect of the uncertainty in the value ofg1 when the value ofg2 is kept zero, see [2]. However,

the only considered uncertainty is the modeling uncertainty which originates from the simplification of the forward model.

The inverse problem is solved starting from local inductionmeasurements at positionP on theI-yoke. The local

induction measurements are obtained as the peak values of the hysteresis loops corresponding toK = 14 amplitudes

of the sinusoidal excitation current. The quasi-static magnetic measurements are performed at 1 Hz for a sinusoidal

current excitation, in order to have a negligible skin effect due to the presence of eddy currents in the magnetic core. The

measurements are performed five times and the average valuesare used as the input for the inverse problem. Here, we

assume that the measurements are noise-free.

The single-valued nonlinear constitutive characteristic(normal magnetizing characteristic), to be reconstructedby the

inverse problem, of the magnetic material of the EI core inductor is a nonlinear relation between the magnetic inductionB

and the magnetic field strengthH without introducing the hysteresis behavior. There are many formulas to approximate
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Figure 1: Schematic diagram of the studied EI electromagnetic core inductor.

the magnetization curve analytically [9]; one of them is a (non-full) power-series equation [10]:

H

H0
=

(
B

B0

)
+

(
B

B0

)ν

(14)

with parametersu = [H0 (A/m), B0 (T), ν]. The values of these parameters are unknown and need to be identified using

an inverse approach. The magnetic reluctivityυ as a function of magnetic inductionB can be easily deduced from (14):

υ(B) =
H0

B0

(
1 +

(
B

B0

)ν−1
)
. (15)

The traditional objective function to be minimized is:

ũTrad = argmin
u

‖ Bm − Bs(u) ‖2 (16)

whereBm andBs are the measured local magnetic induction at positionP and the corresponding simulated one, respec-

tively. On the other hand, the modified objective function using the Bayesian approximation error approach is:

ũBayes= argmin
u

‖ Lm(Bm − Bs(u)− µm) ‖2 (17)

Here, the modeling errorem is assumed uncorrelated. Therefore, the covariance matrixis diagonal, i.e.Σ
2

m =

diag(σ2
m,1, σ

2
m,2, · · · , σ2

m,K). In such a case, the Cholesky factorization is reduced by taking the square root. In (17),

µm is calculated as mentioned in (6).

Moreover, it is worth mentioning that (16) and (17) are solved using the well-known least-square non-linear algorithm,

i.e. Levenberg-Marquardt method with line search [11].

3.2 EMD modeling

Here, we build three models: a very fine model based on 3D-FE with very fine mesh discretizations, an analytical model

based on the magnetic reluctance network theory (MRN), and an adaptive Kriging based model.
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Figure 2: The averageRMSE values for different data-sets in the adaptive Kriging model. The value of the average

RMSE is calculated using the cross-validation technique.

For the adaptive Kriging based model, we initially use 10 data-set, i.e.N = 10, and calculate theRMSE using the

cross-validation technique. The value ofN is iteratively increased with a step of 5 data-sets till reaching the stopping

criterion, i.e. ǫ ≤ 1%. Fig. 2 shows the values of theRMSE for only 5 Kriging modes built using different values of

N . It is clear from this figure that the accuracy of the coarse model is adapted and improved with increasingN . The

acceptable Kriging model for (N = 50) is used as a coarse model in the inverse problem combined with the Bayesian

approximation error approach. The computational cost of calibrating the coarse model is approximatelyN × tfine, where

tfine is the computational time of one forward computation of the fine model, see later Table 2.

It is worth mentioning that equation (16) is solved for the three models, however, (17) is solved only for the two

‘relative’ coarse computer models, i.e. MRN and Kriging based models, because no modeling error is considered in the

fine model.

3.3 Experimental validation

The recovered magnetic material characteristics using theinverse problems are compared with the original normal magne-

tizing B-H curve of the material, which is measured using the IEEE standard393−1991, see [12]. The originalB-H curve

is fitted by equation (14), which results in the actual material parameter valuesu∗ = [292.03 (A/m), 1.35 (T), 11.99].

Different inverse problems are solved, with the assumptionof en = 0, for each computer model. Then, the identified

magnetic characteristics (single-valuedB-H curve) are compared. For the fine model, only one inverse problem is solved

based on the traditional Bayesian approach (16). However, for the other two coarse models, four inverse problems are

solved, two for each model. The first inverse problem is basedon the traditional Bayesian approach (16), in which

the modeling error is not compensated. While, the other inverse problem is based on the Bayesian approximation error

approach (17), in which the modeling error is compensated.

Fig. 3 illustrates the solution of the five inverse problems compared to the original characteristics. It is clear from

this figure that the application of the Bayesian approach forthe Kriging model results in a better solution compared to

the one based on the MRN. Table 1 shows the values of the recovery error for the three models. The recovery error is

calculated using the formula presented in [3], which is based on the ratio between the recovered and the originalB-H
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ũ = [218.49, 1.35, 14.3]}

Figure 3: The recoveredB-H curve using the two inverse problems based on the traditional Bayesian approach ‘no

modeling error compensation’ and the Bayesian approximation error approach ‘with modeling error compensation’ for

the two coarse models, and the recovered characteristics for the fine model, compared to the original characteristics.

Table 1: The values of the recovery error for the three models.

Model Fine model MRN-model MRN-model Kriging model Kriging model

Compensation − no yes no yes

RE % 0.0266 3.2304 1.5953 1.4813 0.0312

curves, respectively.

The computational time required for solving the inverse problem based on the adaptive Kriging model is largely

reduced compared the ones based on fine and MRN models. The main difference between the computational time of the

inverse problems for the adaptive Kriging and the MRN model is that the modeling error is calculated when the Kriging

model is being built. There is no need to perform extra computation to construct the stochastic modeling error. It is

worth mentioning that the computational time for performing the cross-validation technique is negligible. Table 2 shows

the computational time, in minutes, required for solving (16) and (17) for the MRN and the adaptive Kriging models

compared to the time required for solving (16) for the fine model, assumingZ = 100 andN = 50 and the number of

iterations equal to 100.

Table 2: The computational time, in minutes, required for solving inverse problem based on the fine, MRN, and the

adaptive Kriging models, assumingZ = 100, N = 50, and the number of iterations= 100.

One forward evaluation Inverse problem time (min) Inverse problem time (min)

Model time (min) (without compensation) (with compensation)

“100 iterations” “100 iterations”

Fine model 10 4× 103 -

MRN model 0.1667 66.68 1.08× 103 (Z = 100)

Kriging model 0.002025 0.81 500.91 (N = 50)
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4 Discussion

The proposed methodology has been developed to overcome some drawbacks in the previous work presented by the

authors [3]. The Bayesian approximation error approach is coupled with a fast and relatively accurate coarse model based

on a Kriging metamodel.

In practice, there are several techniques to reduce the modeling error. Two-level methods, such as space mapping

technique [13], can reduce the modeling error by incorporating a coarse model with a fine one. Although the two-level

techniques are worthy, the implementation of these techniques in the inverse problem requires a considerable computa-

tional time, because both fine and coarse models are solved inthe iterative inverse approach. Moreover, a more advanced

technique, i.e. the two-level refined direct method, was presented in [14] to reduce the modeling error when the finite el-

ement model with a coarse mesh is used instead of the fine one. Although the results presented in [14] are acceptable, the

implementation of this technique requires advanced computations. Alternatively, the coupled Kriging-Bayesian approach,

presented in this paper, offers a much easier and faster inverse scheme for reducing the modeling errors. Furthermore, the

authors are convinced that the presented methodology is useful when dealing with high dimensional inverse problems,

where the high computational cost of the forward problem is prohibitive.

5 Conclusion

In this paper, the recovery error in the inverse problem solution due to the simplification in the used forward model

is reduced by implementing the Bayesian approach coupled with the stochastic Kriging model. The accuracy of the

coarse model is adapted and improveda priori, using the cross-validation technique, to ensure an acceptable level of the

model accuracy. The proposed methodology is validated experimentally for the magnetic material identification of an EI

electromagnetic core inductor. Three computer models are used to model the EI core inductor. Beside the fine model, we

use two relatively coarse models. The first coarse model is based on the theory of the magnetic reluctance network, while

the other one is based on the adaptive Kriging metamodel. Themain advantage of the proposed methodology is the high

capability of reducing the effect of the modeling error in a relatively small computational time. The computational time is

decreased approximately by about 50 percent with a better level of accuracy of the inverse problem. Finally, the presented

scheme may be useful especially in the case of high dimensional inverse problems, where the light computational cost of

the forward problem is necessarily needed.
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[2] A. Abdallh, G. Crevecoeur, and L. Dupré, “A priori experimental design for inverse identificationof magnetic material

properties of an electromagnetic device using uncertaintyanalysis,”COMPEL, vol. 31, no. 3, 2012, pp. 972-984.
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