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Abstract

For n ≥ 9, we construct maximal partial line spreads for non-singular quadrics of
PG(n, q) for every size between approximately (cn + d)(qn−3 + qn−5) log 2q and qn−2, for
some small constants c and d. These results are similar to spectrum results on maximal
partial line spreads in finite projective spaces by Heden, and by Gács and Szőnyi. These
results also extend spectrum results on maximal partial line spreads in the finite generalized
quadrangles W3(q) and Q(4, q) by Pepe, Rößing and Storme.
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1 Introduction

A partial line spread in PG(n, q) is a set of pairwise disjoint lines. A partial line spread is called
maximal when it is not contained in a larger partial line spread.
In the literature, there are several articles on spectrum results on maximal partial line spreads
in PG(n, q), i.e., for large intervals, it is proven that for every integer k in that interval, there
exists a maximal partial line spread of size k in PG(n, q).
Heden performed extensive work on spectrum results for maximal partial line spreads in PG(3, q)
[?], and Gács and Szőnyi proved spectrum results on maximal partial line spreads in PG(n, q),
n ≥ 5 [?].
The techniques of Gács and Szőnyi have now been extended to prove spectrum results on
maximal partial line spreads in non-singular quadrics of PG(n, q).
The presented spectrum results on maximal partial line spreads for non-singular quadrics of
PG(n, q) extend the spectrum results on maximal partial line spreads in the finite generalized
quadrangles W3(q) and Q(4, q) by Pepe, Rößing and Storme.
These results are as follows.

Theorem 1.1. (Pepe, Rößing and Storme [?]) There exists a maximal partial line spread S
of size k in the generalized quadrangle W3(q), q ≥ 49 odd, for every integer k in the interval[

6q2+3q−149
10 , 9q2−68q+519

10

]
.

Theorem 1.2. (Rößing and Storme [?]) For every integer k in one of the intervals in Table
??, there exists a maximal partial line spread S on the corresponding generalized quadrangles
W3(q), q even, and Q(4, q), q even.

Note that the upper bounds of the intervals of [?] in Table ?? have undergone small corrections.
We now summarize some results we need for our construction.
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W3(q), Q(4, q) Interval
q = 24h, h ≥ 2 q2+194q+10qb48 log(q+1)c−190

10 ≤ k ≤ 9q2−69q+440
10 [?]

q = 24h+1, h ≥ 2 q2+198q+10qb48 log(q+1)c−230
10 ≤ k ≤ 9q2−64q+390

10 [?]
q = 24h+2, h ≥ 1 q2+196q+10qb48 log(q+1)c−210

10 ≤ k ≤ 9q2−66q+410
10 [?]

q = 24h+3, h ≥ 1 q2+192q+10qb48 log(q+1)c−170
10 ≤ k ≤ 9q2−62q+370

10 [?]

Table 1: Spectrum on maximal partial spreads in Q(4, q), q even, and in W3(q), q even

Result 1.3. [?] For a bipartite graph with partition L ∪ U , such that every element in U has
degree at least d, and every element in L has maximum degree D, there exists a subset L′ ⊆ L
such that every element in U is adjacent to at least one element of L′, and L′ has size

∣∣L′∣∣ ≤ min
(
|L| log(|U |)

d
, |L| 1 + log(D)

d

)
.

We always use the form |L′| ≤ |L| 1+log(D)
d when applying the previous result. For every case

we discuss, when q > 5, this is the smallest value.

Result 1.4.

(i) In PG(3, q), q ≥ 7 odd, there exist maximal partial line spreads for every size between
q2+1

2 + 6 and q2 − q + 2 (Heden [?, ?, ?]).

(ii) In PG(3, q), q > q0 even, there exist maximal partial line spreads of every size between
5q2+q+16

8 and q2 − q + 2 (Govaerts, Heden, Storme [?]; Jungnickel, Storme [?]).

The precise value of q0 is not yet determined, but most likely q0 will be 16, 32 or 64.

Result 1.5. In PG(3, q), q ≥ 3, there exists a maximal partial line spread with size d7 log qeq
[?].

Remark 1.6. Whenever we use the previous result, we write 7q log q for convenience.

In this article we will construct maximal partial line spreads by covering every quadric by two
sets of maximal partial line spreads. One set will block the lines of the quadric inside the
tangent space `⊥ of a line ` of the quadric, the other set will block the lines of the quadric
outside of `⊥. In Section ?? we find a spectrum result on maximal partial line spreads for
PG(n+ 2, q)\PG(n, q). With the lines of this partial spread we will find 3-dimensional spaces
through `, blocking the lines outside of `⊥. These 3-dimensional spaces intersect the quadric in
a hyperbolic quadric Q+(3, q), and we will consider the lines of one of its reguli.
In Sections ?? and ?? we discuss separately the quadrics that do and do not contain line spreads.
The difference lies in the construction of the maximal partial line spreads inside `⊥. In both
cases we will take several 3-dimensional spaces through `, completely contained in the quadric,
and consider both line spreads as maximal partial line spreads of these spaces PG(3, q).
The constructions in this article apply to the parabolic, hyperbolic and elliptic quadrics. How-
ever, one may be able to use similar constructions for other polar spaces. From the isomorphism
with Q(2n+2, q), q even, we also found spectrum results for symplectic polar spaces W (2n+1, q),
q even. For q odd, one can most likely find spectrum results of maximal partial line spreads of
symplectic polar spaces in a similar way as for the quadrics. One problem that has to be taken
into account is that all points of PG(2n+ 1, q) are points of the symplectic space W (2n+ 1, q),
but not all lines of PG(2n + 1, q) are totally isotropic lines of W (2n + 1, q). We are currently
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looking at this problem. Using similar techniques for Hermitian varieties is on the contrary less
feasible, since a 3-dimensional space intersects a Hermitian variety sometimes in a non-singular
Hermitian variety H(3, q2), which does not contain a line spread, and very little is known on
the existence of large maximal partial line spreads in these spaces.

2 Maximal partial line spreads in PG(n + 2, q)\PG(n, q)

Lemma 2.1. (Beutelspacher [?]) The space PG(n, q), n ≥ 3, can be partitioned in one subspace
PG(n− 2, q) and qn−1 lines.

Lemma 2.2. Consider a line spread m1, . . . ,mqn−1 of PG(n, q)\PG(n− 2, q), with n ≥ 3. For
every integer k such that (1 + n log 2q)qn−2 ≤ k ≤ qn−1, we can choose k lines mi such that
they intersect every line of PG(n, q)\PG(n− 2, q), with exception of the not chosen lines mi.
Table ?? shows how large q has to be, such that for a given n the interval is non-empty.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
q 11 16 23 25 31 37 41 47 53 59 67 71 79 83

Table 2: Minimal size of q such that the interval of Lemma ?? is non-empty

Proof. Consider a line spread S in PG(n, q)\PG(n−2, q) (Lemma ??). We construct a bipartite
graph with classes A and B. Class A consists of the qn−1 lines of the line spread S. Class B
consists of the lines of PG(n, q)\PG(n− 2, q) not belonging to the line spread S. Two vertices
from different classes are adjacent if their corresponding lines intersect each other. Every vertex
of B has degree d ≥ q. The maximum degree of an element of A is D = (q+1)

(
qn−1
q−1 − 1

)
≤ 2qn

for q > 3.
Using Result ??, we find a subset A′ ⊆ A of lines from the line spread S such that every line of
PG(n, q)\PG(n− 2, q) that does not belong to S will intersect a line of A′. We find:

∣∣A′∣∣ ≤ |A|(1 + logD)
q

≤ qn−1

q
(1 + log 2qn) ≤ (1 + n log 2q)qn−2.

The set A′ can be enlarged step by step until the whole set A consisting of all the qn−1 lines of
the line spread S is reached.

Construction 2.3. For n ≥ 3, consider an (n+ 2)-dimensional projective space PG(n+ 2, q)
with the embedding of two n-dimensional spaces Π1

∼= PG(n, q) and Π2
∼= PG(n, q) that intersect

each other in a space π ∼= PG(n − 2, q). Consider a line ` ⊆ Π1 disjoint from π. Consider a
line spread S in Π2\π; this line spread S consists of qn−1 lines m1, . . . ,mqn−1.
Choose k lines mi of the line spread S, suppose m1, . . . ,mk, such that their union intersects
every line in Π2\π, not in S. We consider the qn−1 three-dimensional spaces 〈`,mi〉; these cover
all points of (PG(n+ 2, q)\Π1) ∪ {`} completely.
For i = 1, . . . , k, in the space 〈`,mi〉, consider a line spread Si through `. For j = k+1, . . . , qn−1,
in the space 〈`,mj〉, consider a maximal partial line spread Pj through `.
The union S ′ of the lines of the line spreads Si, i = 1, . . . , k, and of the maximal partial line
spreads Pj, j = k+1, . . . , qn−1, forms a maximal partial line spread in (PG(n+ 2, q)\PG(n, q))∪
{`}.
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Proof. For two different lines mi and mj , we know: 〈`,mi〉 ∩ 〈`,mj〉 = {`}. So S ′ definitely is
a partial line spread. Suppose b is a line of PG(n+ 2, q)\PG(n, q) not belonging to S ′; we will
show that this line cannot be added to S ′.
Suppose b belongs to a three-dimensional space 〈`,mi〉. When i ≤ k, we consider a spread in
〈`,mi〉; every point of b is covered. When i > k, we consider a maximal partial spread Pi; there
is at least one point of b covered.
Suppose the line b does not belong to such a three-dimensional space. The projection of b from
the line ` on Π2\π gives a line b′; different from every line mi. Because of the property of the
k lines mi, there is at least one line of m1, . . . ,mk that intersects b′; suppose b′ intersects m1.
The space 〈`,m1〉 has one point of b; suppose P . In 〈`,m1〉, we have considered a line spread
S1; this contains a line that intersects b in P . We have shown that the partial line spread S ′ is
maximal in (PG(n+ 2, q)\PG(n, q)) ∪ {`}.

Remark 2.4. We take a maximal partial line spread in every chosen three-dimensional space
through `. Every line in the three-dimensional space has to intersect at least one of the lines of
the maximal partial line spread. It could be possible that there exists a line that only intersects
with the line `. So it is important to add the line ` to the maximal partial line spread. This will
not matter in what follows, because we can choose this line ` arbitrarily in PG(n, q)\PG(n −
2, q) = Π1\π.

We define the following parameters:

kn: the size of the smallest known subset of lines of a particular line spread of PG(n, q)\PG(n−
2, q), such that every line, not in the line spread, intersects a line of the set,

[l, u]: interval of sizes of maximal partial line spreads of PG(3, q),

s: size of the smallest known maximal partial line spread of PG(3, q).

Theorem 2.5. Knowing the values of the previously defined variables, we find maximal partial
line spreads in (PG(n+ 2, q)\PG(n, q)) ∪ {`}, n ≥ 3, for every size in the interval:[

knq
2 + (qn−1 − kn)(s− 1) +

⌈
q2 − s+ 1
u− l

⌉
(l − s) + 1, qn+1 − q2 + u

]
.

Proof. We look at the previous construction where kn three-dimensional spaces contain line
spreads through ` and every maximal partial line spread Pi through ` in one of the qn−1 − kn
other three-dimensional spaces has the smallest known size, namely s. There exists a maximal
partial line spread of size

knq
2 + (qn−1 − kn)(s− 1) + 1

in (PG(n+ 2, q)\PG(n, q)) ∪ {`}.
We can find an uninterrupted interval of sizes for maximal partial line spreads by using the
interval [l, u]. Suppose we have a construction where k three-dimensional spaces have a line
spread, qn−1 − k − x three-dimensional spaces have the smallest known maximal partial line
spread Pi, and the other x three-dimensional spaces have a maximal partial line spread of size
l, namely the smallest value from the known interval [l, u]. We can increase this size step by
step by using other partial spreads with their size in the interval [l, u]. If we have reached the
maximal value u, we have to increase k to k+ 1. We take line spreads and maximal partial line
spreads of the following sizes:
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number k qn−1 − k − x x

size q2 s− 1 u− 1 1

number k + 1 qn−1 − k − x− 1 x

size q2 s− 1 l − 1 1

To find an uninterrupted interval, the size corresponding to the second maximal partial line
spread has to be smaller than or equal to the size of the first, so we need:

x(u− 1) ≥ q2 + x(l − 1)− (s− 1),
x ≥ q2−s+1

u−l .

The size of the smallest maximal partial line spread of our interval is therefore:
knq

2 + (qn−1 − kn −
⌈
q2−s+1
u−l

⌉
)(s− 1) +

⌈
q2−s+1
u−l

⌉
(l − 1) + 1

= knq
2 + (qn−1 − kn)(s− 1) +

⌈
q2−s+1
u−l

⌉
(l − s) + 1.

Now for our upper bound. A line spread in PG(n + 2, q)\PG(n, q) has size qn+1. We find the
largest maximal partial line spread of our interval by using k = qn−1 − 1 in our construction.
This gives us a maximal partial line spread in (PG(n+ 2, q)\PG(n, q)) ∪ {`} of size

(qn−1 − 1)q2 + u− 1 + 1 = qn+1 − q2 + u.

Corollary 2.6. Using Result ?? and ?? together with Lemma ??, we know the values: kn =
(1 + n log 2q)qn−2, s = 7q log q, [l, u] =

[
(5q2 + q + 16)/8, q2 − q + 2

]
and find x = 3. This,

together with their conditions q ≥ 7, and if q even also q > q0, and using the approximation
7 log q ≤ 7 log 2q− 4, there exist maximal partial line spreads of (PG(n+ 2, q) \PG(n, q))∪ {`}
of every size in the interval[

(−3 + (n+ 7) log 2q)qn, qn+1 − q + 2
]
.

Table ?? shows how large q has to be, such that for a given n the interval is non-empty.

Proof. To prove the lower bound we make some approximations.

knq
2 + (qn−1 − kn)(s− 1) +

⌈
q2 − s+ 1
u− l

⌉
(l − s) + 1

≤ (1 + n log 2q)qn + qn−1(7 log 2q − 4)q − qn−1 − kn(s− 1) +
⌈
q2 − s+ 1
u− l

⌉
(l − s) + 1

≤ (1 + n log 2q)qn + (7 log 2q − 4)qn

= (−3 + (n+ 7) log 2q)qn

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
q 43 47 53 61 67 73 79 89 97 101 107 113 121 127

Table 3: Minimal size of q such that the interval of Corollary ?? is non-empty
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3 First construction: Q(4n, q), q even, Q−(4n + 1, q), Q+(4n + 3, q)

3.1 Line spreads

Lemma 3.1. Consider a non-singular quadric Qn(q) in PG(n, q). If Qn(q) has a line spread,
then also the non-singular quadric Qn+4(q) in PG(n+ 4, q), of the same type as Qn(q), that is,
elliptic, parabolic or hyperbolic, has a line spread.

Proof. Consider a line ` of the quadric Qn+4(q) and its tangent space `⊥ ∼= PG(n + 2, q). We
have `⊥ ∩Qn+4(q) = `Qn(q), where Qn(q) is of the same type as Qn+4(q).
The quadric Qn(q) is non-singular in a space π ∼= PG(n, q) which we can embed in a space
Π ∼= PG(n+ 2, q) disjoint from `. Using Lemma ??, we find a line spread S = {m1, . . . ,mqn+1}
of Π\π. Every line mi spans a three-dimensional space together with `. Such a three-dimensional
space intersects the quadric Qn+4(q) in a hyperbolic quadric Q+(3, q). In every such quadric
Q+(3, q) we take the regulus through `; this gives us qn+1q = qn+2 lines of Qn+4(q) different
from `. Every point P of Qn+4(q)\`⊥ spans a plane together with `. This plane intersects Π\π
in one point; this point belongs to exactly one line of the line spread S. The qn+2 lines form a
partition of the points of Qn+4(q)\`⊥.
Now look at Qn(q) ⊆ π. We supposed this quadric has a line spread {t1, . . . , ts} . Every
three-dimensional space 〈`, ti〉 is completely contained in `Qn(q). Every point of `⊥ ∩Qn+4(q),
not on `, belongs to exactly one of these three-dimensional spaces. In every space 〈`, ti〉, we
consider a line spread through `. The union of all these lines forms a partition of the points of
`⊥ ∩Qn+4(q).
The union of the two kinds of lines forms a line spread for Qn+4(q).

Corollary 3.2. Since the quadrics Q(4, q), q even, Q+(3, q) and Q−(5, q) all contain a line
spread, see [?], we know that for n ≥ 1, every parabolic quadric Q(4n, q), q even, every hyperbolic
quadric Q+(4n− 1, q), and every elliptic quadric Q−(4n+ 1, q) contains a line spread.

Remark 3.3. The parabolic quadric Q(4, q), q odd, has no spreads. Very little is known about
partial line spreads of Q(4, q), q odd, and no large maximal partial line spreads have yet been
found. This is why our results are only valid for quadrics Q(4n + 4, q) when q is even, and it
seems difficult to find a similar construction for q odd.

3.2 The cone `Qn(q)

Lemma 3.4. Consider a non-singular quadric Qn(q) in PG(n, q); suppose it has a line spread
t1, . . . , tr. We can choose c lines ti such that every line of Qn(q), not in the line spread, intersects
at least one of these c lines. The integer c can be chosen for every value in the following interval:

c ∈
[
qn−3(1 + (n− 2) log 2q),

|Qn(q)|
q + 1

]
.

Proof. Consider a line spread S in Qn(q). We construct a bipartite graph with two classes A
and B. Class A consists of the lines of the line spread S. Consider B to contain the lines of
Qn(q) not in the line spread. Two vertices of different classes are adjacent if their corresponding
lines intersect each other. Every vertex of B has degree q + 1.
The quadric Qn(q) contains |Qn(q)||Qn−2(q)|

q+1 lines. We can check for every type of quadric that

the maximal degree of an element of A is D ≤ 2qn−2 for q > 3. The set A consists of |Qn(q)|
q+1

lines. Using Result ??, we find a subset A′ ⊆ A of lines of the line spread S such that every
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line of Qn(q) not in S intersects at least one of the lines of A′. We can check for every type of
quadric that |Qn(q)|

q+1 ≤ qn−3(q + 1). We find:∣∣A′∣∣ ≤ qn−3(1 + (n− 2) log 2q).

Step by step we can add extra lines of the line spread until we have all the lines of the line
spread S.

Corollary 3.5. The previous lemma leads to the following intervals for specific quadrics:

• Q(4m, q), q even : c ∈
[
q4m−3(1 + (4m− 2) log 2q), q

4m−1
q2−1

]
,

• Q−(4m+ 1, q) : c ∈
[
q4m−2(1 + (4m− 1) log 2q), (q2m−1)(q2m+1+1)

q2−1

]
,

• Q+(4m+ 3, q) : c ∈
[
q4m(1 + (4m+ 1) log 2q), (q2m+1+1)(q2m+2−1)

q2−1

]
.

Table ?? shows how large q has to be such that for a given m the constructed interval is non-
empty.

q\m 1 2 3 4 5 6 7 8 9 10 11 12 13
Q(4m, q), q even 16 64 64 128 128 256 256 256 256 256 512 512 512
Q−(4m+ 1, q) 23 41 67 97 121 149 173 199 229 257 289 331 349
Q+(4m+ 3, q) 31 53 79 103 131 157 191 223 243 277 307 337 367

Table 4: Minimal size of q such that the interval of Corollary ?? is non-empty

Construction 3.6. Suppose Qn(q) contains a line spread.
Consider a non-singular quadric Qn+4(q) and take an arbitrary line ` of Qn+4(q). Consider its
tangent space `⊥ ∼= PG(n + 2, q). We find: `⊥ ∩Qn+4(q) = `Qn(q); this quadric Qn(q) lies in
a space π ∼= PG(n, q).
Consider a line spread S = {t1, . . . , tr} on Qn(q).
Look at the three-dimensional spaces 〈`, t1〉 , . . . , 〈`, tr〉; these are completely contained in the
quadric Qn+4(q). Every point of `⊥ ∩Qn+4(q), not on `, belongs to exactly one of these three-
dimensional spaces.
Suppose there exist c lines ti such that every line of the quadric Qn(q), not in S, intersects at
least one of these c lines. For i = 1, . . . , c, take a line spread Si in the space 〈`, ti〉 through `.
For j = c+ 1, . . . , r, take a maximal partial line spread Pj in 〈`, tj〉 through `.
The union S ′ of the lines of the line spreads Si together with the lines of the maximal partial
line spreads Pj forms a maximal partial line spread in `Qn(q).

Proof. This proof is similar to the proof of Construction ??.

If there does not exist a line spread in Qn(q), then the previous construction does not work.
This case will be discussed later in Section ??.

3.3 The quadric Qn+4(q)

Construction 3.7. Take an arbitrary line ` of Qn+4(q). Consider the tangent space `⊥ ∼=
PG(n+2, q), we have: `⊥∩Qn+4(q) = `Qn(q). This quadric Qn(q) lies in a space π ∼= PG(n, q)
which can be embedded in a space Π ∼= PG(n+ 2, q) disjoint from `.
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Starting from a line spread S1 = {t1, . . . , tr} of Qn(q) and using Construction ??, we find a
maximal partial line spread S ′1 in `⊥ ∩Qn+4(q) that contains the line `.
In the three-dimensional space 〈`, t1〉, we have considered a line spread. Take a maximal partial
line spread S2 = {m1, . . . ,ms, t1} of (Π\π) ∪ {t1}, for example by Construction ??. Every
three-dimensional space 〈`,m1〉 , . . . , 〈`,ms〉 intersects Qn+4(q) in a hyperbolic quadric Q+(3, q)
through `. In every such three-dimensional space we take the corresponding regulus through `.
All these lines, without `, form an appropriate partial line spread S ′2 for Qn+4(q)\`⊥ of size qs.
The union S ′ of lines of S ′1 and S ′2 forms a maximal partial line spread for the quadric Qn+4(q).

Proof. A line intersecting ` cannot be added. A line in `⊥ cannot be added since S ′1 is a maximal
partial line spread. Consider two different lines mi and mj , we know 〈`,mi〉 ∩ 〈`,mj〉 = {`}. So
we have a partial line spread S ′2. Consider a line b in Qn+4(q)\`⊥ disjoint from `; we will show
that this line cannot be added to S ′.
When b belongs to a three-dimensional space 〈`,mi〉, then it belongs to a regulus contained in
S ′2. Suppose b does not belong to such a three-dimensional space. Projection of b from ` on
Π\π gives a line b′, different from every line mi. Since we have considered a maximal partial
line spread in (Π\π) ∪ {t1}, there is at least one line in {m1, . . . ,ms, t1} that intersects b′.
Suppose b′ intersects the line t1 in a point. The space 〈`, t1〉 contains a point of b, suppose P . In
〈`, t1〉, we have considered a line spread through `; this spread contains a line that intersects b in
P . So the line b cannot be added to S ′. Suppose b′ intersects a line mi, suppose m1. The space
〈`,m1〉 contains one point of b, suppose P . In 〈`,m1〉, we have taken the regulus of Qn+4(q)
through `; this spread contains a line which intersects b in P . The line b cannot be added to
S ′2; we have shown that the partial line spread S ′ is maximal.

Suppose Qn(q) is a non-singular quadric in PG(n, q) containing a line spread L. Define cn to
be the smallest number of lines of L such that every line of the quadric, not in the line spread,
intersects at least one of the cn lines. For an upper bound on cn we refer to Lemma ??.

Theorem 3.8. For n ≥ 3, when the non-singular quadric Qn(q) in PG(n, q) has a line spread,
we can find maximal partial line spreads S ′ in `Qn(q) for every size in the following interval:[

cnq
2 +

(
|Qn(q)|
q + 1

− cn
)

(s− 1) +
⌈
q2 − s+ 1
u− l

⌉
(l − s) + 1,

|Qn(q)|
q + 1

q2 − q2 + u

]
.

Proof. We use Construction ?? with c = cn and take for every Pj the smallest known maximal
partial line spreads; these have size s. This gives us a maximal partial line spread of size:

cnq
2 +

(
|Qn(q)|
q + 1

− cn
)

(s− 1) + 1.

To find an uninterrupted interval we proceed in the same way as in Theorem ??. In at least
x three-dimensional spaces, we will consider maximal partial line spreads with their size in the
interval [l, u]. Similarly as in the earlier proof we find that x ≥ q2−s+1

u−l . By making the correct
choices we find an uninterrupted interval with lower bound:

cnq
2 +

(
|Qn(q)|
q + 1

− cn −
⌈
q2 − s+ 1
u− l

⌉)
(s− 1) +

⌈
q2 − s+ 1
u− l

⌉
(l − 1) + 1.

Now for our upper bound. A line spread of Qn(q) has size |Qn(q)|
q+1 . We find the largest maximal

partial line spread of our interval by using c = |Qn(q)|
q+1 − 1 in our Construction ??. This gives us

a maximal partial line spread of `Qn(q) of size(
|Qn(q)|
q + 1

− 1
)
q2 + u− 1 + 1 =

|Qn(q)|
q + 1

q2 − q2 + u.
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Corollary 3.9. Using Result ?? and ?? together with Corollary ??, we know the values for our
variables, with restrictions n ≥ 3, q ≥ 7 and for even q also q > q0, so for particular quadrics
there exists a maximal partial line spread for every size in the interval:

`Q(4n− 4, q), q even :
[
(−3 + (4n+ 1) log 2q)q4n−5,

q4n−2 − 1
q2 − 1

− q + 1
]
,

`Q+(4n− 5, q) :
[
(−3 + 4n log 2q)q4n−6,

q4n−3 + q2n − q2n−1 − 1
q2 − 1

− q + 1
]
,

`Q−(4n− 7, q) :
[
(−3 + (4n− 2) log 2q)q4n−8,

q4n−5 − q2n−1 + q2n−2 − 1
q2 − 1

− q + 1
]
.

Theorem 3.10. In Qn+4(q), n ≥ 3, there exist maximal partial line spreads S ′ for every size
in the interval:[

(qkn + cn)q2 + (qn + |Qn(q)|
q+1 − qkn − cn)(s− 1) +

⌈
q2−s+1
u−l

⌉
(q + 1)(l − s) + 1,

qn+2 + |Qn(q)|
q+1 q2 − q2 + u

]
.

Proof. We are looking at maximal partial line spreads of Construction ??.
Using Theorem ??, we find maximal partial line spreads S ′1 in `Qn(q) of every size in the interval[

cnq
2 +

(
|Qn(q)|
q + 1

− cn
)

(s− 1) +
⌈
q2 − s+ 1
u− l

⌉
(l − s) + 1,

|Qn(q)|
q + 1

q2 − q2 + u

]
.

Using Theorem ??, we can find a maximal partial line spread S2 in (PG(n+ 2, q)\PG(n, q)) ∪
{t1}; its size lies in the following interval:[

knq
2 + (qn−1 − kn)(s− 1) +

⌈
q2 − s+ 1
u− l

⌉
(l − s) + 1, qn+1 − q2 + u

]
.

Since the three-dimensional space 〈`, t1〉 is completely covered by a line spread, every line in
Qn+4(q)\`⊥ that after projection from ` is projected onto a line that intersects t1, is also covered
by the maximal partial line spread S ′1, see Construction ??. So from now on we will talk about
these appropriate partial line spreads in PG(n + 2, q)\PG(n, q) that intersect all the lines not
in the partial spread and disjoint from t1, and we still use the name S2.
The constructed maximal partial line spread has size |S ′| = |S ′1| + q|S2|. When the size of S2

increases by one, the size of S ′ increases by q.
We have uninterrupted intervals for the sizes of S ′1 and S2. So an uninterrupted interval for
the sizes of S ′ can be found if the length of the interval of S ′1 is larger than q; this leads to the
condition:

|Qn(q)|
q + 1

q2 − q2 + u− cnq2 −
(
|Qn(q)|
q + 1

− cn
)

(s− 1)−
⌈
q2 − s+ 1
u− l

⌉
(l − s)− 1 ≥ q. (1)

If the size of the interval for S ′1 is larger than (q2− u)q, then we can make the jump from S2 of
size qn+1 − q2 + u to a line spread of size qn+1. This leads to the condition:

|Qn(q)|
q + 1

q2− q2 + u− cnq2−
(
|Qn(q)|
q + 1

− cn
)

(s− 1)−
⌈
q2 − s+ 1
u− l

⌉
(l− s)− 1 ≥ (q2− u)q. (2)
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For given n, the inequalities in (??) and (??) are valid for the respective quadrics Qn(q) if q is
large enough. For smaller n the lower bounds on q are presented in Table ??.
We only have to look for the maximal and minimal size of S ′.
When we take for S ′1 the largest possible maximal partial line spread, that is not a line spread,
and for S2 a line spread, then we find size:

|Qn(q)|
q + 1

q2 − q2 + u+
(
qn+1

)
q.

This is the largest possible maximal partial line spread for Qn+4(q) we can find by our con-
struction.
The smallest by us constructed appropriate partial line spread of PG(n + 2, q)\PG(n, q) has
size knq2 + (qn−1−kn)(s−1) +

⌈
q2−s+1
u−l

⌉
(l−s). Every line of such a partial line spread gives us

q lines for the sought maximal partial line spread S ′. We add the lines of the smallest maximal
partial line spread in `Qn(q); this has size cnq2 +

(
|Qn(q)|
q+1 − cn

)
(s− 1) +

⌈
q2−s+1
u−l

⌉
(l − s) + 1.

The smallest size is thus(
knq

2 +
(
qn−1 − kn

)
(s− 1) +

⌈
q2−s+1
u−l

⌉
(l − s)

)
q

+cnq2 +
(
|Qn(q)|
q+1 − cn

)
(s− 1) +

⌈
q2−s+1
u−l

⌉
(l − s) + 1

= (qkn + cn)q2 + (qn + |Qn(q)|
q+1 − qkn − cn)(s− 1) +

⌈
q2−s+1
u−l

⌉
(q + 1)(l − s) + 1.

We now summarize the spectrum result for this construction method. Due to the isomorphism
between W (2n− 1, q), q even, and Q(2n, q), q even, the spectrum result for Q(4n, q), q even, is
also valid for W (4n− 1, q), q even.

Corollary 3.11. Using Result ?? and ??, Lemma ?? and Corollary ??, we know the values
of our variables together with the constraints n ≥ 3, q ≥ 7 and for q even also q > q0, so for
particular quadrics there exist maximal partial line spreads S ′ for every size in the following
interval:
W (4n− 1, q), q even ∼= Q(4n, q), q even :[

(−3 + (4n+ 3) log 2q)q4n−3 + (−3 + (4n+ 1) log 2q)q4n−5,
q4n − 1
q2 − 1

− q + 1
]
,

Q+(4n− 1, q):[
(−3 + (4n+ 2) log 2q) q4n−4 + (−3 + 4n log 2q)q4n−6,

(q2n−1 + 1)(q2n − 1)
q2 − 1

− q + 1
]
,

Q−(4n− 3, q):[
(−3 + 4n log 2q)q4n−6 + (−3 + (4n− 2) log 2q)q4n−8,

(q2n−1 + 1)(q2n−2 − 1)
q2 − 1

− q + 1
]
.

Table ?? shows how large q has to be such that for a given n, the interval determined is non-
empty, and such that the conditions we have put on the length of the interval for |S ′1| in Theorem
?? are fulfilled.
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q\n 3 4 5 6 7 8 9 10 11 12 13 14
Q(4n, q), q even 128 128 128 256 256 256 256 512 512 512 512 512
Q+(4n− 1, q) 67 97 125 149 173 211 233 263 293 331 353 383
Q−(4n− 3, q) 53 79 107 131 163 191 223 251 277 307 337 367

Table 5: Minimal size of q such that the interval corresponding to Corollary ?? is non-empty

4 Second construction: Q+(4n + 1, q), Q(4n + 2, q), Q−(4n + 3, q)

The quadrics Q+(4n+ 1, q) and Q−(4n+ 3, q) cannot contain a line spread since q+ 1 does not
divide |Q+(4n+ 1, q)| = (q2n + 1)(q2n+1− 1)/(q− 1), nor |Q−(4n+ 3, q)| = (q2n+1− 1)(q2n+2 +
1)/(q − 1). So the previous construction does not work here. Even though q + 1 divides
|Q(4n+ 2, q)| = (q4n+2 − 1)/(q − 1), there are not many results known about the existence of
line spreads in the non-singular quadric Q(4n+2, q). From [?], we know a line spread in Q(6, 2)
and Q(6, 3) exists, but we do not know the situation for other q.
We will construct large maximal partial line spreads, and from this we will find a spectrum
of maximal partial line spreads similarly as in the first construction. Note that the following
method does not work for Q(4, q), Q(8, q), nor for any parabolic quadric Q(4n, q), n ≥ 1, q odd.

4.1 Large maximal partial line spreads

Lemma 4.1. Consider the non-singular quadric Q4n+i(q) in PG(4n + i, q), with i ∈ {1, 2, 3},
corresponding to a quadric in the set {Q+(4n+1, q), Q(4n+2, q), Q−(4n+3, q)}. Define δ(1) = 0
and δ(2) = δ(3) = 1. For these quadrics, there exists a maximal partial line spreadM for which
M = S ∪ P. Here the set P is a maximal partial line spread of the tangent space π⊥, with π
a (2n − 1)-dimensional space contained in the quadric. Every point of the quadric outside of
π⊥ is covered by the line spread S. The smallest and largest maximal partial line spread of this
form have respectively size

(q2n+i + 1)
(
q2n−1
q2−1

)
=
{
q2n+i q2n−1

q2−1

}
+
{
q2n−1
q2−1

}
and (q2n+i + 1)

(
q2n−1
q2−1

)
+ q2n−2+δ(i) =

{
q2n+i q2n−1

q2−1

}
+
{
q2n−1
q2−1

+ q2n−2+δ(i)
}
.

The value inside the first pair of braces shows the size of S, and the value inside the second pair
of braces shows the size of P.

The construction of these two maximal partial line spreads on these quadrics Q4n+i(q) is as
follows:

• We fix a line ` and a particular (2n−1)-dimensional space π of Q4n+i(q), passing through
`.

• Outside of `⊥, we consider the same line spread as in the first construction.

• In `⊥\π⊥, we consider a line spread of Q4n+i(q), defined in the following way. Consider
the quotient geometry `⊥/` of ` in `⊥ and consider in this quotient geometry of ` in `⊥

the quotient geometry π′ of π. There exists a line spread of (`⊥/`) \ π′. By taking line
spreads through ` in the 3-spaces defined by the lines of this line spread and `, a line
spread of Q4n+i(q) in `⊥ \ π⊥ is obtained. The union of the two preceding line spreads,
not including the line `, is the line spread S.
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• The tangent space π⊥ of π intersects Q4n+i(q) into the union of qi−1 + 1 generators, of
dimension 2n. For the smallest maximal partial line spread, P is a line spread of π. For the
largest maximal partial line spread, P is the union of line spreads of qδ(i) + 1 hyperplanes
of generators through π. These hyperplanes each cover a (2n − 2)-dimensional space of
π and are chosen such that they overlap in a common (2n − 3)-dimensional space of π.
Their corresponding line spreads coincide inside this common (2n− 3)-dimensional space.

Proof. We will prove this by induction on n. Suppose n = 1. We consider the quadric Q4+i(q) ∈
{Q+(5, q), Q(6, q), Q−(7, q)}, so i ∈ {1, 2, 3} for the respective quadrics.
Consider a line ` of the quadric and its tangent space `⊥, we know `⊥∩Q4+i(q) = `Qi(q), which
consists of qi−1 + 1 planes intersecting each other in the line `.
Using the construction seen in the proof of Lemma ??, we find a line spread S for the quadric
outside of `⊥ consisting of qi+2 lines. These lines arise from reguli of quadrics Q+(3, q) through
` contained in the original quadric.
For the points of the quadric in `⊥, we can find a maximal partial line spread P consisting
of either the line ` or respectively 2, q + 1 or q + 1 lines belonging to different planes, and
intersecting the line ` in different points.
We find a suitable maximal partial line spread of the quadric Q4+i(q) of size qi+2 + 1 or qi+2 +
qδ(i) + 1.
Suppose the lemma is true for n − 1. Consider the quadric Q4n+i(q), take a line ` and the
tangent space `⊥, we have `⊥ ∩Q4n+i(q) = `Q4(n−1)+i(q). Again, we can partition the quadric
outside of `⊥ by q4n−2+i pairwise disjoint lines arising from reguli through ` contained in the
quadric.
Using the induction hypotheses, consider an appropriate maximal partial line spread M′ =
S ′∪P ′ for the quadric Q4(n−1)+i(q). Suppose π′⊥ is the tangent space to a (2n−3)-dimensional
space π′ inside this quadric Q4(n−1)+i(q) for which P ′ is a maximal partial line spread. We
have π′⊥ ∩ Q4(n−1)+i(q) = π′Qi(q). This space consists of qi−1 + 1 generators of the quadric
Q4(n−1)+i(q). Every point of the quadric Q4(n−1)+i(q) outside of π′⊥ is covered by the line
spread S ′.
Suppose π = 〈`, π′〉, we have π⊥ =

〈
`, π′⊥

〉
, where π⊥ is the tangent space of π with respect to

the quadric Q4n+i(q) and π′⊥ is the tangent space of π′ with respect to the quadric Q4(n−1)+i(q).
Every line of M′ spans a three-dimensional space together with `; these spaces intersect each
other only in `. In every such space, we take a line spread through `. The points of the quadric,
not on `, inside the 3-spaces generated by ` and a line of S ′ will be partitioned by q2|S ′| lines.
These lines, together with the lines found outside of `⊥, form a line spread S of Q4n+i(q)\π⊥.
We have |S ′| = q2n−2+i

(
q2n−2−1
q2−1

)
.

From this, it follows:

|S| = q4n−2+i + q2|S ′| = q4n+i − q4n−2+i + q4n−2+i − q2n+i

q2 − 1
= q2n+i q

2n − 1
q2 − 1

.

The space π⊥ consists of qi−1 +1 (2n)-dimensional spaces of the quadric Q4n+i(q) that intersect
each other in the (2n− 1)-dimensional space π.
Inside the space π⊥, we consider a maximal partial line spread P consisting of either a line spread
of π or the union of line spreads of qδ(i) + 1 hyperplanes of generators. These hyperplanes each
cover a (2n − 2)-dimensional space of π and are chosen such that they overlap in a common
(2n− 3)-dimensional space of π. Their corresponding line spreads coincide inside this common
(2n−3)-dimensional space; this is possible because of Lemma ??. We note that for the parabolic
and elliptic quadric all the points of π are covered. It is clear that P has the appropriate size,
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namely:

|P| = q2n − 1
q2 − 1

or |P| = (qδ(i) + 1)q2n−2 +
q2n−2 − 1
q2 − 1

=
q2n − 1
q2 − 1

+ q2n−2+δ(i).

Since P is a maximal partial line spread in π⊥ ∩Q4n+i(q), it is clear that the unionM = S ∪P
is a maximal partial line spread of Q4n+i(q), that furthermore meets the conditions of the
lemma.

4.2 The cone `Qn(q)

Lemma 4.2. Consider a non-singular quadric Q4n+i(q) of PG(4n + i, q). Suppose we have a
maximal partial line spread of Q4n+i(q) of the form M = S ∪ P, such as considered in Lemma
??. Suppose QS is the part of the quadric covered by S, so outside of π⊥, where π is the
particular (2n − 1)-dimensional space contained in Q4n+i(q). We can choose d lines from S
such that every line of the quadric Q4n+i(q) outside of π⊥, not in S, intersects at least one of
these d lines. We can choose such d = d4n+i lines for every integer d in the interval:

d4n+i ∈
[
(2 + (8n− 4 + 2i) log 2q)q4n−3+i, q2n+i q

2n − 1
q2 − 1

]
.

Table ?? shows how large q has to be such that for a quadric with given n the determined interval
for d is non-empty.

q\n 1 2 3 4 5 6 7 8 9 10 11
Q+(4n+ 1, q) 27 73 127 179 239 307 359 421 487 557 617
Q(4n+ 2, q) 37 89 137 193 251 311 373 439 503 569 631
Q−(4n+ 3, q) 49 97 151 211 269 331 389 457 521 587 647

Table 6: Minimal size of q for every quadric corresponding to Lemma ??

Proof. The proof is analogous to that of Lemma ??. Consider the line spread S. We construct
a bipartite graph with vertex classes A and B. Class A consists of all the lines of S and class B
consists of all the lines of QS not belonging to the line spread S. Every line of QS not belonging
to S intersects at least q lines of S, so every vertex of B has degree at least q.
We know |A| = q2n+i q2n−1

q2−1
≤ 2q4n−2+i and for every type of quadric, D ≤ (q+1)(|Q4n+i−2(q)|−

1) ≤ 2q4n−2+i for q > 3.
Using Result ??, we find a subset A′ ⊆ A such that every line of QS not belonging to S intersects
a line of A′. We find:∣∣A′∣∣ ≤ |A|(1 + logD)

q
≤ 2q4n−3+i(1 + (4n− 2 + i) log 2q).

The set A′ can be enlarged step by step until we find the whole set A, consisting of all the lines
of the line spread S.

Construction 4.3. Suppose the non-singular quadric Qn(q) in PG(n, q) has a maximal partial
line spread M = S ∪ P, as constructed in Lemma ??.
Consider a non-singular quadric Qn+4(q), of the same type as Qn(q), and take an arbitrary line
` of Qn+4(q). Consider its tangent space `⊥ ∼= PG(n+ 2, q), we know: `⊥ ∩Qn+4(q) = `Qn(q).
The quadric Qn(q) lies in a space π ∼= PG(n, q).
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Consider the line spread S = {t1, . . . , ts} and the maximal partial line spread P = {m1, . . . ,mr}
on Qn(q). Suppose QS to be the part of the quadric Qn(q) covered by the lines of S.
Suppose we can choose d lines t1, . . . , td of S, such that every line of QS , not in S, intersects
at least one of these d lines.
Consider the three-dimensional spaces 〈`, t1〉 , . . . , 〈`, ts〉 , 〈`,m1〉 , . . . , 〈`,mr〉; these are com-
pletely contained in Qn+4(q). Unlike Construction ??, not every point of `⊥ ∩Qn+4(q) belongs
to one of these three-dimensional spaces; this because M is not a line spread of Qn(q).
For i = 1, . . . , d, take a line spread Si in the space 〈`, ti〉 containing `. For j = d + 1, . . . , s,
take a maximal partial line spread Pj in the space 〈`, tj〉 through `. For h = 1, . . . , r, take a line
spread Rh in the space 〈`,mh〉 through `.
The union S ′ of the line spreads Si and Rh, together with the lines of the maximal partial line
spreads Pj, forms a maximal partial line spread in `Qn(q).

Proof. The intersection of two considered three-dimensional spaces through ` is the line `. So
the set S ′ is a partial line spread. Suppose b is a line of `Qn(q) not belonging to S ′; we will
show that this line cannot be added to S ′. We can assume that b is skew to `.
Suppose b belongs to a three-dimensional space 〈`, ti〉, then at least one point of b is covered.
Suppose b belongs to a three-dimensional space 〈`,mh〉, then every point of b is covered.
Suppose b does not belong to one of these three-dimensional spaces. The projection of b from
the line ` on π gives a line b′, different from every line ti and mh.
Suppose b′ belongs to QS . Because of the property of the d lines, there is at least one line from
{t1, . . . , td} that intersects b′, suppose t1. The space 〈`, t1〉 contains one point of b, suppose P .
In 〈`, t1〉, we have considered a line spread S1 which contains a line that intersects b in P .
Suppose b′ does not belong to QS , then at least one line mi intersects the line b′; suppose m1.
We have considered a line spread R1 in 〈`,m1〉; this spread contains a line intersecting b in a
point.
We have shown that the partial line spread S ′ is maximal.

If we use this construction for `Qn(q) in Construction ??, then we obtain again a maximal partial
line spread of Qn+4(q). The proof proceeds in exactly the same way as in that of Construction
??.

4.3 The quadric Q4n+i(q)

Suppose Qn(q) is a non-singular quadric in PG(n, q) containing a maximal partial line spread
M = S ∪ P, as constructed in Lemma ??. Define dn to be the smallest number of lines of S
such that every line of QS , not in S, intersects at least one of the dn lines.
Recall the following notations:

kn: the size of the smallest known subset of lines of a particular line spread of PG(n, q)\PG(n−
2, q), such that every line, not in the line spread, intersects a line of the set,

[l, u]: interval of sizes of maximal partial line spreads of PG(3, q),

s: size of the smallest known maximal partial line spread of PG(3, q),

dn: the smallest number of lines of S such that every line of QS , not in S, intersects at least
one of the dn lines.

Theorem 4.4. Consider the non-singular quadric Q4n−4+i(q) in PG(4n−4 + i, q), n ≥ 2, with
i ∈ {1, 2, 3}, corresponding to a quadric in the set {Q+(4n− 3, q), Q(4n− 2, q), Q−(4n− 1, q)}.
In `Q4n−4+i(q), there exist maximal partial line spreads of every size in the interval
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[
d4n−4+i(q2 − s+ 1) +

(
q2n−2−1
q2−1

) (
q2n−2+i(s− 1) + q2

)
+
⌈
q2−s+1
u−l

⌉
(l − s) + 1

, q
2n−2−1
q2−1

(
q2n+i + q2

)
+ q2n−2+δ(i) − q2 + u

]
.

Proof. In Lemma ?? we constructed two maximal partial line spreads in Q4n−4+i(q). From
each of these we can construct an uninterrupted interval of maximal partial line spreads in
`Q4n−4+i(q). One can calculate that these intervals overlap if they are non-empty. So we will
use the smallest form to calculate the lower bound and the largest form to calculate the upper
bound of our interval.
Consider in Q4n−4+i(q) a maximal partial line spread of size (q2n−2+i + 1)

(
q2n−2−1
q2−1

)
and use

Construction ?? with value d4n−4+i. Choose for every Pi the smallest known maximal partial
line spread of PG(3, q); this has size s. This gives a maximal partial line spread of size:

d4n−4+iq
2 +

(
q2n−2+i q

2n−2 − 1
q2 − 1

− d4n−4+i

)
(s− 1) +

(
q2n−2 − 1
q2 − 1

)
q2 + 1.

To find an uninterrupted interval we proceed in the same way as in Theorem ??. In at least x
three-dimensional spaces, we will consider maximal partial line spreads with their sizes in the
interval [l, u]. Similarly as in the earlier proof, we find that x ≥ q2−s+1

u−l . We find the lower
bound:

d4n−4+iq
2 +
(
q2n−2+i q

2n−2 − 1
q2 − 1

− d4n−4+i

)
(s− 1) +

⌈
q2 − s+ 1
u− l

⌉
(l− s) +

(
q2n−2 − 1
q2 − 1

)
q2 + 1.

Step by step we can enlarge the maximal partial line spreads Pi or exchange them for a line
spread Si. It is clear that we find an uninterrupted interval.
Now for our upper bound. This we find by taking d = q2n−2+i q2n−2−1

q2−1
− 1 and the part P of its

largest form of size q2n−2−1
q2−1

+ q2n−4+δ(i). Then the largest value in the uninterrupted interval is:(
q2n−2+i q2n−2−1

q2−1
− 1
)
q2 + u− 1 +

(
q2n−2−1
q2−1

+ q2n−4+δ(i)
)
q2 + 1

= q2n−2−1
q2−1

(
q2n+i + q2

)
+ q2n−2+δ(i) − q2 + u.

Corollary 4.5. Using Result ?? and ?? together with Corollary ?? and the estimate 7 log q ≤
7 log 2q − 4, we know the values for our variables, with restrictions n ≥ 2, q ≥ 7 and for even q
also q > q0. For the following particular quadrics, there exist maximal partial line spreads for
every size in the interval:

`Q+(4n− 3, q) :
[
(−2 + (8n− 3) log 2q) q4n−4,

q4n−1 + q2n − q2n+1 − 1
q2 − 1

+ q2n−2 − q + 1
]
,

`Q(4n− 2, q) :
[
(−2 + (8n− 1) log 2q) q4n−3,

q4n − q2n+2 + q2n − 1
q2 − 1

+ q2n−1 − q + 1
]
,

`Q−(4n− 1, q) :
[
(−2 + (8n+ 1) log 2q) q4n−2,

q4n+1 − q2n+3 + q2n − 1
q2 − 1

+ q2n−1 − q + 1
]
.

Theorem 4.6. Consider the non-singular quadric Q4n+i(q) in PG(4n + i, q), n ≥ 2, with
i ∈ {1, 2, 3}, corresponding to a quadric in the set {Q+(4n+ 1, q), Q(4n+ 2, q), Q−(4n+ 3, q)}.
There exist maximal partial line spreads S ′ in Q4n+i(q) of every size in the interval:
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[
(qk4n−4+i + d4n−4+i)(q2 − s+ 1) + q2n−1

q2−1
q2n−2+i(s− 1) +

⌈
q2−s+1
u−l

⌉
(q + 1)(l − s) + q2n−1

q2−1

, (q2n+i+1)(q2n−1)
q2−1

+ q2n−2+δ(i) + u− q2 − 1
]
.

Proof. We look at the maximal partial line spread from Construction ??, but using Construction
?? for the cone `Q4n−4+i(q).
We use Theorem ?? to find a maximal partial line spread S ′1 in `Q4n−4+i(q) for every size in
the interval[
d4n−4+i(q2 − s+ 1) +

(
q2n−2−1
q2−1

) (
q2n−2+i(s− 1) + q2

)
+
⌈
q2−s+1
u−l

⌉
(l − s) + 1

, q
2n−2−1
q2−1

(
q2n+i + q2

)
+ q2n−2+δ(i) − q2 + u

]
.

In (PG(4n− 2 + i, q)\PG(4n− 4 + i, q)) ∪ {t1}, using Theorem ?? we find a maximal partial
line spread S2 of every size in the interval:[

k4n−4+iq
2 + (q4n−5+i − k4n−4+i)(s− 1) +

⌈
q2 − s+ 1
u− l

⌉
(l − s) + 1, q4n−3+i − q2 + u

]
.

Since the three-dimensional space 〈`, t1〉 is completely covered by a line spread, every line of
Q4n+i(q)\`⊥ that after projection from ` is projected on a line that intersects t1, is also covered
by the maximal partial line spread S ′1, see Construction ??. We will concentrate on the particular
partial line spread in PG(4n− 2 + i, q)\PG(4n− 4 + i, q) that covers all the lines disjoint from
t1, and we still use the notation S2.
The constructed maximal partial line spread has size |S ′| = |S ′1| + q|S2|. If the length of the
interval of S ′1 is larger than (q2 − u)q, we find an uninterrupted interval and then we can make
the jump from the maximal partial line spread S2 of size q4n−3+i − q2 + u to a line spread of
size q4n−3+i. This gives the condition:

q2n−2 − 1
q2 − 1

(
q2n+i + q2

)
+ q2n−2+δ(i) − q2 + u

−
(
d4n−4+i(q2 − s+ 1) +

(
q2n−2 − 1
q2 − 1

)(
q2n−2+i(s− 1) + q2

)
+
⌈
q2 − s+ 1
u− l

⌉
(l − s) + 1

)
≥ (q2 − u)q.

(3)

For given n, the inequality in (??) is valid for the respective quadrics Q4n+i(q) if q is large
enough. For small n, the lower bounds on q are presented in Table ??.
If we take S ′1 to be the largest possible maximal partial line spread and for S2 a line spread,
then we find size:

q2n−2 − 1
q2 − 1

(
q2n+i + q2

)
+q2n−2+δ(i)−q2+u+q4n−3+iq =

(q2n+i + 1)(q2n − 1)
q2 − 1

+q2n−2+δ(i)+u−q2−1.

This is the largest maximal partial line spread for Q4n+i(q) found by our construction.
The smallest appropriate partial line spread in PG(4n − 2 + i, q)\PG(4n − 4 + i, q) has size
k4n−4+iq

2 + (q4n−5+i − k4n−4+i)(s − 1) +
⌈
q2−s+1
u−l

⌉
(l − s). Every such line gives us q lines of

the sought maximal partial line spread S ′. We add the lines of the smallest maximal partial
line spread in `Q4n−4+i(q); this has size d4n−4+i(q2− s+ 1) +

(
q2n−2−1
q2−1

) (
q2n−2+i(s− 1) + q2

)
+⌈

q2−s+1
u−l

⌉
(l − s) + 1. The lower bound of our uninterrupted interval is
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(k4n−4+iq
2 + (q4n−5+i − k4n−4+i)(s− 1) +

⌈
q2−s+1
u−l

⌉
(l − s))q

+d4n−4+i(q2 − s+ 1) +
(
q2n−2−1
q2−1

) (
q2n−2+i(s− 1) + q2

)
+
⌈
q2−s+1
u−l

⌉
(l − s) + 1

= (qk4n−4+i + d4n−4+i)(q2 − s+ 1) +
(
q2n−2 + q2n−2−1

q2−1

)
q2n−2+i(s− 1) +

⌈
q2−s+1
u−l

⌉
(q + 1)(l − s) + q2n−1

q2−1
.

We now summarize the spectrum result for Construction 2. The second interval is valid for
Q(4n+ 2, q), q even and odd, but for W (4n+ 1, q), only for q even.

Corollary 4.7. Using Result ?? and ??, Lemma ?? and Corollary ?? we know the values of our
variables together with the constraints n ≥ 2, q ≥ 7, and for q even also q > q0, so for particular
quadrics there exist maximal partial line spreads of every size in the following interval:
Q+(4n+ 1, q) :[

(−3 + (4n+ 4) log 2q)q4n−2 + (−2 + (8n− 3) log 2q) q4n−4

,
(q2n+1 + 1)(q2n − 1)

q2 − 1
+ q2n−2 − q + 1

]
.

W (4n+ 1, q), q even, and Q(4n+ 2, q):[
(−3 + (4n+ 5) log 2q)q4n−1 + (−2 + (8n− 1) log 2q) q4n−3

,
(q2n+2 + 1)(q2n − 1)

q2 − 1
+ q2n−1 − q + 1

]
.

Q−(4n+ 3, q):[
(−3 + (4n+ 6) log 2q)q4n + (−2 + (8n+ 1) log 2q) q4n−2,

(q2n+3 + 1)(q2n − 1)
q2 − 1

+ q2n−1 − q + 1
]
.

Table ?? shows how large q has to be such that for a given n the determined interval is non-empty
and such that the condition we have put on the length of the interval of |S ′1| is fulfilled.

q\n 2 3 4 5 6 7 8 9 10 11 12
Q+(4n+ 1, q) 53 79 107 131 163 191 223 251 277 307 337
Q(4n+ 2, q) 61 89 113 139 167 197 223 257 283 313 347
Q−(4n+ 3, q) 67 97 127 149 173 211 233 263 293 331 353

Table 7: Minimal size of q for quadric corresponding to Corollary ??
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[12] V. Pepe, C. Rößing and L. Storme, A spectrum result on maximal partial ovoids of the
generalized quadrangle Q(4, q), q odd, AMS Contemporary Mathematics (CONM) book
series (Finite Fields: Theory and Applications) 518 (2010), 349–362.
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