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The Nyquist Criterion: a Useful Tool for the
Robust Design of Continuous-Time Σ∆ Modulators

Bart De Vuyst, Pieter Rombouts, Jeroen De Maeyer and Georges Gielen

Abstract—In this paper we introduce a figure of merit for
the robustness of continuous-time Σ∆ modulators. It is based
on the Nyquist criterion for the equivalent discrete-time (DT)
loop filter. We show how continuous-time modulators can be
designed by optimizing this figure of merit. This way we obtain
modulators with increased robustness against variations in the
noise-transfer-function (NTF) parameters. This is particularly
useful for constrained systems, where the system order exceeds
the number of design parameters. This situation occurs for
example due to the effect of excess loop delay (ELD) or finite
gain bandwidth (GBW) of the opamps.

Additionally, it is shown that the optimization is equivalent to
the minimization of H∞, the maximum out-of-band gain of the
NTF. This explains why conventional design strategies that are
based on H∞, such as Schreier’s approach, provide quite robust
modulator designs in the case of unconstrained architectures.

Index Terms—analog-to-digital (A/D) conversion, continuous-
time sigma-delta (Σ∆) modulation, Nyquist stability criterion,
robust stability.

I. INTRODUCTION

TODAY’S wireless and wire-line communication requires
analog-to-digital (A/D) converters with 12-bit accuracy

or more. Due to oversampling and noise-shaping, Σ∆-
modulation A/D-converters are well-suited for these applica-
tions. Discrete-time (DT) Σ∆ modulators have become very
mature because of the implementation with switched-capacitor
(SC) circuits. They have dominated the Σ∆ modulator designs
for many years [1]. Furthermore, the existence of well known
design strategies has even enhanced their popularity [2]. How-
ever, in today’s submicron CMOS technologies it is no longer
straightforward to implement SC circuits due to the limited
supply voltage. Special techniques such as bootstrapping are
inevitable to obtain good performance [1].

Continuous-time (CT) Σ∆ modulators have attracted more
attention because of their possibility of extending the signal
bandwidth further into the wide MHz range. Here the unity
gain bandwidths (GBWs) of the operational amplifiers only
have to exceed the sample frequency by a factor 2 or less
[3]. This is in contrast with DT modulators where usually
a factor 5 or more is used [1]. CT modulators with large
signal bandwidths and high accuracy are usually achieved by
combining a low oversampling ratio (OSR) with a multi-bit
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Fig. 1. Linear block diagram of a CT Σ∆ modulator (a) and identification
of the equivalent DT loop filter (b).

quantizer. In the rest of this paper we will assume the use of
multi-bit quantization. In that case replacing the quantizer by
an additive white-noise source is well justified.

In fig. 1 (a) the linearized block diagram of a CT Σ∆
modulator is shown. Vin(s) equals the continuous-time ana-
log input, Vout(z) the digital output and Q(z) represents
the discrete-time quantization noise input. One can identify
the loop filter H(s), the feedback digital-to-analog converter
(DAC) HDAC(s) and the sampler with sample frequency
fs = 1

Ts
. In the rest of this paper fs will be normalized to 1 for

notational simplification. The block diagram can be rearranged
as in fig. 1 (b). The loop filter H(s) and sampler are shifted
into the feedback path and the input is now sampled before
entering the loop. This way, the whole loop can be described
by an equivalent discrete-time loop filter Heq(z) as indicated
by the dashed rectangle. The cascade of HDAC(s), H(s) and
the sampler can be converted to Heq(z) using the impulse-
invariant-transformation (IIT):

Heq(z) = IIT{H(s)HDAC(s)}
= Z[L−1(H(s)HDAC(s))|t=nTs

]
(1)

Mathematically, it is obtained by taking the inverse Laplace
transformation (L−1) of H(s)HDAC(s), sampling the result
and finally performing the Z-transform. This way a similar
definition for the noise-transfer-function (NTF) as for the case
of a DT Σ∆ modulator can be adopted:

NTF (z) =
1

1 +Heq(z)
(2)
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Fig. 2. A fourth-order CT Σ∆ modulator in FF topology with the effect of
excess loop delay indicated by the dashed rectangle.

This well known relation allows us to use a unified framework
for both DT and CT Σ∆ modulators with respect to their noise
shaping. Using the ∗-operator to denote the sample operation
as in [4], the output can now be written as:

Vout(z) =
[
H(s)NTF (es)︸ ︷︷ ︸

STF (s)

Vin(s)
]∗ +NTF (z)Q(z) (3)

The response to the input is denoted by the signal-transfer-
function (STF), which should be close to unity in the signal
band [5]. The system behaves slightly differently than a
DT modulator, as the input is lowpass filtered before being
sampled. This clearly reveals the implicit anti-aliasing filter
advantage of CT modulators [6].

Equations (1) and (2) reveal that the design of CT Σ∆ mod-
ulators could be completely mapped on the well known design
strategies for DT modulators. In section II this straightforward
design strategy is analyzed. We will see however that it will not
always give satisfactory results, as it ignores some important
parasitic effects of CT Σ∆ modulators. In some cases it can
even lead to unexpected instability. Therefore, in section III
we will investigate stability robustness against these parasitic
effects based on the Nyquist criterion. With this knowledge, a
new design strategy is proposed in section IV and some design
examples are given.

II. STRAIGHTFORWARD DESIGN STRATEGY FOR
CONTINUOUS-TIME Σ∆ MODULATORS

Using equations (1) and (2), the straightforward design
strategy unfolds in two steps. The first step is the selection
of a NTF, based on the required specifications. Because
of its popularity, we will focus on Schreier’s algorithm for
this purpose [2]. This algorithm places the NTF poles in a
Butterworth position. The only design parameter is H∞, the
maximum out-of-band gain of the NTF. Its value symbolizes
a tradeoff between system performance and instability due
to quantizer overloading. In the second step, a continuous-
time loop filter is determined which implements the chosen
NTF. This is done by using equation (2) and the inverse IIT.
Assuming that all the NTF zeros are located at DC (z = 1),
the loop filter looks like:

H(s) =
aN−1s

N−1 + aN−2s
N−2 + . . .+ a1s+ a0

sN
(4)
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Fig. 3. Root locus of the NTF of a fourth-order CT Σ∆ modulator with
rising loop delay. The x-marks indicate the pole locations when τ = 0.

with N the order of the modulator. The NTF pole locations
are determined by the coefficients ai. This loop filter is con-
structed as a cascade of N integrators. There are two popular
implementations: the feedforward (FF) and the feedback (FB)
topology. In the rest of this paper we will use the FF topology.
However, all results are equally valid in the case of a FB
topology. The FF topology is illustrated in fig. 2 for a fourth-
order CT Σ∆ modulator. The ai’s are now combinations of the
integrator coefficients ci and the feedforward coefficients bi.

Although the straightforward design strategy is mathemat-
ically correct, some important parasitic effects that always
occur in practical implementations, are not taken into account.
We will divide the parasitic effects in two categories: undesired
loop dynamics and parameter variations. Both effects will alter
the actual CT loop filter and hence the NTF, so that it differs
from the intended design. This will influence the performance
and can even lead to unexpected instability. For DT modulators
these effects tend to be less pronounced and they are typically
neglected in the design of the modulator’s NTF [1].

A. Undesired Loop Dynamics

Undesired loop dynamics is a collective term for all parasitic
effects of the CT loop filter which generate extra poles and ze-
ros in the resulting NTF. This way the system order increases,
while the number of design parameters ai remains N . The
extra poles and zeros cannot be set independently anymore
and we will speak of a constrained system. In the other case
where the number of NTF poles exactly equals the number of
design parameters, full control over the pole positions can be
obtained and we have an unconstrained system.

A well known example of undesired loop dynamics is the
effect of excess loop delay (ELD) [7]. ELD models the finite
decision time of a real-life quantizer. In the block diagram it
can be included by introducing an analog delay time τ in front
of the feedback DAC as indicated by the dashed rectangle in
fig. 2. For multi-bit quantization it can also include the delay
of dynamic element matching (DEM) techniques, necessary
to improve the feedback DAC performance. In fig. 3 the root
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locus of the NTF for a fourth-order CT Σ∆ modulator is
shown when τ is rising. One can see that the system order is
increased by one, through the appearance of an extra pole on
the real axis and a zero at z = 0. For τ = 0 this pole and zero
cancel at z = 0, but for rising τ the extra pole moves along the
real axis. The other poles also shift positions for rising τ , while
the zeros always remain at their initial positions. Eventually,
for a loop delay exceeding approximately one third of the
sampling rate, the system becomes unstable.

In reality, the loop delay is not fixed but depends on
the quantizer input level. Typically the quantizer delay will
be larger for smaller input signals. Therefore the system
behaviour will become signal dependent and spurious tones
will appear in the output spectrum. A possible solution to make
the loop delay fixed is the introduction of a synchronization
latch in front of the feedback DAC [3]. The clock signal for
this latch is usually a delayed version of the system clock by a
half or a quarter of the clock period. This way only the delay
of the feedback DAC contributes to the variable part of the
loop delay, which can be made small by design.

Another important example of undesired loop dynamics is
the effect of finite GBW when using active-RC integrators.
These integrators are constructed with local feedback around
an operational amplifier. As the current consumption of an
operational amplifier typically rises with the GBW, we want
to keep it as low as possible. In practice, especially the
GBW of the first integrator in the loop filter is important.
Due to thermal noise considerations, this integrator typically
consumes most of the current and thus reducing the GBW here
is most effective. Due to its finite GBW the transfer function
of the first integrator includes an extra pole [8]:

ITFGBW ≈ c1
s

ωGBW

s+ ωGBW + c1
(5)

This will also result in an extra pole and zero in the NTF. In
contrast with loop delay, the designer has (nearly) full control
on the opamp’s GBW and hence it can be included as an extra
design parameter. In [8] it was shown that finite GBW can be
approximated by an equivalent extra loop delay. Therefore the
resulting root locus of the NTF is very similar to fig. 3.

B. Parameter Variations

In practice, the integrators are implemented either with
active RC or gmC circuits. In both cases the integrator
coefficient is formed by the product of a resistor value (or
the reciprocal of a transconductance) and a capacitor value. As
these coefficients reside from two elements of a different type,
there is a large inaccuracy on their exact values. Deviations
can be up to 20 % in modern CMOS technologies. Hence, the
actual value of an integrator coefficient can be modeled as:

ci,act = ci,nom(1± δ) δ ≤ 20 % (6)

The deviation parameter δ is in fact a statistical variable,
originating from a zero mean Gaussian distribution. Since
devices of the same type can be matched with an accuracy
of 0.1 % in modern CMOS technologies, δ can be considered
equal for all integrator coefficients within the same modulator.
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Fig. 4. NTF pole-zero plot of 5 actual implementations for a fourth-order
CT Σ∆ modulator with parameter variations.

Fig. 4 shows a pole-zero plot of 5 NTFs for a fourth-order
CT Σ∆ modulator with parameter variations. Only the pole
locations are shifted now, but the system order is not increased.
The zeros remain at DC as they originate from the analog
integrator poles at s = 0. The actual performance can be quite
different than expected. Variations in peak signal-to-noise ratio
(SNR) up to 20 dB were found for this particular example.

A DT Σ∆ modulator suffers much less from parameter
variations because its coefficients are now only susceptible to
capacitor mismatch, which can achieve an accuracy of 0.1 %.

III. NYQUIST CRITERION FOR ROBUST STABILITY

The stability of CT Σ∆ modulators is examined here with
the Nyquist criterion for the equivalent discrete-time loop
filter. A stability robustness figure of merit is also introduced
to express the system’s sensitivity to parameter variations.

A. Discrete-time Nyquist Criterion

Similar to continuous-time systems, the stability of a closed-
loop discrete-time system can be investigated by means of the
open-loop transfer function. For CT Σ∆ modulators we are
interested in the Nyquist plot of Heq(z). This Nyquist plot is
constructed by evaluating the equivalent loop filter at z = ejω,
where ω goes from −π to π, and plotting the result in the
complex plane. In fig. 5 the DT Nyquist plot of Heq(z) for
a fourth-order CT Σ∆ modulator is shown. At ω = π the
Nyquist plot ends on the real axis. This is in contrast with CT
systems where the Nyquist plot always ends in the origin for
ω → ∞. Also due to the four resonant poles at z = 1, the
Nyquist plot closes at infinity, indicated by the dashed lines in
fig. 5. The arrows indicate the direction of rising frequency.

The number of unstable poles of the closed-loop system can
now be identified by the following equation [9]:

Z = P −N (7)

where Z is the number of unstable closed-loop poles, P is the
number of unstable open-loop poles and N is the net number
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Fig. 5. Nyquist plot of Heq(z) for a fourth-order CT Σ∆ modulator. The
dashed lines indicate the encirclements at ∞ due to the resonant poles. The
gray band around the nominal curve shows the effect of parameter variations.

of counterclockwise encirclements of the critical point −1. As
resonant poles (poles on the unity circle) do not account for
unstable open-loop poles, the net number of encirclements for
practical CT Σ∆ modulators should be zero. This is the case
in fig. 5 when also including the encirclements at infinity.

B. Stability Robustness Figure of Merit
In the previous section we saw that parameter variations

slightly shift the NTF pole locations. It is however important
that the modulator always remains stable. Therefore a stability
figure of merit needs to be introduced to denote the system’s
robustness against parameter variations. Popular stability fig-
ures are gain margin and phase margin [9]. They indicate the
system’s robustness against extra gain in the loop and extra
phase shift respectively. However, in this case we expect the
variations to be complex combinations of both gain and phase
changes. Therefore we choose the minimum distance Rmin

from the Nyquist curve to the critical point −1 as a stability
robustness figure (indicated with an arrow in fig. 5):

Rmin = min
ω
|1 +Heq(ejω)| (8)

As stability is determined by the number of encirclements
of −1, a dangerous situation occurs when the Nyquist curve
comes close to this critical point. In that case parameter
variations, which create a band of Nyquist curves around
the nominal curve as indicated in gray in fig. 5, can very
easily change the number of encirclements and hence create
instability. We conclude that large values of Rmin will thus
give rise to better robustness against parameter variations.

C. Relation to H∞ Design
Surprisingly the value of Rmin can also be linked to H∞,

the maximum out-of-band gain of the NTF, as:

H∞ = max
ω
|NTF (ejω)| =

[
min

ω
|1+Heq(ejω)|

]−1

=
1

Rmin
(9)
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Fig. 6. Nyquist plot of the optimized Heq(z) for the fourth-order design
example with inclusion of ELD and finite GBW of the first integrator in the
nominal design. The arrow indicates the Rmin value of the nominal design.
The gray curves are the Nyquist plots due to parameter variations.

Hence designing with the Rmin criterion is in fact equivalent
to using H∞ as design parameter. This means that even in
the multi-bit case, H∞ is a good parameter to indicate the
system’s stability robustness.

IV. APPLICATION TO DESIGN

A. Design Strategy

From section III it is clear that undesired loop dynamics can
have a detrimental effect on the actual modulator performance.
Therefore it is our opinion that these effects should already be
taken into account in the nominal design. The actual modulator
then only deviates from this nominal design by parameter
variations. As this can still lead to unexpected instability we
will try to make the nominal design as robust as possible
against these parameter variations. For this purpose we will
maximize the Rmin robustness criterion from the previous
section. Equivalently, this boils down to the minimization of
H∞. Similar to Schreier’s algorithm, H∞ is thus the key
parameter in the design strategy. However, in Schreier’s case
only unconstrained systems are considered and a choice for
H∞ automatically implies a pole constellation. These poles
are chosen such that they give rise to a maximally flat NTF.
In our proposed approach we will vary the pole constellation
until we have found the one which leads to the most robust
design (i.e. with the smallest H∞). This way our approach
can deal with any type of undesired loop dynamics.

In practice the optimization of H∞ is performed numeri-
cally. In our experiments we have found that standard gradient-
based optimization did not perform well in practical cases.
This is partially due to the fact that H∞ cannot be determined
analytically. Therefore we have used a genetic optimizer [10].

B. Design Examples

To illustrate our design strategy we consider a fourth-order
design example. We target for 80 dB peak SNR performance.
All four NTF zeros are placed at DC (z = 1). An oversampling
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Fig. 7. CT Σ∆ modulator with extra direct feedback path.

ratio (OSR) of 16 is combined with a 4-bit quantizer. The
feedback DAC generates a non-return-to-zero (NRZ) pulse.
The loop delay is fixed by a synchronization latch to 0.25Ts

and the GBW of the first integrator is set to fs. Let us
now consider the design problem of sizing the loop filter
coefficients for the architecture of fig. 2 in the presence of
these undesired loop dynamics. It is noteworthy that there does
not exists a prior-art solution for this problem. E.g. if we set
the coefficients to the values for the case without undesired
loop dynamics, the resulting modulator is already unstable.
However our design strategy provides a simple criterion for
tackling this problem by sizing the loop filter coefficients such
that the robustness (Rmin) is maximized. This optimization is
performed with the boundary constraint that the SNR should
be over 80 dB. The result of this procedure gives a value for
Rmin of 0.2 (H∞ = 5). To investigate the robust stability of
the design, a family of 100 modulators with a randomly varied
parameter variation δ (uniformly distributed between ±20 %)
of the integrator coefficients was generated. The feedforward
coefficients were all set to 1 and are assumed to be free of
parameter variations. In fig. 6 the resulting Nyquist plots are
shown. The black curve represents the Nyquist plot of the
nominal system and the gray curves are the Nyquist plots due
to parameter variations. None of the gray curves crosses the
critical point and thus all modulators remain stable.

It is common practice to avoid the constraintness of the
system by the introduction of an extra direct feedback path [3].
This feedback path is situated directly at the input of the
quantizer as illustrated in fig. 7. An extra design parameter
k is now present. Since the finite GBW of the first integrator
is approximately equivalent to an additional loop delay [8],
the combined effect of an actual loop delay and finite GBW
only gives rise to one extra pole in the resulting NTF. Hence,
the value of k can be used to change the position of this pole
and the resulting system is unconstrained. If we apply our
optimization strategy to this system with the extra feedback
path, there is one extra design parameter, and clearly the
resulting design will be more robust than the previous one. The
result of the optimization procedure now gives a value of 0.47
for Rmin (H∞ = 2.1). As the system is now unconstrained,
Schreier’s maximally flat NTF can also be implemented. With
the numerical values of this example, Schreier’s approach
requires that H∞ should be equal to 2.3 (Rmin = 0.43)
for 80 dB peak SNR. Obviously this is only slightly less
robust than our optimized design. This way we expect that the
maximally flat NTF will be nearly as robust as our optimized

design. To asses this, the same Monte Carlo simulations as
for the constrained case were performed and it was found that
for both design strategies all modulators were stable even with
parameter variations as large as 40 %.

This way, we have provided a mathematical argument why
Schreier’s design approach gives good results in the case where
the NTF is unconstrained. In practical cases, the undesired
loop dynamics cannot always be approximated sufficiently
accurate by an extra loop delay. Hence the extra feedback
path does not always ensure unconstrainedness. In this case,
a Schreier design is not possible but our approach provides a
mathematically sound criterion leading to robust designs.

V. CONCLUSION

In this paper a new design strategy for robust continuous-
time Σ∆ modulators has been presented. A key element in
this strategy is the fact that undesired loop dynamics like
excess loop delay and finite unity gain bandwidth of the
first integrator are included in the nominal design. Based
on the Nyquist criterion, we introduce Rmin as a stability
robustness figure of merit. Next we have shown that this
figure of merit is equivalent to H∞, the maximum out-of-band
gain of the NTF. This is an important result, as it indicates
that traditional design approaches that are based on H∞ can
also give rise to quite robust designs. Obviously these design
approaches are only applicable to unconstrained architectures.
To overcome this limitation, we propose to determine the loop
filter by maximizing the robustness (Rmin). Of course, in the
unconstrained case, our new approach can also be used. But
here, the resulting modulators are only slightly more robust
than modulators designed with the well known Schreier design
approach. Numerical examples on fourth order modulators
confirm the validity of the approach.
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