On mirror symmetry, CSB and anti-hydrogen states in natural atom H.¹

G. Van Hooydonk, Ghent University, Faculty of Sciences, Krijgslaan 281, B-9000 Ghent (Belgium) (guido.vanhooydonk@rug.ac.be)

Abstract

Molecular band spectra reveal a left-right symmetry for atoms (Van Hooydonk, Spectrochim. Acta A, 2000, 56, 2273). Intraatomic left-right symmetry points to anti-atom states and, to make sense, this must also show in line spectra. H Lyman ns^{1/2} singlets show a mirror plane at quantum number $n_0=1/2\pi$. Symmetry breaking oscillator $(1-1/2\pi/n)^2$ means that some of these n-states are anti-hydrogenic. This view runs ahead of CERN's AD-project on antihydrogen.

A final validation of QED is not yet possible. QED cannot cope with classical chiral symmetry breaking (CSB) effects known from the 19th century. In 2000, we found *that molecular band spectra suggest an atomic left-right symmetry* [1]. If true, this only makes sense if this symmetry is also visible in *atomic line spectra*. So we decided to reanalyze the H Lyman ns¹/₂ series with precise data. Kelly's data [2], though useful, have an error of 3 MHz. Erickson [3] claims a better precision with QED calculations, but these lack a classical CSB effect. To test CPT with the CERN AD artificial antihydrogen project [4], data must be as precise as possible. Only H 1s2s is now accurate within parts in 10¹⁴-10¹⁵, an error of order 10 Hz [5].

Not constant running Rydbergs R_H(n)

 $R_{\rm H}(n)$ =- $E_{n\rm H}$. n^2

reflect errors in Bohr theory. The values for Lyman ns¹/₂-singlets in Table 1 are plotted versus 1/n in Fig. 1. A parabola appears (inconsistent with Dirac theory, due to the Lamb shift). A 2nd order fit R_H(n)=4.36747232754714/n² –5.5556171802571/n +109,677.585534983 cm⁻¹ (2)

(1)

produces a harmonic Rydberg of

 $R_{H(harm)} = 109,679.3522824 \text{ cm}^{-1}$ (3)

different from series limit E_{1H} in Table 1.

Internal anchor (3) is disregarded by NIST, despite its important classical meaning. Strangely enough $n_0 = 1.572273... \approx 1/2\pi$ (4) *is the n-value where the extremum appears. This is close to the generic angle 1/2π for mirror planes.* For these singlets, a true CSB oscillator, *hidden in QED theory*, appears: $(1-1/2\pi/n)^2$ (5)

Table 1 $-E_{nH}$ [3] and $R_{H}(n)$ for Lyman ns singlets

-E _{nH} [3]	$R_H(n)$
109678,7737040000	109678,773704000
27419,8178352300	109679,271340920
12186,5502372100	109678,952134890
6854,9188453940	109678,701526304
4387,1408809200	109678,522023000
3046,6219504100	109678,390214760
2238,3324513070	109678,290114043
1713,7220591550	109678,211785920
1354,0512214330	109678,148936073
1096,7809744220	109678,097442200
906,4302025320	109678,054506372
761,6529039910	109678,018174704
648,9821718410	109677,987041129
559,5814289189	109677,960068104
487,4574954578	109677,936478005
428,4293581016	109677,915674010
379,5082947805	109677,897191565
338,5119773555	109677,880663182
303,8168027574	109677,865795421
274,1946308763	109677,852350520
	$\begin{array}{c} -E_{nH} [3] \\ 109678,7737040000 \\ 27419,8178352300 \\ 12186,5502372100 \\ 6854,9188453940 \\ 4387,1408809200 \\ 3046,6219504100 \\ 2238,3324513070 \\ 1713,7220591550 \\ 1354,0512214330 \\ 1096,7809744220 \\ 906,4302025320 \\ 761,6529039910 \\ 648,9821718410 \\ 559,5814289189 \\ 487,4574954578 \\ 428,4293581016 \\ 379,5082947805 \\ 338,5119773555 \\ 303,8168027574 \\ 274,1946308763 \end{array}$

Fit (2) is consistent with QED and with data [2] but (4) and (5) lead to mirror symmetry. The only left-right symmetry imaginable within an atom is atom-antiatom symmetry, and this we already found for atoms in a molecule [1].

¹ To be presented at the International Conference on *Precision Physics of Simple Atomic Systems* (PSAS) 2002, St. Petersburg, 06/30-07/04 (Editors: K. Jungmann, S.G. Karshenboim and V.B. Smirnov) and at the Wigner Centennial Symposium, 2002 (Pecs, Hungary) 07/09-07/12

Now, (2)-(5) leave a choice between CSB and QED. The accuracy of closed classical CSB theory must be comparable with that of open complex QED theory [6]. A harmony obeying π/n agrees with the de Broglie equation and since $\alpha/2\pi \approx 2m_e/M_p$, scale factor π is like fine structure constant over recoil [6]. In CSB, H is not a 2- but a 4-fermion system [6]. H symmetry is broken with $1\pm m_e/m_H$ (m_H is hydrogen, m_e electron mass). Baryon mass in a reduced mass for a *bound* electron in atom H is 1,836.1526675 m_e (proton mass) for hydrogenic nssinglets, it is 1,838.1526675 m_e for anti-hydrogenic ns-singlets [6]. The value of $1+2m_e/M_p=1.001089$ is consistent with the observed *free* electron anomaly.

Fig. 1 $R_{H}(n)$ versus 1/n for H Lyman ns singlets

CSB points to different scaling in world and antiworld. Lamb shifts provide the finer details of intraatomic chiral symmetry breaking.

 G. Van Hooydonk, Spectrochim. Acta A 56, 2273 (2000)
R.L. Kelly, J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987)
G.W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977)
J. Eades, F.J. Hartmann, Rev. Mod. Phys. 71, 373-419 (1999)
M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T.W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, Phys. Rev. Lett. 84, 5496 (2000)

[6] G. Van Hooydonk, at the archives

