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Abstract

The equation adjoint to the linearization of the periodisibequations in a dynamical system is
fundamental in the study of sensitivity issues for periaatioits, e.g. in the synchronization of
networks of weakly coupled oscillators. Itis also fundatakim the computation of normal form
codficients for bifurcations of limit cycles. Numerically, thdjaint equations can be solved in
a variety of ways. In the case where the periodic orbit equatare solved as a boundary value
problem by collocation at Gauss points, a recent methoavaltme to compute the solution to
the adjoint equations as a byproduct of Newton’s methodiegpd solve the boundary value
problem. This method is practically cost-free since it ieggionly the solution to an already
factorized linear system. Moreover, it provides the solutio the adjoint equations in exactly
the form needed in the applications.

So far, the method has not been analyzed carefully and noorigaconvergence results have
been proved. We prove that the method is equivalent to aaailtm method for the adjoint
equations so that convergence of orti&t! holds at all points and of ordérP™ at the points of
the coarse mesh; hehas the maximum length of the mesh intervals anis the degree of the
approximating piecewise polynomials. We support this lgesive numerical tests.
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1. Introduction
Let a dynamical system be defined by
X(t) = £(x(t), @), (1)

wherex(t), f(x(t), @) € R" anda is a vector of parameters. In the present papes, fixed and
will for simplicity be omitted from the equations.

When studying periodic solutions to (1) it is convenient traduce the period as an
explicit unknown by rescaling time to the interval Q. Also, to obtain a unique solution it is
necessary to fix the phase, e.g. by an integral conditiors [€ads to the following system:
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X - TF(x() = 0
x(0)-x(1)=0 )
%Ot = 0,

whereX{t) is an initial guess for the solution, typically obtainedrr a previous step in a con-
tinuation method. The integral equation minimizes thedistance betweer(t) and X(t) over
phase shifts and so leads to a robust algorithm. This aplpriegdry now standard in humerical
bifurcation software, see [11, 9, 4, 7, 14].

In these packages an adaptive masind collocation at Gauss points are used to approximate
X(t) by a piecewise polymiak’(t) of degreem and T by a scalaiT®. Collocation software for
boundary value ODE’s was first implemented in the package X3 [1, 2].

The adjoint solutiory(t) to the linearization of (2) is the solution to the system

vi(t) + TAX() () = 0
vi(0)-vi(1)=0 ©)
Jrvi®Tvtdt = 1,

whereA = f, andv(t) = x(t) = T f(x(t)). We note that this implies tha(f(t)v(t) = 1 for all

t and that the last, scalar equation in (3) merely scalgs The adjoint solution was first used
as a mathematical tool in the study of periodic orbits [20, 2hd references therein. In the
applications of dynamical systems theory it quantifies thedrized) &ect of an input pulse
to a periodic orbit. In the neural computation community sb&ution to the adjoint equation is
used to compute the so-called phase resetting or phasensesparves, which are important for,
e.g., the study of synchronization of weakly coupled oatills [3, 13, 16, 17]. The standard
technique for the numerical computation of the solutior3joi§ discussed in [23].

In [15] a new way was introduced to compute the solution todtmint equations as a
byproduct of the computation of the periodic orbit. The sanethod was used in [18] in the
computation of periodic normal form cfirients for codimension 1 bifurcations of cycles.

So far, no rigorous proof for this method has been publishiEie aim of this paper is to
analyze the method, to prove that it is equivalent to a catioa method for the adjoint equations
and hence to prove its convergence and obtain the order gégence.

A word of caution is in order here. At first sight one might thithat since the operator in
the first group of equations in (3) is adjoint to the operatathie first group of equations in (2),
their discretizations, or at least essential parts of theithbe transposed matrices.

This is false in general. It holds in very specific situatioeg). when the mesh is uniform
and the operator in (2) is discretized by forward Euler, elile operator in (3) is discretized
by backward Euler. It fails already with the same discréiime if the mesh is non-uniform.
In the case of collocation methods the relation betweenviediscretizations is obscure. It is
not discussed in standard references such as [2] and [23hdtéealso that our proof depends,
surprisingly, on the use of the Gauss points as collocationtg, see Proposition 2.

The paper is organized as follows. In sections 2.1-2.3 weudisthe discretization of vector-
valued functions and recall the orders of convergence otttlecation approximations?(t),
vA(t) and T2 to x(t), v(t) andT, respectively. In section 2.4, we rewrite (3) as a standatshtary
value problem and consider a related problem in wixig)) v(t) andT are replaced by®(t), vA(t)
andT2, respectively.



We prove that the collocation approximativﬁ(t) to the latter problem converges #{t)
with orderh™? at all points and with orden®™ at the points of the coarse mesh, whhiis the
maximal length of the mesh intervals.

In section 2.5, the adjoint system is rewritten so #4t) is obtained as a byproduct of the
computation of the periodic orbit. Proposition 4 is the m@sult of the paper. In section 2.6,
we discuss the practical consequences of the method, veth®solution to the adjoint equa-
tion is used in the applications. In section 3, the obtainelkis of convergence are supported
through extensive testing, both in a model case where the egéution to the adjoint system is
analytically known and in the case of periodic orbits of therénz model. Finally, in section 4,
we draw some conclusions.

2. Discretization by collocation at Gauss points

2.1. Solution to a boundary value problem by collocation

We will deal with boundary value problems in which the unkmoi& a functionY(t) € R",
defined in [01] and satisfying

{ Y(t) @

F(Y(1)
aY(0) + bY(1) 0,
whereF is a suficiently smooth function and, b are constant matrices. The results of [5] apply
to this situation (but we remark that [5] also applies to moenomous systems and more general
boundary conditions).

To discretize (4) by a collocation method, the intervall[Qs first subdivided intdN intervals
with grid points:
O=T0<T1<...<TN=l.

The pointsrg, 71, ..., 7N form the coarse mesh. We defineh = ||A]| = max h; whereh; =
Tis1 — 7. Y(t) is approximated by a continuous functi¥i(t) which in each intervalq, 7;,1] is
a degrean polynomial, whose values are represented at equidistasth pants, namely in

Tij=Ti+ nl,]hi (j=0,1,...m).

We note that m = 7i+1 = Ti+10 for 0 < i < N — 1. These grid points form the fine mesh. In each
interval [ri, 7.1] we require the polynomials to satisfy thefférential equation in (4) exactly at
m collocation points. The best choice for these collocatioimis are the Gauss poings;, i.e.
the roots of the Legendre polynomial of degregrelative to the intervakj, 7i,1] because of the
high order of convergence of Gauss-Legendre numericajriation, based on collocation in the
Gauss points [5, 6]. We also require the polynomials to fgatiee boundary conditions in (4).
Under generic regularity conditions for the system (4) DeBand Swartz [5] proved that?(t)
converges uniformly over [@] to Y(t) with orderh™* and with ordeh?™ at the points of the
coarse mesh. The regularity conditions are satisfied if BatihdY areC2™? functions.

2.2. Discretizations, weight forms and conversion
For a given vector function € C*([0, 1], R"), we consider two dierent discretizations [15]:

o v € RN™1N the vector of the function values at the fine mesh points,
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e 1c € RN™ the vector of the function values at the Gauss points.

We further introduce the structured sparse mdtgixy that converts the vectas, of function
values of a degrem continuous piecewise polynomial at the mesh points intosteornc of
its values at the Gauss points:

nc = Lexmnu.

To this end we first define € R™ x R(™n py

[ Li1 Lio -+ Limer |
Lor Lo -+ Loma
L =
L Lml Lm2 e me+1 |
whereLij =1j.1(&)In(i=1..m j=1...m+1),
1 r
wo-% 1] b3
@=5 ] (-
r#sr=0,..m

andns = [Trzsr=0.m(m — ) (5= 0,...m). I, is then x nidentity matrix. We note thal is
the Lagrange interpolation polynomial of degreavhich is equal to 1 af and vanishes at
if r e {0,...m}r # s; ¢ is thei-th Gauss point relative to the interval,[J. ThenlLcyxy €
RNMN 5 RINM™LN has the following form:

Lexm = L ,

where consecutive blocks overlap bgolumns.

We also need the matriRc.\ that converts the vectan, of function values of a degrem
continuous piecewise polynomial at the mesh points intoséfwgory. of its derivative values at



the Gauss points. We first defiffee R™ x R(™N py

[ Fi1 Fi2 -+ Fime |
Foi Fo2 - Fomua
F=
L I:m,l sz me+l ]

whereF; j = |},1({i)|n i=1...mj=1...m+1)and

-t 5T

m
S 1#s1=0,..mr=s/;r=0,..m

(s=0,...m). Using this definition, we obtain the followingfnn (Nm+ 1)n)-matrix Dcxm

Dcxm = o )

where, again, consecutive blocks overlamiolumns.

We further consider the weight forqwe = [ 77’28) e RNMIn \whereng is the vector

of the function values at the collocation points multipliegl the Gauss-Legendre weights and
the lengths of the corresponding mesh intervals. To exglanuse of the weight form, we
first consider a scalar functiohe C°([0, 1], R). Then the integrafo1 f(t)dt can be numerically
approximated by appropriate linear combinations of fuorctialues. This can be done in several
ways. (For background on quadrature methods, we refer fp [6]
If the Gauss points are used, then the best approximatiothbderm
N-1

Z Z wmj(fe)ijhi = Z(fG)i,ja %)

i=0 j=1 i=0 j=1
5
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where (c)ij = f(&.j), with wn; the Gauss-Legendre quadrature fiogents with respect to
[0, 1]. Formula (5) delivers the exact integralfift) is a piecewise polynomial of degreen2- 1
or less.

The integralfo1 f(Ho(t)dt (f,g € C°([0, 1], R)) is then approximated with Gauss-Legendre
by figc = f&Lcxmaum. For vector functiond, g € C°([0, 1], R"), the integralfo1 f(t)Tg(t)dt is
formally approximated by the same expressiffgc = fJ LcxmOu.

We further introduce the matrixg.c € RN™x RN™that converts a vecto: into the vector
U[B
ne = Lexc nc. (6)

To this end we define the diagonal matl:i&C eRMxR™M(i=0,---N-1)as

[ wm,lln
wm2ln
wmgaln
B _p
LG><C - h'
wmmln |
ThenLgxc is given by
(0)
I‘G><C
(1)
I‘G><C
= )
Lexc Léoe

(N-1)
LGXC

2.3. Basic convergence results

We first recall the approach in [2, 10, 11] to the computatiblinoit cycles by collocation.
System (2) can be reformulated as a standard boundary vadbéem by introducing artificial
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scalar variable3 (t) andw(t) as follows [10]:

x(t) - T f(x(t) =0
{ T()=0 7
W(t) — X(t)Tx(t) = 0,

with boundary conditions

w(0) = 0 8)
w(1) = 0.

In each interval §j, 7iz1], x(t), w(t) and T(t) are approximated by degree polynomials
XA(t), wA(t), TA(t). The results of De Boor and Swartz [5] now apply to (7)-(8) o the con-
tinuous piecewise polynomiaié (t), w*(t) andTA(t) converge uniformly over [AL] to x(t), w(t)
andT (t) with orderh™?! and with ordeih®™ at the points of the coarse mesh.

By the collocation requirements

XA - TAGHTOAG)) =0

T(&j) =0

WA — X&) X&) = 0 ©)
x2(0)-x2(1)=0

wA(0)=0

wA(1) = 0,

{ x(0)-x(1)=0

fori=0,...N-1,j=0,...m. Clearly, TA(t) has to be a constaift* and

0 = w(1)-wA(0)
= WAt
= TN I wom WA h
= Yo S omiX(G) XA (& )h
~T A
= XslexmXy.

Therefore we can rewrite (9) as
X&) - TAHF(x&,) =0
X20)-x2(1)=0 (10)
ZeLoxwXay =0,
fori=0,...N-1,j=0,...m. By [5]
IX(t) = x* ()] = O(h™*) (11)
for all t and|x(t) — x2(t)] = O(h’™) at the points of the coarse mesh. Hence
|A(X() - A (1))] = O(h™*) (12)
for all t. Since the period is a constant, we must have that

IT - T4 = O(h?™). (13)
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The velocity vecton(t) = T f(x(t)) can be approximated by (t) := T2 f(xA(t)); from the
bounds (11) and (13) it follows that

V() — VA(t)| = O(h™™). (14)

System (10) can be considered as a non-linear systegp andT* if x2(¢; ;) andxX*(¢; ) are
written in terms ofxﬁﬂ by the use ol cxv andDcxy respectively. To compute the solution, we
use Newton's method where we solve matrix equations with

Dcxm — TAAC(XA)LCXM _fCA
My = In 'TO =In Onx1 > (15)
XgLcxm O1x1

wheref® = f o x*, s0 (f&)i; = f2(4.j) = F(X*(&.)). Next, Ac(x*) € RN™x RN™ s given by
[ A(X*({o4))

A(X*(Lo2))
A(X*(%03))

Ac(x®) =

A (En-1m))

Finally, the matrixO in (15) is the zerorf, (Nm— 1)n)-matrix. In Proposition 4 we will show that
M}, can also be used to obtain an approximation of ohfet to vi(t).

2.4. The adjoint system

To apply the convergence results of De Boor and Swartz [Slefe@mulate (3) as a standard
boundary value problem. Therefore we introduce two ardfistalar variabled(t) andu(t) to
obtain the following system:

Vi) + TAX(®)TVi(t) — A(HX() = 0
{ A) =0 (16)
U(t) — v (t) = 0,

with boundary conditions

u@0)=0 (17)
ul)=1

Generically, this standard boundary value problem hasaatesd solution withi(t) = 0 and
u(t) = t for all t, so that they(t)-component is the solution to (3).

The functionsx(t), v(t) and scalafT in (16)-(17) are not known a priori and so we can not
apply the results of [5] directly. A natural idea is to re@acdt), v(t) and T in (16) by their
approximations(t), vA(t) = T2 f(x2(t)) and T from a discretization as in section 2.3. For this
we prove the following proposition:

{ vi(0)-w(1)=0

8



Proposition 1. Let \(t), A2(t) and w\(t) be the collocation approximations for the mesland
piecewise polynomials of degree m to the system:

w(t) + TAAGA®)) Vi) — A)X(E) = 0
{,uozo (18)
ut) = vA®Tvi(t) =0

with boundary conditions
ui0)=0 (19)
ul) =1

Then Y‘(t) converges to{t) at all points off0, 1] with order H** and with order K™ at the
coarse mesh points. Als#’(t) is a constant and converges@avith order ™.

{ vi(0)-v(1)=0

Proof. Formally, we can interpret (7)-(16) as one big system withriatary conditions (8)-(17)
and then the convergence results of [5] apply. Obvioustyetuations decouple and the remain-
ing equations fok, 2 andu are precisely (18) with boundary conditions (19).

Consequentlyy®* converges toy(t) uniformly with orderh™?, and with orderh®™ at the
points of the coarse mesh. Furthermor&(t) is obviously constant. By considering its value at
the coarse mesh points, we infer that it converges to 0 wilkrbrP™. O

We now come to the numerical computationvpft) andA*(t) (U*(t) is an auxiliary variable
that can be eliminated and plays no further role). By theocalion requirements, the piecewise
polynomialsv*(t), 14(t) andu”(t) satisfy the following equations:

ViA(4ig) + TAAGR () VR (G ) — A2(4.)X(&) = 0
) =0 (20)
WG = V(&) V(&) = 0,

fori=0,...N-1,j=0,...mand with boundary conditions

VH(0) -V (1) =0
ut(0)=0 (21)
ur(1) =1

As noted in Proposition 24(t) = 1%, with 2* a constant. Further,

1 u?(1) — u?(0)

At

= Yo, XL wm U@ ph

= I I omVAG ) TV (G
Vé’TLcXMVfM-

Therefore (20)-(21) can be rewritten as

VA5 + TAACGGD) VA — A°%(g,) =0
V(0 V(D) = 0
Vé’TLcXMVfM =1



fori=0,...N-1,j=0,...m Hence

In ) -ln Ona
AT
fg Lexm O1x1

Do + TAAC(X) TLexm —Xc H v I
M| _
i |-

T>'|HO o

‘ : (22)

2.5. The solution to the adjoint equation as a byproduct affda’s method

In Proposition 4 we will prove that the solution to (22) caroisained cheaply as a byproduct
of Newton’s method applied to solve (10). We start with twelimninary results.

Proposition 2. Define

B = DCXM_TAAC(XA)LCXM B, = DC><M +TAAC(XA)TLC><M
1= l, O —_ RC l, O —_

Let u and w be two continuous piecewise polynomials of degreeless. Then, we have

WG W(0)'1Biuy + [us u(1)T]1Bwy = 0. (23)
Proof. We find that
W5DoxmUn = WGlc (24)
= fo ' w(t)Tu(t)dt

= wt)Tu); - f ' W(t)Tu(t)dt
0
= —ulDcxmWm +W(1)Tu(1) — w(0)"u(0).

Here we have used the fact thaft)Tu(t) andw(t)"u(t) are piecewise polynomials of degree
2m— 1 or less andi, w € C([0, 1]).

Itis clear that
A ) hiwmln = hiomj A G))
Therefore, and because of the diagonality of the méaigix:,
Ac(X*) Lexc = LaxcAc(X)" = L, cAc(X)T.
Using the previous equality we find that
WETAAC O Lexmun = (W T Ac(x)uc)" (25)

= UCTAAc(X®) LaxcWe
= ULG T AC(X) Twe
= UTAAc(x*) LexmWi.
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From (24) and (25), we obtain that
[wg w(0)'] [ Pexm - TSAC(XA_)L,CXM ]UM
= —[ugDexmwi — u(1) (1) + w(0)"u(0) + ug T*Ac(x*)" Lexmwiv
~w(0)" (u(0) - u(1))]
A AT
—[UT U(l)T] [ Dcxm + TOAC(X )_ILCxM ]WM,
which is equivalent to (23). O

Proposition 3. Let u and w be two continuous piecewise polynomials of dagreeless and
anda be two scalars, then

Dcxm — TAAC(XA)LCXM —Tic Un
WEw)Té]| 1n O ~In O [ +
T a
HgLlexm O11
Dexm + TAACO®) TLexm —pc W
(WS u@)Te]| 1 o) ~1n Oma gM }: 0,
ngLexm O1x1

whereu andn are two arbitrary functions iR".

Proof. By Proposition 2 and the fact thaf;nc = niwe andudLexmUm = usuc we find

Dexm — TAAC(XA)LCXM —Tnc Un
[Wg W(O)T (f] 0 = In Onx1 [ ]
T a
/JG LC><M 01><1
D + T2AC()TL
=- [U(T3 u(l)T][ CIEM OAC( )_ ﬁXM ]WM — angLexmWi
+EUSuC

Dexm + TAAC(X®) Lexm —pc W
- [Ug U(l)T a/] In O —In Onx1 [ é_-M } .
ngLexm O1x1

Our main result is the following.

Proposition 4. The degree m piecewise polynomia(ty determined through its values at the
Gauss points and il by

Dcxm — TAAC(XA)LCXM - fA
|5 ()" 2M] O —lh Ona [O N
5~<£|-(:x|v| O1x1

converges to ) uniformly with order i** and with order K™ at the points of the coarse mesh.
Moreover,A* converges to zero with ordefh
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Proof. We definey* anda* from (22) and apply Proposition 3 with= 2,4 = X, w = v* and
£ = 2" to obtain

[T O 2| T O —lh Ona

5% Lexm O1x1

Dexm — TAAC(X*)Lexm  —f4 ][ o ]
a

0
=_ [ug u(1)’ a]l 2 ‘

TA

for all continuous piecewise polynomialsof degreem or less and all scalarg. Thus (26)
follows. The convergence results follow from Proposition 1 O

2.6. Discussion

We note that from (26) we getR})c rather than\{*)y. This is an advantage since in all
known applications we precisely neegt)s to compute integrals of the form

1
I:LwMWML

wherel = (1,82, ..., )" € CO([0, 1], R"). If | is approximated by
l1 = (M)&de

(which is the best we can do), and
l2 = (Vgdes

then

v = v)E<e|
|§(T;(v| - V|A)c|
o(h™h) 1Zally »

1y =12

IA

wherelZgll; tends tox, 1z (®ldt for h — 0.

To obtain @,A)M (to our knowledge not needed in any applications) we taleantount that
vi(0) = v*(1) and solve the following system:

Lex _ o
O~5|n 0n><(CNm'\f1)n O~5|n }(VIA)M _[ VIAI(O(3 }, (27)

where the matrix in the left-hand side is sparse, square a&tiecanditioned.

3. Test Results

The tests described in this section are done in the frameuwafdkatCont [7, 8]. Before we
give test results for the order of convergence, some cortipngd aspects have to be mentioned.
12



First, the meshes that we use are, like in AUTO [11, 9] and CENT [4], adaptive and hence
non-uniform. Next, to solve the system that defines the apmration to the limit cycle, namely
(10), Newton’s method is used with Jacobian malixin (15). The stopping criterion consists
of two conditions. The norm of the left-hand side of (10) mostsmaller than a threshold Fun-
Tol, and the last Newton correction has to be smaller thamesltold VarTol.

After convergence we use the Jacobian matrix obtained ifaitéNewton step, we solve (26) to
get (/*)we. If desired, then from (6) we get{)c, and from (27) ¢*)u follows.

We now discuss upper bounds for the tolerances that in sfdite counddr error can be met
in Newton’s method. This will later allow us to decide whichiags are caused by truncation.
We use the notation and framework on stability and backwealilgy in [22] and assume that
all computations are done in a backward stable way. xpdie the exact solution t&(x) = 0
whereF is the left-hand side of (10). In a step of Newton’s method taet svith an approximate
solution X with computed valuef@ and computed Jacobian matii = Fyx(X). We compute
the next approximation @= % — Ax whereAx is the solution which is obtained by solving the
systemF,(X)Ax = F(X). Up to higher order terms

F(®) = F(R) - Fx(RAX.

In what follows,e denotes machine precision and we omit the higher order te8mse the map
X — F(X) is backward stable, we have

If(f() =F(X+u)=F& +F(X)u=F(X) +w,

wherel|ull = O(e) lIXIl and|wi| = [IFx(X) ull < [IFxllllull, solwil = O(e) IF«I[IXll. Now, since the
mapX — F4(X) is also backward stable,

B = Fu(X) = Fy(X+9) = Fx(%) + Fx(9)s= Fy(X) + 1,
wherells| = O(e)lIXll and|itl] = [IFxx(X)sll < IFx«lllisll, solltll = O(e)lIFx«llIX]. The system
Fx(®)Ax = F(X)
is solved by a backward stable algorithm, hence
BAX = F(X), (28)

whereB = B + ¢ = Fy(X) + £ with [|Z]| = O(e)lIFx(X)Il. Now [[Fx()I| = [[Fx(X) + tll < [[Fxll + [It]]
and thug|Z]| = O(e)||F x| + O(e?)IFx«lllIXIl. The second term is small compared with the first one
so we can state thit]| = O(e)||F«ll._ .

From (28) we infer thatR(X) + O)Ax = (Fx(X) + t + O)Ax = F(X) = F(X) + wand thus

F(%) - Fx(%)AX
F(R) + (t+ )AX — (F(X) + W)
(t+ 4)5( —W.

F(X)

Therefore we obtain that

(It + IZIIAXI + [ .
O(6)(|IF><><|II|>~<||14:; IFXIDIAX] + O(e)IIFXIIIXI-

IFI

I IA



Because we assume tmg&n is small, the first term will be small in comparison with thesed
one. Now, in the limif|X|| ~ ||Xoll, SO we can state that

IFG)I = O(e) [IFll 1%l » (29)

and thus in the test results we expect to get FunTol smaker@ie) ||F|| || Xoll-

Now we determine an upper bound for the value of VarTol thaewgect to achieve. Using
the approximatior(X) = Fx(Xo)(X — Xo), we obtain that

%0 = Xl = IFx(0) *F Il < IFHIIF (-
Taking (29) into account, we conclude that
1% — Xl = O(E)IIFIIIF5 llIxoll. (30)
We hence expect that we can reduce VarTol to be at [gas&|| = O(e)IFIIIIFHINIXoll-

We now study two examples numerically and illustrate nuoadisi and graphically the con-
vergence of/ﬁ(t) to vi(t) with orderh™? in the cases where rounfi@rror can be ignored. This
requires some careful computations in which (29)-(30) aedito ensure that roungiés negli-
gible.

3.1. Example: canonical unfolding of the Hopf bifurcation
We consider the following example

X =ax—y—X(Z +y?)
{ y = X+ay -y +y?). (31)

Fora < 0 the equilibrium k y)™ = (0 0)' is stable. Atr = O there is a Hopf bifurcation and for
a = 1 we get the following stable periodic orbit:

cosf)

X
{ y = sin@),
with t € [0, 2], which is unique up to a phase shift. After time-rescalingabtain
x(t) cos(2rt) X(t) —sin(2rt)
( v )Z( sin(2rt) ) andv() =( () )= 2”( cos(art) )

We now prove that

— sin(2rt) ) (32)

0 = 1
vit) = 27\ cos(zt)
by checking that (3) holds. First, we note that

AX(D) = -2 cog(2nt) -1 - 2 sin(2rt) cos(2t) )

1 — 2 sin(2rt) cos(2t) —2 sirf(2nt)
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so that

vi(t) + TAX() ()
_( —cos(at) -2 cog(2nt) -1 - 2sin(2rt) cos(rt) \( —sin(2rt)
- ( — sin(2rt) ) ( 1 — 2 sin(2rt) cos(2rt) —2 sirf(2xt) ) ( cos(2t) )
=0.

The boundary and integral condition in (3) hold obviously.

We consider discretizations with 10 to 40 mesh intervalséps of 5;m always equals 4.
In Table 1 we listN, h, the largest and smallest singular values of the Jacobiarnxmd;, given
in (15), and its spectral condition number. In Table 2 thehed values of VarTol and FunTol

71
an

10 | 0115090 | 1560946 | 0.4668 | 3343794
15 | 0.079341 | 2320605 | 0.4015 | 577.9155
20 | 0.059620 | 3154630 | 0.3554 | 887.6030
25 | 0.049054 | 3891364 | 0.3241 | 12008145
30 | 0.041290 | 4681366 | 0.2986 | 15677098
35 | 0.035811 | 5452071 | 0.2791 | 19534180
40 | 0.031344 | 6286388 | 0.2621 | 23981686

N h o1 On

Table 1: Number of mesh intervals, maximum length of mesh interlaigest and smallest singular valuewy, spectral
condition number oM.

N VarTol FunTol €- % - I € o1 |IX|

10 | 1.6664e-15| 5.4934e-14| 6.7019e-13| 3.1286e-13
15 | 1.8915e-15| 7.7278e-14| 1.2927e-12| 5.1907e-13
20 | 3.5076e-15| 1.2384e-13| 2.1722e-12| 7.7204e-13
25 | 2.6654e-15| 1.8080e-13| 3.1715e-12| 1.0278e-12
30 | 5.5659e-15| 2.5885e-13| 4.4235e-12| 1.3209e-12
35 | 6.8751e-15| 3.1728e-13| 5.8432e-12| 1.6309e-12
40 | 1.3415e-14| 4.0415e-13| 7.5585e-11| 1.9813e-12

Table 2: Number of mesh intervals, threshold VarTol, thregHainTol, theoretical upper bound for VarTol, theoretical
upper bound for FunTol.

are compared with the theoretical upper bounds (29) and {88)note that the extremely small
values for the obtained VarTol do not imply that the compugelditions are accurate up to these
values.

Now we examine the superconvergence of the period. Tablenfawms the computed
valuesT2 with the exact value of the period, i.ex.2 According to (13) we must have that
|27 — TA| = O(h®). Therefore logy(|2r — T2]) ~ 8log,4(h) + C. For 25 mesh intervals we find
that|2r — TA| ~ €||[F4lllIFHITA = 1.6753e—12, i.e. the error is of the order of the rouffidearor.
Thus it is reasonable to only consider the points {9, log,o(|27 — T4|)) for N < 25. The
slope of the least squares linear fit through these point&véndy 8458 which confirms the
superconvergence of the period, see Figure 1.
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N TA 27— T4

10 | 6.283185314816388 7.6368e—9 | 0.2481
15 | 6.283185307461999 2.8241e-10| 0.1799
20 | 6.283185307214563 3.4976e-11| 0.2191
25 | 6.28318530718455] 4.9649e-12| 0.1481
30 | 6.283185307180794 1.2079%e-12| 0.1430
35 | 6.28318530717992§ 3.4017e-13| 0.1258
40 | 6.283185307179727 1.4033e-13| 0.1506

Table 3: Number of mesh intervals, computed period, absoluefer the period, absolute error for the period compared
with the expected order of convergence.

log, (I2r-T4)
N

-10.5F *

-11p -

s ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
-1.35 -13 -125 -12 -115 -11 -1.05 -1 -0.95 -0.9
Togy(h)

Figure 1: Least squares linear fit: lggi2r — T2|) = 8.458 log o(h) — 0.186.

Now, we consider the order of convergence of the solutiohécatdjoint equations. By (32),
vl = ﬁ. Therefore, for everfN we compute the square of the norm of the computed solution
in the fine mesh points, compare this Wﬁé{la and take the maximal fierence over the fine mesh
points, see Table 4. F& > 25, the maximal error doesn’t decrease anymore. This cam-be u
derstood as follows. FaX > 25 the truncation error at the points of the coarse mesh atitin
period is of the order of the round¥rror in the linear algebra and so the rourfflesror can no
longer be ignored. We note that the uniform error bound uséi@ble 4 is a very strict bound,;
for the purpose of the applications the average error oeeothit is probably more relevant. We
deal with this in the next example.

To visualize the order of convergence, we plot in Figure 2henhtorizontal axis logy(h) and
on the vertical axis log(max (3% - ||v|A||2 ) for N < 25 and we consider the least squares linear
fit through the corresponding points. The slope of the leq@aies linear fit is 808 which is
even better than the expected slope of 5. We hypothesizéhibas due to the fact that (31) is a
very simple system with a rotational symmetry and a very gmperiodic orbit.
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max{| L -V [P
v | mafls - o) | )
10 3.6072e-8 0.001786
15 3.2994e-9 0.001049
20 4.1821e-10 0.000555
25 1.9118e-10 0.000673
30 1.9227e-10 0.001602
35 1.9223e-10 0.003264
40 1.9257e-10 0.0063652

Table 4: Number of mesh intervals, error for the adjoint solytierror for the adjoint solution compared with the
expected order of convergence.

117)
N

L
|
|
@
\

log, ((max(|1/(41®)-]ly
N

0 s
-1.35 -13 -125 -12 -115 -11 -1.05 -1
log,o(h)

L
-0.95 -0.9

Figure 2: Least squares linear fit: lggmax(;3; — ||v|A||2|)) = 6.308 logo(h) — 1.543.

3.2. Example: the Lorenz84 model
As a second example we consider the following system:

X = -y*-Z-ax+aF
y = Xy-bxz-y+G
Z = bxy+xz-z

This Lorenz model [19] has a stable periodic orbit for theapagters valuea = 0.25 b = 4,F =

4 andG = 0.5. The solution to the adjoint problem is not known analyljcaTherefore, we
computev;* for 300 mesh intervals and consider this as the exadgain, we consider meshes
A with from 10 to 40 intervals in steps of 5 and piecewise poiyiads of degree 4.

Table 5 listsN, h, the 2-norm of the Jacobian matrix (15), its smallest siagualue and its
spectral condition number. In Table 6 we give the obtainddegof VarTol and FunTol and
their theoretical upper bounds.

Next, the approximated periods are compared with the péoiodd in the discretization by
300 mesh intervals, nameR?® = 1.544168236465894. As in the first example we expect that
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g1
on

N h o1 On
10 | 0.1313 | 1715856 | 0.1835 9348931
15 | 0.0833 | 2547963 | 0.1519 16763931
20 | 0.0719 | 3458800 | 0.1326 26082081
25 | 0.0520 | 4292663 | 0.1191 | 36045458
30 | 0.0518 | 5190071 | 0.1090 | 47595223
35 | 0.0380 | 6111010 | 0.1011 60423979
40 | 0.0370 | 6949195 | 0.0948 73332397
300 | 0.0049 | 52400547 | 0.0349 | 1501129250

Table 5: Number of mesh intervals, maximum length of mesh interlarigest and smallest singular valuewy, spectral
condition number oMy,

N VarTol FunTol €- % -IXI| e-o1- X

10 | 5.8140e-15| 7.8167e—-14| 1.9870e-12| 3.6468e—-13
15 | 7.4450e-15| 1.4774e-13| 4.2013e-12| 6.3856e-13
20 | 2.5826e-14| 2.0101e-13| 7.4010e-12| 9.8147e-13
25 | 1.5716e-14| 2.9385e-13| 1.1293e-11| 1.3449e-12
30 | 2.8568e-14| 3.5105e-13| 1.6202e-11| 1.7668e-12
35 | 8.9663e-15| 5.1049e-13| 2.2073e-11| 2.2324e-12
40 | 1.2868e-14| 5.4380e-13| 2.8508e-11| 2.7015e-12
300 | 1.0192e-12| 1.2044e-11| 1.5532e-9 | 54219e-11

Table 6: Number of mesh intervals, threshold VarTol, thregalnTol, theoretical upper bound for VarTol, theoretical
upper bound for FunTol.

l0g;o(IT3%° - T4]) ~ 8log,4(h) + C

for a constant C, as long as the roun@i-error can be ignored. FAdX = 25 we find that
IT300 — T4 = €|FylllIF;YITA = 1.6319e-12. Thus, when making a plot to visualize the or-
der of convergence we only consider the points (i), log,o(|T3%° - T4|)) for N < 25. Figure

3 shows that the slope of the least squares linear fit is giyeh2y9, which confirms the order
of convergencé?™ of the period.

To study the order of convergence\g¥, we use the following method. When we compare
the exact periodic orbik and an approximated solutiot, we have to take into account that
the phase shifts, which depend on various details of the wayhich the orbits are computed,
are not necessarily the same. Therefore, we compute arshifth that the following integral is
minimized:

1 2
f [[x(t) = XAt +7)|| " dt.
0
This is equivalent to

L(x() = XAt + 7). x(t) - X4t +7)) =0 Vte[0,1]
& 2(X(t) - XMt +7), - Ex0(t+17)) =0 Vte[0,1]
& i (x) — XAt + 7).~ Ex(t+ 1)) dt = 0.

If we definefy(r,t) = (x(t) - Xt +7), - £xA(t + 7)), we then have to find a zer of the

18



N TA ‘ |T300 _ TAl |T300;TA|
10 | 1.544168239138914 2.6730e-9 | 0.0302
15 | 1.544168236548484 8.2591e-11| 0.0356
20 | 1.54416823647809 1.2202e-11| 0.0170
25 | 1.544168236467308 1.4131e-12| 0.0265
30 | 1.544168236466391 4.9694e-13| 0.0096
35 | 1.544168236465983 8.8818e-14| 0.0205
40 | 1.544168236465911 1.6209e-14| 0.0046

Table 7: Number of mesh intervals, computed period, absoluefer the period, absolute error for the period compared
with the expected order of convergence.

-85

[
N
o

N

|
N
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o

\

log, (IT**-T4)
N
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0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
-13 -125 -12 -115 -11 -1.05 -1 -0.95 -09 -0.85
Tog(h)

Figure 3: Least squares linear fit: I§53°° — T2|) = 8.279log;o(h) - 1.272.

function L
Gl(T)Zjo‘ {1(T,t)dt.

We compute this zero by a straightforward bisection methdtkreby the integral&:(r) are
computed by Gauss-Legendre quadrature over the 300-mesh.

Since the solution to the adjoint equation is obtained aspaduuct of the computation of the
solution to (10), both have the same phase shift. So to cariparexact; to the computed
solution we calculate

1
H(ro) = \/f M) - vAct+ To)||2 dt,
0
wherery is the obtained phase shift.

Table 8 gives the phase shift and the valueHof In Figure 4 and Figure 5 we plot the
points (logy(h), log,o(H)) for the discretizations with 1& N < 25, and with 10< N < 40,
respectively. The slope of the least squares linear fit tjindbe points is given by.589 in the
first case and by.509 in the second case. This again confirms the order of cgeneeh™* of
V*; we note that in this example we have used a bound on the avereg.

19



N 70 H

10 | 0.014943 | 1.1974e-6
15 | 0.013715| 1.4119e-7
20 | 0.011749 | 3.8061e-8
25 | 0.010210 | 1.0805e-8
30 | 0.009844 | 5.0516e-9
35 | 0.008517 | 2.5690e-9
40 | 0.008983 | 1.9084e-9

Table 8: Number of mesh intervals, phase shift for the adjahtt®n, error for the adjoint solution.

-6t .

-6.51 -

logq(H)
1
4

-7.5F

85 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
-13 -125 -12 -115 -11 -1.05 -1 -0.95 -09 -0.85
log, o(h)

Figure 4: Least squares linear fit: lggH) = 5.189log;o(h) — 1.347.

4, Conclusion

We have proved that the approximation by collocation at Gaaints for the system adjoint
to the linearization of the periodic orbit equations can baimed with very little computational
cost from the solution of the periodic orbit equations. Mumer, the solution is obtained in a form
which is most suitable for the applications, i.e. to compuategrals of the formfv|(t)Tg(t)dt,
wherey, is the solution to the adjoint equations afigd a continuous function. The (high) order of
convergence to the exact solution to the adjoint equatiorhisrited from a standard collocation
method.

We have considered two model cases to support our resultse first example, the solution
to the adjoint system is analytically known, in the seconid itot. In both examples, we have
investigated the orders of convergence for the period amddhution to the adjoint system. In all
cases we have given numerical values for the errors and dstrated the order of convergence
by log-log linear fits.
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