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23rd April 2008

Abstract

Clifford analysis offers a higher dimensional function theory studying the null solu-
tions of the rotation invariant, vector valued, first order Dirac operator ∂. In the more
recent branch Hermitean Clifford analysis, this rotational invariance has been broken by
introducing a complex structure J on Euclidean space and a corresponding second Dirac
operator ∂J , leading to the system of equations ∂f = 0 = ∂Jf expressing so-called Her-
mitean monogenicity. The invariance of this system is reduced to the unitary group. In
this paper we show that this choice of equations is fully justified. Indeed, constructing the
Howe dual for the action of the unitary group on the space of all spinor valued polyno-
mials, the generators of the resulting Lie superalgebra reveal the natural set of equations
to be considered in this context, which exactly coincide with the chosen ones.

1 Introduction

The aim of the paper is to analyse the effect and consequences of adding to the standard
setting of Clifford analysis a new datum, a so–called complex structure, in this way estab-
lishing a closer connection with complex analysis and Kähler geometry, as opposed to the
Riemannian setting for classical Clifford analysis.

Let us consider a Euclidean space E of dimension m ≥ 3, carrying a positive definite scalar
product B(., .). Concepts and definitions are first introduced in a co–ordinate free way; the
computations needed may then be executed in any orthonormal frame, making it clear that
all results obtained are independent of the choice of the orthonormal basis. Functions in
Clifford analysis are defined in E and have their values either in the corresponding Clifford
algebra, or in a spinor representation, see [3, 10, 14, 17]. Here we consider the case of spinor
valued functions. As usual, let SO(E) be the group of orientation preserving automorphisms
of E leaving the scalar product invariant. The group SO(E) is doubly covered by Spin(E),
a subgroup of the Clifford group, which may be identified with the double cover Spin(m) of
SO(m), when choosing an orthonormal basis {ej}mj=1 in E. Clifford analysis, in its standard
Euclidean setting, studies monogenic functions, i.e. the null solutions of the SO(E)–invariant
Dirac operator ∂. In co–ordinates with respect to the chosen basis {ej}mj=1 this Dirac operator
is given by ∂ =

∑
j ej∂j .
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In the books [21, 9] and the series of papers [22, 7, 11, 1, 2] so–called Hermitean Clifford
analysis emerged as a refinement of Euclidean Clifford analysis. Hermitean Clifford analysis
is based on the introduction of an additional datum, a so–called complex structure, in order
to bring the notion of monogenicity closer to complex analysis. Its function theory is still
in full development, see [6, 23, 8, 4, 5]. A complex structure J on E should be compatible
with the Euclidean structure on E, i.e. J ∈ SO(E), ánd J2 = −1E , whence it is seen at once
that the dimension of E is forced to be even: m = 2n. The subgroup of SO(E) preserving
the complex structure –i.e. commuting with J– turns out to be isomorphic with U(n) (see
[1]). The complex structure J induces an associated Dirac operator ∂J . Hermitean Clifford
analysis then focusses on Hermitean monogenic functions, i.e. simultaneous null solutions of
both operators ∂ and ∂J , in this way breaking down the rotational invariance of the Dirac
operator, reducing it to U(n)–invariance for the considered system.

The central topic dealt with in this paper concerns a justification for these equations, based
on the study of the space of spinor valued polynomials on R

2n. Under the action of U(n),
this space decomposes into a sum of irreducible subspaces, which is however not multiplicity
free: in fact, the irreducible pieces all appear with infinite multiplicity. The idea behind
the Howe dual pair is to complement the U(n)–action by a new, hidden, symmetry commut-
ing with it, in such a way that the resulting decomposition becomes multiplicity free. Such
problems are well–known in representation theory for the spaces of scalar valued polynomials
under the respective actions of the groups SO(m) and U(n) (see the review paper [16]), or
for polynomials with values in a Grassman algebra (see [19]). To our knowledge there is no
similar treatment available for the case of spinor valued polynomials, although in [20, p.205]
the case of physical dimension four is mentioned. The main aim of the paper is to analyze
the Howe dual pair relevant for Hermitean Clifford analysis, i.e. the case of spinor-valued
polynomials with the action of the symmetry group preserving a chosen complex structure,
being a special case of an abstract formulation of Howe dual pairs in [20]. We describe the
corresponding Howe dual pair in detail (see Theorem 4), including an explicit parametriza-
tion of representations appearing in the theorem on separation of variables. We show that
the decompositions obtained exactly correspond to the so–called Fischer decompositions for
Hermitean monogenic functions (see [12]). As a by–product we determine the natural space
of functions to be considered in the present setting, which eventually turns out to coincide ex-
actly with the kernel of the pair of differential operators studied in Hermitean Clifford analysis.

For the reader’s convenience, we start with the formulation of the Howe dual pair and the
theorem of separation of variables for two simpler, classical cases of scalar–valued polynomials
(Theorems 1 and 2), the corresponding proofs showing the appropriate scheme to be followed,
also for the proofs of more complicated cases. Next we pass to the case of standard Euclidean
Clifford analysis, where the Fischer decomposition for spinor–valued functions is at the very
heart of this function theory. We explicitly describe the appropriate Howe dual pair for this
case and we show its relation to the Fischer decomposition (Theorem 3). Finally, we arrive
at the desired case of Hermitean Clifford analysis. Observe that, in the proof of Theorem 4,
we could have used abstract results from [19] and restricted ourselves to the computation of
the missing explicit parametrization for this case. It is, however, much simpler (and more
convenient from the present point of view) to present a direct proof of the theorem without
referring to the abstract scheme of [19]. To make the paper self–contained a short section is
devoted to the basics of Clifford algebra.
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2 Clifford algebra: the basics

Consider a real vector space E of dimension m, equipped with a symmetric, positive definite,
real–bilinear form B(X, Y ), X, Y ∈ E with associated quadratic form Q(X) = B(X, X).
The orthogonal and special orthogonal groups O(E) and SO(E) are defined as usual, as the
groups of automorphisms, respectively orientation preserving automorphisms, g ∈ Aut(E)
leaving the bilinear form B invariant:

B(gX, gY ) = B(X, Y ), ∀X, Y ∈ E

Now, let (e1, . . . , em) be a basis of E which we assume to be orthonormal w.r.t. the bilinear
form B, i.e. B(ej , ek) = δjk, j, k = 1, . . . , m. The introduction of this basis leads to the iden-
tification O(E) ≃ O(m), through representation by (m × m)–matrices g = [gjk], naturally
satisfying the condition ggT = gT g = 1m with 1m the unit matrix of order m, while in the
case of SO(E) ≃ SO(m), the additional condition det(g) = 1 is imposed as well.

Turning to the complexification EC of the vector space E, as well as the complexifica-
tion BC of the bilinear form B, let us now consider the Clifford algebras Cℓ(E,−Q) over E

and Cℓ(EC,−QC) over EC, where the Clifford or geometric product is associative but non–
commutative. With respect to the chosen basis, it is governed the rules

e2
j = −1, j = 1, . . . , m, ejek + ekej = 0, j 6= k = 1, . . . , m

In standard Euclidean Clifford analysis, we associate with each vector X ∈ E with compo-
nents (X1, . . . , Xm) ∈ R

m the real Clifford vector X =
∑m

j=1 Xjej . Its Fischer dual is the first
order Clifford vector valued differential operator ∂ =

∑m
j=1 ej∂Xj

, called the Dirac operator,
which may also be obtained in a co–ordinate free way as a generalized gradient, see e.g. [1, 2].
It is precisely this Dirac operator which underlies the notion of monogenicity, a notion which
is the higher dimensional counterpart of holomorphy in the complex plane. A smooth func-
tion f , defined on E or on EC and taking values in either the real Clifford algebra Cℓ(E,−Q)
or the complex Clifford algebra Cℓ(EC,−QC), is called left monogenic if it fulfills the Dirac
equation ∂[f ] = 0.

It is well–known that the groups O(E) and SO(E) are doubly covered by the so–called pin
group Pin(E) and spin group Spin(E) of the Clifford algebra respectively, given by

Pin(E) = {s ∈ Cℓ(E,−Q) : ∃k ∈ N, s = ω1 . . . ωk, ωi ∈ Sm−1, i = 1, . . . , k}

and

Spin(E) = {s ∈ Cℓ(E,−Q) : ∃k ∈ N, s = ω1 . . . ω2k, ωi ∈ Sm−1, i = 1, . . . , 2k}

where Sm−1 is the unit sphere in E; through co–ordinatization it holds that Pin(E) ≃ Pin(m)
and Spin(E) ≃ Spin(m). Taking g ∈ SO(E), with corresponding spin element sg ∈ Spin(E) ≃
Spin(m), the action of g on vectors in E is expressed in Clifford language as

X ′ = g[X] ←→ X ′ = sgXs−1
g

It follows that the Dirac operator is invariant under the special orthogonal group action, or,
equally, under the action of Spin(m), which in Clifford language has the following explicit
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form: if s ∈ Spin(m) and H(s) is its so–called H–representation, given for a Clifford algebra
valued function F by

H(s)[F (X)] = sF (s−1Xs)s−1

then one has the commutation relation [∂, H(s)] = 0. A similar observation applies to Pin(E).

We now introduce the building blocks of the Hermitean Clifford setting. We endow the
space (E, B) with a so–called complex structure by choosing an SO(E) element J for which
J2 = −1 and creating in this way the Hermitean space (E, B, J). Clearly (detJ)2 = (−1)m,
forcing the dimension m of E to be even: in the present context we thus put m = 2n.

In the complexified space (EC, BC) the projection operators 1
2(1 ± iJ) are considered,

creating two subspaces of EC, viz

W± =

{
Z± ∈ EC : Z± =

1

2
(1± iJ)X, X ∈ E

}

which are isotropic with respect to the bilinear form BC and constitute the direct sum de-
composition EC = W+ ⊕ W−. Extending the action of g ∈ SO(E) to vectors in EC by
Z± ∈ W± 7→ g[Z±] = 1

2 (g[X]± ig[JX]), the isotropic subspaces W± of EC are seen to
remain invariant if and only if g commutes with the complex structure J , or in other words,
if g belongs to

SOJ(E) = {g ∈ SO(E) : gJ = Jg}
Similarly, one defines OJ(E) ⊂ O(E). Defining a Hermitean inner product on EC by

(Z, U) = BC((
1

2
(1± iJ)X)c,

1

2
(1± iJ)Y )

for Z = 1
2(1± iJ)X, U = 1

2(1± iJ)Y , X, Y ∈ E, we moreover have that this inner product
is preserved by the group action of SOJ(E) (as well as by the one of OJ(E)).

Observe that the orthonormal basis (e1, . . . , e2n) of E may always be chosen in such a way
that the complex structure J ∈ SO(E) is represented by the matrix

J =

[
0 1n

−1n 0

]

For an arbitrary element in SOJ(E), the commutation relation with J is then reflected in the
specific form of the corresponding matrix as follows:

A =

[
B C

−C B

]

with BBT + CCT = E and BCT −CBT = 0. These conditions on the submatrices B and C

imply that B ± iC both belong to the unitary group U(n). In other words: the subgroup

SOJ(2n) = {A ∈ SO(2n) : AJ = JA}

is isomorphic with U(n), and so is SOJ(E).
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Note that, by means of the projection operators 1
2(1± iJ), the basis (e1, . . . , e2n) also gives

rise to an alternative basis for EC:

fj =
1

2
(1 + iJ)[ej ] =

1

2
(ej − i en+j), j = 1, . . . , n

f
†
j = −1

2
(1− iJ)[ej ] = −1

2
(ej + ien+j), j = 1, . . . , n

called the Witt basis; it naturally splits into separate bases (f1, . . . , fn) and (f†1, . . . , f
†
n) for

W+ and W−, respectively. The Witt basis elements satisfy the Grassmann relations

fjfk + fkfj = 0, f
†
jf
†
k + f

†
kf

†
j = 0, j, k = 1, . . . , n

from which also their isotropy follows, and the duality relations

fjf
†
k + f

†
kfj = δjk, j, k = 1, . . . , n

The †–notation above corresponds to a Hermitean conjugation in Cℓ(EC,−QC), defined as
follows. Take µ ∈ Cℓ(EC,−QC) arbitrarily, with µ = a + ib, where a, b ∈ Cℓ(E,−Q). Then
µ† = a− ib where a and b denote the traditional Clifford conjugates of a and b in Cℓ(E,−Q).

The components of the real vector X are now denoted as (x1, . . . , xn, y1, . . . , yn), and the
corresponding Clifford vector X may thus be rewritten in terms of the Witt basis as

X =

n∑

j=1

(xjej + yjen+j) =

n∑

j=1

(zjfj − zc
j f

†
j)

where we have introduced the complex variables zj = xj + iyj and their complex conjugates
zc
j , j = 1, . . . , n. For vectors in the isotropic subspaces W± of EC a similar identification

results into

Z+ =
1

2
(1 + iJ)X ←→ z =

n∑

j=1

zjfj

Z− =
1

2
(1− iJ)X ←→ −z† = −

n∑

j=1

zc
j f

†
j

such that the relation X = Z+ + Z− may be rewritten in Clifford language as X = z − z†.

In this way, we have also arrived at the definition of the Hermitean Dirac operators

∂z =
n∑

j=1

f
†
j∂zj

and ∂z† =
n∑

j=1

fj∂zc
j

= ∂†
z

which are the Fischer duals of z and z†, and may be seen as refinements of the Euclidean
Dirac operator since

∂ = 2(∂†
z − ∂z)
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As a side remark, note that the above operators may also be obtained in another way, making
explicit use of the complex structure J . Indeed, let

X| = J(X) =

n∑

j=1

J(ej)xj + J(en+j)yj =

n∑

j=1

(ejyj − en+jxj)

then there arises a second, associated (or ”twisted”) Dirac operator

∂J = J(∂) =
2n∑

α=1

J(eα)∂α =
n∑

j=1

(ej∂yj
− en+j∂xj

)

associated to X|. We then have that

2∂†
z =

1

2
(1 + iJ)[∂] =

1

2
∂ +

i

2
∂J

2∂z = −1

2
(1− iJ)[∂] = −1

2
∂ +

i

2
∂J

Now consider a smooth function F , taking values in the complex Clifford algebra, then it is
called Hermitean monogenic (or h–monogenic for short) if it is a simultaneous null solution
of both Euclidean Dirac operators, i.e. if it fulfills the system

∂[F ] = 0 = ∂J [F ]

or equivalently, if it is a simultaneous null solution of both Hermitean Dirac operators, i.e. if
it fulfills the system

∂z[F ] = 0 = ∂†
z [F ]

We recall that the two Hermitean Dirac operators ∂z and ∂
†
z may be generated (as was the

case for the Euclidean Dirac operator ∂) as generalized gradients through projection on the
appropriate invariant subspaces, see [1, 2], which moreover guarantees the invariance of the
considered system under the unitary group action of SOJ(2n) ≃ U(n).

For further use, observe that the Hermitean vector variables and Dirac operators are
isotropic on account of the properties of the Witt basis elements, i.e.

(z)2 = (z†)2 = 0 and (∂z)
2 = (∂†

z)
2 = 0

whence the Laplacian ∆ = −∂2 = −∂2
J allows for the decomposition

∆ = 4(∂z∂
†
z + ∂†

z∂z)

while also
z z† + z†z = |z|2 = |z†|2 = |X|2 = |X||2
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3 Harmonic analysis for SO(m)

We start with a review of results in the simplest possible case of the space P(Rm; C) of complex
valued polynomials defined in Euclidean space R

m, considered first as an SO(m)–module. The
action of SO(m) on polynomials in P(Rm; C) is the regular representation:

[g · f ](X) = f(g−1 ·X), g ∈ SO(m), f ∈ P(Rm; C), X ∈ R
m

If we denote by Hk the space of k–homogeneous harmonic polynomials of degree k, then each
of the spaces

r2p Hk, p ∈ N0 := N ∪ {0}, k ∈ N0

is a subspace of P(Rm; C) which is invariant under the SO(m)–action and moreover irre-
ducible. In addition, they form the constituents of the decomposition of P(Rm; R) according
to the following standard triangular diagram:

H0 r2 H0 r4 H0 · · ·
H1 r2 H1 · · ·

H2 r2 H2 · · ·
H3 · · ·

H4 · · ·

This decomposition, also known in Clifford analysis as the Fischer decomposition, is summa-
rized as

P(Rm; C) =
∞⊕

k=0

∞⊕

p=0

r2p Hk , (1)

Note that the j–th column (j = 0, 1, 2, . . .) in the above scheme provides the splitting of the
space Pj(R

m; C) of j–homogeneous polynomials. Although this is a well–known fact in har-
monic analysis, we will give an explicit proof using elementary concepts from representation
theory, in order to clarify the arguments that will be used in the more advanced settings in
the next sections.

The drawback of decomposition (1) is that each SO(m)–irreducible invariant subspace Hk

appears with an infinite multiplicity since all subspaces on the same row in the above scheme,
namely r2p Hk, with varying p ∈ N0 and fixed k ∈ N0, are isomorphic as SO(m)–modules.
Yet there is an additional, hidden symmetry in the space P(Rm; C) which can improve the
situation in the sense that the infinitely many copies of the irreducible representations Hk for
SO(m) will be grouped into one single irreducible representation for a suitable Lie algebra g.
The couple (SO(m), g) is called a Howe dual pair with respect to a bigger Lie algebra in which
so(m), i.e. the Lie algebra of SO(m), and g are commutant to each other. The notion of a
reductive dual pair of subgroups of a symplectic group was introduced in the late 1970s by
Howe in order to establish a duality relation between representations of different classical Lie
groups (see [18, 16, 15]). In order to find this Lie algebra g we consider the Weyl algebraW of
differential operators in (∂X1

, . . . , ∂Xm
) with polynomial coefficients. Each such operator acts

on P(Rm; C) in a natural way; the space P(Rm; C) is a module over W. Note that P(Rm; C)
itself is contained in W as polynomial differential operators of order zero. The Weyl algebra
W bears the natural structure of a Lie algebra by taking the commutator as the Lie bracket.
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It is clear that in the above decomposition (1) the operators X := 1
2 r2 and Y := −1

2 ∆
play a special role. Note that they correspond to each other under natural or Fourier duality,
also known in Clifford analysis as Fischer duality. Moreover they both belong to W and are
commuting with SO(m) so that we are prompted to search for the smallest Lie subalgebra of
W generated by X and Y . A direct calculation shows that

[X, Y ] =

[
1

2
r2,−1

2
∆

]
= E +

m

2

where E denotes the Euler operator. We then put

H := E +
m

2

As now [H, X] = 2X and [H, Y ] = −2Y , we see that {H, X, Y } generates a three–dimensional
Lie subalgebra of W which is isomorphic to the Lie algebra sl(2, R). Concluding, the desired
Howe dual pair is (SO(m), sl(2, R)). The action of sl(2, R) results into the following:

X · r2p Hk = r2p+2 Hk

Y · r2p Hk = r2p−2 Hk

H · r2p Hk = r2p Hk

In the above scheme this corresponds to respectively a shift to the right in each row, a shift
to the left in each row and a local trampling, which already indicates that this action will
force us to consider each row as one entity.

Now we shall illustrate the main ideas of the Howe dual pair technique in this simplest
case, by (re)proving the decomposition (1) in an elementary way using representation theory
techniques (see [18]). Here and in the subsequent sections we will make use of the following
classical result for the Lie algebra sl(2, R) (see e.g. [13]).

Lemma 1. If {H,X,Y} are the generators of the Lie algebra sl(2, R) and w is an eigenvector
of H with eigenvalue λ, which is moreover annihilated by Y , then for all ℓ ∈ N

Y Xℓw = ℓ (λ + ℓ− 1)Xℓ−1w

and hence Y ℓXℓw = Cλ,ℓ w with Cλ,ℓ = ℓ! (λ + ℓ− 1)(λ + ℓ− 2) · · ·λ

As a first step in the proof we introduce some new notions. Let {H(j)
k : j ∈ Jk} be a basis for

the SO(m)–module Hk. The set

{H(j)
k : k ∈ N0, j ∈ Jk}

is a set of so–called singular vectors, which means that each of these polynomials is annihilated
by Y . Moreover, for all k ∈ N0 and j ∈ Jk, the repeated action of X generates the following
sl(2, R)–module:

V
(j)
k := spanC{XℓH

(j)
k : ℓ ∈ N0}

Note that the vectors XℓH
(j)
k all have different degrees of homogeneity and thus form a basis

for V
(j)
k .
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Lemma 2. The sl(2, R)–modules V
(j)
k are all infinite–dimensional and irreducible. The mod-

ules V
(i)
k and V

(j)
p are isomorphic if and only if k = p.

Proof: That the modules V
(j)
k are irreducible is a consequence of Lemma 1, since the H–

eigenvalue λ of H
(j)
k equals k + m

2 > 0. Moreover two modules V
(i)
k and V

(j)
p can only be

isomorphic if their generating singular vectors have the same H–eigenvalue, i.e. when k = p.
�

In the next step of our proof we show that for each k–homogeneous polynomial Pk(X)
there exist unique harmonic polynomials Hk−2ℓ(X) such that

Pk(X) =
κ∑

ℓ=0

XℓHk−2ℓ(X)

where we have introduced the notation κ = ⌊k
2⌋. Indeed, in view of Lemma 1, there exists a

non–trivial constant cκ such that

Y κ(Pk − cκ XκY κPk) = 0

Putting Hk−2κ = cκY κPk and P
(1)
k = Pk − XκHk−2κ, it is immediately seen that Hk−2κ is

harmonic, that P
(1)
k is in the kernel of Y κ and that both are uniquely determined. Repeating

this argument proves the statement on Pk(X) and hence also the decomposition (1).

In fact each of the spaces of polynomials V
(j)
k is a realization of the Verma module with

lowest weight λk = k + m
2 , which is an irreducible sl(2, R)–module; we denote this Verma

module by Ik. Similarly the space of k–homogeneous harmonic polynomialsHk is a realization
of the irreducible SO(m)–module with weight (k, 0, . . . , 0), which we denote by Hk. For each
k ∈ N0, the tensor product Ik⊗Hk then is an irreducible sl(2, R)× so(m, R)–module, realized
by the row

⊕∞
p=0 r2p Hk in the triangular diagram. When regarded as an sl(2, R)–module

this tensor product contains as many copies of Ik as the dimension of Hk, while when regarded
as an so(m, R)–module it contains infinitely many copies of Hk since Ik has infinite dimension.
The traditional decomposition (1) may thus be reformulated (see, e.g., [18, 16]) as follows.

Theorem 1. Under the joint action of sl(2, R) × SO(m), the space of complex valued poly-
nomials P(Rm; C) is isomorphic with the multiplicity free irreducible direct sum

∞⊕

k=0

Ik ⊗Hk (2)

where Ik denotes the Verma module with lowest weight k + m
2 , and Hk denotes the irreducible

SO(m)–module with weight (k, 0, . . . , 0).

4 Harmonic analysis for U(n)

We shall now apply the same methods to the same space P(R2n; C) of complex valued poly-
nomials defined in Euclidean space R

2n, but this time considered as a U(n)–module. This is
again an explicit formulation of a special case of the abstract scheme formulated in [18, 19].
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As in the previous section, the final aim is to obtain a multiplicity free irreducible direct sum
decomposition of the form

P(R2n; C) ≃
⊕

a,b

Ia,b ⊗Ha,b (3)

where each Ia,b ⊗ Ha,b is a u(n) × g̃–module, (U(n), g̃) being a Howe dual pair still to be
determined. The action of U(n) is given by

[u · f ](X) = f(u−1 ·X), u ∈ U(n), f ∈ P(R2n; C), X ∈ R
2n

where the group U(n) is seen as isomorphic with the subgroup SOJ(2n) consisting of all
SO(2n) elements commuting with the so–called complex structure J ∈ SO(2n), as intro-
duced in Section 2. The question to be answered, namely which polynomials in P(R2n; C)
are invariant under the action of SOJ(2n), may thus be reformulated as which polynomials
f̃(z1, . . . , zn, zc

1, . . . , z
c
n) are invariant under the action of U(n), in view of the fact that each

complex valued polynomial in the variables (x1, . . . , xn, y1, . . . , yn) may also be written as a
polynomial in the variables (z1, . . . , zn, zc

1, . . . , z
c
n), i.e.

f(X) = f(x1, . . . , xn, y1, . . . , yn) = f̃(z1, . . . , zn, zc
1, . . . , z

c
n) ,

As is well–known the space I of U(n)–invariant polynomials in P(R2n; End(C)) is the space
with basis (

1, r2, r4, . . . , r2p, . . .
)

where the generator r2 can be written as:

r2 =
n∑

j=1

x2
j + y2

j =
n∑

j=1

zjz
c
j =

n∑

j=1

|zj |2 .

With the generator r2 there corresponds the Laplace operator

∆ =
n∑

j=1

∂2
xjxj

+ ∂2
yjyj

= 4
n∑

j=1

∂zj
∂zc

j

so we are lead to consider the space HC of harmonic polynomials in the complex variables
(z1, . . . , zn, zc

1, . . . , z
c
n). The subspace HC

k of complex valued k–homogeneous harmonic poly-
nomials may be decomposed as

HC

k =
k⊕

a=0

Ha,k−a

where Ha,b stands for the space of the complex valued harmonic polynomials which are a–
homogeneous in the variables zj and at the same time b–homogeneous in the variables zc

j ,
i.e.

Ha,b(λz1, . . . , λzn, µzc
1, . . . , µzc

n) = λa µb Ha,b(z1, . . . , zn, zc
1, . . . , z

c
n)

This leads to the direct sum decomposition

P(R2n; C) =
∞⊕

p=0

∞⊕

k=0

k⊕

a=0

r2p Ha,k−a (4)
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where the constituents

r2p Ha,k−a, p ∈ N0, k ∈ N0, a = 0, . . . , k

are irreducible invariant subspaces under the action of U(n). The corresponding pyramidal
diagram is depicted in the figure below. Note that the decomposition of the complex valued
polynomials of a fixed degree k of homogeneity is obtained by considering in this scheme
vertical planes perpendicular to the first bisector in the (a, b)–plane, yielding triangles if k is
even, and trapezia if k is odd.
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Figure 1: Fischer decomposition of harmonic polynomials w.r.t. U(n)

The smallest Lie subalgebra of the Weyl algebra WC of complex polynomial differential
operators, generated by the polynomial r2 and its dual operator ∆ is again sl(2, R) since

[X, Y ] =

[
1

2
r2,−1

2
∆

]
= E + n = H

However there is an additional natural invariant differential operator coming into play. Indeed,
it is easily seen that E decomposes as E = Ez + Ezc , with

Ez =
n∑

j=1

zj∂zj
and Ezc =

n∑

j=1

zc
j∂zc

j

being the Euler operators in the complex variables and in their conjugates, respectively.
Obviously the latter operators are invariant, and so is their difference Ezc − Ez. Moreover as

[r2, Ez] = [r2, Ezc ] = −r2 and [∆, Ez] = [∆, Ezc ] = ∆
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the operator Ezc−Ez commutes with both X and Y and trivially with H = Ez +Ezc +n, and
so do all operators of the form Ezc−Ez +c, where we choose the constant c = n in accordance
with standard notations to be encountered in Section 6.

So it turns out that our Lie subalgebra is reductive, i.e. the direct sum of the three–
dimensional Lie algebra generated by {H, X, Y }, which is isomorphic with sl(2, R), and the
one–dimensional abelian Lie algebra sl(1, R) generated by {Ezc−Ez +n}, which is isomorphic
with R. In fact the Howe dual pair for complex harmonic polynomials here is (U(n), gl(2, R)),
with gl(2, R) the real general linear algebra in two dimensions. Irreducible gl(2, R)–modules
will be represented by their weight vector λ = (λ1, λ2), which can be seen as the vector
containing the eigenvalues for the Cartan subalgebra h ⊂ gl(2, R). Let us then investigate the
action of gl(2, R):

• the action of r2 joins r2p Ha,k−a with r2(p+1) Ha,k−a, and corresponds in the above
scheme with a translation over the vector (1, 1, 1) in the (a, b, p)–space

• the action of ∆ joins r2p Ha,k−a with r2(p−1) Ha,k−a, and corresponds with the inverse
translation over the vector (−1,−1,−1)

• the respective actions of Ez and Ezc keep the spaces r2p Ha,k−a unaltered

Again, we may already predict from these observations that all subspaces along the same
space diagonal will have to be considered as one entity as a consequence of the action of
gl(2, R), and in view of a multiplicity free decomposition.

So let us decompose the U(n)–module P(R2n; C) under the combined action of the dual

pair gl(2, R)×u(n). Choosing a basis {H(j)
a,b : j ∈ Ja,b} for each irreducible U(n)–module Ha,b,

with a, b ∈ N0 fixed, we again get a set of singular vectors, labeled by three parameters a, b

and j. The repeated action of X then generates the module V
(j)
a,b defined by

V
(j)
a,b := spanC{Xℓ H

(j)
a,b : ℓ ∈ N0}

Each of the spaces of polynomials V
(j)
a,b is a realization of the Verma module with lowest

weight λ = a + b + n, which is an irreducible sl(2, R)–module; as in the previous section
we denote this Verma module by Ia+b and we put Ia,b = Cb−a+n ⊗ Ia+b, where Cb−a+n is a
representation of sl(1, R), which is identified with R. For completeness let us mention that
such a representation Cα of sl(1, R) is given by

ρα : R→ End(C) ≃ C, x 7→ αx

and that here α = b− a + n is exactly the eigenvalue of the generator Ezc −Ez + n of sl(1, R)
acting on homogeneous polynomials. Similarly the space of (a, b)–homogeneous harmonic
polynomials Ha,b is a realization of the irreducible U(n)–module with weight (b, 0, . . . , 0,−a),
which we denote by Ha,b. For all (a, b), the tensor product Ia,b ⊗ Ha,b then is an irreducible
gl(2, R)× u(n)–module, realized by the space diagonal

⊕∞
p=0 r2p Ha,b in the pyramidal dia-

gram. When regarded as a gl(2, R)–module it contains as many copies of Ia,b as the dimension
of Ha,b, while when regarded as a u(n)–module it contains infinitely many copies of Ha,b since
I(a,b) has infinite dimension. The obtained decomposition may thus be reformulated as follows.
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Theorem 2. Under the joint action of gl(2, R) × U(n), the space P(R2n; C) is isomorphic
with the multiplicity free irreducible direct sum decomposition

∞⊕

a,b=0

Ia,b ⊗Ha,b (5)

where Ia,b = Cb−a+n ⊗ Ia+b, Ia+b being the Verma module with lowest weight a + b + n, and
Ha,b denotes the irreducible U(n)–module with weight (b, 0, . . . , 0,−a).

5 Euclidean Clifford analysis

We will now show that a similar scheme applies to classical Clifford analysis. To this end
we consider the space P(Rm; S) of polynomials defined in Euclidean space R

m and taking
values in an irreducible representation S of the Clifford algebra Cm ≡ Cℓ(EC,−QC). Such a
representation S is usually called a spinor space and realized inside the Clifford algebra Cm

using a suitable primitive idempotent (see Section 6). The final aim is to obtain a multiplicity
free irreducible direct sum decomposition of the form

P(Rm; S) ≃
⊕

k

Ik ⊗Mk (6)

where each Ik ⊗Mk is a Pin(m) × g̃–module, (Pin(m), g̃) being a Howe dual pair still to be
determined.

First we consider the action of Pin(m) on P(Rm; S) given by

[s · f ](X) = ρ(s)[f(s−1Xs)] = s f(s−1Xs) , f ∈ P(Rm; S), s ∈ Pin(m), X ∈ R
m

where ρ(s) denotes the representation of s ∈ Pin(m) in S. We shall also need the action of
Pin(m) on the space P(Rm; End(S)). The space End(S) is isomorphic (as a vector space)
with the Clifford algebra Cm when m is even, or with its even part when m is odd. Let s 7→ ŝ

denote the main involution on the Clifford algebra; it has eigenvalues ±1, the corresponding
eigenspaces being the even and odd part of the Clifford algebra. The action of Pin(m) on
P(Rm; End(S)) is then given by

[s · f ](X) = s f(s−1Xs)] ŝ−1, f ∈ P(Rm; End(S)), s ∈ Pin(m), X ∈ R
m

As is well–known we find the space I of Pin(m)–invariant polynomials in P(Rm; End(S)) to
be the space with basis (1, X, X2, X3, . . . , Xp, . . .) which may be written as

spanC(1, X2, X4, . . .)⊕ spanC(X, X3, X5, . . .)

and becomes a unital superalgebra or Z2–graded algebra, reflecting the natural grading of the
Clifford algebra given by its decomposition into the even subalgebra and the odd subspace.
There is a natural action of elements in I on S valued polynomials given by the natural action
of elements in End(S) on S.

The Pin(m)–invariant differential operator corresponding, under the natural duality, with
the generator X of the above graded algebra, is the Dirac operator ∂. Its polynomial null
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solutions are called spherical monogenics; we denote by Mk the space of k–homogeneous
spherical monogenics with values in the spinor space S. Then each of the spaces

XpMk, p ∈ N0, k ∈ N0

is an invariant subspace of P(Rm; S) under the action of Pin(m), which is moreover irreducible,
leading to the desired decomposition of P(Rm; S) into

P(Rm; S) =

∞⊕

k=0

∞⊕

p=0

Xp Mk (7)

or more explicitly according to the standard triangular diagram

M0 XM0 X2M0 X3M0 · · ·
M1 XM1 X2M1 · · ·

M2 XM2 · · ·
M3 · · ·

In this diagram each column provides the splitting of the subspace of homogeneous spinor
valued polynomials. The easiest way to prove this decomposition, is to show that the tensor
product Hk ⊗ S of two irreducible Pin(m)–modules decomposes as

Hk ⊗ S =Mk ⊕XMk−1

Alternatively, one could use the language of singular vectors and isomorphisms between weight
spaces. Again this splitting into irreducible Pin(m)–modules is not multiplicity free, since all
subspaces situated on the same row in the triangular diagram (XpMk with k fixed) are
isomorphic as Pin(m)–modules. As before it will be possible to join these isomorphic pieces
into one single irreducible module for the second partner in the Howe dual pair. There is
however an important change, since the Howe dual partner of Pin(m) will have the structure
of a Lie superalgebra.

Definition 1. A Lie superalgebra g (over R or C) is a Z2–graded vector space, direct sum of
two vector spaces

g = g0 ⊕ g1

equipped with a graded bracket [[·, ·]], satisfying

• the Z2–grading:
[[ai, aj ]] ∈ g

i+j (mod 2), ai ∈ gi, aj ∈ gj

• the graded antisymmetry:

[[ai, aj ]] = −(−1)ij [[aj , ai]], ai ∈ gi, aj ∈ gj

• the generalized Jacobi identity

(−1)ik[[ai, [[aj , ak]]]]+(−1)ji[[aj , [[ak, ai]]]]+(−1)kj [[ak, [[ai, aj ]]]] = 0, ai ∈ gi, aj ∈ gj , ak ∈ gk
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Note that g0 is itself a Lie algebra, called the even or bosonic part of g, while g1, called the
odd or fermionic part of g, is not. An associative superalgebra A = A0 ⊕ A1 (over R or C)
acquires the structure of a Lie superalgebra by taking for the graded bracket the so–called
Lie superbracket or supercommutator, which is defined as:

[[ai, aj ]] = aiaj − (−1)ijajai, ai ∈ Ai, aj ∈ Aj , i, j = 0, 1

which in most of the cases is nothing but the usual commutator, except for the case where
both i = 1 and j = 1, when it is the anticommutator.

We will now search for the Howe dual partner of Pin(m) in the Lie superalgebra

WS :=W ⊗ End(S)

where, as above, W stands for the Weyl algebra of polynomial differential operators. This
superalgebra WS inherits its Z2–grading from the natural Z2–grading of the Clifford algebra
Cm with respect to the even and odd parts, via the natural map Cm 7→ End(S) given by the
spinor representation. Its Lie superalgebra structure then is acquired via the above mentioned
graded commutator, here given explicitly by

[[λ, µ]] = λµ− (−1)jkµλ, λ ∈ C
(j)
m , µ ∈ C

(k)
m , j, k = 0, 1

where C
(0)
m stands for the even subalgebra of Cm and C

(1)
m for the odd subspace.

The dual partner of Pin(m) will thus arise as a Lie superalgebra generated by X and ∂,
inside the Lie superalgebraWS. As both generators are odd, we need to compute their graded
brackets as their anti–commutators:

• {X, X} = −2r2

• {∂, ∂} = −2∆

• {∂, X} = −2(E + m
2 )

Hence the even part of the Lie superalgebra should contain at least r2, ∆ and E + m
2 . As

their graded brackets, i.e. their commutators are given by

• [r2, ∆] = −4(E + m
2 )

• [E + n, r2] = 2r2

• [E + n, ∆] = −2∆

the even part {r2, ∆, E+n} closes under the graded bracket to a Lie algebra which is isomor-
phic with sl(2, R). Finally we compute the graded brackets (commutators) of the even with
the odd elements:

• [X, r2] = 0

• [X, ∆] = −2∂

• [X, E + n] = −X
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and

• [∂, r2] = 2X

• [∂, ∆] = 0

• [∂, E + n] = ∂

Introducing the standard notations for Lie superalgebras given by

H =
1

2
(E + n), E+ =

1

2
r2, E− = −1

2
∆

and

F+ =
1

2
√

2
iX, F− =

1

2
√

2
i∂

we may identify the Howe dual partner

spanC

(
1

2
(E + n),

1

2
r2,−1

2
∆

)
⊕ spanC

(
1

2
√

2
iX,

1

2
√

2
i∂

)

of Pin(m) with the well–known Lie superalgebra osp(1|2), with bosonic generators E+, E−,
H and fermionic generators F+, F−, the non–vanishing commutation relations of which in
the Cartan–Weyl basis read

[H, E±] = ±E± [E+, E−] = 2H

[H, F±] = ±1
2F± {F+, F−} = 1

2H

[E±, F∓] = −F± {F±, F±} = ±1
2E±

The Howe dual pair thus being the couple (Pin(m), osp(1|2)), one can have a look at
the action of the Lie superalgebra osp(1|2) on the irreducible invariant subspaces XpMk

of P(Rm; S). First of all, introducing an explicit basis {M (j)
k : j ∈ Jk} for the irreducible

Pin(m)–module Mk, it is easily seen that for all k ∈ N0 and j ∈ Jk, both

V
(j)
k := {X2ℓM

(j)
k : ℓ ∈ N0} and W

(j)
k := {X2ℓ+1M

(j)
k : ℓ ∈ N0}

define irreducible lowest weight Verma modules for the restriction of osp(1|2) to its even part
sl(2, R). On the other hand, the action of the odd part of the dual partner consists of mapping

the weight spaces V
(j)
k and W

(j)
k (isomorphically) into each other as stated in the following

lemma.

Lemma 3. For all k ∈ N0 and j ∈ Jk fixed, the operators F+ = 1
2
√

2
iX and F− = 1

2
√

2
i∂

act as isomorphisms between consecutive weight spaces along the following diagram:

M
(j)
k ↔ X2M

(j)
k ↔ · · · ↔ X2ℓM

(j)
k ↔ · · ·

l րւ l րւ րւ l րւ
XM

(j)
k ↔ X3M

(j)
k ↔ · · · ↔ X2ℓ+1M

(j)
k ↔ · · ·

The vertical and diagonal arrows correspond to the action of the operators F+ and F−,
whereas the horizontal arrows represent the isomorphisms E+ = 1

2r2 and E− = −1
2∆ acting

between the sl(2, R)–modules.
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Proof: The structure of the sl(2, R)–modules in the rows is already well–known. To show that
the action of F− = 1

2
√

2
i∂ is nontrivial, it suffices to remark that the one of (F−)2 = 1

8∆ is. �

For completeness let us mention that, in order to prove the decomposition announced at
the beginning of this section, we can use the same scheme as before based on the action
of the sl(2, R) generators. The only difference is that, after the action of a suitable power
of F− = 1

2
√

2
i∂ on a chosen polynomial, we get a harmonic polynomial, which may then be

decomposed into a sum of a monogenic polynomial and a monogenic polynomial multiplied on

the left by X. In fact, the spaces of polynomials V
(j)
k and W

(j)
k are realizations of the Verma

modules with lowest weights λk = k+ m
2 and λk = k+1+ m

2 respectively, which are irreducible

sl(2, R)–modules. Their direct sum V
(j)
k ⊕W

(j)
k then is a realization of an irreducible osp(1|2)–

module which we denote by Ĩk. Similarly the space of S valued k–homogeneous monogenic
polynomials Mk is a realization of an irreducible Pin(m)–module which we denote by Mk.
For each k ∈ N0 the tensor product Ĩk⊗Mk then is an irreducible osp(1|2)×Pin(m)–module,
which is a realized by the row

⊕∞
p=0 r2p Mk in the triangular diagram. When regarded as a

osp(1|2)–module this tensor product contains as many copies of Ĩk as the dimension of Mk,
while when regarded as a Pin(m)–module it contains infinitely many copies of Mk since Ĩk

has infinite dimension. The Fischer decomposition (7) may thus be reformulated as follows.

Theorem 3. Under the joint action of osp(1|2)×Pin(m), the space P(Rm; S) is isomorphic
to the multiplicity free irreducible direct sum

∞⊕

k=0

Ĩk ⊗Mk ,

where Ĩk is the irreducible osp(1|2)–module defined above and Mk denotes the irreducible
Pin(m)–module isomorphic to the space of S valued, k–homogeneous monogenic polynomials.

6 Hermitean Clifford analysis.

In this section we will make a similar study of the space P(R2n; S) of S valued polynomials
on R

2n (even dimension). Here we will explicitly realize the spinor space S in C2n as S =
C2n I ≃ Cn I, where I is the traditional self–adjoint primitive idempotent given by

I = I1 . . . In (8)

with Ij = fjf
†
j = 1

2(1 − iejen+j), j = 1, . . . , n. As fjI = 0, j = 1, . . . , n, we also have that

S ∼= CΛ†
nI, where CΛ†

n denotes the Grassmann algebra generated by {f†1, . . . , f
†
n}. The spinor

space S further decomposes as

S =
n⊕

k=1

S
(k) =

n⊕

k=1

(CΛ†
n)(k)I (9)

into the so–called homogeneous parts S
(k) = (CΛ†

n)(k)I, k = 1, . . . , n, which provide models
for fundamental U(n)-representations (see also [1]).
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We want to obtain a decomposition of P(R2n; S) into irreducible subspaces under the ac-
tion of the Lie group PinJ(2n), which is the subgroup of Pin(2n) consisting of those elements

which are commuting with sJ = s1s2 . . . sn, where sj =
√

2
2 (1− ejen+n), j = 1, . . . , n. The

element sJ itself belongs to Spin(2n) and corresponds to the complex structure J ∈ SO(2n)
under the double covering of SO(2n) by Spin(2n), see Section 2. In view of this aim, let us
briefly summarize the procedure as it has been used in the foregoing cases.

The approach used in Sections 3 and 4 is based on the scheme described in [16, Section 8].
Suppose that there is an action of a group G on a vector space E. The main problem under
consideration is to properly understand the decomposition of a suitable space of functions
on E under the induced action of the chosen symmetry group G. First observe that it is
sufficient to consider the corresponding space of polynomials, which do form an algebraic
part of the full function space. Hence we are studying the space P(E) of all polynomials on
E. In the previous sections we have seen that the resulting decomposition of P(E) will not
be multiplicity free; instead, the multiplicities of the subspaces are usually infinite. In [16]
it is explained that in order to obtain a multiplicity free decomposition, we need to consider
the Weyl algebra PD(E) of all differential operators on E with polynomial coefficients and
its subalgebra PD(E)G of those operators which are invariant under the induced action of G,
and we have to find a suitable set of generators of this subalgebra PD(E)G. Moreover, we
want to find this set of generators in such a way that they form a basis of a Lie subalgebra g̃

of PD(E)G. The Lie algebra g̃ then forms the dual partner of G, needed in order to ensure
a multiplicity free decomposition of the space P(E). The procedure we have used to find
the hidden (or dual) symmetry g̃ then starts with an understanding of the structure of the
space I of invariants of the space P(E) under the action of G. The space I of such invariants
clearly is a unital algebra of which we determine the generators pα, α ∈ A, A being a suitable
index set. Their duals with respect to the Fischer inner product, are differential operators
Dα (α ∈ A) with constant coefficients which are invariant with respect to the action of G.
Next we find the Lie subalgebra in PD(E) generated by (pα, Dα), α ∈ A. This is then the
candidate for g̃. The common kernel H of the set Dα, α ∈ A may be regarded as an analogue
of the space of harmonic functions and we expect that the full space of polynomials P(E) will
be isomorphic to the tensor product of I and H. This kind of splitting of function spaces is
usually called ”separation of variables”. Moreover, as a g̃×G-module, we expect P(E) to be
isomorphic to a multiplicity free decomposition of the form

P(E) ≃
⊕

κ∈K

Iκ ⊗Hκ

where K is an appropriate subset of the set Ĝ of isomorphism classes of irreducible G–modules,
Hκ denoting the corresponding representations, and Iκ denoting the Howe dual partner for
Hκ. The Howe duality map Hκ 7→ Iκ is expected to be one to one. We then prove all needed
facts directly, without any reference to [19] or [16].

As shown in Section 5, we may extend the described scheme to a more general setting
involving, in addition, a super vector space V = V0 + V1 with an action of G. We then
consider the (super) vector space P(E, V ) of all polynomials on E with values in V and its
decomposition under the natural action of G. To extend the former procedure to this more
general situation, the Weyl algebra PD(E) is replaced here by the (super)algebra PD(E) ⊗
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End(V ) of all differential operators on E with coefficients in End(V ). The same procedure
as before is used to find the Howe dual partner g̃, however resulting this time into is a sub-
superalgebra of the Lie superalgebra PD(E) ⊗ End(V ). Going through a similar procedure
as in the scalar valued case, we expect that the space P(E, V ) again has a multiplicity free
decomposition of the form

P(E, V ) ≃
⊕

κ∈K

Iκ ⊗Hκ

where again, K is an appropriate subset of the set Ĝ and Iκ are now irreducible representa-
tions of the Lie superalgebra g̃. Hence the fundamental change in this more general situation
is that the Howe dual partner g̃ is a Lie superalgebra now.

The whole setting leads to the identification of a set of constant coefficient differential
operators Dα on P(E, V ), which form a canonical set of PDE’s induced by the choice of the
symmetry studied and thus are natural candidates for further function theoretic research. In
this section we shall now realize this programme in the case of spinor valued polynomials and
the action of the Lie group PinJ(2n) defined above; we will show that in this case the set
of natural PDE’s exactly coincides with the defining equations for Hermitean Clifford analysis.

The action of PinJ(2n) on P(R2n; S) is given by

s · f̃(z, z†) = sf̃(s−1zs, s−1z†s), f̃ ∈ P(R2n; S), s ∈ PinJ(2n)

whereas its action on P(R2n; End(S)) = P(R2n; C2n) is given by

s · f̃(z, z†) = sf̃(s−1zs, s−1z†s)ŝ−1

Here, we have used the isotropic Hermitean vector variables z and z† (see Section 2). The
key point is that both z and z† are PinJ(2n)–invariant elements in P(R2n; End(S)). In fact it
may be proved by invariance theory (see e.g. [15]) that the space I of all PinJ(2n)–invariant
polynomials is spanned by all possible words in the letters z and z† :

I = spanC

(
1, z, z†, z z†, z†z, z z†z, z†z z†, z z†z z†, z†z z†z, · · ·

)

or
I = spanC

(
w

(i)
l (z, z†) : l = 0, 1, 2, . . . , i = 1, 2

)

where w
(1)
0 = w

(2)
0 = 1 and

w
(1)
2r (z, z†) = (zz†)r = |z|2r−2z z† w

(1)
2r+1(z, z†) = |z|2rz

w
(2)
2r (z, z†) = (z†z)r = |z|2r−2z†z w

(2)
2r+1(z, z†) = |z|2rz† .

The space I of all PinJ(2n)–invariant polynomials becomes a unital graded superalgebra, its
grading being inherited from the Z2–grading on the Clifford algebra.

As a first step towards the decomposition aimed at we remark that the space of polynomials
P(R2n; S) may be split according to the degrees of homogeneity in the variables z and z† and
the homogeneous parts of spinor space:

P(R2n; S) =

n⊕

k=0

∞⊕

a,b=0

Pa,b,k(R
2n; S)
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Under the natural duality the generators z and z† of the superalgebra I correspond to differ-
ential operators which are precisely the Hermitean Dirac operators ∂z and ∂

†
z . So we have to

consider the spacesMa,b,k of h–monogenic (a, b)–homogeneous S
(k) valued polynomials in the

variables (z1, · · · , zn, zc
1, · · · , zc

n), denoted as (z, z†). Note that the spaces Ma,0,0 and M0,b,0

are trivial for a 6= 0, respectively b 6= 0, and do not need to be taken into account in what
follows. Also note that the spaces Ma,b,k provide models for irreducible sl(n, C)–modules
described by a specific Young diagram (see [12]). We now claim that the space of spinor
valued polynomials decomposes as follows.

Proposition 1. The space P(R2n; S) of spinor valued polynomials may be split according to
the action of PinJ(2n) as

P(R2n; S) =
∞⊕

a,b=0

n⊕

k=0


Ma,b,k ⊕

∞⊕

p=1

⊕

i=1,2

w(i)
p (z, z†) Ma,b,k


 (10)

The proof will be deferred to the end of this section.

It is clear that the constituents of the decomposition (10) are invariant w.r.t. the action
of PinJ(2n). Now the construction of a Howe dual partner g for PinJ(2n) is essential in
order to obtain a decomposition into irreducible invariant subspaces which is multiplicity
free. Again this will be a Lie superalgebra, realized within the superalgebra WS. Seeing
the set {z, z†; ∂z, ∂

†
z} ⊂ WS as the odd part g1 of the Lie superalgebra searched for, we

will first determine their anti–commutators in order to obtain the even part g0, and then
verify whether the algebra g0⊕ g1 closes under the Lie superbracket. Defining the spin–Euler
operator β =

∑n
j=1 f

†
jfj , which acts as a multiplication operator on the spinor space S and as

the constant k on the spaces S
(k) of homogeneous spinors, the following relations are easily

verified :
{z, ∂z} = Ez + β {z, ∂

†
z} = 0

{z†, ∂†
z} = Ezc + n− β {z†, ∂z} = 0

{z, z†} = r2 {∂z, ∂
†
z} = 1

4 ∆

This means that the even subalgebra g0 is isomorphic to the Lie algebra gl(2, R) = sl(2, R)⊕
sl(1), since

gl(2, R) ≃ spanR(H, E+, E−)⊕ R(2Z)

where we have introduced the standard notations (H, E±, Z) for the generators of gl(2, R):

H = 1
2(Ez + Ezc + n) E+ = 1

2r2

Z = 1
2(n− 2β + Ezc − Ez) E− = −1

2∆

Next, introducing the standard notations (F±, F
±
) for the generators of the odd part g1:

F+ =
√

2
2 z F

+
=

√
2

2 z†

F− =
√

2∂
†
z F

−
= −

√
2∂z
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it is clear that in this case the Howe dual pair is given by (PinJ(2n), sl(1|2)). The latter is
the Lie superalgebra for which the commutation relations in the Cartan–Weyl basis read :

[H, E±] = ±E± [H, F±] = ±1
2 F± [H, F

±
] = ±1

2 F
±

[Z, E±] = 0 [Z, F±] = 1
2 F± [Z,F

±
] = −1

2 F
±

[E±, F±] = 0 [E±, F∓] = −F± [E±, F
∓
] = F

±

[E±, F
±
] = 0 [E+, E−] = 2H [Z, H] = 0

{F±, F±} = 0 {F±
, F

±} = 0 {F±, F
±} = E±

{F±, F∓} = 0 {F±
, F

∓} = 0 {F±, F
∓} = Z ∓H

We now introduce a set of singular vectors giving rise to a family of infinite–dimensional

sl(1|2)–modules. To that end let {M (j)
a,b,k : j ∈ Ja,b,k} be a basis for Ma,b,k, where (a, b) and

k are being kept fixed, and consider the infinite–dimensional space

V
(j)
a,b,k = spanC{w(i)

ℓ (z, z†)M
(j)
a,b,k : ℓ ∈ N0, i = 1, 2}

generated by the singular vector M
(j)
a,b,k. In order to reveal the structure of this sl(1|2)–module,

we will first focus our attention on its behaviour as a module for the even subalgebra gl(2, R).

Just as in the Euclidean case (see Section 5), we find that V
(j)
a,b,k splits into a direct sum of

irreducible gl(2, R)–modules. Indeed, the space V
(j)
a,b,k has the following structure :

V
(j)
a,b,k = V

(j)+
a,b,k ⊕ V

(j)−
a,b,k =

(
M(j)

a,b,k ⊕ U
(j)(1)
a,b,k ⊕ U

(j)(2)
a,b,k

)
⊕

(
W

(j)(1)
a,b,k ⊕W

(j)(2)
a,b,k

)

where we have put

U
(j)(i)
a,b,k = spanC{w(i)

2r M
(j)
a,b,k : r ∈ N}, i = 1, 2

W
(j)(i)
a,b,k = spanC{w(i)

2r−1 M
(j)
a,b,k : r ∈ N}, i = 1, 2

Lemma 4. For all a, b ∈ N0, 0 ≤ k ≤ n and j ∈ Ja,b,k, the spaces W
(j)(1)
a,b,k and W

(j)(2)
a,b,k are

infinite–dimensional irreducible gl(2, R)–modules, which are isomorphic to

Ia+k,b−k = Cn−2k+b−a ⊗ Ia+b

On the other hand, it is immediately clear that the even subspace contains the irreducible
gl(2, R)–submodule given by

Ũ
(j)(1)
a,b,k = spanC

{
|z|2ℓM

(j)
a,b,k : ℓ ∈ N0

}

obtained by adding the words of even length. This means that there ought to exist a second
summand such that

V
(j)+
a,b,k = Ũ

(j)(1)
a,b,k ⊕ Ũ

(j)(2)
a,b,k

the right hand side containing gl(2, R)–irreducible summands. As the Lie algebra gl(2, R)

contains the Laplacian as a negative root vector, it is natural to look for a generator of Ũ
(j)(2)
a,b,k

in ker∆. Taking into account the h–monogenicity of M
(j)
a,b;k, it is easily verified (see also [12])

that (
(a + k)z z† − (b + m− k)z†z

)
M

(j)
a,b,k ∈ ker∆ (11)
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This singular vector thus gives rise to the infinite–dimensional gl(2, R)–module

Ũ
(j)(2)
a,b,k = spanC

{
|z|2l

(
(a + k)z z† − (b + m− k)z†z

)
M

(j)
a,b,k : l = 0, 1, 2, . . .

}

Note that the constants appearing in (11) may be expressed in terms of the scalar operators

{z, ∂z} and {z†, ∂†
z} as well:

(
z z†{z, ∂z} − z†z{z†, ∂†

z}
)
M

(j)
a,b,k ∈ ker(∆)

This leads to the following result.

Lemma 5. For all a, b ∈ N0, 0 ≤ k ≤ n and j ∈ Ja,b,k, the spaces Ũ
(j)(1)
a,b,k and Ũ

(j)(2)
a,b,k

are infinite–dimensional irreducible gl(2, R)–modules, which are isomorphic to Ia+k,b−k =
Cn−2k+b−a ⊗ Ia+b+n and Ia+k+1,b−k+1 = Cn−2k+b−a ⊗ Ia+b+n+2, respectively.

Summarizing we have decomposed each module V
(j)
a,b,k into a direct sum of four isomorphic

irreducible gl(2, R)–submodules:

V
(j)
a,b,k =

(
Ũ

(j)(1)
a,b,k ⊕ Ũ

(j)(2)
a,b,k

)
⊕

(
W

(j)(1)
a,b,k ⊕W

(j)(2)
a,b;k

)
(12)

Note however that the explicit definition for the second summand depends on the constants
a, b and k, as opposed to the other summands.

Proposition 2. For all (a, b, k) fixed and j ∈ Ja,b,k, the module V
(j)
a,b,k is an infinite–dimensional

irreducible sl(1|2)–module.

Proof: It is sufficient to realize that an arbitrary element of V
(j)
a,b,k may always be written as

a sum containing powers of |z|2 with any of the following four singular vectors:

M
(j)
a,b,k → ker(∂z) ∩ ker(∂†

z) ⊂ ker(∆)

zM
(j)
a,b,k → ker(∂†

z) \ ker(∂z) ⊂ ker(∆)

z†M
(j)
a,b,k → ker(∂z) \ ker(∂†

z) ⊂ ker(∆)
(
c1zz† − c2z

†z
)
M

(j)
a,b,k → ker(∆) \

(
ker(∂z) ∪ ker(∂†

z)
)

(13)

where we have put c1 = a + k and c2 = b + m − k. Let ℓ be the biggest exponent of |z|2
amongst these terms, and consider the action of ∆ℓ. In view of Lemma 4 and Lemma 5, this
will produce a non–trivial linear combination of the singular vectors. Depending on which of
these singular vectors will survive, the action of ∂z∂

†
z or ∂z or ∂

†
z or none at all, will yield a

non–trivial multiple of M
(j)
a,b,k. The only non–trivial case follows from the fact that

∂z∂
†
z

(
c1 zz† − c2 z†z

)
M

(j)
a,b,k = −c1c2(1 + c1 + c2)M

(j)
a,b,k (14)

Repeated action of z and z† then generates the whole module, and together with the obvious
invariance this proves the statement. �

Finally, we have come to the proof of Proposition 1.
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Proof of Proposition 1
Let Pa,b,k(z, z†) be an arbitrary S

(k) valued (a, b)–homogeneous polynomial. From the Fischer
decomposition for scalar valued polynomials in Section 4, the existence of unique harmonic
polynomials Ha−l,b−l,k such that

Pa,b,k(z, z†) =

min(a,b)∑

l=0

r2l Ha−l,b−l,k

follows. We now claim that there exist unique h–monogenic polynomials such that

Ha−l,b−l,k = Ma−l,b−l,k +

{
zMa−l−1,b−l,k+1

z†Ma−l,b−l−1,k−1

}
+ (c1zz† − c2z

†z)Ma−l−1,b−l−1,k

with c1 = a−l+k and c2 = b−l+m−k. Once the existence of these h–monogenic polynomials
is shown, the proposition follows by an induction argument. So the proof is now reduced to
projecting onto weight spaces for irreducible sl(1|2)–modules. In view of the characterization
of the singular vectors (see (13)), it is clear that one starts with the last summand. Putting

Ma−l−1,b−l−1,k = − 1

c1c2(1 + c1 + c2)
∂z∂

†
zHa−l,b−l,k

it is clear that this is indeed an h–monogenic polynomial. We are thus left with the projection

π(Ha−l,b−l,k) :=

(
1 +

c1zz† − c2z
†z

c1c2(1 + c1 + c2)
∂z∂

†
z

)
Ha−l,b−l,k

If we then put

Ma−l−1,b−l,k+1 =
1

c1
∂z π(Ha−l,b−l,k)

Ma−l,b−l−1,k−1 =
1

c2
∂†

z π(Ha−l,b−l,k)

it is readily verified that these polynomials are indeed h–monogenic. Finally, the last piece is
thus given by

Ma−l,b−l,k =

(
1− 1

c1
z∂z −

1

c2
z†∂†

z

)
π(Ha−l,b−l,k)

the h–monogenicity of which is easily verified. �

This result can be reformulated as follows.

Theorem 4. Under the joint action of sl(1|2)×PinJ(2n), the space P(R2n; S) is isomorphic
to the multiplicity free irreducible direct sum

∞⊕

a,b=0

n⊕

k=0

Ia,b,k ⊗Ma,b,k

where Ia,b,k denotes the sl(1|2) irreducible module isomorphic to V
(j)
a,b,k and where Ma,b,k de-

notes the irreducible PinJ(2n)–module isomorphic to the space Ma,b,k of S
(k) valued (a, b)–

homogeneous h–monogenic polynomials.
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[1] F. Brackx, J. Bureš, H. De Schepper, D. Eelbode, F. Sommen, V. Souček, Fundaments
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