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Abstract

The electronegativity equalization method is classically used as a method

allowing the fast generation of atomic charges using a set of calibrated pa-

rameters and provided knowledge of the molecular structure. Recently, it

has started being used for the calculation of other reactivity descriptors and

for the development of polarizable and reactive force fields. For such appli-

cations, it is of interest to know whether the method, through the inclusion

of the molecular geometry in the Taylor expansion of the energy, would also

allow sufficiently accurate predictions of spectroscopic data. In this work,

relevant quantities for IR spectroscopy are considered, namely the dipole

derivatives and the Cartesian Hessian. Despite careful calibration of pa-

rameters for this specific task, it is shown that the current models yield

insufficiently accurate results.
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1. Introduction

Electronegativity equalization is a pervasive concept in chemistry that is

fundamental to our understanding of molecular charge distributions [1, 2].

One of its modern incarnations is the Electronegativity Equalization Method

(EEM), which allows a rapid computation of ab initio quality atomic charges

from just the molecular geometry and a set of atomic electronegativity and

hardness parameters [3, 4, 5]. Over the past 27 years, EEM strongly influ-

enced related areas, such as in-silico screening [6], chemical reactivity de-

scriptors [7, 8, 9] and empirical models for molecular potential energy sur-

faces, hereafter referred to as (polarizable and possibly reactive) force fields

[10, 11, 12, 13, 14, 15, 16]. Extensive calibration studies have demonstrated

the accuracy of atomic charges and the parameter transferability of EEM

[17, 18, 19, 20, 21, 22, 14, 23] and its recent generalizations, the Split-Charge

Equilibration (SQE) [15, 24, 25, 26] and Atom-Condensed Kohn-Sham ap-

proximated to Second order (ACKS2) [16].

EEM is essentially a semi-empirical form of density functional theory

(DFT) [27, 28], in which the molecular electron density is modeled with a

minimal set of variables (the atomic charges) and the energy of a system

with a specific molecular geometry is expanded in a second order Taylor se-

ries of the charges. From that perspective, one may be tempted to derive

other quantities from EEM beyond just the atomic charges of the ground

state [7, 8, 9]. In this work, we explore the ability of EEM to reproduce key
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quantities in the field of infrared spectroscopy, namely the Cartesian Hessian

(i.e. force constants or second order derivative of the energy toward nuclear

displacements) and the molecular dipole derivatives (first order derivative of

the molecular dipole moment toward nuclear displacements). Such insights

are essential for the development of force-field models and their applications

in which IR spectra are derived from molecular dynamics simulations. It

should be noted that such attempts have been made before by Mortier and

co-workers [29, 30] although limited to mainly vibrations involving bonded

atoms. Here the ambition is to go beyond this and consider the entire vibra-

tional structure. For comparison, similar assessments for traditional fixed-

charge models are also considered.

The paper is structured as follows. Analytic expressions for the key spec-

troscopic quantities are derived in section 2. Section 3 describes all computa-

tional aspects related to the model assessment, i.e. the test set of molecular

reference computations, the cost functions used to calibrate EEM parame-

ters and the calibration algorithm. All results are presented in section 4 and

discussed in section 5. Finally, section 6 summarizes the main conclusions.

2. Key Spectroscopic Quantities in EEM

In this section, we start from the EEM energy expression. Justifications

and a detailed description of the underlying physics can be found elsewhere [4,

12, 31, 16]. The molecular energy for a system with N atoms is approximated

to second order in the atomic charges,

E({q}) = χχχᵀqqq +
1

2
qqqᵀηηηqqq, (1)
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where qqq is a column vector with N atomic charges, χχχ is a column vector

with N atomic electronegativity parameters and ηηη is a symmetric N by N

matrix containing all second order coefficients, known as the hardness matrix.

The diagonal elements of ηηη are atomic hardness parameters, while the off-

diagonal elements correspond to electrostatic interactions between the atoms.

In line with previous work, the electrostatics are based on Gaussian charge

distributions, whose widths are derived from covalent radii [24, 25]. Note

that our atomic hardness parameters do not include the factor 1/2 of the

Taylor series as in Parr’s operational definition of the atomic hardness [32].

The EEM ground state charges are found by minimizing this energy with

a constraint on the total charge qmol,

Egs = E({q}gs) = min
{q},dddᵀqqq=qmol

E({q}), (2)

where ddd is a column vector filled with N times the number 1. This ground

state is defined as the stationary point of the following Lagrangian:

L = E − χmol(ddd
ᵀqqq − qmol). (3)

To facilitate the remainder of the derivations, we introduce the vector with

uncounstrained ground state charges:

q̃qqgs = −ηηη−1χχχ (4)

Using this notation, the stationary point of this Lagrangian takes the follow-

ing form:

χmol =
qmol − dddᵀq̃qqgs
dddᵀηηη

−1
ddd

qqqgs = q̃qqgs + χmolηηη
−1
ddd (5)

4



We will now treat the derivatives of the energy and the charges towards

nuclear displacements. For the sake of compactness, nuclear Cartesian coor-

dinates are labeled with Greek letters α and β instead of explicitly writing

Rij. (At most two are needed as we consider at most second order deriva-

tives. Note that Rij is component j of the Cartesian coordinates of atom i

and not an interatomic distance between two atoms i and j.) In EEM, the

electronegativity parameters are geometry-independent; such derivatives are

not considered below. The only geometry-dependence in the model is found

in the off-diagonal elements of ηηη.

The forces acting on the atoms consist of first-order derivatives of the

energy of the following form:

∂Egs

∂α
=
(
χχχᵀ + qqqᵀgsηηη

) ∂qqqgs
∂α︸ ︷︷ ︸

=0

+
1

2
qqqᵀgs

∂ηηη

∂α
qqqgs (6)

In analogy with the Helmann-Feynman theorem in quantum mechanics, the

first term is zero because the charges are obtained from a variational prin-

ciple. However, in the derivation of the force constants, the response of the

charges does appear. Therefore, let us first derive the charge response and

subsequently consider the force constants. The response of the charges with

respect to a change in geometry can be found after careful application of the

chain rule to Eq. (5):

∂qqqgs
∂α

=
∂q̃qqgs
∂α

+
∂χmol

∂α
ηηη
−1
ddd+ χmol

∂ηηη
−1

∂α
ddd (7)
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with

∂ηηη
−1

∂α
= −ηηη−1 ∂η

ηη

∂α
ηηη
−1
, (8)

∂q̃qqgs
∂α

= −ηηη−1 ∂η
ηη

∂α
q̃qqgs, (9)

∂χmol

∂α
=
qmol − dddᵀq̃qqgs
(dddᵀηηη

−1
ddd)2

(dddᵀ
∂ηηη
−1

∂α
ddd)− 1

dddᵀηηη
−1
ddd

∂dddᵀq̃qqgs
∂α

. (10)

The Cartesian Hessian can be found through the application of the chain

rule to Eq. (6):
∂2Egs

∂α∂β
=
∂qqqᵀgs
∂β

∂ηηη

∂α
qqqgs +

1

2
qqqᵀgs

∂2ηηη

∂α∂β
qqqgs (11)

In EEM, the molecule is modeled as a superposition of spherical atomic

charge distributions. Hence, the Cartesian components of the molecular

dipole moment simply become

Dj =
N∑
i=1

Rijqgs,i, (12)

where qgs,i is the ground-state charge of atom i. The dipole derivatives are

obtained by differentiating Dj once with respect to a nuclear displacement:

∂Dj

∂α
=

N∑
i=1

δα,Rij
qi +Rij

∂qgs,i
∂α

. (13)

In this paper, the EEM model will also be compared to a model with fixed

atomic charges. Such a comparison is relevant as many force-field models

treat the atomic charges as geometry-independent parameters. The above

results for the Cartesian Hessian and the dipole derivatives are still valid

for fixed-charge models, except that the terms containing derivatives of the

charges can be dropped.
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3. Assessment protocol

To test the accuracy of EEM for the key spectroscopic quantities of in-

terest, DFT reference computations were carried out for a set of 166 organic

drug-like molecules. [19, 20, 22] The molecular geometries were optimized

at the PBE0/6-311+G(d,p) level of theory with Gaussian09 [33], followed

by computation of the dipole moment, the Cartesian Hessian and the dipole

derivatives, all at the same level of theory. Finally, the Hirshfeld-I atomic

charges [34] are computed with Horton [35]. Previous studies have shown that

Hirshfeld-I and Mulliken charges are suitable reference data for the calibra-

tion of EEM parameters. [22, 23, 24] However, in order to properly describe

negatively charged moieties, one needs to include diffuse functions in the ba-

sis set, which leads to ill-defined Mulliken charges. In contrast, Hirshfeld-I

charges are known to be robust with respect to the choice of basis set and

are therefore used as reference data in this work. [36] A text file with all

relevant results of the reference computations is provided as Supplementary

data.

Five different sets of EEM parameters were calibrated, each to reproduce

one class of the DFT reference data:

• AC: Hirshfeld-I atomic charges.

• MD: Molecular dipole moment.

• MDD: Molecular dipole derivatives.

• FH: Full Hessian.
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• LRH: Long-range Hessian, i.e. only considering those matrix elements

of Cartesian Hessian that correspond to pairs of atoms that are at least

5Å apart. At such larger distances, exchange-correlation effects and

higher order terms should become negligible in DFT. One may expect

that the EEM approximation, which is based classical electrostatics,

becomes more reliable in this limit.

Each calibration was carried out by minimizing a corresponding least-squares

cost function of the following form:

CZ(ppp) =
M∑
m=1

NZ,m∑
n=1

(xEEM,n(ppp)− xDFT,n)2 (14)

where Z refers to the class of reference data (AC, MD, MDD, FH, LRH), ppp is

the vector of independent parameters. The first sum runs over all molecules

(M in total) and the second sum runs over all corresponding pairs of EEM

predictions and reference data in class Z for molecule m. Each term is a

squared error between a reference result and the corresponding EEM pre-

diction. The vector of parameters consists of atomic electronegativity and

hardness parameters for each element found in the set of molecules (H, C, N,

O, F and Cl). Since the electronegativity parameters can only be calibrated

up to an unknown constant, the electronegativity of Hydrogen is used as a

reference [25]. Hence, there are 11 independent parameters. The optimal

parameters are denoted as pppZ, where Z can be any of AC, MD, MDD, FH,

LRH. Note that only the calibration AC relies on Hirshfeld-I charges while

all other calibrations are independent method used to compute the charges.

The implementation of all spectroscopic quantities was validated numerically

with finite-difference approximations.
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The covariance matrix adaption evolutionary strategy (CMA-ES) [37] was

used to numerically minimize the five cost functions. Our choice for CMA-

ES is motivated by several of its advantages. CMA-ES only requires that

cost function values can be computed, i.e. no analytic gradients of the cost

function must be implemented. Furthermore, CMA-ES has the robustness

and (to some extent) the efficiency of a quasi-Newton method, i.e. it con-

structs a second order model of the function during minimization, without

resorting to numerically instable finite difference approximations. In line

with previous work, lower-bounds were imposed on the hardness parameters

to guarantee that the hardness matrix remains positive definite [24, 25, 26].

All EEM predictions by the five sets of calibrated parameters are provided

as Supplementary data.

To assess EEM’s ability to reproduce the five different quantities listed

above, relative root-mean-square errors (RRMSEs) are computed for all com-

binations of optimal parameters and reference data:

RRMSEZ(ppp) =

√
CZ(ppp)∑M

m=1

∑NZ,m

n=1 x2DFT,n

(15)

An RRMSE of 0% corresponds to an exact reproduction of the reference

data, while a value of 100% (or larger) indicates that the errors are equal

to (or larger than) the reference data. A more detailed statistical analysis

(including absolute RMSEs and parity plots) are provided as Supplementary

data.

For the cases MD, MDD, FH and LH, the RRMSEs are also computed

for a fixed-charge model. In analogy with the EEM approach, a fixed-charge

model still describes the molecule as a superposition of spherical Gaussian
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functions. However, the charges are now fixed at the Hirshfeld-I values and

no geometry dependence of the charges is considered.

4. Results

All calibrations lead to a converged set of parameters shown in Table

1. Only for the calibrations AC and MD, the parameters have a reasonable

order of magnitude, e.g. compared to previous calibrations [22, 24] or ex-

perimental properties of isolated atoms [32]. The condition number reported

in Table 1 is based on the covariance estimate of the CMA-ES algorithm.

A high condition number indicates the presence of a manifold of parameter

vectors that approximately minimizes the cost function. In such cases, the

parameters are not uniquely defined and the optimization landscape reflects

many (near) degenerate solutions [25].

Table 2 lists the RRMSE computed for each combination of a cost func-

tion and a set of optimal parameters. This reveals how dependent the cost

function is on the target function used in the optimization. Note that most

results do not depend on the choice of the method for the population anal-

ysis. More specifically, all parameter sets in Table 1, except for the column

pppAC, are independent of the method used to compute the atomic charges.

Only the AC and MD calibrations lead to parameters that are sufficiently

accurate for the description of atomic charges or molecular dipoles. This is

in line with the previously observed good performance of EEM algorithms

for Hirshfeld-I atomic charges [24, 25, 26] and it confirms that the CMA

algorithm is an effective method for the calibration of EEM parameters. The

AC and MD parameter sets do not give a useful approximation of the dipole
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pppAC pppMD pppMDD pppFH pppLRH

χC − χH 0.87 14.46 0.97 143.73 11.64

χN − χH 1.60 12.88 14.71 143.77 31.49

χO − χH 3.31 12.58 431.61 392.51 631.43

χF − χH 4.89 10.65 367.47 320.13 394.14

χCl − χH 1.20 10.47 206.52 233.09 303.12

ηH 15.47 37.87 128.79 191.54 182.62

ηC 11.40 13.29 16.19 11.71 18.84

ηN 11.57 16.56 27.38 11.70 22.12

ηO 14.14 15.32 523.84 140.37 685.59

ηF 21.61 21.52 515.27 118.61 284.50

ηCl 8.93 21.25 444.23 40.09 252.03

Condition number 1.5× 104 5.1 1.2× 104 73 23

Table 1: Calibrated EEM Parameters for the five classes of reference data. All values

of the different parameters are given in eV. The condition number is derived from the

covariance matrix in the CMA-ES algorithm.
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pppAC pppMD pppMDD pppFH pppLRH

RRMSEAC 20 158 92 326 135

RRMSEMD 49 30 237 657 458

RRMSEMDD 92 133 72 223 84

RRMSEFH 100 100 100 99 100

RRMSELRH 100 103 93 286 91

Table 2: RRMSE values [%] for all possible pairs of optimal parameters and classes of

reference data.

derivatives nor the Hessian, including when one only considers the long-range

part of the Hessian. Parameters calibrated with the MDD, FH or LRH cost

function fail to predict any property, i.e all RRMSEs are close to or above

100%. Note that, as was to be expected, the diagonal elements in Table 2 are

lower than the off-diagonal elements on the same row or column. Again note

that all RRMSEs in Table 2, except for the first row and the first column,

are independent of the choice of population analysis.

The accuracy of the fixed-charge model for the classes MD, MDD, FH and

LRH is shown in Table 3. From these results, it is clear that such a fixed-

charge model is only capable of reproducing the molecular dipole moment

to some accuracy. The errors on the dipole derivatives and the Cartesian

Hessian are close to 100%, also when one only considers the long-range part

of the Hessian.

5. Discussion

The diagonal elements of Table 2 show how well the EEM model can

reproduce a class of reference data. As extensively demonstrated in the
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RRMSEMD 19

RRMSEMDD 77

RRMSEFH 99

RRMSELRH 95

Table 3: RRMSE values [%] for the fixed-charge model.

literature, we observe that it is relatively easy to obtain EEM parameters

that reproduce the Hirshfeld-I atomic charges [24, 25, 26]. A similar result

is found for the calibration of parameters aimed at reproducing molecular

dipole moments, albeit with a larger RRMSE. When considering the two

EEM calibrations with reasonable parameters (AC and MD), the error in the

reproduction of the dipole moment (RRMSEMD in Table 2) is worse than

that of the fixed charge model (see Table 3). This was to be expected: the

fixed-charge model contains a huge number of non-transferable parameters,

i.e. one charge for every atom in the set, as compared to the 11 transferable

EEM parameters. The Hirshfeld-I charges are known to reproduce the dipole

moment of organic molecules [38, 39]. However, this attractive feature of

Hirshfeld-I can not be fully reproduced by an EEM model based on Hirshfeld-

I charges (or any other class of reference data). This corresponds to a known

pathology of EEM. Namely, due to the metalic polarizability scaling in EEM,

[40] molecular dipole moments are underestimated on average, especially in

the limit of larger molecules. [26] This trend is also confirmed in Figure S9

(and to lesser extent in Figure S20) in the Supplementary data, showing that

EEM tends to underestimate the molecular dipole moment.

The poor description of the dipole derivatives is somewhat disappointing.
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Some authors previously suggested a good mapping between EEM and the

charge-sensitivity analysis (CSA, i.e. a complete set of second order deriva-

tives of the electronic energy towards AIM charges and nuclear coordinates)

[41, 29, 30, 42]. This would imply a reasonable reproduction of dipole deriva-

tives with EEM, which we do not observe. Compared to a fixed-charge model

(see Table 3), EEM is only a marginal improvement. The parity plots of the

dipole derivatives for each model (Figures S10, S21, S32, S43 and S54 in

the Supplementary data) show that the large RRMSEs in row 3 of Table 2

are representative, i.e. not caused by a few outliers. These results have two

important consequences. First, when EEM or fixed charges are used in the

simulation of IR spectra, we expect similarly large errors on peak heights, i.e.

IR intensities. Second, the good geometry dependence of atomic charges in

EEM [39] is not valid for small displacements of the nuclei. This is reminis-

cent of the limitations of EEM for the description of the dipole polarizability

[40, 15, 43, 24, 16] and suggests that EEM fails to describe any type of elec-

tronic linear response. An interesting topic of future research would therefore

be the reproduction of dipole derivatives with recent generalizations of EEM

that fix the dipole polarizability weaknesses, e.g. SQE [15] or ACKS2 [16].

The poor reproduction of the Hessian is in line with expectations. Several

force-field models use the EEM energy as one of the contributions to the

total energy [13, 14]. Obviously, the EEM energy alone is not sufficient to

describe the curvature of the PES. Surprisingly, this observation still holds

when only the long-range parts of the Hessian are considered. Again, the

parity plots for the Hessian matrix elements (Figures S11, S12, S22, S23,

S33, S34, S44, S45, S55, S56 in the Supplementary data) confirm that the
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large RRMSEs in row 4 and 5 of Table 2 are not due to outliers. Although

electrostatic interactions are the main long-range interactions in a force-field

model, the EEM long-range contributions to the Hessian do not match the

DFT reference data. Again, compared to a fixed-charge model (see Table 3),

EEM is only a marginal improvement.

The long range Hessian model performs somewhat better than the Full

Hessian model which is not unexpected. As EEM entails an energy expansion

in terms of atomic charges only and considers only a rather simplified model

for the electrostatic interaction, many aspects of the pair-wise interaction,

such as exchange effects, are not taken properly into account. Such exchange

effects grow smaller with increasing internuclear distance, as do higher order

contributions to the electrostatic interaction. This explains why LRH is

better than FH. On the other hand, in most CSA work mentioned above,

the bonded, and thus shorter interactions where emphasized. Note, however,

that Baekelandt et al. [30] used a force field model that corrects for covalent

character of the bond.

6. Summary

We have shown that the bare EEM model can not describe (let alone

predict) the key molecular properties related to IR spectroscopy: the dipole

derivatives and the Cartesian Hessian. The potential improvements of EEM

over a simple fixed-charge model are negligible. Although EEM (or a fixed

charge model) is often used as one of many contributions in empirical models

for the potential energy surface, the poor performance of the method implies

that computer simulations of IR spectra require a more advanced model
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of the response of atomic charges to a displacement of the nuclei. This

complements the well-known limitations of EEM for the description of the

dipole polarizability tensor and suggests that EEM fails to reproduce (even

qualitatively) any linear response property. As an example of such a more

advanced method, the ACKS2 model, which also includes a term for the

electronic kinetic energy, may improve the accuracy the dipole derivatives.
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