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Figure S1 

(A) Relative expression of individual miR-17-92 miRNAs in MYCN amplified tumours (A), 

MYCN single copy high-risk tumours (SH) and MYCN single copy low risk tumours (SL) 

(dataset D1, supplemental table 1). Significant differential expression (Mann Whitney, p < 

0.05) is indicated (*) (whiskers: Tukey). (B) Kaplan Meier plots for overall survival (OS) 

based on the pathway activity score of individual miR-17-92 miRNAs, represented as 

quartiles (dataset D1, supplemental table 1). Increased activity of each individual member 

form the miR-17-92 cluster is proportionally correlated to a poor overall survival. 
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Figure S2 

(A) Relative expression of miR-17-92 miRNAs upon treatment of SHEP-TR-miR-17-92 cells 

with tetracycline (mean ± SEM). (B) Protein quantification using LC/MS-MS. Histogram 

showing the number of quantified peptides per protein. (C) Histogram showing the 

distribution of protein fold changes of proteins that were quantified by at least 2 peptides. 
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Figure S3 

(A) Fraction of proteins containing at least one 7mer-8mer miR-17-92 site (black) of one 

6mer-7mer-8mer miR-17-92 site (grey) in function of the protein fold change (grouped in 6 

different bins according to fold change). Only downregulated proteins are shown. Dashed 

horizontal lines indicate the background miR-17-92 site occurrence (determined as the 

fraction of unchanged proteins harboring at least one 7mer-8mer miR-17-92 site of one 6mer-

7mer-8mer miR-17-92 site). (B) Average number of 3’UTR miR-17-92 sites per protein in 

function of the protein fold change. Dashed lines indicate background measurement 

(calculated as in (A)). (C) Average number of miR-17-92 sites per nucleotide in function of 

protein fold change for 3’UTR sites (red), 5’UTR sites (blue) and coding sequence sites 

(CDS) (green). (D) Average fold change ± SEM of proteins for which the transcripts contain 

at least one 8mer miR-17-92 site in the 3’UTR (red), 5’UTR (blue) and CDS (green). (E) 

Number of co-occurring miR-17-92 sites in the 3’UTR of transcripts from downregulated 

proteins. The X-axis indicates the number of co-occurring sites between the miRNA listed on 

top of each graph and the miRNAs listed below each bar (miR-17/miR-20a and miR-

19a/miR-19b) are analyzed together as they share identical seeds. The first bar of each graph 

represents the number downregulated proteins that only have one (or more) sites for the 

respective miRNA. Significant co-occurrence was determined by comparing results for 

downregulated proteins to results for a reference set (upregulated proteins) using Fisher’s 

Exact test (p < 0.05). 
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Figure S4 

Gene set enrichment analysis plots for gene sets enriched among the proteins, upregulated 

upon miR-17-92 activation.  
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Figure S5 

Relative mRNA expression (mean ± SEM) of TGFβ-responsive genes upon TET treatment of 

SHEP-TR-miR-17-92 cells. 
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Figure S6 

(A) Correlation clustering between miR-17-92 miRNA expression and TGFβ target gene 

expression in 40 primary neuroblastoma tumors (dataset D3, supplemental table 1). The 

heatmap indicates the Spearman’s rank rho value. TGFβ target genes are indicated by the grey 

sidebar, miR-17-92 miRNAs are indicated by the black sidebar. (B) Heatmap showing 

relative expression of TGFβ-pathway components and target genes in neuroblastoma SHEP 

cells transfected with a scrambled control or with pre-miRs for the individual miR-17-92 

miRNAs (miR-17, miR-18a, miR-19a, miR-19b, miR-20a and miR-92a). Black dots mark 

genes that have at least one 3’UTR 7mer site for the corresponding miRNA.   
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Figure S7 

Model for miR-17-92 mediated TGFβ pathway repression. 
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Document S2. rdml-file for RT-qPCR expression profiling of 430 miRNAs of 
SHEP-TR-miR-17-92 cells treated with tetracycline for 72h, provided as a 
separate file. 

 

Table S1. Overview of mRNA and miRNA expression datasets  

Data set ID samples mRNA miRNA reference 

D1 95  X (Mestdagh et al., 2009a)

D2 251 X  (Oberthuer et al., 2006) 

D3 40 X X (Mestdagh et al., 2009a)

 

Table S2. Expression fold change and miR-17-92 seed frequency of all reliably 
measured proteins 

This table is provided as a separate file. 
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Table S3. miR-17-92 seed occurrence and protein fold change for TGFB-target 
genes downregulated upon miR-17-92 activation 

protein 3’UTR seed(s) fold change (log2) 

SERPINE1 miR-17/miR-20a 
miR-19a/miR-19b -1.93 

THBS1 miR-18a 
miR-19a/miR-19b -1.05 

ITGA4 miR-17/miR-20a 
miR-19a/miR-19b -0.989 

FNDC3B miR-17-92 -0.972 

JUP none -0.869 

PPP1R13L miR-19a/miR-19b -0.813 

FILIP1L miR-17/miR-20a -0.735 

ICAM1 miR-92a -0.689 

EPHA2 none -0.603 

COL1A1 none -0.546 

CDKN1A miR-17/miR-20a -0.546 

PFKFB3 miR-17/miR-20a 
miR-19a/miR-19b -0.544 

CTNNA1 miR-18a -0.522 
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Table S4. List of peptide quantifications from the forward experiment. 

This table is provided as a separate file. Peptides are ordered on SwissProt accession number 

and increasing start position. Columns from left to right contain the SwissProt accession 

number, sequence of the identified peptide, start and end position of the peptide in the protein 

sequence, MASCOT score and threshold of the identified light (L) and/or heavy (H) 

component of the peptide, the L/H peptide ratio, the protein name and the L/H protein ratio. 

Table S5. List of peptide quantifications from the reverse experiment. 

This table is provided as a separate file. Peptides are ordered on SwissProt accession number 

and increasing start position. Columns from left to right contain the SwissProt accession 

number, sequence of the identified peptide, start and end position of the peptide in the protein 

sequence, MASCOT score and threshold of the identified light (L) and/or heavy (H) 

component of the peptide, the L/H peptide ratio, the protein name and the L/H protein ratio. 
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Supplemental Experimental Procedures 
COFRADIC analysis 

To reduce arginine to proline conversion and thus dilution of the 13C-label, the arginine 

concentration was lowered to 30% of its normal concentration in DMEM. Cell cultures were 

then treated with tetracycline for 72 hours to induce miR-17-92 expression. A biological 

replicate was created by swapped labeling. Cells were harvested by Versene-EDTA and 

washed with PBS. Cell pellets were frozen at -80ºC until further use. Prior to proteome 

analysis, cells were lysed in 250 µl lysis buffer containing 0.8% CHAPS in 50 mM HEPES 

(pH 7.4), 100 mM NaCl and 0.5 mM EDTA supplemented with protease inhibitors (Complete 

Protease inhibitor cocktail tablet (Roche, Basel, Switzerland); one tablet per 100 ml buffer)) 

for 20 minutes on ice. Cell debris was removed by centrifugation for 15 min at 16,000g at 4ºC 

after which the protein concentration was measured using the Biorad Protein Assay. Then, 

equal amounts of both proteome preparations (i.e. from differently labeled control cells or 

cells in which miR-17-92 expression was induced) were mixed together. To denature proteins, 

solid guanidinium hydrochloride was added to a final concentration of 4 M (the total sample 

volume was 1 ml). Proteins were then reduced and S-alkylated for 60 minutes at 30ºC by 

adding tris(2-carboxyethyl) phosphine and iodoacetamide to final concentrations of 3 mM and 

6 mM respectively. Half of each proteome sample was then desalted on a NAP-5 column in 1 

ml of 20 mM triethylamonium bicarbonate (pH 8.0). These desalted protein mixtures were 

heated for 5 min at 95°C, put on ice for 5 min, after which trypsin (sequencing grade, 

modified porcine trypsin, Promega Corporation, Madison, WI, USA) was added to a 

trypsin/substrate ratio of 1/50 (w/w). Trypsin digestion proceeded overnight at 37°C after 

which the sample was dried in vacuo. Dried peptides were then re-dissolved in 105 µl of 

solvent A (10 mM ammonium acetate (pH 5.5) in water/acetonitrile (98/2 (v/v), both Baker 

HPLC analysed, Mallinckrodt Baker B.V., Deventer, The Netherlands)) and 100 µl of this 

peptide mixture was used to isolate methionine-containing peptides by the COFRADIC 

technology as described previously (Gevaert et al., 2002). In this way, the complexity of the 

peptide mixture was reduced by a factor of about five and the hence isolated peptide mixture 

– which is highly enriched for methionine-containing peptides – were analyzed by LC-

MS/MS using an Orbitrap XL mass spectrometer (Thermo Electron, Bremen, Germany) that 

was operated as previously described (Ghesquiere et al., 2009). 

Generated MS/MS spectra were converted to MS/MS peak lists as described (Ghesquiere et 

al., 2009) and these peak lists were searched in the human fraction of the Swiss-Prot database 

(version 56.4, containing 20,408 human protein sequences) using a locally installed version of 

the MASCOT database search engine (version 2.2.04 (Perkins et al., 1999)). 
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Carbamidomethylation of cysteine and oxidation of methionine were set as fixed MASCOT 

parameters, and acetylation of a protein’s N-terminus, pyro-carbamidomethyl cysteine (from 

N-term cysteine), pyroglutamate formation (N-term glutamine) were considered as variable 

modifications. Trypsin/P was set as the protease with one missed cleavage allowed and 

MASCOT’s quantitation parameters were set to SILAC Arg and Lys + 6. Only peptide 

identifications that were ranked one, scored above the corresponding MASCOT threshold 

score for identity set at 99% confidence were considered identified. The false discovery rate 

of these identifications was determined according to the method described by Elias and Gygi 

(Elias and Gygi, 2007) and found to be 0.21% (on the spectrum level). Quantification of the 

identified peptides was then done using MASCOT Distiller Quantitation Toolbox 

(www.matrixscience .com) in the ‘precursor’ mode. The software tried to fit an ideal isotopic 

distribution on the experimental data based on the peptide average amino acid composition. 

This was followed by extraction of the XIC signal of both peptide components (light and 

heavy) from the raw data. Ratios were calculated from the area below the light and heavy 

isotopic envelope of the corresponding peptide (integration method ‘trapezium’, integration 

source ‘survey’). To calculate this ratio value, a least squares fit to the component intensities 

from the different scans in the XIC peak was created. MS scans used for this ratio calculation 

were situated in the elution peak of the precursor determined by the Distiller software (XIC 

threshold 0.3, XIC smooth 1, Max XIC width 250). To validate the calculated ratio, the 

standard error on the least square fit had to be below 0.14 and correlation coefficient of the 

isotopic envelope needed to be above 0.90. The number of recorded and identified spectra as 

well as the number of unique peptide quantifications is indicated for both analyses in the table 

below. All identified spectra are made publically available in the PRIDE database 

(www.ebi.ac.uk/pride), accession 14860. 

analysis 
# MS/MS spectra 

recorded 

# MS/MS spectra 

identified 

# unique peptide 

quantifications 

forward 83275 30141 14524 

reversed 127760 32833 15875 

 

Next, protein ratios were calculated as the average of individual peptide ratios by the in-house 

developed Rover algorithm (Colaert et al., 2010). Peptide ratios that could not be adequately 

calculated by the Distiller software were also manually validated using the Rover application 

(typically belonging to highly regulated peptides and proteins). Supplemental tables 4 and 5 

show the Rover output and contain all peptide quantifications for the forward and reversed 



Mestdagh et al. 
experiment. In case a peptide could be derived from more than one protein sequence, all 

protein isoforms are listed which explains why the number of peptide quantifications in these 

lists exceeds the number of unique peptide quantifications in the table above.  Peptide ratios 

of the repeated experiments were averaged and proteins that were quantified by at least 2 

peptides were selected for further analysis. UniProtKB accessions were mapped to RefSeq 

IDs using the Biomart tool from Ensembl (www.ensembl.org). 

RT-qPCR 

2 µg of RNA from each sample was treated with RQ1 DNase I (Promega) and desalted using 

a Microcon-100 spin column (Millipore). cDNA synthesis was performed on the eluate with 

the iScript cDNA synthesis kit (Bio-Rad). All manipulations were conducted according to the 

manufacturer’s instructions. First strand cDNA was diluted to a final concentration of 5 ng/µl 

(total RNA equivalent). RT-PCR amplification reactions were carried out in a total volume of 

7.5 µl, containing 10 ng of template cDNA, 3.75 µl of 2x SYBR Green I reaction mix 

(Eurogentec), 1 µl nuclease-free water (Sigma) and 0.375 µl of a 5 µM solution of each 

primer.  Cycling conditions were as follows: 10 min at 95°C followed by 45 cycles of 

denaturation (10s at 95°C) and elongation (45s at 60°C). All reactions were performed on a 

LightCycler 480 (Roche). Primers were designed using Primer3 (Rozen and Skaletsky, 2000) 

and validated through RTPimerDB’s in silico assay evaluation pipeline (Lefever et al., 2009). 

Raw Cq values were imported into qbaseplus (Hellemans et al., 2007) (www.biogazelle.com) 

and normalized using a selection of stably expressed reference genes (UBC, SDHA, GAPDH 

and Alu-sx). Primer sequences for UBC, SDHA and GAPDH are available in the public 

RTprimerDB database (http://www.rtprimerdb.org/) (gene (RTPrimerDB-ID): UBC(8), 

SDHA(7), GAPDH(3)). For Alu-sx, the following primer sequences were used: F: 

TGGTGAAACCCCGTCTCTACTAA, R: CCTCAGCCTCCCGAGTAGCT. 

miRNA expression profiling and data normalization were performed as described previously 

(Mestdagh et al., 2008; Mestdagh et al., 2009b). 

 

Pre-miR transfection 

Individual pre-miR molecules (Ambion) were transfected in neuroblastoma SHEP-cells at a 

concentration of 100 nM using Xtremegene transfection reagent (Roche) according to the 

manufacturer’s instructions. Pre-miR negative control #1 (Ambion) was used as a scrambled 

control. Transfection efficiency was monitored by flow cytometry using a fluorescently 

labeled pre-miR (Ambion) and estimated to be 80% or higher. Cells were cultured in RPMI 
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(Invitrogen), 10% FCS in the absence of antibiotics. Cells were harvested for RNA isolation 

(miRNeasy, Qiagen) 24h post transfection. 

 

3’UTR luciferase constructs 

3’UTR luciferase reporter constructs for TGFBR2 were obtained from Switchgear Genomics. 

For SMAD2 and SMAD4, 74 bp oligonucleotides spanning the predicted 3’UTR miRNA 

binding site and flanked by XhoI and NotI restriction sites were cloned into psicheck2 

(Promega) as described previously (Cloonan et al., 2008). The following oligonucleotides 

were used: 

SMAD2_miR-18a_F 

TCGAGAAAACAGCACTTGAGGTCTCATCAATTAAAGCACCTTGTGGAATCTGTTT
CCTATATTTGAATATTAGC 

SMAD2_miR-18a_R 

GGCCGCTAATATTCAAATATAGGAAACAGATTCCACAAGGTGCTTTAATTGATGA
GACCTCAAGTGCTGTTTTC 

SMAD2_miR-19_F 

TCGAGCCTTCCTCAACCTTTGCTGTAAAAATTTCATTTGCACCACATCAGTACTA
CTTAATTTAACAAGCTTGC 

 

 

SMAD2_miR-19_R 

GGCCGCAAGCTTGTTAAATTAAGTAGTACTGATGTGGTGCAAATGAAATTTTTAC
AGCAAAGGTTGAGGAAGGC 

SMAD2_miR-92a_F 

TCGAGTTTTTTTCTCTGATGGCATTAACTTTGTAATGCAATATGATGGATGCAGAC
CCTGTTCTTGTTTCCCGC 

SMAD2_miR-92a_R 

GGCCGCGGGAAACAAGAACAGGGTCTGCATCCATCATATTGCATTACAAAGTTA
ATGCCATCAGAGAAAAAAAC 

SMAD4_miR-18a_F 

TCGAGAAGACTTAATTTTAACCAAAGGCCTAGCACCACCTTAGGGGCTGCAATA
AACACTTAACGCGCGCACGC 
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SMAD4_miR-18a_R 

GGCCGCGTGCGCGCGTTAAGTGTTTATTGCAGCCCCTAAGGTGGTGCTAGGCCTT
TGGTTAAAATTAAGTCTTC 

SMAD4_ miR-19_miR-17/20_ F 

TCGAGGTTTGATTTTTAAGATTTTTTTTTTCTTTTGCACTTTTGAGTCCAATCTCA
GTGATGAGGTACCTTCGC 

SMAD4_ miR-19_miR-17/20_ R 

GGCCGCGAAGGTACCTCATCACTGAGATTGGACTCAAAAGTGCAAAAGAAAAAA
AAAATCTTAAAAATCAAACC 

SMAD2_miR-18a_mut_F 

TCGAGAAAACAGCACTTGAGGTCTCATCAATTAAATCCAATTGTGGAATCTGTTT
CCTATATTTGAATATTAGC 

SMAD2_miR-18a_mut_R 

GGCCGCTAATATTCAAATATAGGAAACAGATTCCACAATTGGATTTAATTGATGA
GACCTCAAGTGCTGTTTTC 

SMAD4_miR-18a_mut_F 

TCGAGAAGACTTAATTTTAACCAAAGGCCTAGCACTACTTTCGGGGCTGCAATA
AACACTTAACGCGCGCACGC 

 

SMAD4_miR-18a_mut_R 

GGCCGCGTGCGCGCGTTAAGTGTTTATTGCAGCCCCGAAAGTAGTGCTAGGCCTT
TGGTTAAAATTAAGTCTTC 

 

For TGFBR2, miRNA binding sites were mutated using the Quickchange site-directed 

mutagenesis kit (Agilent) according to the manufacturer’s instructions. The following primers 

were used: 

TGFBR2_miR-17/20_1_F 

GATTGATTTTTACAATAGCCAATAACATTTTCCAGTTATTAATGCCTGTATATAAA

TATGAATAGCTA 

TGFBR2_miR-17/20_1_R 

TAGCTATTCATATTTATATACAGGCATTAATAACTGGAAAATGTTATTGGCTATTG

TAAAAATCAATC 
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TGFBR2_miR-17/20_2_F 

GGTCAGCACAGCGTTTCAAAAAGTGAAGCAAAGGTATAAATATTTGGAGATTTTG

CAGGAAAA 

TGFBR2_miR-17/20_2_R 

TTTTCCTGCAAAATCTCCAAATATTTATACCTTTGCTTCACTTTTTGAAACGCTGTG

CTGACC 

 
miRNA target site analysis 
Four miRNA seed types were considered for miRNA target site analyses: 6mer, 7mer-A1, 

7mer-m8 and 8mer sites (Grimson et al., 2007). Target sites were identified using a custom 

Perl script. 5’ UTR, CDS and 3’UTR sequences were taken from Baek et al. (Baek et al., 

2008).  

 
 
 
Candidate miR-17-92 target gene selection 
Genes with a protein expression fold change below -0.5 (log2) and at least one 3’ UTR miR-

17-92 site were selected as candidate miR-17-92 target genes. The expression fold change 

cutoff of 0.5 was selected as the fold change that deviated from the linear fit in a normal QQ-

plot. Throughout the manuscript, downregulated proteins are defined by a log2 expression 

fold change < -0.5, upregulated proteins by a log2 expression fold change > 0.5. 

 
Xenografts 
SHEP-TR-miR-17-92 and SHEP-TR (control) cells were transfected with a luciferase 

expressing mammalian vector. This vector was obtained by cloning the firefly luciferase gene 

under the control of a CMV promoter and enables bioluminescent imaging of viable cells in 

vivo. Stable clones obtained after 15 days of selection in 300ug/ml hygromicine (Sigma, 

USA) were evaluated for their bioluminescence signal by serial cellular dilutions incubated 

with the luciferine substrate. The bioluminescence signal was acquired by an IVIS illumina 

3D Imaging System (Xenogen Corp. Alameda, CA). Etherotopic xenografts were established 

in atymic nude mice (n=5) by injection of 106 SHEP-TR cells subcutaneosly in the left 

flanking site and 106 SHEP-TR-miR-17-92 cells in the rigth flanking site of each individual 

animal. Mice were fed with tetracycline (from SIGMA) once a day using oral gavage prestige 

200ul (2mg/ml in ddH2O). In vivo tumorigenic bioluminiscence imaging was performed by 
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measuring bioluminescence (BLI, phothon/sec) of luciferine positive living cells at 0, 7, 14 

and 21 days post injection, measuring the median value of emissions from three scans per 

animal at each flanking site. 

 

Immunohistochemistry and Western blot 
SHEP-TR-miR-17-92 cells, tetracycline treated or untreated, were stimulated with TGFβ1 for 

4 h. After harvesting, 200 μl of cell suspension were centrifuged on a cytospin glass using a 

cytospin chamber. The cytopreparations were air dried, fixed with 4% paraformaldehyde 

(Sigma Aldrich, Munich, Germany) for 10 min followed by 45 min in Tris-1% Triton buffer. 

After antigen retrieval, pSMAD2 immunoreactivity (anti-pSMAD2, Cell Signaling) was 

detected using the Dako Auto-stainer Plus (Glostrup, Denmark) and the Dako EnVision Flex 

system (Glostrup, Denmark) according to the manufacturer´s instructions. For Western blot 

analysis, cells were lysed in RIPA buffer, separated on a SDS–PAGE gel and blotted onto 

Immobilon-P (Millipore, Bedford, MA, USA) membrane. The membrane was incubated with 

anti-phosphorylated SMAD2 (pSMAD2, Cell Signaling Technology) or anti-ACTIN (ICN 

Biomedicals, Aurora, OH, USA). HRP-conjugated secondary antibodies were obtained from 

Amersham Biosciences. Proteins were detected by Super Signal chemiluminescence substrate 

(Pierce, Rockford, IL, USA). Images were processed using ImageJ software. 
 
Statistics 
All statistical analyses were performed using R Bioconductor software. For survival analysis, 

rank-based pathway scores were calculated as described previously (Fredlund et al., 2008; 

Mestdagh et al., 2009a). Samples (n) were ranked according to the expression level of each 

gene/miRNA within the set and rank scores (ranging from 1 to n) were assigned. This was 

repeated for each gene in the gene set. Next, rank scores were summed generating an activity 

score of the gene/miRNA set for each sample. Kaplan-Meier analysis was performed using 

pathway activity score quartiles. 

MiRNA target site overrepresentation was evaluated using Fisher’s Exact test in combination 

with Bonferroni multiple testing correction. Differential expression/activity was evaluated 

using the Mann-Whitney test, unless stated otherwise. 

For the identification of relevant biological pathways among the up- and down-regulated 

proteins, a gene list ranked according to protein expression was analyzed using GSEA with 

the chemical and genetic perturbations collection (Subramanian et al., 2005). Gene lists with a 

false discovery rate (FDR) below 5% were considered significant. For calculation of 

individual miR-17-92 miRNA contributions to the significant gene lists the contributing genes 
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of each gene list were analyzed for the presence of 7mer and 8mer miR-17-92 sites. For each 

gene list, the fraction of targets per individual miR-17-92 miRNA was calculated. Data was 

log transformed and standardized before hierarchical clustering (method: Ward, distance: 

Manhattan). Gene lists with two or more missing values were excluded for clustering 

purposes.  

Cell adhesion and proliferation assays 
To evaluate cell adhesion, ells were quickly washed in Versene and then incubated at 37°C in 

the presence of Versene. After 15 min, the cells were visualized under a microscope to assure 

that the cell-cell contacts were disrupted. The cells were then counted, centrifuged and 

suspended in medium (RPMI, 10% FCS) at a concentration of 2x106 cells/ml and thereafter 

incubated on a rotating platform at 37°C for 1 h and then analyzed. Each treatment was 

assayed in triplicate and repeated three times. Pictures were processed using ImageJ software. 

For cell proliferation, SHEP-TR-miR-17-92 cells were trypsinized and seeded in 96-well 

xCELLigence E-plates (Roche) (10000 cells/well) according to the manufacturer’s 

instructions. After 24 h, cells were either treated with tetracycline or left untreated and were 

monitored in real-time on the xCELLigence system. Five replicate measurements per 

condition were obtained. SMAD2/SMAD4 overexpression For overexpression of SMAD2 

and SMAD4 SHEP-TR-miR-17-92 cells were seeded in 6-well plates 12 hours prior to 

transfection at a density of 100,000 cells per well. The cells were then transfected with either 

pFLAG-SMAD2, pFLAG-SMAD4 (400 ng/well, respectively) and pEGFP-C1 (Clontech, 

USA) vectors (200 ng/well) or control pHA-CMV (Clontech, USA) (800 ng/well) and 

pEGFP-C1 vectors (200 ng/well) using Lipofectamine transfection reagent in OptiMEM I 

Reduced Serum Medium. The cells were thereafter grown for 48 hours in RPMI (Invitrogen) 

supplemented with fetal calf serum (1%) tetracycline containing medium. GFP transfection 

and total cell count was assessed using the Nucleocounter 3000 system (Chemotek, 

Denmark). 

 

 
CAGA-Luciferase reporter assay 
For luciferase experiments, tetracycline or control treated SHEP-TR-miR-17-92 cells were 

seeded in 96-well plates 12 hours prior to transfection at a density of 10000 cells per well. 

The cells were then transfected with the (CAGA)12-Luc luciferase reporter  vector containing 

twelve CAGA SMAD binding sites (Dennler et al., 1998) (400 ng/well) using Lipofectamine 

2000 transfection reagent in OptiMEM I Reduced Serum Medium. Following transfection, 

cells were treated as indicated in the figure legends. Cells were lysed and assayed for 

luciferase and renilla activity using the Dual-Luciferase Reporter Assay System (Promega, 
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Madison, WI, USA) and a TD-20/20 Luminometer (Turner Biosystems, Sunnyvale, CA, 

USA). 
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