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Numerical evidence of the axial magnetic effect
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The axial magnetic field, which couples to left- and right-handed fermions with opposite signs,
may generate an equilibrium dissipationless energy flow of fermions in the direction of the field even
in the presence of interactions. We report on numerical observation of this Axial Magnetic Effect in
quenched SU(2) lattice gauge theory. We find that in the deconfinement (plasma) phase the energy
flow grows linearly with the increase of the strength of the axial magnetic field. In the confinement
(hadron) phase the Axial Magnetic Effect is absent. Our study indirectly confirms the existence
of the Chiral Vortical Effect since both these effects have the same physical origin related to the
presence of the gravitational anomaly.

PACS numbers: 11.15.-q, 12.38.Mh, 47.75.+f, 11.15.Ha

Anomalies belong to the most characteristic and fun-
damental properties of relativistic quantum field theo-
ries. They signal an incompatibility between quantiza-
tion and the symmetries present at the classical level.
While the effects of anomalies in vacuum are well un-
derstood it has only recently been fully appreciated that
anomalies play also an extraordinary important role at
finite temperature and density. In particular they give
rise to new non-dissipative transport phenomena. The
most well-known of these is the so-called Chiral Mag-
netic Effect (CME) [1], describing the generation of an
electric current parallel to a magnetic field in the pres-
ence of an imbalance between the number of right-handed
and left-handed fermions (a nice review can be found
in Ref. [2]). The CME is thought to be responsible for
charge asymmetries observed in heavy ion collisions at
RHIC and LHC [3]. It also might play a role in the trans-
port properties of advanced new materials, the so-called
Weyl semi-metals in which the effective charge carriers
can be modeled as 3 + 1 dimensional Dirac fermions [4].

The CME is however only one representative of a whole
class of anomaly related transport phenomena. A full
classification of such phenomena has been obtained via
Kubo formulas in [5]. It turned out that not only the
usual axial or chiral anomalies give rise to dissipationless
transport but that there is also a distinguished place for
the axial gravitational anomaly.

In general, anomaly related transport is sourced by ei-
ther external magnetic fields or by vortices in the fluid
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of chiral fermions [6]1. Thus we can distinguish between
chiral magnetic and chiral vortical effects. The gravita-
tional anomaly comes in through the chiral vortical effect
(CVE). Even in the absence of chemical potentials the
gravitational anomaly gives rise to a chiral vortical effect
at finite temperature

~J5 = σ~ω , (1)

where ~J5 is the axial current and ~ω = ∇×~v is the vorticity
of the fluid velocity ~v. In the absence of matter, the
conductivity

σ =

(∑
l

ql −
∑
r

qr

)
T 2

24
, (2)

depends on the temperature T and the gravitational
anomaly coefficient. Equation (1) is valid for a theory
consisting of massless fermions. In a basis of left- and
right-handed Weyl fermions ql (qr) are the charges of
the left-handed (right-handed) fermions. This effect has
been confirmed at strong coupling via the gauge-gravity
correspondence in Ref. [8].

The chiral vortical effect (1) is quite remarkable since,
contrary to the CME, it does not rely on the explicit
introduction of an axial chemical potential: in Eq. (1)
the difference of the right- and left-handed charges in
Eq. (2) corresponds to the vacuum content of the theory.
On the other hand, its relation to the axial gravitational

1 An early manifestation of this effect in rotating ensembles of
neutrinos was found in Ref. [7].
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anomaly is at the moment still somewhat less direct than
the relation of the CME to the axial anomaly. Purely hy-
drodynamic arguments such as in Ref. [9] are not able to
fix the prefactor in the conductivity (2) due to a mis-
match in the order of derivatives in which the gravita-
tional anomaly can apparently influence hydrodynamics
(see however [10]).

It has further been proven that the transport law (1)
does not get renormalized in perturbation theory in theo-
ries which contain fermions and scalars only. If there are
however dynamical gauge fields that contribute to the ax-
ial anomaly then it was shown that a non-vanishing two
loop contribution arises [11]. In QCD this is of course
the case. The axial anomaly has a gluonic contribution
and therefore one expects a strong renormalization of the
chiral vortical effect in QCD.

Since the CVE is a dissipationless and stationary ef-
fect it is accessible via Euclidean field theory and can,
in principle, be studied numerically in simulations of lat-
tice gauge theories. A straightforward implementation of
rotating fluid on a lattice seems, however, a rather non-
trivial task due to obvious incompatibility of the small,
discrete rotational symmetry group of the Euclidean lat-
tice with smooth, continuous rotations used in Eq. (1).
Fortunately there is an alternative way of accessing this
particular transport phenomenon that is well suited for
implementation on the lattice.

In order to compute the CVE for the axial current one
could make use of the Kubo formula

σ = − lim
pj→0

i

2pj

∑
i,k

εijk
〈
J i5T

0k
〉
, (3)

where J i5 are spatial components of the axial current
and T 0k are temporal-spatial components of the energy-
momentum tensor. Since the correlator is to be evaluated
at zero frequency one can reverse the order of the opera-
tors J i5 and T 0k in Eq. (3) and obtain a new effect corre-
sponding to the generation of an energy current Jkε = T 0k

in the background field that couples to the axial current,
this is an axial magnetic field. One finds therefore that
the chiral vortical conductivity (2) also appears in the
new transport formula [5]:

~Jε = σ ~B5 , (4)

which represents the Axial Magnetic Effect (AME). The
transport law (4) describes the generation of an equilib-
rium dissipationless energy current in the presence of an
axial magnetic field at finite temperature. Note that a
priori equation (4) is valid only for weak axial magnetic
field since it was derived via linear response theory. Our
numerical results show that the linear behavior in B5 is
valid even away from the weak field limit.

The practical advantage of the AME formula (4) is

that the axial magnetic field ~B5 can be relatively easy
implemented on the Euclidean lattice, while the imple-
mentation of the vorticity ~ω is a much more difficult
task. On the other hand, both the CVE and AME have

the same physical nature – which is also clear from the
very fact that they share the same conductivity coeffi-
cient (2) – originating due to the presence of the gravita-
tional anomaly [5]. Thus, in this article, we concentrate
on numerical evaluation of the AME law (4) in the con-
text of the quenched SU(2) lattice gauge theory for three
different temperatures, which represent three basic re-
gions of the phase diagram: the deconfinement regime,
the critical confinement-deconfinement region, and the
confinement phase.

The important feature of the AME is that it is realized
in the pure vacuum with all chemical potentials equal to
zero, µ = µ5 = 0. The dissipationless equilibrium energy
flow is achieved at finite temperature, T 6= 0, in the pres-

ence of the axial magnetic field ~B5, which distinguishes
left-handed and right-handed quarks. The axial magnetic
field couples to the left-handed and right-handed quarks
with opposite charges respectively.

In order to check the existence of the AME law (4) it
is sufficient to consider one type of fermion with a unit
charge:

qL5 = −qR5 = +e . (5)

The coupling of the quarks to the chiral field A5
µ is de-

scribed by the following Lagrangian:

L5 = ψ̄(∂µ − igAaµta − iγ5eA5,µ)γµψ ≡ ψ̄ /D5(A5)ψ , (6)

where Aaµ is the nonabelian SU(N) gauge field and ta are
the generators of the SU(N) gauge group.

The energy flow in the transport law (4) is given by
the expectation value of the off-diagonal component of
the stress-energy tensor Tµν ,

J iε = 〈T 0i 〉 ≡ i

2
〈 ψ̄(γ0Di5 + γiD0

5)ψ 〉 , (7)

where the latin index i = 1, 2, 3 labels the spatial coordi-
nates and µ = 0 is the time direction.

We introduce the stationary uniform axial magnetic
field in the third direction B5,i = B5 · δi,3 by setting
A5,0 = A5,0 = 0, A5,1 = −x2B5/2 and A5,2 = x1B5/2.

The energy flow can be implemented on the lattice via
a straightforward discretization of Eq. (7) using the linear
combinations of the nonlocal lattice correlator,

Cµ(x, y;A) = 〈 ψ̄(x)Ux,y(Aaµ)γµψ(y) 〉A

≡ Tr

(
Ux,y(Aaµ)

1

D5 +m
γµ

)
x,y;A

. (8)

In this formula, the expectation value is taken over the
fermion field in a fixed background of non-Abelian Aaµ
and axial A5,µ fields, and the trace is taken over color
and spinor indices. Here Ux,y is the gluon string between
the lattice points x and y which makes Eq. (8) gauge
invariant. The Dirac operator D5 is given in Eq. (6).

We calculate the correlation functions (8) numeri-
cally, using lattice Monte-Carlo simulations of quenched
SU(2) lattice gauge theory following numerical setup of
Refs. [12]. The quark fields are introduced by the overlap
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lattice Dirac operator D with exact chiral symmetry [13].
The correlation functions (8) are substituted in the dis-
cretized version of Eq. (7) and then the whole expression
is averaged over an equilibrium ensemble of finite tem-
perature configurations of non-Abelian gauge fields Aµ,

〈O〉 =

(∫
DAaµ e

−SYM [Aaµ]

)−1∫
DAaµ e

−SYM[Aaµ]O ,

where SYM(Aaµ) is the lattice action for the gluons Aaµ.
There are at least two ways to calculate the fermion

propagator (8) in the presence of the axial magnetic field
in a finite-volume lattice. One can introduce the axial
magnetic field straightforwardly by modifying the spatial
boundary conditions for fermions according to the gen-
eral approach of Ref. [14]. Alternatively, one can make
use of the identity,

tr [S5(A5) γµ] ≡ tr [(PR + PL)S5(A5) γµ]

= tr [PR S(A5)γµ] + tr [PL S(−A5)γµ] , (9)

where PR,L = (1 ± γ5)/2 are the right and left chiral
projectors, the trace is taken over spinor indices and

S5(A5) =
[
/D5(A5)

]−1
, S(A) =

[
/D(A)

]−1
, (10)

are the Dirac operators for the massless fermions in the
background of the axial field A5,µ and the usual Abelian
gauge field A, respectively. The former is defined in
Eq. (6) while the latter has the usual form:

Dµ(A) = ∂µ − igAaµta − ieAµ . (11)

It is worth stressing that in the right hand side of Eq. (9)
the axial gauge field A5 appears as the Abelian field with
opposite signs for right-handed and left-handed fermions.
This is an expected property given the very definition of
the axial magnetic field.

Identity (9) is valid regardless of the dynamical gener-
ation of quark mass and chiral symmetry breaking since
this identity is a generic property of the fermion operator
itself while the mentioned phenomena are the particular
properties of the expectation values of this operator.

Thus, identity (9) allows us to express the energy
flow (7) of the massless fermions via the standard Dirac
operator in a background of usual magnetic field. This
property is particularly useful for numerical calculations
with overlap fermions since we can use the already exist-
ing techniques of Ref. [12].

We evaluate the energy flow (7) in the quenched SU(2)
gauge theory using 300 configurations of the gluon gauge
field for each value of the background axial magnetic field.
Theoretically, the presence of the vacuum fermion loops
is neither crucial nor necessary for the anomalous trans-
port phenomena [5] so that we expect that the quenching
should give a minor effect. We also expect that the re-
duced number of colors (2 colors instead of 3) may affect
the numerical value on the slope σ of the anticipated lin-
ear behavior (4).

We consider the asymmetric lattices L3
sLt with three

temporal lengths Lt = 4, 6, 8 and the fixed spatial length

Ls = 14. We use the improved lattice action for the
gluon fields with the lattice coupling β = 3.2810 which
corresponds to the lattice spacing a = 0.103 fm [15].

Similarly to the usual magnetic field, the axial mag-
netic field is quantized due to the periodicity of the gauge
fields in a finite volume :

B5 = k B5,min , eB5,min =
2π

L2
s

≈ 0.117 GeV2 , (12)

where the integer k = 0, 1, . . . , L2
s/2 determines the num-

ber of elementary magnetic fluxes which pass through the
boundary of the lattice in the (x1, x2) plane. Notice that
the elementary (minimal) field (12) in our simulation is
three times weaker compared to the field used in our pre-
vious studies, Ref. [12], because in the present paper the
fermion field carries a unit electric charge.

The maximal possible value of the quantized flux, k =
L2
s/2 = 98, corresponds to an extremely large magnetic

field. In this case the magnetic length LB ∼ (eB)−1/2

is the order of the lattice spacing, LB ∼ a. In order to
avoid possible ultraviolet artifacts, we consider relatively
weak axial magnetic fields with k = 0, 1, . . . kmax, where
the flux number is limited by kmax = 10� l2/2, so that
our strongest magnetic field is eBmax ≈ 1.17 GeV2.

In order to increase the efficiency of our numerical algo-
rithm we introduce a small bare quark mass m ∼ 20 MeV
in the overlap fermion operator (8). Despite this bare
mass being very small, we have carefully checked the ap-
plicability of Eq. (9) to our numerical setup by making
sure that the energy flow is insensitive to the variations
of the quark mass. For example, a two-fold increase of
the mass leads to a less than 1% change of the central
values of our observable (this is much smaller than our
statistical errors).

In SU(2) gauge theory the critical deconfinement tem-
perature is Tc = 303 MeV. Our three lattices with tem-
poral extensions Lt = 4, 6, 8 correspond, respectively,
to the deconfinement phase (T = 1.58Tc), the vicin-
ity of the confinement–deconfinement phase transition
(T = 1.05Tc) and the confinement phase (T = 0.79Tc).

In Fig. 1 we show the energy flow (7) as a function of
the axial magnetic field B5 in the deconfinement phase
at T = 1.58Tc. One can see that the energy flow parallel

to the axial magnetic field J
‖
ε is a linear function of the

field strength as predicted by the AME transport law (4).
The energy flow in the transverse directions J⊥ε is zero
within the error bars, as expected.

In Fig. 2 we demonstrate that our result does not de-
pend (within reasonable error bars) on the volume of
the system being simultaneously robust with respect to
the variations of the lattice spacing (the latter plays a
role of the inverse ultraviolet cutoff). To this end we
have performed simulations on the lattices in the range
Ls = 12 . . . 18 and Lt = 4 . . . 8 at β = 3.281, 3.398 and
2.5. We have also checked numerically that the usual
magnetic field does not induce any energy flow.

The linear fit of the energy flow – shown by the dashed
line in Fig. 1 – gives us the following value of the energy
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FIG. 1. Energy flow (7) parallel (J
‖
ε ) and perpendicular (J⊥ε )

to the direction of the axial magnetic field B5 in the decon-
finement phase at T = 1.58Tc ≡ 479 MeV. The red dashed
line represents the best linear fit confirming the existence of
the Axial Magnetic Effect (4). The slope of the fit is given by
the conductivity (13).
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FIG. 2. The dimensionless prefactor Cε = Jε/(eB5T
2) as the

function of the volume V at three different values of the lattice
spacing a. The expected theoretical value is Cε = 1/6.

flow conductivity:

σ(T )

∣∣∣∣
T=1.58Tc

= 2.22(3)× 10−3 GeV2 . (13)

For a conformal theory with two colors of fermions, the
conductivity coefficient is expected to be σtheor = T 2/6
which gives us one order of magnitude larger value
σtheor ≈ 0.0382 GeV2 at this temperature. We expect
that this large difference is not related to the absence of
the fermion vacuum loops in our simulations because the
latter do not play an essential role in the AME [5].

We see no signature of energy flow neither in the vicin-
ity of the phase transition nor in the confinement phase.

Summarizing, we have numerically observed the ex-
istence of the Axial Magnetic Effect (AME) in the
quenched SU(2) gauge theory on the lattice. We
have found that the equilibrium energy flow of massless
fermions is parallel to the direction of (and proportional
to the strength of) the time-independent uniform axial
magnetic field. Our study also indirectly confirms the
existence of the Chiral Vortical Effect (CVE) since both
these effects have the same physical nature originating
from the gravitational anomaly.
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