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Abstract

The equation adjoint to the linearization of the periodic orbit equations in a dynamical system is
fundamental in the study of sensitivity issues for periodicorbits, e.g. in the synchronization of
networks of weakly coupled oscillators. It is also fundamental in the computation of normal form
coefficients for bifurcations of limit cycles. Numerically, the adjoint equations can be solved in
a variety of ways. In the case where the periodic orbit equations are solved as a boundary value
problem by collocation at Gauss points, a recent method allows one to compute the solution to
the adjoint equations as a byproduct of Newton’s method applied to solve the boundary value
problem. This method is practically cost-free since it requires only the solution to an already
factorized linear system. Moreover, it provides the solution to the adjoint equations in exactly
the form needed in the applications.
So far, the method has not been analyzed carefully and no rigorous convergence results have
been proved. We prove that the method is equivalent to a collocation method for the adjoint
equations so that convergence of orderhm+1 holds at all points and of orderh2m at the points of
the coarse mesh; hereh is the maximum length of the mesh intervals andm is the degree of the
approximating piecewise polynomials. We support this by extensive numerical tests.
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1. Introduction

Let a dynamical system be defined by

ẋ(t) = f (x(t), α), (1)

wherex(t), f (x(t), α) ∈ R
n andα is a vector of parameters. In the present paper,α is fixed and

will for simplicity be omitted from the equations.

When studying periodic solutions to (1) it is convenient to introduce the periodT as an
explicit unknown by rescaling time to the interval [0,1]. Also, to obtain a unique solution it is
necessary to fix the phase, e.g. by an integral condition. This leads to the following system:
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

ẋ(t) − T f(x(t)) = 0
x(0)− x(1) = 0∫ 1

0
˙̃x(t)Tx(t)dt = 0,

(2)

wherex̃(t) is an initial guess for the solution, typically obtained from a previous step in a con-
tinuation method. The integral equation minimizes theL2-distance betweenx(t) and x̃(t) over
phase shifts and so leads to a robust algorithm. This approach is by now standard in numerical
bifurcation software, see [11, 9, 4, 7, 14].

In these packages an adaptive mesh∆ and collocation at Gauss points are used to approximate
x(t) by a piecewise polymialx∆(t) of degreem andT by a scalarT∆. Collocation software for
boundary value ODE’s was first implemented in the package COLSYS [1, 2].

The adjoint solutionvl(t) to the linearization of (2) is the solution to the system



v̇l(t) + T A(x(t))Tvl(t) = 0
vl(0)− vl(1) = 0∫ 1

0
vl(t)Tv(t)dt = 1,

(3)

whereA = fx andv(t) = ẋ(t) = T f(x(t)). We note that this implies thatvT
l (t)v(t) = 1 for all

t and that the last, scalar equation in (3) merely scalesvl(t). The adjoint solution was first used
as a mathematical tool in the study of periodic orbits [20, 21], and references therein. In the
applications of dynamical systems theory it quantifies the (linearized) effect of an input pulse
to a periodic orbit. In the neural computation community thesolution to the adjoint equation is
used to compute the so-called phase resetting or phase response curves, which are important for,
e.g., the study of synchronization of weakly coupled oscillators [3, 13, 16, 17]. The standard
technique for the numerical computation of the solution to (3) is discussed in [23].

In [15] a new way was introduced to compute the solution to theadjoint equations as a
byproduct of the computation of the periodic orbit. The samemethod was used in [18] in the
computation of periodic normal form coefficients for codimension 1 bifurcations of cycles.

So far, no rigorous proof for this method has been published.The aim of this paper is to
analyze the method, to prove that it is equivalent to a collocation method for the adjoint equations
and hence to prove its convergence and obtain the order of convergence.

A word of caution is in order here. At first sight one might think that since the operator in
the first group of equations in (3) is adjoint to the operator in the first group of equations in (2),
their discretizations, or at least essential parts of them,will be transposed matrices.

This is false in general. It holds in very specific situations, e.g. when the mesh is uniform
and the operator in (2) is discretized by forward Euler, while the operator in (3) is discretized
by backward Euler. It fails already with the same discretizations if the mesh is non-uniform.
In the case of collocation methods the relation between the two discretizations is obscure. It is
not discussed in standard references such as [2] and [23]. Wenote also that our proof depends,
surprisingly, on the use of the Gauss points as collocation points, see Proposition 2.

The paper is organized as follows. In sections 2.1-2.3 we discuss the discretization of vector-
valued functions and recall the orders of convergence of thecollocation approximationsx∆(t),
v∆(t) andT∆ to x(t), v(t) andT, respectively. In section 2.4, we rewrite (3) as a standard boundary
value problem and consider a related problem in whichx(t), v(t) andT are replaced byx∆(t), v∆(t)
andT∆, respectively.
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We prove that the collocation approximationv∆l (t) to the latter problem converges tovl(t)
with orderhm+1 at all points and with orderh2m at the points of the coarse mesh, whereh is the
maximal length of the mesh intervals.

In section 2.5, the adjoint system is rewritten so thatv∆l (t) is obtained as a byproduct of the
computation of the periodic orbit. Proposition 4 is the mainresult of the paper. In section 2.6,
we discuss the practical consequences of the method, i.e. how the solution to the adjoint equa-
tion is used in the applications. In section 3, the obtained orders of convergence are supported
through extensive testing, both in a model case where the exact solution to the adjoint system is
analytically known and in the case of periodic orbits of the Lorenz model. Finally, in section 4,
we draw some conclusions.

2. Discretization by collocation at Gauss points

2.1. Solution to a boundary value problem by collocation

We will deal with boundary value problems in which the unknown is a functionY(t) ∈ R
n,

defined in [0,1] and satisfying
{

Ẏ(t) = F(Y(t))
aY(0)+ bY(1) = 0,

(4)

whereF is a sufficiently smooth function anda,b are constant matrices. The results of [5] apply
to this situation (but we remark that [5] also applies to non-autonomous systems and more general
boundary conditions).

To discretize (4) by a collocation method, the interval [0,1] is first subdivided intoN intervals
with grid points:

0 = τ0 < τ1 < . . . < τN = 1.

The pointsτ0, τ1, . . . , τN form the coarse mesh∆. We defineh = ‖∆‖ = maxi hi wherehi =

τi+1 − τi . Y(t) is approximated by a continuous functionY∆(t) which in each interval [τi , τi+1] is
a degreem polynomial, whose values are represented at equidistant mesh points, namely in

τi, j = τi +
j

m
hi ( j = 0,1, ...,m).

We note thatτi,m = τi+1 = τi+1,0 for 0 ≤ i ≤ N − 1. These grid points form the fine mesh. In each
interval [τi , τi+1] we require the polynomials to satisfy the differential equation in (4) exactly at
m collocation points. The best choice for these collocation points are the Gauss pointsζi, j , i.e.
the roots of the Legendre polynomial of degreem, relative to the interval [τi , τi+1] because of the
high order of convergence of Gauss-Legendre numerical integration, based on collocation in the
Gauss points [5, 6]. We also require the polynomials to satisfy the boundary conditions in (4).
Under generic regularity conditions for the system (4) De Boor and Swartz [5] proved thatY∆(t)
converges uniformly over [0,1] to Y(t) with orderhm+1 and with orderh2m at the points of the
coarse mesh. The regularity conditions are satisfied if bothF andY areC2m+1 functions.

2.2. Discretizations, weight forms and conversion

For a given vector functionη ∈ C1([0,1],Rn), we consider two different discretizations [15]:

• ηM ∈ R
(Nm+1)n, the vector of the function values at the fine mesh points,
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• ηC ∈ R
Nmn, the vector of the function values at the Gauss points.

We further introduce the structured sparse matrixLC×M that converts the vectorηM of function
values of a degreem continuous piecewise polynomial at the mesh points into thevectorηC of
its values at the Gauss points:

ηC = LC×MηM .

To this end we first defineL ∈ R
mn× R

(m+1)n by

L =



L1,1 L1,2 · · · L1,m+1

L2,1 L2,2 · · · L2,m+1

...
...

...

Lm,1 Lm,2 · · · Lm,m+1



whereLi, j = l j−1(ζi)In (i = 1, . . .m, j = 1, . . .m+ 1),

ls(z) =
1
ns

∏

r,s,r=0,...m

(
z−

r
m

)

andns =
∏

r,s;r=0,...m ( s
m −

r
m) (s = 0, . . .m). In is then × n identity matrix. We note thatls is

the Lagrange interpolation polynomial of degreem which is equal to 1 atsm and vanishes atrm
if r ∈ {0, . . .m}, r , s; ζi is the i-th Gauss point relative to the interval [0,1]. ThenLC×M ∈

R
Nmn× R

(Nm+1)n has the following form:

LC×M =



L

L

L

. . .

. . .

L



,

where consecutive blocks overlap byn columns.

We also need the matrixDC×M that converts the vectorηM of function values of a degreem
continuous piecewise polynomial at the mesh points into thevectorη′C of its derivative values at
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the Gauss points. We first defineF ∈ R
mn× R

(m+1)n by

F =



F1,1 F1,2 · · · F1,m+1

F2,1 F2,2 · · · F2,m+1

...
...

...

Fm,1 Fm,2 · · · Fm,m+1



whereFi, j = l′j−1(ζi)In (i = 1, . . .m, j = 1 . . .m+ 1) and

l′s(z) =
1
ns

∑

l,s,l=0,...m

∏

r,s,l;r=0,...m

(
z−

r
m

)

(s= 0, . . .m). Using this definition, we obtain the following (Nmn, (Nm+ 1)n)-matrix DC×M

DC×M =



F
h0

F
h1

F
h2

. . .

. . .

F
hN−1



,

where, again, consecutive blocks overlap byn columns.

We further consider the weight formηWG =

[
ηG
η(0)

]
∈ R

(Nm+1)n, whereηG is the vector

of the function values at the collocation points multipliedby the Gauss-Legendre weights and
the lengths of the corresponding mesh intervals. To explainthe use of the weight form, we

first consider a scalar functionf ∈ C0([0,1],R). Then the integral
∫ 1

0
f (t)dt can be numerically

approximated by appropriate linear combinations of function values. This can be done in several
ways. (For background on quadrature methods, we refer to [6].)

If the Gauss points are used, then the best approximation hasthe form

N−1∑

i=0

m∑

j=1

ωm, j( fC)i, jhi =

N−1∑

i=0

m∑

j=1

( fG)i, j , (5)

5



where (fC)i, j = f (ζi, j), with ωm, j the Gauss-Legendre quadrature coefficients with respect to
[0,1]. Formula (5) delivers the exact integral iff (t) is a piecewise polynomial of degree 2m− 1
or less.

The integral
∫ 1

0
f (t)g(t)dt ( f ,g ∈ C0([0,1],R)) is then approximated with Gauss-Legendre

by f T
GgC = f T

G LC×MgM. For vector functionsf ,g ∈ C0([0,1],Rn), the integral
∫ 1

0
f (t)Tg(t)dt is

formally approximated by the same expression:f T
GgC = f T

G LC×MgM.

We further introduce the matrixLG×C ∈ R
Nmn×R

Nmn that converts a vectorηC into the vector
ηG:

ηG = LG×C ηC. (6)

To this end we define the diagonal matrixL(i)
G×C ∈ R

mn× R
mn (i = 0, · · ·N − 1) as

L(i)
G×C = hi



ωm,1In

ωm,2In

ωm,3In

. . .

. . .

ωm,mIn



.

ThenLG×C is given by

LG×C =



L(0)
G×C

L(1)
G×C

L(2)
G×C

. . .

. . .

L(N−1)
G×C



.

2.3. Basic convergence results

We first recall the approach in [2, 10, 11] to the computation of limit cycles by collocation.
System (2) can be reformulated as a standard boundary value problem by introducing artificial
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scalar variablesT(t) andw(t) as follows [10]:



ẋ(t) − T(t) f (x(t)) = 0
Ṫ(t) = 0
ẇ(t) − ˙̃x(t)Tx(t) = 0,

(7)

with boundary conditions 

x(0)− x(1) = 0
w(0) = 0
w(1) = 0.

(8)

In each interval [τi , τi+1], x(t),w(t) and T(t) are approximated by degreem polynomials
x∆(t),w∆(t),T∆(t). The results of De Boor and Swartz [5] now apply to (7)-(8) and so the con-
tinuous piecewise polynomialsx∆(t),w∆(t) andT∆(t) converge uniformly over [0,1] to x(t),w(t)
andT(t) with orderhm+1 and with orderh2m at the points of the coarse mesh.

By the collocation requirements



ẋ∆(ζi, j) − T∆(ζi, j) f (x∆(ζi, j)) = 0
Ṫ∆(ζi, j) = 0
ẇ∆(ζi, j) − ˙̃x(ζi, j)Tx∆(ζi, j) = 0
x∆(0)− x∆(1) = 0
w∆(0) = 0
w∆(1) = 0,

(9)

for i = 0, . . .N − 1, j = 0, . . .m. Clearly,T∆(t) has to be a constantT∆ and

0 = w∆(1)− w∆(0)

=
∫ 1

0
ẇ∆(t)dt

=
∑N−1

i=0
∑m

j=1ωm, jẇ∆(ζi, j)hi

=
∑N−1

i=0
∑m

j=1ωm, j ˙̃x(ζi, j)Tx∆(ζi, j)hi

= ˙̃xT
GLC×M x∆M .

Therefore we can rewrite (9) as


ẋ∆(ζi, j) − T∆ f (x∆(ζi, j)) = 0
x∆(0)− x∆(1) = 0
˙̃xT

GLC×M x∆M = 0,
(10)

for i = 0, . . .N − 1, j = 0, . . .m. By [5]

|x(t) − x∆(t)| = O(hm+1) (11)

for all t and|x(t) − x∆(t)| = O(h2m) at the points of the coarse mesh. Hence
∣∣∣A(x(t)) − A(x∆(t))

∣∣∣ = O(hm+1) (12)

for all t. Since the period is a constant, we must have that

|T − T∆| = O(h2m). (13)
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The velocity vectorv(t) = T f(x(t)) can be approximated byv∆(t) := T∆ f (x∆(t)); from the
bounds (11) and (13) it follows that

∣∣∣v(t) − v∆(t)
∣∣∣ = O(hm+1). (14)

System (10) can be considered as a non-linear system inx∆M andT∆ if x∆(ζi, j) andẋ∆(ζi, j) are
written in terms ofx∆M by the use ofLC×M andDC×M respectively. To compute the solution, we
use Newton’s method where we solve matrix equations with

Mh =



DC×M − T∆AC(x∆)LC×M − f ∆C
In O − In 0n×1

˙̃xT
GLC×M 01×1

 , (15)

where f ∆ = f ◦ x∆, so (f ∆C )i, j = f ∆(ζi, j) = f (x∆(ζi, j)). Next,AC(x∆) ∈ R
Nmn× R

Nmn is given by

AC(x∆) =



A(x∆(ζ0,1))
A(x∆(ζ0,2))

A(x∆(ζ0,3))
. . .

. . .

A(x∆(ζN−1,m))



.

Finally, the matrixO in (15) is the zero (n, (Nm−1)n)-matrix. In Proposition 4 we will show that
Mh can also be used to obtain an approximation of orderhm+1 to vl(t).

2.4. The adjoint system

To apply the convergence results of De Boor and Swartz [5], wereformulate (3) as a standard
boundary value problem. Therefore we introduce two artificial scalar variablesλ(t) andu(t) to
obtain the following system:



v̇l(t) + T A(x(t))Tvl(t) − λ(t) ˙̃x(t) = 0
λ̇(t) = 0
u̇(t) − v(t)Tvl(t) = 0,

(16)

with boundary conditions 

vl(0)− vl(1) = 0
u(0) = 0
u(1) = 1.

(17)

Generically, this standard boundary value problem has an isolated solution withλ(t) = 0 and
u(t) = t for all t, so that thevl(t)-component is the solution to (3).

The functionsx(t), v(t) and scalarT in (16)-(17) are not known a priori and so we can not
apply the results of [5] directly. A natural idea is to replace x(t), v(t) andT in (16) by their
approximationsx∆(t), v∆(t) = T∆ f (x∆(t)) andT∆ from a discretization as in section 2.3. For this
we prove the following proposition:
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Proposition 1. Let v∆l (t), λ∆(t) and u∆(t) be the collocation approximations for the mesh∆ and
piecewise polynomials of degree m to the system:



v̇l(t) + T∆A(x∆(t))Tvl(t) − λ(t) ˙̃x(t) = 0
λ̇(t) = 0
u̇(t) − v∆(t)Tvl(t) = 0

(18)

with boundary conditions 

vl(0)− vl(1) = 0
u(0) = 0
u(1) = 1.

(19)

Then v∆l (t) converges to vl(t) at all points of[0,1] with order hm+1 and with order h2m at the
coarse mesh points. Also,λ∆(t) is a constant and converges to0 with order h2m.

Proof. Formally, we can interpret (7)-(16) as one big system with boundary conditions (8)-(17)
and then the convergence results of [5] apply. Obviously, the equations decouple and the remain-
ing equations forvl , λ andu are precisely (18) with boundary conditions (19).

Consequently,v∆l converges tovl(t) uniformly with orderhm+1, and with orderh2m at the
points of the coarse mesh. Furthermore,λ∆(t) is obviously constant. By considering its value at
the coarse mesh points, we infer that it converges to 0 with orderh2m.

We now come to the numerical computation ofv∆l (t) andλ∆(t) (u∆(t) is an auxiliary variable
that can be eliminated and plays no further role). By the collocation requirements, the piecewise
polynomialsv∆l (t), λ∆(t) andu∆(t) satisfy the following equations:



v̇l
∆(ζi, j) + T∆A(x∆(ζi, j))Tv∆l (ζi, j) − λ∆(ζi, j) ˙̃x(ζi, j) = 0
λ̇∆(ζi, j) = 0
u̇∆(ζi, j) − v∆(ζi, j)Tv∆l (ζi, j) = 0,

(20)

for i = 0, . . .N − 1, j = 0, . . .m and with boundary conditions



v∆l (0)− v∆l (1) = 0
u∆(0) = 0
u∆(1) = 1.

(21)

As noted in Proposition 1λ∆(t) ≡ λ∆, with λ∆ a constant. Further,

1 = u∆(1)− u∆(0)

=
∫ 1

0
u̇∆(t)dt

=
∑N−1

i=0
∑m

j=1ωm, j u̇∆(ζi, j)hi

=
∑N−1

i=0
∑m

j=1ωm, jv∆(ζi, j)Tv∆l (ζi, j)hi

= v∆,TG LC×Mv∆l,M .

Therefore (20)-(21) can be rewritten as


v̇l
∆(ζi, j) + T∆A(x∆(ζi, j))Tv∆l (ζi, j) − λ∆ ˙̃x(ζi, j) = 0

v∆l (0)− v∆l (1) = 0
v∆,TG LC×Mv∆l,M = 1

9



for i = 0, . . .N − 1, j = 0, . . .m. Hence



DC×M + T∆AC(x∆)TLC×M − ˙̃xC

In O − In 0n×1

f ∆,TG LC×M 01×1



[
v∆l,M
λ∆

]
=



0
0
1

T∆

 . (22)

2.5. The solution to the adjoint equation as a byproduct of Newton’s method

In Proposition 4 we will prove that the solution to (22) can beobtained cheaply as a byproduct
of Newton’s method applied to solve (10). We start with two preliminary results.

Proposition 2. Define

B1 =

[
DC×M − T∆AC(x∆)LC×M

In O − In

]
, B2 =

[
DC×M + T∆AC(x∆)TLC×M

In O − In

]
.

Let u and w be two continuous piecewise polynomials of degreem or less. Then, we have

[wT
G w(0)T]B1uM + [uT

G u(1)T]B2wM = 0. (23)

Proof. We find that

wT
GDC×MuM = wT

Gu̇C (24)

=

∫ 1

0
w(t)Tu̇(t)dt

= w(t)Tu(t)
∣∣∣1
0
−

∫ 1

0
ẇ(t)Tu(t)dt

= −uT
GDC×MwM + w(1)Tu(1)− w(0)Tu(0).

Here we have used the fact thatw(t)Tu̇(t) and ẇ(t)Tu(t) are piecewise polynomials of degree
2m− 1 or less andu,w ∈ C1([0,1]).

It is clear that
A(x∆(ζi, j))

Thiωm, j In = hiωm, j InA(x∆(ζi, j))
T.

Therefore, and because of the diagonality of the matrixLG×C,

AC(x∆)TLG×C = LG×CAC(x∆)T = LT
G×CAC(x∆)T.

Using the previous equality we find that

wT
GT∆AC(x∆)LC×MuM = (wT

GT∆AC(x∆)uC)T (25)

= uT
CT∆AC(x∆)TLG×CwC

= uT
CLT

G×CT∆AC(x∆)TwC

= uT
GT∆AC(x∆)TLC×MwM .

10



From (24) and (25), we obtain that

[wT
G w(0)T]

[
DC×M − T∆AC(x∆)LC×M

In O − In

]
uM

= −[uT
GDC×MwM − u(1)Tw(1)+ w(0)Tu(0)+ uT

GT∆AC(x∆)TLC×MwM

−w(0)T(u(0)− u(1))]

= −[uT
G u(1)T]

[
DC×M + T∆AC(x∆)TLC×M

In O − In

]
wM ,

which is equivalent to (23).

Proposition 3. Let u and w be two continuous piecewise polynomials of degreem or less andξ
andα be two scalars, then

[
wT

G w(0)T ξ
]


DC×M − T∆AC(x∆)LC×M −ηC
In O − In 0n×1

µT
GLC×M 01×1



[
uM

α

]
+

[
uT

G u(1)T α
]


DC×M + T∆AC(x∆)TLC×M −µC

In O − In 0n×1

ηT
GLC×M 01×1



[
wM

ξ

]
= 0,

whereµ andη are two arbitrary functions inRn.

Proof. By Proposition 2 and the fact thatwT
GηC = η

T
GwC andµT

GLC×MuM = uT
GµC we find

[
wT

G w(0)T ξ
]


DC×M − T∆AC(x∆)LC×M −ηC
In O − In 0n×1

µT
GLC×M 01×1



[
uM

α

]

= −
[
uT

G u(1)T
] [ DC×M + T∆AC(x∆)TLC×M

In O − In

]
wM − αη

T
GLC×MwM

+ξuT
GµC

= −
[
uT

G u(1)T α
]


DC×M + T∆AC(x∆)TLC×M −µC

In O − In 0n×1

ηT
GLC×M 01×1



[
wM

ξ

]
.

Our main result is the following.

Proposition 4. The degree m piecewise polynomial v∆
l (t) determined through its values at the

Gauss points and in0 by

[
(v∆l )T

G (v∆l (0))T λM
]


DC×M − T∆AC(x∆)LC×M − f ∆C
In O − In 0n×1

˙̃xT
GLC×M 01×1

 =
[
0 −

1
T∆

]
(26)

converges to vl(t) uniformly with order hm+1 and with order h2m at the points of the coarse mesh.
Moreover,λ∆ converges to zero with order h2m.
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Proof. We definev∆l andλ∆ from (22) and apply Proposition 3 withη = f ∆, µ = ˙̃x,w = v∆l and
ξ = λ∆ to obtain

[
(v∆l )T

G (v∆l (0))T λ∆
]


DC×M − T∆AC(x∆)LC×M − f ∆C
In O − In 0n×1

˙̃xT
GLC×M 01×1



[
uM

α

]

= −
[
uT

G u(1)T α
]


0
0
1

T∆


= − αT∆ ,

for all continuous piecewise polynomialsu of degreem or less and all scalarsα. Thus (26)
follows. The convergence results follow from Proposition 1.

2.6. Discussion

We note that from (26) we get (v∆l )G rather than (v∆l )M. This is an advantage since in all
known applications we precisely need (v∆l )G to compute integrals of the form

I =
∫ 1

0
vl(t)

Tζ(t)dt,

whereζ = (ζ1, ζ2, . . . , ζn)T ∈ C0([0,1],Rn). If I is approximated by

I1 = (vl)
T
GζC

(which is the best we can do), and
I2 = (v∆l )T

GζC,

then
|I1 − I2| =

∣∣∣(vl − v∆l )T
GζC

∣∣∣
=

∣∣∣ζTG(vl − v∆l )C

∣∣∣
≤ O(hm+1) ‖ζG‖1 ,

where‖ζG‖1 tends to
∑n

i=1

∫ 1

0
|ζi(t)|dt for h→ 0.

To obtain (v∆l )M (to our knowledge not needed in any applications) we take into account that
v∆l (0) = v∆l (1) and solve the following system:

[
LC×M

0.5 In 0n×(Nm−1)n 0.5 In

]
(v∆l )M =

[
(v∆l )C

v∆l (0)

]
, (27)

where the matrix in the left-hand side is sparse, square and well-conditioned.

3. Test Results

The tests described in this section are done in the frameworkof MatCont [7, 8]. Before we
give test results for the order of convergence, some computational aspects have to be mentioned.
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First, the meshes that we use are, like in AUTO [11, 9] and CONTENT [4], adaptive and hence
non-uniform. Next, to solve the system that defines the approximation to the limit cycle, namely
(10), Newton’s method is used with Jacobian matrixMh in (15). The stopping criterion consists
of two conditions. The norm of the left-hand side of (10) mustbe smaller than a threshold Fun-
Tol, and the last Newton correction has to be smaller than a threshold VarTol.
After convergence we use the Jacobian matrix obtained in thelast Newton step, we solve (26) to
get (v∆l )WG. If desired, then from (6) we get (v∆l )C, and from (27) (v∆l )M follows.

We now discuss upper bounds for the tolerances that in spite of the roundoff error can be met
in Newton’s method. This will later allow us to decide which errors are caused by truncation.
We use the notation and framework on stability and backward stability in [22] and assume that
all computations are done in a backward stable way. Letx0 be the exact solution toF(x) = 0
whereF is the left-hand side of (10). In a step of Newton’s method we start with an approximate
solution x̃ with computed valueF̃(x̃) and computed Jacobian matrixB = F̃x(x̃). We compute
the next approximation as̃̃x = x̃− ∆̃x where∆̃x is the solution which is obtained by solving the
systemF̃x(x̃)∆x = F̃(x̃). Up to higher order terms

F( ˜̃x) = F(x̃) − Fx(x̃)∆̃x.

In what follows,ǫ denotes machine precision and we omit the higher order terms. Since the map
x̃→ F̃(x̃) is backward stable, we have

F̃(x̃) = F(x̃+ u) = F(x̃) + Fx(x̃) u = F(x̃) + w,

where‖u‖ = O(ǫ) ‖x̃‖ and‖w‖ = ‖Fx(x̃) u‖ ≤ ‖Fx‖ ‖u‖ , so‖w‖ = O(ǫ) ‖Fx‖ ‖x̃‖. Now, since the
map x̃→ F̃x(x̃) is also backward stable,

B = F̃x(x̃) = Fx(x̃+ s) = Fx(x̃) + Fxx(x̃)s= Fx(x̃) + t,

where‖s‖ = O(ǫ)‖x̃‖ and‖t‖ = ‖Fxx(x̃)s‖ ≤ ‖Fxx‖‖s‖, so‖t‖ = O(ǫ)‖Fxx‖‖x̃‖. The system

F̃x(x̃)∆x = F̃(x̃)

is solved by a backward stable algorithm, hence

B̃∆̃x = F̃(x̃), (28)

whereB̃ = B+ ζ = F̃x(x̃) + ζ with ‖ζ‖ = O(ǫ)‖F̃x(x̃)‖. Now ‖F̃x(x̃)‖ = ‖Fx(x̃) + t‖ ≤ ‖Fx‖ + ‖t‖
and thus‖ζ‖ = O(ǫ)‖Fx‖ +O(ǫ2)‖Fxx‖‖x̃‖. The second term is small compared with the first one
so we can state that‖ζ‖ = O(ǫ)‖Fx‖.
From (28) we infer that (̃Fx(x̃) + ζ)∆̃x = (Fx(x̃) + t + ζ)∆̃x = F̃(x̃) = F(x̃) + w and thus

F( ˜̃x) = F(x̃) − Fx(x̃)∆̃x
= F(x̃) + (t + ζ)∆̃x− (F(x̃) + w)
= (t + ζ)∆̃x− w.

Therefore we obtain that

‖F( ˜̃x)‖ ≤ (‖t‖ + ‖ζ‖)‖∆̃x‖ + ‖w‖
= O(ǫ)(‖Fxx‖‖x̃‖ + ‖Fx‖)‖∆̃x‖ +O(ǫ)‖Fx‖‖x̃‖.
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Because we assume that‖∆̃x‖ is small, the first term will be small in comparison with the second
one. Now, in the limit‖x̃‖ ≈ ‖x0‖, so we can state that

‖F( ˜̃x)‖ = O(ǫ) ‖Fx‖ ‖x0‖ , (29)

and thus in the test results we expect to get FunTol smaller thanO(ǫ) ‖Fx‖ ‖x0‖.

Now we determine an upper bound for the value of VarTol that weexpect to achieve. Using
the approximationF( ˜̃x) = Fx(x0)( ˜̃x− x0), we obtain that

‖x0 − ˜̃x‖ = ‖Fx(x0)−1F( ˜̃x)‖ ≤ ‖F−1
x ‖‖F( ˜̃x)‖.

Taking (29) into account, we conclude that

‖x0 − ˜̃x‖ = O(ǫ)‖Fx‖‖F
−1
x ‖‖x0‖. (30)

We hence expect that we can reduce VarTol to be at least‖x̃− ˜̃x‖ = O(ǫ)‖Fx‖‖F−1
x ‖‖x0‖.

We now study two examples numerically and illustrate numerically and graphically the con-
vergence ofv∆l (t) to vl(t) with orderhm+1 in the cases where roundoff error can be ignored. This
requires some careful computations in which (29)-(30) are used to ensure that roundoff is negli-
gible.

3.1. Example: canonical unfolding of the Hopf bifurcation

We consider the following example
{

x′ = αx− y− x(x2 + y2)
y′ = x+ αy− y(x2 + y2).

(31)

Forα ≤ 0 the equilibrium (x y)T = (0 0)T is stable. Atα = 0 there is a Hopf bifurcation and for
α = 1 we get the following stable periodic orbit:

{
x = cos(τ)
y = sin(τ),

with τ ∈ [0,2π], which is unique up to a phase shift. After time-rescaling we obtain
(

x(t)
y(t)

)
=

(
cos(2πt)
sin(2πt)

)
andv(t) =

(
ẋ(t)
ẏ(t)

)
= 2π

(
− sin(2πt)
cos(2πt)

)
.

We now prove that

vl(t) =
1
2π

(
− sin(2πt)
cos(2πt)

)
(32)

by checking that (3) holds. First, we note that

A(x(t)) =

(
−2 cos2(2πt) −1− 2 sin(2πt) cos(2πt)

1− 2 sin(2πt) cos(2πt) −2 sin2(2πt)

)
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so that

v̇l(t) + T A(x(t))Tvl(t)

=

(
− cos(2πt)
− sin(2πt)

)
+

(
−2 cos2(2πt) −1− 2 sin(2πt) cos(2πt)

1− 2 sin(2πt) cos(2πt) −2 sin2(2πt)

) (
− sin(2πt)
cos(2πt)

)

= 0.

The boundary and integral condition in (3) hold obviously.
We consider discretizations with 10 to 40 mesh intervals in steps of 5;m always equals 4.

In Table 1 we listN, h, the largest and smallest singular values of the Jacobian matrix Mh given
in (15), and its spectral condition number. In Table 2 the reached values of VarTol and FunTol

N h σ1 σn
σ1
σn

10 0.115090 156.0946 0.4668 334.3794
15 0.079341 232.0605 0.4015 577.9155
20 0.059620 315.4630 0.3554 887.6030
25 0.049054 389.1364 0.3241 1200.8145
30 0.041290 468.1366 0.2986 1567.7098
35 0.035811 545.2071 0.2791 1953.4180
40 0.031344 628.6388 0.2621 2398.1686

Table 1: Number of mesh intervals, maximum length of mesh intervals, largest and smallest singular value ofMh, spectral
condition number ofMh.

N VarTol FunTol ǫ ·
σ1
σn
· ‖x‖ ǫ · σ1 · ‖x‖

10 1.6664e–15 5.4934e–14 6.7019e–13 3.1286e–13
15 1.8915e–15 7.7278e–14 1.2927e–12 5.1907e–13
20 3.5076e–15 1.2384e–13 2.1722e–12 7.7204e–13
25 2.6654e–15 1.8080e–13 3.1715e–12 1.0278e–12
30 5.5659e–15 2.5885e–13 4.4235e–12 1.3209e–12
35 6.8751e–15 3.1728e–13 5.8432e–12 1.6309e–12
40 1.3415e–14 4.0415e–13 7.5585e–11 1.9813e–12

Table 2: Number of mesh intervals, threshold VarTol, threshold FunTol, theoretical upper bound for VarTol, theoretical
upper bound for FunTol.

are compared with the theoretical upper bounds (29) and (30). We note that the extremely small
values for the obtained VarTol do not imply that the computedsolutions are accurate up to these
values.

Now we examine the superconvergence of the period. Table 3 compares the computed
valuesT∆ with the exact value of the period, i.e. 2π. According to (13) we must have that
|2π − T∆| = O(h8). Therefore log10(|2π − T∆|) ≈ 8 log10(h) + C. For 25 mesh intervals we find
that |2π − T∆| ≈ ǫ‖Fx‖‖F−1

x ‖T
∆ = 1.6753e–12, i.e. the error is of the order of the round-off error.

Thus it is reasonable to only consider the points (log10(h), log10(|2π − T∆|)) for N ≤ 25. The
slope of the least squares linear fit through these points is given by 8.458 which confirms the
superconvergence of the period, see Figure 1.
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N T∆ |2π − T∆ | |2π−T∆ |
h8

10 6.283185314816388 7.6368e–9 0.2481
15 6.283185307461999 2.8241e–10 0.1799
20 6.283185307214563 3.4976e–11 0.2191
25 6.283185307184551 4.9649e–12 0.1481
30 6.283185307180794 1.2079e–12 0.1430
35 6.283185307179926 3.4017e–13 0.1258
40 6.283185307179727 1.4033e–13 0.1506

Table 3: Number of mesh intervals, computed period, absolute error for the period, absolute error for the period compared
with the expected order of convergence.

−1.35 −1.3 −1.25 −1.2 −1.15 −1.1 −1.05 −1 −0.95 −0.9
−11.5

−11

−10.5

−10

−9.5

−9

−8.5

−8

lo
g 10

(|
2π

−
T

∆ |)

log
10

(h)

Figure 1: Least squares linear fit: log10(|2π − T∆ |) = 8.458 log10(h) − 0.186.

Now, we consider the order of convergence of the solution to the adjoint equations. By (32),
‖vl‖

2 = 1
4π2 . Therefore, for everyN we compute the square of the norm of the computed solution

in the fine mesh points, compare this with14π2 and take the maximal difference over the fine mesh
points, see Table 4. ForN > 25, the maximal error doesn’t decrease anymore. This can be un-
derstood as follows. ForN > 25 the truncation error at the points of the coarse mesh and inthe
period is of the order of the round-off error in the linear algebra and so the round-off error can no
longer be ignored. We note that the uniform error bound used in Table 4 is a very strict bound;
for the purpose of the applications the average error over the orbit is probably more relevant. We
deal with this in the next example.

To visualize the order of convergence, we plot in Figure 2 on the horizontal axis log10(h) and

on the vertical axis log10(max (| 1
4π2 −

∥∥∥v∆l
∥∥∥2
|)) for N ≤ 25 and we consider the least squares linear

fit through the corresponding points. The slope of the least squares linear fit is 6.308 which is
even better than the expected slope of 5. We hypothesize thatthis is due to the fact that (31) is a
very simple system with a rotational symmetry and a very smooth periodic orbit.
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N max
(∣∣∣∣ 1

4π2
−

∥∥∥v∆l
∥∥∥2

∣∣∣∣
) max

(∣∣∣∣ 1
4π2
−
∥∥∥v∆l

∥∥∥2
∣∣∣∣
)

h5

10 3.6072e–8 0.001786
15 3.2994e–9 0.001049
20 4.1821e–10 0.000555
25 1.9118e–10 0.000673
30 1.9227e–10 0.001602
35 1.9223e–10 0.003264
40 1.9257e–10 0.0063652

Table 4: Number of mesh intervals, error for the adjoint solution, error for the adjoint solution compared with the
expected order of convergence.
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−10

−9.5

−9

−8.5

−8

−7.5

−7

log
10

(h)

lo
g 10

(m
ax

(|
1/

(4
π2 )−

||v
lL ||2 |)
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Figure 2: Least squares linear fit: log10(max(| 1
4π2
−

∥∥∥v∆l
∥∥∥2
|)) = 6.308 log10(h) − 1.543.

3.2. Example: the Lorenz84 model

As a second example we consider the following system:



ẋ = −y2 − z2 − ax+ aF
ẏ = xy− bxz− y+G
ż = bxy+ xz− z.

This Lorenz model [19] has a stable periodic orbit for the parameters valuesa = 0.25,b = 4, F =
4 andG = 0.5. The solution to the adjoint problem is not known analytically. Therefore, we
computev∆l for 300 mesh intervals and consider this as the exactvl . Again, we consider meshes
∆ with from 10 to 40 intervals in steps of 5 and piecewise polynomials of degree 4.

Table 5 listsN, h, the 2-norm of the Jacobian matrix (15), its smallest singular value and its
spectral condition number. In Table 6 we give the obtained values of VarTol and FunTol and
their theoretical upper bounds.

Next, the approximated periods are compared with the periodfound in the discretization by
300 mesh intervals, namelyT300 = 1.544168236465894. As in the first example we expect that
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N h σ1 σn
σ1
σn

10 0.1313 171.5856 0.1835 934.8931
15 0.0833 254.7963 0.1519 1676.3931
20 0.0719 345.8800 0.1326 2608.2081
25 0.0520 429.2663 0.1191 3604.5458
30 0.0518 519.0071 0.1090 4759.5223
35 0.0380 611.1010 0.1011 6042.3979
40 0.0370 694.9195 0.0948 7333.2397
300 0.0049 5240.0547 0.0349 150112.9250

Table 5: Number of mesh intervals, maximum length of mesh intervals, largest and smallest singular value ofMh, spectral
condition number ofMh.

N VarTol FunTol ǫ ·
σ1
σn
· ‖x‖ ǫ · σ1 · ‖x‖

10 5.8140e–15 7.8167e–14 1.9870e–12 3.6468e–13
15 7.4450e–15 1.4774e–13 4.2013e–12 6.3856e–13
20 2.5826e–14 2.0101e–13 7.4010e–12 9.8147e–13
25 1.5716e–14 2.9385e–13 1.1293e–11 1.3449e–12
30 2.8568e–14 3.5105e–13 1.6202e–11 1.7668e–12
35 8.9663e–15 5.1049e–13 2.2073e–11 2.2324e–12
40 1.2868e–14 5.4380e–13 2.8508e–11 2.7015e–12
300 1.0192e–12 1.2044e–11 1.5532e–9 5.4219e–11

Table 6: Number of mesh intervals, threshold VarTol, threshold FunTol, theoretical upper bound for VarTol, theoretical
upper bound for FunTol.

log10(|T
300− T∆|) ≈ 8 log10(h) +C

for a constant C, as long as the round-off error can be ignored. ForN = 25 we find that
|T300 − T∆| ≈ ǫ‖Fx‖‖F−1

x ‖T
∆ = 1.6319e–12. Thus, when making a plot to visualize the or-

der of convergence we only consider the points (log10(h), log10(|T
300− T∆|)) for N ≤ 25. Figure

3 shows that the slope of the least squares linear fit is given by 8.279, which confirms the order
of convergenceh2m of the period.

To study the order of convergence ofv∆l , we use the following method. When we compare
the exact periodic orbitx and an approximated solutionx∆, we have to take into account that
the phase shifts, which depend on various details of the way in which the orbits are computed,
are not necessarily the same. Therefore, we compute a shiftτ such that the following integral is
minimized: ∫ 1

0

∥∥∥x(t) − x∆(t + τ)
∥∥∥2

dt.

This is equivalent to

d
dτ

〈
x(t) − x∆(t + τ), x(t) − x∆(t + τ)

〉
= 0 ∀t ∈ [0,1]

⇔ 2
〈
x(t) − x∆(t + τ),− d

dτ x
∆(t + τ)

〉
= 0 ∀t ∈ [0,1]

⇔
∫ 1

0

〈
x(t) − x∆(t + τ),− d

dτ x
∆(t + τ)

〉
dt = 0.

If we defineζ1(τ, t) =
〈
x(t) − x∆(t + τ),− d

dτ x
∆(t + τ)

〉
, we then have to find a zeroτ0 of the
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N T∆ |T300− T∆ | |T300−T∆ |
h8

10 1.544168239138914 2.6730e–9 0.0302
15 1.544168236548486 8.2591e–11 0.0356
20 1.544168236478096 1.2202e–11 0.0170
25 1.544168236467308 1.4131e–12 0.0265
30 1.544168236466391 4.9694e–13 0.0096
35 1.544168236465983 8.8818e–14 0.0205
40 1.544168236465911 1.6209e–14 0.0046

Table 7: Number of mesh intervals, computed period, absolute error for the period, absolute error for the period compared
with the expected order of convergence.
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Figure 3: Least squares linear fit: log(|T300− T∆ |) = 8.279 log10(h) − 1.272.

function

G1(τ) =
∫ 1

0
ζ1(τ, t)dt.

We compute this zero by a straightforward bisection method,whereby the integralsG1(τ) are
computed by Gauss-Legendre quadrature over the 300-mesh.
Since the solution to the adjoint equation is obtained as a byproduct of the computation of the
solution to (10), both have the same phase shift. So to compare the exactvl to the computed
solution we calculate

H(τ0) =

√∫ 1

0

∥∥∥vl(t) − v∆l (t + τ0)
∥∥∥2

dt,

whereτ0 is the obtained phase shift.

Table 8 gives the phase shift and the value ofH. In Figure 4 and Figure 5 we plot the
points (log10(h), log10(H)) for the discretizations with 10≤ N ≤ 25, and with 10≤ N ≤ 40,
respectively. The slope of the least squares linear fit through the points is given by 5.189 in the
first case and by 5.109 in the second case. This again confirms the order of convergencehm+1 of
v∆l ; we note that in this example we have used a bound on the average error.
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N τ0 H
10 0.014943 1.1974e–6
15 0.013715 1.4119e–7
20 0.011749 3.8061e–8
25 0.010210 1.0805e–8
30 0.009844 5.0516e–9
35 0.008517 2.5690e–9
40 0.008983 1.9084e–9

Table 8: Number of mesh intervals, phase shift for the adjoint solution, error for the adjoint solution.
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Figure 4: Least squares linear fit: log10(H) = 5.189 log10(h) − 1.347.

4. Conclusion

We have proved that the approximation by collocation at Gauss points for the system adjoint
to the linearization of the periodic orbit equations can be obtained with very little computational
cost from the solution of the periodic orbit equations. Moreover, the solution is obtained in a form
which is most suitable for the applications, i.e. to computeintegrals of the form

∫
vl(t)Tζ(t)dt,

wherevl is the solution to the adjoint equations andζ is a continuous function. The (high) order of
convergence to the exact solution to the adjoint equation isinherited from a standard collocation
method.

We have considered two model cases to support our results. Inthe first example, the solution
to the adjoint system is analytically known, in the second itis not. In both examples, we have
investigated the orders of convergence for the period and the solution to the adjoint system. In all
cases we have given numerical values for the errors and demonstrated the order of convergence
by log-log linear fits.
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